
(12) STANDARD PATENT APPLICATION (11) Application No. AU 2017201208 Al
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method, apparatus and system for encoding and decoding the transform units of a
coding unit

(51) International Patent Classification(s)
H04N 7/00 (2006.01) H04N 21/20 (2011.01)
H04N 7/14 (2006.01) H04N 21/21 (2011.01)
H04N 7/24 (2006.01)

(21) Application No: 2017201208 (22) Date of Filing: 2017.02.22

(43) Publication Date: 2017.03.16
(43) Publication Journal Date: 2017.03.16

(62) Divisional of:
2013325121

(71) Applicant(s)
Canon Kabushiki Kaisha

(72) Inventor(s)
Rosewarne, Christopher James; Kolesnikov, Volodymyr

(74) Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000, AU

METHOD, APPARATUS AND SYSTEM FOR ENCODING AND DECODING THE

TRANSFORM UNITS OF A CODING UNIT

ABSTRACT

A method of decoding a transform unit containing chroma residual samples from a

video bitstream, the transform unit containing at least one chroma residual coefficient array

associated with a single chroma channel in a 4:2:2 chroma format. The method comprises

decoding two of coded block flag values from the video bitstream for a single chroma

channel of the transform unit, wherein the transform unit has a plurality of chroma residual

coefficient arrays for a single colour channel and each coded block flag value of the two of

coded block flag values corresponds to one chroma residual coefficient array of the chroma

residual coefficient arrays; decoding from the video bitstream each of a plurality of chroma

residual coefficient arrays according to a corresponding coded block flag value of the two of

coded block flag values; and selecting a square inverse transform for the decoded chroma

residual coefficient arrays, the square inverse transform being selected from a predetermined

set of square inverse transforms according to a chroma transform size of the transform unit.

The method also comprises applying the selected square inverse transform to each of the

decoded chroma residual coefficient arrays to produce the chroma residual samples for the

chroma channel of the transform unit.

12702001 1

1

METHOD, APPARATUS AND SYSTEM FOR ENCODING AND

DECODING THE TRANSFORM UNITS OF A CODING UNIT

REFERENCE TO RELATED APPLICATION(S)

[0001] This application is a divisional application of Australian Patent Application No.

2013325121, a National Phase entry of International Patent Application No.

PCT/AU2013/001116 which claims the benefit of priority from Australian Patent Application

No. 2012232992, filed September 28, 2012, hereby incorporated by reference in its entirety as if

fully set forth herein. Australian Patent Application No. 2013325121 is incorporated herein by

reference in its entirety as if fully set forth herein.

TECHNICAL FIELD

[0002] The present invention relates generally to digital video signal processing and, in

particular, to a method, apparatus and system for encoding and decoding residual coefficients of

a transform unit (TU), wherein the transform unit (TU) includes one or more transform units

(TUs) and may be configured for multiple chroma formats, including a 4:2:2 chroma format.

BACKGROUND

[0003] Many applications for video coding currently exist, including applications for

transmission and storage of video data. Many video coding standards have also been developed

and others are currently in development. Recent developments in video coding standardisation

have led to the formation of a group called the "Joint Collaborative Team on Video Coding"

(JCT-VC). The Joint Collaborative Team on Video Coding (JCT-VC) includes members of

Study Group 16, Question 6 (SG16/Q6) of the Telecommunication Standardisation Sector (ITU

T) of the International Telecommunication Union (ITU), known as the Video Coding Experts

Group (VCEG), and members of the International Organisations for Standardisation /

International Electrotechnical Commission Joint Technical Committee 1 / Subcommittee 29 /

Working Group 11 (ISO/IEC JTC1/SC29/WG1 1), also known as the Moving Picture Experts

Group (MPEG).

[0004] The Joint Collaborative Team on Video Coding (JCT-VC) has the goal of

producing a new video coding standard to significantly outperform a presently existing video

coding standard, known as "H.264/MPEG-4 AVC". The H.264/MPEG-4 AVC standard is itself

2

a large improvement on previous video coding standards, such as MPEG-4 and ITU-T H.263.

The new video coding standard under development has been named "high efficiency video

coding (HEVC)". The Joint Collaborative Team on Video Coding JCT-VC is also considering

implementation challenges arising from technology proposed for high efficiency video coding

(HEVC) that create difficulties when scaling implementations of the standard to operate at high

resolutions in real-time or high frame rates. One implementation challenge is the complexity

and size of logic used to support multiple 'transform' sizes for transforming video data between

the frequency domain and the spatial domain.

SUMMARY

[0005] It is an object of the present invention to substantially overcome, or at least

ameliorate, one or more disadvantages of existing arrangements.

[0005a] One aspect of the present disclosure provides a method of decoding a transform

unit containing chroma residual samples from a video bitstream, the transform unit containing at

least one chroma residual coefficient array associated with a single chroma channel in a 4:2:2

chroma format, the method comprising: decoding two of coded block flag values from the video

bitstream for a single chroma channel of the transform unit, wherein the transform unit has a

plurality of chroma residual coefficient arrays for a single colour channel and each coded block

flag value of the two of coded block flag values corresponds to one chroma residual coefficient

array of the chroma residual coefficient arrays; decoding from the video bitstream each of a

plurality of chroma residual coefficient arrays according to a corresponding coded block flag

value of the two of coded block flag values; selecting a square inverse transform for the decoded

chroma residual coefficient arrays, the square inverse transform being selected from a

predetermined set of square inverse transforms according to a chroma transform size of the

transform unit; and applying the selected square inverse transform to each of the decoded

chroma residual coefficient arrays to produce the chroma residual samples for the chroma

channel of the transform unit.

[0005b] Another aspect of the present disclosure provides a method of encoding a

transform unit containing chroma residual samples to a video bitstream, the transform unit

containing at least one chroma residual coefficient array associated with a single chroma

channel in a 4:2:2 chroma format, the method comprising: encoding two of coded block flag

values to the video bitstream for a single chroma channel of the transform unit, wherein the

transform unit has a plurality of chroma residual coefficient arrays for a single colour channel

2a

and each coded block flag value of the two of coded block flag values corresponds to one

chroma residual coefficient array of the chroma residual coefficient arrays; selecting a square

forward transform for the chroma residual coefficient arrays, the square forward transform being

selected from a predetermined set of square forward transforms according to a chroma transform

size of the transform unit; applying the selected square forward transform to each of the decoded

chroma residual coefficient arrays to produce the chroma residual samples for the chroma

channel of the transform unit; and encoding to the video bitstream each of the plurality of

chroma residual coefficient arrays according to a corresponding coded block flag value of the

two of coded block flag values.

[0005c] Another aspect of the present disclosure provides a video decoder for decoding a

transform unit containing chroma residual samples from a video bitstream, the transform unit

containing at least one chroma residual coefficient array associated with a single chroma

channel in a 4:2:2 chroma format, the method comprising: a first decoder to decode two of

coded block flag values from the video bitstream for a single chroma channel of the transform

unit, wherein the transform unit has a plurality of chroma residual coefficient arrays for a single

colour channel and each coded block flag value of the two of coded block flag values

corresponds to one chroma residual coefficient array of the chroma residual coefficient arrays; a

second decoder to decode from the video bitstream each of a plurality of chroma residual

coefficient arrays according to a corresponding coded block flag value of the two of coded block

flag values; a selector to select a square inverse transform for the decoded chroma residual

coefficient arrays, the square inverse transform being selected from a predetermined set of

square inverse transforms according to a chroma transform size of the transform unit; and an

applicator to apply the selected square inverse transform to each of the decoded chroma residual

coefficient arrays to produce the chroma residual samples for the chroma channel of the

transform unit.

[0005d] Another aspect of the present disclosure provides a video encoder for encoding a

transform unit containing chroma residual samples to a video bitstream, the transform unit

containing at least one chroma residual coefficient array associated with a single chroma

channel in a 4:2:2 chroma format, the method comprising: a first encoder for encoding two of

coded block flag values to the video bitstream for a single chroma channel of the transform unit,

wherein the transform unit has a plurality of chroma residual coefficient arrays for a single

colour channel and each coded block flag value of the two of coded block flag values

corresponds to one chroma residual coefficient array of the chroma residual coefficient arrays; a

2b

selector for selecting a square forward transform for the chroma residual coefficient arrays, the

square forward transform being selected from a predetermined set of square forward transforms

according to a chroma transform size of the transform unit; an applicator for applying the

selected square forward transform to each of the decoded chroma residual coefficient arrays to

produce the chroma residual samples for the chroma channel of the transform unit; and a second

encoder for encoding to the video bitstream each of the plurality of chroma residual coefficient

arrays according to a corresponding coded block flag value of the two of coded block flag

values.

[0005e] Another aspect of the present disclosure provides a computer readable storage

medium having a program recorded thereon, the program being executable by a processor to

decode a transform unit containing chroma residual samples from a video bitstream, the

transform unit containing at least one chroma residual coefficient array associated with a single

chroma channel in a 4:2:2 chroma format, the program comprising: code for decoding two of

coded block flag values from the video bitstream for a single chroma channel of the transform

unit, wherein the transform unit has a plurality of chroma residual coefficient arrays for a single

colour channel and each coded block flag value of the two of coded block flag values

corresponds to one chroma residual coefficient array of the chroma residual coefficient arrays;

code for decoding from the video bitstream each of a plurality of chroma residual coefficient

arrays according to a corresponding coded block flag value of the two of coded block flag

values; code for selecting a square inverse transform for the decoded chroma residual coefficient

arrays, the square inverse transform being selected from a predetermined set of square inverse

transforms according to a chroma transform size of the transform unit; and code for applying the

selected square inverse transform to each of the decoded chroma residual coefficient arrays to

produce the chroma residual samples for the chroma channel of the transform unit.

[0005e] Another aspect of the present disclosure provides a computer readable storage

medium having a program recorded thereon, the program being executable by a processor to

encode a transform unit containing chroma residual samples to a video bitstream, the transform

unit containing at least one chroma residual coefficient array associated with a single chroma

channel in a 4:2:2 chroma format, the method comprising:

code for encoding two of coded block flag values to the video bitstream for a single chroma

channel of the transform unit, wherein the transform unit has a plurality of chroma residual

coefficient arrays for a single colour channel and each coded block flag value of the two of

coded block flag values corresponds to one chroma residual coefficient array of the chroma

2c

residual coefficient arrays; code for selecting a square forward transform for the chroma residual

coefficient arrays, the square forward transform being selected from a predetermined set of

square forward transforms according to a chroma transform size of the transform unit; code for

applying the selected square forward transform to each of the decoded chroma residual

coefficient arrays to produce the chroma residual samples for the chroma channel of the

transform unit; and code for encoding to the video bitstream each of the plurality of chroma

residual coefficient arrays according to a corresponding coded block flag value of the two of

coded block flag values.

[0006] According to another aspect of the present disclosure there is provided a method

of decoding a transform unit containing chroma residual coefficients from a video bitstream, the

transform unit containing at least one chroma residual coefficient array associated with a single

chroma channel, the method comprising:

determining a size of the transform unit, the size being related to a hierarchical level of

the transform unit in a corresponding coding unit;

identifying a maximum number of inverse transforms, used for transforming the at least

one chroma residual coefficient array, according to the determined size;

decoding from the video bitstream the at least one chroma residual coefficient array

using the identified maximum number of transforms for the chroma channel of the transform

unit;

selecting an inverse transform for the decoded chroma residual coefficient arrays, the

inverse transform being selected from a predetermined set of inverse transforms; and

applying the selected inverse transform to each of the chroma residual coefficient arrays

to decode chroma residual samples for the chroma channel of the transform unit.

[0007] According to another aspect of the present disclosure there is provided a method

of encoding into a video bitstream a transform unit containing chroma residual samples

associated with a single chroma channel, the transform unit containing at least one chroma

residual sample array, the method comprising:

determining a size of the transform unit, the size being related to a hierarchical

-3

level of the transform unit in a corresponding coding unit;

identifying a maximum number of predetermined forward transforms, used for

transforming the at least one chroma residual sample array, according to the determined

size;

selecting a forward transform for the chroma residual sample arrays, the forward

transform being selected from a predetermined set of forward transforms;

applying the selected forward transform to each of the chroma residual sample

arrays to transform at least one of the chroma residual sample arrays into a corresponding

chroma residual coefficient array for the chroma channel of the transform unit; and

encoding the chroma residual coefficient arrays for the chroma channel of the

transform unit;

[0008] Preferably the maximum number of transforms is one or two. Desirably the

number is two and is applied in a 4:2:2 chroma format to a 32x16 sized chroma region of

the transform unit.

[0009] Advantageously, the number of transforms is selected from the set of one,

two and four. In a specific implementation the number is four and is applied in a 4:4:4

chroma format to a 32x32 sized chroma region of the transform unit.

[00010] Preferably a single scan is applied covering the identified number of

transforms. Desirably coefficients of the identified number of transforms are interleaved.

[00011] In one implementation, a transform unit having the size of 4x8 is scanned

using a 4x4 sub-block scan pattern.

[00012] In another, the number of transforms applied is determined using at least a

code block flag. Desirably the number of transforms applied is determined using the

identified maximum number of transforms and a coded block flag value for each

transform.

[00013] In accordance with another aspect of the present disclosure, there is

provided a method of decoding a transform unit containing chroma residual samples from

a video bitstream, the transform unit containing at least one chroma residual coefficient

array associated with a single chroma channel in a 4:2:2 chroma format, the method

-4

comprising:

determining a hierarchical level for the transform unit within a coding unit, from

split transform flags present in the video bitstream, wherein a coding unit size ranges from

a smallest coding unit to a largest coding unit;

determining a transform size of the transform unit for the single chroma channel,

the transform size being related to the determined hierarchical level of the transform unit

and the coding unit size;

determining a plurality of coded block flag values from the video bitstream for a

single chroma channel of the transform unit, wherein the transform unit has a plurality of

chroma residual coefficient arrays for a single colour channel and each coded block flag

value of the plurality of coded block flag values corresponds to one chroma residual

coefficient array of the chroma residual coefficient arrays;

decoding from the video bitstream each of a plurality of chroma residual

coefficient arrays according to a corresponding coded block flag value of the plurality of

coding block flag values;

selecting a square inverse transform for the decoded chroma residual coefficient

arrays, the square inverse transform being selected from a predetermined set of square

inverse transforms according to the determined transform size; and

applying the selected square inverse transform to each of the decoded chroma

residual coefficient arrays to produce the chroma residual samples for the chroma channel

of the transform unit.

