
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2010202012 B2

(54) Title
Associative memory

(51) International Patent Classification(s)
G06F 17/30 (2006.01)

(21) Application No: 2010202012 (22) Date of Filing: 2010.05.18

(43) Publication Date: 2010.06.10
(43) Publication Journal Date: 2010.06.10
(44) Accepted Journal Date: 2013.02.28

(62) Divisional of:
2007221879

(71) Applicant(s)
BDGB Enterprise Software Sari

(72) Inventor(s)
Lapir, Gannady;Urbschat, Harry

(74) Agent / Attorney
Freehills Patent Attorneys, Level 43 101 Collins Street, Melbourne, VIC, 3000

(56) Related Art
WO 1998/047081 A
US 5778362 A



005038323
20

10
20

20
12

 
18

 M
ay

 2
01

0

Abstract

Associative Memory

A computer-implemented method of realizing an associative memory capable of 

storing a set of documents and retrieving one or more stored documents similar to an 

■ inputted query document, said method comprising: coding each document or a part of it 

through a corresponding feature vector consisting of a series of bits which respectively 

code for the presence or absence of certain features in said document; arranging the 

feature vectors in a matrix; generating a query feature vector based on the query 

document and according to the rules used for generating the feature vectors 

ι corresponding to the stored documents such that the query vector corresponds in its 

length to the width of the matrix; storing the matrix column-wise; for those columns of 

the matrix where the query vector indicates the presence of a feature, bitwise 

performing one or more of preferably hardware supported logical operations between 

the columns of the matrix to obtain one or more additional result columns coding for a 

i similarity measure between the query and parts or the whole of the stored documents; 

and said method further comprising one or a combination of the following: retrieval of 

one or more stores documents based on the obtained similarity measure; and or storing 

a representation of a document through its feature vector into the above matrix.



20
10

20
20

12
 

18
 M

ay
 2

01
0

P/00/011 
Regulation 3.2

Australia

Patents Act 1990

COMPLETE SPECIFICATION 
STANDARD PATENT

Invention Title: Associative memory

The following statement is a full description of this invention, including the best 
method of performing it known to us:



1000098132

20
10

20
20

12
 

07
 F

eb
 2

01
3

1A

ASSOCIATIVE MEMORY

FIELD OF THE INVENTION

The present invention relates to an associative memory, and in particular to a computer- 

implemented associative memory and a method of implementing an associative memory on a

5 computer.

DESCRIPTION OF THE RELATED ART

Learning is the ability of an organism or artificial system to acquire and store (memorize) 

environmental information whose content cannot not be predefined through genetic or 

deterministic rules. This definition shows that learning is closely related to storing and retrieving

I0 information.

Living beings MUST have good developed mechanisms for this task: indeed, biological 

entities like the human brain and immune system are the best known examples proving the 

existence of efficient "algorithms".

Many biologists consider the question of memory as the brain's "Rosetta Stone": a well 

15 defined riddle, which when answered opens the way to understanding other cognitive functions 

as well. Although modern experimental techniques like NMR (nuclear magnetic resonance) 

allow a direct imaging of brain activity, it is almost sure that the human memory is not strongly 

localized. The idea that when I recognize my grandmother a certain neuron in my brain 

becomes active - the so-called "grandmother neuron" hypothesis - has been given up long time

20 ago.

When asked when I met Mr. XYZ for the first time one can give a correct answer in a few 

hundred milliseconds time, while "searching" through millions of similar and billions of different 

memory traces. And all this is done with the help of very (many millions of) sluggish cells, whose 

typical response time is well above 1 millisec

25



20
10

20
20

12
 

18
 M

ay
 2

01
0

2

What is the secret of this fantastic database? Of course, we do not know 

it yet but certain features have been unmistakably already been identified.

These can be summed together as a set of requirements such a memory 

device should have:

5 - The data is stored in a distributed fashion: a text string would be

stored as a certain configuration of features (set bits) which, 

however, are distributed more or less randomly over the whole 

system.

jo Therefore, even if some part of the system is destroyed (the brain is
slightly injured), an imperfect Image of the original can be still 

retrieved (the system is said to be fault tolerant).

- The data is recovered solely based on its content, not on its address

is (remember, the system does not have addresses at alii).

- The data is strongly related to other such patterns through 

associations.

20 - The writing, association, and reading mechanisms are parallel,

independent processes.

An associative memory would desirably fulfill all these conditions: it is 

parallel distributed, content addressable, and robust (failure tolerant).

25
Some existing models of associative memories are now briefly described 

in the following.

The basic approach of the so-called Kohonen network is that the

30 neurons perform automatically a kind of clustering of the input features and reduce 

at same time the dimensionality ofthe input.



20
10

20
20

12
 

18
 M

ay
 2

01
0

3

Assume that the objects we are describing have some characteristic 

features - for our purposes it is enough to represent them as a set of such features. 

If we talk about a ball, for instance, such features could be the radius, the material 

is made from, its color, and perhaps the kind of sport it is used for.

5

If we take a piece of text, such features could be the language, the 

length, and and the number of words in the text.

Therefore, one instance of the analyzed objects is described by a feature 

io vector of 3’, 4 or 100 dimensions. This is the feature space of the objects.

Next, let us assume that there is a two-dimensional square lattice of 16 

neurons, which should somehow "leam" to represent this high dimensional feature 

space. This is the neuronal space.

15

Kohonen's algorithm defines for each neuron an internal "storage" whose 

dimension equals that of the feature space and a procedure of “training" the 

neuronal system by presenting at random example objects in feature space.

20 As a result, we obtain a set of cluster centers (the neurons), being

responsible for a whole region of objects in feature space. Note that the cluster 

centers are Jiving in two-dimensions, making a graphical representation of high 

dimensional featured objects possible. The Kohonen algorithm unifies clustering (or 

vector quantization) with dimensionality scaling. Next, the cluster centers can be
25 associated with some operational maps. The Kohonen maps have been used most 

often to associate sensory maps (the visual input of a robot) to motoric maps (the

• motoric output controlling the robot's motion).

Another typical model is the Hopfield (CalTech) model for
30 autoassociative memory, developed in the early 80's. This model is based very 

strongly on physical analogies and on the concept of energy. Everybody knows that 

if you throw a ball into a hole, the ball will eventually settle down at the bottom of



1000098132

4

20
10

20
20

12
 

07
 F

eb
 2

01
3

this hole. A physical system is said to be in its ground state if it approaches the state of minimal 

(potential) energy.

