
(12) United States Patent
Mizrachi et al.

USOO9684494B2

US 9,684,494 B2
*Jun. 20, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

EFFICIENT PARALLEL COMPUTATION OF
DEPENDENCY PROBLEMS

Applicant: ROCKETICK TECHNOLOGIES
LTD., Ramat Gan (IL)

Inventors: Shay Mizrachi, Hod-Hasharon (IL);
Uri Tal, Netanya (IL); Tomer
Ben-David, Yavne (IL); Ishay Geller,
Mikhmoret (IL); Ido Kasher, Tel Aviv
(IL); Ronen Gal, Ramat Gan (IL)

ROCKETCK TECHNOLOGIES
LTD., Ramat Gan (IL)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 98 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 14/658,265

Filed: Mar. 16, 2015

Prior Publication Data

US 2015/O18612O A1 Jul. 2, 2015

Related U.S. Application Data
Continuation of application No. 13/907,922, filed on
Jun. 2, 2013, now Pat. No. 9,032,377, which is a

(Continued)

Int. C.
G06F 9/44 (2006.01)
G06F 9/45 (2006.01)

(Continued)
U.S. C.
CPC G06F 8/41 (2013.01); G06F 8/4441

(2013.01); G06F 8/45 (2013.01); G06F 9/50
(2013.01);

(Continued)

(58) Field of Classification Search
CPC G06F 2209/5021; G06F 15/17337; G06F

15/17343; G06F 15/17381; G06F
15/8007;

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

3,725,864 A * 4, 1973 Clark G06F 13,122
T10/6

3.812,475 A * 5/1974 Christiansen GO6F 15.78
T10/20

(Continued)

FOREIGN PATENT DOCUMENTS

JP O8287022 A 11, 1996
JP 2004206314. A T 2004

(Continued)

OTHER PUBLICATIONS

Boontee Kruatrachue et al., Grain Size Determination for Parallel
Processing, Jan. 1988, Retrieved on Feb. 16, 2017). Retrieved from
the internet: <URL: http://ieeexplore.ieee.org/stampfstamp.
jsp?arnumber=1991 > 10 Pages (23-32).*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Anibal Rivera
(74) Attorney, Agent, or Firm — Mark H. Whittenberger,
Esq.; Holland & Knight LLP

(57) ABSTRACT

A computing method includes accepting a definition of a
computing task, which includes multiple Processing Ele
ments (PEs) having execution dependencies. The computing
task is compiled for concurrent execution on a multiproces
Sor device, by arranging the PES in a series of two or more
invocations of the multiprocessor device, including assign
ing the PEs to the invocations depending on the execution
dependencies. The multiprocessor device is invoked to run

(Continued)

FOREACH
SUB-GRAPH

REPRESENT DEPENDENCY PROBLEMUSING DEPENDENCY GRAPH

PARTITIONDEPENDENCY GRAPHINTO A-CYCLIC
DIRECTED SUB-GRAPHS

GROUPPES INPEGS

CONSTRUCT STATIC INVOCATION DATABASE (SID)

INVOKE GPUTOEXECUTE SID

US 9,684,494 B2
Page 2

Software code that executes the series of the invocations, so
as to produce a result of the computing task.

(60)

(51)

(52)

(58)

(56)

16 Claims, 16 Drawing Sheets

Related U.S. Application Data
continuation-in-part of application No. 12/994,153,
filed as application No. PCT/IB2009/052820 on Jun.
30, 2009, now Pat. No. 8,516,454.

Provisional application No. 61/079,461, filed on Jul.
10, 2008, provisional application No. 61/086,803,
filed on Aug. 7, 2008, provisional application No.
61/110,676, filed on Nov. 3, 2008, provisional
application No. 61/185.589, filed on Jun. 10, 2009,
provisional application No. 61/185,609, filed on Jun.
10, 2009.

Int. C.
G06F 9/50 (2006.01)
GO6F 9/38 (2006.01)
U.S. C.
CPC G06F 9/3838 (2013.01); G06F 2209/.483

(2013.01)
Field of Classification Search
CPC G06F 15/8015; G06F 9/30014; G06F

9/30025; G06F 9/30036; G06F 9/3013;
G06F 9/301.45: G06F 9/30156; G06F
9/30.178; G06F 9/5066; G06F 8/4434;

G06F 13/122; G06F 9/5044: G06F
9/5016; G06F 9/4843; G06F 9/4881:

G06F 9/546; G06F 9/3838; G06F 9/38;
G06F 9/38; G06F 9/4436; G06F 9/4887;

G06F 15/78; G06F 15/8023; G06F
8/4441; G06F 8/4442; G06F 8/451; G06F

8/456; G06F 8/433; G06F 11/3636
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4.325, 120 A * 4/1982 Colley GO6F9,546
T11 202

4,658,351 A * 4/1987 Teng G06F94881
T18, 103

4,805,107 A * 2/1989 Kieckhafer G06F94881
T14f15

4,943,909 A * 7/1990 Huang GO6F 15,8023
712/15

5,021,497 A * 6/1991 Ohara CO8K 3/22
523, 200

5,754,871 A * 5/1998 Wilkinson GO6F 7/483
T12/11

5,832,272 A * 11/1998 Kalantery G06F 8.456
717/149

6,112,023 A * 8/2000 Dave GO6F 9/4887
703/27

6,144.932 A 11/2000 Hachiya
6,230.303 B1* 5/2001 Dave G06F94881

T16, 105
6,289.488 B1* 9/2001 Dave GO6F 9/4887

T12/28
6,950,927 B1* 9/2005 Apisdorf GO6F9,3851

T12/216
7,353,157 B2 4/2008 Wasynczuk et al.
7,409,656 B1 8, 2008 Ruehl

7,444.276
7,509,244

7.856,347
7,941,392

8, 108,633
8,516.454

2002.0049956
2005/0055539

2005/0091025
2005/O125793

2006, O130012

2006/0242618
2007/0038987
2007/OO73528
2007/0073999
2007/OO74000
2007/0129924
2007/0129926
2007/O150702
2007/O198971

2007/0206611
2007/0219771
2007/0226686

2007/O250800
2007/0283358

2008/O114937

2008. O140998

2008/02O8553
2008/0276.064

2009.01131.59

2009. O15O136
2009/O164752

2010/0274549
2010/03322O2
2011 O184713
2011/O191092
2016, OO19326

A1
A1
A1
A1
A1
A1
A1
A1
A1*

A1
A1
A1
A1
A1

10, 2008
3, 2009

12/2010
5, 2011

1, 2012
8, 2013
4, 2002
3, 2005

4, 2005
6, 2005

6, 2006

10, 2006
2, 2007
3, 2007
3, 2007
3, 2007
6, 2007
6, 2007
6, 2007
8, 2007

9, 2007
9, 2007
9, 2007

10, 2007
12, 2007

5/2008

6, 2008

8, 2008
11/2008

4/2009

6, 2009
6, 2009

10, 2010
12/2010
T/2011
8, 2011
1, 2016

Watt et al.
Shakeri G06F 9/5044

TO3, 13
Rich et al.
Saphir GO6N 3,049

T06/26
Munshi et al.
Mizrachi et al.
Bozkus et al.
Pechanek GO6F 9/38

71.2/2O7
Wilson et al.
Aguilar G06F94843

T18, 100
Hatano G06F 8,4441

717/136
Wang et al.
Ohara et al.
Watt et al.
Verheyen et al.
Colwill et al.
Verheyen et al.
Verheyen et al.
Verheyen et al.
Dasu G06F 8,433

T17,140
Shokri et al.
Verheyen et al.
Beardslee G06F 8,451

717/109
Keswick
Kasahara G06F 9/5044

T18, 104
Reid G06F 11.3636

711 117
Kissell G06F 8,4442

T12/214
Borah et al.
Munshi GO6F9,5016

711/173
Mekhiel G06F 12/06

711 167
Yang
McConnell GO6F 15, 17337

T12/16
Tal et al.
Nakhia et al.
Yang
Mizrachi et al.
Tal et al.

FOREIGN PATENT DOCUMENTS

JP 2006259821 A
JP 2007048052 A
WO 0042.535 A1
WO O135283 A2
WO 0201346 A2
WO 2006.117683 A2
WO 201OOO4474 A2

9, 2006
2, 2007
T 2000
5, 2001
1, 2002

11 2006
1, 2010

OTHER PUBLICATIONS

Robert H. Halstead et al., Multilisp: A Language for Concurrent
Symbolic Computation, ACM vol. 7 No. 4, Oct. 1985, Retrieved on
Feb. 16, 2017. Retrieved from the internet: <URL: http://delivery.
acm.org/10.1145/10000/4478/p501-halstead.pdf>.*
U.S. Appl. No. 13/907,922 Notice of Allowance dated Jan. 20, 2015.
Office Action in related Japanese Patent Application No. 2011
517279 dated Oct. 30, 2013.
Cadambiet al., “A Fast, Inexpensive and Scalable Hardware Accel
eration Technique for Functional Simulation'. Proceedings of the
39th IEEE ACM Design Automation Conference (DAC 2002), pp.
570-575, New Orleans, USA, Jun. 10-14, 2002.

US 9,684,494 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Karypis et al., “Multilevel Hypergraph Partitioning: Applications in
VLSI Domain', IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 7, No. 1, pp. 69-79, USA, Mar. 1999.
NVIDIA Corporation, “Technical Brief, NVIDIA GeForce GTX
200 GPU Architectural Overview, Second-Generation Unified GPU
Architecture for Visual Computing”. May 2008.
Gigabyte Technology Co., Ltd., “NVIDIA GeForce TM GTX 285
Graphics Accelerator'. User's Manual, 2009.
International Search Report in related International Application No.
PCT/IL09/00330, dated Jul 14, 2009.
International Search Report in related International Application No.
PCT/IB09/52820, dated Jan. 14, 2010.
Rubinstein, M., “Discrete Approaches to Content-Aware Image and
Video Retargeting, M.Sc. Dissertation, The Interdisciplinary Cen
ter, Efi Arazi School of Computer Science, Herzlia, Israel, May 21,
2009.
Cadambi et al., “SimPLE: An Inexpensive, Scalable & Fast Hard
ware Acceleration Technique for Functional Simulation'. C&C
Research Laboratories, USA, Jun. 18, 2002.
IEEE Standard 1364-2001, “IEEE Standard Verilog Hardware
Description Language'. Sep. 28, 2001.
IEEE Standard 1800-2009, “IEEE Standard for System Verilog
Unified Hardware Design, Specification, and Verification Lan
guage'. Dec. 11, 2009.
Perinkulam, A.S., “Logic simulation using graphics processors'.
Master Thesis, University of Massachusetts, pp. 1-52, Sep. 1, 2007.
Willis et al., “Use of Embedded Scheduling to Compile VHDL for
Effective Parallel Simulation”. Proceedings of European Design
Automation Conference, Brighton, UK, pp. 400-405, Sep. 18-22,
1995.
EZudheen et al., “Parallelizing SystemC Kernel for Fast Hardware
Simulation on SMP Machines”, 23rd ACM/IEEE/SCS Workshop on
Principles of Advanced and Distributed Simulation (PADS 2009),
1087-4097/09, pp. 80-87, Lake Placid, USA, Jun. 22-25, 2009.
Nanjundappa, M., "Accelerating Hardware Simulation on Multi
cores', Master Thesis, Virginia Polytechnic Institute and State
University, May 4, 2010.

