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EFFICIENT PARALLEL COMPUTATION OF 
DEPENDENCY PROBLEMS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica 
tion Ser. No. 13/907,922, filed Jun. 2, 2013, which is a 
continuation in part of U.S. patent application Ser. No. 
12/994,153, filed Nov. 23, 2010, which is U.S. National 
Phase of PCT Application PCT/IB2009/052820, which 
claims the benefit of U.S. Provisional Patent Application 
61/079,461, filed Jul. 10, 2008, U.S. Provisional Patent 
Application 61/086,803, filed Aug. 7, 2008, U.S. Provisional 
Patent Application 61/110,676, filed Nov. 3, 2008, U.S. 
Provisional Patent Application 61/185.589, filed Jun. 10, 
2009, and U.S. Provisional Patent Application 61/185,609, 
filed Jun. 10, 2009. The disclosures of all these related 
applications are incorporated herein by reference. 

FIELD OF THE INVENTION 

The present invention relates generally to parallel com 
puting, and particularly to methods and systems for execut 
ing dependency problems on parallel processors. 

BACKGROUND OF THE INVENTION 

Parallel processing techniques are used extensively for 
executing various kinds of computing tasks. In the field of 
logic design simulation, for example, Cadambi et al. 
describe a simulation accelerator based on a Very Long 
Instruction Word (VLIW) processor in “A Fast, Inexpensive 
and Scalable Hardware Acceleration Technique for Func 
tional Simulation.” Proceedings of the 39" IEEE ACM 
Design Automation Conference (DAC 2002), New Orleans, 
La., Jun. 10-14, 2002, pages 570-575, which is incorporated 
herein by reference. Aspects of logic simulation using VLIW 
processors are also addressed in U.S. Pat. No. 7,444,276 and 
in U.S. Patent Application Publications 2007/0219771, 
2007/0150702, 2007/0129926, 2007/0129924, 2007/ 
007.4000, 2007/0073999 and 2007/0073528, whose disclo 
Sures are incorporated herein by reference. 

SUMMARY OF THE INVENTION 

An embodiment of the present invention that is described 
herein provides a computing method including accepting a 
definition of a computing task, which includes multiple 
Processing Elements (PEs) having execution dependencies. 
The computing task is compiled for concurrent execution on 
a multiprocessor device, by arranging the PES in a series of 
two or more invocations of the multiprocessor device, 
including assigning the PEs to the invocations depending on 
the execution dependencies. The multiprocessor device is 
invoked to run software code that executes the series of the 
invocations, so as to produce a result of the computing task. 

In some embodiments, the multiprocessor device com 
pletes a preceding invocation before beginning a Subsequent 
invocation in the series, such that outputs of the PEs in the 
preceding invocation are available as input to the PEs in the 
Subsequent invocation. In some embodiments, assigning the 
PEs to the invocations includes assigning a first PE to a first 
invocation and assigning a second PE, which according to 
the execution dependencies is to be executed after the first 
PE, in a second invocation that is later than the first 
invocation in the series. 
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2 
In an embodiment, assigning the PEs to the invocations 

includes interleaving in the series one or more invocations of 
a Central Processing Unit (CPU) in addition to the invoca 
tions of the multiprocessor device, and assigning one or 
more of the PEs to the invocations of the CPU. In an 
embodiment, assigning the PES to the invocations includes 
identifying a first portion of the computing task whose 
execution by the multiprocessor device is expected to out 
perform execution by the CPU, identifying a second portion 
of the computing task whose execution by the CPU is 
expected to outperform execution by the multiprocessor 
device, assigning the first portion to the invocations of the 
multiprocessor device, and assigning the second portion to 
the invocations of the CPU. 

In another embodiment, assigning the PES to the invoca 
tions includes assigning the PEs in a first portion of the 
computing task, which has a first level of parallelism, to the 
invocations of the multiprocessor device, and assigning the 
PES in a second portion of the computing task, which has a 
second level of parallelism that is lower than the first level, 
to the invocations of the CPU. 

In yet another embodiment, compiling the computing task 
includes defining a sequence of the PEs that is to be executed 
conditionally depending on a condition that is evaluated at 
run-time, and assigning the PEs to the invocations includes 
evaluating a criterion that aims to maximize a likelihood that 
the sequence will not be executed. Evaluating the criterion 
may include dividing the computing tasks into logical cones, 
each logical cone including an apex PE that is last in a 
respective invocation and a group of the PEs on which the 
apex PE depends, and a maximum depth and a maximum 
base size of the logical cones are specified based on the 
likelihood, and setting invocation boundaries at respective 
bases of the logical cones. 

There is additionally provided, in accordance with an 
embodiment of the present invention, a computing apparatus 
including an interface and a processor. The interface is 
configured to accept a definition of a computing task, which 
includes multiple Processing Elements (PEs) having execu 
tion dependencies. The processor is configured to compile 
the computing task for concurrent execution on a multipro 
cessor device, by arranging the PES in a series of two or 
more invocations of the multiprocessor device, including 
assigning the PEs to the invocations depending on the 
execution dependencies, and to invoke the multiprocessor 
device to run software code that executes the series of the 
invocations, so as to produce a result of the computing task. 

There is also provided, in accordance with an embodi 
ment of the present invention, a computing method includ 
ing accepting a definition of a computing task, which 
includes multiple Processing Elements (PEs) having execu 
tion dependencies. The computing task is compiled for 
concurrent execution on a multiprocessor device, by arrang 
ing the PES in multiple execution sequences, including 
compiling, for a given execution sequence, ancillary logic 
that evaluates a condition at run-time and, depending on the 
condition, enables or inhibits execution of the given execu 
tion sequence. The multiprocessor device is invoked to run 
Software code that executes the execution sequences, so as 
to produce a result of the computing task. 

In some embodiments, compiling the ancillary logic 
includes defining at a beginning of the given execution 
sequence an ancillary PE that evaluates the condition and 
enables or inhibits the execution. In an embodiment, the 
condition inhibits execution of the given execution sequence 
upon identifying that input to the given execution sequence 
did not change since a previous execution of the given 
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execution sequence. In another embodiment, the condition 
inhibits execution of the given execution sequence upon 
identifying that a trigger signal of a component simulated in 
the given execution sequence is not asserted. In still another 
embodiment, the condition inhibits execution of the given 
execution sequence upon identifying that the execution of 
the given execution sequence will not affect an output of the 
given execution sequence. 

There is further provided, in accordance with an embodi 
ment of the present invention, a computing apparatus includ 
ing an interface and a processor. The interface is configured 
to accept a definition of a computing task, which includes 
multiple Processing Elements (PEs) having execution 
dependencies. The processor is configured to compile the 
computing task for concurrent execution on a multiprocessor 
device, by arranging the PEs in multiple execution 
sequences, including compiling, for a given execution 
sequence, ancillary logic that evaluates a condition at run 
time and, depending on the condition, enables or inhibits 
execution of the given execution sequence, and to invoke the 
multiprocessor device to run software code that executes the 
execution sequences, so as to produce a result of the 
computing task. 

There is also provided, in accordance with an embodi 
ment of the present invention, a computing method includ 
ing accepting a definition of a computing task, which 
includes a plurality of logic sections triggered by triggering 
signals. The definition of the computing task is compiled for 
concurrent execution on a multiprocessor device, so as to 
generate combined logic, which executes the plurality of the 
logic sections and which includes ancillary logic that selec 
tively enables execution of a part of the computing task 
corresponding to the logic sections whose triggering signals 
are asserted. The multiprocessor device is invoked to run 
Software code that executes the combined logic, so as to 
produce a result of the computing task. 

In some embodiments, compiling the definition includes 
generating a single execution sequence that executes the 
multiple logic sections, including configuring the ancillary 
logic to enable the execution of only Processing Elements 
(PEs) in the execution sequence corresponding to the logic 
sections whose triggering signals are asserted. In an embodi 
ment, the triggering signals include at least one signal type 
selected from a group of types consisting of clock signals, 
set signals and reset signals. 

In other embodiments, compiling the definition includes 
generating multiple execution sequences that execute the 
respective logic sections, and inserting into each execution 
sequence an ancillary Processing Element (PE) that selec 
tively enables execution of the execution sequence depend 
ing on the respective triggering signals. 

There is additionally provided, in accordance with an 
embodiment of the present invention, a computing apparatus 
including an interface and a Central Processing Unit (CPU). 
The interface is configured to accept a definition of a 
computing task, which includes a plurality of logic sections 
triggered by triggering signals. The CPU is configured to 
compile the definition of the computing task for concurrent 
execution on a multiprocessor device, so as to generate 
combined logic, which executes the plurality of the logic 
sections and which includes ancillary logic that selectively 
enables execution of a part of the computing task corre 
sponding to the logic sections whose triggering signals are 
asserted, and to invoke the multiprocessor device to run 
Software code that executes the combined logic, so as to 
produce a result of the computing task. 
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The present invention will be more fully understood from 

the following detailed description of the embodiments 
thereof, taken together with the drawings in which: 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram that schematically illustrates a 
system for executing dependency problems, in accordance 
with an embodiment of the present invention; 

FIG. 2 is a block diagram that schematically illustrates a 
Graphics Processing Unit (GPU), in accordance with an 
embodiment of the present invention; 

FIG. 3 is a diagram that schematically illustrates a depen 
dency problem represented by dependency graphs, in accor 
dance with an embodiment of the present invention; 

FIG. 4 is a diagram that schematically illustrates a Static 
Invocation Database (SID), in accordance with an embodi 
ment of the present invention; 

FIG. 5 is a flow chart that schematically illustrates a 
method for executing a dependency problem, in accordance 
with an embodiment of the present invention; 

FIG. 6 is a diagram that schematically illustrates a grid of 
warps used in SID generation, in accordance with an 
embodiment of the present invention; 

FIG. 7 is a diagram that schematically illustrates alloca 
tion intervals for allocating Processing Elements (PEs) in a 
grid of warps, in accordance with an embodiment of the 
present invention; 

FIG. 8 is a flow chart that schematically illustrates a 
method for generating a SID, in accordance with an embodi 
ment of the present invention; 

FIG. 9 is a diagram that schematically illustrates a cache 
management scheme, in accordance with an embodiment of 
the present invention; 

FIGS. 10A and 10B are diagrams that schematically 
illustrate a variable pre-fetching scheme, in accordance with 
an embodiment of the present invention; 

FIG. 11 is a diagram that schematically illustrates a 
variable pre-ordering scheme, in accordance with an 
embodiment of the present invention; 

FIG. 12 is a diagram that schematically illustrates mul 
tiple SIDs, in accordance with an embodiment of the present 
invention; 

FIG. 13 is a flow chart that schematically illustrates a 
method for inter-SID communication, in accordance with an 
embodiment of the present invention; 

FIGS. 14A and 14B are diagrams that schematically 
illustrate an intra-SID communication scheme, in accor 
dance with an embodiment of the present invention; 

FIG. 15 is a diagram that schematically illustrates a SID 
that uses inter-SID and intra-SID communication, in accor 
dance with an embodiment of the present invention; 

FIG. 16 is a state diagram that schematically illustrates a 
method for reducing inter-SID communication, in accor 
dance with an embodiment of the present invention; 

FIG. 17 is a flow chart that schematically illustrates a 
method for reducing inter-SID communication, in accor 
dance with an embodiment of the present invention; 

FIG. 18 is a diagram that schematically illustrates a 
dependency graph representing a digital filter, in accordance 
with an embodiment of the present invention; 

FIG. 19 is a diagram that schematically illustrates a 
dependency graph representing a Fast Fourier Transform 
(FFT) computation element, in accordance with an embodi 
ment of the present invention; 
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FIG. 20 is a diagram that schematically illustrates a 
scheme for parallelized execution of multiple clock-set-reset 
logic, in accordance with an embodiment of the present 
invention; 

FIG. 21 is a diagram that schematically illustrates an 
execution graph of a dependency problem, in accordance 
with an embodiment of the present invention; 

FIG. 22 is a flow chart that schematically illustrates a 
method for partitioning an execution graph between a Cen 
tral Processing Unit (CPU) and a GPU, in accordance with 
an embodiment of the present invention; 

FIG. 23 is a diagram that schematically illustrates execu 
tion sequences partitioned into multiple GPU invocations, in 
accordance with an embodiment of the present invention; 

FIG. 24 is a diagram that schematically illustrates a 
process for partitioning execution sequences into phases, in 
accordance with an embodiment of the present invention; 

FIG. 25 is a flow chart that schematically illustrates a 
method for partitioning execution sequences into phases, in 
accordance with an embodiment of the present invention; 

FIG. 26 is a flow chart that schematically illustrates a 
method for avoiding unnecessary execution using sensitivity 
information, in accordance with an embodiment of the 
present invention; 

FIG. 27 is a diagram that schematically illustrates execu 
tion sequences with triggered elements, in accordance with 
an embodiment of the present invention; and 

FIG. 28 is a diagram that schematically illustrates an 
execution sequence with a multiplexed output, in accor 
dance with an embodiment of the present invention. 

DETAILED DESCRIPTION OF EMBODIMENTS 

Overview 

Various types of computational tasks in a wide range of 
fields can be represented as dependency problems, i.e., as a 
set of atomic processing elements having execution depen 
dencies. Dependency problems are often large and complex, 
and their execution often involves high computational com 
plexity and execution time. Therefore, it is advantageous to 
execute dependency problems on multiple processors that 
operate in parallel. The execution dependencies between 
processing elements, however, often make dependency 
problems difficult to partition into parallel computing tasks. 

Embodiments of the present invention provide improved 
methods and systems for executing dependency problems by 
parallel processors. The embodiments described herein refer 
mainly to simulation of hardware design, but the disclosed 
techniques can be applied in various other fields and appli 
cations. The disclosed methods and systems operate on a 
dependency problem, which comprises atomic Processing 
Elements (PEs) having execution dependencies. A compiler 
compiles the dependency problem for concurrent execution 
on a multiprocessor device comprising multiple processors, 
such as a Graphics Processing Unit (GPU). 

In some embodiments, the compilation process arranges 
the PEs in a series of GPU invocations, also referred to as 
phases. The partitioning into a series of invocations is used 
as a synchronization mechanism: By definition, the GPU 
completes execution of a given invocation before starting to 
execute the next invocation in the series. As a result, the 
outputs of the PEs in a given invocation are guaranteed to be 
available as inputs for the PEs in subsequent invocations. 
Thus, in some embodiments the compiler preserves the 
execution dependencies between PEs by appropriately 
assigning PES to invocations. Maintaining synchronization 
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6 
in this manner incurs only small processing overhead, in 
comparison with other possible synchronization mecha 
nisms. 

In some embodiments, the compiler assigns part of the 
dependency problem for execution by a Central Processing 
Unit (CPU) rather than by the GPU. In these embodiments, 
the compilation process produces a series of invocations, 
some for the CPU and some for the GPU. Typically, the 
compiler identifies a portion of the dependency problem in 
which the CPU is expected to outperform the GPU (e.g., a 
low-parallelism portion), and a portion of the dependency 
problem in which the GPU is expected to outperform the 
CPU (e.g., a high-parallelism portion). The former portion is 
assigned for execution by the CPU, and the latter portion is 
assigned to the GPU. Typically, although not necessarily, 
CPU invocations tend to occur at the beginning and end of 
the overall execution graph. 