Hopfield’s idea was to "create" (learn) a whole energy landscape with holes of equal 

depth. If we throw a ball into this system, it will rest on the bottom of one of these holes.

5 If we throw the ball not very far away from the bottom of a hole, it will go there. The

difficult problem in this simple idea is how to define the holes such that the bottom corresponds 

to useful information, or a special combination of features which are defined by some examples 

given to the system. Then slightly perturbed variants of this pattern will all "relax" to the good 

pattern. Such automatic correction mechanisms are, of course, very useful in associating input

10 patterns to some predefined "representant" or "canonical" pattern. The Hopfield model has a 

very simple learning rule but is not particularly fast or scalable.

Another known approach of associative search is based on representing documents as 

bitstrings and searching for those documents where certain bits as defined in a query string are 

set. Such a method is e.g. described in "Managing Gigabytes", by Witten et al (Morgan

15 Kaufmann Publ, 1999), on pages 128 through 142.

It is an object of the present invention to provide a computer implemented associative 

memory and a method of implementing an associative memory on a computer, preferably which 

is efficient and flexible in retrieving and/or storing.

Reference to any prior art in the specification is not, and should not be taken as, an 

20 acknowledgment, or any form of suggestion, that this prior art forms part of the common general 

knowledge in Australia or any other jurisdiction or that this prior art could reasonably be

expected to be ascertained, understood and regarded as relevant by a person skilled in the art.

SUMMARY OF THE INVENTION

In one aspect of the present invention there is provided a method of implementing an 

25 associative memory on a computer, the associative memory being capable of retrieving a 

document similar to an inputted query document from a set of stored documents, the method

comprising:

coding all documents of the set through a plurality of feature vectors, each feature vector 

belonging to a particular document or part of the particular document of the set and comprising

30 a series of vector elements which relate to certain features present or absent in the particular



1000098132

5

20
10

20
20

12
 

07
 F

eb
 2

01
3

document or part of the particular document, the feature vectors each comprising a 

series of bits as vector elements, wherein each feature of the certain features is associated to 

one particular bit of the series of bits, the particular bit being set to a logical one if the 

associated feature is present in a respective document or part of the respective document, so

5 that the series of bits codes for the presence or absence of certain features in the respective 

document or part of the respective document of the set;

arranging the feature vectors in a matrix, so that the rows of the matrix each are 

associated to the particular document or part of the particular document of the set and 

corresponds to a respective feature vector of the plurality of feature vectors, the matrix being

10 stored column-wise to provide that respective bits of each respective matrix column, which 

respectively are set or not set to a logical one, are simultaneously processed in one processor 

operation by a processor used for obtaining the result column;

generating a query feature vector based on the query document and according to the 

rules used for generating the feature vectors corresponding to the set of stored documents such

15 that the query vector corresponds in its length to the length of a row of the matrix, the query 

feature vector consisting of the series of bits as vector elements, wherein each feature of the 

certain features is associated to one particular bit of the series of bits, the particular bit being set 

to a logical one if the associated feature is present in the query document, so that the series of 

bits codes for the presence or absence of certain features in the query document;

20 obtaining, on basis of the matrix and the query feature vector, a result column coding for

a similarity measure to indicate a similarity between the query document and all documents or 

parts of documents represented in the matrix, wherein in order to obtain the result column a 

logical operation is performed on those columns of the matrix for which the respective bit of the 

query vector is set to a logical one, so a result vector is obtained which codes the similarity

25 measure between the query document and the documents or the parts of the documents of the 

set, the logical operation comprising a logical operation performed bitwise between the bits of 

those columns of the matrix;

retrieving one or more stored documents based on the obtained similarity measure; 

wherein the method is characterized by:

30 treating the documents of the set as hierarchically structured sets of units, with the

respective document of the set consisting of several units, in such a way that the feature 

vectors, which are arranged in the matrix, are unit feature vectors, which are obtained by coding 

the respective unit of the respective document of the set each through a corresponding unit



1000098132

5A

20
10

20
20

12
 

07
 F

eb
 2

01
3

feature vector comprising a series of bits which respectively are set to a logical one if the 

respective associated feature of the certain features is present in the respective unit to code for 

the presence or absence of the certain features in the respective unit, so that the rows of the 

matrix each are associated to the respective unit of the respective document of the set and

5 correspond to the respective unit feature vector coded therefor;

obtaining scores from the result vector which represent as a similarity measure a 

frequency of occurrence of logical ones in the rows of the matrix at the positions indicated by 

the positions of logical ones in the query feature vector;

adding for the documents of the set the scores which are obtained for the different units 

10 of the respective document to obtain a document score of each document of the set; and

selecting for retrieval and retrieving a best document which has the highest document 

score and/or for which the document score fulfills a score threshold condition.

In another aspect of the present invention there is provided a computer-implemented 

associative memory capable of retrieving a document similar to an inputted query document

15 from a set of stored documents, the system comprising:

a computer connected over a network to an application, the application capable of:

coding all documents of the set through a plurality of feature vectors, each feature vector 

belonging to a particular document or part of the particular document of the set and comprising 

a series of vector elements which relate to certain features present or absent in the particular

20 document or part of the particular document, the feature vectors each comprising a series of 

bits as vector elements,

wherein each feature of the certain features is associated to one particular bit of the 

series of bits, the particular bit being set to a logical one if the associated feature is present in 

the particular document or the part of the particular document, so that the series of bits codes

25 for the presence or absence of certain features in the particular document or part of the 

particular document of the set;

arranging the feature vectors in a matrix, so that the rows of the matrix each are 

associated to the particular document or part of the particular document of the set and 

corresponds to a respective feature vector of the plurality of feature vectors, the matrix being

30 stored column-wise to provide that respective bits of each respective matrix column, which



1000098132

5B

20
10

20
20

12
 

07
 F

eb
 2

01
3

respectively are set or not set to a logical one, are simultaneously processed in one processor 

operation by a processor used for obtaining the result column;

generating a query feature vector based on the query document and according to the 

rules used for generating the feature vectors corresponding to the set of stored documents such

5 that the query vector corresponds in its length to the length of a row of the matrix, the query 

feature vector consisting of the series of bits as vector elements,

wherein each feature of the certain features is associated to one particular bit of the 

series of bits, the particular bit being set to a logical one if the associated feature is present in 

the query document, so that the series of bits codes for the presence or absence of certain

10 features in the query document;

obtaining, on basis of the matrix and the query feature vector, a result column coding for 

a similarity measure to indicate a similarity between the query document and all documents or 

parts of documents represented in the matrix, wherein in order to obtain the result column a 

logical operation is performed on those columns of the matrix for which the respective bit of the