Flowmaster Group, Flowmaster Announcements 2008.
Todesco et al., “Symphony: A Simulation Backplane for Parallel
Mixed-Mode Co-Simulation of VLSI Systems'. Proceedings of the
33rd Design Automation Conference, pp. 149-154, Law Vegas,
USA, Jun. 3-7, 1996.
Office Action in related U.S. Appl. No. 13/084.574, dated May 17,
2012.
Ottoni et al., “Automatic Thread Extraction with Decoupled Soft
ware Pipelining', 38th Annual IEEE/ACM International Sympo
sium on Microarchitecture (MICRO-38), pp. 105-116, Barcelona,
Spain, Nov. 12-16, 2005.
Ottoni et al., “Global Multi-Threaded Instruction Scheduling', 40th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-2007), pp. 56-67, Chicago, USA, Dec. 1-5, 2007.
Garland et al., “Parallel Computing Experiences with CUDA'.
IEEE Micro, vol. 28, No. 4, pp. 13-27, Jul. 1, 2008.
Ryoo et al., “Optimization Principles and Application Performance
Evaluation of a Multithreaded GPU using CUDA'. Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP'08), pp. 73-82, Salt Lake City, USA,
Feb. 20-23, 2008.
Extended Search Report in related European Patent Application No.
09794.083.7 dated Nov. 13, 2012.
Office Action in related U.S. Appl. No. 13/084.574 dated Oct. 11,
2012.
Extended Search Report in related European Patent Application No.
O9724.182 dated Jun. 19, 2013.
Office Action in related U.S. Appl. No. 12/810,310 dated Jun. 11,
2013.
Narayanan et al., “Fault Simulation on Massively Parallel SIMD
Machines Algorithms, Implementations and Results”, Journal of
Electronic Testing, vol. 3, No. 1, pp. 79-92, Feb. 1, 1992.
Office Action in related Chinese Patent Application No.
200980 126852.2 dated Aug. 29, 2012.
Office Action in related Japanese Patent Application No.
2011517279 dated Oct. 30, 2013.
Li et al., “Design and IMplementation of Parallel Verilog Simula
tion: PVSim”. Proceedings of the 17th International Conference on
VLSI Design, pp. 329-334, Mumbai, India, Jan. 5-9, 2004.

* cited by examiner

U.S. Patent Jun. 20, 2017 Sheet 1 of 16 US 9,684,494 B2

FIG. 1

SERVER 36 USER STATION

32 FIG.2

DEVICE MEMORY

US 9,684,494 B2 Sheet 2 of 16 Jun. 20, 2017 U.S. Patent

WETEORJd \ONEC]NEdEGI

US 9,684,494 B2

R
C
Od

U.S. Patent

U.S. Patent Jun. 20, 2017 Sheet 4 of 16 US 9,684,494 B2

164
-

SEQUENCE WARP WARP WARP WARP

SEQUENCE

SEQUENCE WARP WARP

FIG. 7

164 - SEQ #1 Wh-168
164-> SEQ #2

(A) H

U.S. Patent Jun. 20, 2017 Sheet S of 16 US 9,684,494 B2

FIG. 8 190

ACCEPT DEPENDENCY GRAPH AND SUB-GRAPHAS INPUT

INITIALIZE POSSIBLE ALLOCATION 194 198
INTERVAL FOREACH PE IN GRAPH

DEFINE GROUPS OF PES HAVING COMMON DRIVING AND/OR
DRIVENPES, ASSIGNEACHPE A GROUP SCORE BASED ON THE

NUMBER OF GROUPS IT PARTICIPATES IN

INITIALIZE WARP GRID 202 206

SORT PES BY INTERVAL SIZE, SORT BY GROUP SCORE
WITHINEACH INTERVAL SIZE

SELECT NEXT PE FOR ALLOCATION 210 214

CALCULATE ALLOCATION COST FOREACHWARP (INEACH
SEQUENCE) INSELECTED PE'S ALLOCATION INTERVAL

234

NO ALL PES ALLOCATED2

YES

GROUP WARPS INTO PEGS 238

OUTPUT SID 242

US 9,684,494 B2 U.S. Patent

FIG. 9

U.S. Patent Jun. 20, 2017 Sheet 7 of 16 US 9,684,494 B2

262
FIG 10A 258

258 P1 P2 P3C P4. P5 P6

ADO DOD D
E 2 122%. 2

c|D JZZ (Z|ZZ Z.
DDDO 212222
S 8 7 6 5 4 3 2 1 %
TI 5 4 3 2 1 ZZ 22

258
EXECUTION ORDER

P7 P8 P 9

FIG. 1OB 258 262
P1 P2 P3 - P4. P5 P6 P7 P8 P9

A I 1 x 2.

IX 222 22
IDX EH2%. 22

a 7 6 5 4 3 2 DZ

LOAD SEERations” 258
EXECUTION ORDER

262

U.S. Patent Jun. 20, 2017 Sheet 8 of 16 US 9,684,494 B2

(D 270

PEG 1/1 PEG 1/2

U.S. Patent Jun. 20, 2017 Sheet 9 of 16 US 9,684,494 B2

FIG. 13
284 IDENTIFY INTER-SID WARIABLES

MAP WARIABLE USAGE AND GENERATION PER SEQUENCE AND SID

ASSIGN VARIABLES TO MAILBOXES BASED ON
GENERATION AND USAGE COMMONALITIES

EXCHANGE WARIABLES AMONG SDSUSING MAILBOXES

FIG. 14A

288

292

296

SEQUENCE 1

SEQUENCE 2

PEG 3/4

FIG. 14B
PEG 111 PEG 1/2

SEQUENCE 1

PEG 21 PEG 212

SEQUENCE 2

}

PEG 3/3 PEG 3/4 300 {A,B,E)
SEQUENCE 3 D 300 B G

U.S. Patent Jun. 20, 2017 Sheet 10 of 16 US 9,684,494 B2

FIG. 15

310

INTER-SID
CACHE-LINE

314

as FIG 16
RESOLVE

334

380
YES

TERMINATE

U.S. Patent Jun. 20, 2017 Sheet 11 of 16 US 9,684,494 B2

FIG. 19

OZ "SO|-

US 9,684,494 B2 Sheet 12 of 16 Jun. 20, 2017 U.S. Patent

897

U.S. Patent Jun. 20, 2017 Sheet 13 of 16 US 9,684,494 B2

CPU CPU
OUTPERFORMS OUTPERFORMS

GPU GPU

462B
GPU

OUTPERFORMS
CPU FIG 21

470 DEFINE PARALLELISMLEVELS FOR CPU AND GPU

DIVIDE EXECUTION GRAPHINTO PHASES IN
WHICH CPU OUTPERFORMS GPU, AND PHASES 474

NWHICH GPU OUTPERFORMS CPU

GENERATE CPU AND GPUSIDS, WHILE MAINTAINING
DATASYNCHRONIZATION AT SID BOUNDARIES

FIG. 22

478

U.S. Patent Jun. 20, 2017 Sheet 14 of 16 US 9,684,494 B2

480 480

480

484 484 484 484 484 FIG. 23

DEFINE MAXIMUM BASE SIZE AND MAXIMUM DEPTH OF LOGICAL CONES

SCAN EXECUTION GRAPH, AND DIVIDE INTOLOGICAL
CONES THAT MEET MAXIMUM BASE SIZE AND DEPTH

DIVIDE GRAPHINTO PHASES BASED ON LOGICAL CONES

FIG. 25

508

U.S. Patent Jun. 20, 2017 Sheet 15 of 16 US 9,684,494 B2

510 GENERATE EXECUTIONSEQUENCES

INSERT IN EACHSEQUENCE ANCILLARYPE
THAT CHECKS WHETHER INPUT TO SEQUENCE hau514
HAS CHANGED SINCE PREVIOUS EXECUTION

COMPLATION

INVOKE EXECUTIONSEQUENCE

INPUT CHANGED2 RUN-TIME

EXECUTE INHIBIT EXECUTION

FIG. 26

540A 542A

FIG. 27

U.S. Patent Jun. 20, 2017 Sheet 16 of 16 US 9,684,494 B2

558
SELECT

US 9,684,494 B2
1.

EFFICIENT PARALLEL COMPUTATION OF
DEPENDENCY PROBLEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 13/907,922, filed Jun. 2, 2013, which is a
continuation in part of U.S. patent application Ser. No.
12/994,153, filed Nov. 23, 2010, which is U.S. National
Phase of PCT Application PCT/IB2009/052820, which
claims the benefit of U.S. Provisional Patent Application
61/079,461, filed Jul. 10, 2008, U.S. Provisional Patent
Application 61/086,803, filed Aug. 7, 2008, U.S. Provisional
Patent Application 61/110,676, filed Nov. 3, 2008, U.S.
Provisional Patent Application 61/185.589, filed Jun. 10,
2009, and U.S. Provisional Patent Application 61/185,609,
filed Jun. 10, 2009. The disclosures of all these related
applications are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to parallel com
puting, and particularly to methods and systems for execut
ing dependency problems on parallel processors.

BACKGROUND OF THE INVENTION

Parallel processing techniques are used extensively for
executing various kinds of computing tasks. In the field of
logic design simulation, for example, Cadambi et al.
describe a simulation accelerator based on a Very Long
Instruction Word (VLIW) processor in “A Fast, Inexpensive
and Scalable Hardware Acceleration Technique for Func
tional Simulation.” Proceedings of the 39" IEEE ACM
Design Automation Conference (DAC 2002), New Orleans,
La., Jun. 10-14, 2002, pages 570-575, which is incorporated
herein by reference. Aspects of logic simulation using VLIW
processors are also addressed in U.S. Pat. No. 7,444,276 and
in U.S. Patent Application Publications 2007/0219771,
2007/0150702, 2007/0129926, 2007/0129924, 2007/
007.4000, 2007/0073999 and 2007/0073528, whose disclo
Sures are incorporated herein by reference.

SUMMARY OF THE INVENTION

An embodiment of the present invention that is described
herein provides a computing method including accepting a
definition of a computing task, which includes multiple
Processing Elements (PEs) having execution dependencies.
The computing task is compiled for concurrent execution on
a multiprocessor device, by arranging the PES in a series of
two or more invocations of the multiprocessor device,
including assigning the PEs to the invocations depending on
the execution dependencies. The multiprocessor device is
invoked to run software code that executes the series of the
invocations, so as to produce a result of the computing task.

In some embodiments, the multiprocessor device com
pletes a preceding invocation before beginning a Subsequent
invocation in the series, such that outputs of the PEs in the
preceding invocation are available as input to the PEs in the
Subsequent invocation. In some embodiments, assigning the
PEs to the invocations includes assigning a first PE to a first
invocation and assigning a second PE, which according to
the execution dependencies is to be executed after the first
PE, in a second invocation that is later than the first
invocation in the series.

10

15

25

30

35

40

45

50

55

60

65

2
In an embodiment, assigning the PEs to the invocations

includes interleaving in the series one or more invocations of
a Central Processing Unit (CPU) in addition to the invoca
tions of the multiprocessor device, and assigning one or
more of the PEs to the invocations of the CPU. In an
embodiment, assigning the PES to the invocations includes
identifying a first portion of the computing task whose
execution by the multiprocessor device is expected to out
perform execution by the CPU, identifying a second portion
of the computing task whose execution by the CPU is
expected to outperform execution by the multiprocessor
device, assigning the first portion to the invocations of the
multiprocessor device, and assigning the second portion to
the invocations of the CPU.

In another embodiment, assigning the PES to the invoca
tions includes assigning the PEs in a first portion of the
computing task, which has a first level of parallelism, to the
invocations of the multiprocessor device, and assigning the
PES in a second portion of the computing task, which has a
second level of parallelism that is lower than the first level,
to the invocations of the CPU.

In yet another embodiment, compiling the computing task
includes defining a sequence of the PEs that is to be executed
conditionally depending on a condition that is evaluated at
run-time, and assigning the PEs to the invocations includes
evaluating a criterion that aims to maximize a likelihood that
the sequence will not be executed. Evaluating the criterion
may include dividing the computing tasks into logical cones,
each logical cone including an apex PE that is last in a
respective invocation and a group of the PEs on which the
apex PE depends, and a maximum depth and a maximum
base size of the logical cones are specified based on the
likelihood, and setting invocation boundaries at respective
bases of the logical cones.

There is additionally provided, in accordance with an
embodiment of the present invention, a computing apparatus
including an interface and a processor. The interface is
configured to accept a definition of a computing task, which
includes multiple Processing Elements (PEs) having execu
tion dependencies. The processor is configured to compile
the computing task for concurrent execution on a multipro
cessor device, by arranging the PES in a series of two or
more invocations of the multiprocessor device, including
assigning the PEs to the invocations depending on the
execution dependencies, and to invoke the multiprocessor
device to run software code that executes the series of the
invocations, so as to produce a result of the computing task.

There is also provided, in accordance with an embodi
ment of the present invention, a computing method includ
ing accepting a definition of a computing task, which
includes multiple Processing Elements (PEs) having execu
tion dependencies. The computing task is compiled for
concurrent execution on a multiprocessor device, by arrang
ing the PES in multiple execution sequences, including
compiling, for a given execution sequence, ancillary logic
that evaluates a condition at run-time and, depending on the
condition, enables or inhibits execution of the given execu
tion sequence. The multiprocessor device is invoked to run
Software code that executes the execution sequences, so as
to produce a result of the computing task.

