United States Patent [19]

Charles et al.

[54] PBT MOLDING COMPOSITIONS

- [75] Inventors: John J. Charles, Bloomingdale; Robert C. Gasman, West Milford, both of N.J.
- [73] Assignee: GAF Corporation, New York, N.Y.
- [21] Appl. No.: 814,543
- [22] Filed: Jul. 11, 1977
- [51] Int. Cl.² C08K 7/14; C08K 7/20;

- [58] Field of Search 260/40 R, 860

[56] References Cited

U.S. PATENT DOCUMENTS

4,011,285	3/1977	Seymour et al 260/876 R X
4,013,613	3/1977	Abolins et al 260/40 R

[11] **4,157,325**

Jun. 5, 1979

4,022,748	5/1977	Schlichting et al 260/40 R	
4,035,333	7/1977	Kamada et al 260/40 R	
4,064,098	12/1977	Saitoh et al 260/40 R	

[45]

Primary Examiner-Sandra M. Person

Attorney, Agent, or Firm-Walter C. Kehm; Joshua J. Ward

[57] ABSTRACT

Molding composition and molded products comprising polybutylene terephthalate containing thermally stable reinforcing fibers, such as glass fibers, having an aspect ratio of at least about 5, inert particular filler, such as glass spheres, having an aspect ratio of less than about 3 and poly(butylene terephthalate-co-tetramethylene oxide). In a preferred embodiment the composition also includes amorphous thermally stable resins such as polymethyl methacrylate.

14 Claims, No Drawings

PBT MOLDING COMPOSITIONS

BACKGROUND OF THE INVENTION

5 Polybutylene terephthalate (PBT) reinforced with thermally stable reinforcing fibers such as glass fibers is well known as a molding resin and is described in numerous patents and publications including for instance U.S. Pat. Nos. 3,814,725, 3,814,786 and 3,624,024. Fiber reinforcement generally improves the tensile strength, flexural strength, flexural modulus and heat deflection temperature of the molding composition. However, moldings, especially injection moldings of large fiber reinforced articles of PBT, tend to display distortion or 15 warping while some other resins of otherwise less desireable properties do not present such problems. It is believed that strains resulting from the different rates at which resin and glass contract during the cooling of molded articles are responsible for such warping. The 20 warping is thus believed due to the presence of the very reinforcing fibers which contribute to the enhanced physical characteristics of the finished product.

SUMMARY OF THE INVENTION

It is accordingly an object of the invention to provide an improved PBT molding composition and method for producing same as well as molded articles of such composition. As compared with known prior art composi- 30 for instance fibers of materials such as glass, asbestos, tions, the molded compositions of the invention have substantially less distortion due to warping while at the same time retaining substantially all of the improved physical properties imparted by reinforcing fibers.

least about 30 wt% PBT having an intrinsic viscosity (I.V.) between about 0.5 and about 2.0 deciliters per gram (dl/g) and contain:

- (a) between about 10 and about 50 wt% based on 40 total weight of PBT molding composition of thermally stable reinforcing fibers having diameters between about 5 and about 20 microns and aspect ratios of at least about 5.
- (b) between about 1 and about 40 wt% based on total 45 weight of PBT molding composition of inert filler particles having diameters between about 0.2 and about 20 microns and aspect ratios less than about 3.
- (c) between about 5 and about 40 wt% based on total 50 weight of PBT molding composition of poly(butyleneterephthalate-cotetramethylene oxide) having a Shore D hardness between about 50 and about 60 and a melt index between about 7 and 55 about 9.

In a preferred embodiment the molding resin of the invention also contains between about 1 and about 25 wt% based on total weight of PBT molding composition of an amorphous, thermally stable resin such as polymethyl methacrylate. A further preferred embodiment involves the use of glass fibers as the reinforcing fibers and glass spheres as the inert filler. The invention also contemplates a method for producing molding. resin of the invention by intimately blending the above 65 mentioned ingredients of such resin and also contemplates molded products made from molding compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

As mentioned above, the invention includes a novel molding composition, molded articles of such composition and method for producing such composition. The molding composition broadly comprises between about 30 and about 80 wt% PBT having an intrinsic viscosity between about 0.5 and about 1.5 dl/g and containing 10 thermally stable reinforcing fibers, inert particulate filler and poly(butylene terephthalate-co-tetramethylene oxide) as described above.