15 query vector is set to a logical one, so a result vector is obtained which codes the similarity 

measure between the query document and the documents or the parts of the documents of the 

set,

the logical operation comprising a logical operation performed bitwise between the bits 

of those columns of the matrix;

20 retrieving one or more stored documents based on the obtained similarity measure;

wherein the method is characterized by:

treating the documents of the set as hierarchically structured sets of units, with a 

respective document of the set consisting of several units, in such a way that the feature 

vectors, which are arranged in the matrix, are unit feature vectors, which are obtained by coding

25 a respective unit of the respective document of the set each through a corresponding unit 

feature vector comprising the series of bits which respectively are set to a logical one if the 

respective associated feature of the certain features is present in the respective unit to code for 

the presence or absence of the certain features in the respective unit, so that the rows of the 

matrix each are associated to the respective unit of the respective document of the set and

30 correspond to the respective unit feature vector coded therefor;



1000098132

5C

20
10

20
20

12
 

07
 F

eb
 2

01
3

obtaining scores from the result vector which represent as a similarity measure a 

frequency of occurrence of logical ones in the rows of the matrix at the positions indicated by 

the positions of logical ones in the query feature vector;

adding for the documents of the set the scores which are obtained for the different units 

5 of the respective document to obtain a document score of each document of the set; and

selecting for retrieval and retrieving a best document which has the highest document 

score and/or for which the document score fulfills a score threshold condition.

Also described herein is a method for generating a classification scheme for a set of 

documents stored by coding each of said stored document or a part of it through a

10 corresponding feature vector consisting of a series of bits which respectively code for the 

presence or absence of certain features in said documents; arranging said feature vectors in a 

matrix, and method comprising: obtaining a set of examples for a certain classification class by 

carrying out a search for documents belonging to that class by: generating a query feature 

vector based on the query document and according to the rules used for generating the feature

15 vectors corresponding to the stored documents such that the query vector corresponds in its 

length to the width of the matrix; for those columns of the matrix where the query vector 

indicates the presence of a feature, bitwise performing one or more hardware supported logical 

operations between the columns of the matrix to obtain one or more additional result columns 

coding for a similarity measure between the query and parts or the whole of the stored

20 documents; and retrieving one or more stored documents based on the obtained similarity 

measure; and training a classification engine by said obtained set of examples as the learning 

input.

Also described herein is an associative memory which is capable of retrieving 

documents in response to an input query based on a similarity measure evaluating the similarity

25 between the query and the documents stored in the associative memory. Arranging the memory 

in a matrix, performing logical operations based on the columns of the matrix identified by the 

query, and thereby obtaining a plurality of result columns coding for a similarity measure 

enables to indentify documents together with a similarity degree for the similarity between the 

documents and the query.

30 Preferably the logical operations are hardware supported operations (boolean operations

supported by a microprocessor for its register content), thereby the operation becomes very 

fast.



1000098132

5D

20
10

20
20

12
 

07
 F

eb
 2

01
3

Preferable the matrix is stored columnwise, this makes access to those columns 

identified by a query very fast.

As used herein, except where the context requires otherwise, the term “comprise” and 

variations of the term, such as “comprising”, “comprises” and “comprised”, are not intended to

5 exclude other additives, components, integers or steps.

DETAILED DESCRIPTION

Described herein is an implementation of a "searching through example" protocol: given 

a document which is chosen by the user as to contain the type of content she is searching for, 

the system finds the best fitting - and if required - all documents which are similar to the

10 example. In general, finding similar objects to a given one involves the definition (and 

computation!) of some similarity measure.

If we wish to retrieve some information based on its content rather than based on some 

search key or memory address, we must first represent the document's information. The term 

document as used in the following may mean a whole file or text document, or a fraction of a

15 whole document such as a page, a paragraph, or any smaller unit of the whole document.

Before pattern recognition methods can be applied we have to express usual text into 

some typical features. In an embodiment of the present invention there are two types of features: 

one expressing orthographic and a second one expressing meaning (semantic) similarity. The 

semantic similarity is enforced through a “semantic class table”, which expresses each word as a

20 set of the concept classes it belongs to. In the present embodiment this is done by



20
10

20
20

12
 

18
 M

ay
 2

01
0

6

representing the text of a document through a coding which codes for the presence 

or absence for certain trigramn in the document text. Assuming 32 possible 

character this leads to 32Λ3 possible trigrams requiring a bitstring of the length 

32A3. Each trigram is assigned a certain number, and if the text document contains 

s a certain trigram being numbered n then the n-th bit in the bitstring will be set. This 

results in a bitstring having 32A3 bits which codes for the presence or absence of

certain trigrams in the text.

It will readily be understood that this is only one possible feature coding, 

10 other features such as unigrams, digrams, words, etceteara could be coded as well
tor their presence or absence through a bitstring generated in a similar manner.

The system may of course use also a combination of different 

representations of such text, such as a combination of digrams and trigrams.

15

As an example the term “extension0 consists of the monograms 

"e«+«x',+"t"+"n”+s"+"i"+"o"+',n", the digrams nex"+"xt"+,te”+”enn+"ns"+"si"+"ion+"on", 
etc.

20 Note that once coded in this way we loose information about how many

times a letter, digram, etc. and in what order they occurred in the comes ponding 

word. However, if these features are quite different we can be sure that the 
corresponding words are also quite different Inversely, if two feature vectors are 
similar this does not automatically mean that the underlying text IS necessarily

25 identical.

There is still a further possibility as to which type of features can be 

coded for their presence or their absence. One example is to use the semantics of 

the words contained in a text. For that purpose e.g. there are compiled lists of

30 words which are similiar or identical their meaning and such groups of words of 
respectively similar or identical meanings then belong to the same group or "class·* 
(semantical class).



7

20
10

20
20

12
 

18
 M

ay
 2

01
0

One such class could e.g. comprise the words chair, seat, bank, sofa. 

They all have the same or at least a similar meaning in the sense that they are 

things on which one can sit down.

5

Another group or class could then comprise e.g. the words door, gate, 

entry. They all are similar in the sense that one can enter some place through the 

entities which belong to this group or class.

io One can compile several of those groups or classes, and after they have

been compiled one then can check whether In the text there are ocurring words 

belonging to one or more of the classes. Based on whether or not words of a 
certain class occur in the text the feature vecture is formed, e.g. if words belonging 

to class 3, 5,17 an 23 occur in the text, then the corresponding bits in the feature 

is vector are set. The feature vector thereby in one embodiment has at least as many

bits as classes have been compiled.