In some embodiments, compiling the ancillary logic
includes defining at a beginning of the given execution
sequence an ancillary PE that evaluates the condition and
enables or inhibits the execution. In an embodiment, the
condition inhibits execution of the given execution sequence
upon identifying that input to the given execution sequence
did not change since a previous execution of the given

US 9,684,494 B2
3

execution sequence. In another embodiment, the condition
inhibits execution of the given execution sequence upon
identifying that a trigger signal of a component simulated in
the given execution sequence is not asserted. In still another
embodiment, the condition inhibits execution of the given
execution sequence upon identifying that the execution of
the given execution sequence will not affect an output of the
given execution sequence.

There is further provided, in accordance with an embodi
ment of the present invention, a computing apparatus includ
ing an interface and a processor. The interface is configured
to accept a definition of a computing task, which includes
multiple Processing Elements (PEs) having execution
dependencies. The processor is configured to compile the
computing task for concurrent execution on a multiprocessor
device, by arranging the PEs in multiple execution
sequences, including compiling, for a given execution
sequence, ancillary logic that evaluates a condition at run
time and, depending on the condition, enables or inhibits
execution of the given execution sequence, and to invoke the
multiprocessor device to run software code that executes the
execution sequences, so as to produce a result of the
computing task.

There is also provided, in accordance with an embodi
ment of the present invention, a computing method includ
ing accepting a definition of a computing task, which
includes a plurality of logic sections triggered by triggering
signals. The definition of the computing task is compiled for
concurrent execution on a multiprocessor device, so as to
generate combined logic, which executes the plurality of the
logic sections and which includes ancillary logic that selec
tively enables execution of a part of the computing task
corresponding to the logic sections whose triggering signals
are asserted. The multiprocessor device is invoked to run
Software code that executes the combined logic, so as to
produce a result of the computing task.

In some embodiments, compiling the definition includes
generating a single execution sequence that executes the
multiple logic sections, including configuring the ancillary
logic to enable the execution of only Processing Elements
(PEs) in the execution sequence corresponding to the logic
sections whose triggering signals are asserted. In an embodi
ment, the triggering signals include at least one signal type
selected from a group of types consisting of clock signals,
set signals and reset signals.

In other embodiments, compiling the definition includes
generating multiple execution sequences that execute the
respective logic sections, and inserting into each execution
sequence an ancillary Processing Element (PE) that selec
tively enables execution of the execution sequence depend
ing on the respective triggering signals.

There is additionally provided, in accordance with an
embodiment of the present invention, a computing apparatus
including an interface and a Central Processing Unit (CPU).
The interface is configured to accept a definition of a
computing task, which includes a plurality of logic sections
triggered by triggering signals. The CPU is configured to
compile the definition of the computing task for concurrent
execution on a multiprocessor device, so as to generate
combined logic, which executes the plurality of the logic
sections and which includes ancillary logic that selectively
enables execution of a part of the computing task corre
sponding to the logic sections whose triggering signals are
asserted, and to invoke the multiprocessor device to run
Software code that executes the combined logic, so as to
produce a result of the computing task.

5

10

15

25

30

35

40

45

50

55

60

65

4
The present invention will be more fully understood from

the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
system for executing dependency problems, in accordance
with an embodiment of the present invention;

FIG. 2 is a block diagram that schematically illustrates a
Graphics Processing Unit (GPU), in accordance with an
embodiment of the present invention;

FIG. 3 is a diagram that schematically illustrates a depen
dency problem represented by dependency graphs, in accor
dance with an embodiment of the present invention;

FIG. 4 is a diagram that schematically illustrates a Static
Invocation Database (SID), in accordance with an embodi
ment of the present invention;

FIG. 5 is a flow chart that schematically illustrates a
method for executing a dependency problem, in accordance
with an embodiment of the present invention;

FIG. 6 is a diagram that schematically illustrates a grid of
warps used in SID generation, in accordance with an
embodiment of the present invention;

FIG. 7 is a diagram that schematically illustrates alloca
tion intervals for allocating Processing Elements (PEs) in a
grid of warps, in accordance with an embodiment of the
present invention;

FIG. 8 is a flow chart that schematically illustrates a
method for generating a SID, in accordance with an embodi
ment of the present invention;

FIG. 9 is a diagram that schematically illustrates a cache
management scheme, in accordance with an embodiment of
the present invention;

FIGS. 10A and 10B are diagrams that schematically
illustrate a variable pre-fetching scheme, in accordance with
an embodiment of the present invention;

FIG. 11 is a diagram that schematically illustrates a
variable pre-ordering scheme, in accordance with an
embodiment of the present invention;

FIG. 12 is a diagram that schematically illustrates mul
tiple SIDs, in accordance with an embodiment of the present
invention;

FIG. 13 is a flow chart that schematically illustrates a
method for inter-SID communication, in accordance with an
embodiment of the present invention;

FIGS. 14A and 14B are diagrams that schematically
illustrate an intra-SID communication scheme, in accor
dance with an embodiment of the present invention;

FIG. 15 is a diagram that schematically illustrates a SID
that uses inter-SID and intra-SID communication, in accor
dance with an embodiment of the present invention;

FIG. 16 is a state diagram that schematically illustrates a
method for reducing inter-SID communication, in accor
dance with an embodiment of the present invention;

FIG. 17 is a flow chart that schematically illustrates a
method for reducing inter-SID communication, in accor
dance with an embodiment of the present invention;

FIG. 18 is a diagram that schematically illustrates a
dependency graph representing a digital filter, in accordance
with an embodiment of the present invention;

FIG. 19 is a diagram that schematically illustrates a
dependency graph representing a Fast Fourier Transform
(FFT) computation element, in accordance with an embodi
ment of the present invention;

US 9,684,494 B2
5

FIG. 20 is a diagram that schematically illustrates a
scheme for parallelized execution of multiple clock-set-reset
logic, in accordance with an embodiment of the present
invention;

FIG. 21 is a diagram that schematically illustrates an
execution graph of a dependency problem, in accordance
with an embodiment of the present invention;

FIG. 22 is a flow chart that schematically illustrates a
method for partitioning an execution graph between a Cen
tral Processing Unit (CPU) and a GPU, in accordance with
an embodiment of the present invention;

FIG. 23 is a diagram that schematically illustrates execu
tion sequences partitioned into multiple GPU invocations, in
accordance with an embodiment of the present invention;

FIG. 24 is a diagram that schematically illustrates a
process for partitioning execution sequences into phases, in
accordance with an embodiment of the present invention;

FIG. 25 is a flow chart that schematically illustrates a
method for partitioning execution sequences into phases, in
accordance with an embodiment of the present invention;

FIG. 26 is a flow chart that schematically illustrates a
method for avoiding unnecessary execution using sensitivity
information, in accordance with an embodiment of the
present invention;

FIG. 27 is a diagram that schematically illustrates execu
tion sequences with triggered elements, in accordance with
an embodiment of the present invention; and

FIG. 28 is a diagram that schematically illustrates an
execution sequence with a multiplexed output, in accor
dance with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

Various types of computational tasks in a wide range of
fields can be represented as dependency problems, i.e., as a
set of atomic processing elements having execution depen
dencies. Dependency problems are often large and complex,
and their execution often involves high computational com
plexity and execution time. Therefore, it is advantageous to
execute dependency problems on multiple processors that
operate in parallel. The execution dependencies between
processing elements, however, often make dependency
problems difficult to partition into parallel computing tasks.

Embodiments of the present invention provide improved
methods and systems for executing dependency problems by
parallel processors. The embodiments described herein refer
mainly to simulation of hardware design, but the disclosed
techniques can be applied in various other fields and appli
cations. The disclosed methods and systems operate on a
dependency problem, which comprises atomic Processing
Elements (PEs) having execution dependencies. A compiler
compiles the dependency problem for concurrent execution
on a multiprocessor device comprising multiple processors,
such as a Graphics Processing Unit (GPU).

In some embodiments, the compilation process arranges
the PEs in a series of GPU invocations, also referred to as
phases. The partitioning into a series of invocations is used
as a synchronization mechanism: By definition, the GPU
completes execution of a given invocation before starting to
execute the next invocation in the series. As a result, the
outputs of the PEs in a given invocation are guaranteed to be
available as inputs for the PEs in subsequent invocations.
Thus, in some embodiments the compiler preserves the
execution dependencies between PEs by appropriately
assigning PES to invocations. Maintaining synchronization

10

15

25

30

35

40

45

50

55

60

65

6
in this manner incurs only small processing overhead, in
comparison with other possible synchronization mecha
nisms.

In some embodiments, the compiler assigns part of the
dependency problem for execution by a Central Processing
Unit (CPU) rather than by the GPU. In these embodiments,
the compilation process produces a series of invocations,
some for the CPU and some for the GPU. Typically, the
compiler identifies a portion of the dependency problem in
which the CPU is expected to outperform the GPU (e.g., a
low-parallelism portion), and a portion of the dependency
problem in which the GPU is expected to outperform the
CPU (e.g., a high-parallelism portion). The former portion is
assigned for execution by the CPU, and the latter portion is
assigned to the GPU. Typically, although not necessarily,
CPU invocations tend to occur at the beginning and end of
the overall execution graph.

Yet another motivation for dividing the execution into
phases is to avoid unnecessary execution of PE execution
sequences. In some embodiments, the compiler is capable of
inserting into the PE execution sequences logic that inhibits
unnecessary execution of a PE sequence, under various
conditions that are detected at run-time. By dividing the
execution into phases, the likelihood of meeting Such con
ditions and avoiding unnecessary execution is increased. An
example partitioning method that achieves this goal is
described.

In Such embodiments, the compiler may define various
conditions that, when detected at run-time, indicate that
execution of a given PE sequence is unnecessary. In an
embodiment, the compiler inserts into the given PE
sequence an ancillary PE that detects such a condition and
enables or inhibits the sequence execution accordingly. The
condition may detect, for example, that the input to the given
PE sequence did not change since the previous execution of
the sequence, that a trigger to a simulated component along
the sequence is not asserted, or that execution of the
sequence will not affect the sequence outputs. In many
practical scenarios, inhibiting the execution of PE sequences
under Such conditions provides a considerable reduction in
run-time.

Other embodiments that are described herein help to
exploit the parallel processing capability of the GPU even
for designs that possess little or no parallelism. For example,
Some hardware designs comprise a large number of low
parallelism logic sections that are triggered by multiple
triggering signals (e.g., clock, set and/or reset signals). In
Some embodiments, the compiler produces combined logic
that simulates the multiple logic sections with high paral
lelism. To preserve the correct functionality, the combined
logic comprises ancillary logic that selectively activates only
the parts of the combined logic corresponding to the logic
sections whose triggering signals are asserted.

System Description

FIG. 1 is a block diagram that schematically illustrates a
system 20 for executing dependency problems, in accor
dance with an embodiment of the present invention. Various
kinds of computing tasks can be represented as dependency
problems, i.e., as a set of atomic processing tasks having
execution dependencies. Dependency problems can be
found in a wide range of fields and applications, such as, for
example, digital hardware design simulation, real-time
Video processing, image processing, Software-Defined
Radio (SDR), packet processing in various communication
applications and error correction coding. System 20 can be

US 9,684,494 B2
7

used for efficient execution of any Suitable computing task
that can be represented as a dependency problem. Several
examples of specific computing tasks, and the applicability
of the disclosed techniques to these tasks, are described
further below.

In the present example, system 20 comprises a server 24,
which comprises an interface 26, a Central Processing Unit
28 and one or more Graphics Processing Units (GPUs) 32.
Server 24 may comprise any suitable workstation or com
puting platform. Each GPU, as will be described below,
comprises a large number of processing cores that operate in
parallel. The methods and systems described herein produce
software code that maximizes the parallel utilization of the
GPU cores, and therefore enables system 20 to execute
highly complex dependency problems with relatively short
execution times.

Server 24 interacts with a user via a user station36. Server
24 accepts from the user, via interface 26, a dependency
problem to be executed. The server compiles the input
dependency problem to produce Software code, and then
runs the code on CPU 28 and GPUs 32. Execution results are
provided to the user via interface 26. The functionality of
system 20 can be partitioned between CPU 28 and GPUs 32
in various ways, depending on the application. The embodi
ments described herein refer to a single GPU. In general,
however, any desired number of GPUs can be used.

