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METHOD, APPARATUS AND SYSTEM FOR ENCODING AND DECODING THE 

TRANSFORM UNITS OF A CODING UNIT 

ABSTRACT 

A method of decoding a transform unit containing chroma residual samples from a 

video bitstream, the transform unit containing at least one chroma residual coefficient array 

associated with a single chroma channel in a 4:2:2 chroma format. The method comprises 

decoding two of coded block flag values from the video bitstream for a single chroma 

channel of the transform unit, wherein the transform unit has a plurality of chroma residual 

coefficient arrays for a single colour channel and each coded block flag value of the two of 

coded block flag values corresponds to one chroma residual coefficient array of the chroma 

residual coefficient arrays; decoding from the video bitstream each of a plurality of chroma 

residual coefficient arrays according to a corresponding coded block flag value of the two of 

coded block flag values; and selecting a square inverse transform for the decoded chroma 

residual coefficient arrays, the square inverse transform being selected from a predetermined 

set of square inverse transforms according to a chroma transform size of the transform unit.  

The method also comprises applying the selected square inverse transform to each of the 

decoded chroma residual coefficient arrays to produce the chroma residual samples for the 

chroma channel of the transform unit.  
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METHOD, APPARATUS AND SYSTEM FOR ENCODING AND 

DECODING THE TRANSFORM UNITS OF A CODING UNIT 

REFERENCE TO RELATED APPLICATION(S) 

[0001] This application is a divisional application of Australian Patent Application No.  

2013325121, a National Phase entry of International Patent Application No.  

PCT/AU2013/001116 which claims the benefit of priority from Australian Patent Application 

No. 2012232992, filed September 28, 2012, hereby incorporated by reference in its entirety as if 

fully set forth herein. Australian Patent Application No. 2013325121 is incorporated herein by 

reference in its entirety as if fully set forth herein.  

TECHNICAL FIELD 

[0002] The present invention relates generally to digital video signal processing and, in 

particular, to a method, apparatus and system for encoding and decoding residual coefficients of 

a transform unit (TU), wherein the transform unit (TU) includes one or more transform units 

(TUs) and may be configured for multiple chroma formats, including a 4:2:2 chroma format.  

BACKGROUND 

[0003] Many applications for video coding currently exist, including applications for 

transmission and storage of video data. Many video coding standards have also been developed 

and others are currently in development. Recent developments in video coding standardisation 

have led to the formation of a group called the "Joint Collaborative Team on Video Coding" 

(JCT-VC). The Joint Collaborative Team on Video Coding (JCT-VC) includes members of 

Study Group 16, Question 6 (SG16/Q6) of the Telecommunication Standardisation Sector (ITU

T) of the International Telecommunication Union (ITU), known as the Video Coding Experts 

Group (VCEG), and members of the International Organisations for Standardisation / 

International Electrotechnical Commission Joint Technical Committee 1 / Subcommittee 29 / 

Working Group 11 (ISO/IEC JTC1/SC29/WG1 1), also known as the Moving Picture Experts 

Group (MPEG).  

[0004] The Joint Collaborative Team on Video Coding (JCT-VC) has the goal of 

producing a new video coding standard to significantly outperform a presently existing video 

coding standard, known as "H.264/MPEG-4 AVC". The H.264/MPEG-4 AVC standard is itself
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a large improvement on previous video coding standards, such as MPEG-4 and ITU-T H.263.  

The new video coding standard under development has been named "high efficiency video 

coding (HEVC)". The Joint Collaborative Team on Video Coding JCT-VC is also considering 

implementation challenges arising from technology proposed for high efficiency video coding 

(HEVC) that create difficulties when scaling implementations of the standard to operate at high 

resolutions in real-time or high frame rates. One implementation challenge is the complexity 

and size of logic used to support multiple 'transform' sizes for transforming video data between 

the frequency domain and the spatial domain.  

SUMMARY 

[0005] It is an object of the present invention to substantially overcome, or at least 

ameliorate, one or more disadvantages of existing arrangements.  

[0005a] One aspect of the present disclosure provides a method of decoding a transform 

unit containing chroma residual samples from a video bitstream, the transform unit containing at 

least one chroma residual coefficient array associated with a single chroma channel in a 4:2:2 

chroma format, the method comprising: decoding two of coded block flag values from the video 

bitstream for a single chroma channel of the transform unit, wherein the transform unit has a 

plurality of chroma residual coefficient arrays for a single colour channel and each coded block 

flag value of the two of coded block flag values corresponds to one chroma residual coefficient 

array of the chroma residual coefficient arrays; decoding from the video bitstream each of a 

plurality of chroma residual coefficient arrays according to a corresponding coded block flag 

value of the two of coded block flag values; selecting a square inverse transform for the decoded 

chroma residual coefficient arrays, the square inverse transform being selected from a 

predetermined set of square inverse transforms according to a chroma transform size of the 

transform unit; and applying the selected square inverse transform to each of the decoded 

chroma residual coefficient arrays to produce the chroma residual samples for the chroma 

channel of the transform unit.  

[0005b] Another aspect of the present disclosure provides a method of encoding a 

transform unit containing chroma residual samples to a video bitstream, the transform unit 

containing at least one chroma residual coefficient array associated with a single chroma 

channel in a 4:2:2 chroma format, the method comprising: encoding two of coded block flag 

values to the video bitstream for a single chroma channel of the transform unit, wherein the 

transform unit has a plurality of chroma residual coefficient arrays for a single colour channel
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and each coded block flag value of the two of coded block flag values corresponds to one 

chroma residual coefficient array of the chroma residual coefficient arrays; selecting a square 

forward transform for the chroma residual coefficient arrays, the square forward transform being 

selected from a predetermined set of square forward transforms according to a chroma transform 

size of the transform unit; applying the selected square forward transform to each of the decoded 

chroma residual coefficient arrays to produce the chroma residual samples for the chroma 

channel of the transform unit; and encoding to the video bitstream each of the plurality of 

chroma residual coefficient arrays according to a corresponding coded block flag value of the 

two of coded block flag values.  

[0005c] Another aspect of the present disclosure provides a video decoder for decoding a 

transform unit containing chroma residual samples from a video bitstream, the transform unit 

containing at least one chroma residual coefficient array associated with a single chroma 

channel in a 4:2:2 chroma format, the method comprising: a first decoder to decode two of 

coded block flag values from the video bitstream for a single chroma channel of the transform 

unit, wherein the transform unit has a plurality of chroma residual coefficient arrays for a single 

colour channel and each coded block flag value of the two of coded block flag values 

corresponds to one chroma residual coefficient array of the chroma residual coefficient arrays; a 

second decoder to decode from the video bitstream each of a plurality of chroma residual 

coefficient arrays according to a corresponding coded block flag value of the two of coded block 

flag values; a selector to select a square inverse transform for the decoded chroma residual 

coefficient arrays, the square inverse transform being selected from a predetermined set of 

square inverse transforms according to a chroma transform size of the transform unit; and an 

applicator to apply the selected square inverse transform to each of the decoded chroma residual 

coefficient arrays to produce the chroma residual samples for the chroma channel of the 

transform unit.  

[0005d] Another aspect of the present disclosure provides a video encoder for encoding a 

transform unit containing chroma residual samples to a video bitstream, the transform unit 

containing at least one chroma residual coefficient array associated with a single chroma 

channel in a 4:2:2 chroma format, the method comprising: a first encoder for encoding two of 

coded block flag values to the video bitstream for a single chroma channel of the transform unit, 

wherein the transform unit has a plurality of chroma residual coefficient arrays for a single 

colour channel and each coded block flag value of the two of coded block flag values 

corresponds to one chroma residual coefficient array of the chroma residual coefficient arrays; a
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selector for selecting a square forward transform for the chroma residual coefficient arrays, the 

square forward transform being selected from a predetermined set of square forward transforms 

according to a chroma transform size of the transform unit; an applicator for applying the 

selected square forward transform to each of the decoded chroma residual coefficient arrays to 

produce the chroma residual samples for the chroma channel of the transform unit; and a second 

encoder for encoding to the video bitstream each of the plurality of chroma residual coefficient 

arrays according to a corresponding coded block flag value of the two of coded block flag 

values.  

[0005e] Another aspect of the present disclosure provides a computer readable storage 

medium having a program recorded thereon, the program being executable by a processor to 

decode a transform unit containing chroma residual samples from a video bitstream, the 

transform unit containing at least one chroma residual coefficient array associated with a single 

chroma channel in a 4:2:2 chroma format, the program comprising: code for decoding two of 

coded block flag values from the video bitstream for a single chroma channel of the transform 

unit, wherein the transform unit has a plurality of chroma residual coefficient arrays for a single 

colour channel and each coded block flag value of the two of coded block flag values 

corresponds to one chroma residual coefficient array of the chroma residual coefficient arrays; 

code for decoding from the video bitstream each of a plurality of chroma residual coefficient 

arrays according to a corresponding coded block flag value of the two of coded block flag 

values; code for selecting a square inverse transform for the decoded chroma residual coefficient 

arrays, the square inverse transform being selected from a predetermined set of square inverse 

transforms according to a chroma transform size of the transform unit; and code for applying the 

selected square inverse transform to each of the decoded chroma residual coefficient arrays to 

produce the chroma residual samples for the chroma channel of the transform unit.  

[0005e] Another aspect of the present disclosure provides a computer readable storage 

medium having a program recorded thereon, the program being executable by a processor to 

encode a transform unit containing chroma residual samples to a video bitstream, the transform 

unit containing at least one chroma residual coefficient array associated with a single chroma 

channel in a 4:2:2 chroma format, the method comprising: 

code for encoding two of coded block flag values to the video bitstream for a single chroma 

channel of the transform unit, wherein the transform unit has a plurality of chroma residual 

coefficient arrays for a single colour channel and each coded block flag value of the two of 

coded block flag values corresponds to one chroma residual coefficient array of the chroma
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residual coefficient arrays; code for selecting a square forward transform for the chroma residual 

coefficient arrays, the square forward transform being selected from a predetermined set of 

square forward transforms according to a chroma transform size of the transform unit; code for 

applying the selected square forward transform to each of the decoded chroma residual 

coefficient arrays to produce the chroma residual samples for the chroma channel of the 

transform unit; and code for encoding to the video bitstream each of the plurality of chroma 

residual coefficient arrays according to a corresponding coded block flag value of the two of 

coded block flag values.  

[0006] According to another aspect of the present disclosure there is provided a method 

of decoding a transform unit containing chroma residual coefficients from a video bitstream, the 

transform unit containing at least one chroma residual coefficient array associated with a single 

chroma channel, the method comprising: 

determining a size of the transform unit, the size being related to a hierarchical level of 

the transform unit in a corresponding coding unit; 

identifying a maximum number of inverse transforms, used for transforming the at least 

one chroma residual coefficient array, according to the determined size; 

decoding from the video bitstream the at least one chroma residual coefficient array 

using the identified maximum number of transforms for the chroma channel of the transform 

unit; 

selecting an inverse transform for the decoded chroma residual coefficient arrays, the 

inverse transform being selected from a predetermined set of inverse transforms; and 

applying the selected inverse transform to each of the chroma residual coefficient arrays 

to decode chroma residual samples for the chroma channel of the transform unit.  

[0007] According to another aspect of the present disclosure there is provided a method 

of encoding into a video bitstream a transform unit containing chroma residual samples 

associated with a single chroma channel, the transform unit containing at least one chroma 

residual sample array, the method comprising: 

determining a size of the transform unit, the size being related to a hierarchical
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level of the transform unit in a corresponding coding unit; 

identifying a maximum number of predetermined forward transforms, used for 

transforming the at least one chroma residual sample array, according to the determined 

size; 

selecting a forward transform for the chroma residual sample arrays, the forward 

transform being selected from a predetermined set of forward transforms; 

applying the selected forward transform to each of the chroma residual sample 

arrays to transform at least one of the chroma residual sample arrays into a corresponding 

chroma residual coefficient array for the chroma channel of the transform unit; and 

encoding the chroma residual coefficient arrays for the chroma channel of the 

transform unit; 

[0008] Preferably the maximum number of transforms is one or two. Desirably the 

number is two and is applied in a 4:2:2 chroma format to a 32x16 sized chroma region of 

the transform unit.  

[0009] Advantageously, the number of transforms is selected from the set of one, 

two and four. In a specific implementation the number is four and is applied in a 4:4:4 

chroma format to a 32x32 sized chroma region of the transform unit.  

[00010] Preferably a single scan is applied covering the identified number of 

transforms. Desirably coefficients of the identified number of transforms are interleaved.  

[00011] In one implementation, a transform unit having the size of 4x8 is scanned 

using a 4x4 sub-block scan pattern.  

[00012] In another, the number of transforms applied is determined using at least a 

code block flag. Desirably the number of transforms applied is determined using the 

identified maximum number of transforms and a coded block flag value for each 

transform.  

[00013] In accordance with another aspect of the present disclosure, there is 

provided a method of decoding a transform unit containing chroma residual samples from 

a video bitstream, the transform unit containing at least one chroma residual coefficient 

array associated with a single chroma channel in a 4:2:2 chroma format, the method
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comprising: 

determining a hierarchical level for the transform unit within a coding unit, from 

split transform flags present in the video bitstream, wherein a coding unit size ranges from 

a smallest coding unit to a largest coding unit; 

determining a transform size of the transform unit for the single chroma channel, 

the transform size being related to the determined hierarchical level of the transform unit 

and the coding unit size; 

determining a plurality of coded block flag values from the video bitstream for a 

single chroma channel of the transform unit, wherein the transform unit has a plurality of 

chroma residual coefficient arrays for a single colour channel and each coded block flag 

value of the plurality of coded block flag values corresponds to one chroma residual 

coefficient array of the chroma residual coefficient arrays; 

decoding from the video bitstream each of a plurality of chroma residual 

coefficient arrays according to a corresponding coded block flag value of the plurality of 

coding block flag values; 

selecting a square inverse transform for the decoded chroma residual coefficient 

arrays, the square inverse transform being selected from a predetermined set of square 

inverse transforms according to the determined transform size; and 

applying the selected square inverse transform to each of the decoded chroma 

residual coefficient arrays to produce the chroma residual samples for the chroma channel 

of the transform unit.  