Yet another motivation for dividing the execution into 
phases is to avoid unnecessary execution of PE execution 
sequences. In some embodiments, the compiler is capable of 
inserting into the PE execution sequences logic that inhibits 
unnecessary execution of a PE sequence, under various 
conditions that are detected at run-time. By dividing the 
execution into phases, the likelihood of meeting Such con 
ditions and avoiding unnecessary execution is increased. An 
example partitioning method that achieves this goal is 
described. 

In Such embodiments, the compiler may define various 
conditions that, when detected at run-time, indicate that 
execution of a given PE sequence is unnecessary. In an 
embodiment, the compiler inserts into the given PE 
sequence an ancillary PE that detects such a condition and 
enables or inhibits the sequence execution accordingly. The 
condition may detect, for example, that the input to the given 
PE sequence did not change since the previous execution of 
the sequence, that a trigger to a simulated component along 
the sequence is not asserted, or that execution of the 
sequence will not affect the sequence outputs. In many 
practical scenarios, inhibiting the execution of PE sequences 
under Such conditions provides a considerable reduction in 
run-time. 

Other embodiments that are described herein help to 
exploit the parallel processing capability of the GPU even 
for designs that possess little or no parallelism. For example, 
Some hardware designs comprise a large number of low 
parallelism logic sections that are triggered by multiple 
triggering signals (e.g., clock, set and/or reset signals). In 
Some embodiments, the compiler produces combined logic 
that simulates the multiple logic sections with high paral 
lelism. To preserve the correct functionality, the combined 
logic comprises ancillary logic that selectively activates only 
the parts of the combined logic corresponding to the logic 
sections whose triggering signals are asserted. 

System Description 

FIG. 1 is a block diagram that schematically illustrates a 
system 20 for executing dependency problems, in accor 
dance with an embodiment of the present invention. Various 
kinds of computing tasks can be represented as dependency 
problems, i.e., as a set of atomic processing tasks having 
execution dependencies. Dependency problems can be 
found in a wide range of fields and applications, such as, for 
example, digital hardware design simulation, real-time 
Video processing, image processing, Software-Defined 
Radio (SDR), packet processing in various communication 
applications and error correction coding. System 20 can be 
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used for efficient execution of any Suitable computing task 
that can be represented as a dependency problem. Several 
examples of specific computing tasks, and the applicability 
of the disclosed techniques to these tasks, are described 
further below. 

In the present example, system 20 comprises a server 24, 
which comprises an interface 26, a Central Processing Unit 
28 and one or more Graphics Processing Units (GPUs) 32. 
Server 24 may comprise any suitable workstation or com 
puting platform. Each GPU, as will be described below, 
comprises a large number of processing cores that operate in 
parallel. The methods and systems described herein produce 
software code that maximizes the parallel utilization of the 
GPU cores, and therefore enables system 20 to execute 
highly complex dependency problems with relatively short 
execution times. 

Server 24 interacts with a user via a user station36. Server 
24 accepts from the user, via interface 26, a dependency 
problem to be executed. The server compiles the input 
dependency problem to produce Software code, and then 
runs the code on CPU 28 and GPUs 32. Execution results are 
provided to the user via interface 26. The functionality of 
system 20 can be partitioned between CPU 28 and GPUs 32 
in various ways, depending on the application. The embodi 
ments described herein refer to a single GPU. In general, 
however, any desired number of GPUs can be used. 

Typically, CPU 28 comprises a general-purpose proces 
Sor, which is programmed in Software to carry out the 
functions described herein. The software may be down 
loaded to the processor in electronic form, over a network, 
for example, or it may, alternatively or additionally, be 
provided and/or stored on tangible media, such as magnetic, 
optical, or electronic memory. 
The configuration of system 20 is an example configura 

tion, which is chosen purely for the sake of conceptual 
clarity. Any other Suitable system configuration can also be 
used. For example, user station 36 may communicate with 
server 24 locally or over a communication network. In 
alternative embodiments, the user station functionality can 
be implemented directly on server 24. 
Some aspects of using a system Such as System 20 for 

logic design simulation are addressed in PCT Application 
PCT/IL2009/000330, entitled “Design Simulation using 
Parallel Processors, filed Mar. 25, 2009, which is assigned 
to the assignee of the present patent application and whose 
disclosure is incorporated herein by reference. 

FIG. 2 is a block diagram that schematically illustrates the 
internal structure of GPU 32, in accordance with an embodi 
ment of the present invention. In the present example, GPU 
32 comprises multiple multi-processors 40. Each multi 
processor 40 comprises multiple processors 44, which are 
also referred to herein as processing cores. In some embodi 
ments, each multi-processor 40 comprises a Single Instruc 
tion Multiple Thread (SIMT) processor, as is known in the 
art. In alternative embodiments, each multi-processor 40 
comprises a Single Instruction Multiple Data (SIMD) pro 
cessor, in which all processors 44 run the same instruction 
in each clock cycle. (Different processors may, however, run 
the same instruction over different data.) In a typical appli 
cation, all processors 44 in the entire GPU run the same 
instruction. The differentiation between functions of differ 
ent processors is introduced by the data. The disclosed 
techniques are applicable to both SIMD and SIMT proces 
SOS. 

Each processor 44 can access a number of local registers 
48. The different processors within a given multi-processor 
40 can store data in a shared memory 52. This shared 
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memory is accessible to processors 44 of the given multi 
processor but not to processors of other multi-processors. In 
a typical GPU, each multi-processor also comprises an 
instruction unit 60, which manages the operation of the 
multi-processor. In a typical multi-processor, unit 60 creates, 
manages and executes concurrent threads. In particular, unit 
60 may comprise hardware mechanisms that synchronize the 
operation of different threads running in the multi-processor. 
GPU 32 further comprises a device memory 56, which is 

also referred to herein as an external memory. Memory 
typically comprises a Dynamic Random Access memory 
(DRAM). Unlike shared memory 52, device memory 56 is 
typically accessible to the processors of all multi-processors 
40. On the other hand, access to device memory 56 is 
typically expensive in terms of latency and throughput. In 
order to access memory 56 efficiently, it is typically desir 
able to write into or read from consecutive and aligned 
memory addresses. Some of the methods described herein 
are concerned with producing code that accesses memory 56 
efficiently. 
The basic software code unit that each processor 44 runs 

at any given time is referred to as a thread. Typically, CPU 
28 invokes GPU 32 by providing the GPU with blocks of 
threads. A given block of threads is guaranteed to run on the 
processors of a single multi-processor 40 in SIMD or SIMT 
mode. Thus, the threads in a given block can communicate 
with one another via shared memory 52. 

Typically, the number of threads per block can be greater 
than the number of processors in the multi-processor. The 
number of blocks provided to the GPU can generally be 
greater than the number of multi-processors. The GPU 
comprises a block manager 60, which accepts blocks for 
execution from CPU 28 and schedules the execution of 
blocks and threads according to certain internal criteria. 
These criteria are referred to herein as a built-in scheduling 
policy. 

Thus, other than the guarantee that the threads of a given 
block are executed in the same multi-processor, there is no 
guarantee as to the order in which the threads of a given 
block are executed in the multi-processor. There is also no 
guarantee as to the order in which different blocks are 
executed in the GPU. In other words, CPU 28 generally has 
no control over the internal scheduling policy of the GPU. 
Some of the methods and systems described herein pro 

duce code, which makes use of the architectural features of 
the GPU, such as the ability to synchronize and share data 
among threads in a given block. When partitioning the 
dependency problem into threads, the disclosed methods and 
systems preserve the inherent dependencies between differ 
ent atomic processing tasks, given the non-guaranteed 
nature of thread and block execution in the GPU (i.e., 
irrespective of the scheduling policy of the GPU). 

In particular, the GPU is typically specified to execute a 
certain number of blocks simultaneously. If the GPU is 
invoked with a larger number of blocks, the blocks are 
scheduled by block manager 60. Some of the methods and 
systems described herein invoke the GPU with a number of 
blocks that does not exceed the maximum number of blocks 
that can be executed simultaneously. As a result, the internal 
scheduling policy of block manager 60 is effectively 
bypassed. These features are explained in detail further 
below. 
The GPU configuration of FIG. 2 is an example configu 

ration, which is chosen purely for the sake of conceptual 
clarity. In alternative embodiments, any other suitable GPU 
configuration can also be used. A typical GPU device that 
can be used for this purpose is the GTX285 device, produced 
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by NVIDIA Corp. (Santa Clara, Calif.). This device com 
prises thirty multi-processors, each comprising eight pro 
cessing cores. Further alternatively, although the embodi 
ments described herein refer to the use of a GPU, the 
disclosed methods and systems can be used with various 
other types of processors that operate multiple processing 
cores in parallel, such as Digital Signal Processors (DSPs) 
and multi-core Central Processing Units (CPUs). 

Representing Dependency Problems Using 
Dependency Graphs 

CPU 28 represents an input dependency problem in terms 
of atomic execution tasks, which are referred to herein as 
Processing Elements (PEs). When the dependency problem 
is executed by GPU 32, each PE corresponds to a thread that 
is executed by a certain processor 44. The CPU typically 
holds a library of PE types, each type performing a certain 
atomic task (e.g., look-up table lookups, flip-flops, buffering 
operations, memory access operations, multiplexing opera 
tions, arithmetic operations, logical operations or any other 
suitable task types). Each PE belongs to one of the types, and 
operates on certain data. 
When processors 44 operate in SIMT mode, each thread 

typically comprises code that is able to run the different PE 
types. When the thread is executed, the actual PE type 
executed by the thread is selected by the data. The data read 
by the thread can select the actual PE type, for example, by 
jumping to a program address that carries out the desired PE 
functionality, or using any other Suitable selection means. A 
typical thread may thus execute the following flow: 

Read the desired PE type from memory 56, and jump to 
the appropriate address that implements this PE type. 

Read the PE parameters and input values from memory 
56. 

Execute the desired PE functionality. 
Write the PE output values to memory 56. 
(In order to access memory 56 efficiently, CPU 28 may 

divide the PEs into PE Groups—PEGs. This feature is 
addressed in detail further below, and also in PCT Applica 
tion PCT/IL2009/000330, cited above.) Typically, the thread 
load and store operations are not linked with the PE param 
eters of the thread. For example, a given PEG may support 
up to sixty-four load commands from the device memory to 
the shared memory. A given thread may load data that is not 
used by its PEs. 
When using the above-mentioned technique in a SIMT 

processor, it is generally desirable that threads that are 
scheduled to run concurrently in a given multi-processor 
SIMT unit will run the same PE types, so that the unit will 
run effectively in SIMD mode. 

FIG. 3 is a diagram that schematically illustrates a depen 
dency problem represented by a dependency graph, in 
accordance with an embodiment of the present invention. 
CPU 28 represents the dependency problem using multiple 
PEs, which are interconnected by execution dependencies. A 
given dependency specifies that the output of a certain PE 
(referred to as the “driving PE) is to be used as input to 
another PE (referred to as the “driven” PE). In other words, 
the driven PE depends on the driving PE. Such a dependency 
means that the driving PE is to be executed before the driven 
PE, since otherwise the input of the driven PE will not be 
valid. 

FIG. 3 shows an example dependency problem 68, which 
is converted into a dependency graph 72. Graph 72 com 
prises multiple vertices 76 that represent the PEs, and 
directed edges 80 that represent the execution dependencies. 
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10 
A given edge is directed from the driving PE to the driven 
PE. In some embodiments, CPU 28 produces multiple 
sub-graphs 78 from dependency graph 72. Unlike depen 
dency graph 72, which may generally be cyclic, each 
sub-graph 78 is a-cyclic. 
The methods described below convert a give a-cyclic 

sub-graph into code that is executed on GPU 32. If the 
dependency problem is represented using multiple Sub 
graphs, the disclosed methods are typically applied to each 
Sub-graph separately. In some embodiments, commonalities 
between variables among different Sub-graphs can be 
exploited to increase computational efficiency. These fea 
tures are addressed further below. 

Representing and Executing Dependency Graphs 
Using Static Invocation Database (SID) 

In some embodiments, CPU 28 compiles the input depen 
dency problem to produce an invocation data structure, 
which is referred to herein as a Static Invocation Database 
(SID). The SID is provided to GPU 32 for execution. CPU 
28 typically runs a compiler program that produces the SID. 
In the description that follows, actions performed by CPU 28 
are sometimes referred to as being carried out by the 
compiler, for the sake of clarity. In alternative embodiments, 
however, the compiler may run on any suitable processor So 
as to produce the SID. The resulting SID can then be 
provided to system 20 for execution. 
The SID comprises a set of PE execution sequences, 

which are guaranteed to run in parallel to one another and at 
a particular order, irrespective of the internal scheduling 
policy of the GPU. When the GPU is invoked with the SID, 
each execution sequence is provided to the GPU as a block 
of threads. Thus, the PEs within each sequence are guaran 
teed to run in the same multiprocessor 40 of GPU 32. 
Additionally, the number of execution sequences in the SID 
does not exceed the maximum number of blocks that can be 
executed simultaneously by the GPU. As a result, the 
execution sequences are guaranteed to run simultaneously in 
the GPU, and are generally unaffected by the internal 
scheduling policies of block manager 60. In other words, the 
internal scheduling policy of the GPU is effectively 
bypassed, and the execution order of the PEs is fully 
controlled by the SID. 

FIG. 4 is a diagram that schematically illustrates a SID 90, 
in accordance with an embodiment of the present invention. 
SID 90 comprises a set of execution sequences, in the 
present example four sequences 98A . . .98D. Generally, 
however, any Suitable number of sequences, which is greater 
than one but does not exceed the maximum number of 
blocks that can be executed simultaneously by the GPU, can 
be used. Each execution sequence comprises a series of 
PEGs 94, which are executed one following the other. 
(Grouping of PEs into PEGs is addressed further below.) 
The number of blocks that the GPU can run simultane 

ously is typically given by the number of multiprocessors 40 
multiplied by the number of blocks that can be executed 
simultaneously by each multiprocessor. The actual number 
of concurrent blocks per multiprocessor may sometimes be 
limited by multiprocessor resources (e.g., registers, shared 
memory or thread count), and thus it may be smaller than the 
specified number of concurrent blocks per multiprocessor. 

In some cases, the actual number of concurrent blocks per 
multiprocessor can be written as min((multiprocessor reg 
ister count/program reg count), (multiprocessor shared 
memory size/program shared memory), (number of 
threads per multiprocessor/number of threads per block), 
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specified number of concurrent blocks per multiprocessor). 
The GTX285 GPU, for example, has 30 multiprocessors 40. 
Each multiprocessor comprises 16,384 registers and a 16 
Kbyte shared memory, and Support up to 1,024 concurrent 
threads and up to eight concurrent blocks. In an example 5 
embodiment, the GPU code produced by the compiler uses 
2 KB of shared memory and fifteen registers per thread, 
wherein each block comprises sixty-four threads. This code 
results in a total of 15x64=240 registers per block. In this 
example, the number of concurrent blocks per multiproces- 10 
sor is min(16 KB/2 KB,16384/240,1024/64.8)—min(8.68, 16, 
8)=8. The maximum number of concurrent blocks that can 
be executed simultaneously by the entire GPU is thus 
8x3O=240. 