Typically, CPU 28 comprises a general-purpose proces
Sor, which is programmed in Software to carry out the
functions described herein. The software may be down
loaded to the processor in electronic form, over a network,
for example, or it may, alternatively or additionally, be
provided and/or stored on tangible media, such as magnetic,
optical, or electronic memory.
The configuration of system 20 is an example configura

tion, which is chosen purely for the sake of conceptual
clarity. Any other Suitable system configuration can also be
used. For example, user station 36 may communicate with
server 24 locally or over a communication network. In
alternative embodiments, the user station functionality can
be implemented directly on server 24.
Some aspects of using a system Such as System 20 for

logic design simulation are addressed in PCT Application
PCT/IL2009/000330, entitled “Design Simulation using
Parallel Processors, filed Mar. 25, 2009, which is assigned
to the assignee of the present patent application and whose
disclosure is incorporated herein by reference.

FIG. 2 is a block diagram that schematically illustrates the
internal structure of GPU 32, in accordance with an embodi
ment of the present invention. In the present example, GPU
32 comprises multiple multi-processors 40. Each multi
processor 40 comprises multiple processors 44, which are
also referred to herein as processing cores. In some embodi
ments, each multi-processor 40 comprises a Single Instruc
tion Multiple Thread (SIMT) processor, as is known in the
art. In alternative embodiments, each multi-processor 40
comprises a Single Instruction Multiple Data (SIMD) pro
cessor, in which all processors 44 run the same instruction
in each clock cycle. (Different processors may, however, run
the same instruction over different data.) In a typical appli
cation, all processors 44 in the entire GPU run the same
instruction. The differentiation between functions of differ
ent processors is introduced by the data. The disclosed
techniques are applicable to both SIMD and SIMT proces
SOS.

Each processor 44 can access a number of local registers
48. The different processors within a given multi-processor
40 can store data in a shared memory 52. This shared

10

15

25

30

35

40

45

50

55

60

65

8
memory is accessible to processors 44 of the given multi
processor but not to processors of other multi-processors. In
a typical GPU, each multi-processor also comprises an
instruction unit 60, which manages the operation of the
multi-processor. In a typical multi-processor, unit 60 creates,
manages and executes concurrent threads. In particular, unit
60 may comprise hardware mechanisms that synchronize the
operation of different threads running in the multi-processor.
GPU 32 further comprises a device memory 56, which is

also referred to herein as an external memory. Memory
typically comprises a Dynamic Random Access memory
(DRAM). Unlike shared memory 52, device memory 56 is
typically accessible to the processors of all multi-processors
40. On the other hand, access to device memory 56 is
typically expensive in terms of latency and throughput. In
order to access memory 56 efficiently, it is typically desir
able to write into or read from consecutive and aligned
memory addresses. Some of the methods described herein
are concerned with producing code that accesses memory 56
efficiently.
The basic software code unit that each processor 44 runs

at any given time is referred to as a thread. Typically, CPU
28 invokes GPU 32 by providing the GPU with blocks of
threads. A given block of threads is guaranteed to run on the
processors of a single multi-processor 40 in SIMD or SIMT
mode. Thus, the threads in a given block can communicate
with one another via shared memory 52.

Typically, the number of threads per block can be greater
than the number of processors in the multi-processor. The
number of blocks provided to the GPU can generally be
greater than the number of multi-processors. The GPU
comprises a block manager 60, which accepts blocks for
execution from CPU 28 and schedules the execution of
blocks and threads according to certain internal criteria.
These criteria are referred to herein as a built-in scheduling
policy.

Thus, other than the guarantee that the threads of a given
block are executed in the same multi-processor, there is no
guarantee as to the order in which the threads of a given
block are executed in the multi-processor. There is also no
guarantee as to the order in which different blocks are
executed in the GPU. In other words, CPU 28 generally has
no control over the internal scheduling policy of the GPU.
Some of the methods and systems described herein pro

duce code, which makes use of the architectural features of
the GPU, such as the ability to synchronize and share data
among threads in a given block. When partitioning the
dependency problem into threads, the disclosed methods and
systems preserve the inherent dependencies between differ
ent atomic processing tasks, given the non-guaranteed
nature of thread and block execution in the GPU (i.e.,
irrespective of the scheduling policy of the GPU).

In particular, the GPU is typically specified to execute a
certain number of blocks simultaneously. If the GPU is
invoked with a larger number of blocks, the blocks are
scheduled by block manager 60. Some of the methods and
systems described herein invoke the GPU with a number of
blocks that does not exceed the maximum number of blocks
that can be executed simultaneously. As a result, the internal
scheduling policy of block manager 60 is effectively
bypassed. These features are explained in detail further
below.
The GPU configuration of FIG. 2 is an example configu

ration, which is chosen purely for the sake of conceptual
clarity. In alternative embodiments, any other suitable GPU
configuration can also be used. A typical GPU device that
can be used for this purpose is the GTX285 device, produced

US 9,684,494 B2

by NVIDIA Corp. (Santa Clara, Calif.). This device com
prises thirty multi-processors, each comprising eight pro
cessing cores. Further alternatively, although the embodi
ments described herein refer to the use of a GPU, the
disclosed methods and systems can be used with various
other types of processors that operate multiple processing
cores in parallel, such as Digital Signal Processors (DSPs)
and multi-core Central Processing Units (CPUs).

Representing Dependency Problems Using
Dependency Graphs

CPU 28 represents an input dependency problem in terms
of atomic execution tasks, which are referred to herein as
Processing Elements (PEs). When the dependency problem
is executed by GPU 32, each PE corresponds to a thread that
is executed by a certain processor 44. The CPU typically
holds a library of PE types, each type performing a certain
atomic task (e.g., look-up table lookups, flip-flops, buffering
operations, memory access operations, multiplexing opera
tions, arithmetic operations, logical operations or any other
suitable task types). Each PE belongs to one of the types, and
operates on certain data.
When processors 44 operate in SIMT mode, each thread

typically comprises code that is able to run the different PE
types. When the thread is executed, the actual PE type
executed by the thread is selected by the data. The data read
by the thread can select the actual PE type, for example, by
jumping to a program address that carries out the desired PE
functionality, or using any other Suitable selection means. A
typical thread may thus execute the following flow:

Read the desired PE type from memory 56, and jump to
the appropriate address that implements this PE type.

Read the PE parameters and input values from memory
56.

Execute the desired PE functionality.
Write the PE output values to memory 56.
(In order to access memory 56 efficiently, CPU 28 may

divide the PEs into PE Groups—PEGs. This feature is
addressed in detail further below, and also in PCT Applica
tion PCT/IL2009/000330, cited above.) Typically, the thread
load and store operations are not linked with the PE param
eters of the thread. For example, a given PEG may support
up to sixty-four load commands from the device memory to
the shared memory. A given thread may load data that is not
used by its PEs.
When using the above-mentioned technique in a SIMT

processor, it is generally desirable that threads that are
scheduled to run concurrently in a given multi-processor
SIMT unit will run the same PE types, so that the unit will
run effectively in SIMD mode.

FIG. 3 is a diagram that schematically illustrates a depen
dency problem represented by a dependency graph, in
accordance with an embodiment of the present invention.
CPU 28 represents the dependency problem using multiple
PEs, which are interconnected by execution dependencies. A
given dependency specifies that the output of a certain PE
(referred to as the “driving PE) is to be used as input to
another PE (referred to as the “driven” PE). In other words,
the driven PE depends on the driving PE. Such a dependency
means that the driving PE is to be executed before the driven
PE, since otherwise the input of the driven PE will not be
valid.

FIG. 3 shows an example dependency problem 68, which
is converted into a dependency graph 72. Graph 72 com
prises multiple vertices 76 that represent the PEs, and
directed edges 80 that represent the execution dependencies.

10

15

25

30

35

40

45

50

55

60

65

10
A given edge is directed from the driving PE to the driven
PE. In some embodiments, CPU 28 produces multiple
sub-graphs 78 from dependency graph 72. Unlike depen
dency graph 72, which may generally be cyclic, each
sub-graph 78 is a-cyclic.
The methods described below convert a give a-cyclic

sub-graph into code that is executed on GPU 32. If the
dependency problem is represented using multiple Sub
graphs, the disclosed methods are typically applied to each
Sub-graph separately. In some embodiments, commonalities
between variables among different Sub-graphs can be
exploited to increase computational efficiency. These fea
tures are addressed further below.

Representing and Executing Dependency Graphs
Using Static Invocation Database (SID)

In some embodiments, CPU 28 compiles the input depen
dency problem to produce an invocation data structure,
which is referred to herein as a Static Invocation Database
(SID). The SID is provided to GPU 32 for execution. CPU
28 typically runs a compiler program that produces the SID.
In the description that follows, actions performed by CPU 28
are sometimes referred to as being carried out by the
compiler, for the sake of clarity. In alternative embodiments,
however, the compiler may run on any suitable processor So
as to produce the SID. The resulting SID can then be
provided to system 20 for execution.
The SID comprises a set of PE execution sequences,

which are guaranteed to run in parallel to one another and at
a particular order, irrespective of the internal scheduling
policy of the GPU. When the GPU is invoked with the SID,
each execution sequence is provided to the GPU as a block
of threads. Thus, the PEs within each sequence are guaran
teed to run in the same multiprocessor 40 of GPU 32.
Additionally, the number of execution sequences in the SID
does not exceed the maximum number of blocks that can be
executed simultaneously by the GPU. As a result, the
execution sequences are guaranteed to run simultaneously in
the GPU, and are generally unaffected by the internal
scheduling policies of block manager 60. In other words, the
internal scheduling policy of the GPU is effectively
bypassed, and the execution order of the PEs is fully
controlled by the SID.

FIG. 4 is a diagram that schematically illustrates a SID 90,
in accordance with an embodiment of the present invention.
SID 90 comprises a set of execution sequences, in the
present example four sequences 98A . . .98D. Generally,
however, any Suitable number of sequences, which is greater
than one but does not exceed the maximum number of
blocks that can be executed simultaneously by the GPU, can
be used. Each execution sequence comprises a series of
PEGs 94, which are executed one following the other.
(Grouping of PEs into PEGs is addressed further below.)
The number of blocks that the GPU can run simultane

ously is typically given by the number of multiprocessors 40
multiplied by the number of blocks that can be executed
simultaneously by each multiprocessor. The actual number
of concurrent blocks per multiprocessor may sometimes be
limited by multiprocessor resources (e.g., registers, shared
memory or thread count), and thus it may be smaller than the
specified number of concurrent blocks per multiprocessor.

In some cases, the actual number of concurrent blocks per
multiprocessor can be written as min((multiprocessor reg
ister count/program reg count), (multiprocessor shared
memory size/program shared memory), (number of
threads per multiprocessor/number of threads per block),

US 9,684,494 B2
11

specified number of concurrent blocks per multiprocessor).
The GTX285 GPU, for example, has 30 multiprocessors 40.
Each multiprocessor comprises 16,384 registers and a 16
Kbyte shared memory, and Support up to 1,024 concurrent
threads and up to eight concurrent blocks. In an example 5
embodiment, the GPU code produced by the compiler uses
2 KB of shared memory and fifteen registers per thread,
wherein each block comprises sixty-four threads. This code
results in a total of 15x64=240 registers per block. In this
example, the number of concurrent blocks per multiproces- 10
sor is min(16 KB/2 KB,16384/240,1024/64.8)—min(8.68, 16,
8)=8. The maximum number of concurrent blocks that can
be executed simultaneously by the entire GPU is thus
8x3O=240.

Different execution sequences may generally have differ- 15
ent lengths, i.e., different execution times. Typically, CPU 28
attempts to compile the dependency problem into a SID
whose execution time is minimal. In other words, the CPU
attempts to produce a SID having the shortest execution
sequences, without exceeding the maximum permitted num- 20
ber of sequences. An example SID generation process of this
sort is described in detail further below.

Since each execution sequence comprises a block of
threads that are guaranteed to run in the same multiprocessor
40, the PEGs within a given sequence are guaranteed to run 25
in the correct order. Thus, placing a driving PE before its
respective driven PE in the same execution sequence would
guarantee that the execution dependency between the PEs
will not be violated. Moreover, PEGs belonging to the same
execution sequence may exchange data using shared 30
memory 52 of the multiprocessor that runs this sequence.

In many dependency problems, however, the constraint of
placing every pair of dependent PES in the same execution
sequence is too severe. Such a constraint often produces a
Small number of extremely long execution sequences, and 35
therefore increases execution time and limits the achievable
parallelization. In many cases, it is desirable to place depen
dent PEs in different execution sequences while still pre
serving the execution dependencies.