[00014] According to another aspect of the disclosure, provided is a method of 

encoding a transform unit containing chroma residual samples to a video bitstream, the 

transform unit containing at least one chroma residual coefficient array associated with a 

single chroma channel in a 4:2:2 chroma fonnat, the method comprising: 

encoding split transform flags to the video bitstream based on a received 

hierarchical level for the transform unit within a coding unit, wherein a coding unit size 

ranges from a smallest coding unit to a largest coding unit; 

receiving a transform size of the transform unit for the single chroma channel, the 

transform size being related to the hierarchical level of the transform unit and the coding 

unit size; 

encoding a plurality of coded block flag values to the video bitstream for a single 

chroma channel of the transform unit, wherein the transform unit has a plurality of chroma
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residual coefficient arrays for a single colour channel and each coded block flag value of 

the plurality of coded block flag values corresponds to one chroma residual coefficient 

array of the chroma residual coefficient arrays; 

selecting a square forward transform for the chroma residual coefficient arrays, the 

square forward transform being selected from a predetermined set of square forward 

transforms according to the received transform size; 

applying the selected square forward transform to each of the decoded chroma 

residual coefficient arrays to produce the chroma residual samples for the chroma channel 

of the transform unit; and 

encoding to the video bitstream each of the plurality of chroma residual coefficient 

arrays according to a corresponding coded block flag value of the plurality of coding block 

flag values.  

[00015] Other aspects are also disclosed.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[00016] At least one embodiment of the present invention will now be described 

with reference to the following drawings, in which: 

[00017] Fig. 1 is a schematic block diagram showing a video encoding and decoding 

system; 

[00018] Figs. 2A and 2B form a schematic block diagram of a general purpose 

computer system upon which one or both of the video encoding and decoding system of 

Fig. 1 may be practiced; 

[00019] Fig. 3 is a schematic block diagram showing functional modules of a video 

encoder; 

[00020] Fig. 4 is a schematic block diagram showing functional modules of a video 

decoder; 

[00021] Figs. 5A and 5B schematically illustrate chroma formats for representing 

frame data;
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[00022] Fig. 6A is a schematic representation of an exemplary transform tree of a 

coding unit; 

[00023] Fig. 6B is a schematic representation of the exemplary transform tree 

arranged on a luma sample grid; 

[00024] Fig. 6C is a schematic representation of the exemplary transform tree 

arranged on a chroma sample grid; 

[00025] Fig. 7 is a schematic illustration of a data structure representing a luma 

channel of the exemplary transform tree; 

[00026] Fig. 8 illustrates a data structure representing a chroma channel of the 

exemplary transform tree; 

[00027] Figs. 9A and 9B schematically show a bitstream structure that encodes the 

exemplary transform tree; 

[00028] Figs. 9C and 9D schematically show an alternative bitstream structure that 

encodes the exemplary transform tree; 

[00029] Fig. 10 is a schematic flow diagram showing a method for encoding the 

exemplary transform tree; 

[00030] Fig. 11 is a schematic flow diagram showing a method for decoding the 

exemplary transform tree; and 

[00031] Figs. 12A to 12C schematically show residual scan patterns of a 4x8 

transform unit.  

DETAILED DESCRIPTION INCLUDING BEST MODE 

[00032] Where reference is made in any one or more of the accompanying drawings 

to steps and/or features, which have the same reference numerals, those steps and/or
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features have for the purposes of this description the same function(s) or operation(s), 

unless the contrary intention appears.  

[00033] Fig. 1 is a schematic block diagram showing function modules of a video 

encoding and decoding system 100 that may utilise techniques for coding syntax elements 

representative of inferred subdivision of transform units into multiple transforms for a 

chroma channel. The system 100 includes a source device 110 and a destination device 

130. A communication channel 120 is used to communicate encoded video information 

from the source device 110 to the destination device 130. In some cases, the source device 

110 and destination device 130 may comprise respective mobile telephone hand-sets, in 

which case the communication channel 120 is a wireless channel. In other cases, the 

source device 110 and destination device 130 may comprise video conferencing 

equipment, in which case the communication channel 120 is typically a wired channel, 

such as an internet connection. Moreover, the source device 110 and the destination 

device 130 may comprise any of a wide range of devices, including devices supporting 

over the air television broadcasts, cable television applications, internet video applications 

and including applications where the encoded video is captured on some storage medium 

or a file server.  

[00034] As illustrated, the source device 110 includes a video source 112, a video 

encoder 114 and a transmitter 116. The video source 112 typically comprises a source of 

captured video frame data, such as an imaging sensor, a previously captured video 

sequence stored on a non-transitory recording medium, or a video feed from a remote 

imaging sensor. Examples of source devices 110 that may include an imaging sensor as 

the video source 112 include smart-phones, video camcorders and network video cameras.  

The video encoder 114 converts the captured frame data from the video source 112 into 

encoded video data and will be described further with reference to Fig. 3. The encoded 

video data is typically transmitted by the transmitter 116 over the communication channel 

120 as encoded video information. It is also possible for the encoded video data to be 

stored in some storage device, such as a "Flash" memory or a hard disk drive, until later 

being transmitted over the communication channel 120.  

[00035] The destination device 130 includes a receiver 132, a video decoder 134 

and a display device 136. The receiver 132 receives encoded video information from the 

communication channel 120 and passes received video data to the video decoder 134. The
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video decoder 134 then outputs decoded frame data to the display device 136. Examples 

of the display device 136 include a cathode ray tube, a liquid crystal display, such as in 

smart-phones, tablet computers, computer monitors or in stand-alone television sets. It is 

also possible for the functionality of each of the source device 110 and the destination 

device 130 to be embodied in a single device.  

[00036] Notwithstanding the exemplary devices mentioned above, each of the 

source device 110 and destination device 130 may be configured within a general purpose 

computing system, typically through a combination of hardware and software components.  

Fig. 2A illustrates such a computer system 200, which includes: a computer module 201; 

input devices such as a keyboard 202, a mouse pointer device 203, a scanner 226, a 

camera 227, which may be configured as the video source 112, and a microphone 280; and 

output devices including a printer 215, a display device 214, which may be configured as 

the display device 136, and loudspeakers 217. An external Modulator-Demodulator 

(Modem) transceiver device 216 may be used by the computer module 201 for 

communicating to and from a communications network 220 via a connection 221. The 

communications network 220, which may represent the communication channel 120, may 

be a wide-area network (WAN), such as the Internet, a cellular telecommunications 

network, or a private WAN. Where the connection 221 is a telephone line, the modem 216 

may be a traditional "dial-up" modem. Alternatively, where the connection 221 is a high 

capacity (e.g., cable) connection, the modem 216 may be a broadband modem. A wireless 

modem may also be used for wireless connection to the communications network 220.  

The transceiver device 216 may provide the functionality of the transmitter 116 and the 

receiver 132 and the communication channel 120 may be embodied in the connection 221.  

[00037] The computer module 201 typically includes at least one processor 

unit 205, and a memory unit 206. For example, the memory unit 206 may have 

semiconductor random access memory (RAM) and semiconductor read only memory 

(ROM). The computer module 201 also includes an number of input/output (1/0) 

interfaces including: an audio-video interface 207 that couples to the video display 214, 

loudspeakers 217 and microphone 280; an 1/0 interface 213 that couples to the 

keyboard 202, mouse 203, scanner 226, camera 227 and optionally a joystick or other 

human interface device (not illustrated); and an interface 208 for the external modem 216 

and printer 215. In some implementations, the modem 216 may be incorporated within the
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computer module 201, for example within the interface 208. The computer module 201 

also has a local network interface 211, which permits coupling of the computer system 200 

via a connection 223 to a local-area communications network 222, known as a Local Area 

Network (LAN). As illustrated in Fig. 2A, the local communications network 222 may 

also couple to the wide network 220 via a connection 224, which would typically include a 

so-called "firewall" device or device of similar functionality. The local network interface 

211 may comprise an EthernetTM circuit card, a BluetoothTM wireless arrangement or an 

IEEE 802.11 wireless arrangement; however, numerous other types of interfaces may be 

practiced for the interface 211. The local network interface 211 may also provide the 

functionality of the transmitter 116 and the receiver 132 and communication channel 120 

may also be embodied in the local communications network 222.  

[00038] The 1/0 interfaces 208 and 213 may afford either or both of serial and 

parallel connectivity, the former typically being implemented according to the Universal 

Serial Bus (USB) standards and having corresponding USB connectors (not illustrated).  

Storage devices 209 are provided and typically include a hard disk drive (HDD) 210.  

Other storage devices such as a floppy disk drive and a magnetic tape drive (not 

illustrated) may also be used. An optical disk drive 212 is typically provided to act as a 

non-volatile source of data. Portable memory devices, such optical disks (e.g. CD-ROM, 

DVD, Blu-ray Disc TM), USB-RAM, portable, external hard drives, and floppy disks, for 

example, may be used as appropriate sources of data to the computer system 200.  

Typically, any of the HDD 210, optical drive 212, networks 220 and 222 may also be 

configured to operate as the video source 112, or as a destination for decoded video data to 

be stored for reproduction via the display 214.  

[00039] The components 205 to 213 of the computer module 201 typically 

communicate via an interconnected bus 204 and in a manner that results in a conventional 

mode of operation of the computer system 200 known to those in the relevant art. For 

example, the processor 205 is coupled to the system bus 204 using a connection 218.  

Likewise, the memory 206 and optical disk drive 212 are coupled to the system bus 204 by 

connections 219. Examples of computers on which the described arrangements can be 

practised include IBM-PC's and compatibles, Sun SPARCstations, Apple MacTM or alike 

computer systems.
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[00040] Where appropriate or desired, the video encoder 114 and the video decoder 

134, as well as methods described below, may be implemented using the computer system 

200 wherein the video encoder 114, the video decoder 134 and the processes of Figs. 10 to 

13, to be described, may be implemented as one or more software application 

programs 233 executable within the computer system 200. In particular, the video encoder 

114, the video decoder 134 and the steps of the described methods are effected by 

instructions 231 (see Fig. 2B) in the software 233 that are carried out within the computer 

system 200. The software instructions 231 may be formed as one or more code modules, 

each for performing one or more particular tasks. The software may also be divided into 

two separate parts, in which a first part and the corresponding code modules performs the 

described methods and a second part and the corresponding code modules manage a user 

interface between the first part and the user.  

[00041] The software may be stored in a computer readable medium, including the 

storage devices described below, for example. The software is loaded into the computer 

system 200 from the computer readable medium, and then executed by the computer 

system 200. A computer readable medium having such software or computer program 

recorded on the computer readable medium is a computer program product. The use of the 

computer program product in the computer system 200 preferably effects an advantageous 

apparatus for implementing the video encoder 114, the video decoder 134 and the 

described methods.  

[00042] The software 233 is typically stored in the HDD 210 or the memory 206.  

The software is loaded into the computer system 200 from a computer readable medium, 

and executed by the computer system 200. Thus, for example, the software 233 may be 

stored on an optically readable disk storage medium (e.g., CD-ROM) 225 that is read by 

the optical disk drive 212.  

[00043] In some instances, the application programs 233 may be supplied to the user 

encoded on one or more CD-ROMs 225 and read via the corresponding drive 212, or 

alternatively may be read by the user from the networks 220 or 222. Still further, the 

software can also be loaded into the computer system 200 from other computer readable 

media. Computer readable storage media refers to any non-transitory tangible storage 

medium that provides recorded instructions and/or data to the computer system 200 for 

execution and/or processing. Examples of such storage media include floppy disks,
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magnetic tape, CD-ROM, DVD, Blu-ray Disc, a hard disk drive, a ROM or integrated 

circuit, USB memory, a magneto-optical disk, or a computer readable card such as a 

PCMCIA card and the like, whether or not such devices are internal or external of the 

computer module 201. Examples of transitory or non-tangible computer readable 

transmission media that may also participate in the provision of the software, application 

programs, instructions and/or video data or encoded video data to the computer 

module 401 include radio or infra-red transmission channels as well as a network 

connection to another computer or networked device, and the Internet or Intranets 

including e-mail transmissions and information recorded on Websites and the like.  

[00044] The second part of the application programs 233 and the corresponding 

code modules mentioned above may be executed to implement one or more graphical user 

interfaces (GUIs) to be rendered or otherwise represented upon the display 214. Through 

manipulation of typically the keyboard 202 and the mouse 203, a user of the computer 

system 200 and the application may manipulate the interface in a functionally adaptable 

manner to provide controlling commands and/or input to the applications associated with 

the GUI(s). Other forms of functionally adaptable user interfaces may also be 

implemented, such as an audio interface utilizing speech prompts output via the 

loudspeakers 217 and user voice commands input via the microphone 280.  

[00045] Fig. 2B is a detailed schematic block diagram of the processor 205 and a 

"memory" 234. The memory 234 represents a logical aggregation of all the memory 

modules (including the HDD 209 and semiconductor memory 206) that can be accessed by 

the computer module 201 in Fig. 2A.  

[00046] When the computer module 201 is initially powered up, a power-on self

test (POST) program 250 executes. The POST program 250 is typically stored in a 

ROM 249 of the semiconductor memory 206 of Fig. 2A. A hardware device such as the 

ROM 249 storing software is sometimes referred to as firmware. The POST program 250 

examines hardware within the computer module 201 to ensure proper functioning and 

typically checks the processor 205, the memory 234 (209, 206), and a basic input-output 

systems software (BIOS) module 251, also typically stored in the ROM 249, for correct 

operation. Once the POST program 250 has run successfully, the BIOS 251 activates the 

hard disk drive 210 of Fig. 2A. Activation of the hard disk drive 210 causes a bootstrap 

loader program 252 that is resident on the hard disk drive 210 to execute via the
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processor 205. This loads an operating system 253 into the RAM memory 206, upon 

which the operating system 253 commences operation. The operating system 253 is a 

system level application, executable by the processor 205, to fulfill various high level 

functions, including processor management, memory management, device management, 

storage management, software application interface, and generic user interface.  

[00047] The operating system 253 manages the memory 234 (209, 206) to ensure 

that each process or application running on the computer module 201 has sufficient 

memory in which to execute without colliding with memory allocated to another process.  

Furthermore, the different types of memory available in the computer system 200 of 

Fig. 2A must be used properly so that each process can run effectively. Accordingly, the 

aggregated memory 234 is not intended to illustrate how particular segments of memory 

are allocated (unless otherwise stated), but rather to provide a general view of the memory 

accessible by the computer system 200 and how such is used.  

[00048] As shown in Fig. 2B, the processor 205 includes a number of functional 

modules including a control unit 239, an arithmetic logic unit (ALU) 240, and a local or 

internal memory 248, sometimes called a cache memory. The cache memory 248 typically 

includes a number of storage registers 244-246 in a register section. One or more internal 

busses 241 functionally interconnect these functional modules. The processor 205 

typically also has one or more interfaces 242 for communicating with external devices via 

the system bus 204, using a connection 218. The memory 234 is coupled to the bus 204 

using a connection 219.  

[00049] The application program 233 includes a sequence of instructions 231 that 

may include conditional branch and loop instructions. The program 233 may also include 

data 232 which is used in execution of the program 233. The instructions 231 and the 

data 232 are stored in memory locations 228, 229, 230 and 235, 236, 237, respectively.  