Different execution sequences may generally have differ- 15 
ent lengths, i.e., different execution times. Typically, CPU 28 
attempts to compile the dependency problem into a SID 
whose execution time is minimal. In other words, the CPU 
attempts to produce a SID having the shortest execution 
sequences, without exceeding the maximum permitted num- 20 
ber of sequences. An example SID generation process of this 
sort is described in detail further below. 

Since each execution sequence comprises a block of 
threads that are guaranteed to run in the same multiprocessor 
40, the PEGs within a given sequence are guaranteed to run 25 
in the correct order. Thus, placing a driving PE before its 
respective driven PE in the same execution sequence would 
guarantee that the execution dependency between the PEs 
will not be violated. Moreover, PEGs belonging to the same 
execution sequence may exchange data using shared 30 
memory 52 of the multiprocessor that runs this sequence. 

In many dependency problems, however, the constraint of 
placing every pair of dependent PES in the same execution 
sequence is too severe. Such a constraint often produces a 
Small number of extremely long execution sequences, and 35 
therefore increases execution time and limits the achievable 
parallelization. In many cases, it is desirable to place depen 
dent PEs in different execution sequences while still pre 
serving the execution dependencies. 

In some embodiments, the compiler forces synchroniza- 40 
tion between different execution sequences in the SID, in 
order to preserve the dependencies between PEs that are 
placed in different sequences. In FIG. 4, for example, a PEG 
102 in sequence 98B depends on a PEG 106 in sequence 
98A, as indicated by a dependency 110. (More accurately, 45 
PEG 102 contains a PE that depends on a PE in PEG 106.) 
In order to ensure that PEG 106 executes completely before 
PEG 102 begins execution, the compiler places a synchro 
nization element, e.g., a SYNC PEG 114, in sequence 98B 
before PEG 102. SYNC 114 halts the execution of sequence 50 
98B until PEG 106 completes execution and produces valid 
output. The output of PEG 106 is then provided as input to 
PEG 102, and sequence 98B may resume execution. Simi 
larly, a PEG 118 in sequence 98C depends on a PEG 122 in 
sequence 98D, as indicated by a dependency 126. In order 55 
to preserve this dependency, the compiler places a SYNC 
PEG 130 in sequence 98C before PEG 118. 

Synchronization between sequences is typically imple 
mented using device memory 56. For example, a driving 
PEG may signal its execution status by writing to a certain 60 
region in device memory 56. A SYNC PEG may poll this 
region and resume execution of its sequence only when the 
driving PEG has completed execution. 

Note, however, that not every pair of dependent PEs in 
different sequences necessarily requires addition of a SYNC 65 
PEG. Assume, for example, that the last PEG in sequence 
98C depends on the first PEG in sequence 98D. In this case, 
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it is not necessary to add another SYNC PEG to sequence 
98C, since the existing SYNC PEG 130 already ensures that 
the last PEG in sequence 98C will not execute unless the first 
PEG in sequence 98D completed execution. 

Generally, a certain SYNC PEG may depend on any 
desired number of PEGs in any desired number of 
sequences, i.e., halt execution of a given sequence until a 
predefined set of driving PEGs have completed execution. In 
Some embodiments, the synchronization functionality may 
be embedded in the driven PEGs without using dedicated 
SYNC PEGS. 

Forcing synchronization between sequences can be 
highly-effective in balancing the execution times of different 
sequences, and thus increasing parallelization. On the other 
hand, the synchronization mechanism introduces latency 
and involves costly access to device memory 56. As will be 
explained below, the compiler typically attempts to trade-off 
these advantages and penalties in order to achieve the lowest 
overall execution time of the SID. 

FIG. 5 is a flow chart that schematically illustrates a 
method for executing a dependency problem, in accordance 
with an embodiment of the present invention. The method 
begins with CPU 28 receiving an input dependency prob 
lem, which is represented as a dependency graph, at a graph 
input step 134. The CPU partitions the dependency graph 
into directed, a-cyclic Sub-graphs, at a partitioning step 138. 
Partitioning of a dependency graph into directed, a-cyclic 
Sub-graphs is addressed, for example, in PCT Application 
PCT/IL2009/000330, cited above. For each sub-graph, the 
CPU groups the PEs into PEGs, at a grouping step 142, and 
arranges the PEGS in a SID, at a SID construction step 146. 
The CPU invokes GPU 32 to execute the SID, at an 
invocation step 150. The GPU executes the PEG sequences 
in the SID, so as to produce a result of the computing task. 

Efficient SID Generation 

As noted above, the compiler running on CPU 28 typi 
cally attempts to produce a SID having the shortest execu 
tion time for a given maximum number of execution 
sequences. The input to Such a process is a directed, a-cyclic 
dependency sub-graph of PEs, which is to be converted to a 
SID. In some embodiments, the compiler generates the SID 
by gradually filling a two-dimensional grid of warps with 
PES, in a manner that preserves the execution dependencies 
between the PES. 
A warp is a group of threads of the same type, which run 

concurrently and efficiently in a given multiprocessor. The 
maximum number of threads (and thus PEs) in a warp may 
vary from one GPU type to another. In the NVIDIA GTX285 
device, for example, each warp runs thirty-two threads. As 
will be shown below, several warps can later be joined to 
form a PEG. 

FIG. 6 is a diagram that schematically illustrates a warp 
grid 160 used for SID generation, in accordance with an 
embodiment of the present invention. Grid 160 comprises 
multiple execution sequences 164, each comprising multiple 
warp slots 168. The warp slots are initially empty, and the 
compiler gradually fills them with PEs. In order to force 
synchronization between different execution sequences, the 
compiler sometimes inserts SYNC warps 172 into the 
sequences. (Note that the SYNC warps differ from ordinary 
warps in that they do not contain threads for execution. The 
SYNC warps imitate the latency of a SYNC operation that 
will be inserted into the sequence.) At the end of the process, 
each PE in the input sub-graph is placed in one of the warp 
slots (each warp slot may contain multiple PEs of the same 
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type). The compiler then forms PEGs 176 from the warps, 
in some cases joining two or more adjacent warps in a given 
sequence to form a PEG. The grid of PEGs is output as the 
desired SID. 

Typically, the number of execution sequences 164 in grid 
160 is set so as not to exceed the maximum number of thread 
blocks that the GPU can run simultaneously, so that execu 
tion of the resulting SID will not be affected by internal GPU 
scheduling. The number of warp slots per sequence is 
typically initialized as the length of the longest path in the 
input Sub-graph. 

Because of the dependencies between PEs, each PE can 
only be placed in a certain partial Subset of the columns of 
grid 160. This subset is referred to as the allocation interval 
of the PE. For example, a PE that depends on another PE 
cannot be placed in the first column of the warp grid (i.e., at 
the beginning of any execution sequence), since the driving 
must be executed first. Similarly, a PE that drives another PE 
cannot be placed in the last column of the grid. 

Generally, each PE in the Sub-graph has a certain alloca 
tion interval, which defines the columns of grid 160 in which 
the PE can be potentially placed. The allocation interval of 
a PE X depends on two parameters, which are referred to as 
the backward phase (denoted BP(x)) and the forward phase 
(denoted PF(x)) of PE X. The backward phase of a given PE 
is defined as the number of PEs along the longest path in the 
sub-graph that leads to this PE. The forward phase of a given 
PE is defined as the number of PEs along the longest path in 
the sub-graph that begins at this PE. 

Using this terminology, the length of the longest path in 
the Sub-graph (and therefore the number of columns in warp 
grid 160) is given by L-max(BP(x)+FP(x)+1, wherein the 
maximum is taken over all the PEs X in the sub-graph. The 
allocation interval of a PE X is given by BP(x).L-FP(x). 
These allocation intervals reflect the situation at the begin 
ning of the allocation process. The allocation intervals 
typically change as the allocation process progresses. 

FIG. 7 is a diagram that schematically illustrates alloca 
tion intervals for placing PES in a grid of warps, in accor 
dance with an embodiment of the present invention. FIG. 7 
refers to an example Sub-graph 180, which comprises eight 
PEs 76 denoted A... H. The PEs are to be placed in a warp 
grid having two sequences 164. Since the longest path 
through this graph is three PEs long, each sequence 164 in 
this example comprises three warp slots 168. 

The forward and backward phases of the eight PEs are 
given in the following table: 

PE A. B C D E F G H 

FP 2 2 1 1 1 O O O 
BP O O O 1 1 1 2 2 

At the beginning of the allocation process, i.e., when the 
warp grid is still empty, the eight PEs have allocation 
intervals 184 as shown in the figure. In this example, PEs A 
and B can only be placed in the first column of the grid, since 
each of them drives a path of two PEs. PEC can be placed 
anywhere but the last column, since it drives a one-PE path. 
PEs D and E can only be placed in the second column, since 
each of them is driven by a certain PE and drives a certain 
PE. PE F can be placed anywhere but the first column, it is 
driven by a one-PE path. Finally, PEs G and H can only be 
placed in the last column, since each of them is driven by a 
two-PE path. 
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The example of FIG. 7 demonstrates that some PEs are 

more heavily-constrained than others in terms of the possi 
bilities of placing them in grid 160. A PE having a short 
allocation interval is heavily constrained, whereas a PE 
having a longer allocation interval has more degrees of 
freedom in allocation. 

FIG. 8 is a flow chart that schematically illustrates a 
method for generating a SID, in accordance with an embodi 
ment of the present invention. The method begins with the 
compiler running on CPU 28 accepting a dependency Sub 
graph for conversion into a SID, at an input step 190. In 
Some embodiments, the compiler also accepts the complete 
dependency graph from which the Sub-graph was derived, 
which typically comprises additional PEs and dependencies. 
When generating a single SID irrespective of other SIDs, 
accepting the complete graph is usually unnecessary. The 
compiler may use the complete graph, however, when 
considering other SIDs of other sub-graphs of the same 
graph. This feature is addressed further below. In addition, 
the compiler may accept as input the number of execution 
sequences N, the latency D of a SYNC in warp slot units, the 
warp size (i.e., the number of PEs per warp) and the PE 
types. 
The compiler initializes an allocation interval for each PE 

in the sub-graph, at an interval initialization step 194. As 
explained above, the initial allocation interval of a PE X is 
given by BP(x).L-FP(x). 
The compiler defines PE input and output groups, at a 

group definition step 198. An input group comprises a group 
of PEs having a common input (i.e., PEs that are driven by 
the same driving PE). The common driving PE is referred to 
as the pivot of the group. An output group comprises a group 
of PEs having a common output (i.e., PEs that drive the same 
driven PE). The common driven PE is referred to as the pivot 
of the group. 

For example, the compiler may create an output group for 
every PE X in the entire dependency graph, such that PE X 
is the pivot of that group. The PEs in this output group 
comprise the PEs in the sub-graph, which drive PE X. 
Similarly, the compiler may create an input group for every 
PE X in the entire dependency graph, such that PE X is the 
pivot of that group. The PEs in this input group comprise the 
PEs in the sub-graph, which are driven by PE X. Note that 
in this example the compiler creates input and output groups 
for each PE in the entire graph. The PEs in the groups, 
however, are selected only from the Sub-graph and not from 
the entire graph. 
The reason for constructing the input and output groups is 

that it is generally desirable to place PEs having common 
inputs and/or outputs in the same execution sequence (al 
though possibly in different warps). The reason for consid 
ering the entire graph is that it is sometimes desirable to 
place in the same sequence PEs that serve as common inputs 
or outputs of PEs in other SIDs. The compiler assigns each 
PE in the Sub-graph a group score, which is defined as the 
number of input and output groups that contain the PE. 
The compiler initializes a grid of warps having N execu 

tion sequences, each sequence having L warp slots, at a grid 
initialization step 202. 

In some embodiments, the compiler pre-sorts the PEs of 
the Sub-graph, at a sorting step 206. The compiler sorts the 
PEs in increasing order of the size of their allocation 
intervals. The PEs having the same allocation interval size 
are sorted in decreasing order of their group score. Subse 
quently, the compiler selects PES for placement in the grid 
according to the sorted order. Thus, the PEs having the 
shortest allocation intervals are placed in the grid first. For 
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a given allocation interval size, PEs having a large group 
score (PEs that are members of a large number of input 
and/or output groups) are placed first. In an alternative 
embodiment, the compiler may select the next PE for 
placement in the grid by selecting the M PEs having the 
shortest allocation intervals (M denoting a predefined inte 
ger). From these PEs, the compiler chooses the PE having 
the largest group score. The above-mentioned allocation 
orders attempts to allocate the most heavily-constrained PEs 
first, so as to leave as many degrees of freedom for Subse 
quent allocation iterations. 
The compiler selects the next PE for placement in the grid 

from among the sorted PEs, at a current PE selection step 
210. The compiler then computes a respective allocation 
cost for each possibility of placing this PE in the grid, at an 
allocation cost computation step 214. Typically, the com 
piler examines the warp slots within the PEs allocation 
interval, over the N execution sequences. (In some cases, a 
certain warp is not a candidate for placing a given PE even 
though it is within the PE's allocation interval. For example, 
the warp may already be fully populated, or it may comprise 
PEs whose type is different from that of the examined PE.) 

In some embodiments, the compiler may examine warp 
slots that lie slightly outside the allocation interval of a given 
PE. For example, in some cases it may be preferable to 
deliberately place a PE outside beyond its allocation interval 
(and thus slightly increase the SID execution time), as 
opposed to adding a SYNC (which may incur a worse 
penalty in SID execution time). Thus, in Some embodiments, 
the compiler examines the allocation interval plus a number 
of warp slots that is on the order of the latency introduced 
by a SYNC, 

The compiler computes an allocation cost for each poten 
tial warp slot. The allocation cost is a quantitative measure, 
which indicates the potential penalty of placing the PE in a 
particular warp slot. 
The compiler may apply any Suitable criteria or heuristic 

in computing allocation costs. In an example implementa 
tion, the following rules can be used: 

Increase the cost by 1000 for each warp-slot delay in the 
total SID execution time, which would be caused by 
placing the PE in the examined warp slot. This rule 
imposes a severe penalty for increasing the total execu 
tion time. 

Reduce the cost by 10 for each PE, which is already 
placed in the same sequence as the examined warp slot 
and is a member of an input or output group that also 
contained the examined PE. This rule gives preference 
to placing members of input or output groups in the 
Same Sequence. 

Reduce the cost by 10 for each execution dependency 
(direct or indirect, forward or backward), which is 
associated with the examined PE and whose other PE 
resides in the same sequence as the examined warp slot. 
This rule gives preference to placing both ends of an 
execution dependency in the same sequence (and 
potentially avoiding insertion of a SYNC between 
sequences). 

Increase the cost by the column distance from the optimal 
column of the examined PE. The optimal column of a 
PEX is defined as BP(x)-L/ORIG L, wherein L denotes 
the current number of populated columns in the grid, 
and L ORIG denotes the longest path in the Sub-graph. 
Note that the optimal column may fall outside of the 
allocation interval of the PE. 