In some embodiments, the compiler forces synchroniza- 40
tion between different execution sequences in the SID, in
order to preserve the dependencies between PEs that are
placed in different sequences. In FIG. 4, for example, a PEG
102 in sequence 98B depends on a PEG 106 in sequence
98A, as indicated by a dependency 110. (More accurately, 45
PEG 102 contains a PE that depends on a PE in PEG 106.)
In order to ensure that PEG 106 executes completely before
PEG 102 begins execution, the compiler places a synchro
nization element, e.g., a SYNC PEG 114, in sequence 98B
before PEG 102. SYNC 114 halts the execution of sequence 50
98B until PEG 106 completes execution and produces valid
output. The output of PEG 106 is then provided as input to
PEG 102, and sequence 98B may resume execution. Simi
larly, a PEG 118 in sequence 98C depends on a PEG 122 in
sequence 98D, as indicated by a dependency 126. In order 55
to preserve this dependency, the compiler places a SYNC
PEG 130 in sequence 98C before PEG 118.

Synchronization between sequences is typically imple
mented using device memory 56. For example, a driving
PEG may signal its execution status by writing to a certain 60
region in device memory 56. A SYNC PEG may poll this
region and resume execution of its sequence only when the
driving PEG has completed execution.

Note, however, that not every pair of dependent PEs in
different sequences necessarily requires addition of a SYNC 65
PEG. Assume, for example, that the last PEG in sequence
98C depends on the first PEG in sequence 98D. In this case,

12
it is not necessary to add another SYNC PEG to sequence
98C, since the existing SYNC PEG 130 already ensures that
the last PEG in sequence 98C will not execute unless the first
PEG in sequence 98D completed execution.

Generally, a certain SYNC PEG may depend on any
desired number of PEGs in any desired number of
sequences, i.e., halt execution of a given sequence until a
predefined set of driving PEGs have completed execution. In
Some embodiments, the synchronization functionality may
be embedded in the driven PEGs without using dedicated
SYNC PEGS.

Forcing synchronization between sequences can be
highly-effective in balancing the execution times of different
sequences, and thus increasing parallelization. On the other
hand, the synchronization mechanism introduces latency
and involves costly access to device memory 56. As will be
explained below, the compiler typically attempts to trade-off
these advantages and penalties in order to achieve the lowest
overall execution time of the SID.

FIG. 5 is a flow chart that schematically illustrates a
method for executing a dependency problem, in accordance
with an embodiment of the present invention. The method
begins with CPU 28 receiving an input dependency prob
lem, which is represented as a dependency graph, at a graph
input step 134. The CPU partitions the dependency graph
into directed, a-cyclic Sub-graphs, at a partitioning step 138.
Partitioning of a dependency graph into directed, a-cyclic
Sub-graphs is addressed, for example, in PCT Application
PCT/IL2009/000330, cited above. For each sub-graph, the
CPU groups the PEs into PEGs, at a grouping step 142, and
arranges the PEGS in a SID, at a SID construction step 146.
The CPU invokes GPU 32 to execute the SID, at an
invocation step 150. The GPU executes the PEG sequences
in the SID, so as to produce a result of the computing task.

Efficient SID Generation

As noted above, the compiler running on CPU 28 typi
cally attempts to produce a SID having the shortest execu
tion time for a given maximum number of execution
sequences. The input to Such a process is a directed, a-cyclic
dependency sub-graph of PEs, which is to be converted to a
SID. In some embodiments, the compiler generates the SID
by gradually filling a two-dimensional grid of warps with
PES, in a manner that preserves the execution dependencies
between the PES.
A warp is a group of threads of the same type, which run

concurrently and efficiently in a given multiprocessor. The
maximum number of threads (and thus PEs) in a warp may
vary from one GPU type to another. In the NVIDIA GTX285
device, for example, each warp runs thirty-two threads. As
will be shown below, several warps can later be joined to
form a PEG.

FIG. 6 is a diagram that schematically illustrates a warp
grid 160 used for SID generation, in accordance with an
embodiment of the present invention. Grid 160 comprises
multiple execution sequences 164, each comprising multiple
warp slots 168. The warp slots are initially empty, and the
compiler gradually fills them with PEs. In order to force
synchronization between different execution sequences, the
compiler sometimes inserts SYNC warps 172 into the
sequences. (Note that the SYNC warps differ from ordinary
warps in that they do not contain threads for execution. The
SYNC warps imitate the latency of a SYNC operation that
will be inserted into the sequence.) At the end of the process,
each PE in the input sub-graph is placed in one of the warp
slots (each warp slot may contain multiple PEs of the same

US 9,684,494 B2
13

type). The compiler then forms PEGs 176 from the warps,
in some cases joining two or more adjacent warps in a given
sequence to form a PEG. The grid of PEGs is output as the
desired SID.

Typically, the number of execution sequences 164 in grid
160 is set so as not to exceed the maximum number of thread
blocks that the GPU can run simultaneously, so that execu
tion of the resulting SID will not be affected by internal GPU
scheduling. The number of warp slots per sequence is
typically initialized as the length of the longest path in the
input Sub-graph.

Because of the dependencies between PEs, each PE can
only be placed in a certain partial Subset of the columns of
grid 160. This subset is referred to as the allocation interval
of the PE. For example, a PE that depends on another PE
cannot be placed in the first column of the warp grid (i.e., at
the beginning of any execution sequence), since the driving
must be executed first. Similarly, a PE that drives another PE
cannot be placed in the last column of the grid.

Generally, each PE in the Sub-graph has a certain alloca
tion interval, which defines the columns of grid 160 in which
the PE can be potentially placed. The allocation interval of
a PE X depends on two parameters, which are referred to as
the backward phase (denoted BP(x)) and the forward phase
(denoted PF(x)) of PE X. The backward phase of a given PE
is defined as the number of PEs along the longest path in the
sub-graph that leads to this PE. The forward phase of a given
PE is defined as the number of PEs along the longest path in
the sub-graph that begins at this PE.

Using this terminology, the length of the longest path in
the Sub-graph (and therefore the number of columns in warp
grid 160) is given by L-max(BP(x)+FP(x)+1, wherein the
maximum is taken over all the PEs X in the sub-graph. The
allocation interval of a PE X is given by BP(x).L-FP(x).
These allocation intervals reflect the situation at the begin
ning of the allocation process. The allocation intervals
typically change as the allocation process progresses.

FIG. 7 is a diagram that schematically illustrates alloca
tion intervals for placing PES in a grid of warps, in accor
dance with an embodiment of the present invention. FIG. 7
refers to an example Sub-graph 180, which comprises eight
PEs 76 denoted A... H. The PEs are to be placed in a warp
grid having two sequences 164. Since the longest path
through this graph is three PEs long, each sequence 164 in
this example comprises three warp slots 168.

The forward and backward phases of the eight PEs are
given in the following table:

PE A. B C D E F G H

FP 2 2 1 1 1 O O O
BP O O O 1 1 1 2 2

At the beginning of the allocation process, i.e., when the
warp grid is still empty, the eight PEs have allocation
intervals 184 as shown in the figure. In this example, PEs A
and B can only be placed in the first column of the grid, since
each of them drives a path of two PEs. PEC can be placed
anywhere but the last column, since it drives a one-PE path.
PEs D and E can only be placed in the second column, since
each of them is driven by a certain PE and drives a certain
PE. PE F can be placed anywhere but the first column, it is
driven by a one-PE path. Finally, PEs G and H can only be
placed in the last column, since each of them is driven by a
two-PE path.

10

15

25

30

35

40

45

50

55

60

65

14
The example of FIG. 7 demonstrates that some PEs are

more heavily-constrained than others in terms of the possi
bilities of placing them in grid 160. A PE having a short
allocation interval is heavily constrained, whereas a PE
having a longer allocation interval has more degrees of
freedom in allocation.

FIG. 8 is a flow chart that schematically illustrates a
method for generating a SID, in accordance with an embodi
ment of the present invention. The method begins with the
compiler running on CPU 28 accepting a dependency Sub
graph for conversion into a SID, at an input step 190. In
Some embodiments, the compiler also accepts the complete
dependency graph from which the Sub-graph was derived,
which typically comprises additional PEs and dependencies.
When generating a single SID irrespective of other SIDs,
accepting the complete graph is usually unnecessary. The
compiler may use the complete graph, however, when
considering other SIDs of other sub-graphs of the same
graph. This feature is addressed further below. In addition,
the compiler may accept as input the number of execution
sequences N, the latency D of a SYNC in warp slot units, the
warp size (i.e., the number of PEs per warp) and the PE
types.
The compiler initializes an allocation interval for each PE

in the sub-graph, at an interval initialization step 194. As
explained above, the initial allocation interval of a PE X is
given by BP(x).L-FP(x).
The compiler defines PE input and output groups, at a

group definition step 198. An input group comprises a group
of PEs having a common input (i.e., PEs that are driven by
the same driving PE). The common driving PE is referred to
as the pivot of the group. An output group comprises a group
of PEs having a common output (i.e., PEs that drive the same
driven PE). The common driven PE is referred to as the pivot
of the group.

For example, the compiler may create an output group for
every PE X in the entire dependency graph, such that PE X
is the pivot of that group. The PEs in this output group
comprise the PEs in the sub-graph, which drive PE X.
Similarly, the compiler may create an input group for every
PE X in the entire dependency graph, such that PE X is the
pivot of that group. The PEs in this input group comprise the
PEs in the sub-graph, which are driven by PE X. Note that
in this example the compiler creates input and output groups
for each PE in the entire graph. The PEs in the groups,
however, are selected only from the Sub-graph and not from
the entire graph.
The reason for constructing the input and output groups is

that it is generally desirable to place PEs having common
inputs and/or outputs in the same execution sequence (al
though possibly in different warps). The reason for consid
ering the entire graph is that it is sometimes desirable to
place in the same sequence PEs that serve as common inputs
or outputs of PEs in other SIDs. The compiler assigns each
PE in the Sub-graph a group score, which is defined as the
number of input and output groups that contain the PE.
The compiler initializes a grid of warps having N execu

tion sequences, each sequence having L warp slots, at a grid
initialization step 202.

In some embodiments, the compiler pre-sorts the PEs of
the Sub-graph, at a sorting step 206. The compiler sorts the
PEs in increasing order of the size of their allocation
intervals. The PEs having the same allocation interval size
are sorted in decreasing order of their group score. Subse
quently, the compiler selects PES for placement in the grid
according to the sorted order. Thus, the PEs having the
shortest allocation intervals are placed in the grid first. For

US 9,684,494 B2
15

a given allocation interval size, PEs having a large group
score (PEs that are members of a large number of input
and/or output groups) are placed first. In an alternative
embodiment, the compiler may select the next PE for
placement in the grid by selecting the M PEs having the
shortest allocation intervals (M denoting a predefined inte
ger). From these PEs, the compiler chooses the PE having
the largest group score. The above-mentioned allocation
orders attempts to allocate the most heavily-constrained PEs
first, so as to leave as many degrees of freedom for Subse
quent allocation iterations.
The compiler selects the next PE for placement in the grid

from among the sorted PEs, at a current PE selection step
210. The compiler then computes a respective allocation
cost for each possibility of placing this PE in the grid, at an
allocation cost computation step 214. Typically, the com
piler examines the warp slots within the PEs allocation
interval, over the N execution sequences. (In some cases, a
certain warp is not a candidate for placing a given PE even
though it is within the PE's allocation interval. For example,
the warp may already be fully populated, or it may comprise
PEs whose type is different from that of the examined PE.)

In some embodiments, the compiler may examine warp
slots that lie slightly outside the allocation interval of a given
PE. For example, in some cases it may be preferable to
deliberately place a PE outside beyond its allocation interval
(and thus slightly increase the SID execution time), as
opposed to adding a SYNC (which may incur a worse
penalty in SID execution time). Thus, in Some embodiments,
the compiler examines the allocation interval plus a number
of warp slots that is on the order of the latency introduced
by a SYNC,

The compiler computes an allocation cost for each poten
tial warp slot. The allocation cost is a quantitative measure,
which indicates the potential penalty of placing the PE in a
particular warp slot.
The compiler may apply any Suitable criteria or heuristic

in computing allocation costs. In an example implementa
tion, the following rules can be used:

Increase the cost by 1000 for each warp-slot delay in the
total SID execution time, which would be caused by
placing the PE in the examined warp slot. This rule
imposes a severe penalty for increasing the total execu
tion time.