Depending upon the relative size of the instructions 231 and the memory locations 228

230, a particular instruction may be stored in a single memory location as depicted by the 

instruction shown in the memory location 230. Alternately, an instruction may be 

segmented into a number of parts each of which is stored in a separate memory location, as 

depicted by the instruction segments shown in the memory locations 228 and 229.
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[00050] In general, the processor 205 is given a set of instructions which are 

executed therein. The processor 205 waits for a subsequent input, to which the 

processor 205 reacts to by executing another set of instructions. Each input may be 

provided from one or more of a number of sources, including data generated by one or 

more of the input devices 202, 203, data received from an external source across one of the 

networks 220, 202, data retrieved from one of the storage devices 206, 209 or data 

retrieved from a storage medium 225 inserted into the corresponding reader 212, all 

depicted in Fig. 2A. The execution of a set of the instructions may in some cases result in 

output of data. Execution may also involve storing data or variables to the memory 234.  

[00051] The video encoder 114, the video decoder 134 and the described methods 

may use input variables 254, which are stored in the memory 234 in corresponding 

memory locations 255, 256, 257. The video encoder 114, the video decoder 134 and the 

described methods produce output variables 261, which are stored in the memory 234 in 

corresponding memory locations 262, 263, 264. Intermediate variables 258 may be stored 

in memory locations 259, 260, 266 and 267.  

[00052] Referring to the processor 205 of Fig. 2B, the registers 244, 245, 246, the 

arithmetic logic unit (ALU) 240, and the control unit 239 work together to perform 

sequences of micro-operations needed to perform "fetch, decode, and execute" cycles for 

every instruction in the instruction set making up the program 233. Each fetch, decode, 

and execute cycle comprises: 

(a) a fetch operation, which fetches or reads an instruction 231 from a memory 

location 228, 229, 230; 

(b) a decode operation in which the control unit 239 determines which instruction 

has been fetched; and 

(c) an execute operation in which the control unit 239 and/or the ALU 240 execute 

the instruction.  

[00053] Thereafter, a further fetch, decode, and execute cycle for the next 

instruction may be executed. Similarly, a store cycle may be performed by which the 

control unit 239 stores or writes a value to a memory location 232.  

[00054] Each step or sub-process in the processes of Figs. 10 to 13 to be described 

is associated with one or more segments of the program 233 and is typically performed by



- 14 

the register section 244, 245, 247, the ALU 240, and the control unit 239 in the 

processor 205 working together to perform the fetch, decode, and execute cycles for every 

instruction in the instruction set for the noted segments of the program 233.  

[00055] Fig. 3 is a schematic block diagram showing functional modules of the 

video encoder 114. Fig. 4 is a schematic block diagram showing functional modules of the 

video decoder 134. The video encoder 114 and video decoder 134 may be implemented 

using a general-purpose computer system 200, as shown in Figs. 2A and 2B, where the 

various functional modules may be implemented by dedicated hardware within the 

computer system 200, by software executable within the computer system 200 such as one 

or more software code modules of the software application program 233 resident on the 

hard disk drive 205 and being controlled in its execution by the processor 205, or 

alternatively by a combination of dedicated hardware and software executable within the 

computer system 200. The video encoder 114, the video decoder 134 and the described 

methods may alternatively be implemented in dedicated hardware, such as one or more 

integrated circuits performing the functions or sub functions of the described methods.  

Such dedicated hardware may include graphic processors, digital signal processors, 

application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) 

or one or more microprocessors and associated memories. In particular the video encoder 

114 comprises modules 320-344 and the video decoder 134 comprises modules 420-434 

which may each be implemented as one or more software code modules of the software 

application program 233.  

[00056] Although the video encoder 114 of Fig. 3 is an example of a high efficiency 

video coding (HEVC) video encoding pipeline, processing stages performed by the 

modules 320-344 are common to other video codecs such as VC- 1 or H.264/MPEG-4 

AVC. The video encoder 114 receives captured frame data, such as captured frame data, 

as a series of frames, each frame including one or more colour channels. Each frame 

comprises one sample grid per colour channel. Colour information is represented using a 

'colour space', such as recommendation ITU-R BT.709 ('YUV'), although other colour 

spaces are also possible. When the YUV colour space is used, the colour channels include 

a luma channel ('Y') and two chroma channels ('U' and 'V'). Moreover, differing 

amounts of information may be included in the sample grid of each colour channel, 

depending on the sampling of the image or through application of filtering to resample the
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captured frame data. Several sampling approaches, known as 'chroma formats' exist, 

some of which will be described with reference to Figs. 5A and 5B.  

[00057] The video encoder 114 divides each frame of the captured frame data, such 

as frame data 310, into regions generally referred to as 'coding tree blocks' (CTBs). Each 

coding tree block (CTB) includes a hierarchical quad-tree subdivision of a portion of the 

frame into a collection of 'coding units' (CUs). The coding tree block (CTB) generally 

occupies an area of 64x64 luma samples, although other sizes are possible, such as 16x16 

or 32x32. In some cases even larger sizes, such as 128x128, may be used. The coding tree 

block (CTB) may be sub-divided via a split into four equal sized regions to create a new 

hierarchy level. Splitting may be applied recursively, resulting in a quad-tree hierarchy.  

As the coding tree block (CTB) side dimensions are always powers of two and the quad

tree splitting always results in a halving of the width and height, the region side 

dimensions are also always powers of two. When no further split of a region performed, a 

'coding unit' (CU) is said to exist within the region. When no split is performed at the top 

level of the coding tree block, the region occupying the entire coding tree block contains 

one coding unit (CU) that is generally referred to as a 'largest coding unit' (LCU). A 

minimum size also exists for each coding unit, such as the area occupied by 8x8 luma 

samples, although other minimum sizes are also possible. Coding units of this size are 

generally referred to as 'smallest coding units' (SCUs). As a result of this quad-tree 

hierarchy, the entirety of the coding tree block (CTB) is occupied by one or more coding 

units (CUs).  

[00058] The video encoder 114 produces one or more arrays of samples, generally 

referred to as 'prediction units' (PUs) for each coding unit (CU). Various arrangements of 

prediction units (PUs) in each coding unit (CU) are possible, with a requirement that the 

prediction units (PUs) do not overlap and that the entirety of the coding unit (CU) is 

occupied by the one or more prediction units (PUs). This scheme ensures that the 

prediction units (PUs) cover the entire frame area.  

[00059] The video encoder 114 operates by outputting, from a multiplexer module 

340, a prediction unit (PU) 382. A difference module 344 outputs the difference between 

the prediction unit (PU) 382 and a corresponding 2D array of data samples from a coding 

unit (CU) of the coding tree block (CTB) of the frame data 310, the difference being 

known as a 'residual sample array' 360. The residual sample array 360 from the
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difference module 344 is received by a transform module 320, which converts (or 

'encodes') the residual sample array 360 from a spatial representation to a frequency 

domain representation by applying a 'forward transform'. The transform module 320 

creates transform coefficients 362 for each transform in a transform unit (TU) in a 

hierarchical sub-division of the coding unit (CU) into one or more transform units (TUs) 

generally referred to as a 'transform tree'. For the high efficiency video coding (HEVC) 

standard under development, the conversion to the frequency domain representation is 

implemented using a modified discrete cosine transform (DCT), in which a traditional 

DCT is modified to be implemented using shifts and additions. Various sizes for the 

residual sample array 360 and the transform coefficients 362 are possible, in accordance 

with the supported transform sizes. In the high efficiency video coding (HEVC) standard 

under development, transforms are performed on 2D arrays of samples having specific 

sizes, such as 32x32, 16x16, 8x8 and 4x4. A predetermined set of transform sizes 

available to a video encoder 114 may thus be said to exist. Moreover, as foreshadowed 

above, the set of transform sizes may differ between the luma channel and the chroma 

channels. Two-dimensional transforms are generally configured to be 'separable', 

enabling implementation as a first set of 1D transforms operating on the 2D array of 

samples in one direction (e.g. on rows), followed by a second set of 1D transform 

operating on the 2D array of samples output from the first set of 1D transforms in the other 

direction (e.g. on columns). Transforms having the same width and height are generally 

referred to as 'square transforms'. Additional transforms, having differing widths and 

heights are also possible and are generally referred to as 'non-square transforms'.  

Optimised implementations of the transforms may combine the row and column one

dimensional transforms into specific hardware or software modules, such as a 4x4 

transform module or an 8x8 transform module. Transforms having larger dimensions 

require larger amounts of circuitry to implement, even though they may be infrequently 

used. Accordingly, a maximum transform size of 32x32 exists in the high efficiency video 

coding (HEVC) standard under development. The integrated nature of transform 

implementation also introduces a preference to reduce the number of non-square transform 

sizes supported, as these will typically require entirely new hardware to be implemented, 

instead of reusing existing one-dimensional transform logic present from corresponding 

square transforms. Transforms are applied to both the luma and chroma channels.  

Differences between the handling of luma and chroma channels with regard to transform 

units (TUs) exist and will be discussed below with reference to Figs. 5A and 5B. Each
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transform tree occupies one coding unit (CU) and is defined as a quad-tree decomposition 

of the coding unit (CU) into a hierarchy containing one transform unit (TU) at each leaf 

node of the transform tree (quad-tree) hierarchy, with each transform unit (TU) able to 

make use of transforms of the supported transform sizes. Similarly to the coding tree 

block (CTB), it is necessary for the entirety of the coding unit (CU) to be occupied by one 

or more transform units (TUs). At each level of the transform tree quad-tree hierarchy a 

'coded block flag value' signals the possible presence of a transform in each colour 

channel, either in the present hierarchy level when no further splits are present, or to signal 

that lower hierarchy levels may contain at least one transform among the resulting 

transform units (TUs). When the coded block flag value is zero, no transform is performed 

for the corresponding colour channel of any transform units (TU) of the transform tree, 

either at the present hierarchical level or at lower hierarchical levels. When the coded 

block flag value is one, the region contains a transform which must have at least one non

zero residual coefficient. In this manner, for each colour channel, zero or more transforms 

may cover a portion of the area of the coding unit (CU) varying from none up to the 

entirety of the coding unit (CU). Separate coded block flag values exist for each colour 

channel. Each coded block flag value is not required to be encoded, as cases exist where 

there is only one possible coded block flag value.  

[00060] The transform coefficients 362 are then input to a scale and quantize 

module 322 and are scaled and quantized according to a determined quantization 

parameter 384 to produce residual coefficient array 364. The scale and quantization 

process results in a loss of precision, dependent on the value of the determined 

quantization parameter 384. A higher value of the determined quantization parameter 384 

results in greater information being lost from the transform coefficients. This increases the 

compression achieved by the video encoder 114 at the expense of reducing the visual 

quality of the output from the video decoder 134. The determined quantization parameter 

384 may be adapted during encoding of each frame of the frame data 310, or it may be 

fixed for a portion of the frame data 310, such as an entire frame. Other adaptations of the 

determined quantisation parameter 384 are also possible, such as quantising different 

residual coefficients with separate values. The residual coefficient array 364 and 

determined quantization parameter 384 are taken as input to an inverse scaling module 326 

which reverses the scaling performed by the scale and quantize module 322 to produce
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resealed transform coefficient arrays 366, which are resealed versions of the residual 

coefficient array 364.  

[00061] The residual coefficient array 364 and the determined quantisation 

parameter 384 are also taken as input to an entropy encoder module 324 which encodes the 

residual coefficients in an encoded bitstream 312 (or 'video bitstream'). The residual 

coefficient array 364 of each transform in each transform unit (TU) are encoded in groups 

generally known as 'sub-blocks'. Sub-blocks should preferably have the same dimensions 

regardless of the size of the transform, as this permits reuse of logic relating to sub-block 

processing. The residual coefficients within one sub-block are generally referred to as a 

'coefficient group' and for each coefficient group, a coefficient group flag is generally 

encoded to indicate if at least one residual coefficient within the coefficient group is non

zero. In some cases the coefficient group flag may be inferred and thus is not encoded. A 

flag is encoded for each residual coefficient belonging to a coefficient group having a 

coefficient group flag value of one to indicate if the residual coefficient is non-zero 

('significant') or zero ('non-significant'). Due to the loss of precision resulting from the 

scale and quantise module 322, the resealed transform coefficient arrays 366 are not 

identical to the original transform coefficients 362. The resealed transform coefficient 

arrays 366 from the inverse scaling module 326 are then output to an inverse transform 

module 328. The inverse transform module 328 performs an inverse transform from the 

frequency domain to the spatial domain to produce a spatial-domain representation 368 of 

the resealed transform coefficient arrays 366 identical to a spatial domain representation 

that is produced at the video decoder 134.  

[00062] A motion estimation module 338 produces motion vectors 374 by 

comparing the frame data 310 with previous frame data from one or more sets of frames 

stored in a frame buffer module 332, generally configured within the memory 206. The 

sets of frames are known as 'reference picture lists'. The motion vectors 374 are then 

input to a motion compensation module 334 which produces an inter-predicted prediction 

unit (PU) 376 by filtering samples stored in the frame buffer module 332, taking into 

account a spatial offset derived from the motion vectors 374. Not illustrated in Fig. 3, the 

motion vectors 374 are also passed as syntax elements to the entropy encoder module 324 

for encoding in the encoded bitstream 312. An intra-frame prediction module 336 

produces an intra-predicted prediction unit (PU) 378 using samples 370 obtained from a
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summation module 342, which sums the prediction unit (PU) 382 from the multiplexer 

module 340 and the spatial domain representation 368 from the inverse transform module 

328. The intra-frame prediction module 336 also produces an intra-prediction mode 380 

which is sent to the entropy encoder 324 for encoding into the encoded bitstream 312.  

[00063] Prediction units (PUs) may be generated using either an intra-prediction or 

an inter-prediction method. Intra-prediction methods make use of samples adjacent to the 

prediction unit (PU) that have previously been decoded (typically above and to the left of 

the prediction unit) in order to generate reference samples within the prediction unit (PU).  

Various directions of intra-prediction are possible, referred to as the 'intra-prediction 

mode'. Inter-prediction methods make use of a motion vector to refer to a block from a 

selected reference frame. As the block may have any alignment down to a sub-sample 

precision, e.g. one eighth of a sample, filtering is necessary to create a block of reference 

samples for the prediction unit (PU). The decision on which method to use is made 

according to a rate-distortion trade-off between desired bit-rate of the resulting encoded 

bitstream 312 and the amount of image quality distortion introduced by either the intra

prediction or inter-prediction method. If intra-prediction is used, one intra-prediction 

mode is selected from the set of intra-prediction possible modes, also according to a rate

distortion trade-off. The multiplexer module 340 selects either the intra-predicted 

reference samples 378 from the intra-frame prediction module 336, or the inter-predicted 

prediction unit (PU) 376 from the motion compensation block 334, depending on the 

decision made by the rate distortion algorithm. The summation module 342 produces a 

sum 370 that is input to a deblocking filter module 330. The deblocking filter module 330 

performs filtering along block boundaries, producing deblocked samples 372 that are 

written to the frame buffer module 332 configured within the memory 206. The frame 

buffer module 332 is a buffer with sufficient capacity to hold data from one or more past 

frames for future reference as part of a reference picture list.  