[00014] According to another aspect of the disclosure, provided is a method of

encoding a transform unit containing chroma residual samples to a video bitstream, the

transform unit containing at least one chroma residual coefficient array associated with a

single chroma channel in a 4:2:2 chroma fonnat, the method comprising:

encoding split transform flags to the video bitstream based on a received

hierarchical level for the transform unit within a coding unit, wherein a coding unit size

ranges from a smallest coding unit to a largest coding unit;

receiving a transform size of the transform unit for the single chroma channel, the

transform size being related to the hierarchical level of the transform unit and the coding

unit size;

encoding a plurality of coded block flag values to the video bitstream for a single

chroma channel of the transform unit, wherein the transform unit has a plurality of chroma

-5

residual coefficient arrays for a single colour channel and each coded block flag value of

the plurality of coded block flag values corresponds to one chroma residual coefficient

array of the chroma residual coefficient arrays;

selecting a square forward transform for the chroma residual coefficient arrays, the

square forward transform being selected from a predetermined set of square forward

transforms according to the received transform size;

applying the selected square forward transform to each of the decoded chroma

residual coefficient arrays to produce the chroma residual samples for the chroma channel

of the transform unit; and

encoding to the video bitstream each of the plurality of chroma residual coefficient

arrays according to a corresponding coded block flag value of the plurality of coding block

flag values.

[00015] Other aspects are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

[00016] At least one embodiment of the present invention will now be described

with reference to the following drawings, in which:

[00017] Fig. 1 is a schematic block diagram showing a video encoding and decoding

system;

[00018] Figs. 2A and 2B form a schematic block diagram of a general purpose

computer system upon which one or both of the video encoding and decoding system of

Fig. 1 may be practiced;

[00019] Fig. 3 is a schematic block diagram showing functional modules of a video

encoder;

[00020] Fig. 4 is a schematic block diagram showing functional modules of a video

decoder;

[00021] Figs. 5A and 5B schematically illustrate chroma formats for representing

frame data;

-6

[00022] Fig. 6A is a schematic representation of an exemplary transform tree of a

coding unit;

[00023] Fig. 6B is a schematic representation of the exemplary transform tree

arranged on a luma sample grid;

[00024] Fig. 6C is a schematic representation of the exemplary transform tree

arranged on a chroma sample grid;

[00025] Fig. 7 is a schematic illustration of a data structure representing a luma

channel of the exemplary transform tree;

[00026] Fig. 8 illustrates a data structure representing a chroma channel of the

exemplary transform tree;

[00027] Figs. 9A and 9B schematically show a bitstream structure that encodes the

exemplary transform tree;

[00028] Figs. 9C and 9D schematically show an alternative bitstream structure that

encodes the exemplary transform tree;

[00029] Fig. 10 is a schematic flow diagram showing a method for encoding the

exemplary transform tree;

[00030] Fig. 11 is a schematic flow diagram showing a method for decoding the

exemplary transform tree; and

[00031] Figs. 12A to 12C schematically show residual scan patterns of a 4x8

transform unit.

DETAILED DESCRIPTION INCLUDING BEST MODE

[00032] Where reference is made in any one or more of the accompanying drawings

to steps and/or features, which have the same reference numerals, those steps and/or

-7

features have for the purposes of this description the same function(s) or operation(s),

unless the contrary intention appears.

[00033] Fig. 1 is a schematic block diagram showing function modules of a video

encoding and decoding system 100 that may utilise techniques for coding syntax elements

representative of inferred subdivision of transform units into multiple transforms for a

chroma channel. The system 100 includes a source device 110 and a destination device

130. A communication channel 120 is used to communicate encoded video information

from the source device 110 to the destination device 130. In some cases, the source device

110 and destination device 130 may comprise respective mobile telephone hand-sets, in

which case the communication channel 120 is a wireless channel. In other cases, the

source device 110 and destination device 130 may comprise video conferencing

equipment, in which case the communication channel 120 is typically a wired channel,

such as an internet connection. Moreover, the source device 110 and the destination

device 130 may comprise any of a wide range of devices, including devices supporting

over the air television broadcasts, cable television applications, internet video applications

and including applications where the encoded video is captured on some storage medium

or a file server.

[00034] As illustrated, the source device 110 includes a video source 112, a video

encoder 114 and a transmitter 116. The video source 112 typically comprises a source of

captured video frame data, such as an imaging sensor, a previously captured video

sequence stored on a non-transitory recording medium, or a video feed from a remote

imaging sensor. Examples of source devices 110 that may include an imaging sensor as

the video source 112 include smart-phones, video camcorders and network video cameras.

The video encoder 114 converts the captured frame data from the video source 112 into

encoded video data and will be described further with reference to Fig. 3. The encoded

video data is typically transmitted by the transmitter 116 over the communication channel

120 as encoded video information. It is also possible for the encoded video data to be

stored in some storage device, such as a "Flash" memory or a hard disk drive, until later

being transmitted over the communication channel 120.

[00035] The destination device 130 includes a receiver 132, a video decoder 134

and a display device 136. The receiver 132 receives encoded video information from the

communication channel 120 and passes received video data to the video decoder 134. The

-8

video decoder 134 then outputs decoded frame data to the display device 136. Examples

of the display device 136 include a cathode ray tube, a liquid crystal display, such as in

smart-phones, tablet computers, computer monitors or in stand-alone television sets. It is

also possible for the functionality of each of the source device 110 and the destination

device 130 to be embodied in a single device.

[00036] Notwithstanding the exemplary devices mentioned above, each of the

source device 110 and destination device 130 may be configured within a general purpose

computing system, typically through a combination of hardware and software components.

Fig. 2A illustrates such a computer system 200, which includes: a computer module 201;

input devices such as a keyboard 202, a mouse pointer device 203, a scanner 226, a

camera 227, which may be configured as the video source 112, and a microphone 280; and

output devices including a printer 215, a display device 214, which may be configured as

the display device 136, and loudspeakers 217. An external Modulator-Demodulator

(Modem) transceiver device 216 may be used by the computer module 201 for

communicating to and from a communications network 220 via a connection 221. The

communications network 220, which may represent the communication channel 120, may

be a wide-area network (WAN), such as the Internet, a cellular telecommunications

network, or a private WAN. Where the connection 221 is a telephone line, the modem 216

may be a traditional "dial-up" modem. Alternatively, where the connection 221 is a high

capacity (e.g., cable) connection, the modem 216 may be a broadband modem. A wireless

modem may also be used for wireless connection to the communications network 220.

The transceiver device 216 may provide the functionality of the transmitter 116 and the

receiver 132 and the communication channel 120 may be embodied in the connection 221.

[00037] The computer module 201 typically includes at least one processor

unit 205, and a memory unit 206. For example, the memory unit 206 may have

semiconductor random access memory (RAM) and semiconductor read only memory

(ROM). The computer module 201 also includes an number of input/output (1/0)

interfaces including: an audio-video interface 207 that couples to the video display 214,

loudspeakers 217 and microphone 280; an 1/0 interface 213 that couples to the

keyboard 202, mouse 203, scanner 226, camera 227 and optionally a joystick or other

human interface device (not illustrated); and an interface 208 for the external modem 216

and printer 215. In some implementations, the modem 216 may be incorporated within the

-9

computer module 201, for example within the interface 208. The computer module 201

also has a local network interface 211, which permits coupling of the computer system 200

via a connection 223 to a local-area communications network 222, known as a Local Area

Network (LAN). As illustrated in Fig. 2A, the local communications network 222 may

also couple to the wide network 220 via a connection 224, which would typically include a

so-called "firewall" device or device of similar functionality. The local network interface

211 may comprise an EthernetTM circuit card, a BluetoothTM wireless arrangement or an

IEEE 802.11 wireless arrangement; however, numerous other types of interfaces may be

practiced for the interface 211. The local network interface 211 may also provide the

functionality of the transmitter 116 and the receiver 132 and communication channel 120

may also be embodied in the local communications network 222.

[00038] The 1/0 interfaces 208 and 213 may afford either or both of serial and

parallel connectivity, the former typically being implemented according to the Universal

Serial Bus (USB) standards and having corresponding USB connectors (not illustrated).

Storage devices 209 are provided and typically include a hard disk drive (HDD) 210.

Other storage devices such as a floppy disk drive and a magnetic tape drive (not

illustrated) may also be used. An optical disk drive 212 is typically provided to act as a

non-volatile source of data. Portable memory devices, such optical disks (e.g. CD-ROM,

DVD, Blu-ray Disc TM), USB-RAM, portable, external hard drives, and floppy disks, for

example, may be used as appropriate sources of data to the computer system 200.

Typically, any of the HDD 210, optical drive 212, networks 220 and 222 may also be

configured to operate as the video source 112, or as a destination for decoded video data to

be stored for reproduction via the display 214.

[00039] The components 205 to 213 of the computer module 201 typically

communicate via an interconnected bus 204 and in a manner that results in a conventional

mode of operation of the computer system 200 known to those in the relevant art. For

example, the processor 205 is coupled to the system bus 204 using a connection 218.

Likewise, the memory 206 and optical disk drive 212 are coupled to the system bus 204 by

connections 219. Examples of computers on which the described arrangements can be

practised include IBM-PC's and compatibles, Sun SPARCstations, Apple MacTM or alike

computer systems.

- 10

[00040] Where appropriate or desired, the video encoder 114 and the video decoder

134, as well as methods described below, may be implemented using the computer system

200 wherein the video encoder 114, the video decoder 134 and the processes of Figs. 10 to

13, to be described, may be implemented as one or more software application

programs 233 executable within the computer system 200. In particular, the video encoder

114, the video decoder 134 and the steps of the described methods are effected by

instructions 231 (see Fig. 2B) in the software 233 that are carried out within the computer

system 200. The software instructions 231 may be formed as one or more code modules,

each for performing one or more particular tasks. The software may also be divided into

two separate parts, in which a first part and the corresponding code modules performs the

described methods and a second part and the corresponding code modules manage a user

interface between the first part and the user.

[00041] The software may be stored in a computer readable medium, including the

storage devices described below, for example. The software is loaded into the computer

system 200 from the computer readable medium, and then executed by the computer

system 200. A computer readable medium having such software or computer program

recorded on the computer readable medium is a computer program product. The use of the

computer program product in the computer system 200 preferably effects an advantageous

apparatus for implementing the video encoder 114, the video decoder 134 and the

described methods.

[00042] The software 233 is typically stored in the HDD 210 or the memory 206.

The software is loaded into the computer system 200 from a computer readable medium,

and executed by the computer system 200. Thus, for example, the software 233 may be

stored on an optically readable disk storage medium (e.g., CD-ROM) 225 that is read by

the optical disk drive 212.

[00043] In some instances, the application programs 233 may be supplied to the user

encoded on one or more CD-ROMs 225 and read via the corresponding drive 212, or

alternatively may be read by the user from the networks 220 or 222. Still further, the

software can also be loaded into the computer system 200 from other computer readable

media. Computer readable storage media refers to any non-transitory tangible storage

medium that provides recorded instructions and/or data to the computer system 200 for

execution and/or processing. Examples of such storage media include floppy disks,

- 11

magnetic tape, CD-ROM, DVD, Blu-ray Disc, a hard disk drive, a ROM or integrated

circuit, USB memory, a magneto-optical disk, or a computer readable card such as a

PCMCIA card and the like, whether or not such devices are internal or external of the

computer module 201. Examples of transitory or non-tangible computer readable

transmission media that may also participate in the provision of the software, application

programs, instructions and/or video data or encoded video data to the computer

module 401 include radio or infra-red transmission channels as well as a network

connection to another computer or networked device, and the Internet or Intranets

including e-mail transmissions and information recorded on Websites and the like.

[00044] The second part of the application programs 233 and the corresponding

code modules mentioned above may be executed to implement one or more graphical user

interfaces (GUIs) to be rendered or otherwise represented upon the display 214. Through

manipulation of typically the keyboard 202 and the mouse 203, a user of the computer

system 200 and the application may manipulate the interface in a functionally adaptable

manner to provide controlling commands and/or input to the applications associated with

the GUI(s). Other forms of functionally adaptable user interfaces may also be

implemented, such as an audio interface utilizing speech prompts output via the

loudspeakers 217 and user voice commands input via the microphone 280.

[00045] Fig. 2B is a detailed schematic block diagram of the processor 205 and a

"memory" 234. The memory 234 represents a logical aggregation of all the memory

modules (including the HDD 209 and semiconductor memory 206) that can be accessed by

the computer module 201 in Fig. 2A.

[00046] When the computer module 201 is initially powered up, a power-on self

test (POST) program 250 executes. The POST program 250 is typically stored in a

ROM 249 of the semiconductor memory 206 of Fig. 2A. A hardware device such as the

ROM 249 storing software is sometimes referred to as firmware. The POST program 250

examines hardware within the computer module 201 to ensure proper functioning and

typically checks the processor 205, the memory 234 (209, 206), and a basic input-output

systems software (BIOS) module 251, also typically stored in the ROM 249, for correct

operation. Once the POST program 250 has run successfully, the BIOS 251 activates the

hard disk drive 210 of Fig. 2A. Activation of the hard disk drive 210 causes a bootstrap

loader program 252 that is resident on the hard disk drive 210 to execute via the

- 12

processor 205. This loads an operating system 253 into the RAM memory 206, upon

which the operating system 253 commences operation. The operating system 253 is a

system level application, executable by the processor 205, to fulfill various high level

functions, including processor management, memory management, device management,

storage management, software application interface, and generic user interface.

[00047] The operating system 253 manages the memory 234 (209, 206) to ensure

that each process or application running on the computer module 201 has sufficient

memory in which to execute without colliding with memory allocated to another process.

Furthermore, the different types of memory available in the computer system 200 of

Fig. 2A must be used properly so that each process can run effectively. Accordingly, the

aggregated memory 234 is not intended to illustrate how particular segments of memory

are allocated (unless otherwise stated), but rather to provide a general view of the memory

accessible by the computer system 200 and how such is used.