Reduce the cost by 10 for each PE, which is already
placed in the same sequence as the examined warp slot
and is a member of an input or output group that also
contained the examined PE. This rule gives preference
to placing members of input or output groups in the
Same Sequence.

Reduce the cost by 10 for each execution dependency
(direct or indirect, forward or backward), which is
associated with the examined PE and whose other PE
resides in the same sequence as the examined warp slot.
This rule gives preference to placing both ends of an
execution dependency in the same sequence (and
potentially avoiding insertion of a SYNC between
sequences).

Increase the cost by the column distance from the optimal
column of the examined PE. The optimal column of a
PEX is defined as BP(x)-L/ORIG L, wherein L denotes
the current number of populated columns in the grid,
and L ORIG denotes the longest path in the Sub-graph.
Note that the optimal column may fall outside of the
allocation interval of the PE.

In some embodiments, the compiler may compute the
allocation cost by examining the different critical Sub-graph

10

15

25

30

35

40

45

50

55

60

65

16
paths that traverse the PE and calculating their durations,
assuming the PE were placed at a certain warp slot. This sort
of calculation would consider the additional SYNCs that
would be added and their associated costs. Further addition
ally or alternatively, the compiler may assign allocation
costs to the different warp slots in the examined PE's
allocation interval using any other Suitable criterion or
heuristic.
The compiler now places the PE in the warp slot having

the lowest allocation cost, at a placement step 218. If
necessary due to the new placement, the compiler inserts a
SYNC, at a SYNC insertion step 222. A SYNC has a
predefined duration of an integer number of warp slots, e.g.,
two slots. Each SYNC comprises a list of one or more warps
whose execution must finish before the SYNC resumes
execution of its own sequence. The warps that are polled by
a given SYNC may reside in any number of sequences. The
list typically may not contain multiple warps from the same
Sequence.
The compiler updates the allocation intervals of the

remaining unallocated PEs to reflect the placement possi
bilities following the new placement, at an interval updating
step 226.

In some embodiments, the compiler updates the group
scores of the remaining PES following the new placement, at
a group score updating step 230. For example, the compiler
may increase the group scores of PES that share the same
input or output group with the newly-placed PE. This rule
gives preference to input or output groups whose members
are already partially allocated. As another example, the
compiler may increase the group scores of PES that share an
execution dependency (direct or indirect, forward or back
ward) with the newly-placed PE.
The compiler checks whether all PEs in the sub-graph

have been placed in the warp grid, at a checking step 234.
If there are remaining PEs for allocation, the method loops
back to step 210 above, in which the compiler selects the
next PE to be placed. If all PEs have been allocated, the
compiler groups successive warps into PEGs, at a PEG
creation step 238. Typically, each PEG may comprise only
a certain number of Successive warps of the same sequence,
e.g., a maximum of two warps, plus possibly a SYNC. In
addition, a PEG may comprise only PEs that are independent
of one another, since there is no guarantee as to the order of
PE execution within the PEG. In FIG. 6 above, for example,
some PEGs 176 comprise only a single warp, some PEGs
comprise two warps, and one of the PEGs comprises one
warp and one SYNC.
At this stage, the compiler outputs the resulting populated

warp grid (a set of N PEG execution sequences) as the
desired SID, at an output step 242.

Typically, the SID generation process described above
assumes that the warp slot duration takes into account the
durations of the different PEG operations, such as load,
synchronization, execution and store commands. In some
cases, however, load and store command durations can be
neglected. The description above assumes that all warps are
of the same duration, and that the duration of a SYNC is an
integer multiple of a warp slot. The description also assumes
that the duration of a PEG is equal to the sum of durations
of its warps and SYNCs. All of these assumptions, however,
are not mandatory, and alternative SID generation schemes
may make other assumptions.

In some cases, the compiler has to increase the maximum
execution sequence length, i.e., the total SID execution time.
Increasing L. may be needed, for example, when the com
piler is unable to place a certain PE in any of the warps in

US 9,684,494 B2
17

the PEs allocation interval. L may also be increased follow
ing insertion of a SYNC, although some SYNC insertions do
not cause an increase in L. An increase in L typically means
that previously-placed warps and SYNCs beyond a certain
column are pushed to the right. This push may trigger a
chain of Subsequent push-right operations of other warps
and/or SYNCs. When computing the allocation cost of a
certain warp position (at step 214 above), the cost is usually
increased only in response to push-right operations that
increase the overall SID execution time L. Push-right opera
tions that do not change L typically do not incur allocation
COSt.

In many situations, the compiler encounters several
options for placing a given PE. In some cases, it may not be
globally optimal to place a given PE in the lowest-cost
position (at step 218 above) because this placement may
cause considerable penalties in future PE placements. There
fore, the compiler may improve the PE allocation process by
considering two or more alternative SIDs in parallel, and
carry out two or more respective alternative allocation
processes in these SIDS. Various search methods. Such as
"A-star Schemes or even genetic search algorithms, may be
used to converge to the globally best SID.

Memory Management for Efficient Sid Operation

As can be appreciated, executing a SID on GPU 32 often
involves large numbers of memory access operations. In the
GPU, data can be stored in device memory 56 or in shared
memory 52. Device memory 56 typically offers large storage
space (e.g., several Gigabytes), but access to this memory is
costly in terms of latency. Typically, multiprocessors 40
access device memory 56 at a large granularity (e.g., 512 bits
at a time). Thus, the cost of reading or writing a single bit
to device memory 56 is similar to the cost of reading or
writing 512 bits. Read and write commands to device
memory 56 are typically aligned to these large-granularity
addresses. On the other hand, shared memory 52 in each
multiprocessor can be accessed by processors 44 of that
multiprocessor at a relatively fast access time, in Small
granularity and without alignment. The size of shared
memory 52, however, is considerably smaller than that of
the device memory (e.g., on the order of Kilobytes as
opposed to Gigabytes).

In some embodiments of the present invention, the PEG
sequences in the SID use shared memories 52 as cache
memories, in order to access device memory 56 efficiently
and minimize the associated latency penalties. In the
description that follows, the terms “shared memory” and
“cache' are sometimes used interchangeably.

It is important to note that the caching and memory
management schemes described herein are fully-determined
during compilation, and remain deterministic throughout
SID execution. This feature is in contrast to some known
caching schemes, whose operation may vary according to
data at runtime and are therefore statistical in nature. In the
techniques described herein, the pattern and timing at which
data is requested and produced by the different PEG
sequences is known a-priori during compilation. The com
piler may exploit this knowledge and decide on certain
optimal memory management means (e.g., caching in or out
of a certain variable at a certain time, or consolidating
multiple read requests into a single read operation) that
access device memory 56 efficiently. These means will be
carried out deterministically by the GPU at runtime.

FIG. 9 is a diagram that schematically illustrates a cache
management scheme, in accordance with an embodiment of

10

15

25

30

35

40

45

50

55

60

65

18
the present invention. FIG. 9 refers to a specific PEG
execution sequence, which comprises nine PEGs denoted
P1 . . . P9. The PEGs use as input six variables denoted
A . . . F, with each PEG using a certain subset of these
variables. In the present example, shared memory 52 can
hold a maximum of three variables at any given time. The
compiler defines a deterministic caching pattern, which
specifies when certain variables are to be fetched from
device memory 56 into shared memory 52 and when certain
variables are to be discarded, so as to optimize the use of the
limited-size shared memory and minimize the number of
read operations from the device memory.
A region 250 at the top of the figure shows the variables

used as input by each PEG. For example, PEG P1 uses
variables A and B as input, PEG P2 uses variables B and C,
PEG P3 uses only variable A, and so on. An up-pointing
arrow denotes a variable that is fetched from device memory
56 to shared memory 52 for use as input by the correspond
ing PEG. A down-pointing arrow denotes a variable that is
discarded from the shared memory following execution of a
PEG, in order to free space for a variable needed in the next
PEG. A variable marked with a bold frame denotes a cache
hit, i.e., a variable that is already present in the cache and
need not be fetched from the device memory. For example,
in preparation for executing PEG P2 it is not necessary to
fetch variable B from the device memory, since it is already
present in the shared memory from the previous PEG.
A region 254 at the bottom of the figure shows the content

of shared memory 52 at the beginning of each PEG. For
example, at the beginning of PEG P1 the shared memory
holds variables A and B. Variable C is fetched at the
beginning of PEG P2, and the shared memory thus holds
variables A, B and C. The cache does not change during
PEG P3. PEG P4, however, needs variable D as input.
Therefore, variable A is discarded at the end of PEG P3 and
variable D is fetched at the beginning of PEG P4. The
process continues throughout the PEG sequence execution.

For each variable that is present in the shared memory at
a given time, the compiler records the identity of the next
PEG in the sequence that will request this variable as input.
The compiler typically determines these PEG identities by
scanning the PEG sequence according to the execution
order. The recorded PEG identities are shown in region 254
at the bottom of the figure. For example, when variables A
and B are fetched at the beginning of PEG P1, the compiler
notes that variable A will be requested next by PEG P3, and
that variable B will be requested next by PEG P2. As another
example, at the beginning of PEG P3, the compiler notes that
variable A will be requested next by PEG P5, and variables
B and C will both be requested next by PEG P4. A symbol
OO indicates a variable that will not be requested by any of the
Subsequent PEGs in the sequence.
Using these records, the compiler decides which variable

is to be discarded when space is to be freed in the shared
memory. When a variable needs to be discarded, the com
piler typically selects to discard the variable which will be
requested by a PEG that is furthest away in the sequence,
i.e., has a largest distance from the current PEG. Consider,
for example, the situation at the end of PEG P3. At this point
in time, the shared memory holds variables A, B and C. One
of these variables needs to be flushed out in order to enable
fetching of variable D for PEG P4. Since variable A will be
requested by PEG 5 and variables B and C will be requested
earlier by PEG P4, variable A is discarded.
The example of FIG. 9 refers to a specific sequence,

specific variables and a specific cache size. Generally,
however, this cache management scheme can be used with

US 9,684,494 B2
19

any other suitable PEG sequence, set of variables and cache
size. In alternative embodiments, the compiler may design
the caching-in and caching-out of variables in shared
memory 52 using any other suitable criterion. The multi
processor 40 that is assigned by the GPU to execute a given
PEG sequence fetches variables from device memory 56 to
shared memory 52 according to the deterministic pattern set
by the compiler. Typically, a similar process is carried out for
each PEG sequence in the SID. The compiler may use any
suitable data structures for recording the PEGs that will
request the different variables.

In some embodiments, the compiler aggregates the fetch
ing of multiple variables from device memory 56 into shared
memory 52 in a single fetch command, so as to reduce the
number of costly fetch operations from the device memory.
As noted above, in a typical GPU the overhead of fetching
a single variable from the device memory is similar to the
overhead of fetching variables that occupy 512 bits, and
therefore it is advantageous to aggregate and fetch a large
number of variables in a single command.

FIGS. 10A and 10B are diagrams that schematically
illustrate a variable pre-fetching scheme, in accordance with
an embodiment of the present invention. The present
example refers to a PEG execution sequence, which com
prises nine PEGs denoted P1 ... P9. The PEGs use as input
six variables denoted A. . . D, S and T. Variables A. . . D
are used internally to the present SID, whereas variables S
and T comprise inter-SID variables. In each of FIGS. 10A
and 10B, each column corresponds to a certain PEG in the
sequence, and each row corresponds to a certain variable.

Each variable is marked with a shaded pattern from the
point this variable is requested as input by a certain PEG. For
example, variable B is first requested by PEG P3, and
therefore this variable is marked with a shaded pattern from
PEG P3 onwards. Vertical lines 258 indicate SYNCs
between the present PEG sequence and some other sequence
or sequences, which are carried out by the subsequent PEGs.
In the present example, SYNCs are carried out by PEGs P1,
P4 and P7. For each SYNC 258, one or more marks 262
indicate the specific variables that are synchronized by the
SYNCs. For example, the SYNC carried out by PEG P4
halts execution until variables C and D are ready by another
Sequence.

In some embodiments, the compiler scans the PEG
sequence and sets the timing of device memory fetch
commands, as well as the variables that are fetched by each
command. Typically, the compiler attempts to set the timing
and content of the fetch commands while considering (1) the
distances to the PEGs that will need each variable, and (2)
a number of fetch operations per command that is consid
ered efficient. Based on this information, the compiler
attempts to combine fetching of two or more variables in a
single command.