[00064] For the high efficiency video coding (HEVC) standard under development, 

the encoded bitstream 312 produced by the entropy encoder 324 is delineated into network 

abstraction layer (NAL) units. Generally, each slice of a frame is contained in one NAL 

unit. The entropy encoder 324 encodes the residual coefficient array 364, the intra

prediction mode 380, the motion vectors and other parameters, collectively referred to as 

'syntax elements', into the encoded bitstream 312 by performing a context adaptive binary
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arithmetic coding (CABAC) algorithm. Syntax elements are grouped together into 'syntax 

structures', these groupings may contain recursion to describe hierarchical structures. In 

addition to ordinal values, such as an intra-prediction mode or integer values, such as a 

motion vector, syntax elements also include flags, such as to indicate a quad-tree split.  

The motion estimation module 338 and motion compensation module 334 operate on 

motion vectors 374, having a precision of 1/8 of a luma sample, enabling precise 

modelling of motion between frames in the frame data 310.  

[00065] Although the video decoder 134 of Fig. 4 is described with reference to a 

high efficiency video coding (HEVC) video decoding pipeline, processing stages 

performed by the modules 420-434 are common to other video codecs that employ entropy 

coding, such as H.264/MPEG-4 AVC, MPEG-2 and VC-1. The encoded video 

information may also be read from memory 206, the hard disk drive 210, a CD-ROM, a 

Blu-ray TM disk or other computer readable storage medium. Alternatively the encoded 

video information may be received from an external source such as a server connected to 

the communications network 220 or a radio-frequency receiver.  

[00066] As seen in Fig. 4, received video data, such as the encoded bitstream 312, is 

input to the video decoder 134. The encoded bitstream 312 may be read from memory 

206, the hard disk drive 210, a CD-ROM, a Blu-rayTM disk or other computer readable 

storage medium. Alternatively the encoded bitstream 312 may be received from an 

external source such as a server connected to the communications network 220 or a radio

frequency receiver. The encoded bitstream 312 contains encoded syntax elements 

representing the captured frame data to be decoded.  

[00067] The encoded bitstream 312 is input to an entropy decoder module 420 

which extracts the syntax elements from the encoded bitstream 312 and passes the values 

of the syntax elements to other blocks in the video decoder 134. The entropy decoder 

module 420 applies the context adaptive binary arithmetic coding (CABAC) algorithm to 

decode syntax elements from the encoded bitstream 312. The decoded syntax elements are 

used to reconstruct parameters within the video decoder 134. Parameters include zero or 

more residual coefficient array 450, motion vectors 452 and a prediction mode 454. The 

residual coefficient array 450 are passed to an inverse scale and transform module 422, the 

motion vectors 452 are passed to a motion compensation module 434 and the prediction 

mode 454 is passed to an intra-frame prediction module 426 and a multiplexer 428. The
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inverse scale and transform module 422 performs inverse scaling on the residual 

coefficient data to create reconstructed transform coefficients. The inverse scale and 

transform module 422 then applies an 'inverse transform' to convert (or 'decode') the 

reconstructed transform coefficients from a frequency domain representation to a spatial 

domain representation, producing a residual sample array 456. The inverse transform 

within the inverse scale and transform module 422 performs the same operation as the 

inverse transform 328. The inverse scale and transform module 422 must therefore be 

configured to provide a predetermined set of transform sizes required to decode an 

encoded bitstream 312 that is compliant with the high efficiency video coding (HEVC) 

standard under development.  

[00068] The motion compensation module 434 uses the motion vectors 452 from the 

entropy decoder module 420, combined with reference frame data 460 from the a frame 

buffer block 432, configured within the memory 206, to produce an inter-predicted 

prediction unit (PU) 462 for a prediction unit (PU), being a prediction of output decoded 

frame data. When the prediction mode 454 indicates that the current prediction unit was 

coded using intra-prediction, the intra-frame prediction module 426 produces an intra

predicted prediction unit (PU) 464 for the prediction unit (PU) using samples spatially 

neighbouring the prediction unit (PU) and a prediction direction also supplied by the 

prediction mode 454. The spatially neighbouring samples are obtained from a sum 458, 

output from a summation module 424. The multiplexer module 428 selects the intra

predicted prediction unit (PU) 464 or the inter-predicted prediction unit (PU) 462 for a 

prediction unit (PU) 466, depending on the current prediction mode 454. The prediction 

unit (PU) 466, output from the multiplexer module 428, is added to the residual sample 

array 456 from the inverse scale and transform module 422 by the summation module 424 

to produce the sum 458 which is then input to each of a deblocking filter module 430 and 

the intra-frame prediction module 426. The deblocking filter module 430 performs 

filtering along data block boundaries, such as transform unit (TU) boundaries, to smooth 

visible artefacts. The output of the deblocking filter module 430 is written to the frame 

buffer module 432 configured within the memory 206. The frame buffer module 432 

provides sufficient storage to hold one or more decoded frames for future reference.  

Decoded frames 412 are also output from the frame buffer module 432 to a display device, 

such as the display device 136.
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[00069] Figs. 5A and 5B each show sample grids of a frame portion 500 and a 

frame portion 510 encoded using a 4:2:0 and a 4:2:2 chroma format respectively. The 

chroma format is specified as a configuration parameter to the video encoder 114 and the 

video encoder 114 encodes a 'chromaformatidc' syntax element into the encoded 

bitstream 312 that specifies the chroma format. The video decoder 134 decodes the 

'chromaformat idc' syntax element from the encoded bitstream 312 to determine the 

chroma format in use. For example, when a 4:2:0 chroma format is in use, the value of 

chromaformatidc is one, when a 4:2:2 chroma format is in use, the value of 

chromaformatidc is two and when a 4:4:4 chroma format is in use, the value of 

chromaformatidc is three. In Figs. 5A and 5B, luma sample locations, such as a luma 

sample location 501, are illustrated using 'X' symbols, and chroma sample locations, such 

as a chroma sample location 502, are illustrated using '0' symbols. By sampling the 

frame portion 500 at the points indicated, a sample grid is obtained for each colour channel 

when a 4:2:0 chroma format is applied. At each luma sample location X, the luma channel 

('Y') is sampled, and at each chroma sample location 0, both the chroma channels ('U' 

and 'V') are sampled. As shown in Fig. 5A, for each chroma sample location, a 2x2 

arrangement of luma sample locations exists. By sampling the luma samples at the luma 

sample locations and chroma samples at the chroma sample locations indicated in the 

frame portion 510, a sample grid is obtained for each colour channel when a 4:2:2 chroma 

format is applied. The same allocation of samples to colour channels is made for the frame 

portion 510 as for the frame portion 500. In contrast to the frame portion 500, twice as 

many chroma sample locations exist in frame portion 510. In frame portion 510 the 

chroma sample locations are collocated with every second luma sample location.  

Accordingly, in Fig. 5B, for each chroma sample location, an arrangement of 2x1 luma 

sample locations exists.  

[00070] Various allowable dimensions of transform units were described above in 

units of luma samples. The region covered by a transform applied for the luma channel 

will thus have the same dimensions as the transform unit dimensions. As the transform 

units also encode chroma channels, the applied transform for each chroma channel will 

have dimensions adapted according to the particular chroma format in use. For example, 

when a 4:2:0 chroma format is in use, a 16x16 transform unit (TU) will use a 16x16 

transform for the luma channel, and an 8x8 transform for each chroma channel. One 

special case is that when a 4x4 transform is used for the luma channel there is no
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corresponding 2x2 transform available (when the 4:2:0 chroma format is applied) or 4x2 

transform available (when the 4:2:2 chroma format is applied) that could be used for the 

chroma channels. In this special case, a 4x4 transform for each chroma channel may cover 

the region occupied by multiple luma transforms.  

[00071] Fig. 6A is a schematic representation of an exemplary transform tree of a 

coding unit (CU) 602 (depicted with a thick border), within a coding tree block (CTB) 600 

of the frame. A single quad-tree subdivision divides the coding tree block (CTB) 600 into 

four 32x32 coding units (CUs), such as the coding unit (CU) 602. An exemplary 

transform tree exists within the coding unit (CU) 602. The exemplary transform tree 

includes several quad-tree subdivisions, resulting in ten transform units (TUs) numbered as 

such in Fig. 6A, for example the transform unit #9 (TU) 604. The transform units #1-#10 

cover the entirety of the coding unit (CU) 602. Each quad-tree subdivision divides a 

region spatially into four quadrants, resulting in four smaller regions. Each transform unit 

(TU) has a transform depth value, corresponding to a hierarchical level of the transform 

unit (TU) within the transform tree. The hierarchical level indicates the number of quad

tree subdivisions performed before the quad-tree subdivision terminated, resulting in an 

instance of a transform unit (TU) that occupies the corresponding region. For example, the 

transform unit #9 (TU) 604, occupies one quarter of the area of the coding unit (CU) 602 

and therefore has transform depth of one. Each transform unit (TU) has an associated size 

(or 'transform size'), generally described as the dimensions of the region containing the 

transform unit (TU) on the luma sample grid. The size is dependent on the coding unit 

(CU) size and the transform depth. Transform units (TUs) with a transform depth of zero 

have a size equal to the size of the corresponding coding unit (CU). Each increment of the 

transform depth results in a halving of the size of transform units (TUs) present in the 

transform tree at the given transform depth. As the frame includes a luma channel and 

chroma channels, the coding unit (CU) 602 occupies a region on both the luma sample grid 

and the chroma sample grid and thus each transform unit (TU) includes information 

describing both the luma samples on the luma sample grid and the chroma samples on the 

chroma sample grid. The nature of the information for each transform unit (TU) is 

dependent on the processing stage of the video encoder 114 or the video decoder 134. At 

the input to the transform module 320 and the output of the inverse scale and transform 

module 422, the residual sample array 360 and 456 respectively contain information for 

each transform unit (TU) in the spatial domain. The residual sample array 360 and 456
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may be further divided into a 'chroma residual sample array' and a 'luma residual sample 

array', due to differences in processing between the luma channel and the chroma 

channels. At the output from the scale and quantise module 322 and the input of the 

inverse scale and transform module 422, the residual coefficient array 364 and 450 

respectively contain information for each transform unit (TU) in the frequency domain.  

The residual coefficient arrays 364 and 450 may be further divided into a 'chroma residual 

coefficient array' and a 'luma residual coefficient array', due to differences in processing 

between the luma channel and the chroma channels.  

[00072] Fig. 6B illustrates an exemplary transform tree 630, corresponding to the 

exemplary transform tree of Fig. 6A, for the luma channel of a 32x32 coding unit (CU), 

containing a set of transform units (TUs) and occupying the coding unit (CU) 602, which 

occupies a 32x32 luma sample array on the luma sample grid. Fig. 7 illustrates a data 

structure 700 that represents the exemplary transform tree 630. In Fig. 6B, boxes 

numbered 1 to 10 indicate transform units present within region 632 (exemplified by 

several transform units (TUs) 640), and each box is contained in a region that is not further 

sub-divided (indicated by a box with dashed border).  

[00073] In Fig. 6B, boxes numbered 1 and 9 contain 16x16 transforms for the luma 

channel, boxes numbered 2, 3 and 8 contain 8x8 transforms for the luma channel and 

boxes numbered 4 to 7 contain 4x4 transforms for the luma channel. The corresponding 

region (dashed box) for each of these boxes has coded block flag value of one, to indicate 

the presence of a transform.  

[00074] The presence or absence of a transform for each colour channel is specified 

by a separate coded block flag value which is used in each of encoding and decoding of the 

bitstream, but which need not be transmitted in the bitstream, as will be discussed below.  

Consequently, the number of residual coefficient arrays 450 output from the entropy 

decoder 420 is dependent on the coded block flag values. When no significant coefficients 

are present in any colour channel, the number of residual coefficient arrays 450 output 

from the entropy decoder 420 is zero.  

[00075] In Fig. 7, the circles represent split transform flag values with the split 

transform flag value being indicated inside the corresponding circle. In Fig. 7, the 

triangles represent coded block flag values, with the coded block flag value being
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indicated inside the corresponding triangle. The squares represent transform units, with 

each transform numbered to accord with the transform numbering present in Fig. 6B.  

[00076] The uppermost hierarchical level of the exemplary transform tree 630 

contains a region 632 occupying a 32x32 coding unit (CU). A split transform flag value 

702 indicates that the region 632 is sub-divided into four 16x16 regions, such as a region 

634, thus defining a 'non-leaf node of the exemplary transform tree 630. For each 16x16 

region, a further split transform flag value, such as a split transform flag value 704, 

indicates that the respective 16x16 region should be further sub-divided into four 8x8 

regions. For example, the region 634 is not further sub-divided, as indicated by the split 

transform flag value 704 of zero, thus defining a 'leaf node of the exemplary transform 

tree 630. In contrast, a region 638 is further sub-divided into four 4x4 regions (such as a 

region 636), as indicated by a split transform flag value 712 of one. The recursive split 

structure present in the transform tree 630 is analogous to the quad-tree split present in the 

coding tree block (CTB). For the luma channel, at the 'leaf nodes of the quad-tree, the 

presence of a transform in the transform unit (TU) is signalled by a coded block flag value, 

for example a coded block flag value 708 of one indicates the presence of a transform 710 

in the region 634.  

[00077] As a transform may be used to represent residual data in each region, 

regions are not permitted to be smaller than the smallest supported transform size, such as 

4x4 luma samples for the luma channel. Additionally, for regions larger than the largest 

available transform size, a split transform flag value of one is inferred. For example, for a 

transform tree with a top level of a 64x64 coding unit, an automatic sub-division (i.e.: not 

signalled in the encoded bitstream 312) into four 32x32 regions occurs when the largest 

supported transform size is 32x32 luma samples.  

[00078] A lower right 16x16 region 642 contains a transform unit (TU) (numbered 

10 (ten) and shaded) with no transform for the luma channel and therefore has a 

corresponding coded block flag value 716 of zero.  