In some embodiments, the compiler may compute the 
allocation cost by examining the different critical Sub-graph 
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paths that traverse the PE and calculating their durations, 
assuming the PE were placed at a certain warp slot. This sort 
of calculation would consider the additional SYNCs that 
would be added and their associated costs. Further addition 
ally or alternatively, the compiler may assign allocation 
costs to the different warp slots in the examined PE's 
allocation interval using any other Suitable criterion or 
heuristic. 
The compiler now places the PE in the warp slot having 

the lowest allocation cost, at a placement step 218. If 
necessary due to the new placement, the compiler inserts a 
SYNC, at a SYNC insertion step 222. A SYNC has a 
predefined duration of an integer number of warp slots, e.g., 
two slots. Each SYNC comprises a list of one or more warps 
whose execution must finish before the SYNC resumes 
execution of its own sequence. The warps that are polled by 
a given SYNC may reside in any number of sequences. The 
list typically may not contain multiple warps from the same 
Sequence. 
The compiler updates the allocation intervals of the 

remaining unallocated PEs to reflect the placement possi 
bilities following the new placement, at an interval updating 
step 226. 

In some embodiments, the compiler updates the group 
scores of the remaining PES following the new placement, at 
a group score updating step 230. For example, the compiler 
may increase the group scores of PES that share the same 
input or output group with the newly-placed PE. This rule 
gives preference to input or output groups whose members 
are already partially allocated. As another example, the 
compiler may increase the group scores of PES that share an 
execution dependency (direct or indirect, forward or back 
ward) with the newly-placed PE. 
The compiler checks whether all PEs in the sub-graph 

have been placed in the warp grid, at a checking step 234. 
If there are remaining PEs for allocation, the method loops 
back to step 210 above, in which the compiler selects the 
next PE to be placed. If all PEs have been allocated, the 
compiler groups successive warps into PEGs, at a PEG 
creation step 238. Typically, each PEG may comprise only 
a certain number of Successive warps of the same sequence, 
e.g., a maximum of two warps, plus possibly a SYNC. In 
addition, a PEG may comprise only PEs that are independent 
of one another, since there is no guarantee as to the order of 
PE execution within the PEG. In FIG. 6 above, for example, 
some PEGs 176 comprise only a single warp, some PEGs 
comprise two warps, and one of the PEGs comprises one 
warp and one SYNC. 
At this stage, the compiler outputs the resulting populated 

warp grid (a set of N PEG execution sequences) as the 
desired SID, at an output step 242. 

Typically, the SID generation process described above 
assumes that the warp slot duration takes into account the 
durations of the different PEG operations, such as load, 
synchronization, execution and store commands. In some 
cases, however, load and store command durations can be 
neglected. The description above assumes that all warps are 
of the same duration, and that the duration of a SYNC is an 
integer multiple of a warp slot. The description also assumes 
that the duration of a PEG is equal to the sum of durations 
of its warps and SYNCs. All of these assumptions, however, 
are not mandatory, and alternative SID generation schemes 
may make other assumptions. 

In some cases, the compiler has to increase the maximum 
execution sequence length, i.e., the total SID execution time. 
Increasing L. may be needed, for example, when the com 
piler is unable to place a certain PE in any of the warps in 
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the PEs allocation interval. L may also be increased follow 
ing insertion of a SYNC, although some SYNC insertions do 
not cause an increase in L. An increase in L typically means 
that previously-placed warps and SYNCs beyond a certain 
column are pushed to the right. This push may trigger a 
chain of Subsequent push-right operations of other warps 
and/or SYNCs. When computing the allocation cost of a 
certain warp position (at step 214 above), the cost is usually 
increased only in response to push-right operations that 
increase the overall SID execution time L. Push-right opera 
tions that do not change L typically do not incur allocation 
COSt. 

In many situations, the compiler encounters several 
options for placing a given PE. In some cases, it may not be 
globally optimal to place a given PE in the lowest-cost 
position (at step 218 above) because this placement may 
cause considerable penalties in future PE placements. There 
fore, the compiler may improve the PE allocation process by 
considering two or more alternative SIDs in parallel, and 
carry out two or more respective alternative allocation 
processes in these SIDS. Various search methods. Such as 
"A-star Schemes or even genetic search algorithms, may be 
used to converge to the globally best SID. 

Memory Management for Efficient Sid Operation 

As can be appreciated, executing a SID on GPU 32 often 
involves large numbers of memory access operations. In the 
GPU, data can be stored in device memory 56 or in shared 
memory 52. Device memory 56 typically offers large storage 
space (e.g., several Gigabytes), but access to this memory is 
costly in terms of latency. Typically, multiprocessors 40 
access device memory 56 at a large granularity (e.g., 512 bits 
at a time). Thus, the cost of reading or writing a single bit 
to device memory 56 is similar to the cost of reading or 
writing 512 bits. Read and write commands to device 
memory 56 are typically aligned to these large-granularity 
addresses. On the other hand, shared memory 52 in each 
multiprocessor can be accessed by processors 44 of that 
multiprocessor at a relatively fast access time, in Small 
granularity and without alignment. The size of shared 
memory 52, however, is considerably smaller than that of 
the device memory (e.g., on the order of Kilobytes as 
opposed to Gigabytes). 

In some embodiments of the present invention, the PEG 
sequences in the SID use shared memories 52 as cache 
memories, in order to access device memory 56 efficiently 
and minimize the associated latency penalties. In the 
description that follows, the terms “shared memory” and 
“cache' are sometimes used interchangeably. 

It is important to note that the caching and memory 
management schemes described herein are fully-determined 
during compilation, and remain deterministic throughout 
SID execution. This feature is in contrast to some known 
caching schemes, whose operation may vary according to 
data at runtime and are therefore statistical in nature. In the 
techniques described herein, the pattern and timing at which 
data is requested and produced by the different PEG 
sequences is known a-priori during compilation. The com 
piler may exploit this knowledge and decide on certain 
optimal memory management means (e.g., caching in or out 
of a certain variable at a certain time, or consolidating 
multiple read requests into a single read operation) that 
access device memory 56 efficiently. These means will be 
carried out deterministically by the GPU at runtime. 

FIG. 9 is a diagram that schematically illustrates a cache 
management scheme, in accordance with an embodiment of 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
the present invention. FIG. 9 refers to a specific PEG 
execution sequence, which comprises nine PEGs denoted 
P1 . . . P9. The PEGs use as input six variables denoted 
A . . . F, with each PEG using a certain subset of these 
variables. In the present example, shared memory 52 can 
hold a maximum of three variables at any given time. The 
compiler defines a deterministic caching pattern, which 
specifies when certain variables are to be fetched from 
device memory 56 into shared memory 52 and when certain 
variables are to be discarded, so as to optimize the use of the 
limited-size shared memory and minimize the number of 
read operations from the device memory. 
A region 250 at the top of the figure shows the variables 

used as input by each PEG. For example, PEG P1 uses 
variables A and B as input, PEG P2 uses variables B and C, 
PEG P3 uses only variable A, and so on. An up-pointing 
arrow denotes a variable that is fetched from device memory 
56 to shared memory 52 for use as input by the correspond 
ing PEG. A down-pointing arrow denotes a variable that is 
discarded from the shared memory following execution of a 
PEG, in order to free space for a variable needed in the next 
PEG. A variable marked with a bold frame denotes a cache 
hit, i.e., a variable that is already present in the cache and 
need not be fetched from the device memory. For example, 
in preparation for executing PEG P2 it is not necessary to 
fetch variable B from the device memory, since it is already 
present in the shared memory from the previous PEG. 
A region 254 at the bottom of the figure shows the content 

of shared memory 52 at the beginning of each PEG. For 
example, at the beginning of PEG P1 the shared memory 
holds variables A and B. Variable C is fetched at the 
beginning of PEG P2, and the shared memory thus holds 
variables A, B and C. The cache does not change during 
PEG P3. PEG P4, however, needs variable D as input. 
Therefore, variable A is discarded at the end of PEG P3 and 
variable D is fetched at the beginning of PEG P4. The 
process continues throughout the PEG sequence execution. 

For each variable that is present in the shared memory at 
a given time, the compiler records the identity of the next 
PEG in the sequence that will request this variable as input. 
The compiler typically determines these PEG identities by 
scanning the PEG sequence according to the execution 
order. The recorded PEG identities are shown in region 254 
at the bottom of the figure. For example, when variables A 
and B are fetched at the beginning of PEG P1, the compiler 
notes that variable A will be requested next by PEG P3, and 
that variable B will be requested next by PEG P2. As another 
example, at the beginning of PEG P3, the compiler notes that 
variable A will be requested next by PEG P5, and variables 
B and C will both be requested next by PEG P4. A symbol 
OO indicates a variable that will not be requested by any of the 
Subsequent PEGs in the sequence. 
Using these records, the compiler decides which variable 

is to be discarded when space is to be freed in the shared 
memory. When a variable needs to be discarded, the com 
piler typically selects to discard the variable which will be 
requested by a PEG that is furthest away in the sequence, 
i.e., has a largest distance from the current PEG. Consider, 
for example, the situation at the end of PEG P3. At this point 
in time, the shared memory holds variables A, B and C. One 
of these variables needs to be flushed out in order to enable 
fetching of variable D for PEG P4. Since variable A will be 
requested by PEG 5 and variables B and C will be requested 
earlier by PEG P4, variable A is discarded. 
The example of FIG. 9 refers to a specific sequence, 

specific variables and a specific cache size. Generally, 
however, this cache management scheme can be used with 
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any other suitable PEG sequence, set of variables and cache 
size. In alternative embodiments, the compiler may design 
the caching-in and caching-out of variables in shared 
memory 52 using any other suitable criterion. The multi 
processor 40 that is assigned by the GPU to execute a given 
PEG sequence fetches variables from device memory 56 to 
shared memory 52 according to the deterministic pattern set 
by the compiler. Typically, a similar process is carried out for 
each PEG sequence in the SID. The compiler may use any 
suitable data structures for recording the PEGs that will 
request the different variables. 

In some embodiments, the compiler aggregates the fetch 
ing of multiple variables from device memory 56 into shared 
memory 52 in a single fetch command, so as to reduce the 
number of costly fetch operations from the device memory. 
As noted above, in a typical GPU the overhead of fetching 
a single variable from the device memory is similar to the 
overhead of fetching variables that occupy 512 bits, and 
therefore it is advantageous to aggregate and fetch a large 
number of variables in a single command. 

FIGS. 10A and 10B are diagrams that schematically 
illustrate a variable pre-fetching scheme, in accordance with 
an embodiment of the present invention. The present 
example refers to a PEG execution sequence, which com 
prises nine PEGs denoted P1 ... P9. The PEGs use as input 
six variables denoted A. . . D, S and T. Variables A. . . D 
are used internally to the present SID, whereas variables S 
and T comprise inter-SID variables. In each of FIGS. 10A 
and 10B, each column corresponds to a certain PEG in the 
sequence, and each row corresponds to a certain variable. 

Each variable is marked with a shaded pattern from the 
point this variable is requested as input by a certain PEG. For 
example, variable B is first requested by PEG P3, and 
therefore this variable is marked with a shaded pattern from 
PEG P3 onwards. Vertical lines 258 indicate SYNCs 
between the present PEG sequence and some other sequence 
or sequences, which are carried out by the subsequent PEGs. 
In the present example, SYNCs are carried out by PEGs P1, 
P4 and P7. For each SYNC 258, one or more marks 262 
indicate the specific variables that are synchronized by the 
SYNCs. For example, the SYNC carried out by PEG P4 
halts execution until variables C and D are ready by another 
Sequence. 

In some embodiments, the compiler scans the PEG 
sequence and sets the timing of device memory fetch 
commands, as well as the variables that are fetched by each 
command. Typically, the compiler attempts to set the timing 
and content of the fetch commands while considering (1) the 
distances to the PEGs that will need each variable, and (2) 
a number of fetch operations per command that is consid 
ered efficient. Based on this information, the compiler 
attempts to combine fetching of two or more variables in a 
single command. 

In some embodiments, the compiler scans the PEG 
sequence in reverse order (i.e., opposite of the execution 
order). For each variable, the compiler marks a respective 
fetching interval, i.e., a time interval during which the 
variable can be fetched. This time interval begins at the time 
the variable becomes valid, and ends at the PEG that first 
requests this variable as input. The compiler then sets the 
timing and content of the fetch operations based on these 
time intervals. 

Typically, for each variable and for each PEG, the com 
piler marks the distance (in PEG units) of the PEG from the 
PEG that will first request this variable, as long as the 
variable is valid. A given variable can be assumed valid 
following the latest SYNC 258 that is associated with this 
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variable. The distances marked by the compiler in the 
present example are shown in FIGS. 10A and 10B. For 
example, variable D is first requested by PEG P6, and may 
be fetched anytime starting from PEG P4 (following the 
SYNC that waits on this variable). The compiler sets the 
timing and content of the fetch operations based on the 
marked distances. For example, the compiler may scan the 
PEG sequence along the execution order, identify variables 
that need to be fetched, and combine them with fetching of 
other variables in order to produce efficient fetch commands. 
The compiler may combine two or more variables whose 
fetching intervals overlap. The combined fetch command is 
positioned during this overlap. 
Assume, for example, that a command that fetches two 

variables is considered efficient, but a command that fetches 
only a single variable is not. In the example of FIG. 10B, no 
variables need to be fetched in preparation for PEGs P1 and 
P2. PEG P3, however, needs variable B as input, and 
therefore the compiler defines a fetch command from device 
memory 56 to take place in preparation for PEG P3. In order 
to access the device memory efficiently, the compiler aggre 
gates another variable fetching in the same command. The 
compiler selects the valid variable whose distance from the 
current PEG (i.e., the distance from the current PEG to the 
PEG that will first request this variable) is minimal. 

In the present example, variables S and T are valid at this 
time, and variable T has a Smaller distance (3 compared to 
6). Therefore, the compiler defines the fetch command so as 
to fetch variables B and T. Once these variables are fetched, 
they are crossed out from the list so that they will not be 
fetched again. The process continues using similar logic, and 
the compiler defines two additional fetch commands one that 
fetches variables C and D before PEG P4, and another that 
fetches variables A and S before PEG P9. Using this 
technique, each variable is fetched after it becomes valid and 
before it is first needed as input, and the fetch commands are 
defined efficiently by aggregating the fetching of multiple 
variables per command. 
The example of FIGS. 10A and 10B refers to a specific 

sequence, specific variables, a specific number of fetches per 
command and a specific selection criterion. Generally, how 
ever, the compiler may apply a pre-fetching scheme having 
any other suitable PEG sequence, variables, number of 
fetches per command and/or selection criterion. Typically, a 
similar process is carried out for each PEG sequence in the 
SID. The compiler may use any suitable data structures for 
recording the time intervals and distances described above. 