Polybutylene terephthalate (PBT) used in the invention may be produced in any suitable manner such as by reacting terephthalic acid or a dialkyl ester of terephthalic acid, e.g., dimethyl terephthalate, with diols having four carbon atoms, e.g., tetramethylene glycol. PBT for use in the invention has an intrinsic viscosity (I.V.) between about 0.5 and about 2.0 dl/g measured in orthochlorophenol at 25° C. Manufacture of PBT is well known to those skilled in the art as are the techniques for obtaining PBT of desired intrinsic viscosity. Such conventional production techniques for PBT are discussed in greater detail for instance in U.S. Pat. No. 25 3,465,319.

Thermally stable reinforcing fibers used in the invention may be any such fibers which are thermally stable at the conditions normally used in the production of products from PBT molding compositions and include carbon, fibrous potassium titanate, iron whiskers, etc. Such fibers should normally have diameters between about 5 and about 20 microns and aspect ratios (ratio of length of fiber to diameter of fiber) of at least about 5. Molding compositions of the invention comprise at 35 Glass fibers are preferred for use in the invention. Glass fibers, where used, preferably have diameters between about 10 and about 15 microns and aspect ratios of at least about 20.

> Reinforcing fibers used in the invention are normally used in amounts between about 10 and about 50 wt% based on total weight of PBT molding composition more preferably in amounts between about 10 and about 20 wt% on the same basis. As is commonly recognized, the use of such fibers increases substantially such physical properties as tensile strength, flexural strength, flexural modulus and heat distortion temperature of the PBT. Glass or other fibers for use in the invention may be manufactured and incorporated into the PBT in any suitable manner, such as by separate extrusion blending with the PBT, extrusion blending with other ingredients of the compositions of the invention or incorporating into the PBT or PBT containing composition during injection molding of products from the PBT.

As mentioned above, products molded from fiberglass reinforced PBT, while having substantially improved physical properties in certain respects, suffer from excessive warpage believed to be due to the presence of the fibers. It is thus necessary in accordance with the present invention to incorporate in the compo-60 sitions and the products of the invention additional filler materials for the purpose of reducing the adverse effect of the reinforcing fibers on warpage. More specifically, the present invention requires the use of between about 1 and about 40 wt% based on total weight of PBT molding composition of inert filler particles having diameters between about 0.2 and 20 microns and aspect ratios less than about 3. The invention also requires the presence of between about 5 and about 40 wt% based on total weight of PBT molding composition of poly(butylene terephthalate-co-tetramethylene oxide) having a Shore D hardness between about 50 and about 60 and a melt index between about 7 and about 9.

The use of inert filler particles of low aspect ratio 5 serves to minimize the warpage problem associated with the use of reinforcing fibers but tends to have an adverse effect upon other physical properties such as impact strength and elongation characteristics. While the use of such filler in fiber reinforced PBT has been 10 beneficial, the present invention contemplates further improvement in overall physical properties of molded PBT products by including in the molding composition and products of the invention poly(butylene terephthalate-co-tetramethylene oxide) in amounts as described 15 above. The addition of this material to the molding composition serves to improve impact strength and elongation characteristics of molded products without substantial harm to warpage or other desired character-20 istics

Suitable inert particulate filler materials of low aspect ratio for use in the invention include for instance glass spheres, clay, silica, silicates, and alumina. Such filler material is, in accordance with the invention, incorporated in the molding compositions and products of the 25 invention in amounts between about 1 and about 40 wt% based on total weight of PBT molding composition and serves to control shrinkage of molded PBT products in general as well as minimizing the warpage problem normally experienced with fiber reinforced 30 PBT. Particles of low aspect ratio (i.e. less than about 3) and having particle diameters between about 0.5 and about 30 microns are preferred with solid glass spheres of this size range being especially preferred.

In addition to the above mentioned essential ingredi- 35 ents of the composition and products of the invention, the use of an additional ingredient, i.e., an amorphous thermally stable resin in amounts between about 1 and about 25 wt% based on total weight of PBT molding composition is preferred. Suitable resins for this purpose 40 include generally any amorphous resin which is thermally stable under the conditions used in forming molded products from PBT and may include such diverse materials as polymethyl methacrylate, poly (butyl methacrylate-co-methyl methacrylate), poly (ethyl 45 acrylate-co-methyl methacrylate), poly carbonate, and polysulfone, etc. An especially preferred amorphous resin for use in the invention is polymethyl methacrylate, generally available under the trade name Lucite or Plexiglas. Amorphous resin used in the invention espe- 50 cially the preferred polymethyl methacrylate, is preferably resin having a melt index between about 1 and about 25.