[00079] Figs. 6C and 8 illustrate the exemplary transform tree 630, corresponding to 

the exemplary transform tree of Fig. 6A, for a chroma channel, configured for the 4:2:2 

chroma format and containing a set of transforms for a chroma channel corresponding to 

the transform tree 630 for the luma channel and represented by a data structure 800. As
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the transform tree hierarchy is common by virtue of the structure of Fig. 6A between the 

luma channel and the chroma channels, the split transform flag values are shared between 

the data structures 700 and 800. In contrast to the data structure 700, the data structure 800 

includes a coded block flag value with each transform split flag value of one (i.e. on non

leaf nodes of the transform tree). For example, a coded block flag value 802 of one is 

associated with the transform split flag 702. If the coded block flag value on a non-leaf 

node of the transform tree is zero, coded block flag values on the child nodes are inferred 

as zero (and no corresponding coded block flags are encoded in the encoded bitstream 

312). Coded block flag values at non-leaf regions enable terminating the encoding of 

coded block flags at lower levels of the transform tree for each chroma channel if no 

significant residual coefficients are present in any of the child regions, even though 

significant residual coefficients may be present in the luma channel. This is a common 

situation for typical captured frame data, as the majority of information is present in the 

luma channel.  

[00080] When the video encoder 114 and the video decoder 134 are configured for a 

4:4:4 chroma format, the chroma region of each chroma channel of any given transform 

unit (TU) of a size that is not one of the predetermined set of transform unit (TU) sizes has 

identical dimensions to the luma regions of the given transform unit (TU) (i.e.: when an 

inferred split does not take place). When the video encoder 114 and the video decoder 134 

are configured for a 4:4:4 chroma format, the chroma region of each chroma channel of 

any given transform unit (TU) of a size that is one of the predetermined set of transform 

unit (TU) sizes has dimensions smaller than to the luma regions of the given transform unit 

(TU) (i.e.: when an inferred split does take place).  

[00081] When a 4:2:2 chroma format is in use, this results in the coding unit (CU) 

602 including a 16x32 region 662 of Fig. 6C of chroma samples for each chroma channel 

and thus occupying a 16x32 region on the chroma sample grid. Fig. 6C illustrates the 

regions on a chroma sample grid, drawn as an array of chroma samples, with each chroma 

sample equally spaced horizontally and vertically (in contrast to Fig. 5B). Due to the use 

of the 4:2:2 chroma format, each chroma regions of Fig. 6C appears horizontally 

compressed with respect to the corresponding luma region of Fig. 6B. The split transform 

flag value 702 of one divides the 16x32 region 662, corresponding to the coding unit (CU) 

602, into four 8x16 regions, such as an 8x16 region 664. The 8x16 region 664 has a non-
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square shape and is also larger in size than other non-square regions illustrated in Fig. 6C, 

such as a 4x8 region 670. For each 8x16 region, a split transform flag value, such as the 

split transform flag value 704, indicates whether the corresponding 8x16 region should be 

further sub-divided into four smaller 4x8 regions, in an analogous manner to the quad-tree 

splitting present in the transform tree 630 for the luma sample array. An upper right 8x16 

region 672 is further sub-divided into four 4x8 regions. A coded block flag value 804 of 

one indicates that each of the four 4x8 regions could contain significant residual 

coefficients. A coded block flag for each 4x8 region is thus required to indicate the 

presence of a transform for the corresponding region. Of these four 4x8 regions, a lower 

left 4x8 region 674 (shaded) contains a transform unit (TU) but does not contain a 

transform and therefore has a coded block flag value 814 of zero. The remaining 4x8 

regions, such as the region 670, each have a transform and therefore have corresponding 

coded block flag values of one. The upper left 8x16 region is sub-divided into two equal

sizes 8x8 regions. In contrast to the quad-tree subdivision, no corresponding split 

transform flag is present in the encoded bitstream 312.  

[00082] Splitting a region of a channel, such as a chroma channel, of a transform 

unit (TU) into multiple regions (each of which may have a transform), without signalling 

being present in the encoded bitstream 312, is referred to as an 'inferred split'. The 

inferred split eliminates the need to introduce hardware supporting a non-square transform 

for this case (8x16). Instead, transforms, such as a first 8x8 transform 666, are used. As it 

is possible for each of the regions resulting from the inferred split to contain all zero 

residual information, it is necessary to specify the presence of a transform in each region 

resulting from the inferred split. Accordingly, separate coded block flag values are 

required for each region resulting from an inferred split. In this case, coded block flag 

values 806 and 808 correspond to the first 8x8 transform 666 and a second 8x8 transform 

668 respectively. For transform units (TUs) where no inferred split takes place, a coded 

block flag value for each chroma channel specifies the presence or absence of a transform 

for the region occupied by the transform unit (TU) for the chroma channel. When an 

inferred split takes place, a separate coded block flag value (not illustrated in Fig. 8) is 

required for each of the resulting regions, however implementations may retain a coded 

block flag value attributable to the entire transform unit (TU). The separate coded block 

flag value could be inferred as 'one' in all cases, or the separate coded block flag value 

could be determined by performing a logical 'OR' operation to the coded block flag value
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of each region resulting from the split. If the separate coded block flag value is determined 

from the coded block flag value of each region resulting from the split, the separate coded 

block flag value may be encoded in the encoded bitstream 312 by the entropy encoder 324 

and decoded from the encoded bitstream 312 by the entropy decoder 420 as an additional 

coded block flag (not illustrated in Fig. 9). In such a case, when the separate coded block 

flag value is zero, the coded block flag value of each region from the split may be inferred 

to be zero and when the separate coded block flag value is one, the coded block flags for 

each region from the split are encoded in the encoded bitstream 312 by the entropy 

encoder 324 and decoded from the encoded bitstream 312 by the entropy decoder 420.  

[00083] The lower left 8x16 region 680 of the 16x32 region 662 illustrates an 

inferred split where an 8x8 transform is present in the upper 8x8 inferred region 682 but no 

8x8 transform is present in the lower 8x8 inferred region 684. A lower right 8x16 array 

676 (shaded) contains a transform unit (TU) but does not contain a transform in either 

square 8x8 region resulting from the inferred split and therefore has coded block flag 

values 810 812 of zero.  

[00084] The presence of two chroma channels results in a duplication of the 

structure depicted in Fig. 6C, with separate coded block flag values used to specify the 

presence of transforms for each chroma channel. In this implementation, a split was 

inferred for region sizes for chroma other than the size 4x8, resulting in using a 4x8 

rectangular transform, such as a 4x8 transform 816 (contained in region 670), and enabling 

reuse of existing square transforms in other cases (e.g. 8x8, 16x16). Thus, a set of 

predetermined region sizes (such as 8x16 and 16x32) may be said to exist, for which a split 

into two regions, and hence two transforms (of sizes 8x8 and 16x16), can be used.  

Different definitions of the predetermined set of region sizes for which an inferred split 

occurs are also possible and will allow a different combination of existing square 

transforms and rectangular transforms to be used. It is also possible for certain 

implementations to always infer a split, in which case no rectangular transform is 

introduced for the chroma 4:2:2 colour channels. In such a case, the predetermined set of 

region sizes for which an inferred split occurs contains all possible chroma region sizes 

(e.g. 4x8, 8x16 and 16x32 for a 4:2:2 chroma format or 4x4, 8x8, 16x16 and 32x32 for a 

4:4:4 chroma format).
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[00085] When a 4:2:0 chroma format is in use, an inferred split does not take place 

for either chroma region in the transform unit (TU), therefore the maximum number of 

transforms for each chroma channel is always one (the coded block flag value for each 

chroma channel controls whether the chroma transform occurs).  

[00086] Although the video encoder 114 and the video decoder 134 are described 

independently of differences between the luma and chroma channels, the differing sample 

grids resulting from the chroma formats necessitates the need for differences in the 

modules. Practical implementations may have a separate 'processing paths' for the luma 

channel and for the chroma channels. Such an implementation may thus decouple 

processing of luma samples and chroma samples. As the encoded bitstream 312 is a single 

bitstream for both the luma and chroma channels, the entropy encoder 324 and the entropy 

decoder 420 are not decoupled. Additionally, a single frame buffer, such as the frame 

buffer 332 432 holds luma and chroma samples and is thus not decoupled. However, the 

modules 322-330 and 334-340 and the modules 422-430 and 434 may have luma and 

chroma processing decoupled, enabling implementations to have separate logic for luma 

and chroma, thus creating a 'luma processing path' and a 'chroma processing path'.  

[00087] Certain implementations may infer a split for the 16x32 region of a chroma 

channel of a transform unit (TU) into two 16x16 regions, but not infer a split for the 8x16 

and 4x8 cases. Such implementations avoid the need to introduce 32-point transform logic 

into the chroma processing path, instead being able to rely on 4, 8 or 16-point transform 

logic well-established in the art.  

[00088] Figs. 9A and 9B illustrate a syntax structure that can be used to encode or 

otherwise represent a hierarchical level of the transform tree. At non-leaf nodes of a 

transform tree, a syntax structure 900 is expanded recursively in accordance with data 

structures, such as the data structures 700 and 800, to define the syntax elements present in 

a portion of the encoded bitstream 312 corresponding to the transform tree. At leaf nodes 

of a transform tree (where no further sub-division takes place in the transform tree) a 

syntax structure 930 defines syntax elements present in the portion of the encoded 

bitstream 312. Typically, one data structure for luma and two data structures for chroma 

are present, although additional data structures are possible, such as for encoding an alpha 

channel or a depth map. Alternatively, fewer data structures may be utilised, such as in the 

case where a single data structure is shared by the chroma channels and coded block flag
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values are able to be shared between the chroma channels. A transform tree non-leaf node 

syntax structure 902 defines the encoding of one hierarchical level of a transform tree, 

such as the transform tree 630. A split transform flag 910 encodes a split transform flag 

value of one, such as the split transform flag value 702. This value indicates that the 

transform tree non-leaf node syntax structure 902 includes a lower hierarchical level that 

contains additional instances of the transform tree non-leaf node syntax structure 902 or 

transform tree leaf-node syntax structure 932, or 'child nodes'. A coded block flag 912 

encodes the coded block flag value 802 of one for the 'U' chroma channel and a coded 

block flag 914 encodes a further coded block flag value for the 'V' chroma channel. If the 

transform tree non-leaf node syntax structure 902 is defining the top level of the transform 

tree hierarchy then the coded block flags 912 914 are present. If the transform tree non

leaf node syntax structure 902 is not defining the top level of the transform tree hierarchy 

then the coded block flags 912 914 are only present if the corresponding coded block flags 

in the parent level of the transform tree hierarchy are present and one-valued. As a lower 

hierarchical level exists in the transform tree 630 (relative to the top hierarchical level), a 

quad-tree sub-division takes place. This sub-division results in four transform tree syntax 

structures 916, 918, 920, 922 being included in the transform tree non-leaf node syntax 

structure 902.  

[00089] The syntax structure 930 defines the encoding of the leaf node of the 

transform tree leaf node 932 (i.e. where no further sub-division takes place). A split 

transform flag 940 encodes a split transform flag value of zero, such as the split transform 

flag value 704.  

[00090] A split transform flag is only encoded if the corresponding region is larger 

than a minimum size. For example, the region 636 has the smallest allowable size for a 

region of 4x4 luma samples (corresponding to the smallest supported luma transform size) 

so a transform split flag value 714 is inferred as zero and no split transform flag is encoded 

for the corresponding transform tree syntax structure.  

[00091] For the region 636, chroma residual samples are transformed using a 4x8 

chroma transform, hence no inferred transform split is present. Coded block flags, such as 

a coded block flag 942 and a coded block flag 946 may be present to signal the presence of 

a transform for each of the chroma channels. A coded block flag 950 signals the presence 

of a transform for the luma channel. Residual coefficients for the luma and chroma
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channels (if present) are present in a transform unit (TU) syntax structure 952. If the value 

of the coded block flag 950 is one, a luma residual block 954 is present in the encoded 

bitstream 312. If the value of the coded block flag for each chroma channel is one, 

corresponding chroma residual blocks 956 and 960 are present in the encoded 

bitstream 312.  

[00092] For the region 664, chroma residual samples are transformed using two 8x8 

chroma transforms, hence an inferred transform split is present. The coded block flags 942 

and 946, if present, signal the presence of 8x8 transforms for each chroma channel of the 

first 8x8 transform 666. A coded block flag 944 and a coded block flag 948, if present, 

signal the presence of 8x8 transforms for each chroma channel of the second 8x8 

transform 668. If the value of the coded block flag 944 is one, a chroma residual block 

958 is present in the encoded bitstream 312. If the value of the coded block flag 948 is 

one, a chroma residual block 962 is present in the encoded bitstream 312.  

[00093] The syntax structure 930 as illustrated in Fig. 9B, shows the first and 

second transform of each chroma channel encoded adjacently for the inferred transform 

split. Other arrangements, such as encoding syntax elements for each chroma channel 

adjacently, or encoding syntax elements for each chroma channel interspersed with other 

syntax elements, may alternatively be used.  

[00094] Figs. 9C and 9D illustrate an alternative syntax structure 9100 that can be 

used to encode or otherwise represent a hierarchical level of the transform tree. At non

leaf nodes of a transform tree, the alternative syntax structure 9100 is expanded recursively 

in accordance with data structures, such as the data structures 700 and 800, to define the 

syntax elements present in a portion of the encoded bitstream 312 corresponding to the 

transform tree. An instance of the alternative syntax structure 9100 exists for each node in 

the transform tree, including the leaf nodes, which each contain a transform unit (TU).  

Where an 'inferred split' occurs to sub-divide the transform unit (TU) for each chroma 

channel, a syntax structure 9130 defines syntax elements present in the portion of the 

encoded bitstream 312. Typically, one data structure for luma and two data structures for 

chroma are present, although additional data structures are possible, such as for encoding 

an alpha channel or a depth map. Alternatively, fewer data structures may be utilised, such 

as in the case where a single data structure is shared by the chroma channels and coded 

block flag values are able to be shared between the chroma channels. A transform tree
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syntax structure 9102 defines the encoding of one hierarchical level of a transform tree, 

such as the transform tree 630.  

[00095] For an instance of the transform tree syntax structure 9102 at a non-leaf 

node of a transform tree, such as the transform tree 630, a split transform flag 9110 

encodes a split transform flag value of one, such as the split transform flag value 702. This 

value indicates that the instance of the transform tree syntax structure 9102 includes a 

lower hierarchical level, containing additional instances of the transform tree syntax 

structure 9102 or 'child nodes'. A coded block flag 9112 encodes a coded block flag value 

in accordance with the description of the coded block flag 912. A coded block flag 9114 

encodes a coded block flag value in accordance with the description of the coded block 

flag 914. As a lower hierarchical level exists in the transform tree 630 (relative to the top 

hierarchical level), a quad-tree sub-division takes place. This sub-division results in four 

transform tree syntax structures 9116, 9118, 9120, 9122 being included in the transform 

tree node syntax structure 9102. Each of the transform tree syntax structures 9116, 9118, 

9120, 9122 is another instance of the transform tree syntax structure 9102. A coded block 

flag 9124 and a luma transform unit portion 9126 will be absent from the transform tree 

syntax structure 9102.  