[00048] As shown in Fig. 2B, the processor 205 includes a number of functional

modules including a control unit 239, an arithmetic logic unit (ALU) 240, and a local or

internal memory 248, sometimes called a cache memory. The cache memory 248 typically

includes a number of storage registers 244-246 in a register section. One or more internal

busses 241 functionally interconnect these functional modules. The processor 205

typically also has one or more interfaces 242 for communicating with external devices via

the system bus 204, using a connection 218. The memory 234 is coupled to the bus 204

using a connection 219.

[00049] The application program 233 includes a sequence of instructions 231 that

may include conditional branch and loop instructions. The program 233 may also include

data 232 which is used in execution of the program 233. The instructions 231 and the

data 232 are stored in memory locations 228, 229, 230 and 235, 236, 237, respectively.

Depending upon the relative size of the instructions 231 and the memory locations 228

230, a particular instruction may be stored in a single memory location as depicted by the

instruction shown in the memory location 230. Alternately, an instruction may be

segmented into a number of parts each of which is stored in a separate memory location, as

depicted by the instruction segments shown in the memory locations 228 and 229.

- 13

[00050] In general, the processor 205 is given a set of instructions which are

executed therein. The processor 205 waits for a subsequent input, to which the

processor 205 reacts to by executing another set of instructions. Each input may be

provided from one or more of a number of sources, including data generated by one or

more of the input devices 202, 203, data received from an external source across one of the

networks 220, 202, data retrieved from one of the storage devices 206, 209 or data

retrieved from a storage medium 225 inserted into the corresponding reader 212, all

depicted in Fig. 2A. The execution of a set of the instructions may in some cases result in

output of data. Execution may also involve storing data or variables to the memory 234.

[00051] The video encoder 114, the video decoder 134 and the described methods

may use input variables 254, which are stored in the memory 234 in corresponding

memory locations 255, 256, 257. The video encoder 114, the video decoder 134 and the

described methods produce output variables 261, which are stored in the memory 234 in

corresponding memory locations 262, 263, 264. Intermediate variables 258 may be stored

in memory locations 259, 260, 266 and 267.

[00052] Referring to the processor 205 of Fig. 2B, the registers 244, 245, 246, the

arithmetic logic unit (ALU) 240, and the control unit 239 work together to perform

sequences of micro-operations needed to perform "fetch, decode, and execute" cycles for

every instruction in the instruction set making up the program 233. Each fetch, decode,

and execute cycle comprises:

(a) a fetch operation, which fetches or reads an instruction 231 from a memory

location 228, 229, 230;

(b) a decode operation in which the control unit 239 determines which instruction

has been fetched; and

(c) an execute operation in which the control unit 239 and/or the ALU 240 execute

the instruction.

[00053] Thereafter, a further fetch, decode, and execute cycle for the next

instruction may be executed. Similarly, a store cycle may be performed by which the

control unit 239 stores or writes a value to a memory location 232.

[00054] Each step or sub-process in the processes of Figs. 10 to 13 to be described

is associated with one or more segments of the program 233 and is typically performed by

- 14

the register section 244, 245, 247, the ALU 240, and the control unit 239 in the

processor 205 working together to perform the fetch, decode, and execute cycles for every

instruction in the instruction set for the noted segments of the program 233.

[00055] Fig. 3 is a schematic block diagram showing functional modules of the

video encoder 114. Fig. 4 is a schematic block diagram showing functional modules of the

video decoder 134. The video encoder 114 and video decoder 134 may be implemented

using a general-purpose computer system 200, as shown in Figs. 2A and 2B, where the

various functional modules may be implemented by dedicated hardware within the

computer system 200, by software executable within the computer system 200 such as one

or more software code modules of the software application program 233 resident on the

hard disk drive 205 and being controlled in its execution by the processor 205, or

alternatively by a combination of dedicated hardware and software executable within the

computer system 200. The video encoder 114, the video decoder 134 and the described

methods may alternatively be implemented in dedicated hardware, such as one or more

integrated circuits performing the functions or sub functions of the described methods.

Such dedicated hardware may include graphic processors, digital signal processors,

application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs)

or one or more microprocessors and associated memories. In particular the video encoder

114 comprises modules 320-344 and the video decoder 134 comprises modules 420-434

which may each be implemented as one or more software code modules of the software

application program 233.

[00056] Although the video encoder 114 of Fig. 3 is an example of a high efficiency

video coding (HEVC) video encoding pipeline, processing stages performed by the

modules 320-344 are common to other video codecs such as VC- 1 or H.264/MPEG-4

AVC. The video encoder 114 receives captured frame data, such as captured frame data,

as a series of frames, each frame including one or more colour channels. Each frame

comprises one sample grid per colour channel. Colour information is represented using a

'colour space', such as recommendation ITU-R BT.709 ('YUV'), although other colour

spaces are also possible. When the YUV colour space is used, the colour channels include

a luma channel ('Y') and two chroma channels ('U' and 'V'). Moreover, differing

amounts of information may be included in the sample grid of each colour channel,

depending on the sampling of the image or through application of filtering to resample the

- 15

captured frame data. Several sampling approaches, known as 'chroma formats' exist,

some of which will be described with reference to Figs. 5A and 5B.

[00057] The video encoder 114 divides each frame of the captured frame data, such

as frame data 310, into regions generally referred to as 'coding tree blocks' (CTBs). Each

coding tree block (CTB) includes a hierarchical quad-tree subdivision of a portion of the

frame into a collection of 'coding units' (CUs). The coding tree block (CTB) generally

occupies an area of 64x64 luma samples, although other sizes are possible, such as 16x16

or 32x32. In some cases even larger sizes, such as 128x128, may be used. The coding tree

block (CTB) may be sub-divided via a split into four equal sized regions to create a new

hierarchy level. Splitting may be applied recursively, resulting in a quad-tree hierarchy.

As the coding tree block (CTB) side dimensions are always powers of two and the quad

tree splitting always results in a halving of the width and height, the region side

dimensions are also always powers of two. When no further split of a region performed, a

'coding unit' (CU) is said to exist within the region. When no split is performed at the top

level of the coding tree block, the region occupying the entire coding tree block contains

one coding unit (CU) that is generally referred to as a 'largest coding unit' (LCU). A

minimum size also exists for each coding unit, such as the area occupied by 8x8 luma

samples, although other minimum sizes are also possible. Coding units of this size are

generally referred to as 'smallest coding units' (SCUs). As a result of this quad-tree

hierarchy, the entirety of the coding tree block (CTB) is occupied by one or more coding

units (CUs).

[00058] The video encoder 114 produces one or more arrays of samples, generally

referred to as 'prediction units' (PUs) for each coding unit (CU). Various arrangements of

prediction units (PUs) in each coding unit (CU) are possible, with a requirement that the

prediction units (PUs) do not overlap and that the entirety of the coding unit (CU) is

occupied by the one or more prediction units (PUs). This scheme ensures that the

prediction units (PUs) cover the entire frame area.

[00059] The video encoder 114 operates by outputting, from a multiplexer module

340, a prediction unit (PU) 382. A difference module 344 outputs the difference between

the prediction unit (PU) 382 and a corresponding 2D array of data samples from a coding

unit (CU) of the coding tree block (CTB) of the frame data 310, the difference being

known as a 'residual sample array' 360. The residual sample array 360 from the

- 16

difference module 344 is received by a transform module 320, which converts (or

'encodes') the residual sample array 360 from a spatial representation to a frequency

domain representation by applying a 'forward transform'. The transform module 320

creates transform coefficients 362 for each transform in a transform unit (TU) in a

hierarchical sub-division of the coding unit (CU) into one or more transform units (TUs)

generally referred to as a 'transform tree'. For the high efficiency video coding (HEVC)

standard under development, the conversion to the frequency domain representation is

implemented using a modified discrete cosine transform (DCT), in which a traditional

DCT is modified to be implemented using shifts and additions. Various sizes for the

residual sample array 360 and the transform coefficients 362 are possible, in accordance

with the supported transform sizes. In the high efficiency video coding (HEVC) standard

under development, transforms are performed on 2D arrays of samples having specific

sizes, such as 32x32, 16x16, 8x8 and 4x4. A predetermined set of transform sizes

available to a video encoder 114 may thus be said to exist. Moreover, as foreshadowed

above, the set of transform sizes may differ between the luma channel and the chroma

channels. Two-dimensional transforms are generally configured to be 'separable',

enabling implementation as a first set of 1D transforms operating on the 2D array of

samples in one direction (e.g. on rows), followed by a second set of 1D transform

operating on the 2D array of samples output from the first set of 1D transforms in the other

direction (e.g. on columns). Transforms having the same width and height are generally

referred to as 'square transforms'. Additional transforms, having differing widths and

heights are also possible and are generally referred to as 'non-square transforms'.

Optimised implementations of the transforms may combine the row and column one

dimensional transforms into specific hardware or software modules, such as a 4x4

transform module or an 8x8 transform module. Transforms having larger dimensions

require larger amounts of circuitry to implement, even though they may be infrequently

used. Accordingly, a maximum transform size of 32x32 exists in the high efficiency video

coding (HEVC) standard under development. The integrated nature of transform

implementation also introduces a preference to reduce the number of non-square transform

sizes supported, as these will typically require entirely new hardware to be implemented,

instead of reusing existing one-dimensional transform logic present from corresponding

square transforms. Transforms are applied to both the luma and chroma channels.

Differences between the handling of luma and chroma channels with regard to transform

units (TUs) exist and will be discussed below with reference to Figs. 5A and 5B. Each

- 17

transform tree occupies one coding unit (CU) and is defined as a quad-tree decomposition

of the coding unit (CU) into a hierarchy containing one transform unit (TU) at each leaf

node of the transform tree (quad-tree) hierarchy, with each transform unit (TU) able to

make use of transforms of the supported transform sizes. Similarly to the coding tree

block (CTB), it is necessary for the entirety of the coding unit (CU) to be occupied by one

or more transform units (TUs). At each level of the transform tree quad-tree hierarchy a

'coded block flag value' signals the possible presence of a transform in each colour

channel, either in the present hierarchy level when no further splits are present, or to signal

that lower hierarchy levels may contain at least one transform among the resulting

transform units (TUs). When the coded block flag value is zero, no transform is performed

for the corresponding colour channel of any transform units (TU) of the transform tree,

either at the present hierarchical level or at lower hierarchical levels. When the coded

block flag value is one, the region contains a transform which must have at least one non

zero residual coefficient. In this manner, for each colour channel, zero or more transforms

may cover a portion of the area of the coding unit (CU) varying from none up to the

entirety of the coding unit (CU). Separate coded block flag values exist for each colour

channel. Each coded block flag value is not required to be encoded, as cases exist where

there is only one possible coded block flag value.

[00060] The transform coefficients 362 are then input to a scale and quantize

module 322 and are scaled and quantized according to a determined quantization

parameter 384 to produce residual coefficient array 364. The scale and quantization

process results in a loss of precision, dependent on the value of the determined

quantization parameter 384. A higher value of the determined quantization parameter 384

results in greater information being lost from the transform coefficients. This increases the

compression achieved by the video encoder 114 at the expense of reducing the visual

quality of the output from the video decoder 134. The determined quantization parameter

384 may be adapted during encoding of each frame of the frame data 310, or it may be

fixed for a portion of the frame data 310, such as an entire frame. Other adaptations of the

determined quantisation parameter 384 are also possible, such as quantising different

residual coefficients with separate values. The residual coefficient array 364 and

determined quantization parameter 384 are taken as input to an inverse scaling module 326

which reverses the scaling performed by the scale and quantize module 322 to produce

- 18

resealed transform coefficient arrays 366, which are resealed versions of the residual

coefficient array 364.

[00061] The residual coefficient array 364 and the determined quantisation

parameter 384 are also taken as input to an entropy encoder module 324 which encodes the

residual coefficients in an encoded bitstream 312 (or 'video bitstream'). The residual

coefficient array 364 of each transform in each transform unit (TU) are encoded in groups

generally known as 'sub-blocks'. Sub-blocks should preferably have the same dimensions

regardless of the size of the transform, as this permits reuse of logic relating to sub-block

processing. The residual coefficients within one sub-block are generally referred to as a

'coefficient group' and for each coefficient group, a coefficient group flag is generally

encoded to indicate if at least one residual coefficient within the coefficient group is non

zero. In some cases the coefficient group flag may be inferred and thus is not encoded. A

flag is encoded for each residual coefficient belonging to a coefficient group having a

coefficient group flag value of one to indicate if the residual coefficient is non-zero

('significant') or zero ('non-significant'). Due to the loss of precision resulting from the

scale and quantise module 322, the resealed transform coefficient arrays 366 are not

identical to the original transform coefficients 362. The resealed transform coefficient

arrays 366 from the inverse scaling module 326 are then output to an inverse transform

module 328. The inverse transform module 328 performs an inverse transform from the

frequency domain to the spatial domain to produce a spatial-domain representation 368 of

the resealed transform coefficient arrays 366 identical to a spatial domain representation

that is produced at the video decoder 134.

[00062] A motion estimation module 338 produces motion vectors 374 by

comparing the frame data 310 with previous frame data from one or more sets of frames

stored in a frame buffer module 332, generally configured within the memory 206. The

sets of frames are known as 'reference picture lists'. The motion vectors 374 are then

input to a motion compensation module 334 which produces an inter-predicted prediction

unit (PU) 376 by filtering samples stored in the frame buffer module 332, taking into

account a spatial offset derived from the motion vectors 374. Not illustrated in Fig. 3, the

motion vectors 374 are also passed as syntax elements to the entropy encoder module 324

for encoding in the encoded bitstream 312. An intra-frame prediction module 336

produces an intra-predicted prediction unit (PU) 378 using samples 370 obtained from a

- 19

summation module 342, which sums the prediction unit (PU) 382 from the multiplexer

module 340 and the spatial domain representation 368 from the inverse transform module

328. The intra-frame prediction module 336 also produces an intra-prediction mode 380

which is sent to the entropy encoder 324 for encoding into the encoded bitstream 312.

[00063] Prediction units (PUs) may be generated using either an intra-prediction or

an inter-prediction method. Intra-prediction methods make use of samples adjacent to the

prediction unit (PU) that have previously been decoded (typically above and to the left of

the prediction unit) in order to generate reference samples within the prediction unit (PU).