The classes themselves and their organisational scheme can largely 

depend on the definitions chosen, i.e. which type of classes have been compiled

20 and how many of them. There may be classes which are formed very narrowly such 

that they contain only synonyms, and other ones which contain words which are 
similar or correlated on a much more abstract level, e.g. in the sense that they 

relate to the same general field such as economics, sports, science, etcetera.

Such more abstract "concept classes" represent meaning of the text in a more
25 abstract manner than individual words do. Based on this concept different 

hierarchical levels of such "concept classes" can be compiled, and they all may be 

taken into account when forming the "final" feature vecture coding for the features 

occuring in the text document. This means that the final feature vector may have 

one bit for each

30

It should be understood that the possible ways of coding for the 
presence or absence of features as described above can be used alternatively, but



8

20
10

20
20

12
 

18
 M

ay
 2

01
0

they can also be used in combination as well. Depending of the type and the 

number of features which are to be coded the feature vector may become very 

long.

5 After having described several possibilities how the feature vector can be

formed, it will now be described how it can be employed for search and retrieval.

The representation of text through a feature vector as described before is 

applied to retrieve based on a query document similar documents from a database, 

io For that purpose the query document (or query text) as well as the documents of 
the database which is searched are represented through corresponding feature 

vectors as will be explained in more detail below. The documents to be searched 

(or better: their corresponding feature vectors) are arranged in form of a matrix, and

the query document also is expressed as its comesponding feature vector.

15

In one embodiment, in a first step, it is tried to eliminate non relevant 

documents. This is done by logical operations on those matrix columns identified by 

the query. This results in a set of candidates together with a corresponding 

similarity measure. Based on this similarity measure there is obtained a reduced set

20 of candidates, e.g. by selecting only the most relevant candidates having the 

highest similarity measure.

This operation still is based on logical operaions on the matrix to thereby 

obtain the reduced set of candidates.

25
In a further embodiment, after having reduced the data to a small 

number of potential candidates there is made an attempt to measure the similarity 
between the query and the candidate documents based on the actual textual 

content of the query and the reduced set of document candidates. This is the
30 second phase.



20
10

20
20

12
 

18
 M

ay
 2

01
0

9

In a further embodiment both approqaches are combined and executed 

consecutively.

As explained before, the already stored documents which are to be 

s searched and the query document are to be represented by corresponding feature 

vectors arranged in a matrix. For large documents stored this can be done by 
dividing them into smaller units of some defined length which then are individually

represented through their feature vectors.

io E.g., in one embodiment a document is seen as a hierarchically

structured set of smaller objects. Take for instance a typical press article or web 

page. These documents consist of several units we call pages, each of about 1 

Kbytes size. This corresponds in length to one to two paragraphs,

15 One may expect that this unit is small enough so that its content is more

or less unique in its topic: only a single topic or idea is expressed in it A page is 

itself a collection of so-called fragments, whose length is a free parameter 

(choosable by the user) but lies around 32 bytes (letters). The fragments are 

usually containing one or more words. The method of representation through

20 bitstrings can be applied to any of these units, in the following we just for example 

choose as a unit a so-called page (about 1 kbyte).Each page is stored as a 
representation its features through a feature vector. For simplicity we here assume 

that in this embodiment the feature vector only codes for the presenc or or absence 

of trigrams. Thereby a matrix is formed, the so-called bit attribute matrix in which

25 one row is a feature vector coding for the features of a correponding page.

As already mentioned, in one embodiment there can bei mplemented in 

software an associative memory based on a representation through feature vectors, 

their arrangement in a matriy together with a query document and subsequently the
30 performance of logical operations thereupon. Indeed, it can be shown that all 

computable functions can be mapped into a sequence of two operations: selecting 

a number of columns of a matrix representation of the stored documents and



20
10

20
20

12
 

18
 M

ay
 2

01
0

10

performing an arbitrary logical bit-by-bit operations on the selected columns. In the 

following we consider in somewhat more detail an example of such a matrix 

representation.

url

1

this is the
text of the
first page

010101010l0000010l010000101001010l0l0

101

url 2 this is the text of

the secnd page

0001111100001010100010101010100000101000

url 3 Yet another page of 
the document

0101000000001010001001000010010001000100

5 Table 1

The table shows a small portion of the so-called bit-attribute matrix. The 

coding (bitstrings) is only schematic.

io If we have a method to map a page of text into a characteristic set

coding for the presence (absence) of a certain feature, then we can map the pages 

into the structure shown in Table 1 called the Bit-Attribute-Matrix (BAM). Note that 

each row here corresponds exactly to a page of text (in other embodiments this 

correspondence may be to another unit of text such as a certain number of words

15 or characters) and there is an associated reference pointer (or URL) associated to 

each, allowing one to retrieve later the whole text.

The coding in the present embodiment represents the presence or 

absence of trigrams in the text, whereas each possible trigram is assigned an
20 identification number. The bit string may then have the length corresponding to the 

number of possible trigrams, and if a certain trigram is present in the text, then the 

corresponding bit in the bit string is set to one.

A more efficient way is to fold the range of posssible ID-numbers Id a

25 smaller one,e.g. by dividing the ID-number for a trigram which is present in the



20
10

20
20

12
 

18
 M

ay
 2

01
0

Π

page by a certain number, preferably a prime number, thereby obtaining a smaller 

ID-number and a correspondingly smaller bit string in which the bit corresponding to 

the smaller number is set if the feature is present in the text. This involves a loss of 

information due to the fact that more than one feature may be represented by the

5 same bit or column, however it reduces the necessary memory space.

The BAM has a width defined by the system parameters which define 

how the presence or absence of certain features is coded. It has a height which 

equals the number of pages we have to store (and which are to be searched). Any 

io query will be also brought into this standard feature formatThis means any query 
text is also represented through a bitstring which has been generated using the

same coding scheme as used for generating the BAM.

It should be understood that the formation of the brtstrings and the 

15 corresponding bit attribute matrix can be based on any features which shomehow 

represent the content of the text to be represented, and it can also be based on any 
combination of such features. E.g. the bitstring could be formed by a concatenation 

of a part coding for digrams, a part coding for trigrams, a part coding for semantic 

content as represented through semantic classes explained before, and so on.

20 Depending on wich features are chosen to form the bit attribute matrix its size 
changes, as can be understood from the foregoing, and the size of the query 

document consequently changes as well, because the bitstring representing the 

query document is formed based on the same rules as the rows of the bit attribute 

matrix representing the documents to be searched.