[00096] Implementations may also arrange the transform tree syntax structure 9102 

such that the coded block flag 9124 and the luma transform unit portion 9126 (if present) 

are placed earlier in the transform tree syntax structure 9102, such as in between the coded 

block flag 9114 and the transform tree syntax structure 9116.  

[00097] For an instance of the transform tree syntax structure 9102 at a leaf node of 

a transform tree, such as the transform tree 630, a split transform flag 9110 encodes a split 

transform flag value of zero, such as the split transform flag value 704. The instance of the 

transform tree syntax structure 9102 thus corresponds to a transform unit (TU) in the 

transform tree 930. The transform unit (TU) has a size determined in accordance with the 

coding unit (CU) containing the transform unit (CU), such as the coding unit (CU) 602, 

and the transform depth. The coded block flag 9112 encodes a coded block flag value of 

one to indicate that any of the chroma regions resulting from the inferred split for the 'U' 

chroma channel may have a coded block flag value of one. If the coded block flag 9112 

encodes a value of zero, then the coded block flag value for each chroma region resulting 

from the inferred split for the 'U' chroma channel have a coded block flag value inferred
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as zero. Even when the code block flag 9112 encodes a value of one, implementations 

may still encode a coded block flag having a value of zero for each chroma region 

resulting from the inferred split. Therefore, implementations may omit the coded block 

flag 9112 from the encoded bitstream 312, instead always inferred a coded block flag 

value of one for the omitted coded block flag 9112. The coded block flag 9114 encodes a 

further coded block flag value for the 'V' chroma channel in a similar manner to the coded 

block flag 9112. For transform unit (TU) sizes that accord with those for which an 

inferred split into four chroma regions occurs (a maximum number of chroma residual 

coefficient arrays is four), the four transform tree syntax structures 9116 9118 9120 9122 

are included in the transform tree node syntax structure 9102. For transform unit (TU) 

sizes that accord with those for which an inferred split into two chroma regions occurs (a 

maximum number of chroma residual coefficient arrays is two), two transform tree syntax 

structures, such as transform tree syntax structures 9116 9118 are included in the transform 

tree node syntax structure 9102. Each of the transform tree syntax structures 9116 9118 

9120 9122 is an instance of a transform tree for chroma syntax structure 9132. The coded 

block flag 9124 encodes a coded block flag value, such as the coded block flag value 708, 

specifying the presence of absence of a transform for the luma channel of the transform 

unit (TU). The luma portion of the transform unit 9126 encodes a luma residual 

coefficient array as luma residual syntax elements 9128.  

[00098] The transform tree for chroma syntax structure 9132, only existing for each 

chroma region when an inferred split takes place, includes a reduced set of the syntax of 

the transform tree syntax structure 930. A coded block flag 9142 encodes a coded block 

flag value for the 'U' chroma channel of the chroma region. A coded block flag 9144 

encodes a coded block flag value for the 'V' chroma channel of the chroma region. A 

chroma portion of the transform unit (TU) 9146, encodes a subset of the transform unit 

(TU) syntax structure 952. The chroma portion of the transform unit (TU) 9146 encodes a 

chroma residual coefficient array as chroma residual syntax elements 9150 for the 'U' 

chroma channel if the value of the coded block flag 9142 is one. The chroma portion of 

the transform unit (TU) 9146 encodes a chroma residual coefficient array as chroma 

residual syntax elements 9152 for the 'V' chroma channel if the value of the coded block 

flag 9144 is one.
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[00099] The syntax structure 9130 as illustrated in Fig. 9D shows the first and 

second coded block flag encoded adjacently followed by the first and second chroma 

residual coefficient array of each chroma channel for the inferred transform split. Other 

arrangements, such as encoding the coded block flag and the chroma residual coefficient 

array adjacently for each chroma channel may alternatively be used.  

[000100] Although the inferred transform split is illustrated with the 8x16 region 664 

split into two 8x8 regions, alternative implementations may perform the split for other 

regions. For example, some implementations may infer a split of a 16x32 region into two 

16x16 regions. Such implementations advantageously avoid the need for a 32-point 1D 

transform in the chroma processing path. Since the 32-point 1D transform is not required 

for the chroma processing path when the 4:2:0 chroma format is applied, the requirement 

for the 32-point 1D transform is entirely removed from the chroma processing path.  

Implementations that use separate processing circuitry to decouple the luma and chroma 

channels may thus achieve a lower implementation cost in the chroma processing circuitry.  

[000101] A 4:4:4 chroma format exists where there is one chroma sample location for 

each luma sample location. Accordingly, with this format, transforms for the chroma 

channel and the luma channel may have the same sizes. With a largest transform size of 

32x32 in the luma processing path, this would require introducing a 32x32 transform into 

the chroma processing path for a decoupled implementation. Specific implementations 

may infer a split for each chroma channel to split a 32x32 region into four 16x16 regions, 

enabling reuse of the existing 16x16 transform in the chroma processing path. Since a 

32x32 transform would only be used in the chroma processing path for the 4:4:4 chroma 

format, inferring a split for each chroma channel to split a 32x32 region into four 16x16 

regions would enable the 32x32 transform to be removed from the chroma processing 

path, reducing the processing circuitry required. Such implementations would require four 

coded block flag values for each chroma channel, and thus up to four coded block flags 

coded in the syntax structure 930 for each chroma channel in the encoded bitstream 312.  

[000102] Implementations supporting a 4:2:2 chroma format may also infer a split for 

each chroma channel to split a 32x16 region into four 8x16 regions. Such implementations 

require four coded block flag values for each chroma channel, and thus four coded block 

flags coded in the syntax structure 930 for each chroma channel in the encoded bitstream 

312, thus a 'CU3', 'CU4', 'CV3' and 'CV4' coded block flag (not illustrated in Fig. 9B)
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may be introduced in the transform unit (TU) syntax structure 952. Such implementations 

avoid introducing 32-point transform logic into the chroma processing path and, where 

8x16 regions are not sub-divided, may reuse 8x16 transform logic required for transform 

units (TUs) of size 16x16 (in the luma channel) that require transforming transform of size 

8x16 for the chroma channels.  

[000103] Fig. 10 is a schematic flow diagram showing a method 1000 for encoding a 

transform unit (TU) by encoding the transform tree non-leaf node syntax structure 902 and 

the transform tree leaf node syntax structure 932. The method 1000 is described with 

reference to a chroma channel of the transform unit (TU) however the method 1000 may 

be applied to any chroma channel of the transform unit (TU). As the transform tree non

leaf node syntax structure 902 and the transform tree leaf node syntax structure 932 

describe one node in the transform tree, the method 1000 encodes one node of the 

transform tree into the encoded bitstream 312. The method 1000 may be implemented in 

hardware or by software executable on the processor 205, for example. The method 1000 

is initially invoked for the top level of the transform tree and is capable of invoking itself 

(recursively) to encode child nodes of the transform tree. A determine transform unit size 

step 1002 determines the size of a transform unit (TU) in a transform tree according to the 

coding unit (CU) size that contains the transform tree and a transform depth value of the 

transform unit (TU). When the method 1000 is invoked at the top level of the transform 

tree, the transform depth value is set to zero, otherwise the transform depth value is 

provided by the parent instance of the method 1000. A split transform flag value, such as 

the split transform flag value 702 is encoded in the encoded bitstream 312 as split 

transform flag 910 if the transform depth value is less than the maximum allowed 

transform depth.  

[000104] When the split transform flag value is one, chroma coded block flags 912 

and 914 are encoded for each chroma channel only if the parent node of the transform tree 

hierarchy has a corresponding coded block flag value of one. The method 1000 then 

invokes a new instance of the method 1000 for each child node (represented in the portion 

of the encoded bitstream 312 by transform tree syntax structures 916, 918, 920 and 922) of 

the transform tree. Each instance of the method 1000, invoked for the child nodes, is 

provided with a transform depth value equal to the present method 1000 instance transform 

depth value incremented by one.
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[000105] When the split transform flag value is zero, an identify maximum number 

of forward transforms step 1004 determines a maximum number (n) of transforms for each 

chroma channel of the region being encoded. When no inferred split takes place, this 

number n will be one. When a 4:2:2 chroma format is in use and a rectangular region of a 

chroma channel, such as the 8x16 region 664, is encountered and the region size is one of a 

predetermined set of region sizes (such as 16x32 and 8x16), an inferred split takes place 

and the maximum number of transforms will be two (otherwise the number of transforms 

will be one). Otherwise (the region size is not one of a predetermined set of region sizes) 

the maximum number of transforms will be one. For example, if 4x8 is not one of the 

predetermined set of region sizes, then the maximum number of transforms will be one.  

When a 4:4:4 chroma format is in use and the encountered region size is one of a 

predetermined set of region sizes (such as a 32x32 region), an inferred split takes place and 

the maximum number of transforms will be four. Otherwise (the region size is not one of 

a predetermined set of region sizes) the maximum number will be one. For example, if 

8x8 is not one of the predetermined set of region sizes, then the maximum number of 

transforms will be one. Although the predetermined set of region sizes includes 8x16, 

other predetermined set of region sizes are possible, such as only 16x32 when a 4:2:2 

chroma format is in use or 32x32 when a 4:4:4 chroma format is in use.  

[000106] For each chroma channel, if the parent node had a coded block flag value of 

one, then for each of n, a coded block flag is encoded in the encoded bitstream 312. For 

example, when the number of transforms is equal to two, coded block flags 942 and 944 

indicate the presence of a transform for each of the two regions inferred by the split. A 

select forward transform step 1006 selects a forward transform from a predetermined set of 

forward transforms, for each of the maximum number of transforms, based on a transform 

unit (TU) size, which is in turn dependent on the transform depth, and thus related to a 

hierarchical level of the transform unit in the largest coding unit. When the transform 

depth is equal to zero, the transform unit (TU) size is equal to the coding unit (CU) size.  

For each increment of the transform depth, the transform unit (TU) size is halved. For a 

32x32 coding unit (CU) size, a transform depth of zero and using a 4:2:2 chroma format, 

the transform unit (TU) size will thus be 32x32 and the transform size for chroma will thus 

be 16x32. For example, when the maximum number of transforms is two and the region 

size for chroma is 16x32, then a 16x16 forward transform is selected for each of the 16x16 

regions for chroma resulting from the inferred split.
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[0100] An apply forward transform step 1008 performs the forward transform for 

each of the maximum number of transforms on the corresponding region that has a coded 

block flag value of one. The encode chroma residual sample arrays step 1008 is generally 

performed by the transform module 320. This results in a conversion of each chroma 

residual sample array (spatial domain representation) into a chroma residual coefficient 

array (frequency domain representation).  

[0101] An encode chroma residual coefficient arrays step 1010 encodes the chroma 

residual coefficient array for each of the maximum number of transform regions of each 

chroma channel having a coded block flag value of one into the encoded bitstream 312.  

The number of chroma residual coefficient arrays encoded for a given transform unit for a 

given chroma channel depends on the coded block flag value of each transform and will 

thus vary from zero to (at most) the maximum number of transforms. For example, when 

the number of transforms is two and both chroma channels have coded block flag values of 

one for each of the count values, then the chroma residual blocks 956, 958, 960 and 962 

are encoded in the encoded bitstream 312. If the coded block flag value for each transform 

for a given chroma channel is zero, then no chroma residual block is encoded in the 

encoded bitstream 312 for that chroma channel. The encode chroma residual coefficient 

arrays step 1010 is generally performed by the entropy encoder 324.  

[0102] Fig. 11 is a schematic flow diagram showing a method 1100 for decoding a 

transform unit (TU) by decoding the transform tree non-leaf node syntax structure 902 and 

the transform tree leaf node syntax structure 932. The method 1100 is described with 

reference to a chroma channel of the transform unit (TU) however the method 1100 may 

be applied to any chroma channel of the transform unit (TU). As the transform tree non

leaf node syntax structure 902 and the transform tree leaf node syntax structure 932 

describe one node in the transform tree, the method 1100 decodes one node of the 

transform tree from the encoded bitstream 312. The method 1100 may be performed in 

appropriate hardware or alternatively in software, for example executable by the processor 

205. The method 1100 is initially invoked for the top level of the transform tree and is 

capable of invoking itself (recursively) to decode child nodes of the transform tree. A 

determine transform unit (TU) size step 1102 determines a transform unit (TU) size in a 

manner identical to the determine transform unit size step 1002. The determine transform 

unit size step 1102 determines the size of a transform unit (TU) in a transform tree
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according to the coding unit (CU) size that contains the transform tree and a transform 

depth value of the transform unit (TU). When the method 1100 is invoked at the top level 

of the transform tree, the transform depth value is set to zero, otherwise the transform 

depth value is provided by the parent instance of the method 1100. A split transform flag 

value, such as the split transform flag value 702 is decoded from the encoded bitstream 

312 as split transform flag 910 if the transform depth value is less than the maximum 

allowed transform depth.  

[0103] When the split transform flag value is one, chroma coded block flags 912 

and 914 are decoded for each chroma channel only if the parent node of the transform tree 

hierarchy has a corresponding coded block flag value of one. The method 1100 then 

invokes a new instance of the method 1100 for each child node (represented in the portion 

of the encoded bitstream 312 by transform tree syntax structures 916, 918, 920 and 922) of 

the transform tree. Each instance of the method 1100, invoked for the child nodes, is 

provided with a transform depth value equal to the present method 1100 instance transform 

depth value incremented by one.  

[0104] When the split transform flag value is zero, an identify maximum number 

of inverse transforms step 1104 determines a (maximum) number (n) of transforms for 

each of the at least one chroma residual coefficient arrays present in each chroma channel 

of the region being decoded, in a manner identical to the identify maximum number (n) of 

forward transforms step 1004. When no inferred split takes place, this number n will be 

one. When a 4:2:2 chroma format is in use and a rectangular region of a chroma channel, 

such as the 8x16 region 664, is encountered and the region size is one of a predetermined 

set of region sizes (such as 16x32 and 8x16), an inferred split takes place and the 

maximum number of transforms will be two (otherwise the number of transforms will be 

one). Otherwise (the region size is not one of a predetermined set of region sizes) the 

maximum number of transforms will be one. For example, if 4x8 is not one of the 

predetermined set of region sizes, then the maximum number of transforms will be one.  