In addition to the ingredients mentioned above, compositions and products of the invention may contain 55 suitable flame retardant additives in amounts up to about 30 wt% based on total weight of PBT molding composition and may contain relatively minor amounts of other materials which do not unduly effect the desired characteristics of the finished products. Such additional materials, may, depending upon the particular compositions employed and products desired, include for instance, colorants and lubricants. Where present, such additional materials normally comprise no more than about 5 wt% of the total composition or finished 65 product.

In preparing molded compositions of the invention, the reinforcing fibers may be intimately blended into the PBT by any suitable means such as by dry blending or melt blending, blending in extruders, heated rolls or other types of mixers, etc. Conventional master batching techniques may also be used. The same considerations apply to addition of the other essential or optional ingredients of the composition of the invention, including specifically the inert filler of low aspect ratio, the poly(butylene terephthalate-co-tetramethylene oxide) and the amorphous thermally stable resin. Suitable blending and molding techniques are well known in the art and need not be described in detail herein.

In a preferred embodiment of the invention, the composition of the invention is compounded by dry blending followed by melt mixing in an extruder with barrel temperatures between about 240° and about 270° C. In molding products of the invention from molding compositions of the invention, injection molding is preferred. When injection molding is used, barrel temperatures between about 450° and 500° F. are preferred. In a preferred embodiment, the molding composition of the invention is formed by extrusion and pelletized. Products of the invention are then produced by injection molding the pelletized extrudate.

As mentioned above, one of the major advantages of the compositions and products of the invention is that the addition of the inert filler of low aspect ratio and the poly(butylene terephthalate-co-tetramethylene oxide) to fiber reinforced PBT substantially reduces shrinkage and warpage normally associated with the use of reinforcing fibers without substantial harm to the desirable improvements in physical properties associated with the use of such fibers. While warpage is frequently determined by visual inspection, a quantitative definition can be expressed in terms of percent warp equals

$$(dm - t) \times 100$$

where "dm" equals maximum distance from a flat surface to a point on a warped side of the article being evaluated, and "t" equals the thickness of the warped side of the article. This equation defines warp in terms of wall thickness without regard to length of the part. Since some absolute deviation from a straight line gives the same percent warp, a correction for part length must also be included to more accurately define warpage of a part in terms of the visual effect of the warp. Part warp (PW) may therefore be defined as

$$PW = \frac{\% \text{ warp}}{L} = \frac{(dm - t) \times 100}{t \times L}$$

wherein PW equals part warp, "L" equals total length of the warp member and the other values are as stated immediately above. In evaluating warpage of samples and products, an average warpage value for a five sided plain box is frequently calculated based upon measurements of warpage of the right, left, front and back sides of the box.

The following example is intended to illustrate the application and usefulness of the invention without limiting the scope thereof. In the example, all quantities are given in terms of weight percent based on total molding composition unless otherwise specified. Physical properties including warpage, were measured by the following criteria and reported as an average of samples of each composition tested:

10

Property		Test Procedures
Notched Izod	· · · ·	
Impact		ASTM D-256
Unnotched Izod		
Impact		ASTM D-256
Heat Distortion		ASTM D-648
Percent Wrap		As Defined Above

EXAMPLE

In order to evaluate the various physical properties, including warpage, of molded articles made from various molding compositions, compositions having the ingredients listed in Table I below were prepared using 15 PBT having an intrinsic viscosity of 0.8.

The compositions were compounded on a Midland Ross 1.5 inch extruder using the following conditions:

Temperature	240-255° C.	20
Pressure	0-200 psi	
Amperage	10-12	
Screw RPM	75	

The pelletized filled extrudate was molded on a 50 ton, 3 oz. reciprocating screw injection molding machine to provide ASTM test specimens. Parts suitable for measuring warpage (camera slide box with four large, flat sides) were molded on a 350 ton, 36 oz. Impco screw ram machine. Molding conditions were:

3 oz., 50 Ton Machine		
Barrel Temperature	480° F.	
Injection Pressure	1100 psi	
Screw RPM	75	
Injection Time	10 sec.	
Mold Time	20 sec.	
Total Cycle Time	30 sec.	
Mold Temperature	100° F.	
36 oz., 350 Ton Machine		
Barrel Temperature	480-490° F.	
Measured Melt Temperature	420° F.	
Screw RPM	80	
Total Cycle Time	94 sec.	
Mold Temperatures	175° F.	
Mold Time	40 sec.	
Injection Pressure	1100 psi	

Mechanical properties of the test specimens prepared as described above were found to be as set forth in Table I below:

While the invention has been described above with respect to certain preferred embodiments, it will be understood that various changes and modifications can be made without departing from the spirit or scope of 5 the invention.