In some embodiments, the compiler delays the storage of 
variables (outputs produced by the PEGs) in device memory 
56, and aggregates multiple variables per storage command. 
Storing multiple variables per command reduces the latency 
and overhead associated with storage in device memory 56. 
A delayed storage mechanism of this sort can be carried out 
using similar criteria to the pre-fetching mechanism of 
FIGS. 10A and 10B. For example, the compiler may iden 
tify, for each variable, the time interval from the PEG that 
produced the variable value until the point the variable is 
needed as input (e.g., by a PEG in another sequence, which 
possibly belongs to a different SID). When the variable is 
needed as input by a sequence in another SID, the compiler 
may regard the end of the sequence producing this variable 
(and not the individual PEG within this sequence) as the 
time at which the variable is ready. The compiler may then 
define multi-variable storage commands based on these time 
intervals. 
As shown in FIG. 9 above, when a given multiprocessor 

40 executes a given PEG sequence, the multiprocessor loads 
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variables from device memory 56 in a particular determin 
istic order, caches them in the shared memory and provides 
them as input to the different PEGs in the sequence. In some 
embodiments, the compiler pre-orders the variables in 
device memory 56 according to the order in which the PEG 
sequence will load them. When using this mechanism, a 
given PEG sequence can fetch variables from device 
memory 56 using an ordered sequence of fetch operations to 
Successive memory addresses. 

FIG. 11 is a diagram that schematically illustrates a 
variable pre-ordering scheme, in accordance with an 
embodiment of the present invention. The example of FIG. 
11 shows the caching mechanism of FIG. 9 above. A region 
266 at the top of the figure shows the variables cached into 
and flushed out of shared memory 52 by the different PEGs 
in the sequence. A region 270 shows the variables that are 
fetched from device memory 56 in preparation for each 
PEG. A bold frame marks a variable that was already read 
by a previous PEG in the sequence, but was flushed out of 
the shared memory in the interim. 

In some embodiments, the compiler stores the variables in 
device memory 56 in a feeder region 274. In feeder region 
274 of a certain PEG sequence, the variables are stored in the 
order in which they will be fetched by that PEG sequence. 
Note that a given variable may be stored at two or more 
different locations along the feeder region, since the PEG 
sequence may re-read variables due to the limited cache size. 
Note also that each PEG sequence has a corresponding 
feeder region in device memory 56. A given variable may be 
stored in multiple feeder regions of different PEG sequences. 

Typically, the pre-ordered variables are arranged in the 
device memory in basic sections that conform to the GPU's 
memory alignment and size specifications. These sections 
are referred to herein as cache-lines. In a typical GPU, each 
cache-line comprises 512 bits. Typically, PEGs in different 
sequences produce, consume and exchange variables in 
cache-line units. 

Inter- and Intra-SID Communication 

As explained above, the compiler converts each depen 
dency sub-tree into a SID. In some embodiments, variables 
that are produced by a PEG in one SID are used as input by 
a PEG in another SID. Communication between PEGs in 
different SIDs is typically carried out via device memory 56. 
In some embodiments, the compiler stores variables that are 
communicated between SIDs in data structures called mail 
boxes. Each mailbox comprises variables that are generated 
and/or used by common PEG sequences. Communication 
between SIDs is carried out by writing and reading cache 
lines to and from mailboxes. Thus, access to device memory 
56 is carried out efficiently by exploiting the usage and 
generation commonality between different variables. 

FIG. 12 is a diagram that schematically illustrates mul 
tiple SIDs, in accordance with an embodiment of the present 
invention. The present example shows two SIDS denoted 
SID-X and SID-Y. SID-X comprises two PEG sequences, 
each comprising four PEGs 280. SID-Y comprises two PEG 
sequences, each comprising two PEGs 280. Each PEG 
accepts as input up to three input variables (which are shown 
on the left-hand-side of its respective block) and produces an 
output variable (which is shown on the right-hand-side of its 
respective block). PEG 1/1 in SID-X, for example, accepts 
variables A and C as input and generates variable D. Some 
dependencies between sequences may also exist within each 
SID, such as between PEG 2/3 and PEG 1/4 in SID-X. 
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Certain variables are defined as ingress and egress vari 

ables, i.e., variables that are input from and output to the 
CPU (or other host environment), respectively. In the pres 
ent example, the ingress variables comprise variables A, B, 
C, F and Q. The egress variables comprise variables S. G. H 
and P. 

In a given SID, the variables can be classified into 
generated variables (which are generated by the SID), used 
variables (which are used as input by the PEGs in the SID) 
and input variables (which are used as input by the PEGs in 
the SID but are not produced internally in the SID). Overlap 
may sometimes exist between the different classes. In the 
present example, the variable classification is shown in the 
following table: 

SID X Y 

Generated D. L. G. M., H, I, V, S, E, G 
variables N, P 
Used variables A, B, C, D, E, F, A, M, L, Q, V. N. 

G, L, H, M, V S 
Input variables A, B, C, E, F, V A, M, L, Q, N 

FIG. 13 is a flow chart that schematically illustrates a 
method for inter-SID communication, in accordance with an 
embodiment of the present invention. The method begins 
with the compiler identifying a set of inter-SID variables, at 
an inter-SID identification step 284. The inter-SID variables 
comprise those variables that are not ingress or egress 
variables, and that are to be exchanged between different 
SIDs. The compiler may identify the inter-SID variables by 
(1) identifying the set of all input variables of all SIDs, and 
(2) removing the ingress and egress variables from this set. 
In the present example, the set of input variables of SIDS X 
and Y is {A, B, C, E, F, M. L. Q. N. V. P}, the set of ingress 
variables is {A, B, C, F, Q} and the set of egress variables 
is {S, G, H, P}. Thus, the set of inter-SID variables is E. M. 
LN, V}. 

Then, the compiler maps the inter-SID variables in terms 
of their usage and generation by the different PEG sequences 
of the different SIDS, at a usage/generation mapping step 
288. In the present example, the usage and generation of the 
different inter-SID variables is given in the following table: 

Variable Variable 
usage generation 

Es-CX2) E->(Y1) 
Me-(Y1) M->(X1) 
L-(Y1, Y2) L->(X1) 
N-(Y1) N->(X2) 
V-(X2) V->(Y1) 

wherein M->(X 1) denotes that variable M is generated by 
sequence 1 in SID-X, for example. Generally, a given 
inter-SID variable may be generated and/or used by any 
desired number of sequences belonging to any desired 
number of SIDS. 
The compiler then groups together inter-SID variables 

that are generated by common sequences and used by 
common sequences, at a grouping step 292. The compiler 
defines a data structure, referred to as a mailbox, for each 
Such group. The mailboxes are stored in a certain region in 
device memory 56. Each mailbox typically comprises one or 
more cache-lines. In the present example, the compiler may 
define the following four mailboxes: 
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Inter-SID Usage generation 
Mailbox i variables sequences 

1 E, V (Y1)->(X2) 
2 M (X1)->(Y1) 5 
3 L (X1)->(Y1, Y2) 
4 N (X2)->(Y1) 

At runtime, different SIDs communicate with one another 
by writing cache-lines to the mailboxes and reading cache- 10 
lines from the mailboxes, at an inter-SID communication 
step 296. Since each mailbox comprises inter-SID variables 
that are generated by the same sequences and used by the 
same sequences, access to device memory 56 is efficient. 
The efficiency of the mailbox mechanism depends, at least is 

partially, on the allocation of PEs to PEG sequences within 
each SID. As explained in FIG. 8 above, the compiler 
attempts to group in the same PEG sequence PEs that 
communicate with the same PEs in other SIDs. If this 
grouping is successful and well-defined, the method of FIG. 
13 will produce a relatively small and well-defined group of 
mailboxes, with each mailbox containing a relatively large 
number of variables. 

In some embodiments, the compiler can further improve 
the efficiency of accessing device memory 56 by ordering 
the variables inside each mailbox according to the order in 25 
which they are requested by the PEG sequences. 

In some embodiments, different PEG sequences within 
the same SID may transfer variables to one another. This 
form of communication is referred to herein as intra-SID 
communication. PEG sequences within the same SID typi- 30 
cally communicate by exchanging cache-lines comprising 
variable values via device memory 56. Intra-SID commu 
nication is typically subject to variable validity constraints. 
In other words, a certain PEG sequence may transfer a 
variable to another sequence only after the PEG producing is 
the variable has completed execution. In some embodi 
ments, the compiler defines communication transactions 
between PEG sequences, in a manner that preserves the 
execution dependencies and minimizes the number of trans 
actions (in cache-line resolution). Intra-SID communication 
is typically carried out over the SYNC elements introduced 
between sequences. In other words, a SYNC element, which 
halts execution of one sequence until one or more PEGs in 
other sequences finish execution, may also transfer variables 
from these other sequences to the halted sequence. 

FIGS. 14A and 14B are diagrams that schematically 45 
illustrate an intra-SID communication scheme, in accor 
dance with an embodiment of the present invention. FIG. 
14A shows an example SID having three PEG sequences. 
For each PEG, the input variables are shown on the left 
hand-side of the PEG block and the output variable is shown 50 
on the right-hand-side of the block. 

FIG. 14B shows four cache-lines 300, which are defined 
by the compiler for transferring variables between PEG 
sequences in the SID of FIG. 14A. The variables passed by 
each cache-line are marked in brackets in the figure. The 55 
compiler may use any Suitable process, such as various 
dynamic programming techniques, for defining cache-lines 
300. Typically, the solution is not unique and multiple 
solutions are feasible. The compiler attempts to identify the 
Solution that meets a predefined criterion, Such as minimiz- 60 
ing the number of cache-lines 300. 
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As described above, exchanging of inter-SID variables 
between different SIDs is carried out by storing the variables 

24 
in mailboxes in device memory 56. Each mailbox comprises 
one or more cache-lines, and is associated with a set of one 
or more source execution sequences (in one or more source 
SIDS) and a set of one or more target execution sequences 
(in one or more target SIDs). Typically, the inter-SID vari 
ables are assigned to mailboxes such that (1) variables that 
are generated and used by the same set of SIDs and 
execution sequences are assigned to the same mailbox, (2) 
variables that are not generated and used by the same set of 
SIDS and sequences are assigned to separate mailboxes, so 
as not to share the same cache-line, and (3) each variable 
appears exactly once within the collection of mailboxes. 

In some cases, however, the generation and usage of 
inter-SID variables does not enable efficient grouping of the 
variables into mailboxes. Such grouping may produce mail 
boxes having a small number of variables. Since the device 
memory is read in cache-line units regardless of the actual 
number of variables residing in the cache-lines, mailboxes 
having few variables may cause poor cache-line utilization. 

In some embodiments, the compiler combines two or 
more inter-SID cache-lines from sparsely-populated mail 
boxes, to produce densely-populated cache-lines. By com 
bining cache-lines, the number of load operations from the 
device memory may be reduced. The extent of reduction 
depends on the choice of cache-lines to be combined. For 
example, the compiler may attempt to combine inter-SID 
cache-lines having relatively large overlap in the set of target 
execution sequences. 

Consider, for example, a cache-line A that is used by 
sequences S1 and S2, and a cache-line B that is used by 
sequences S1, S2 and S3. Assume also that cache-lines A and 
B are sufficiently sparse, so that it is possible to combine 
them into a new cache-line C without exceeding the cache 
line size limitation. In this example, after combining cache 
lines A and B to form cache-line C, each of sequences S1 and 
S2 will have to load only a single cache-line (the combined 
cache-line C) instead of two cache-lines. Sequence S3 will 
still have to load a single cache-line (cache-line C instead of 
cache-line B). Overall, the number of load operations from 
the device memory is reduced as a result of combining 
Cache-lines A and B. In alternative embodiments, the com 
piler may combine any desired number of cache-lines. 

Alternatively, the compiler may combine inter-SID cache 
lines whose variables can be transported between target 
execution sequences in the target SID using intra-SID com 
munication mechanisms (i.e., using the synchronization 
elements between sequences). The concept of exploiting 
under-used intra-SID communication resources for improv 
ing inter-SID communication is described in detail further 
below. Consider, for example, a configuration of three 
execution sequences S1, S2 and S3, and three cache-lines A, 
B and C. In this example, sequence S1 has input variables 
from cache-line A, sequence S2 has input variables from 
cache-line B, and sequence S3 has input variables from 
cache-line C. Assume also that the synchronization mecha 
nisms between the sequences enables data transfer from 
sequence S1 to sequence S2. Within sequence S2, input 
variables from cache-line B are needed only by PEGs that 
are positioned after the synchronization with sequence S1. 
In this situation, it is advantageous to combine cache-line A 
with cache-line B, and to transfer the variables of cache-line 
B over the synchronization mechanism between sequence 
S1 and sequence S2. When using Such a scheme, sequence 
S2 does not need to load cache-line B, since it receives its 
variables from sequence S1 over the synchronization mecha 
nism. Thus, the compiler may reduce the number of load 
operations from the device memory by (1) combining cache 
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lines used by different target sequences, and (2) transferring 
variables from one target sequence to another using intra 
SID communication. 

Regardless of whether inter-SID cache-lines are com 
bined or not, the compiler may reduce the number of 
inter-SID cache-line load operations from the device 
memory by exploiting under-used intra-SID communication 
resources, as explained in the following description. 

FIG. 15 is a diagram that schematically illustrates a SID 
310 that uses both inter-SID and intra-SID communication, 
in accordance with an embodiment of the present invention. 
SID 310 receives inter-SID variables from another SID by 
loading an inter-SID cache-line 314. In the present example, 
intra-SID variables from cache-line 314 are used by three 
execution sequences 318A... 318C in SID 310. (SID 310 
may well comprise additional execution sequences that do 
not use variables from this inter-SID cache-line.) 

Without using intra-SID resources to transfer inter-SID 
variables, each of the three sequences 318A... 318C would 
need to load cache-line 314 separately from the appropriate 
mailbox in device memory 56, in order to obtain its input 
variables. Thus, three separate load operations would be 
required. Alternatively, cache-line 314 may be loaded by 
only a Subset of the sequences (e.g., by a single sequence), 
and the other sequences may receive the variables using 
intra-SID communication. 

In SID 310, for example, a SYNC 326A synchronizes a 
certain PEG in sequence 318B to a certain PEG in sequence 
318A, and a SYNC 326B synchronizes a certain PEG in 
sequence 318C to a certain PEG in sequence 318B. Each 
SYNC is associated with an intra-SID cache-line, which 
depends on the SYNC and transfers variables from the 
synchronizing sequence or sequences to the synchronized 
sequence (or, more accurately, from the synchronizing PEG 
or PEGs to the synchronized PEG). For example, SYNC 
326A is associated with an intra-SID cache-line that trans 
fers variables from sequence 318A to 318B. 

Assuming the intra-SID cache-lines have free unallocated 
bandwidth, they can be used to transfer data from sequence 
318A to sequence 318B and from sequence 318B to 
sequence 318C. Thus, in some cases all three sequences 
318A... C may obtain the variables of inter-SID cache-line 
314 by having only sequence 318A actually load the cache 
line from the device memory, and then transfer the variables 
over the intra-SID cache-lines that depend on SYNCs 326A 
and 32.6B to sequences 318B and 318C. 

Note that this solution is feasible assuming that, in a given 
sequence, the PEGs that use the inter-SID variables are 
located after the SYNC whose intra-SID cache-line is used 
for transferring the variables to that sequence. A PEG 322A 
in sequence 318A has access to the inter-SID variables since 
sequence 318A is the sequence that actually loads the 
inter-SID cache-line from device memory 56. In sequence 
318B, a PEG 322B has access to the transferred variables 
because it is located after SYNC 326A. In sequence 318C, 
a PEG 322D has access to the transferred variables since it 
is located after SYNC 326B. A PEG 322C, on the other 
hand, does not have access to the transferred variables since 
it is located before SYNC 326B. 