When a 4:4:4 chroma format is in use and the encountered region size is one of a 

predetermined set of region sizes (such as a 32x32 region), an inferred split takes place and 

the maximum number of transforms will be four. Otherwise (the region size is not one of a 

predetermined set of region sizes) the maximum number will be one. For example, if 8x8 

is not one of the predetermined set of region sizes, then the maximum number of
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transforms will be one. Although the predetermined set of region sizes includes 8x16, 

other predetermined set of region sizes are possible, such as only 16x32 when a 4:2:2 

chroma format is in use or 32x32 when a 4:4:4 chroma format is in use. For each chroma 

channel, if the parent node had a coded block flag value of one, then for each of the (n) 

transforms, a coded block flag is decoded in the encoded bitstream 312. For example, 

when the maximum number of transforms is equal to two, coded block flags 942 and 944 

indicate the presence of a transform for each of the two regions inferred by the split.  

[0105] A decode chroma residual coefficient arrays step 1106 then decodes the 

residual coefficient array for each of the maximum number of transforms regions of each 

chroma channel from the encoded bitstream 312 having a coded block flag value of one.  

The number of residual coefficient arrays decoded for a given transform unit for a given 

chroma channel depends on the coded block flag value of each transform and will thus 

vary from zero to (at most) the 'number (n) of transforms'. For example, when the number 

of transforms is two and both chroma channels have coded block flags of one for each of 

the count values, then the chroma residual blocks 956, 958, 960 and 962 are decoded from 

the encoded bitstream 312. The decode chroma residual coefficient arrays step 1106 is 

generally performed by the entropy decoder 420 for each chroma residual coefficient array 

having a coded block flag value of one.  

[0106] A select inverse transform step 1108 then selects an inverse transform from 

a predetermined set of inverse transforms, for each of the maximum number of transforms 

having a coded block flag value of one for each chroma channel. For example, when the 

maximum number of transforms is two and the region size is 16x32 and the coded block 

flag value for each of the two transforms is one, then a 16x16 inverse transform is selected 

for each of the 16x16 regions resulting from the inferred split.  

[0107] An apply inverse transform step 1110 then performs the inverse transform 

for each of the maximum number of transforms regions on the corresponding region 

having a coded block flag value of one. This results in a conversion of each chroma 

residual coefficient array (frequency domain representation) into a chroma residual sample 

array (spatial domain representation) representative of the decoded video frame. The 

apply inverse transform step 1110 is generally performed by the inverse scale and 

transform module 422.
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[0108] Fig. 12A shows a diagonal scan pattern 1201, Fig. 12B shows a horizontal 

scan pattern 1202, and Fig. 12C shows a vertical scan pattern 1203, each for a 4x8 

transform unit 1200. Those implementations that scan the 4x8 transform unit 1200 using 

the illustrated scan patterns have the property that the residual coefficients are grouped in 

4x4 blocks, known as 'sub-blocks'. A 'coefficient group' flag present in the encoded 

bitstream 312 may therefore be used to indicate, for each sub-block, the presence of at 

least one significant (non-zero) residual coefficient. Applying a 4x4 sub-block size for the 

4x8 transform achieves consistency with the scan pattern present in other transform sizes, 

where coefficients are always grouped into sub-blocks.  

[0109] Particular implementations may apply a coefficient group flag to signal the 

presence of at least one non-zero residual coefficient in each sub-block. Advantageously, 

these scan patterns permit re-use of control software or digital circuitry that processes 

residual coefficients, by reusing the sub-block processing for all transform sizes. The 

particular scan pattern used may be selected according to criteria such as the intra

prediction direction of the collocated prediction unit (PU). Where a transform encodes 

chroma samples on a 4:2:2 chroma format sample grid, the relationship between the intra

prediction direction and the scan pattern is altered because each chroma sample maps to a 

non-square (2x1) array of luma samples, affecting the 'direction' or angle of the intra

prediction mode. Scanning is shown in a 'backward' direction, ending at the DC 

coefficient, located in the top-left corner of the transform unit (TU). Further, scanning is 

not required to start at the lower-right corner of the transform unit (TU). Due to the 

predominance of nonzero residual coefficients in the upper left region of the transform unit 

(TU), scanning may begin from a 'last significant coefficient position' and progress in a 

backward direction until the upper left coefficient is reached.  

[0110] Other implementations may apply a single scan to a given region to encode 

residual coefficients and then apply more than one transform to these residual coefficients.  

In this case only one coded block flag is used for the region and therefore for all 

transforms covered by the scan pattern. The coded block flag is set to one if at least one 

significant residual coefficient exists in any of the scans. For example, the 4x8 scan 

patterns of Figs. 12A -12C may be applied to encode residual coefficients of two 4x4 

transforms. The two 4x4 arrays of residual coefficients may be concatenated to form a 4x8 

array suitable for the scan pattern. As a single scan is performed over the array, a single
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'last significant coefficient' position is encoded in the bitstream for the scan pattern and a 

single coded block flag value is sufficient for the array. The energy compaction property 

of the modified discrete cosine transform (DCT) gives advantage to other schemes, such as 

interleaving the coefficients of each square transform along the path of the scan pattern 

into the rectangular coefficient array. This gives the advantage the density of residual 

coefficient values in each 4x4 residual coefficient array is approximately equalised in the 

combined 4x8 array, allowing higher compression efficiency to be created by the entropy 

encoder 324, for subsequent decoding by the entropy decoder 420.  

[0111] Certain implementations encoding chroma colour channels may use a first 

transform to encode residual samples at chroma sample locations corresponding to a 4:2:0 

chroma sample grid and a second transform to encode residual samples at the additional 

chroma sample locations introduced in the 4:2:2 chroma sample grid, relative to the 4:2:0 

chroma sample grid. Such implementations may advantageously use a simplified 

transform for the second transform, such as a Hadamard transform with the output of the 

second transform being added (or otherwise combined) to the residual samples for the first 

transform to produce the residual samples for the second transform. Advantageously a 

preprocessing stage implementing a transform such as a Haar transform may be used to 

sample the chroma sample grid for a 4:2:2 chroma format into the chroma sample grid for 

a 4:2:0 chroma format. Such configurations must transmit additional residual coefficients 

from the preprocessing stage as side-information, such a residual applied to each largest 

coding unit (LCU) in the case that the preprocessing transform is applied at the largest 

coding unit (LCU) level.  

[0112] Implementations having multiple transforms for a given region may use 

either a single combined scan covering the entire region, or a separate scan for each 

transform. If the scanning for the multiple transforms is combined into a single scan, then 

only one coded block flag is required for each region being scanned. Those 

implementations using a single combined scan may achieve higher compression of the 

residual coefficients by interleaving the residual coefficients of each transform, such as 

interleaving on a coefficient-by-coefficient basis, in order to collocate residual coefficients 

from each transform having similar spectral properties.  

[0113] Appendix A illustrates possible 'text' for the high efficiency video coding 

(HEVC) standard under development that is relevant to the syntax structure 900 and the
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syntax structure 930. Each instance of a transformtreeO function in appendix A is 

depicted as a portion of the syntax structure labelled 'TT' in Figs. 9A and 9C and each 

instance of a transformunit() function in appendix A is depicted as a portion of the syntax 

structure labelled 'TU' in Figs. 9A and 9B. The text provided in Appendix A is one 

example of text that accords with the syntax structures 900 and 930 and other examples are 

possible. Text that accords with the syntax structures 900 and 930 implies that the video 

encoder 114 performs the method 1000 to encode a bitstream and the video decoder 134 

performs the method 1100 to decode the bitstream.  

[0114] Appendix B illustrates possible text for the high efficiency video coding 

(HEVC) standard under development that is relevant to the syntax structure 9100 and the 

syntax structure 9130. Each instance of a transformjtree() function in appendix B is 

depicted as a portion of the syntax structure labelled 'TT' in Figs. 9C and 9D and each 

instance of a transformunit() function in appendix A is depicted as a portion of the syntax 

structure labelled 'TU' in Figs. 9C and 9D. The text provided in Appendix B is one 

example of text that accords with the syntax structures 9100 and 9130 and other examples 

are possible. Text that accords with the syntax structures 9100 and 9130 also implies that 

the video encoder 114 performs the method 1000 to encode a bitstream and the video 

decoder 134 performs the method 1100 to decode the bitstream.  

[0115] The text in Appendix A and Appendix B result in an implementation 

whereby the 32x32 chroma region encountered in a transform unit (TU) of size 32x32 

configured for the 4:4:4 chroma format results in (a maximum number of )four 16x16 

chroma transforms being applied, and the 16x32 chroma region encountered in a transform 

unit (TU) of size 32x32 configured for the 4:2:2 chroma format results in (a maximum 

number of) two 16x16 chroma transforms being applied. The implementation resulting 

from the text in Appendix A and Appendix B, when applied to transform units (TUs) of 

smaller size and configured for the 4:2:2 chroma format, (a maximum of) one chroma 

transforms is applied. For example, an 8x16 transform is applied to an 8x16 chroma 

region and a 4x8 transform is applied to a 4x8 chroma region.  

INDUSTRIAL APPLICABILITY
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[0116] The arrangements described are applicable to the computer and data 

processing industries and particularly for the digital signal processing for the encoding a 

decoding of signals such as video signals.  

[0117] The foregoing describes only some embodiments of the present invention, 

and modifications and/or changes can be made thereto without departing from the scope 

and spirit of the invention, the embodiments being illustrative and not restrictive.  

[0118] (Australia only) In the context of this specification, the word "comprising" 

means "including principally but not necessarily solely" or "having" or "including", and 

not "consisting only of'. Variations of the word "comprising", such as "comprise" and 

"comprises" have correspondingly varied meanings.
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APPENDIX A 

TRANSFORMTREE() AND TRANSFORMUNIT() IMPLEMENT THE 

INFERRED CHROMA SPLIT USING A LOOP CONSTRUCT 

7.3.11 Transform tree syntax 

transform-tree( xO, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) { Descriptor 

if( log2TrafoSize <= Log2MaxTrafoSize && 
log2TrafoSize > Log2MinTrafoSize && 
trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && trafoDepth == 0)) 
split-transform_flag [ xO ] [ yO ] [ trafoDepth] ae(v) 

if( trafoDepth == 0 || log2TrafoSize > 2) { 
if( trafoDepth = = 0 || cbfcb[ xBase ][ yBase ][ trafoDepth - 1]) { 

for( tldx = 0; tldx < TrafoCrCbCnt; tldx++ ) { 
cbf_cb[ xO + ( (1 << log2CrCbTrafoHorSize) * (tldx mod ae(v) 

TrafoCrCbHorCnt) ][ yO + ( 1 << log2CrCbTrafoVertSize) * (tldx div 
TrafoCrCbVertCnt)) ][ trafoDepth + (TrafoCrCbCnt > 1)] 

} 
cbf cb[ xO yO ][ trafoDepth ] 1= (TrafoCrCbCnt > 1) 

I 
if( trafoDepth = = 0 || cbfcr[ xBase ][ yBase ][ trafoDepth - 1]) { 

for( tldx = 0; tldx < TrafoCrCbCnt; tldx++ ) { 
cbfcr[ xO + ( (1 << log2CrCbTrafoHorSize) * (tldx mod ae(v) 

TrafoCrCbHorCnt) ][ yO + ( 1 << log2CrCbTrafoVertSize) * (tldx div 
TrafoCrCbVertCnt)) ][ trafoDepth + (TrafoCrCbCnt > 1)] 

I 
cbf cr[ xO yO ][ trafoDepth ] 1= (TrafoCrCbCnt > 1) 

} 
} 
if( splitjtransform flag[ xO yO ] trafoDepth]) { 

x1 = xO + ( (1 << log2TrafoSize ) >> 1 ) 

y1 = yO + ( (1 << log2TrafoSize ) >> 1 ) 

transformtree( xO, yO, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 0) 

transform-tree( xl, yO, xO, yO, log2TrafoSize - 1 trafoDepth + 1, 1) 

transform-tree( xO, yl, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 2) 

transform-tree( xl, yl, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 3) 

} else { 
if( PredMode[ xO ][ yO ] == MODEINTRA II trafoDepth 0 || 

cbfcb[ xO yO ][ trafoDepth] II cbf cr[ xO ][ yO ][ trafoDepth]) 
cbf luma[ xO ][ yO ][ trafoDepth] ae(v) 

transform-unit (x0, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) 

} 
}



- 45 

7.3.12 Transform unit syntax 

transform-unit( x0, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) { Descriptor 

if( cbfjluma[ x ][ yO ][ trafoDepth] II cbf-cb[ xA ][ yO ][ trafoDepth] II 
cbf cr[ x ] [ yO ] [ trafoDepth ] ) { 
if( cu-qp-deltaenabled-flag && !IsCuQpDeltaCoded) { 

cu-qpdeltaabs ae(v) 

if( cu-qp-delta-abs) 

cu qpdeltasign ae(v) 

} 
if( cbfjluma[ x ][ yO ][ trafoDepth]) 

residual-coding( x0, yO, log2TrafoSize, 0) 

if( log2TrafoSize > 2 ) { 
if( cbf-cb[ x0 ] [ yO ] [ trafoDepth]) 

for ( tldx = 0; tldx < TrafoCrCbCnt; tldx++) { 
residualcoding( x + ( (1 << log2CrCbTrafoHorSize) * (tldx mod 

TrafoCrCbHorCnt), yO + ( 1 << log2CrCbTrafoVertSize) * (tldx div 
TrafoCrCbVertCnt) ), log2TrafoSize, 1) 

I 
if( cbfcr[ x ][ yO ][ trafoDepth] ) 

for ( tldx = 0; tldx < TrafoCrCbCnt; tldx++) { 
residualcoding( x0 + ( (1 << log2CrCbTrafoHorSize) * (tldx mod 

TrafoCrCbHorCnt), yO + ( 1 << log2CrCbTrafoVertSize) * (tldx div 
TrafoCrCbVertCnt) ), log2TrafoSize, 2) 

I 
I else if( blkldx = = 3) { 

if( cbfcb[ xBase ][ yBase ][ trafoDepth]) 

residualcoding( xBase, yBase, log2TrafoSize, 1 ) 

if( cbf-cr[ xBase ][ yBase ][ trafoDepth ] ) 

residualcoding( xBase, yBase, log2TrafoSize, 2 ) 

} 
} 

}
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7.4.8.1 General coding unit semantics 

The variables TrafoCrCbHorCnt and TrafoCrCbVertCnt are derived as follows: 

- If log2TrafoSize is equal to 5 and splitjtransform flag is equal to 0, 

TransformldxMax is derived as follows: 

- If chromaformat-ide is equal to 1, TrafoCrCbHorCnt and 

TrafoCrCbVertCnt are equal to 1.  