Various directions of intra-prediction are possible, referred to as the 'intra-prediction

mode'. Inter-prediction methods make use of a motion vector to refer to a block from a

selected reference frame. As the block may have any alignment down to a sub-sample

precision, e.g. one eighth of a sample, filtering is necessary to create a block of reference

samples for the prediction unit (PU). The decision on which method to use is made

according to a rate-distortion trade-off between desired bit-rate of the resulting encoded

bitstream 312 and the amount of image quality distortion introduced by either the intra

prediction or inter-prediction method. If intra-prediction is used, one intra-prediction

mode is selected from the set of intra-prediction possible modes, also according to a rate

distortion trade-off. The multiplexer module 340 selects either the intra-predicted

reference samples 378 from the intra-frame prediction module 336, or the inter-predicted

prediction unit (PU) 376 from the motion compensation block 334, depending on the

decision made by the rate distortion algorithm. The summation module 342 produces a

sum 370 that is input to a deblocking filter module 330. The deblocking filter module 330

performs filtering along block boundaries, producing deblocked samples 372 that are

written to the frame buffer module 332 configured within the memory 206. The frame

buffer module 332 is a buffer with sufficient capacity to hold data from one or more past

frames for future reference as part of a reference picture list.

[00064] For the high efficiency video coding (HEVC) standard under development,

the encoded bitstream 312 produced by the entropy encoder 324 is delineated into network

abstraction layer (NAL) units. Generally, each slice of a frame is contained in one NAL

unit. The entropy encoder 324 encodes the residual coefficient array 364, the intra

prediction mode 380, the motion vectors and other parameters, collectively referred to as

'syntax elements', into the encoded bitstream 312 by performing a context adaptive binary

- 20

arithmetic coding (CABAC) algorithm. Syntax elements are grouped together into 'syntax

structures', these groupings may contain recursion to describe hierarchical structures. In

addition to ordinal values, such as an intra-prediction mode or integer values, such as a

motion vector, syntax elements also include flags, such as to indicate a quad-tree split.

The motion estimation module 338 and motion compensation module 334 operate on

motion vectors 374, having a precision of 1/8 of a luma sample, enabling precise

modelling of motion between frames in the frame data 310.

[00065] Although the video decoder 134 of Fig. 4 is described with reference to a

high efficiency video coding (HEVC) video decoding pipeline, processing stages

performed by the modules 420-434 are common to other video codecs that employ entropy

coding, such as H.264/MPEG-4 AVC, MPEG-2 and VC-1. The encoded video

information may also be read from memory 206, the hard disk drive 210, a CD-ROM, a

Blu-ray TM disk or other computer readable storage medium. Alternatively the encoded

video information may be received from an external source such as a server connected to

the communications network 220 or a radio-frequency receiver.

[00066] As seen in Fig. 4, received video data, such as the encoded bitstream 312, is

input to the video decoder 134. The encoded bitstream 312 may be read from memory

206, the hard disk drive 210, a CD-ROM, a Blu-rayTM disk or other computer readable

storage medium. Alternatively the encoded bitstream 312 may be received from an

external source such as a server connected to the communications network 220 or a radio

frequency receiver. The encoded bitstream 312 contains encoded syntax elements

representing the captured frame data to be decoded.

[00067] The encoded bitstream 312 is input to an entropy decoder module 420

which extracts the syntax elements from the encoded bitstream 312 and passes the values

of the syntax elements to other blocks in the video decoder 134. The entropy decoder

module 420 applies the context adaptive binary arithmetic coding (CABAC) algorithm to

decode syntax elements from the encoded bitstream 312. The decoded syntax elements are

used to reconstruct parameters within the video decoder 134. Parameters include zero or

more residual coefficient array 450, motion vectors 452 and a prediction mode 454. The

residual coefficient array 450 are passed to an inverse scale and transform module 422, the

motion vectors 452 are passed to a motion compensation module 434 and the prediction

mode 454 is passed to an intra-frame prediction module 426 and a multiplexer 428. The

- 21

inverse scale and transform module 422 performs inverse scaling on the residual

coefficient data to create reconstructed transform coefficients. The inverse scale and

transform module 422 then applies an 'inverse transform' to convert (or 'decode') the

reconstructed transform coefficients from a frequency domain representation to a spatial

domain representation, producing a residual sample array 456. The inverse transform

within the inverse scale and transform module 422 performs the same operation as the

inverse transform 328. The inverse scale and transform module 422 must therefore be

configured to provide a predetermined set of transform sizes required to decode an

encoded bitstream 312 that is compliant with the high efficiency video coding (HEVC)

standard under development.

[00068] The motion compensation module 434 uses the motion vectors 452 from the

entropy decoder module 420, combined with reference frame data 460 from the a frame

buffer block 432, configured within the memory 206, to produce an inter-predicted

prediction unit (PU) 462 for a prediction unit (PU), being a prediction of output decoded

frame data. When the prediction mode 454 indicates that the current prediction unit was

coded using intra-prediction, the intra-frame prediction module 426 produces an intra

predicted prediction unit (PU) 464 for the prediction unit (PU) using samples spatially

neighbouring the prediction unit (PU) and a prediction direction also supplied by the

prediction mode 454. The spatially neighbouring samples are obtained from a sum 458,

output from a summation module 424. The multiplexer module 428 selects the intra

predicted prediction unit (PU) 464 or the inter-predicted prediction unit (PU) 462 for a

prediction unit (PU) 466, depending on the current prediction mode 454. The prediction

unit (PU) 466, output from the multiplexer module 428, is added to the residual sample

array 456 from the inverse scale and transform module 422 by the summation module 424

to produce the sum 458 which is then input to each of a deblocking filter module 430 and

the intra-frame prediction module 426. The deblocking filter module 430 performs

filtering along data block boundaries, such as transform unit (TU) boundaries, to smooth

visible artefacts. The output of the deblocking filter module 430 is written to the frame

buffer module 432 configured within the memory 206. The frame buffer module 432

provides sufficient storage to hold one or more decoded frames for future reference.

Decoded frames 412 are also output from the frame buffer module 432 to a display device,

such as the display device 136.

- 22

[00069] Figs. 5A and 5B each show sample grids of a frame portion 500 and a

frame portion 510 encoded using a 4:2:0 and a 4:2:2 chroma format respectively. The

chroma format is specified as a configuration parameter to the video encoder 114 and the

video encoder 114 encodes a 'chromaformatidc' syntax element into the encoded

bitstream 312 that specifies the chroma format. The video decoder 134 decodes the

'chromaformat idc' syntax element from the encoded bitstream 312 to determine the

chroma format in use. For example, when a 4:2:0 chroma format is in use, the value of

chromaformatidc is one, when a 4:2:2 chroma format is in use, the value of

chromaformatidc is two and when a 4:4:4 chroma format is in use, the value of

chromaformatidc is three. In Figs. 5A and 5B, luma sample locations, such as a luma

sample location 501, are illustrated using 'X' symbols, and chroma sample locations, such

as a chroma sample location 502, are illustrated using '0' symbols. By sampling the

frame portion 500 at the points indicated, a sample grid is obtained for each colour channel

when a 4:2:0 chroma format is applied. At each luma sample location X, the luma channel

('Y') is sampled, and at each chroma sample location 0, both the chroma channels ('U'

and 'V') are sampled. As shown in Fig. 5A, for each chroma sample location, a 2x2

arrangement of luma sample locations exists. By sampling the luma samples at the luma

sample locations and chroma samples at the chroma sample locations indicated in the

frame portion 510, a sample grid is obtained for each colour channel when a 4:2:2 chroma

format is applied. The same allocation of samples to colour channels is made for the frame

portion 510 as for the frame portion 500. In contrast to the frame portion 500, twice as

many chroma sample locations exist in frame portion 510. In frame portion 510 the

chroma sample locations are collocated with every second luma sample location.

Accordingly, in Fig. 5B, for each chroma sample location, an arrangement of 2x1 luma

sample locations exists.

[00070] Various allowable dimensions of transform units were described above in

units of luma samples. The region covered by a transform applied for the luma channel

will thus have the same dimensions as the transform unit dimensions. As the transform

units also encode chroma channels, the applied transform for each chroma channel will

have dimensions adapted according to the particular chroma format in use. For example,

when a 4:2:0 chroma format is in use, a 16x16 transform unit (TU) will use a 16x16

transform for the luma channel, and an 8x8 transform for each chroma channel. One

special case is that when a 4x4 transform is used for the luma channel there is no

- 23

corresponding 2x2 transform available (when the 4:2:0 chroma format is applied) or 4x2

transform available (when the 4:2:2 chroma format is applied) that could be used for the

chroma channels. In this special case, a 4x4 transform for each chroma channel may cover

the region occupied by multiple luma transforms.

[00071] Fig. 6A is a schematic representation of an exemplary transform tree of a

coding unit (CU) 602 (depicted with a thick border), within a coding tree block (CTB) 600

of the frame. A single quad-tree subdivision divides the coding tree block (CTB) 600 into

four 32x32 coding units (CUs), such as the coding unit (CU) 602. An exemplary

transform tree exists within the coding unit (CU) 602. The exemplary transform tree

includes several quad-tree subdivisions, resulting in ten transform units (TUs) numbered as

such in Fig. 6A, for example the transform unit #9 (TU) 604. The transform units #1-#10

cover the entirety of the coding unit (CU) 602. Each quad-tree subdivision divides a

region spatially into four quadrants, resulting in four smaller regions. Each transform unit

(TU) has a transform depth value, corresponding to a hierarchical level of the transform

unit (TU) within the transform tree. The hierarchical level indicates the number of quad

tree subdivisions performed before the quad-tree subdivision terminated, resulting in an

instance of a transform unit (TU) that occupies the corresponding region. For example, the

transform unit #9 (TU) 604, occupies one quarter of the area of the coding unit (CU) 602

and therefore has transform depth of one. Each transform unit (TU) has an associated size

(or 'transform size'), generally described as the dimensions of the region containing the

transform unit (TU) on the luma sample grid. The size is dependent on the coding unit

(CU) size and the transform depth. Transform units (TUs) with a transform depth of zero

have a size equal to the size of the corresponding coding unit (CU). Each increment of the

transform depth results in a halving of the size of transform units (TUs) present in the

transform tree at the given transform depth. As the frame includes a luma channel and

chroma channels, the coding unit (CU) 602 occupies a region on both the luma sample grid

and the chroma sample grid and thus each transform unit (TU) includes information

describing both the luma samples on the luma sample grid and the chroma samples on the

chroma sample grid. The nature of the information for each transform unit (TU) is

dependent on the processing stage of the video encoder 114 or the video decoder 134. At

the input to the transform module 320 and the output of the inverse scale and transform

module 422, the residual sample array 360 and 456 respectively contain information for

each transform unit (TU) in the spatial domain. The residual sample array 360 and 456

- 24

may be further divided into a 'chroma residual sample array' and a 'luma residual sample

array', due to differences in processing between the luma channel and the chroma

channels. At the output from the scale and quantise module 322 and the input of the

inverse scale and transform module 422, the residual coefficient array 364 and 450

respectively contain information for each transform unit (TU) in the frequency domain.

The residual coefficient arrays 364 and 450 may be further divided into a 'chroma residual

coefficient array' and a 'luma residual coefficient array', due to differences in processing

between the luma channel and the chroma channels.

[00072] Fig. 6B illustrates an exemplary transform tree 630, corresponding to the

exemplary transform tree of Fig. 6A, for the luma channel of a 32x32 coding unit (CU),

containing a set of transform units (TUs) and occupying the coding unit (CU) 602, which

occupies a 32x32 luma sample array on the luma sample grid. Fig. 7 illustrates a data

structure 700 that represents the exemplary transform tree 630. In Fig. 6B, boxes

numbered 1 to 10 indicate transform units present within region 632 (exemplified by

several transform units (TUs) 640), and each box is contained in a region that is not further

sub-divided (indicated by a box with dashed border).

[00073] In Fig. 6B, boxes numbered 1 and 9 contain 16x16 transforms for the luma

channel, boxes numbered 2, 3 and 8 contain 8x8 transforms for the luma channel and

boxes numbered 4 to 7 contain 4x4 transforms for the luma channel. The corresponding

region (dashed box) for each of these boxes has coded block flag value of one, to indicate

the presence of a transform.

[00074] The presence or absence of a transform for each colour channel is specified

by a separate coded block flag value which is used in each of encoding and decoding of the

bitstream, but which need not be transmitted in the bitstream, as will be discussed below.

Consequently, the number of residual coefficient arrays 450 output from the entropy

decoder 420 is dependent on the coded block flag values. When no significant coefficients

are present in any colour channel, the number of residual coefficient arrays 450 output

from the entropy decoder 420 is zero.

[00075] In Fig. 7, the circles represent split transform flag values with the split

transform flag value being indicated inside the corresponding circle. In Fig. 7, the

triangles represent coded block flag values, with the coded block flag value being

- 25

indicated inside the corresponding triangle. The squares represent transform units, with

each transform numbered to accord with the transform numbering present in Fig. 6B.

[00076] The uppermost hierarchical level of the exemplary transform tree 630

contains a region 632 occupying a 32x32 coding unit (CU). A split transform flag value

702 indicates that the region 632 is sub-divided into four 16x16 regions, such as a region

634, thus defining a 'non-leaf node of the exemplary transform tree 630. For each 16x16

region, a further split transform flag value, such as a split transform flag value 704,

indicates that the respective 16x16 region should be further sub-divided into four 8x8

regions. For example, the region 634 is not further sub-divided, as indicated by the split

transform flag value 704 of zero, thus defining a 'leaf node of the exemplary transform

tree 630. In contrast, a region 638 is further sub-divided into four 4x4 regions (such as a

region 636), as indicated by a split transform flag value 712 of one. The recursive split

structure present in the transform tree 630 is analogous to the quad-tree split present in the

coding tree block (CTB). For the luma channel, at the 'leaf nodes of the quad-tree, the

presence of a transform in the transform unit (TU) is signalled by a coded block flag value,

for example a coded block flag value 708 of one indicates the presence of a transform 710

in the region 634.