If PEG 322C needs to use variables from inter-SID 
cache-line 314, then sequence 318C needs to load this 
inter-SID cache-line separately, incurring an additional load 
operation. In this scenario, the intra-SID cache-line of 
SYNC 326B will not be used for variable transfer from 
inter-SID cache-line 314. 

In some embodiments, the compiler attempts to reduce 
the number of inter-SID cache-line load operations that are 
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performed by a given SID, by assigning available resources 
over intra-SID SYNCs for carrying inter-SID variables. This 
process is typically performed for each SID. An example 
process of this sort is described in FIGS. 16 and 17 below. 
Alternatively, however, any other Suitable process can also 
be used. 
The process of FIGS. 16 and 17 uses two functions 

denoted F and P. For a given execution sequence S and an 
inter-SID variable a, function F(s.a) is a static function that 
returns the first entry (PEG) in sequences that uses variable 
a as input. In other words, variable a should be provided to 
the shared memory of sequence s no later than F(s.a). If 
variable a is not used as input anywhere in sequence S, then 
F(s.a)=OO. 

Function P(S. Seq S off, t Seq t off, req size) returns a 
set of (one or more) paths through the SID, over which data 
of a given size req size can be transferred from a source 
sequence S. Seq to a target sequence t seq. The returned 
paths begin in the source sequence at offset S off or later, and 
reach the target sequence at an offset t off or earlier. 
Function P may change during compilation in response to 
allocation of intra-SID communication resources. In some 
embodiments, P also receives an array of the variables that 
need to be used at t off. Function P typically takes into 
account that some of the variables have already been trans 
ferred via the synchronization between sequences. In some 
embodiments, Preturns a combination of multiple paths that 
can be used for data transfer. 
The process also uses a database denote H. For each 

inter-SID cache-line used by the SID, database H holds a 
classification of the sequences that use this cache-line into 
several classes. The classes are typically represented by 
respective lists. In the present example, the sequences are 
classified into six classes: 
Must Load (ML): Sequences that must load the cache-line 

from device memory 56 because they cannot receive 
the inter-SID variables over intra-SID SYNCs. 

Should Load (SL): Sequences that are requested by the 
process to load the cache-line from device memory 56, 
even though they are not ML sequences. 

Placed (PL): Sequences that are to receive the inter-SID 
variables from other sequences without loading the 
cache-line, and for which appropriate resources have 
been allocated over the intra-SID cache-lines. 

Root Dependent (RD): Sequences that are not yet 
assigned to the SL, ML or P classes, and which can be 
reached via intra-SID cache-lines at least one sequence 
in the SL, ML or PL classes. 

Far Dependent (FD): Sequences that cannot be reached by 
any of the sequences in the SL, ML or PL classes. 

Unresolved (U): Sequences whose class is still unre 
solved. (The difference between classes FD and U is 
that sequences in class FD can be reached from 
sequences in class RD or FD, but cannot yet be reached 
from sequences in the SL, ML or PL classes.) 

The description that follows refers to a given inter-SID 
cache-line, which has an associated classification of 
sequences into classes. The process described below is 
typically repeated for each inter-SID cache-line. 
At any given time, each class may comprise any number 

of sequences, but a given sequence may appear in only one 
class. As noted above, only the sequences that use variables 
from the inter-SID cache-line in question are classified. The 
process of FIGS. 16 and 17 is an iterative process, which 
starts with all sequences in the U class. (Typically, the U 
class initially contains only the sequences that use variables 
carried over the inter-SID cache line in question. Other 
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sequences are typically ignored.) The process ends with 
class U empty, all sequences assigned to the SL, ML or P 
classes. When the process ends, each sequence in the ML 
and SL classes is defined to load the inter-SID cache-line 
individually, and the sequences in the P class are defined to 
receive the inter-SID variables from other sequences without 
loading the cache-line. Appropriate resources of the intra 
SID SYNCs are assigned to deliver the inter-SID variables 
to the sequences in the P class. 

FIG. 16 is a state diagram 330 that schematically illus 
trates a method for reducing inter-SID communication, in 
accordance with an embodiment of the present invention. 
State diagram 330 comprises states 334, 338, 342, 346,348 
and 350, which represent the U, ML, SL, P. RD and FD 
classes, respectively. Transitions between states are marked 
by arrows in the figure. The iterative allocation process 
moves sequences from class to class (from state to state) 
over these transitions, until class U is empty and all 
sequences reach the ML, SL or P classes. 

FIG. 17 is a flow chart that schematically illustrates a 
method for reducing inter-SID communication, in accor 
dance with an embodiment of the present invention. (The 
process is typically repeated for each inter-SID cache-line.) 
The method begins with the compiler initializing database 
H, at an initialization step 360. The currently-processed 
inter-SID cache-line is denoted c. For each sequences that 
uses cache-line c (i.e., a sequence that satisfies F(s.c)zoo), 
the compiler adds the sequence to class U. 

The compiler then attempts to resolve cache-line c, i.e., to 
classify the sequences in U, using functions S and P. at a 
resolving step 364. The resolving step comprises several 
stages that are performed in Succession, as follows: 

1) ML resolving stage: For each sequences in class U, the 
compiler checks if the variables of cache-line c used by 
sequence S can be obtained from another sequence that uses 
this cache-line. (Possible sequences for providing the vari 
ables are identified using function F. Possible paths for 
transferring the variables are identified using function P.) If 
no sequence and path are found for obtaining the variables 
to sequences, the compiler removes sequence S from the U 
class and adds it to the ML class. 

2) RD resolving stage: For each sequences in class U, the 
compiler identifies (using F and P) sequences that can obtain 
the variables they need from cache-line c from a sequence in 
the ML, SL or PL classes. The compiler removes the 
identified sequences from class U and adds them to class 
RD. 

3) The compiler repeats the following three sub-stages 
until class U is empty: 

a) RD sub-stage: Using functions F and P, the compiler 
identifies sequences that can obtain the variables they 
need from cache-line c from a sequence in class SL. 
The compiler removes these sequences from class U 
and adds them to class RD. 

b) FD sub-stage: Using functions F and P, the compiler 
identifies sequences that can obtain the variables they 
need from cache-line c from a sequence in class RD or 
FD. The compiler removes these sequences from class 
U and adds them to class FD. If at least one sequence 
was found, the FD sub-stage is repeated. 

c) SL Sub-stage. This stage of the process identifies and 
resolves cyclic dependency patterns among two or 
more of the sequences. A detailed example of a cyclic 
dependency is described in section 10.3.1.2.4 of U.S. 
Provisional Patent Application 61/185,609, cited 
above. 
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1. The compiler selects a sequence S in class U list of 

cache-line c. A variable denoted req offset is set to 
F(s.c). 

2. Using function P, the compiler scans sequences in 
class U (other than sequence s) and attempts to 
identify source sequences that can provide the vari 
ables of cache-line c needed by sequence S at an 
offset that is not later than req offset. 

3. If a source sequence SS is found, S is set to be S-SS, 
and req offset is set to be the offset in which ss needs 
to have the cache-line cavailable. The process loops 
back to step 2 above. 

4. If no source sequence is found, the compiler removes 
sequence S from class U and adds it to the SL class. 

After completing resolving step 364, for a given inter-SID 
cache-line c, class U is empty and the sequences that use 
cache-line c are classified to classes ML, SL, RD and FD. 
The sequences in the ML and SL classes are defined as 
loading cache-line c individually from device memory 56, 
and this definition will not change by Subsequent iterations 
of the process. 
The compiler now attempts to allocate intra-SID 

resources for providing the inter-SID variables to the 
sequences in the RD class, at a placement step 368. Typi 
cally, as long as there are sequences remaining in any of the 
RD class lists in database H, the compiler performs the 
following process for a given inter-SID cache-line c. 

1) From among the sequences in the RD class of cache 
line c, the compiler selects the sequence S having the 
smallest data size it needs from this cache-line. The compiler 
chooses (using function P) a path p (or a combination of 
multiple paths), which uses a minimum amount of Intra-SID 
cache-line resources to deliver the required variables to 
sequence S from sequences that already possess these vari 
ables. Note that if path p traverses more than one hop (i.e., 
reaches sequence S via one or more intermediate sequences) 
then the resources over these multiple Intra-SID cache-lines 
along the path should be taken into account. 

2) If no suitable path p is found, step 368 terminates. 
3) If a suitable path p is found, the compiler removes 

sequence S from class RD and adds it to class PL. 
4) The compiler commits (allocates) usage of Intra-SID 

cache-lines over path p to transport the inter-SID variables 
of cache-line c that are required by sequences. The compiler 
refreshes function P to reflect possible changes in possible 
paths due to the newly-allocated resources. 
At this stage, the compiler typically committed intra-SID 

communication resources to some of the sequences in class 
RD, and moved them to class PL accordingly. For the 
sequences remaining in class RD, the compiler did not 
Succeed in finding a path with available resources for 
providing them with the necessary inter-SID variables. 
The compiler now reshuffles the sequences in classes RD 

and FD, at a reshuffling step 372. In this step, the compiler 
moves all the sequences in the RD and FD classes (if any 
remain) to class U. The compiler checks whether class U is 
empty, at an empty checking step 376. If there are sequences 
remaining in class U, the method loops back to step 364 
above, and the compiler continues to attempt resolving the 
currently unresolved sequences. If class U is empty, all 
sequences are classified to classes ML, SL or PL, and the 
method terminates, at a termination step 380. Each sequence 
in classes ML and SL will load the inter-SID cache-line 
individually from the device memory. 

Each sequence in class PL will receive the necessary 
inter-SID variables from other sequences, over a predefined 
and pre-committed path of one or more intra-SID cache 
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lines. Thus, when using this technique, the number of 
inter-SID cache-line load operations from device memory 
56 is reduced, and the overall SID execution time is reduced 
accordingly. 

Example Dependency Problem Applications 

The methods and systems described herein can be used to 
Solve dependency problems in a wide range of fields and 
applications. Generally, any computing task that can be 
represented as a set of Processing Elements (PEs) having 
execution dependencies, can be parallelized and executed 
efficiently using the disclosed techniques. The description 
that follows outlines several example types of dependency 
problems. The disclosed techniques are in no way limited to 
these examples, however, and can be used to solve any other 
suitable type of dependency problem. 

In some embodiments, the dependency problem solved by 
system 20 comprises a task of verifying a hardware design 
by simulation. This application is addressed in detail in PCT 
Application PCT/IL2009/000330, cited above. In a typical 
design verification application, server 24 of FIG. 1 accepts 
from a user, e.g., a verification engineer, a definition of the 
design to be simulated. The design is typically accepted as 
one or more files that are written in a Hardware Description 
Language (HDL) such as VHDL or Verilog. The server also 
accepts test-bench definitions, which specify the verification 
environment of the design. The test-bench specifies external 
asynchronous events (e.g., clock signals, reset signals and 
various inputs) that are to be applied to the design. The 
test-bench also specifies tests that are to be applied to the 
simulated design. The test bench typically comprises Soft 
ware written in C, Verilog, or in a verification-specific 
language Such as E or System-Verilog. 
The compiler running on CPU 28 compiles the test-bench 

and design to produce simulation code, and then runs the 
simulation code on CPU 28 and GPUs 32. In particular, the 
compiler represents the design and test-bench into a depen 
dency graph having PEs and dependencies, extracts a-cyclic 
Sub-graphs from the dependency graph, and generates a SID 
for each sub-graph. The GPU is then invoked to execute the 
different SIDs, so as to produce simulation results. The 
simulation results (e.g., reports as to which tests have passed 
and which failed, Suspected faults, fault locations, and/or 
any other information that may assist the user in verifying 
the design) are provided to the user. 

Alternatively, the methods and systems described herein 
can be used to perform computing tasks encountered in 
applications such as real-time video processing, image pro 
cessing, Software-Defined Radio (SDR), packet processing 
in various communication applications and error correction 
coding. All of these applications typically involve complex 
computing tasks that can be represented as dependency 
problems, such as, for example, digital filtering and Fast 
Fourier Transform (FFT) computation. Such tasks lend 
themselves naturally to parallelization and Solving using the 
methods and systems described herein. Specific examples of 
representing a digital filter and an FFT computation element 
using a dependency graph are shown in FIGS. 18 and 19 
below. Once a given computational task (e.g., the examples 
given herein or any other task) is represented as a depen 
dency graph, it can be parallelized and solved using the 
methods and systems described herein. As noted above, the 
dependency graph can be converted to a set of Sub-graphs, 
each sub-graph is compiled to produce a SID, and the GPU 
executes the SIDs to produce a result. 
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FIG. 18 is a diagram that schematically illustrates a 

dependency graph 400 representing a Finite Impulse 
response (FIR) digital filter, in accordance with an embodi 
ment of the present invention. The digital filter represented 
by graph 400 filters an input signal xn] by a set N of filter 
coefficients denoted ao,..., a , to produce a filtered output 
signal yn. The filter operation is given by 

FIR filters of this sort are common in many signal 
processing applications, such as in communication receivers 
and transmitters, image processing applications and medical 
imaging applications. 
Graph 400 comprises several types of PEs, e.g., flip-flop 

PES 410 that are synchronized to a common clock signal, 
multiplier PEs 414 and an adder PE 418. The execution 
dependencies are shown as arrows in the figure. For 
example, in a given clock cycle, a given multiplier PE 414 
can multiply the output of a given flip-flop PE 410 by the 
corresponding filter coefficient only after the flip-flop PE 
completed execution and its output is valid. Other kinds of 
digital filters, such as Infinite Impulse Response (IIR) filters, 
can also be represented as dependency graphs in a similar 
a. 

FIG. 19 is a diagram that schematically illustrates a 
dependency graph 420 representing a Fast Fourier Trans 
form (FFT) computation element, in accordance with an 
embodiment of the present invention. FFT computation, as 
is well-known in the art, can be performed efficiently by a set 
of basic computation elements, sometimes referred to as 
“butterflies.” dependency graph 420 represents a single 
computation element. In a typical FFT application, multiple 
Such elements are connected in series and/or in parallel. 
Dependency graph 420 comprises adder/multiplier PEs 424. 
Each PE 424 accepts two inputs. When a certain PE input is 
marked with a weight W, the PE multiplies the input by 
the weight before adding it to the other input. For example, 
the PE at the top left of the figures produces an output given 
by vO+v1.W. W^ is given by W^-e'). In a 
typical implementation of N=4, the weights are given by 
W=1, W =i, W=-1 and W=-i. Alternatively, any 
other suitable weight values can be used. FFT computation 
elements of this sort are common in a wide range of 
applications, such as frequency-domain signal processing 
and Error Correction Coding (ECC). 

Additional Embodiments and Variations 

In some embodiments, the compiler applies a process that 
attempts to merge PEs into PEGs. The output of this process 
is a graph comprising vertices (representing the PEGs) and 
edges (representing inter-PEG dependencies). The process 
typically attempts to group the PEs into PEGs in a way that 
minimizes the number of inter-PEG dependencies. A group 
ing of this sort typically results in a SID having less 
inter-sequence SYNCs. An example merging process is 
described in section 5.5.1 of U.S. Provisional Patent Appli 
cation 61/110,676, cited above. 