What is claimed is:

1. Molding composition comprising at least about 30 wt% PBT having an intrinsic viscosity between about 0.5 and about 2.0 dl/g and containing:

- a. between about 10 and about 50 wt% based on total weight of PBT molding composition of thermally stable glass reinforcing fibers having diameters between about 5 and about 20 microns and aspect ratios of at least about 5
- b. between about 1 and about 40 wt% based on PBT of glass spheres having diameters between about 0.2 and about 20 microns and aspect ratios less than about 3, and
- c. between about 5 and about 40 wt% based on total weight of PBT molding composition of poly(butylene terephthalate-co-tetramethylene oxide) having a Shore D hardness between about 50 and about 60 and a melt index between about 7 and about 9.

2. Molding composition according to claim 1 which also contains between about 1 and about 25 wt% based on total weight of PBT molding composition of an amorphous, thermally stable resin.

3. Molding composition according to caim 1 in which the fibers have diameters between about 10 and about 15 30 microns and aspect ratios of at least about 20.

4. Molding composition according to claim 2 wherein the amorphous, thermally stable resin is polymethyl methacrylate having a melt index between about 1 and about 25.

35 5. A molded article of the molding composition of claim 1.

6. A molded article of the molding composition of claim 2.

7. A molded article of the molding composition of 40 claim 3.

8. A molded article of the molding composition of claim 4.

A method for producing improved molding composition comprising intimately blending PBT having an
intrinsic viscosity between about 0.5 and about 2.0 deciliters per gram with;

a. between about 10 and about 50 wt% based on total weight of PBT molding composition of thermally

PBT MOLDING COMPOSITIONS										
Ingredient	Composition No.									
wt%		1	2	3	4	5	6	7	8	9
PBT (0.8 I.V.)		70	70	55	90	60	40	70	60	45
Solid Glass spheres - Potters Bros. CP 3000		_	30	30	—	30	30		—	30
Poly (butylene terephthalate-co-		_	—	15	—		15		_	15
tetramethylene oxide) - duPont										
Hytrel 5556										
Polymethyl/methacrylate - Lucite 147 F			—		—		5	—		_
Glass Fibers - 3/16 in.		30			10	10	10		10	10
Wollastonite P-1				_		—		30	30	_
Properties of Molded Samples										
% Warp, Unannealed	1	_	116	96	305	-80	123	74	119	
% Warp, Annealed 1 hr., 375° F.	1	457	104	107	357	198	203	229	263	
Jnnotched Izod Impact-		7.8	3.1	9.8	3.7	4.0	7.6			7.9
t. lbs/in.			•							
Notched Izod Impact -		1.8	.86	.92	1.1	.94	1.24			1.10
t. lbs/in.										
Heat Distortion - 264 psi, °C.		208	111	98	200	198	185			186

20

25

30

35

40

45

50

55

60

65

stable glass reinforcing fibers having diameters between about 5 and about 20 microns and aspect ratios of at least about 5

- b. between about 1 and about 40 wt% based on total weight of PBT molding composition of glass ⁵ spheres having aspect ratios of less than about 3 and diameters between 0.2 and 20 microns, and
- c. between about 5 and about 40 wt% based on total weight of PBT molding composition of poly(butylene terephthalate-co-tetramethylene oxide) having a Shore D hardness between about 50 and about 60 and a melt index between about 7 and about 9.

10. Method according to claim 9 wherein between about 1 and about 25 wt% based on total weight of PBT 15

molding composition of an amorphous, thermally stable resin is also intimately blended into the composition.

11. Method according to claim 9 wherein the fibers have diameters between about 10 and about 15 microns and aspect ratios of at least about 20.

12. Method according to claim 10 wherein the amorphous, thermally stable resin is polymethyl methacrylate.

13. Method according to claim **11** wherein the amorphous, thermally stable resin is polymethyl methacrylate having a melt index between about 1 and about 25.

14. Molding composition according to claim 1 which further contains flame retardant additives in amounts up to 30 wt% of the total molding composition.

* * * * * *