[00077] As a transform may be used to represent residual data in each region,

regions are not permitted to be smaller than the smallest supported transform size, such as

4x4 luma samples for the luma channel. Additionally, for regions larger than the largest

available transform size, a split transform flag value of one is inferred. For example, for a

transform tree with a top level of a 64x64 coding unit, an automatic sub-division (i.e.: not

signalled in the encoded bitstream 312) into four 32x32 regions occurs when the largest

supported transform size is 32x32 luma samples.

[00078] A lower right 16x16 region 642 contains a transform unit (TU) (numbered

10 (ten) and shaded) with no transform for the luma channel and therefore has a

corresponding coded block flag value 716 of zero.

[00079] Figs. 6C and 8 illustrate the exemplary transform tree 630, corresponding to

the exemplary transform tree of Fig. 6A, for a chroma channel, configured for the 4:2:2

chroma format and containing a set of transforms for a chroma channel corresponding to

the transform tree 630 for the luma channel and represented by a data structure 800. As

- 26

the transform tree hierarchy is common by virtue of the structure of Fig. 6A between the

luma channel and the chroma channels, the split transform flag values are shared between

the data structures 700 and 800. In contrast to the data structure 700, the data structure 800

includes a coded block flag value with each transform split flag value of one (i.e. on non

leaf nodes of the transform tree). For example, a coded block flag value 802 of one is

associated with the transform split flag 702. If the coded block flag value on a non-leaf

node of the transform tree is zero, coded block flag values on the child nodes are inferred

as zero (and no corresponding coded block flags are encoded in the encoded bitstream

312). Coded block flag values at non-leaf regions enable terminating the encoding of

coded block flags at lower levels of the transform tree for each chroma channel if no

significant residual coefficients are present in any of the child regions, even though

significant residual coefficients may be present in the luma channel. This is a common

situation for typical captured frame data, as the majority of information is present in the

luma channel.

[00080] When the video encoder 114 and the video decoder 134 are configured for a

4:4:4 chroma format, the chroma region of each chroma channel of any given transform

unit (TU) of a size that is not one of the predetermined set of transform unit (TU) sizes has

identical dimensions to the luma regions of the given transform unit (TU) (i.e.: when an

inferred split does not take place). When the video encoder 114 and the video decoder 134

are configured for a 4:4:4 chroma format, the chroma region of each chroma channel of

any given transform unit (TU) of a size that is one of the predetermined set of transform

unit (TU) sizes has dimensions smaller than to the luma regions of the given transform unit

(TU) (i.e.: when an inferred split does take place).

[00081] When a 4:2:2 chroma format is in use, this results in the coding unit (CU)

602 including a 16x32 region 662 of Fig. 6C of chroma samples for each chroma channel

and thus occupying a 16x32 region on the chroma sample grid. Fig. 6C illustrates the

regions on a chroma sample grid, drawn as an array of chroma samples, with each chroma

sample equally spaced horizontally and vertically (in contrast to Fig. 5B). Due to the use

of the 4:2:2 chroma format, each chroma regions of Fig. 6C appears horizontally

compressed with respect to the corresponding luma region of Fig. 6B. The split transform

flag value 702 of one divides the 16x32 region 662, corresponding to the coding unit (CU)

602, into four 8x16 regions, such as an 8x16 region 664. The 8x16 region 664 has a non-

- 27

square shape and is also larger in size than other non-square regions illustrated in Fig. 6C,

such as a 4x8 region 670. For each 8x16 region, a split transform flag value, such as the

split transform flag value 704, indicates whether the corresponding 8x16 region should be

further sub-divided into four smaller 4x8 regions, in an analogous manner to the quad-tree

splitting present in the transform tree 630 for the luma sample array. An upper right 8x16

region 672 is further sub-divided into four 4x8 regions. A coded block flag value 804 of

one indicates that each of the four 4x8 regions could contain significant residual

coefficients. A coded block flag for each 4x8 region is thus required to indicate the

presence of a transform for the corresponding region. Of these four 4x8 regions, a lower

left 4x8 region 674 (shaded) contains a transform unit (TU) but does not contain a

transform and therefore has a coded block flag value 814 of zero. The remaining 4x8

regions, such as the region 670, each have a transform and therefore have corresponding

coded block flag values of one. The upper left 8x16 region is sub-divided into two equal

sizes 8x8 regions. In contrast to the quad-tree subdivision, no corresponding split

transform flag is present in the encoded bitstream 312.

[00082] Splitting a region of a channel, such as a chroma channel, of a transform

unit (TU) into multiple regions (each of which may have a transform), without signalling

being present in the encoded bitstream 312, is referred to as an 'inferred split'. The

inferred split eliminates the need to introduce hardware supporting a non-square transform

for this case (8x16). Instead, transforms, such as a first 8x8 transform 666, are used. As it

is possible for each of the regions resulting from the inferred split to contain all zero

residual information, it is necessary to specify the presence of a transform in each region

resulting from the inferred split. Accordingly, separate coded block flag values are

required for each region resulting from an inferred split. In this case, coded block flag

values 806 and 808 correspond to the first 8x8 transform 666 and a second 8x8 transform

668 respectively. For transform units (TUs) where no inferred split takes place, a coded

block flag value for each chroma channel specifies the presence or absence of a transform

for the region occupied by the transform unit (TU) for the chroma channel. When an

inferred split takes place, a separate coded block flag value (not illustrated in Fig. 8) is

required for each of the resulting regions, however implementations may retain a coded

block flag value attributable to the entire transform unit (TU). The separate coded block

flag value could be inferred as 'one' in all cases, or the separate coded block flag value

could be determined by performing a logical 'OR' operation to the coded block flag value

- 28

of each region resulting from the split. If the separate coded block flag value is determined

from the coded block flag value of each region resulting from the split, the separate coded

block flag value may be encoded in the encoded bitstream 312 by the entropy encoder 324

and decoded from the encoded bitstream 312 by the entropy decoder 420 as an additional

coded block flag (not illustrated in Fig. 9). In such a case, when the separate coded block

flag value is zero, the coded block flag value of each region from the split may be inferred

to be zero and when the separate coded block flag value is one, the coded block flags for

each region from the split are encoded in the encoded bitstream 312 by the entropy

encoder 324 and decoded from the encoded bitstream 312 by the entropy decoder 420.

[00083] The lower left 8x16 region 680 of the 16x32 region 662 illustrates an

inferred split where an 8x8 transform is present in the upper 8x8 inferred region 682 but no

8x8 transform is present in the lower 8x8 inferred region 684. A lower right 8x16 array

676 (shaded) contains a transform unit (TU) but does not contain a transform in either

square 8x8 region resulting from the inferred split and therefore has coded block flag

values 810 812 of zero.

[00084] The presence of two chroma channels results in a duplication of the

structure depicted in Fig. 6C, with separate coded block flag values used to specify the

presence of transforms for each chroma channel. In this implementation, a split was

inferred for region sizes for chroma other than the size 4x8, resulting in using a 4x8

rectangular transform, such as a 4x8 transform 816 (contained in region 670), and enabling

reuse of existing square transforms in other cases (e.g. 8x8, 16x16). Thus, a set of

predetermined region sizes (such as 8x16 and 16x32) may be said to exist, for which a split

into two regions, and hence two transforms (of sizes 8x8 and 16x16), can be used.

Different definitions of the predetermined set of region sizes for which an inferred split

occurs are also possible and will allow a different combination of existing square

transforms and rectangular transforms to be used. It is also possible for certain

implementations to always infer a split, in which case no rectangular transform is

introduced for the chroma 4:2:2 colour channels. In such a case, the predetermined set of

region sizes for which an inferred split occurs contains all possible chroma region sizes

(e.g. 4x8, 8x16 and 16x32 for a 4:2:2 chroma format or 4x4, 8x8, 16x16 and 32x32 for a

4:4:4 chroma format).

- 29

[00085] When a 4:2:0 chroma format is in use, an inferred split does not take place

for either chroma region in the transform unit (TU), therefore the maximum number of

transforms for each chroma channel is always one (the coded block flag value for each

chroma channel controls whether the chroma transform occurs).

[00086] Although the video encoder 114 and the video decoder 134 are described

independently of differences between the luma and chroma channels, the differing sample

grids resulting from the chroma formats necessitates the need for differences in the

modules. Practical implementations may have a separate 'processing paths' for the luma

channel and for the chroma channels. Such an implementation may thus decouple

processing of luma samples and chroma samples. As the encoded bitstream 312 is a single

bitstream for both the luma and chroma channels, the entropy encoder 324 and the entropy

decoder 420 are not decoupled. Additionally, a single frame buffer, such as the frame

buffer 332 432 holds luma and chroma samples and is thus not decoupled. However, the

modules 322-330 and 334-340 and the modules 422-430 and 434 may have luma and

chroma processing decoupled, enabling implementations to have separate logic for luma

and chroma, thus creating a 'luma processing path' and a 'chroma processing path'.

[00087] Certain implementations may infer a split for the 16x32 region of a chroma

channel of a transform unit (TU) into two 16x16 regions, but not infer a split for the 8x16

and 4x8 cases. Such implementations avoid the need to introduce 32-point transform logic

into the chroma processing path, instead being able to rely on 4, 8 or 16-point transform

logic well-established in the art.

[00088] Figs. 9A and 9B illustrate a syntax structure that can be used to encode or

otherwise represent a hierarchical level of the transform tree. At non-leaf nodes of a

transform tree, a syntax structure 900 is expanded recursively in accordance with data

structures, such as the data structures 700 and 800, to define the syntax elements present in

a portion of the encoded bitstream 312 corresponding to the transform tree. At leaf nodes

of a transform tree (where no further sub-division takes place in the transform tree) a

syntax structure 930 defines syntax elements present in the portion of the encoded

bitstream 312. Typically, one data structure for luma and two data structures for chroma

are present, although additional data structures are possible, such as for encoding an alpha

channel or a depth map. Alternatively, fewer data structures may be utilised, such as in the

case where a single data structure is shared by the chroma channels and coded block flag

-30

values are able to be shared between the chroma channels. A transform tree non-leaf node

syntax structure 902 defines the encoding of one hierarchical level of a transform tree,

such as the transform tree 630. A split transform flag 910 encodes a split transform flag

value of one, such as the split transform flag value 702. This value indicates that the

transform tree non-leaf node syntax structure 902 includes a lower hierarchical level that

contains additional instances of the transform tree non-leaf node syntax structure 902 or

transform tree leaf-node syntax structure 932, or 'child nodes'. A coded block flag 912

encodes the coded block flag value 802 of one for the 'U' chroma channel and a coded

block flag 914 encodes a further coded block flag value for the 'V' chroma channel. If the

transform tree non-leaf node syntax structure 902 is defining the top level of the transform

tree hierarchy then the coded block flags 912 914 are present. If the transform tree non

leaf node syntax structure 902 is not defining the top level of the transform tree hierarchy

then the coded block flags 912 914 are only present if the corresponding coded block flags

in the parent level of the transform tree hierarchy are present and one-valued. As a lower

hierarchical level exists in the transform tree 630 (relative to the top hierarchical level), a

quad-tree sub-division takes place. This sub-division results in four transform tree syntax

structures 916, 918, 920, 922 being included in the transform tree non-leaf node syntax

structure 902.

[00089] The syntax structure 930 defines the encoding of the leaf node of the

transform tree leaf node 932 (i.e. where no further sub-division takes place). A split

transform flag 940 encodes a split transform flag value of zero, such as the split transform

flag value 704.

[00090] A split transform flag is only encoded if the corresponding region is larger

than a minimum size. For example, the region 636 has the smallest allowable size for a

region of 4x4 luma samples (corresponding to the smallest supported luma transform size)

so a transform split flag value 714 is inferred as zero and no split transform flag is encoded

for the corresponding transform tree syntax structure.

[00091] For the region 636, chroma residual samples are transformed using a 4x8

chroma transform, hence no inferred transform split is present. Coded block flags, such as

a coded block flag 942 and a coded block flag 946 may be present to signal the presence of

a transform for each of the chroma channels. A coded block flag 950 signals the presence

of a transform for the luma channel. Residual coefficients for the luma and chroma

-31

channels (if present) are present in a transform unit (TU) syntax structure 952. If the value

of the coded block flag 950 is one, a luma residual block 954 is present in the encoded

bitstream 312. If the value of the coded block flag for each chroma channel is one,

corresponding chroma residual blocks 956 and 960 are present in the encoded

bitstream 312.

[00092] For the region 664, chroma residual samples are transformed using two 8x8

chroma transforms, hence an inferred transform split is present. The coded block flags 942

and 946, if present, signal the presence of 8x8 transforms for each chroma channel of the

first 8x8 transform 666. A coded block flag 944 and a coded block flag 948, if present,

signal the presence of 8x8 transforms for each chroma channel of the second 8x8

transform 668. If the value of the coded block flag 944 is one, a chroma residual block

958 is present in the encoded bitstream 312. If the value of the coded block flag 948 is

one, a chroma residual block 962 is present in the encoded bitstream 312.

[00093] The syntax structure 930 as illustrated in Fig. 9B, shows the first and

second transform of each chroma channel encoded adjacently for the inferred transform

split. Other arrangements, such as encoding syntax elements for each chroma channel

adjacently, or encoding syntax elements for each chroma channel interspersed with other

syntax elements, may alternatively be used.

[00094] Figs. 9C and 9D illustrate an alternative syntax structure 9100 that can be

used to encode or otherwise represent a hierarchical level of the transform tree. At non

leaf nodes of a transform tree, the alternative syntax structure 9100 is expanded recursively

in accordance with data structures, such as the data structures 700 and 800, to define the

syntax elements present in a portion of the encoded bitstream 312 corresponding to the

transform tree. An instance of the alternative syntax structure 9100 exists for each node in

the transform tree, including the leaf nodes, which each contain a transform unit (TU).

Where an 'inferred split' occurs to sub-divide the transform unit (TU) for each chroma

channel, a syntax structure 9130 defines syntax elements present in the portion of the

encoded bitstream 312. Typically, one data structure for luma and two data structures for

chroma are present, although additional data structures are possible, such as for encoding

an alpha channel or a depth map. Alternatively, fewer data structures may be utilised, such

as in the case where a single data structure is shared by the chroma channels and coded

block flag values are able to be shared between the chroma channels. A transform tree

- 32

syntax structure 9102 defines the encoding of one hierarchical level of a transform tree,

such as the transform tree 630.