In some embodiments, the compiler attempts to build the 
SID iteratively, progressing along the PE execution time. In 
this process, the compiler places the PEs having long 
Forward Phases (FP) first, and places them in less-populated 
execution sequences. Moreover, the compiler gives higher 
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priority to placing a PE in a sequence in which it does not 
require addition of a SYNC. An example SID generation 
process is described in section 6.3.6 of U.S. Provisional 
Patent Application 61/110,676, cited above. Generally, the 
compiler may place the PEs in the execution sequences 
based on any other criterion or heuristic that considers the 
FP lengths of the PEs, the occupancy levels of the execution 
sequences and/or the possible addition of SYNCs. 

In some embodiments, the CPU and GPU jointly run an 
event-driven (EDE) simulator that simulates the dependency 
problem. Event-driven operation is addressed, for example, 
in section 6.8 of U.S. Provisional Patent Application 61/079, 
461, cited above, and in sections 5.1-5.3 of U.S. Provisional 
Patent Application 61/086,803, cited above. In particular, 
the compiler may identify cases in which executing a certain 
SID would trigger execution of another SID within a 
requirement for immediate update of a simulation running 
on the CPU. This scheme saves the latency of interaction 
between the GPU and CPU. This technique is addressed, for 
example, in section 5.2.1 of U.S. Provisional Patent Appli 
cation 61/086,803, cited above. 

Parallelized Execution of Multiple Clock-Set-Reset 
Logic 

Some hardware designs are characterized by a large 
number of relatively small logic sections, each section 
triggered by a different respective signal. For example, the 
design may comprise a large number of clock signals, each 
triggering a respective Small section of the overall design. As 
another example, in designs that use flip-flop circuits, the 
SET and RESET signals typically trigger different logic 
sections. In many practical cases, each individual logic 
section is limited in parallelization, and is far from exploit 
ing the parallel processing capability of GPU 32 on its own. 

In some embodiments, the compilation process performed 
by CPU 28 produces a highly parallel SID 90 that executes 
a large number of logic sections in parallel. As explained 
above, each section is triggered by a respective signal, e.g., 
clock, set or reset signal. 

Generally, the parallelism in SID 90 may be implemented 
using any desired number of execution sequences 98 and/or 
any desired number of PEs 76 that execute in parallel in a 
given sequence. The embodiments described herein focus on 
an implementation in which the multiple logical sections are 
compiled into a single execution sequence. 
On one hand, this sort of SID generation makes better use 

of the parallel processing capabilities of the GPU. On the 
other hand, in order to retain the true functionality of the 
design, the logic corresponding to each section should be 
executed only if its triggering signal is indeed asserted. 

Thus, in some embodiments, CPU 28 compiles into the 
execution sequence one or more additional PEs, referred to 
as ancillary PEs, which selectively execute only the logic 
corresponding to the logic sections whose triggering signals 
are asserted. If a certain logic section should not be 
executed, because its triggering signal is not asserted, the 
ancillary logic retains the current state of that logic section. 

Consider, for example, an execution sequence comprising 
PEs that simulate two logic clouds denoted LC1 and LC2. In 
this example, LC1 is sampled with a Flip Flop FF1 on the 
rising edge of a clock signal CLK1, and LC2 is sampled with 
a Flip Flop FF2 on the rising edge of another clock signal 
CLK2. The compiler defines this execution sequence to be 
executed on the rising edge of CLK1 and/or CLK2. If only 
CLK1 rises, the ancillary logic should maintain the correct 
value for FF2. One possible implementation is to sample the 
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previous value of FF2 again. If only CLK2 rises, the current 
state of FF1 is retained in a similar manner. 

(Note that, in some implementations, inhibiting execution 
of a certain logic section involves execution of additional 
logic, not necessarily less logic. For example, when inhib 
iting execution is implemented by sampling the previous 
value of a FF, this sampling may involve additional logic.) 

In an alternative embodiment, each execution sequence 
corresponds to a respective logic section and begins with an 
ancillary PE that checks whether the triggering signal of this 
logic section (e.g., clock, set and/or reset signal) is asserted. 
If asserted, the ancillary PE enables execution of the 
sequence. Otherwise, the ancillary PE inhibits execution of 
the sequence. 

Implementations that combine multiple logic sections in 
the same execution sequence are typically preferable in 
scenarios in which many logic sections are likely to run 
simultaneously. Implementations that map each logic sec 
tion to a separate execution sequences will typically perform 
well in low-activity scenarios in which only few logic 
sections run concurrently. 
The description above referred mainly to logic that 

involves sampling, such as in Flip Flop circuits. Such logic 
is typically divided into three stages calculation of the logic 
before sampling, Sampling in response to a triggering signal, 
and generation of visible signals. In this sort of logic, there 
is a distinction between the input signals to the logic and the 
triggering signals (e.g., clock, set or reset). The disclosed 
techniques can also be used to simulate combinatorial logic 
and other types of logic when the visible signals at the output 
are produced immediately from the input. In this sort of 
logic, each input signal is also regarded as a triggering 
signal. 

FIG. 20 is a diagram that schematically illustrates the 
above-described scheme for parallelized execution of mul 
tiple clock-set-reset logic, in accordance with an embodi 
ment of the present invention. In the present example, the 
original design to be simulated comprises multiple logic 
sections 430A . . . 430E, also referred to as logic clouds. 
Logic sections 430A . . . 430E are triggered by respective 
triggering signals 434A. . . 434E. (For the sake of clarity, the 
present example relates more to combinatorial logic, where 
the input signals are also regarded as triggering signals. In 
Flip Flop or other sampling logic, the triggering signals are 
the signals that affect the Flip Flop, for example, clock, set 
or reset signals.) 
As part of the compilation process, the compiler running 

on CPU 28 produces a combined logic cloud 438 that 
combines the functionalities of sections 430A. . . 430E. The 
combined cloud receives the multiple triggering signals 
434A. . . 434E as inputs. 
The compiler converts combined cloud 438 into a SID 

442 that comprises one or more execution sequences 446. In 
one embodiment, the SID comprises a single execution 
sequence that accepts the various triggering signals as input. 
When the SID is invoked at run-time, the ancillary logic 
checks the triggering signals. If the triggering signal corre 
sponding to a certain logic section is asserted, the ancillary 
logic enables execution of the PEs corresponding to that 
logic section. Otherwise, the ancillary logic inhibits execu 
tion of those PEs. 

In an alternative embodiment, the SID comprises multiple 
execution sequences 446, one per each logic section. Each 
such execution sequence begins with an ancillary PE 450, 
followed by one or more PE Groups (PEGs) 454. When the 
SID is invoked at run-time, the ancillary PE of a given 
execution sequence checks whether any of the triggering 
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signals that drive the PEs in that sequence is asserted. If 
asserted, the ancillary PE enables execution of the sequence. 
Otherwise, the ancillary PE inhibits execution of the 
sequence. Typically, each ancillary PE operates indepen 
dently of the other ancillary PEs. In other words, the 
enable/inhibit decision is taken independently for each 
execution sequence. 
When using the configurations above, SID 442 is highly 

parallelized and thus exploits the parallel processing capa 
bilities of the GPU, even though the individual logic sections 
(clouds 430A. . . 430E) may have little or no parallelism. 

Partitioning of PE Execution Between CPU and 
GPU 

Typically, CPU 28 and GPU 32 differ from one another in 
their parallel execution capabilities and processing power in 
general. The GPU typically outperforms the CPU in execut 
ing highly-parallel tasks. When a task has little or no 
parallelism, however, it may be impossible to exploit the 
theoretical processing power of the GPU, in which case the 
CPU may outperform the GPU. 

In some embodiments, at compilation time, the compiler 
in CPU 28 partitions the design (or other dependency 
problem) into high-parallelism phases in which the GPU is 
expected to outperform the CPU, and low-parallelism 
phases in which the CPU is expected to outperform the 
GPU. The compiler then generates suitable SIDs so as to 
execute the high-parallelism phases by the GPU and the 
low-parallelism phases by the CPU. 

FIG. 21 is a diagram that schematically illustrates an 
execution graph 458 of a dependency problem, in accor 
dance with an embodiment of the present invention. Graph 
458 comprises multiple PEs 76 and execution dependencies 
80 between the PEs. As can be seen in the figure, graph 458 
can be divided into three sequential phases 462A . . . 462C. 

Phases 462A and 462C are low-parallelism phases, in 
which only one or few PEs 76 are executed in parallel. Phase 
462B is a high-parallelism phase, in which a relatively large 
number of PEs should be executed in parallel. In the present 
example (and in many practical scenarios) the low-parallel 
ism phases occur at the beginning and/or end of the execu 
tion graph. Generally, however, the disclosed techniques can 
be used with any suitable number of low-parallelism and 
high-parallelism phases, which may occur at any Suitable 
location in the execution graph. 

Based on the levels of PE parallelism in the various 
phases, in phases 462A and 462C the CPU is expected to 
outperform the GPU, and in phase 462B the GPU is 
expected to outperform the CPU. In some embodiments, the 
compiler divides the execution graph into Such low-paral 
lelism and high-parallelism phases, assigns the low-paral 
lelism phases for execution by CPU 28, and assigns the 
high-parallelism phases for execution by GPU 32. 

FIG. 22 is a flow chart that schematically illustrates a 
method for partitioning an execution graph between CPU 28 
and GPU 32, in accordance with an embodiment of the 
present invention. The method is typically carried out at 
compilation time by CPU 28. 
The method begins with the compiler defining the paral 

lelism levels that are Suitable for the CPU and the GPU. In 
an embodiment, the definition specifies the maximal number 
of parallel PEs for which the CPU is still expected to 
outperform the GPU, and the minimal number of parallel 
PEs for which the GPU is expected to outperform the CPU. 
Alternatively, any other suitable definition or criterion can 
be used. 
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The compiler then uses the definition above to divide the 

execution graph into low-parallelism phases (in which the 
CPU is expected to outperform) and high-parallelism phases 
(in which the GPU is expected to outperform), at a graph 
partitioning step 474. The compiler may use any Suitable 
criterion for selecting the boundaries between low-parallel 
ism and high-parallelism phases. 
The compiler translates each phase of the execution graph 

into a respective SID, at a SID generation step 478. Any 
suitable SID generation method can be used, such as the 
methods described above. A SID that simulates a low 
parallelism phase is assigned for execution by the CPU (and 
referred to as a CPU SID). A SID that simulates a high 
parallelism phase is assigned for execution by the GPU (and 
referred to as a GPU SID). 

In the example of FIG. 21 above, phase 462A is translated 
into a CPU SID, phase 462B is translated into a GPU SID 
that is invoked after the CPU SID of 462A completed 
execution, and phase 462C is translated into a CPUSID that 
is invoked after the GPU SID of 462B completed execution. 
Generally, the compiler may generate any Suitable number 
of interleaved CPU and GPU SIDS. 

Typically, the compiler maintains data synchronization at 
the boundaries of successive SIDs. Data synchronization 
means that the signals produced by one SID are made 
available to the next SID in the sequence as it is invoked. 

Synchronization Between Execution Sequences by 
Partitioning Execution into Multiple GPU 

Invocations 

In some of the embodiments described above, such as in 
FIGS. 4 and 6, the compiler achieved synchronization 
between different execution sequences by inserting dedi 
cated SYNC PEs into the sequences. A SYNC PE would 
typically halt its execution sequence until another execution 
sequence reaches some predefined execution stage. 

In some GPUs or other multi-processor devices, however, 
SYNC PEs incur considerable overhead and are costly in 
terms of processing power. In alternative embodiments, the 
compiler forces the desired synchronization between execu 
tion sequences by partitioning the execution sequences into 
multiple GPU invocations. In the description that follows, 
the invocations are also referred to as phases, and the two 
terms are sometimes used interchangeably. Another benefit 
of this solution is that, when using SYNC PEs, the number 
of execution sequences should not exceed the number of 
thread blocks that GPU 32 can run concurrently. Synchro 
nization by partitioning into multiple GPU invocations 
eliminates this constraint. 

FIG. 23 is a diagram that schematically illustrates execu 
tion sequences partitioned into multiple GPU invocations, in 
accordance with an embodiment of the present invention. In 
the present example, the compiler has broken the execution 
sequences into five successive invocations 484 of GPU 32. 
At run-time, in each invocation, GPU 32 executes one or 
more SIDs 480. In some embodiments, although not neces 
sarily, each SID 480 comprises a single sequence of PEGs. 
Alternatively, however, a SID may comprise multiple PEG 
Sequences. 

(The term “GPU invocation” does not mean that GPU 32 
is invoked by CPU 28 separately for each individual invo 
cation. Typically, CPU 28 invokes GPU 32 with the entire 
set of invocations 484 seen in FIG. 23, and the GPU is 
responsible for Scheduling the invocations and maintaining 
data synchronization between them.) 
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Under the GPU control, each GPU invocation 484 is 
executed in full before the next invocation begins. There 
fore, all SIDS in a given invocation are guaranteed to 
complete their execution and produce outputs, before the 
GPU starts to execute any SID in the next invocation. 
Therefore, by using the invocation mechanisms of GPU 32, 
it is possible for the compiler to force synchronization 
between different execution sequences. 

For example, assume that PE2 depends on the output of 
PE1, but the two PEs belong to different execution 
sequences. In order to preserve this dependency, the com 
piler may force synchronization by placing PE1 in one GPU 
invocation, and placing PE2 in a Subsequent GPU invoca 
tion. In some GPUs or other multi-processor devices, the 
overhead incurred by multiple invocations is smaller than 
the overhead incurred by SYNC PEs. In such cases, the 
technique of FIG. 23 may be preferable. 
Criteria for Partitioning Execution Sequences into Phases 

Another motivation for dividing the execution sequences 
into phases (invocations) is to avoid unnecessary execution 
of execution sequences. As will be explained in detail below, 
the compiler is capable of inserting into the execution 
sequences logic that inhibits unnecessary execution. 

This sort of logic may detect, for example, that the input 
to a certain execution sequence did not change since the 
previous execution of the sequence, that an element (e.g., 
flip-flop) downstream in the sequence is not triggered, or 
that the output of the sequence is not being used. In all Such 
cases there is no point in executing the execution sequence. 
The logic inserted by the compiler detects such conditions at 
run-time and inhibits the execution of sequences accord 
ingly. These mechanisms are highly efficient in reducing the 
simulation run time. 
The division of the execution sequences into phases has 

considerable impact on the ability to avoid Such unnecessary 
execution. For example, short phases (i.e., short execution 
sequences per SID) have a better chance of meeting the 
above conditions, and therefore increase the ability to avoid 
unnecessary execution. On the other hand, short phases 
incur more processing overhead because they increase the 
number of GPU invocations. in some embodiments, the 
compiler divides the execution sequences into phases while 
applying a suitable trade-off between avoiding unnecessary 
execution and reducing invocation overhead. 

FIG. 24 is a diagram that schematically illustrates an 
example process for partitioning execution sequences into 
phases, in accordance with an embodiment of the present 
invention. In this method, the compiler identifies “logical 
cones' in the dependency graph, and uses them to divide the 
graph into phases. A "logical cone' is defined as a PE 
(referred to as an “apex PE') that is last in a certain phase 
(invocation), plus the group of PEs that drive this PE up to 
a certain depth. Each PE has a “base,” which is defined as 
the set of input signals received by PEs in the cone from 
outside the cone (e.g., from PEs outside the cone or from the 
CPU). 