25
Now the query process itself will be explained in somewhat more detail 

with reference to Figure 1. The 1's of the query bitstring tell us which columns of the 

BAM should be investigated. Hence, the selection process is defined by a 

horizontal "register" of the same width as the BAM, in which the query is stored and 

so whose set elements indicate a relevant column. The selected columns are shown in 

Fig 1 below the bit attribute matrix. For the columns selected then there is carried 
out an adding with a bit-by-bit AND in sequential order for the selected columns.



12

Ο
CM

20
10

20
20

12
 

18
 M

ay

The result is stored In an additional vertical register shown on the righthand of 

Figure 1. It is easy to see that in each AND-step the number of selected rows will 

roughly decrease by the amount of zeros in one selected column. If the search is 

exact, we will keep in the end only those rows, which survived the AND-ing

5 operations. This means that only those pages which have all the features of the 

query will show up in the result column. Based on the result column the 

corresponding documents) then can be retrieved.

Fig. 1 schematically illustrates this process. For simmplicity purposes the 

io BAM is extremely small. The query selects columns 1, 3, and 5, the are ANDed as
indicated in the lower part of Fig. 1 to obtain the result column.

If e.g. in a further embodiment the search is to allow orthographic errors 

(or non-exact occurence of certain features defined by the query), one can keep in

15 further vertical registers the results of adding page penalties as shown e.g. in 

Figure 2. This can be done by e.g. counting for a certain row of the matrix the 

number of logical ones which appear in the positions indicated by the query string. 

The result may then be stored in a vertical coded form in a plurality of result 

columns. To one row of the matrix then there belong multiple result bits which can

20 be evaluated in order to perform a selection of the candidates.

The result columns again form a result matrix, and one row of the result 

matrix consists of a sequence of bits which may represent a coding of the 
frequency of ocurrence of logical ones in the rows of the matrix at the positions

25 indicated through the query string. For the example of Fig. 1 this is schematically 

illustrated in Fig. 2. The result columns code for the number of occurrence of 1 's, as 

can be easily seen from Fig. 2.

In a further embodiment, the coding may not be a coding of the absolute

30 number of ocurrence, but it is also possible to code whether the number of ones lies 

in a certain range of occurrence frequenc. Assume which have two result columns, 

then in total four ranges can be mapped, and then If the maximum possible



20
10

20
20

12
 

18
 M

ay
 2

01
0

13

occurence is e.g. N,then 0 to N/4 may be mapped into range 1, from N/4+1 until N/2 

may be mapped into range 2, and so on.

More complicated coding schemes are of course also possible. However, 

s the result columns may always be obtained by performing one or more logical 

operations on the selceted columns of the matrix, thereby enabling them to be 

efficiently earned out through hardware supported operations, such as

microprocessor operations on registers.

to Thereby a score for a document unit (here a page) can be obtained. A
whole document may be split up into smaller units, for each of the units the score 

can be obtained and the scores may finally be added to finally select the document 

with the highest score. Another possiblity would be to choose the document for 

which a certain unit has returned the highest score.

15

Document retrieval can be such as to obtain a list of documents based 

on a score treshold (the best document(s)), it may be combined with a limit set by 
the user for the number of returned documents, or the like.

20 It should be understood here that the query selects certain columns of

the bit attribute matrix, and for the selected columns some further logical operations 

may be performed in some embodiments which give a resulting score for the 

individual rows of the matrix formed by the selected columns. Based thereupon 

retrieval of documents can be performed taking into account the score obtained for
25 the individual documents or parts thereof (such as pages, etcetera, as explained 

before).

One implementation of an embodiment is such that the BAM and all ist 

registers are stored columnwise, allowing that all of the above described operations
30 are performed using the hardware supported bit-by-bit operations. This means that 

in one processor operation one can process simultaneously 32, 64 (or 128) pages 

at once, depending on the actua processor architecture.



14

20
10

20
20

12
 

18
 M

ay
 2

01
0

If the matrix is stored column-wise, then it is also very easy to eliminate 

those columns where the query bitstring has a logical zero. Only those columns are 

used for the further processing where the corresponding bit in the query bitstring is

5 set, and thereby the total number of columns can be easily reduced significantly 

and a new matrix is formed containing only those columns which have been 

selected as relevant by the query bitstring.

Once a sorted list of potential candidates has been established (based 

io on the scores), in a further embodiment one may start a second phase which may 
further improve the result The original text of the candidate documents in this 

phase is now directly compared with the original (textual) content of the query. This 

can be done word-wise, fragment-wise, and/or page-wise. The document scores

can be obtained as a function of the page scores.

15

This detailed comparison can be done as follows. At first for each word in 

the query there is found a counterpart in each candidate document, the counterpart 

being the word which is most similar to the query word. If there is no identical word 

in the candidate document, then the difference between the query word and the
20 most similar word in the candidate document is expressed by a score indicating the 

similarity degree. One possible score might be calculated on the Loewenstein- 

distance between the two words. Thereby an “ortographic similarity score" may be 

obtained.

25 Then the sequential order of the query words can be compared with the
sequential order of their counterparts in the candidate document. The result of this 

comparison again gives a sequential score indicating the sequential similarity.

Then the distance between the identified counterparts of the query words
30 in the document candidate may also be taken into account to obtain a distance 

score, a high distance being punished.



IS

20
10

20
20

12
 

18
 M

ay
 2

01
0

Based on the ortographic similarity score, the sequential score and the 

distance score then there may be obtained a final similarity score which indicates 

the similatity between the candidate documents and the query. Based on this final 

similarity score then one or more final candidates may be selected for retrieval.

s

Of course other ways of calculating the final score are possible as well. 

The purpose of the calculation of the final score is to obtain a score which 

represents the similarity between the query and the documents obtained through 

the operations using the bit atribute matrix such that the most similar documents 

io can be retrieved. Any similarity measure may therefore be used to get further 

information about how similar the query and the initially retrieved documents are in 

order to obtain a final score based on which the final retrieval judgement as to

which documents actually are to be retrieved is made.

is in comparison with the usual methods for full text indexing, the present

embodiment has several advantages. It does not depend on the used language. 

For example, one does not need to load a list of stop-words (very frequent words 

whose function is to "glue" together a sentence). Such words lead to trigrams which 
are encountered so often that the corresponding columns in the BAM are “full" -

20 such columns are automatically discarded because they do not help in eliminating 

candidates. Furthermore, one can use quite complex similarity measures to achieve 

a very good precision, since the initial step already significantly reduces the number 

of relevant candidates.