In some embodiments, the compiler scans the PEG
sequence in reverse order (i.e., opposite of the execution
order). For each variable, the compiler marks a respective
fetching interval, i.e., a time interval during which the
variable can be fetched. This time interval begins at the time
the variable becomes valid, and ends at the PEG that first
requests this variable as input. The compiler then sets the
timing and content of the fetch operations based on these
time intervals.

Typically, for each variable and for each PEG, the com
piler marks the distance (in PEG units) of the PEG from the
PEG that will first request this variable, as long as the
variable is valid. A given variable can be assumed valid
following the latest SYNC 258 that is associated with this

10

15

25

30

35

40

45

50

55

60

65

20
variable. The distances marked by the compiler in the
present example are shown in FIGS. 10A and 10B. For
example, variable D is first requested by PEG P6, and may
be fetched anytime starting from PEG P4 (following the
SYNC that waits on this variable). The compiler sets the
timing and content of the fetch operations based on the
marked distances. For example, the compiler may scan the
PEG sequence along the execution order, identify variables
that need to be fetched, and combine them with fetching of
other variables in order to produce efficient fetch commands.
The compiler may combine two or more variables whose
fetching intervals overlap. The combined fetch command is
positioned during this overlap.
Assume, for example, that a command that fetches two

variables is considered efficient, but a command that fetches
only a single variable is not. In the example of FIG. 10B, no
variables need to be fetched in preparation for PEGs P1 and
P2. PEG P3, however, needs variable B as input, and
therefore the compiler defines a fetch command from device
memory 56 to take place in preparation for PEG P3. In order
to access the device memory efficiently, the compiler aggre
gates another variable fetching in the same command. The
compiler selects the valid variable whose distance from the
current PEG (i.e., the distance from the current PEG to the
PEG that will first request this variable) is minimal.

In the present example, variables S and T are valid at this
time, and variable T has a Smaller distance (3 compared to
6). Therefore, the compiler defines the fetch command so as
to fetch variables B and T. Once these variables are fetched,
they are crossed out from the list so that they will not be
fetched again. The process continues using similar logic, and
the compiler defines two additional fetch commands one that
fetches variables C and D before PEG P4, and another that
fetches variables A and S before PEG P9. Using this
technique, each variable is fetched after it becomes valid and
before it is first needed as input, and the fetch commands are
defined efficiently by aggregating the fetching of multiple
variables per command.
The example of FIGS. 10A and 10B refers to a specific

sequence, specific variables, a specific number of fetches per
command and a specific selection criterion. Generally, how
ever, the compiler may apply a pre-fetching scheme having
any other suitable PEG sequence, variables, number of
fetches per command and/or selection criterion. Typically, a
similar process is carried out for each PEG sequence in the
SID. The compiler may use any suitable data structures for
recording the time intervals and distances described above.

In some embodiments, the compiler delays the storage of
variables (outputs produced by the PEGs) in device memory
56, and aggregates multiple variables per storage command.
Storing multiple variables per command reduces the latency
and overhead associated with storage in device memory 56.
A delayed storage mechanism of this sort can be carried out
using similar criteria to the pre-fetching mechanism of
FIGS. 10A and 10B. For example, the compiler may iden
tify, for each variable, the time interval from the PEG that
produced the variable value until the point the variable is
needed as input (e.g., by a PEG in another sequence, which
possibly belongs to a different SID). When the variable is
needed as input by a sequence in another SID, the compiler
may regard the end of the sequence producing this variable
(and not the individual PEG within this sequence) as the
time at which the variable is ready. The compiler may then
define multi-variable storage commands based on these time
intervals.
As shown in FIG. 9 above, when a given multiprocessor

40 executes a given PEG sequence, the multiprocessor loads

US 9,684,494 B2
21

variables from device memory 56 in a particular determin
istic order, caches them in the shared memory and provides
them as input to the different PEGs in the sequence. In some
embodiments, the compiler pre-orders the variables in
device memory 56 according to the order in which the PEG
sequence will load them. When using this mechanism, a
given PEG sequence can fetch variables from device
memory 56 using an ordered sequence of fetch operations to
Successive memory addresses.

FIG. 11 is a diagram that schematically illustrates a
variable pre-ordering scheme, in accordance with an
embodiment of the present invention. The example of FIG.
11 shows the caching mechanism of FIG. 9 above. A region
266 at the top of the figure shows the variables cached into
and flushed out of shared memory 52 by the different PEGs
in the sequence. A region 270 shows the variables that are
fetched from device memory 56 in preparation for each
PEG. A bold frame marks a variable that was already read
by a previous PEG in the sequence, but was flushed out of
the shared memory in the interim.

In some embodiments, the compiler stores the variables in
device memory 56 in a feeder region 274. In feeder region
274 of a certain PEG sequence, the variables are stored in the
order in which they will be fetched by that PEG sequence.
Note that a given variable may be stored at two or more
different locations along the feeder region, since the PEG
sequence may re-read variables due to the limited cache size.
Note also that each PEG sequence has a corresponding
feeder region in device memory 56. A given variable may be
stored in multiple feeder regions of different PEG sequences.

Typically, the pre-ordered variables are arranged in the
device memory in basic sections that conform to the GPU's
memory alignment and size specifications. These sections
are referred to herein as cache-lines. In a typical GPU, each
cache-line comprises 512 bits. Typically, PEGs in different
sequences produce, consume and exchange variables in
cache-line units.

Inter- and Intra-SID Communication

As explained above, the compiler converts each depen
dency sub-tree into a SID. In some embodiments, variables
that are produced by a PEG in one SID are used as input by
a PEG in another SID. Communication between PEGs in
different SIDs is typically carried out via device memory 56.
In some embodiments, the compiler stores variables that are
communicated between SIDs in data structures called mail
boxes. Each mailbox comprises variables that are generated
and/or used by common PEG sequences. Communication
between SIDs is carried out by writing and reading cache
lines to and from mailboxes. Thus, access to device memory
56 is carried out efficiently by exploiting the usage and
generation commonality between different variables.

FIG. 12 is a diagram that schematically illustrates mul
tiple SIDs, in accordance with an embodiment of the present
invention. The present example shows two SIDS denoted
SID-X and SID-Y. SID-X comprises two PEG sequences,
each comprising four PEGs 280. SID-Y comprises two PEG
sequences, each comprising two PEGs 280. Each PEG
accepts as input up to three input variables (which are shown
on the left-hand-side of its respective block) and produces an
output variable (which is shown on the right-hand-side of its
respective block). PEG 1/1 in SID-X, for example, accepts
variables A and C as input and generates variable D. Some
dependencies between sequences may also exist within each
SID, such as between PEG 2/3 and PEG 1/4 in SID-X.

10

15

25

30

35

40

45

50

55

60

65

22
Certain variables are defined as ingress and egress vari

ables, i.e., variables that are input from and output to the
CPU (or other host environment), respectively. In the pres
ent example, the ingress variables comprise variables A, B,
C, F and Q. The egress variables comprise variables S. G. H
and P.

In a given SID, the variables can be classified into
generated variables (which are generated by the SID), used
variables (which are used as input by the PEGs in the SID)
and input variables (which are used as input by the PEGs in
the SID but are not produced internally in the SID). Overlap
may sometimes exist between the different classes. In the
present example, the variable classification is shown in the
following table:

SID X Y

Generated D. L. G. M., H, I, V, S, E, G
variables N, P
Used variables A, B, C, D, E, F, A, M, L, Q, V. N.

G, L, H, M, V S
Input variables A, B, C, E, F, V A, M, L, Q, N

FIG. 13 is a flow chart that schematically illustrates a
method for inter-SID communication, in accordance with an
embodiment of the present invention. The method begins
with the compiler identifying a set of inter-SID variables, at
an inter-SID identification step 284. The inter-SID variables
comprise those variables that are not ingress or egress
variables, and that are to be exchanged between different
SIDs. The compiler may identify the inter-SID variables by
(1) identifying the set of all input variables of all SIDs, and
(2) removing the ingress and egress variables from this set.
In the present example, the set of input variables of SIDS X
and Y is {A, B, C, E, F, M. L. Q. N. V. P}, the set of ingress
variables is {A, B, C, F, Q} and the set of egress variables
is {S, G, H, P}. Thus, the set of inter-SID variables is E. M.
LN, V}.

Then, the compiler maps the inter-SID variables in terms
of their usage and generation by the different PEG sequences
of the different SIDS, at a usage/generation mapping step
288. In the present example, the usage and generation of the
different inter-SID variables is given in the following table:

Variable Variable
usage generation

Es-CX2) E->(Y1)
Me-(Y1) M->(X1)
L-(Y1, Y2) L->(X1)
N-(Y1) N->(X2)
V-(X2) V->(Y1)

wherein M->(X 1) denotes that variable M is generated by
sequence 1 in SID-X, for example. Generally, a given
inter-SID variable may be generated and/or used by any
desired number of sequences belonging to any desired
number of SIDS.
The compiler then groups together inter-SID variables

that are generated by common sequences and used by
common sequences, at a grouping step 292. The compiler
defines a data structure, referred to as a mailbox, for each
Such group. The mailboxes are stored in a certain region in
device memory 56. Each mailbox typically comprises one or
more cache-lines. In the present example, the compiler may
define the following four mailboxes:

US 9,684,494 B2
23

Inter-SID Usage generation
Mailbox i variables sequences

1 E, V (Y1)->(X2)
2 M (X1)->(Y1) 5
3 L (X1)->(Y1, Y2)
4 N (X2)->(Y1)

At runtime, different SIDs communicate with one another
by writing cache-lines to the mailboxes and reading cache- 10
lines from the mailboxes, at an inter-SID communication
step 296. Since each mailbox comprises inter-SID variables
that are generated by the same sequences and used by the
same sequences, access to device memory 56 is efficient.
The efficiency of the mailbox mechanism depends, at least is

partially, on the allocation of PEs to PEG sequences within
each SID. As explained in FIG. 8 above, the compiler
attempts to group in the same PEG sequence PEs that
communicate with the same PEs in other SIDs. If this
grouping is successful and well-defined, the method of FIG.
13 will produce a relatively small and well-defined group of
mailboxes, with each mailbox containing a relatively large
number of variables.

In some embodiments, the compiler can further improve
the efficiency of accessing device memory 56 by ordering
the variables inside each mailbox according to the order in 25
which they are requested by the PEG sequences.

In some embodiments, different PEG sequences within
the same SID may transfer variables to one another. This
form of communication is referred to herein as intra-SID
communication. PEG sequences within the same SID typi- 30
cally communicate by exchanging cache-lines comprising
variable values via device memory 56. Intra-SID commu
nication is typically subject to variable validity constraints.
In other words, a certain PEG sequence may transfer a
variable to another sequence only after the PEG producing is
the variable has completed execution. In some embodi
ments, the compiler defines communication transactions
between PEG sequences, in a manner that preserves the
execution dependencies and minimizes the number of trans
actions (in cache-line resolution). Intra-SID communication
is typically carried out over the SYNC elements introduced
between sequences. In other words, a SYNC element, which
halts execution of one sequence until one or more PEGs in
other sequences finish execution, may also transfer variables
from these other sequences to the halted sequence.

FIGS. 14A and 14B are diagrams that schematically 45
illustrate an intra-SID communication scheme, in accor
dance with an embodiment of the present invention. FIG.
14A shows an example SID having three PEG sequences.
For each PEG, the input variables are shown on the left
hand-side of the PEG block and the output variable is shown 50
on the right-hand-side of the block.

FIG. 14B shows four cache-lines 300, which are defined
by the compiler for transferring variables between PEG
sequences in the SID of FIG. 14A. The variables passed by
each cache-line are marked in brackets in the figure. The 55
compiler may use any Suitable process, such as various
dynamic programming techniques, for defining cache-lines
300. Typically, the solution is not unique and multiple
solutions are feasible. The compiler attempts to identify the
Solution that meets a predefined criterion, Such as minimiz- 60
ing the number of cache-lines 300.

40

Techniques for Improving Inter-SID
Communication Efficiency

65

As described above, exchanging of inter-SID variables
between different SIDs is carried out by storing the variables

24
in mailboxes in device memory 56. Each mailbox comprises
one or more cache-lines, and is associated with a set of one
or more source execution sequences (in one or more source
SIDS) and a set of one or more target execution sequences
(in one or more target SIDs). Typically, the inter-SID vari
ables are assigned to mailboxes such that (1) variables that
are generated and used by the same set of SIDs and
execution sequences are assigned to the same mailbox, (2)
variables that are not generated and used by the same set of
SIDS and sequences are assigned to separate mailboxes, so
as not to share the same cache-line, and (3) each variable
appears exactly once within the collection of mailboxes.