In order to clarify this concept, FIG. 24 shows an example 
dependency graph in which two phase boundaries 490 and 
492, and an example logical cone 488 is marked. Logical 
cone 488 has a depth of 3 (defined as the longest chain of 
PEs in the cone) and a base size of 2 (defined as the number 
of input signals received from outside the logical cone). 
Alternatively, any other suitable values can be used. 

Consider the above-described mechanism in which 
execution of a sequence is inhibited if the inputs to the 
sequence did not change since the last execution. Typically, 
a logical cone having a large base size is less likely to be 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

36 
inhibited from execution, in comparison with a logical cone 
having a small base size. A large-base cone typically has a 
large number of inputs, which typically means a small 
probability that none of the inputs has changed. A small-base 
cone has a smaller number of inputs, and therefore a higher 
probability that none of the inputs has changed. 

In some embodiments, the compiler chooses the logical 
cones in accordance with some selection criterion, and sets 
the boundaries between phases at the base of the cones. The 
cone selection criterion typically aims to set the desired 
trade-off between reducing unnecessary execution and 
reducing invocation overhead. In some embodiments, the 
compiler chooses the logical cones so as not to exceed a 
predefined maximum base size, and so as not to exceed a 
predefined maximum depth. Alternatively, however, any 
other suitable selection criterion may be used. 

In an example process, the compiler starts from phase 
boundary 492. The compiler initially chooses PE 76B in 
FIG. 24, which is located first in the subsequent phase (i.e., 
immediately following boundary 492). PE 76B receives a 
single input from PE 76A. Thus, PE 76B is regarded as a 
logical cone with depth=1 and base=1. 

In this example this cone size does not yet exceed the 
maximum cone size, and therefore the compiler adds the 
next PE (PE 76C) to the cone. Adding PE 76C to the logical 
cone requires that PE 76D be added, as well. Thus, at this 
stage the logical cone comprises PEs 76B, 76C and 76D. 
This cone has depth=2 and base-2. 

In the present example, this cone size still does not exceed 
the maximum cone size, and therefore the compiler adds the 
next PE (PE 76E) to the cone. Adding PE 76E means that all 
the PEs that drive PE 76E in the current phase be added too. 
Thus, at this stage the logical cone comprises all the cones 
encircled by curve 488. 

In the next iteration the compiler adds the next PE (the PE 
driven by PE 76E) and the PEs that drive this PE to the cone. 
The last cone exceeds the permitted cone size defined in the 
selection criterion. Therefore, the iterative process stops 
with cone 488 selected and PE 76E serving as the apex of the 
cone. The compiler sets the boundary for the next phase (line 
490) immediately following PE 76E. The process above 
continues until the entire dependency graph is divided into 
phases. 

FIG. 25 is a flow chart that schematically illustrates a 
method for partitioning execution sequences into phases, in 
accordance with an embodiment of the present invention. 
The method begins with the compiler in CPU 28 defining a 
maximum base size and a maximum depth for the logical 
cones, at a criterion definition step 500. The compiler scans 
the dependency graph and divides the graph into logical 
cones, at a cone definition step 504. The compiler defines the 
logical cones in a manner that meets the selection criterion 
of step 500 (in the present example maximum base size and 
maximum depth). The compiler then divides the graph into 
phases based on the logical cones, at a phase partitioning 
step 508. 

Avoiding Unnecessary Execution Using Sensitivity 
Information 

In some embodiments, each execution sequence holds an 
indication that indicates whether any of the inputs to the 
execution sequence has changed since the previous execu 
tion of the sequence. This indication, which is referred to 
herein as sensitivity information, may change at run-time. 
When invoked, the execution sequence checks the current 
sensitivity information. If the sensitivity information shows 
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that one or more of the inputs to the sequence have changes 
since the previous execution, the execution sequence is 
executed. Otherwise, the execution sequence is inhibited. 

Updating of the sensitivity information at run-time can be 
carried out in various ways. In some embodiments, when an 
execution sequence is invoked, the GPU checks the current 
inputs to the sequence, compares them to the previous input 
values and updates the sensitivity information of the 
sequence as needed. In alternative embodiments, whenever 
a certain signal changes, the GPU updates the sensitivity 
information of all the sequences that accept this signal as 
input. 

FIG. 26 is a flow chart that schematically illustrates a 
method for avoiding unnecessary execution using sensitivity 
information, in accordance with an embodiment of the 
present invention. The method begins with the compiler 
generating execution sequences, at a sequence generation 
step 510. At an insertion step 514, the compiler inserts into 
each execution sequence an ancillary PE that checks 
whether inputs to the sequence have changed since the 
previous execution. 

At run-time, the GPU prepares to execute a certain 
execution sequence that was invoked, at an invocation step 
518. The ancillary PE of the invoked sequence causes the 
GPU to check the sensitivity information, at a sensitivity 
checking step 522. If the sensitivity information shows that 
one or more inputs to the sequence have changed since the 
previous invocation, the GPU executes the sequence, at an 
execution step 526. Otherwise, the GPU inhibits execution 
of the sequence, at an inhibition step 530. 

Avoiding Unnecessary Execution Using Trigger 
Information 

Another scenario that involves unnecessary execution of 
an execution sequence occurs when a simulated component 
(e.g., flip-flop) downstream along the sequence is not trig 
gered, and therefore will not sample the logic that was 
calculated in the sequence. In other words, in the absence of 
a trigger, the output of the sequence will not change regard 
less of the input and of the processing performed by the 
sequence. Therefore, there is no point in executing the 
sequence unless the element in question is triggered. 

In some embodiments, when an execution sequence is 
invoked, the sequence (e.g., the first PE in the sequence) 
checks for the presence of a trigger to the downstream 
element. If not found, the sequence is inhibited. The pres 
ence or absence of a trigger signal is determined at run-time, 
and therefore the selection of whether or not to execute the 
sequence is also determined at run-time. 

FIG. 27 is a diagram that schematically illustrates execu 
tion sequences with triggered elements, in accordance with 
an embodiment of the present invention. The present 
example shows two execution sequences: The first sequence 
comprises logic 540A, followed by logic 542A, whose 
output is input to a D Flip-Flop (FF) 544A. The second 
sequence comprises logic 540B, followed by logic 542B, 
whose output is input to a D Flip-Flop (FF) 544B. Each logic 
cloud (540A, 542A, 540B, 542B) may comprise one or more 
PEs. FFs 544A and 544B are triggered by trigger signals T1 
and T2, respectively. 

In Some embodiments, when compiling the execution 
sequences of FIG. 27, the compiler inserts an ancillary PE 
into each sequence (typically the first PE to be executed). 
The ancillary PE of the first sequence is configured to check 
whether trigger T1 is asserted or not. If the trigger is not 
asserted, the ancillary PE inhibits execution of the sequence 
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(since without T1, executing the first sequence will not affect 
the sequence output). The ancillary PE of the second 
sequence operates similarly with regard to trigger T2. 

In many practical cases, the execution sequence (e.g., 
logic 540A and 542A) is large and complex, and avoiding its 
execution increases the simulation efficiency significantly. 
As opposed to event-driven simulation techniques, the tech 
nique of FIG. 27 decides whether or not to execute a 
sequence based on future events that occur downstream in 
the sequence. 

Avoiding Unnecessary Execution Using Sequence 
Output Look-Ahead 

Yet another scenario that involves unnecessary execution 
of an execution sequence occurs when, for any reason, the 
sequence execution does not affect its output. FIG. 28 below 
demonstrates one such scenario. 

FIG. 28 is a diagram that schematically illustrates an 
execution sequence with a multiplexed output, in accor 
dance with an embodiment of the present invention. The 
execution sequence comprises logic 550, followed by logic 
554, whose output is provided as input to a multiplexer 
(MUX) 562. Another input to the MUX is provided by logic 
558. A SELECT signal selects which of the MUX inputs will 
be transferred to the MUX output. The selected MUX output 
is provided to a D-FF 566, which is triggered by a trigger 
signal T. 

In the present example, there is no point in executing logic 
550 and 554, unless MUX 562 transfers the output of logic 
554 to FF 566. In other words, even if the signals at the input 
of logic 550 have changed, and even if trigger T of FF 566 
is asserted, executing logic 550 and 554 will not affect the 
sequence output unless MUX 562 selects the output of logic 
554. 

In some embodiments, logic 550 and 554 are large and 
complex, and logic 558 is modest. This situation is common, 
for example, in Automatic Test Pattern Generation (ATPG) 
circuitry in Integrated Circuit (IC) design. In Such cases, the 
potential performance gain of avoiding unnecessary execu 
tion of logic 550 and 554 is very high. 

In some embodiments, when compiling the execution 
sequence of FIG. 28, the compiler inserts an ancillary PE 
into the sequence (typically the first PE to be executed). At 
run-time, the ancillary PE is configured to check whether 
MUX 562 is set to select the output of logic 554 or the output 
of logic 558. If the latter, the ancillary PE inhibits execution 
of logic 550 and 554. If the former, the ancillary PE enables 
execution of the entire sequence. 
The MUX implementation shown in FIG. 28 is chosen 

purely by way of example. In alternative embodiments, the 
ancillary PE (or any other logic) may check generally 
whether execution of the sequence will affect the sequence 
output. If not, the sequence execution is inhibited. Like the 
scheme of FIG. 27 above, the look-ahead scheme of FIG. 28 
is in sharp contrast to event-driven simulation techniques, 
and is highly efficient in reducing simulation run time. 

It will be appreciated that the embodiments described 
above are cited by way of example, and that the present 
invention is not limited to what has been particularly shown 
and described hereinabove. Rather, the scope of the present 
invention includes both combinations and Sub-combinations 
of the various features described hereinabove, as well as 
variations and modifications thereof which would occur to 
persons skilled in the art upon reading the foregoing descrip 
tion and which are not disclosed in the prior art. 
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The invention claimed is: 
1. A computing method, comprising: 
accepting a definition of a computing task, which com 

prises multiple Processing Elements (PEs) having 
execution dependencies; 5 

compiling the computing task for concurrent execution on 
a multiprocessor device, by arranging the PEs in a 
series of two or more invocations of the multiprocessor 
device, including assigning the PEs to the invocations 
depending on the execution dependencies; and 10 

invoking the multiprocessor device to run software code 
that executes the series of the invocations, so as to 
produce a result of the computing task, wherein assign 
ing the PEs to the invocations comprises evaluating a 
criterion that aims to maximize a likelihood that the 15 
sequence will not be executed and wherein evaluating 
the criterion comprises dividing the computing tasks 
into logical cones, wherein a maximum depth or a 
maximum base size of the logical cones are specified 
based on the likelihood. 2O 

2. The method according to claim 1, wherein the multi 
processor device completes a preceding invocation before 
beginning a subsequent invocation in the series, such that 
outputs of the PEs in the preceding invocation are available 
as input to the PEs in the subsequent invocation. 25 

3. The method according to claim 1, wherein assigning the 
PEs to the invocations comprises assigning a first PE to a 
first invocation and assigning a second PE, which according 
to the execution dependencies is to be executed after the first 
PE, in a second invocation that is later than the first 30 
invocation in the series. 

4. The method according to claim 1, wherein assigning the 
PEs to the invocations comprises interleaving in the series 
one or more invocations of a Central Processing Unit (CPU) 
in addition to the invocations of the multiprocessor device, 35 
and assigning one or more of the PEs to the invocations of 
the CPU. 

5. The method according to claim 4, wherein assigning the 
PEs to the invocations comprises identifying a first portion 
of the computing task whose execution by the multiproces- 40 
sor device is expected to outperform execution by the CPU, 
identifying a second portion of the computing task whose 
execution by the CPU is expected to outperform execution 
by the multiprocessor device, assigning the first portion to 
the invocations of the multiprocessor device, and assigning 45 
the second portion to the invocations of the CPU. 

6. The method according to claim 4, wherein assigning the 
PEs to the invocations comprises assigning the PEs in a first 
portion of the computing task, which has a first level of 
parallelism, to the invocations of the multiprocessor device, 50 
and assigning the PEs in a second portion of the computing 
task, which has a second level of parallelism that is lower 
than the first level, to the invocations of the CPU. 

7. The method according to claim 1, wherein compiling 
the computing task comprises defining a sequence of the PEs 55 
that is to be executed conditionally depending on a condition 
that is evaluated at run-time. 

8. The method according to claim 7, wherein each logical 
cone comprising an apex PE that is last in a respective 
invocation and a group of the PEs on which the apex PE 60 
depends, and setting invocation boundaries at respective 
bases of the logical cones. 

40 
9. A computing apparatus, comprising: 
an interface, which is configured to accept a definition of 

a computing task, which comprises multiple Processing 
Elements (PEs) having execution dependencies; and 

a processor, which is configured to compile the computing 
task for concurrent execution on a multiprocessor 
device, by arranging the PEs in a series of two or more 
invocations of the multiprocessor device, including 
assigning the PEs to the invocations depending on the 
execution dependencies, and to invoke the multipro 
cessor device to run software code that executes the 
series of the invocations, so as to produce a result of the 
computing task, wherein assigning the PEs to the 
invocations comprises evaluating a criterion that aims 
to maximize a likelihood that the sequence will not be 
executed and wherein evaluating the criterion com 
prises dividing the computing tasks into logical cones, 
wherein a maximum depth or a maximum base size of 
the logical cones are specified based on the likelihood. 

10. The apparatus according to claim 9, wherein the 
multiprocessor device completes a preceding invocation 
before beginning a subsequent invocation in the series, such 
that outputs of the PEs in the preceding invocation are 
available as input to the PEs in the subsequent invocation. 

11. The apparatus according to claim 9, wherein the 
processor is configured to assign a first PE to a first invo 
cation and to assign a second PE, which according to the 
execution dependencies is to be executed after the first PE, 
in a second invocation that is later than the first invocation 
in the series. 

12. The apparatus according to claim 9, wherein the 
processor is configured to interleave in the series one or 
more invocations of a Central Processing Unit (CPU) in 
addition to the invocations of the multiprocessor device, and 
to assign one or more of the PEs to the invocations of the 
CPU. 

13. The apparatus according to claim 12, wherein the 
processor is configured to identify a first portion of the 
computing task whose execution by the multiprocessor 
device is expected to outperform execution by the CPU, to 
identify a second portion of the computing task whose 
execution by the CPU is expected to outperform execution 
by the multiprocessor device, to assign the first portion to the 
invocations of the multiprocessor device, and to assign the 
second portion to the invocations of the CPU. 

14. The apparatus according to claim 12, wherein the 
processor is configured to assign the PEs in a first portion of 
the computing task, which has a first level of parallelism, to 
the invocations of the multiprocessor device, and to assign 
the PEs in a second portion of the computing task, which has 
a second level of parallelism that is lower than the first level, 
to the invocations of the CPU. 

15. The apparatus according to claim 9, wherein the 
processor is configured to define a sequence of the PEs that 
is to be executed conditionally depending on a condition that 
is evaluated at run-time. 

16. The apparatus according to claim 15, wherein each 
logical cone comprising an apex PE that is last in a respec 
tive invocation and a group of the PEs on which the apex PE 
depends, and to set invocation boundaries at respective 
bases of the logical cones. 
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