25 The described embodiments can further be varied in a manifold of ways.

By adding additional fields (columns) to the BAM one can, for example, 

enforce searching only on some subset of all examples. One such extended field 

could be the class of the document obtained through any classification engine

30 which automatically classifies documents according to a classification scheme. The 

classification may be an neural network, it may also be a classification engine as 

described In European patent application with the application number 99108354.4



20
10

20
20

12
 

18
 M

ay
 2

01
0

16

filed on April 28.1999 by the applicant of the present application.This application is 

hereby incorporated by reference as a whole.

By using such additional fields one can already initially concentrate the 

s algorithmic efforts into the relevant part of the database,e.g. by eliminating those

documents where the classification does not match with the query.

Since in the present embodiment the memory allocation happens 

columnwise, it is easy to extend a BAM in width (compared to adding further text 

io and thus extending it in depth). Any search key index can be in this way added to 
the BAM, so that the system is able do perform also all desired data bank functions

in a very flexible, extendable way.

The embodiments described create and handle internally a few big 

is objects: one is a structured full text cache (which contains the stored documents as 

a whole) and the BAM Itself. Such objects will have appropriate methods so that 

they can be loaded from a stream at initialization and saved into a stream when the

associative memory is destroyed.

20 Apart from these functions, there is some further functionality related to

storing. The cache administrator can send a document string to the engine required 

that it is stored. The same functionality is provided also for a whole set of 

documents.

25 In one embodiment, in response to sending a Query-document to the

associative memory the user gets back a list of hits, and possibly their scores. 

Thereby not only similar documents can be found but also documents whose 

fragments are used for querying.

30 In a further embodiment there is provided a long list of options and

parameters, making it flexible. A query can be sent with some optional parameters, 

specifying what the user is looking for, what kind of answer is expecting, and how



20
10

20
20

12
 

18
 M

ay
 2

01
0

17

fast. For Instance, the user might want to look at the first found 20 relevant 

documents (and will have a fast answer).

In other cases it might want to find ALL relevant documents which can be
5 found, no matter how long that might takes.

In one embodiment the results are sent back in packages, so the user 

has from the beginning what to do (while the associative memory crunches on). 

Another parameter instructs the engine WHAT to send back. One option is only 

io URLs + confidence, the other one is URL + relevant text + confidence. The answer 
will contain a list, whose length is yet another possible query parameter, of such 

items. Other options are the setting of the allowed retrieval error (how precise the 

query words should be found in the retrieved documents) and the inclusion of 

attributes and keywords. An attribute is a special word which has been so defined 

is during the storing command. A typical article should have an AUTHOR, AUTHOR- 

AFFILIATION, TITLE, PUBLISHER, DATUM, etc as possible attributes associated 

to it. The query with such attributes will be done only on the documents having such 

attributes and will do a fuzzy search for the content of the attribute. Another 

possible attribute is the classification attribute as defined through any classification

20 engine.

The keywords play a different role:adding a (+/-) keyword will (de)select 

from the answer candidates those where these words can be exactly found.

25 Finally, in a further embodiment it is possible to refine a search by

restricting the search to the already found documents.

According to a further embodiment an associative memory is used to 

generate a classification scheme for a classification engine. Assume that there is a

30 large volume of unclassified data, then It may be difficult to find some datasets 

which are suitable to be used as a learning input to a classification engine making 
the engine to leam a certain classification scheme.



18

20
10

20
20

12
 

18
 M

ay
 2

01
0

Using the associative memory this becomes very easy. One just 

generates a query document such that it is a typical representation of a desired 

class of the classification scheme. Sending this query to the associative memory

5 one will obtain a set of documents being highly similar in content to the query 

document Those documents can then be used to train the classification engine for 

that class or as new queries when the scope ofthe serch is to be extended through 

iterations.

io As already mentioned, a classification class can also be represented in
the BAM as a feature, thereby refining the results obtained through the associative 

memory. In this manner a combination of a classification engine and associative 

memory can become extremely powerful. A classification can be incorporated Into 

the BAM, this improves the associative retrieval, this can be used to improve the 

is classification, e.g. by increasing the number of ducuments which belong to a certain 

class by assigning retrieved documents to a certain classification class, or by using 

the retrieved documents as a set of learning examples.The improved classification 

(either refined in accuracy by re-leaming or extended through additional classes or 

with expanded content in the classes through assigning) may be again (in whole or

20 in part) be incorporated into the BAM (e.g. by adding further columns to the BAM), 

and so on. Using such an iterative process for a combination of a classification 

engine and an associative memory can then lead to a self-improving or self-learning 

system.

25 The continous improvement may aiso start with the classification engine

instead of the associative memory, e.g. by retrieving documents of certain classes, 

using them as query to the associative memory, using the query result the 

classification engine may be improved, and so on.

30 Alternatively a set of unknown documents may be classified using the

classification engine, thereby the content of the engine (or the database) will



19

20
10

20
20

12
 

18
 M

ay
 2

01
0

increase, the so improved classification engine may be used again for 

associative retrieval, and so on. Figure 3 schematically illustrates such a self

improving system.

This is applicable to any classification engine, e.g. a neural network. A 

particularly well suited classification engine would be the one described in 

European patent application with the application number 99108354.4 already 

mentioned before.

As used herein, except where the context requires otherwise the term 

"comprise" and variations of the term, such as "comprising", "comprises" and 

"comprised", are not intended to exclude other additives, components, integers 

or steps.



20
20

10
20

20
12

 
07

 F
eb

 2
01

3

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of implementing an associative memory on a computer, the 

associative memory being capable of retrieving a document similar to an inputted query 

document from a set of stored documents, the method comprising:

coding all documents of the set through a plurality of feature vectors, each feature 

vector belonging to a particular document or part of the particular document of the set and 

comprising a series of vector elements which relate to certain features present or absent in 

the particular document or part of the particular document, the feature vectors each 

comprising a series of bits as vector elements, wherein each feature of the certain features 

is associated to one particular bit of the series of bits, the particular bit being set to a logical 

one if the associated feature is present in a respective document or part of the respective 

document, so that the series of bits codes for the presence or absence of certain features 

in the respective document or part of the respective document of the set;

arranging the feature vectors in a matrix, so that the rows of the matrix each are 

associated to the particular document or part of the particular document of the set and 

corresponds to a respective feature vector of the plurality of feature vectors, the matrix 

being stored column-wise to provide that respective bits of each respective matrix column, 

which respectively are set or not set to a logical one, are simultaneously processed in one 

processor operation by a processor used for obtaining the result column;

generating a query feature vector based on the query document and according to the 

rules used for generating the feature vectors corresponding to the set of stored documents 

such that the query vector corresponds in its length to the length of a row of the matrix, the 

query feature vector consisting of the series of bits as vector elements, wherein each 

feature of the certain features is associated to one particular bit of the series of bits, the 

particular bit being set to a logical one if the associated feature is present in the query 

document, so that the series of bits codes for the presence or absence of certain features 

in the query document;