- If chromaformat-ide is equal to 2, TrafoCrCbHorCnt is equal to 1 and 

TrafoCrCbVertCnt is equal to 2.  

- Otherwise, if chromaformatide is equal to 3, TrafoCrCbHorCnt and 

TrafoCrCbVertCnt are equal to 2.  

- Otherwise, TrafoCrCbHorCnt and TrafoCrCbVertCnt are equal to 1.  

The variable TrafoCrCbCnt is derived as TrafoCrCbHorCnt * TrafoCrCbVertCnt.  

The variables log2CrCbTrafoHorSize and log2CrCbTrafoVertSize are derived as follows: 

- If chromaformatide is equal to 1, log2CrCbTrafoHorSize and 

log2CrCbTrafoVertSize are equal to log2TrafoSize - 1.  

- Otherwise, if chromaformatide is equal to 2, log2CrCbTrafoHorSize is equal 

to log2TrafoSize and log2CrCbTrafoVertSize is equal to min(log2TrafoSize - 1, 4).  

- Otherwise, if chromaformatide is equal to 3, log2CrCbTrafoHorSize and 

log2CrCbTrafoVertSize are equal to min(log2TrafoSize, 4).  

End Appendix A
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APPENDIX B 

INVOKE TRANSFORMTREE() ONCE PER PAIR OF CHROMA CHANNELS 

FOR EACH CHROMA TRANSFORM RESULTING FROM THE INFERRED 

SPLIT.  

7.3.11 Transform tree syntax 

transformtree( xO, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx, Descriptor 
chromaOnly ) { 

if( log2TrafoSize <= Log2MaxTrafoSize && 
log2TrafoSize > Log2MinTrafoSize && 
trafoDepth < MaxTrafoDepth && !(IntraSplitFlag && trafoDepth == 0) 
&& !chromaOnly) 
split-transform_flag [ xO yO ] trafoDepth] ae(v) 

if( trafoDepth = = 0 || log2TrafoSize > 2) { 
if( trafoDepth = = 0 || cbfcb[ xBase ][ yBase ][ trafoDepth - 1]) 

if( TrafoCrCbCnt > 1 ) { 
cbf_cb[ x0 ][ yO ][ trafoDepth ] = 1 

} else { 
cbf_cb[ x0 ][ yO ][ trafoDepth ] ae(v) 

} 
if( trafoDepth = = 0 || cbfcr[ xBase ][ yBase ][ trafoDepth - 1]) 

if( TrafoCrCbCnt > 1 ) { 
cbfcr[ x0 ][ yO ][ trafoDepth] = 1 

} else { 
cbfcr[ x0 ][ yO ] trafoDepth] ae(v) 

if( splitjtransform flag[ x0 ][ yO ][ trafoDepth ] II TrafoCrCbCnt > 1)1 
x1 = x0 + ( (1 << log2TrafoSize ) >> 1 ) 

y1 = yO + ( (1 << log2TrafoSize ) >> 1 ) 

transformtree( x0, yO, xO, yO, log2TrafoSize - 1, trafoDepth + 1, 0, 
TrafoCrCbCnt > 1 ) 

if( chromaformatidc 2) { 
transform tree( xl, yO, x0, yO, log2TrafoSize - 1 trafoDepth + 1, 1, 

TrafoCrCbCnt > 1) 

I 
transform tree( x0, yl, x0, yO, log2TrafoSize - 1, trafoDepth + 1, 2, 

TrafoCrCbCnt > 1 ) 
if( chroma formatidc 2) { 

transform tree( x1, yl, x0, yO, log2TrafoSize - 1, trafoDepth + 1, 3, 
TrafoCrCbCnt > 1) 

I
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} 
else-if( !split-transformjflag[ xO ][ yO ][ trafoDepth ] && TrafoCrCbCnt > 1)1 

if( ( PredMode[ xO ][ yO ] = = MODEINTRA II trafoDepth != 0 || 
cbf_cb[ xO ][ yO ][ trafoDepth] II cbf-cr[ xO ][ yO ][ trafoDepth] ) && 

!chromaOnly) 
cbfluma[ x[ ][ yO ][ trafoDepth] ae(v) 

transform unit (xO, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx, 
chromaOnly) 

} 
} 

7.3.12 Transform unit syntax 

transform_unit( x0, yO, xBase, yBase, log2TrafoSize, trafoDepth, blkldx, Descriptor 
chromaOnly ) { 

if( cbfjluma[ x ][ yO ][ trafoDepth] II cbfscb[ x[ ][ yO ][ trafoDepth ] II 
cbf cr[ x ] [ yO ] [ trafoDepth ] ) { 
if( cu-qp-deltaenabledflag && !IsCuQpDeltaCoded && !chromaOnly) { 

cu-qpdeltaabs ae(v) 

if( cu-qpjdelta-abs) 

cu-qp-delta-sign ae(v) 

} 
if( cbfjluma[ xO ][ yO ][ trafoDepth]) 

residual-coding( xO, yO, log2TrafoSize, 0) 
if( log2TrafoSize > 2 ) { 

if( cbfcb [ xO ] [ yO ] [ trafoDepth]) 

residualcoding( xO, yO, log2TrafoSize, 1) 

if( cbfcr[ xO ][ yO ][ trafoDepth ] ) 

residualcoding( xO, , log2TrafoSize, 2) 

} else if( blkldx = = 3 ) { 
if( cbfcb [ xBase ][ yBase ][ trafoDepth]) 

residualcoding( xBase, yBase, log2TrafoSize, 1 ) 

if( cbfcr[ xBase ][ yBase ][ trafoDepth ] ) 

residualcoding( xBase, yBase, log2TrafoSize, 2 ) 

} 
} 

}
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7.4.8.1 General coding unit semantics 

The variables TrafoCrCbHorCnt and TrafoCrCbVertCnt are derived as follows: 

- If log2TrafoSize is equal to 5 and split transform-flag is equal to 0, 

TransfonnldxMax is derived as follows: 

- If chromafonnatide is equal to 1, TrafoCrCbHorCnt and TrafoCrCbVertCnt 

are equal to 1.  

- If chromafonnatide is equal to 2, TrafoCrCbHorCnt is equal to 1 and 

TrafoCrCbVertCnt is equal to 2.  

- Otherwise, if chromaformatide is equal to 3, TrafoCrCbHorCnt and 

TrafoCrCbVertCnt are equal to 2.  

- Otherwise, TrafoCrCbHorCnt and TrafoCrCbVertCnt are equal to 1.  

The variable TrafoCrCbCnt is derived as TrafoCrCbHorCnt * TrafoCrCbVertCnt.  

End of Appendix B
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CLAIMS: 

1. A method of decoding a transform unit containing chroma residual samples from a 

video bitstream, the transform unit containing at least one chroma residual coefficient array 

associated with a single chroma channel in a 4:2:2 chroma format, the method comprising: 

decoding two of coded block flag values from the video bitstream for a single chroma 

channel of the transform unit, wherein the transform unit has a plurality of chroma residual 

coefficient arrays for a single colour channel and each coded block flag value of the two of 

coded block flag values corresponds to one chroma residual coefficient array of the chroma 

residual coefficient arrays; 

decoding from the video bitstream each of a plurality of chroma residual coefficient 

arrays according to a corresponding coded block flag value of the two of coded block flag 

values; 

selecting a square inverse transform for the decoded chroma residual coefficient arrays, 

the square inverse transform being selected from a predetermined set of square inverse 

transforms according to a chroma transform size of the transform unit; and 

applying the selected square inverse transform to each of the decoded chroma residual 

coefficient arrays to produce the chroma residual samples for the chroma channel of the 

transform unit.  

2. A method according to claim 1 wherein a coded block flag value indicates all residual 

coefficients of the corresponding residual coefficient array are zero or at least one residual 

coefficient of the corresponding residual coefficient array is nonzero.  

3. A method according to claim 1 wherein the chroma transform size is one of 32x32, 

16x16, 8x8 or 4x4.
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4. A method of encoding a transform unit containing chroma residual samples to a video 

bitstream, the transform unit containing at least one chroma residual coefficient array associated 

with a single chroma channel in a 4:2:2 chroma format, the method comprising: 

encoding two of coded block flag values to the video bitstream for a single chroma 

channel of the transform unit, wherein the transform unit has a plurality of chroma residual 

coefficient arrays for a single colour channel and each coded block flag value of the two of 

coded block flag values corresponds to one chroma residual coefficient array of the chroma 

residual coefficient arrays; 

selecting a square forward transform for the chroma residual coefficient arrays, the 

square forward transform being selected from a predetermined set of square forward transforms 

according to a chroma transform size of the transform unit; 

applying the selected square forward transform to each of the decoded chroma residual 

coefficient arrays to produce the chroma residual samples for the chroma channel of the 

transform unit; and 

encoding to the video bitstream each of the plurality of chroma residual coefficient 

arrays according to a corresponding coded block flag value of the two of coded block flag 

values.  

5. A method according to claim 4 wherein a coded block flag value indicates all residual 

coefficients of the corresponding residual coefficient array are zero or at least one residual 

coefficient of the corresponding residual coefficient array is nonzero.  

6. A method according to claim 4 wherein the chroma transform size is one of 32x32, 

16x16, 8x8 or 4x4.  

7. A video decoder for decoding a transform unit containing chroma residual samples from
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a video bitstream, the transform unit containing at least one chroma residual coefficient array 

associated with a single chroma channel in a 4:2:2 chroma format, the method comprising: 

a first decoder to decode two of coded block flag values from the video bitstream for a 

single chroma channel of the transform unit, wherein the transform unit has a plurality of chroma 

residual coefficient arrays for a single colour channel and each coded block flag value of the two 

of coded block flag values corresponds to one chroma residual coefficient array of the chroma 

residual coefficient arrays; 

a second decoder to decode from the video bitstream each of a plurality of chroma 

residual coefficient arrays according to a corresponding coded block flag value of the two of 

coded block flag values; 

a selector to select a square inverse transform for the decoded chroma residual 

coefficient arrays, the square inverse transform being selected from a predetermined set of 

square inverse transforms according to a chroma transform size of the transform unit; and 

an applicator to apply the selected square inverse transform to each of the decoded 

chroma residual coefficient arrays to produce the chroma residual samples for the chroma 

channel of the transform unit.  

8. A video decoder according to claim 7 wherein a coded block flag value indicates all 

residual coefficients of the corresponding residual coefficient array are zero or at least one 

residual coefficient of the corresponding residual coefficient array is nonzero.  

9. A video decoder according to claim 7 wherein the chroma transform size is one of 

32x32, 16x16, 8x8 or 4x4.  

10. A video encoder for encoding a transform unit containing chroma residual samples to a 

video bitstream, the transform unit containing at least one chroma residual coefficient array
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associated with a single chroma channel in a 4:2:2 chroma format, the method comprising: 

a first encoder for encoding two of coded block flag values to the video bitstream for a 

single chroma channel of the transform unit, wherein the transform unit has a plurality of chroma 

residual coefficient arrays for a single colour channel and each coded block flag value of the two 

of coded block flag values corresponds to one chroma residual coefficient array of the chroma 

residual coefficient arrays; 

a selector for selecting a square forward transform for the chroma residual coefficient 

arrays, the square forward transform being selected from a predetermined set of square forward 

transforms according to a chroma transform size of the transform unit; 

an applicator for applying the selected square forward transform to each of the decoded 

chroma residual coefficient arrays to produce the chroma residual samples for the chroma 

channel of the transform unit; and 

a second encoder for encoding to the video bitstream each of the plurality of chroma 

residual coefficient arrays according to a corresponding coded block flag value of the two of 

coded block flag values.  

11. A video encoder according to claim 10 wherein a coded block flag value indicates all 

residual coefficients of the corresponding residual coefficient array are zero or at least one 

residual coefficient of the corresponding residual coefficient array is nonzero.  

12. A video encoder according to claim 10 wherein the chroma transform size is one of 

32x32, 16x16, 8x8 or 4x4.  

13. A computer readable storage medium having a program recorded thereon, the program 

being executable by a processor to decode a transform unit containing chroma residual samples 

from a video bitstream, the transform unit containing at least one chroma residual coefficient
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array associated with a single chroma channel in a 4:2:2 chroma format, the program comprising: 

code for decoding two of coded block flag values from the video bitstream for a single 

chroma channel of the transform unit, wherein the transform unit has a plurality of chroma 

residual coefficient arrays for a single colour channel and each coded block flag value of the two 

of coded block flag values corresponds to one chroma residual coefficient array of the chroma 

residual coefficient arrays; 

code for decoding from the video bitstream each of a plurality of chroma residual 

coefficient arrays according to a corresponding coded block flag value of the two of coded block 

flag values; 

code for selecting a square inverse transform for the decoded chroma residual 

coefficient arrays, the square inverse transform being selected from a predetermined set of 

square inverse transforms according to a chroma transform size of the transform unit; and 

code for applying the selected square inverse transform to each of the decoded chroma 

residual coefficient arrays to produce the chroma residual samples for the chroma channel of the 

transform unit.  

14. A computer readable storage medium according to claim 13 wherein a coded block flag 

value indicates all residual coefficients of the corresponding residual coefficient array are zero or 

at least one residual coefficient of the corresponding residual coefficient array is nonzero.  

15. A computer readable storage medium according to claim 13 wherein the chroma 

transform size is one of 32x32, 16x16, 8x8 or 4x4.  

16. A computer readable storage medium having a program recorded thereon, the program 

being executable by a processor to encode a transform unit containing chroma residual samples 

to a video bitstream, the transform unit containing at least one chroma residual coefficient array
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associated with a single chroma channel in a 4:2:2 chroma format, the method comprising: 

code for encoding two of coded block flag values to the video bitstream for a single 

chroma channel of the transform unit, wherein the transform unit has a plurality of chroma 

residual coefficient arrays for a single colour channel and each coded block flag value of the two 

of coded block flag values corresponds to one chroma residual coefficient array of the chroma 

residual coefficient arrays; 

code for selecting a square forward transform for the chroma residual coefficient arrays, 

the square forward transform being selected from a predetermined set of square forward 

transforms according to a chroma transform size of the transform unit; 

code for applying the selected square forward transform to each of the decoded chroma 

residual coefficient arrays to produce the chroma residual samples for the chroma channel of the 

transform unit; and 

code for encoding to the video bitstream each of the plurality of chroma residual 

coefficient arrays according to a corresponding coded block flag value of the two of coded block 

flag values.  

17. A computer readable storage medium according to claim 15 wherein a coded block flag 

value indicates all residual coefficients of the corresponding residual coefficient array are zero or 

at least one residual coefficient of the corresponding residual coefficient array is nonzero.  

18. A computer readable storage medium according to claim 15 wherein the chroma 

transform size is one of 32x32, 16x16, 8x8 or 4x4.  
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