[00095] For an instance of the transform tree syntax structure 9102 at a non-leaf

node of a transform tree, such as the transform tree 630, a split transform flag 9110

encodes a split transform flag value of one, such as the split transform flag value 702. This

value indicates that the instance of the transform tree syntax structure 9102 includes a

lower hierarchical level, containing additional instances of the transform tree syntax

structure 9102 or 'child nodes'. A coded block flag 9112 encodes a coded block flag value

in accordance with the description of the coded block flag 912. A coded block flag 9114

encodes a coded block flag value in accordance with the description of the coded block

flag 914. As a lower hierarchical level exists in the transform tree 630 (relative to the top

hierarchical level), a quad-tree sub-division takes place. This sub-division results in four

transform tree syntax structures 9116, 9118, 9120, 9122 being included in the transform

tree node syntax structure 9102. Each of the transform tree syntax structures 9116, 9118,

9120, 9122 is another instance of the transform tree syntax structure 9102. A coded block

flag 9124 and a luma transform unit portion 9126 will be absent from the transform tree

syntax structure 9102.

[00096] Implementations may also arrange the transform tree syntax structure 9102

such that the coded block flag 9124 and the luma transform unit portion 9126 (if present)

are placed earlier in the transform tree syntax structure 9102, such as in between the coded

block flag 9114 and the transform tree syntax structure 9116.

[00097] For an instance of the transform tree syntax structure 9102 at a leaf node of

a transform tree, such as the transform tree 630, a split transform flag 9110 encodes a split

transform flag value of zero, such as the split transform flag value 704. The instance of the

transform tree syntax structure 9102 thus corresponds to a transform unit (TU) in the

transform tree 930. The transform unit (TU) has a size determined in accordance with the

coding unit (CU) containing the transform unit (CU), such as the coding unit (CU) 602,

and the transform depth. The coded block flag 9112 encodes a coded block flag value of

one to indicate that any of the chroma regions resulting from the inferred split for the 'U'

chroma channel may have a coded block flag value of one. If the coded block flag 9112

encodes a value of zero, then the coded block flag value for each chroma region resulting

from the inferred split for the 'U' chroma channel have a coded block flag value inferred

- 33

as zero. Even when the code block flag 9112 encodes a value of one, implementations

may still encode a coded block flag having a value of zero for each chroma region

resulting from the inferred split. Therefore, implementations may omit the coded block

flag 9112 from the encoded bitstream 312, instead always inferred a coded block flag

value of one for the omitted coded block flag 9112. The coded block flag 9114 encodes a

further coded block flag value for the 'V' chroma channel in a similar manner to the coded

block flag 9112. For transform unit (TU) sizes that accord with those for which an

inferred split into four chroma regions occurs (a maximum number of chroma residual

coefficient arrays is four), the four transform tree syntax structures 9116 9118 9120 9122

are included in the transform tree node syntax structure 9102. For transform unit (TU)

sizes that accord with those for which an inferred split into two chroma regions occurs (a

maximum number of chroma residual coefficient arrays is two), two transform tree syntax

structures, such as transform tree syntax structures 9116 9118 are included in the transform

tree node syntax structure 9102. Each of the transform tree syntax structures 9116 9118

9120 9122 is an instance of a transform tree for chroma syntax structure 9132. The coded

block flag 9124 encodes a coded block flag value, such as the coded block flag value 708,

specifying the presence of absence of a transform for the luma channel of the transform

unit (TU). The luma portion of the transform unit 9126 encodes a luma residual

coefficient array as luma residual syntax elements 9128.

[00098] The transform tree for chroma syntax structure 9132, only existing for each

chroma region when an inferred split takes place, includes a reduced set of the syntax of

the transform tree syntax structure 930. A coded block flag 9142 encodes a coded block

flag value for the 'U' chroma channel of the chroma region. A coded block flag 9144

encodes a coded block flag value for the 'V' chroma channel of the chroma region. A

chroma portion of the transform unit (TU) 9146, encodes a subset of the transform unit

(TU) syntax structure 952. The chroma portion of the transform unit (TU) 9146 encodes a

chroma residual coefficient array as chroma residual syntax elements 9150 for the 'U'

chroma channel if the value of the coded block flag 9142 is one. The chroma portion of

the transform unit (TU) 9146 encodes a chroma residual coefficient array as chroma

residual syntax elements 9152 for the 'V' chroma channel if the value of the coded block

flag 9144 is one.

- 34

[00099] The syntax structure 9130 as illustrated in Fig. 9D shows the first and

second coded block flag encoded adjacently followed by the first and second chroma

residual coefficient array of each chroma channel for the inferred transform split. Other

arrangements, such as encoding the coded block flag and the chroma residual coefficient

array adjacently for each chroma channel may alternatively be used.

[000100] Although the inferred transform split is illustrated with the 8x16 region 664

split into two 8x8 regions, alternative implementations may perform the split for other

regions. For example, some implementations may infer a split of a 16x32 region into two

16x16 regions. Such implementations advantageously avoid the need for a 32-point 1D

transform in the chroma processing path. Since the 32-point 1D transform is not required

for the chroma processing path when the 4:2:0 chroma format is applied, the requirement

for the 32-point 1D transform is entirely removed from the chroma processing path.

Implementations that use separate processing circuitry to decouple the luma and chroma

channels may thus achieve a lower implementation cost in the chroma processing circuitry.

[000101] A 4:4:4 chroma format exists where there is one chroma sample location for

each luma sample location. Accordingly, with this format, transforms for the chroma

channel and the luma channel may have the same sizes. With a largest transform size of

32x32 in the luma processing path, this would require introducing a 32x32 transform into

the chroma processing path for a decoupled implementation. Specific implementations

may infer a split for each chroma channel to split a 32x32 region into four 16x16 regions,

enabling reuse of the existing 16x16 transform in the chroma processing path. Since a

32x32 transform would only be used in the chroma processing path for the 4:4:4 chroma

format, inferring a split for each chroma channel to split a 32x32 region into four 16x16

regions would enable the 32x32 transform to be removed from the chroma processing

path, reducing the processing circuitry required. Such implementations would require four

coded block flag values for each chroma channel, and thus up to four coded block flags

coded in the syntax structure 930 for each chroma channel in the encoded bitstream 312.

[000102] Implementations supporting a 4:2:2 chroma format may also infer a split for

each chroma channel to split a 32x16 region into four 8x16 regions. Such implementations

require four coded block flag values for each chroma channel, and thus four coded block

flags coded in the syntax structure 930 for each chroma channel in the encoded bitstream

312, thus a 'CU3', 'CU4', 'CV3' and 'CV4' coded block flag (not illustrated in Fig. 9B)

- 35

may be introduced in the transform unit (TU) syntax structure 952. Such implementations

avoid introducing 32-point transform logic into the chroma processing path and, where

8x16 regions are not sub-divided, may reuse 8x16 transform logic required for transform

units (TUs) of size 16x16 (in the luma channel) that require transforming transform of size

8x16 for the chroma channels.

[000103] Fig. 10 is a schematic flow diagram showing a method 1000 for encoding a

transform unit (TU) by encoding the transform tree non-leaf node syntax structure 902 and

the transform tree leaf node syntax structure 932. The method 1000 is described with

reference to a chroma channel of the transform unit (TU) however the method 1000 may

be applied to any chroma channel of the transform unit (TU). As the transform tree non

leaf node syntax structure 902 and the transform tree leaf node syntax structure 932

describe one node in the transform tree, the method 1000 encodes one node of the

transform tree into the encoded bitstream 312. The method 1000 may be implemented in

hardware or by software executable on the processor 205, for example. The method 1000

is initially invoked for the top level of the transform tree and is capable of invoking itself

(recursively) to encode child nodes of the transform tree. A determine transform unit size

step 1002 determines the size of a transform unit (TU) in a transform tree according to the

coding unit (CU) size that contains the transform tree and a transform depth value of the

transform unit (TU). When the method 1000 is invoked at the top level of the transform

tree, the transform depth value is set to zero, otherwise the transform depth value is

provided by the parent instance of the method 1000. A split transform flag value, such as

the split transform flag value 702 is encoded in the encoded bitstream 312 as split

transform flag 910 if the transform depth value is less than the maximum allowed

transform depth.

[000104] When the split transform flag value is one, chroma coded block flags 912

and 914 are encoded for each chroma channel only if the parent node of the transform tree

hierarchy has a corresponding coded block flag value of one. The method 1000 then

invokes a new instance of the method 1000 for each child node (represented in the portion

of the encoded bitstream 312 by transform tree syntax structures 916, 918, 920 and 922) of

the transform tree. Each instance of the method 1000, invoked for the child nodes, is

provided with a transform depth value equal to the present method 1000 instance transform

depth value incremented by one.

- 36

[000105] When the split transform flag value is zero, an identify maximum number

of forward transforms step 1004 determines a maximum number (n) of transforms for each

chroma channel of the region being encoded. When no inferred split takes place, this

number n will be one. When a 4:2:2 chroma format is in use and a rectangular region of a

chroma channel, such as the 8x16 region 664, is encountered and the region size is one of a

predetermined set of region sizes (such as 16x32 and 8x16), an inferred split takes place

and the maximum number of transforms will be two (otherwise the number of transforms

will be one). Otherwise (the region size is not one of a predetermined set of region sizes)

the maximum number of transforms will be one. For example, if 4x8 is not one of the

predetermined set of region sizes, then the maximum number of transforms will be one.

When a 4:4:4 chroma format is in use and the encountered region size is one of a

predetermined set of region sizes (such as a 32x32 region), an inferred split takes place and

the maximum number of transforms will be four. Otherwise (the region size is not one of

a predetermined set of region sizes) the maximum number will be one. For example, if

8x8 is not one of the predetermined set of region sizes, then the maximum number of

transforms will be one. Although the predetermined set of region sizes includes 8x16,

other predetermined set of region sizes are possible, such as only 16x32 when a 4:2:2

chroma format is in use or 32x32 when a 4:4:4 chroma format is in use.

[000106] For each chroma channel, if the parent node had a coded block flag value of

one, then for each of n, a coded block flag is encoded in the encoded bitstream 312. For

example, when the number of transforms is equal to two, coded block flags 942 and 944

indicate the presence of a transform for each of the two regions inferred by the split. A

select forward transform step 1006 selects a forward transform from a predetermined set of

forward transforms, for each of the maximum number of transforms, based on a transform

unit (TU) size, which is in turn dependent on the transform depth, and thus related to a

hierarchical level of the transform unit in the largest coding unit. When the transform

depth is equal to zero, the transform unit (TU) size is equal to the coding unit (CU) size.

For each increment of the transform depth, the transform unit (TU) size is halved. For a

32x32 coding unit (CU) size, a transform depth of zero and using a 4:2:2 chroma format,

the transform unit (TU) size will thus be 32x32 and the transform size for chroma will thus

be 16x32. For example, when the maximum number of transforms is two and the region

size for chroma is 16x32, then a 16x16 forward transform is selected for each of the 16x16

regions for chroma resulting from the inferred split.

- 37

[0100] An apply forward transform step 1008 performs the forward transform for

each of the maximum number of transforms on the corresponding region that has a coded

block flag value of one. The encode chroma residual sample arrays step 1008 is generally

performed by the transform module 320. This results in a conversion of each chroma

residual sample array (spatial domain representation) into a chroma residual coefficient

array (frequency domain representation).

[0101] An encode chroma residual coefficient arrays step 1010 encodes the chroma

residual coefficient array for each of the maximum number of transform regions of each

chroma channel having a coded block flag value of one into the encoded bitstream 312.

The number of chroma residual coefficient arrays encoded for a given transform unit for a

given chroma channel depends on the coded block flag value of each transform and will

thus vary from zero to (at most) the maximum number of transforms. For example, when

the number of transforms is two and both chroma channels have coded block flag values of

one for each of the count values, then the chroma residual blocks 956, 958, 960 and 962

are encoded in the encoded bitstream 312. If the coded block flag value for each transform

for a given chroma channel is zero, then no chroma residual block is encoded in the

encoded bitstream 312 for that chroma channel. The encode chroma residual coefficient

arrays step 1010 is generally performed by the entropy encoder 324.

[0102] Fig. 11 is a schematic flow diagram showing a method 1100 for decoding a

transform unit (TU) by decoding the transform tree non-leaf node syntax structure 902 and

the transform tree leaf node syntax structure 932. The method 1100 is described with

reference to a chroma channel of the transform unit (TU) however the method 1100 may

be applied to any chroma channel of the transform unit (TU). As the transform tree non

leaf node syntax structure 902 and the transform tree leaf node syntax structure 932

describe one node in the transform tree, the method 1100 decodes one node of the

transform tree from the encoded bitstream 312. The method 1100 may be performed in

appropriate hardware or alternatively in software, for example executable by the processor

205. The method 1100 is initially invoked for the top level of the transform tree and is

capable of invoking itself (recursively) to decode child nodes of the transform tree. A

determine transform unit (TU) size step 1102 determines a transform unit (TU) size in a

manner identical to the determine transform unit size step 1002. The determine transform

unit size step 1102 determines the size of a transform unit (TU) in a transform tree

- 38

according to the coding unit (CU) size that contains the transform tree and a transform

depth value of the transform unit (TU). When the method 1100 is invoked at the top level

of the transform tree, the transform depth value is set to zero, otherwise the transform

depth value is provided by the parent instance of the method 1100. A split transform flag

value, such as the split transform flag value 702 is decoded from the encoded bitstream

312 as split transform flag 910 if the transform depth value is less than the maximum

allowed transform depth.

[0103] When the split transform flag value is one, chroma coded block flags 912

and 914 are decoded for each chroma channel only if the parent node of the transform tree

hierarchy has a corresponding coded block flag value of one. The method 1100 then

invokes a new instance of the method 1100 for each child node (represented in the portion

of the encoded bitstream 312 by transform tree syntax structures 916, 918, 920 and 922) of

the transform tree. Each instance of the method 1100, invoked for the child nodes, is

provided with a transform depth value equal to the present method 1100 instance transform

depth value incremented by one.