1000098187_3.DOC



21
20

10
20

20
12

 
07

 F
eb

 2
01

3 obtaining, on basis of the matrix and the query feature vector, a result column 

coding for a similarity measure to indicate a similarity between the query document and all 

documents or parts of documents represented in the matrix, wherein in order to obtain the 

result column a logical operation is performed on those columns of the matrix for which the 

respective bit of the query vector is set to a logical one, so a result vector is obtained which 

codes the similarity measure between the query document and the documents or the parts 

of the documents of the set, the logical operation comprising a logical operation performed 

bitwise between the bits of those columns of the matrix;

retrieving one or more stored documents based on the obtained similarity measure; 

wherein the method is characterized by:

treating the documents of the set as hierarchically structured sets of units, with the 

respective document of the set consisting of several units, in such a way that the feature 

vectors, which are arranged in the matrix, are unit feature vectors, which are obtained by 

coding the respective unit of the respective document of the set each through a 

corresponding unit feature vector comprising a series of bits which respectively are set to a 

logical one if the respective associated feature of the certain features is present in the 

respective unit to code for the presence or absence of the certain features in the respective 

unit, so that the rows of the matrix each are associated to the respective unit of the 

respective document of the set and correspond to the respective unit feature vector coded 

therefor;

obtaining scores from the result vector which represent as a similarity measure a 

frequency of occurrence of logical ones in the rows of the matrix at the positions indicated 

by the positions of logical ones in the query feature vector;

adding for the documents of the set the scores which are obtained for the different 

units of the respective document to obtain a document score of each document of the set;

and

1OOOO98187_3.DOC



22
20

10
20

20
12

 
07

 F
eb

 2
01

3 selecting for retrieval and retrieving a best document which has the highest

document score and/or for which the document score fulfills a score threshold condition.

2. The method of Claim 1, wherein the logical operations performed bitwise 

between the columns are performed by a microprocessor, wherein the logical operations are 

Boolean operations supported by the microprocessor for its register contents.

3. The method of Claim 1 or 2, wherein the result vectors code a similarity score

which is based on:

how often a certain feature or a set of features defined by the logical ones in the 

query vector occurs within a row of the matrix.

4. The method of any one of Claims 1 to 3, wherein, based on the similarity 

measure, a set of candidate documents is chosen for further inspection.

5. The method of Claim 4, wherein the further inspection comprises comparing 

the query elements with the elements of the candidate documents to obtain:

a measure for the similarity between the textual query elements and textual document 

elements;

for each query element, a corresponding textual document element based on the 

similarity measure;

a measure for the degree of coincidence between the sequential order of the textual 

query elements and the sequential order of the corresponding textual document elements; or

a measure for the similarity between the distance between elements in the query and 

the corresponding distance between elements in the document; or

any combination thereof.

6. The method of Claim 5, wherein the results are returned which lie above a 

certain similarity threshold.

1000098187_3.DOC



23
20

10
20

20
12

 
07

 F
eb

 2
01

3

7. The method of Claim 5 or 6, wherein the desired degree of similarity is 

defined by the user to be:

identity;

a setable degree of similarity or a similarity threshold; or

identity for certain features and a setable degree of similarity for the other features;

or

any combination thereof.

8. The method of any one of Claims 1 to 7, wherein the features coded by 

a feature vector for their presence or absence comprise:

unigrams, digrams, multigrams, words, fragments of text, sentences, or 

paragraphs, or any combination thereof; and/or

one or more classification classes classifying the document according to a

classification scheme.

9. The method of claim 8, wherein the classification classes are attributes 

of the documents comprising: date, author, title, publisher, editor, topic of the text, or 

classification results from classifications by the user or by an automatic classification 

engine, or any combination thereof.

10. The method of claim 9, wherein the query document is automatically 

assigned an attribute or class based on the attribute or classes of a result document 

obtained through the query according to one of the preceding claims.

IOOOO98187_3.DOC



24
20

10
20

20
12

 
07

 F
eb

 2
01

3 11. The method according to any one of Claims 1 to 10, used to generate a 

classification scheme for a classification engine on basis of the set of stored documents, 

wherein the query document, which is a typical representation of a desired class of the 

classification scheme, and documents of the set retrieved on basis of the obtained

similarity measures are identified to belong to the same class of the classification scheme, 

wherein the retrieved documents being identified to belong to the same class of the 

classification scheme are taken as a set of example documents for the class and are input 

as learning input into the classification engine.

12. The method of claim 11, wherein the search for example documents on 

basis of the query document is carried out in a subset of the set of documents, the subset 

being defined through the presence of an attribute and/or classification class specified by a 

user in the query, thereby selecting for the query only the documents of the subset.

13. The method of claim 11 or 12, the method being applied to realize a self

improving system through:

retrieving relevant documents from the set of documents through an associative 

search; using the retrieved documents for improving the classification engine;

using the classification through a classification engine to improve the retrieval 

through an associative memory; and

using the improved retrieval to improve the classification engine.

14. A computer-implemented associative memory capable of retrieving a document

similar to an inputted query document from a set of stored documents, the computer- 

implemented associative memory comprising:

a computer connected over a network to an application, the application capable of 

coding all documents of the set through a plurality of feature vectors, each feature

1000098187_3.DOC



25
20

10
20

20
12

 
07

 F
eb

 2
01

3 vector belonging to a particular document or part of the particular document of the set and 

comprising a series of vector elements which relate to certain features present or absent in 

the particular document or part of the particular document, the feature vectors each 

comprising a series of bits as vector elements,

wherein each feature of the certain features is associated to one particular bit of the 

series of bits, the particular bit being set to a logical one if the associated feature is present 

in the particular document or the part of the particular document, so that the series of bits 

codes for the presence or absence of certain features in the particular document or part of 

the particular document of the set;

arranging the feature vectors in a matrix, so that the rows of the matrix each are 

associated to the particular document or part of the particular document of the set and 

corresponds to a respective feature vector of the plurality of feature vectors, the matrix 

being stored column-wise to provide that respective bits of each respective matrix column, 

which respectively are set or not set to a logical one, are simultaneously processed in one 

processor operation by a processor used for obtaining the result column;

generating a query feature vector based on the query document and according to 

the rules used for generating the feature vectors corresponding to the set of stored 

documents such that the query vector corresponds in its length to the length of a row of the 

matrix, the query feature vector consisting of the series of bits as vector elements,

wherein each feature of the certain features is associated to one particular bit of the 

series of bits, the particular bit being set to a logical one if the associated feature is present 

in the query document, so that the series of bits codes for the presence or absence of 

certain features in the query document;

1000098187 3.DOC



26
20

10
20

20
12

 
07

 F
eb

 2
01

3 obtaining, on basis of the matrix and the query feature vector, a result column 

coding for a similarity measure to indicate a similarity between the query document and all 

documents or parts of documents represented in the matrix, wherein in order to obtain the 

result column a logical operation is performed on those columns of the matrix for which the 

respective bit of the query vector is set to a logical one, so a result vector is obtained which 

codes the similarity measure between the query document and the documents or the parts 

of the documents of the set, the logical operation comprising a logical operation performed 

bitwise between the bits of those columns of the matrix;

retrieving one or more stored documents based on the obtained similarity measure; 

wherein the method is characterized by:

treating the documents of the set as hierarchically structured sets of units, with a 

respective document of the set consisting of several units, in such a way that the feature 

vectors, which are arranged in the matrix, are unit feature vectors, which are obtained by 

coding a respective unit of the respective document of the set each through a 

corresponding unit feature vector comprising the series of bits which respectively are set to 

a logical one if the respective associated feature of the certain features is present in the 

respective unit to code for the presence or absence of the certain features in the respective 

unit, so that the rows of the matrix each are associated to the respective unit of the 

respective document of the set and correspond to the respective unit feature vector coded 

therefor;

obtaining scores from the result vector which represent as a similarity measure a 

frequency of occurrence of logical ones in the rows of the matrix at the positions indicated 

by the positions of logical ones in the query feature vector;

adding for the documents of the set the scores which are obtained for the different 

units of the respective document to obtain a document score of each document of the set;

and

selecting for retrieval and retrieving a best document which has the highest

document score and/or for which the document score fulfills a score threshold condition.

1000098187_3.DOC



27
20

10
20

20
12

 
07

 F
eb

 2
01

3 15. The computer implemented associative memory of Claim 14, wherein the 

logical operations performed bitwise between the columns are performed by a 

microprocessor, wherein the logical operations are Boolean operations supported by the 

microprocessor for its register contents.

16. The computer implemented associative memory of Claim 14 or 15, wherein 

the result vectors code a similarity score which is based on:

how often a certain feature or a set of features defined by the logical ones in the 

query vector occurs within a row of the matrix.

17. The computer implemented associative memory of any one of Claims 14 to 

16, wherein, based on the similarity measure, a set of candidate documents is chosen for 

further inspection.

18. The computer implemented associative memory of Claim 17, wherein the 

further inspection comprises comparing the query elements with the elements of the

candidate documents to obtain:

a measure for the similarity between the textual query elements and textual 

document elements;

for each query element, a corresponding textual document element based on 

the similarity measure;

a measure for the degree of coincidence between the sequential order of the 

textual query elements and the sequential order of the corresponding textual document 

elements; or

a measure for the similarity between the distance between elements in the 

query and the corresponding distance between elements in the document; or

any combination thereof.

19. The computer implemented associative memory of Claim 18, wherein the 

results are returned which lie above a certain similarity threshold.

1000098187_3.DOC



28
20

10
20

20
12

 
07

 F
eb

 2
01

3 20. The computer implemented associative memory of Claim 18 or 19, wherein 

the desired degree of similarity is defined by the user to be:

identity;

a setable degree of similarity or a similarity threshold; or 

identity for certain features and a setable degree of similarity for the other features;

or

any combination thereof.

21. The computer implemented associative memory of any one of Claims 14 to 

20, wherein the features coded by a feature vector for their presence or absence comprise:

unigrams, digrams, multigrams, words, fragments of text, sentences, or paragraphs, 

or any combination thereof; and/or

one or more classification classes classifying the document according to a

classification scheme.

22. The computer implemented associative memory of Claim 21, wherein the 

classification classes are attributes of the documents comprising:

date, author, title, publisher, editor, topic of the text, or classification results from 

classifications by the user or by an automatic classification engine, or

any combination thereof.

23. The computer implemented associative memory of Claim 22, wherein 

the query document is automatically assigned an attribute or class based on the attribute or 

classes of a result document obtained through the query according to one of the preceding

claims.

IOOOO98187_3.DOC



29
20

10
20

20
12

 
07

 F
eb

 2
01

3 24. The computer implemented associative memory of any one of Claims 

14 to 23, wherein the application is used to generate a classification scheme for a 

classification engine on basis of the set of stored documents, wherein the query document, 

which is a typical representation of a desired class of the classification scheme, and 

documents of the set retrieved on basis of the obtained similarity measures are identified to 

belong to the same class of the classification scheme, wherein the retrieved documents 

being identified to belong to the same class of the classification scheme are taken as a set 

of example documents for the class and are input as learning input into the classification 

engine.

25. The computer implemented associative memory of Claim 24, wherein 

the search for example documents on basis of the query document is carried out in a 

subset of the set of documents, the subset being defined through the presence of an 

attribute and/or classification class specified by a user in the query, thereby selecting for 

the query only the documents of the subset.

26. The computer implemented associative memory of Claim 24 or 25, the 

computer implemented associative memory being applied to realize a self improving 

system through the application being capable of:

retrieving relevant documents from the set of documents through an associative 

search; using the retrieved documents for improving the classification engine;

using the classification through a classification engine to improve the retrieval through an 

associative memory; and

using the improved retrieval to improve the classification engine.

1000098187_3.DOC



20
10

20
20

12
 

18
 M

ay
 2

01
0

1/3

1

1 AND

0

1 AND

0

1

0

1

0 1 0 0

Fig. 1



20
10

20
20

12
 

24
 N

ov
 2

01
0

2/3

10 10 1

1

1 +

0

1 +

0

1

1

1

0

1

0

1

0 1 0 0 1 0

Score

1

3

1

6788491 l.DOC

Coded number of 
occurrence

No. of 
occurrence

Fig.2



20
10

20
20

12
 

18
 M

ay
 20

10
I

3/3

Query

1 r
Associative

Memory

r

Classification
Engine

Fig. 3