[0104] When the split transform flag value is zero, an identify maximum number

of inverse transforms step 1104 determines a (maximum) number (n) of transforms for

each of the at least one chroma residual coefficient arrays present in each chroma channel

of the region being decoded, in a manner identical to the identify maximum number (n) of

forward transforms step 1004. When no inferred split takes place, this number n will be

one. When a 4:2:2 chroma format is in use and a rectangular region of a chroma channel,

such as the 8x16 region 664, is encountered and the region size is one of a predetermined

set of region sizes (such as 16x32 and 8x16), an inferred split takes place and the

maximum number of transforms will be two (otherwise the number of transforms will be

one). Otherwise (the region size is not one of a predetermined set of region sizes) the

maximum number of transforms will be one. For example, if 4x8 is not one of the

predetermined set of region sizes, then the maximum number of transforms will be one.

When a 4:4:4 chroma format is in use and the encountered region size is one of a

predetermined set of region sizes (such as a 32x32 region), an inferred split takes place and

the maximum number of transforms will be four. Otherwise (the region size is not one of a

predetermined set of region sizes) the maximum number will be one. For example, if 8x8

is not one of the predetermined set of region sizes, then the maximum number of

- 39

transforms will be one. Although the predetermined set of region sizes includes 8x16,

other predetermined set of region sizes are possible, such as only 16x32 when a 4:2:2

chroma format is in use or 32x32 when a 4:4:4 chroma format is in use. For each chroma

channel, if the parent node had a coded block flag value of one, then for each of the (n)

transforms, a coded block flag is decoded in the encoded bitstream 312. For example,

when the maximum number of transforms is equal to two, coded block flags 942 and 944

indicate the presence of a transform for each of the two regions inferred by the split.

[0105] A decode chroma residual coefficient arrays step 1106 then decodes the

residual coefficient array for each of the maximum number of transforms regions of each

chroma channel from the encoded bitstream 312 having a coded block flag value of one.

The number of residual coefficient arrays decoded for a given transform unit for a given

chroma channel depends on the coded block flag value of each transform and will thus

vary from zero to (at most) the 'number (n) of transforms'. For example, when the number

of transforms is two and both chroma channels have coded block flags of one for each of

the count values, then the chroma residual blocks 956, 958, 960 and 962 are decoded from

the encoded bitstream 312. The decode chroma residual coefficient arrays step 1106 is

generally performed by the entropy decoder 420 for each chroma residual coefficient array

having a coded block flag value of one.

[0106] A select inverse transform step 1108 then selects an inverse transform from

a predetermined set of inverse transforms, for each of the maximum number of transforms

having a coded block flag value of one for each chroma channel. For example, when the

maximum number of transforms is two and the region size is 16x32 and the coded block

flag value for each of the two transforms is one, then a 16x16 inverse transform is selected

for each of the 16x16 regions resulting from the inferred split.

[0107] An apply inverse transform step 1110 then performs the inverse transform

for each of the maximum number of transforms regions on the corresponding region

having a coded block flag value of one. This results in a conversion of each chroma

residual coefficient array (frequency domain representation) into a chroma residual sample

array (spatial domain representation) representative of the decoded video frame. The

apply inverse transform step 1110 is generally performed by the inverse scale and

transform module 422.

- 40

[0108] Fig. 12A shows a diagonal scan pattern 1201, Fig. 12B shows a horizontal

scan pattern 1202, and Fig. 12C shows a vertical scan pattern 1203, each for a 4x8

transform unit 1200. Those implementations that scan the 4x8 transform unit 1200 using

the illustrated scan patterns have the property that the residual coefficients are grouped in

4x4 blocks, known as 'sub-blocks'. A 'coefficient group' flag present in the encoded

bitstream 312 may therefore be used to indicate, for each sub-block, the presence of at

least one significant (non-zero) residual coefficient. Applying a 4x4 sub-block size for the

4x8 transform achieves consistency with the scan pattern present in other transform sizes,

where coefficients are always grouped into sub-blocks.

[0109] Particular implementations may apply a coefficient group flag to signal the

presence of at least one non-zero residual coefficient in each sub-block. Advantageously,

these scan patterns permit re-use of control software or digital circuitry that processes

residual coefficients, by reusing the sub-block processing for all transform sizes. The

particular scan pattern used may be selected according to criteria such as the intra

prediction direction of the collocated prediction unit (PU). Where a transform encodes

chroma samples on a 4:2:2 chroma format sample grid, the relationship between the intra

prediction direction and the scan pattern is altered because each chroma sample maps to a

non-square (2x1) array of luma samples, affecting the 'direction' or angle of the intra

prediction mode. Scanning is shown in a 'backward' direction, ending at the DC

coefficient, located in the top-left corner of the transform unit (TU). Further, scanning is

not required to start at the lower-right corner of the transform unit (TU). Due to the

predominance of nonzero residual coefficients in the upper left region of the transform unit

(TU), scanning may begin from a 'last significant coefficient position' and progress in a

backward direction until the upper left coefficient is reached.

[0110] Other implementations may apply a single scan to a given region to encode

residual coefficients and then apply more than one transform to these residual coefficients.

In this case only one coded block flag is used for the region and therefore for all

transforms covered by the scan pattern. The coded block flag is set to one if at least one

significant residual coefficient exists in any of the scans. For example, the 4x8 scan

patterns of Figs. 12A -12C may be applied to encode residual coefficients of two 4x4

transforms. The two 4x4 arrays of residual coefficients may be concatenated to form a 4x8

array suitable for the scan pattern. As a single scan is performed over the array, a single

- 41

'last significant coefficient' position is encoded in the bitstream for the scan pattern and a

single coded block flag value is sufficient for the array. The energy compaction property

of the modified discrete cosine transform (DCT) gives advantage to other schemes, such as

interleaving the coefficients of each square transform along the path of the scan pattern

into the rectangular coefficient array. This gives the advantage the density of residual

coefficient values in each 4x4 residual coefficient array is approximately equalised in the

combined 4x8 array, allowing higher compression efficiency to be created by the entropy

encoder 324, for subsequent decoding by the entropy decoder 420.

[0111] Certain implementations encoding chroma colour channels may use a first

transform to encode residual samples at chroma sample locations corresponding to a 4:2:0

chroma sample grid and a second transform to encode residual samples at the additional

chroma sample locations introduced in the 4:2:2 chroma sample grid, relative to the 4:2:0

chroma sample grid. Such implementations may advantageously use a simplified

transform for the second transform, such as a Hadamard transform with the output of the

second transform being added (or otherwise combined) to the residual samples for the first

transform to produce the residual samples for the second transform. Advantageously a

preprocessing stage implementing a transform such as a Haar transform may be used to

sample the chroma sample grid for a 4:2:2 chroma format into the chroma sample grid for

a 4:2:0 chroma format. Such configurations must transmit additional residual coefficients

from the preprocessing stage as side-information, such a residual applied to each largest

coding unit (LCU) in the case that the preprocessing transform is applied at the largest

coding unit (LCU) level.

[0112] Implementations having multiple transforms for a given region may use

either a single combined scan covering the entire region, or a separate scan for each

transform. If the scanning for the multiple transforms is combined into a single scan, then

only one coded block flag is required for each region being scanned. Those

implementations using a single combined scan may achieve higher compression of the

residual coefficients by interleaving the residual coefficients of each transform, such as

interleaving on a coefficient-by-coefficient basis, in order to collocate residual coefficients

from each transform having similar spectral properties.

[0113] Appendix A illustrates possible 'text' for the high efficiency video coding

(HEVC) standard under development that is relevant to the syntax structure 900 and the

- 42

syntax structure 930. Each instance of a transformtreeO function in appendix A is

depicted as a portion of the syntax structure labelled 'TT' in Figs. 9A and 9C and each

instance of a transformunit() function in appendix A is depicted as a portion of the syntax

structure labelled 'TU' in Figs. 9A and 9B. The text provided in Appendix A is one

example of text that accords with the syntax structures 900 and 930 and other examples are

possible. Text that accords with the syntax structures 900 and 930 implies that the video

encoder 114 performs the method 1000 to encode a bitstream and the video decoder 134

performs the method 1100 to decode the bitstream.

[0114] Appendix B illustrates possible text for the high efficiency video coding

(HEVC) standard under development that is relevant to the syntax structure 9100 and the

syntax structure 9130. Each instance of a transformjtree() function in appendix B is

depicted as a portion of the syntax structure labelled 'TT' in Figs. 9C and 9D and each

instance of a transformunit() function in appendix A is depicted as a portion of the syntax

structure labelled 'TU' in Figs. 9C and 9D. The text provided in Appendix B is one

example of text that accords with the syntax structures 9100 and 9130 and other examples

are possible. Text that accords with the syntax structures 9100 and 9130 also implies that

the video encoder 114 performs the method 1000 to encode a bitstream and the video

decoder 134 performs the method 1100 to decode the bitstream.

[0115] The text in Appendix A and Appendix B result in an implementation

whereby the 32x32 chroma region encountered in a transform unit (TU) of size 32x32

configured for the 4:4:4 chroma format results in (a maximum number of)four 16x16

chroma transforms being applied, and the 16x32 chroma region encountered in a transform

unit (TU) of size 32x32 configured for the 4:2:2 chroma format results in (a maximum

number of) two 16x16 chroma transforms being applied. The implementation resulting

from the text in Appendix A and Appendix B, when applied to transform units (TUs) of

smaller size and configured for the 4:2:2 chroma format, (a maximum of) one chroma

transforms is applied. For example, an 8x16 transform is applied to an 8x16 chroma

region and a 4x8 transform is applied to a 4x8 chroma region.

INDUSTRIAL APPLICABILITY

- 43

[0116] The arrangements described are applicable to the computer and data

processing industries and particularly for the digital signal processing for the encoding a

decoding of signals such as video signals.

[0117] The foregoing describes only some embodiments of the present invention,

and modifications and/or changes can be made thereto without departing from the scope

and spirit of the invention, the embodiments being illustrative and not restrictive.

[0118] (Australia only) In the context of this specification, the word "comprising"

means "including principally but not necessarily solely" or "having" or "including", and

not "consisting only of'. Variations of the word "comprising", such as "comprise" and

"comprises" have correspondingly varied meanings.

- 44

APPENDIX A

TRANSFORMTREE() AND TRANSFORMUNIT() IMPLEMENT THE

INFERRED CHROMA SPLIT USING A LOOP CONSTRUCT

7.3.11 Transform tree syntax

transform-tree(xO, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) { Descriptor

if(log2TrafoSize <= Log2MaxTrafoSize &&
log2TrafoSize > Log2MinTrafoSize &&
trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && trafoDepth == 0))
split-transform_flag [xO] [yO] [trafoDepth] ae(v)

if(trafoDepth == 0 || log2TrafoSize > 2) {
if(trafoDepth = = 0 || cbfcb[xBase][yBase][trafoDepth - 1]) {

for(tldx = 0; tldx < TrafoCrCbCnt; tldx++) {
cbf_cb[xO + ((1 << log2CrCbTrafoHorSize) * (tldx mod ae(v)

TrafoCrCbHorCnt)][yO + (1 << log2CrCbTrafoVertSize) * (tldx div
TrafoCrCbVertCnt))][trafoDepth + (TrafoCrCbCnt > 1)]

}
cbf cb[xO yO][trafoDepth] 1= (TrafoCrCbCnt > 1)

I
if(trafoDepth = = 0 || cbfcr[xBase][yBase][trafoDepth - 1]) {

for(tldx = 0; tldx < TrafoCrCbCnt; tldx++) {
cbfcr[xO + ((1 << log2CrCbTrafoHorSize) * (tldx mod ae(v)

TrafoCrCbHorCnt)][yO + (1 << log2CrCbTrafoVertSize) * (tldx div
TrafoCrCbVertCnt))][trafoDepth + (TrafoCrCbCnt > 1)]

I
cbf cr[xO yO][trafoDepth] 1= (TrafoCrCbCnt > 1)

}
}
if(splitjtransform flag[xO yO] trafoDepth]) {

x1 = xO + ((1 << log2TrafoSize) >> 1)

y1 = yO + ((1 << log2TrafoSize) >> 1)

transformtree(xO, yO, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 0)

transform-tree(xl, yO, xO, yO, log2TrafoSize - 1 trafoDepth + 1, 1)

transform-tree(xO, yl, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 2)

transform-tree(xl, yl, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 3)

} else {
if(PredMode[xO][yO] == MODEINTRA II trafoDepth 0 ||

cbfcb[xO yO][trafoDepth] II cbf cr[xO][yO][trafoDepth])
cbf luma[xO][yO][trafoDepth] ae(v)

transform-unit (x0, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx)

}
}

- 45

7.3.12 Transform unit syntax

transform-unit(x0, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) { Descriptor

if(cbfjluma[x][yO][trafoDepth] II cbf-cb[xA][yO][trafoDepth] II
cbf cr[x] [yO] [trafoDepth]) {
if(cu-qp-deltaenabled-flag && !IsCuQpDeltaCoded) {

cu-qpdeltaabs ae(v)

if(cu-qp-delta-abs)

cu qpdeltasign ae(v)

}
if(cbfjluma[x][yO][trafoDepth])

residual-coding(x0, yO, log2TrafoSize, 0)

if(log2TrafoSize > 2) {
if(cbf-cb[x0] [yO] [trafoDepth])

for (tldx = 0; tldx < TrafoCrCbCnt; tldx++) {
residualcoding(x + ((1 << log2CrCbTrafoHorSize) * (tldx mod

TrafoCrCbHorCnt), yO + (1 << log2CrCbTrafoVertSize) * (tldx div
TrafoCrCbVertCnt)), log2TrafoSize, 1)

I
if(cbfcr[x][yO][trafoDepth])

for (tldx = 0; tldx < TrafoCrCbCnt; tldx++) {
residualcoding(x0 + ((1 << log2CrCbTrafoHorSize) * (tldx mod

TrafoCrCbHorCnt), yO + (1 << log2CrCbTrafoVertSize) * (tldx div
TrafoCrCbVertCnt)), log2TrafoSize, 2)

I
I else if(blkldx = = 3) {

if(cbfcb[xBase][yBase][trafoDepth])

residualcoding(xBase, yBase, log2TrafoSize, 1)

if(cbf-cr[xBase][yBase][trafoDepth])

residualcoding(xBase, yBase, log2TrafoSize, 2)

}
}

}

- 46

7.4.8.1 General coding unit semantics

The variables TrafoCrCbHorCnt and TrafoCrCbVertCnt are derived as follows:

- If log2TrafoSize is equal to 5 and splitjtransform flag is equal to 0,

TransformldxMax is derived as follows:

- If chromaformat-ide is equal to 1, TrafoCrCbHorCnt and

TrafoCrCbVertCnt are equal to 1.

- If chromaformat-ide is equal to 2, TrafoCrCbHorCnt is equal to 1 and

TrafoCrCbVertCnt is equal to 2.

- Otherwise, if chromaformatide is equal to 3, TrafoCrCbHorCnt and

TrafoCrCbVertCnt are equal to 2.

- Otherwise, TrafoCrCbHorCnt and TrafoCrCbVertCnt are equal to 1.

The variable TrafoCrCbCnt is derived as TrafoCrCbHorCnt * TrafoCrCbVertCnt.

The variables log2CrCbTrafoHorSize and log2CrCbTrafoVertSize are derived as follows:

- If chromaformatide is equal to 1, log2CrCbTrafoHorSize and

log2CrCbTrafoVertSize are equal to log2TrafoSize - 1.

- Otherwise, if chromaformatide is equal to 2, log2CrCbTrafoHorSize is equal

to log2TrafoSize and log2CrCbTrafoVertSize is equal to min(log2TrafoSize - 1, 4).

- Otherwise, if chromaformatide is equal to 3, log2CrCbTrafoHorSize and

log2CrCbTrafoVertSize are equal to min(log2TrafoSize, 4).

End Appendix A

- 47

APPENDIX B

INVOKE TRANSFORMTREE() ONCE PER PAIR OF CHROMA CHANNELS

FOR EACH CHROMA TRANSFORM RESULTING FROM THE INFERRED

SPLIT.

7.3.11 Transform tree syntax

transformtree(xO, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx, Descriptor
chromaOnly) {

if(log2TrafoSize <= Log2MaxTrafoSize &&
log2TrafoSize > Log2MinTrafoSize &&
trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && trafoDepth == 0)
&& !chromaOnly)
split-transform_flag [xO yO] trafoDepth] ae(v)

if(trafoDepth = = 0 || log2TrafoSize > 2) {
if(trafoDepth = = 0 || cbfcb[xBase][yBase][trafoDepth - 1])

if(TrafoCrCbCnt > 1) {
cbf_cb[x0][yO][trafoDepth] = 1

} else {
cbf_cb[x0][yO][trafoDepth] ae(v)

}
if(trafoDepth = = 0 || cbfcr[xBase][yBase][trafoDepth - 1])

if(TrafoCrCbCnt > 1) {
cbfcr[x0][yO][trafoDepth] = 1

} else {
cbfcr[x0][yO] trafoDepth] ae(v)

if(splitjtransform flag[x0][yO][trafoDepth] II TrafoCrCbCnt > 1)1
x1 = x0 + ((1 << log2TrafoSize) >> 1)

y1 = yO + ((1 << log2TrafoSize) >> 1)

transformtree(x0, yO, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 0,
TrafoCrCbCnt > 1)

if(chromaformatidc 2) {
transform tree(xl, yO, x0, yO, log2TrafoSize - 1 trafoDepth + 1, 1,

TrafoCrCbCnt > 1)

I
transform tree(x0, yl, x0, yO, log2TrafoSize - 1, trafoDepth + 1, 2,

TrafoCrCbCnt > 1)
if(chroma formatidc 2) {

transform tree(x1, yl, x0, yO, log2TrafoSize - 1, trafoDepth + 1, 3,
TrafoCrCbCnt > 1)

I

- 48

}
else-if(!split-transformjflag[xO][yO][trafoDepth] && TrafoCrCbCnt > 1)1

if((PredMode[xO][yO] = = MODEINTRA II trafoDepth != 0 ||
cbf_cb[xO][yO][trafoDepth] II cbf-cr[xO][yO][trafoDepth]) &&

!chromaOnly)
cbfluma[x[][yO][trafoDepth] ae(v)

transform unit (xO, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx,
chromaOnly)

}
}

7.3.12 Transform unit syntax

transform_unit(x0, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx, Descriptor
chromaOnly) {

if(cbfjluma[x][yO][trafoDepth] II cbfscb[x[][yO][trafoDepth] II
cbf cr[x] [yO] [trafoDepth]) {
if(cu-qp-deltaenabledflag && !IsCuQpDeltaCoded && !chromaOnly) {

cu-qpdeltaabs ae(v)

if(cu-qpjdelta-abs)

cu-qp-delta-sign ae(v)

}
if(cbfjluma[xO][yO][trafoDepth])

residual-coding(xO, yO, log2TrafoSize, 0)
if(log2TrafoSize > 2) {

if(cbfcb [xO] [yO] [trafoDepth])

residualcoding(xO, yO, log2TrafoSize, 1)

if(cbfcr[xO][yO][trafoDepth])

residualcoding(xO, , log2TrafoSize, 2)

} else if(blkldx = = 3) {
if(cbfcb [xBase][yBase][trafoDepth])

residualcoding(xBase, yBase, log2TrafoSize, 1)

if(cbfcr[xBase][yBase][trafoDepth])

residualcoding(xBase, yBase, log2TrafoSize, 2)

}
}

}

- 49

7.4.8.1 General coding unit semantics

The variables TrafoCrCbHorCnt and TrafoCrCbVertCnt are derived as follows:

- If log2TrafoSize is equal to 5 and split transform-flag is equal to 0,

TransfonnldxMax is derived as follows:

- If chromafonnatide is equal to 1, TrafoCrCbHorCnt and TrafoCrCbVertCnt

are equal to 1.

- If chromafonnatide is equal to 2, TrafoCrCbHorCnt is equal to 1 and

TrafoCrCbVertCnt is equal to 2.

- Otherwise, if chromaformatide is equal to 3, TrafoCrCbHorCnt and

TrafoCrCbVertCnt are equal to 2.

- Otherwise, TrafoCrCbHorCnt and TrafoCrCbVertCnt are equal to 1.

The variable TrafoCrCbCnt is derived as TrafoCrCbHorCnt * TrafoCrCbVertCnt.

End of Appendix B

50

CLAIMS:

1. A method of decoding a transform unit containing chroma residual samples from a

video bitstream, the transform unit containing at least one chroma residual coefficient array

associated with a single chroma channel in a 4:2:2 chroma format, the method comprising:

decoding two of coded block flag values from the video bitstream for a single chroma

channel of the transform unit, wherein the transform unit has a plurality of chroma residual

coefficient arrays for a single colour channel and each coded block flag value of the two of

coded block flag values corresponds to one chroma residual coefficient array of the chroma

residual coefficient arrays;

decoding from the video bitstream each of a plurality of chroma residual coefficient

arrays according to a corresponding coded block flag value of the two of coded block flag

values;

selecting a square inverse transform for the decoded chroma residual coefficient arrays,

the square inverse transform being selected from a predetermined set of square inverse

transforms according to a chroma transform size of the transform unit; and

applying the selected square inverse transform to each of the decoded chroma residual

coefficient arrays to produce the chroma residual samples for the chroma channel of the

transform unit.

2. A method according to claim 1 wherein a coded block flag value indicates all residual

coefficients of the corresponding residual coefficient array are zero or at least one residual

coefficient of the corresponding residual coefficient array is nonzero.

3. A method according to claim 1 wherein the chroma transform size is one of 32x32,

16x16, 8x8 or 4x4.

51

4. A method of encoding a transform unit containing chroma residual samples to a video

bitstream, the transform unit containing at least one chroma residual coefficient array associated

with a single chroma channel in a 4:2:2 chroma format, the method comprising:

encoding two of coded block flag values to the video bitstream for a single chroma

channel of the transform unit, wherein the transform unit has a plurality of chroma residual

coefficient arrays for a single colour channel and each coded block flag value of the two of

coded block flag values corresponds to one chroma residual coefficient array of the chroma

residual coefficient arrays;

selecting a square forward transform for the chroma residual coefficient arrays, the

square forward transform being selected from a predetermined set of square forward transforms

according to a chroma transform size of the transform unit;

applying the selected square forward transform to each of the decoded chroma residual

coefficient arrays to produce the chroma residual samples for the chroma channel of the

transform unit; and

encoding to the video bitstream each of the plurality of chroma residual coefficient

arrays according to a corresponding coded block flag value of the two of coded block flag

values.

5. A method according to claim 4 wherein a coded block flag value indicates all residual

coefficients of the corresponding residual coefficient array are zero or at least one residual

coefficient of the corresponding residual coefficient array is nonzero.

6. A method according to claim 4 wherein the chroma transform size is one of 32x32,

16x16, 8x8 or 4x4.

7. A video decoder for decoding a transform unit containing chroma residual samples from

52

a video bitstream, the transform unit containing at least one chroma residual coefficient array

associated with a single chroma channel in a 4:2:2 chroma format, the method comprising:

a first decoder to decode two of coded block flag values from the video bitstream for a

single chroma channel of the transform unit, wherein the transform unit has a plurality of chroma

residual coefficient arrays for a single colour channel and each coded block flag value of the two

of coded block flag values corresponds to one chroma residual coefficient array of the chroma

residual coefficient arrays;

a second decoder to decode from the video bitstream each of a plurality of chroma

residual coefficient arrays according to a corresponding coded block flag value of the two of

coded block flag values;

a selector to select a square inverse transform for the decoded chroma residual

coefficient arrays, the square inverse transform being selected from a predetermined set of

square inverse transforms according to a chroma transform size of the transform unit; and

an applicator to apply the selected square inverse transform to each of the decoded

chroma residual coefficient arrays to produce the chroma residual samples for the chroma

channel of the transform unit.

8. A video decoder according to claim 7 wherein a coded block flag value indicates all

residual coefficients of the corresponding residual coefficient array are zero or at least one

residual coefficient of the corresponding residual coefficient array is nonzero.

9. A video decoder according to claim 7 wherein the chroma transform size is one of

32x32, 16x16, 8x8 or 4x4.

10. A video encoder for encoding a transform unit containing chroma residual samples to a

video bitstream, the transform unit containing at least one chroma residual coefficient array

53

associated with a single chroma channel in a 4:2:2 chroma format, the method comprising:

a first encoder for encoding two of coded block flag values to the video bitstream for a

single chroma channel of the transform unit, wherein the transform unit has a plurality of chroma

residual coefficient arrays for a single colour channel and each coded block flag value of the two

of coded block flag values corresponds to one chroma residual coefficient array of the chroma

residual coefficient arrays;

a selector for selecting a square forward transform for the chroma residual coefficient

arrays, the square forward transform being selected from a predetermined set of square forward

transforms according to a chroma transform size of the transform unit;

an applicator for applying the selected square forward transform to each of the decoded

chroma residual coefficient arrays to produce the chroma residual samples for the chroma

channel of the transform unit; and

a second encoder for encoding to the video bitstream each of the plurality of chroma

residual coefficient arrays according to a corresponding coded block flag value of the two of

coded block flag values.

11. A video encoder according to claim 10 wherein a coded block flag value indicates all

residual coefficients of the corresponding residual coefficient array are zero or at least one

residual coefficient of the corresponding residual coefficient array is nonzero.

12. A video encoder according to claim 10 wherein the chroma transform size is one of

32x32, 16x16, 8x8 or 4x4.

13. A computer readable storage medium having a program recorded thereon, the program

being executable by a processor to decode a transform unit containing chroma residual samples

from a video bitstream, the transform unit containing at least one chroma residual coefficient

54

array associated with a single chroma channel in a 4:2:2 chroma format, the program comprising:

code for decoding two of coded block flag values from the video bitstream for a single

chroma channel of the transform unit, wherein the transform unit has a plurality of chroma

residual coefficient arrays for a single colour channel and each coded block flag value of the two

of coded block flag values corresponds to one chroma residual coefficient array of the chroma

residual coefficient arrays;

code for decoding from the video bitstream each of a plurality of chroma residual

coefficient arrays according to a corresponding coded block flag value of the two of coded block

flag values;

code for selecting a square inverse transform for the decoded chroma residual

coefficient arrays, the square inverse transform being selected from a predetermined set of

square inverse transforms according to a chroma transform size of the transform unit; and

code for applying the selected square inverse transform to each of the decoded chroma

residual coefficient arrays to produce the chroma residual samples for the chroma channel of the

transform unit.

14. A computer readable storage medium according to claim 13 wherein a coded block flag

value indicates all residual coefficients of the corresponding residual coefficient array are zero or

at least one residual coefficient of the corresponding residual coefficient array is nonzero.

15. A computer readable storage medium according to claim 13 wherein the chroma

transform size is one of 32x32, 16x16, 8x8 or 4x4.

16. A computer readable storage medium having a program recorded thereon, the program

being executable by a processor to encode a transform unit containing chroma residual samples

to a video bitstream, the transform unit containing at least one chroma residual coefficient array

55

associated with a single chroma channel in a 4:2:2 chroma format, the method comprising:

code for encoding two of coded block flag values to the video bitstream for a single

chroma channel of the transform unit, wherein the transform unit has a plurality of chroma

residual coefficient arrays for a single colour channel and each coded block flag value of the two

of coded block flag values corresponds to one chroma residual coefficient array of the chroma

residual coefficient arrays;

code for selecting a square forward transform for the chroma residual coefficient arrays,

the square forward transform being selected from a predetermined set of square forward

transforms according to a chroma transform size of the transform unit;

code for applying the selected square forward transform to each of the decoded chroma

residual coefficient arrays to produce the chroma residual samples for the chroma channel of the

transform unit; and

code for encoding to the video bitstream each of the plurality of chroma residual

coefficient arrays according to a corresponding coded block flag value of the two of coded block

flag values.

17. A computer readable storage medium according to claim 15 wherein a coded block flag

value indicates all residual coefficients of the corresponding residual coefficient array are zero or

at least one residual coefficient of the corresponding residual coefficient array is nonzero.

18. A computer readable storage medium according to claim 15 wherein the chroma

transform size is one of 32x32, 16x16, 8x8 or 4x4.

Canon Kabushiki Kaisha

Patent Attorneys for the Applicant

SPRUSON & FERGUSON

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

20
17

20
12

08

 2
2

Fe
b

20
17

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