In some cases, however, the generation and usage of
inter-SID variables does not enable efficient grouping of the
variables into mailboxes. Such grouping may produce mail
boxes having a small number of variables. Since the device
memory is read in cache-line units regardless of the actual
number of variables residing in the cache-lines, mailboxes
having few variables may cause poor cache-line utilization.

In some embodiments, the compiler combines two or
more inter-SID cache-lines from sparsely-populated mail
boxes, to produce densely-populated cache-lines. By com
bining cache-lines, the number of load operations from the
device memory may be reduced. The extent of reduction
depends on the choice of cache-lines to be combined. For
example, the compiler may attempt to combine inter-SID
cache-lines having relatively large overlap in the set of target
execution sequences.

Consider, for example, a cache-line A that is used by
sequences S1 and S2, and a cache-line B that is used by
sequences S1, S2 and S3. Assume also that cache-lines A and
B are sufficiently sparse, so that it is possible to combine
them into a new cache-line C without exceeding the cache
line size limitation. In this example, after combining cache
lines A and B to form cache-line C, each of sequences S1 and
S2 will have to load only a single cache-line (the combined
cache-line C) instead of two cache-lines. Sequence S3 will
still have to load a single cache-line (cache-line C instead of
cache-line B). Overall, the number of load operations from
the device memory is reduced as a result of combining
Cache-lines A and B. In alternative embodiments, the com
piler may combine any desired number of cache-lines.

Alternatively, the compiler may combine inter-SID cache
lines whose variables can be transported between target
execution sequences in the target SID using intra-SID com
munication mechanisms (i.e., using the synchronization
elements between sequences). The concept of exploiting
under-used intra-SID communication resources for improv
ing inter-SID communication is described in detail further
below. Consider, for example, a configuration of three
execution sequences S1, S2 and S3, and three cache-lines A,
B and C. In this example, sequence S1 has input variables
from cache-line A, sequence S2 has input variables from
cache-line B, and sequence S3 has input variables from
cache-line C. Assume also that the synchronization mecha
nisms between the sequences enables data transfer from
sequence S1 to sequence S2. Within sequence S2, input
variables from cache-line B are needed only by PEGs that
are positioned after the synchronization with sequence S1.
In this situation, it is advantageous to combine cache-line A
with cache-line B, and to transfer the variables of cache-line
B over the synchronization mechanism between sequence
S1 and sequence S2. When using Such a scheme, sequence
S2 does not need to load cache-line B, since it receives its
variables from sequence S1 over the synchronization mecha
nism. Thus, the compiler may reduce the number of load
operations from the device memory by (1) combining cache

US 9,684,494 B2
25

lines used by different target sequences, and (2) transferring
variables from one target sequence to another using intra
SID communication.

Regardless of whether inter-SID cache-lines are com
bined or not, the compiler may reduce the number of
inter-SID cache-line load operations from the device
memory by exploiting under-used intra-SID communication
resources, as explained in the following description.

FIG. 15 is a diagram that schematically illustrates a SID
310 that uses both inter-SID and intra-SID communication,
in accordance with an embodiment of the present invention.
SID 310 receives inter-SID variables from another SID by
loading an inter-SID cache-line 314. In the present example,
intra-SID variables from cache-line 314 are used by three
execution sequences 318A... 318C in SID 310. (SID 310
may well comprise additional execution sequences that do
not use variables from this inter-SID cache-line.)

Without using intra-SID resources to transfer inter-SID
variables, each of the three sequences 318A... 318C would
need to load cache-line 314 separately from the appropriate
mailbox in device memory 56, in order to obtain its input
variables. Thus, three separate load operations would be
required. Alternatively, cache-line 314 may be loaded by
only a Subset of the sequences (e.g., by a single sequence),
and the other sequences may receive the variables using
intra-SID communication.

In SID 310, for example, a SYNC 326A synchronizes a
certain PEG in sequence 318B to a certain PEG in sequence
318A, and a SYNC 326B synchronizes a certain PEG in
sequence 318C to a certain PEG in sequence 318B. Each
SYNC is associated with an intra-SID cache-line, which
depends on the SYNC and transfers variables from the
synchronizing sequence or sequences to the synchronized
sequence (or, more accurately, from the synchronizing PEG
or PEGs to the synchronized PEG). For example, SYNC
326A is associated with an intra-SID cache-line that trans
fers variables from sequence 318A to 318B.

Assuming the intra-SID cache-lines have free unallocated
bandwidth, they can be used to transfer data from sequence
318A to sequence 318B and from sequence 318B to
sequence 318C. Thus, in some cases all three sequences
318A... C may obtain the variables of inter-SID cache-line
314 by having only sequence 318A actually load the cache
line from the device memory, and then transfer the variables
over the intra-SID cache-lines that depend on SYNCs 326A
and 32.6B to sequences 318B and 318C.

Note that this solution is feasible assuming that, in a given
sequence, the PEGs that use the inter-SID variables are
located after the SYNC whose intra-SID cache-line is used
for transferring the variables to that sequence. A PEG 322A
in sequence 318A has access to the inter-SID variables since
sequence 318A is the sequence that actually loads the
inter-SID cache-line from device memory 56. In sequence
318B, a PEG 322B has access to the transferred variables
because it is located after SYNC 326A. In sequence 318C,
a PEG 322D has access to the transferred variables since it
is located after SYNC 326B. A PEG 322C, on the other
hand, does not have access to the transferred variables since
it is located before SYNC 326B.

If PEG 322C needs to use variables from inter-SID
cache-line 314, then sequence 318C needs to load this
inter-SID cache-line separately, incurring an additional load
operation. In this scenario, the intra-SID cache-line of
SYNC 326B will not be used for variable transfer from
inter-SID cache-line 314.

In some embodiments, the compiler attempts to reduce
the number of inter-SID cache-line load operations that are

5

10

15

25

30

35

40

45

50

55

60

65

26
performed by a given SID, by assigning available resources
over intra-SID SYNCs for carrying inter-SID variables. This
process is typically performed for each SID. An example
process of this sort is described in FIGS. 16 and 17 below.
Alternatively, however, any other Suitable process can also
be used.
The process of FIGS. 16 and 17 uses two functions

denoted F and P. For a given execution sequence S and an
inter-SID variable a, function F(s.a) is a static function that
returns the first entry (PEG) in sequences that uses variable
a as input. In other words, variable a should be provided to
the shared memory of sequence s no later than F(s.a). If
variable a is not used as input anywhere in sequence S, then
F(s.a)=OO.

Function P(S. Seq S off, t Seq t off, req size) returns a
set of (one or more) paths through the SID, over which data
of a given size req size can be transferred from a source
sequence S. Seq to a target sequence t seq. The returned
paths begin in the source sequence at offset S off or later, and
reach the target sequence at an offset t off or earlier.
Function P may change during compilation in response to
allocation of intra-SID communication resources. In some
embodiments, P also receives an array of the variables that
need to be used at t off. Function P typically takes into
account that some of the variables have already been trans
ferred via the synchronization between sequences. In some
embodiments, Preturns a combination of multiple paths that
can be used for data transfer.
The process also uses a database denote H. For each

inter-SID cache-line used by the SID, database H holds a
classification of the sequences that use this cache-line into
several classes. The classes are typically represented by
respective lists. In the present example, the sequences are
classified into six classes:
Must Load (ML): Sequences that must load the cache-line

from device memory 56 because they cannot receive
the inter-SID variables over intra-SID SYNCs.

Should Load (SL): Sequences that are requested by the
process to load the cache-line from device memory 56,
even though they are not ML sequences.

Placed (PL): Sequences that are to receive the inter-SID
variables from other sequences without loading the
cache-line, and for which appropriate resources have
been allocated over the intra-SID cache-lines.

Root Dependent (RD): Sequences that are not yet
assigned to the SL, ML or P classes, and which can be
reached via intra-SID cache-lines at least one sequence
in the SL, ML or PL classes.

Far Dependent (FD): Sequences that cannot be reached by
any of the sequences in the SL, ML or PL classes.

Unresolved (U): Sequences whose class is still unre
solved. (The difference between classes FD and U is
that sequences in class FD can be reached from
sequences in class RD or FD, but cannot yet be reached
from sequences in the SL, ML or PL classes.)

The description that follows refers to a given inter-SID
cache-line, which has an associated classification of
sequences into classes. The process described below is
typically repeated for each inter-SID cache-line.
At any given time, each class may comprise any number

of sequences, but a given sequence may appear in only one
class. As noted above, only the sequences that use variables
from the inter-SID cache-line in question are classified. The
process of FIGS. 16 and 17 is an iterative process, which
starts with all sequences in the U class. (Typically, the U
class initially contains only the sequences that use variables
carried over the inter-SID cache line in question. Other

US 9,684,494 B2
27

sequences are typically ignored.) The process ends with
class U empty, all sequences assigned to the SL, ML or P
classes. When the process ends, each sequence in the ML
and SL classes is defined to load the inter-SID cache-line
individually, and the sequences in the P class are defined to
receive the inter-SID variables from other sequences without
loading the cache-line. Appropriate resources of the intra
SID SYNCs are assigned to deliver the inter-SID variables
to the sequences in the P class.

FIG. 16 is a state diagram 330 that schematically illus
trates a method for reducing inter-SID communication, in
accordance with an embodiment of the present invention.
State diagram 330 comprises states 334, 338, 342, 346,348
and 350, which represent the U, ML, SL, P. RD and FD
classes, respectively. Transitions between states are marked
by arrows in the figure. The iterative allocation process
moves sequences from class to class (from state to state)
over these transitions, until class U is empty and all
sequences reach the ML, SL or P classes.

FIG. 17 is a flow chart that schematically illustrates a
method for reducing inter-SID communication, in accor
dance with an embodiment of the present invention. (The
process is typically repeated for each inter-SID cache-line.)
The method begins with the compiler initializing database
H, at an initialization step 360. The currently-processed
inter-SID cache-line is denoted c. For each sequences that
uses cache-line c (i.e., a sequence that satisfies F(s.c)zoo),
the compiler adds the sequence to class U.

The compiler then attempts to resolve cache-line c, i.e., to
classify the sequences in U, using functions S and P. at a
resolving step 364. The resolving step comprises several
stages that are performed in Succession, as follows:

1) ML resolving stage: For each sequences in class U, the
compiler checks if the variables of cache-line c used by
sequence S can be obtained from another sequence that uses
this cache-line. (Possible sequences for providing the vari
ables are identified using function F. Possible paths for
transferring the variables are identified using function P.) If
no sequence and path are found for obtaining the variables
to sequences, the compiler removes sequence S from the U
class and adds it to the ML class.

2) RD resolving stage: For each sequences in class U, the
compiler identifies (using F and P) sequences that can obtain
the variables they need from cache-line c from a sequence in
the ML, SL or PL classes. The compiler removes the
identified sequences from class U and adds them to class
RD.

3) The compiler repeats the following three sub-stages
until class U is empty:

a) RD sub-stage: Using functions F and P, the compiler
identifies sequences that can obtain the variables they
need from cache-line c from a sequence in class SL.
The compiler removes these sequences from class U
and adds them to class RD.

b) FD sub-stage: Using functions F and P, the compiler
identifies sequences that can obtain the variables they
need from cache-line c from a sequence in class RD or
FD. The compiler removes these sequences from class
U and adds them to class FD. If at least one sequence
was found, the FD sub-stage is repeated.

c) SL Sub-stage. This stage of the process identifies and
resolves cyclic dependency patterns among two or
more of the sequences. A detailed example of a cyclic
dependency is described in section 10.3.1.2.4 of U.S.
Provisional Patent Application 61/185,609, cited
above.

10

15

25

30

35

40

45

50

55

60

65

28
1. The compiler selects a sequence S in class U list of

cache-line c. A variable denoted req offset is set to
F(s.c).

2. Using function P, the compiler scans sequences in
class U (other than sequence s) and attempts to
identify source sequences that can provide the vari
ables of cache-line c needed by sequence S at an
offset that is not later than req offset.

3. If a source sequence SS is found, S is set to be S-SS,
and req offset is set to be the offset in which ss needs
to have the cache-line cavailable. The process loops
back to step 2 above.

4. If no source sequence is found, the compiler removes
sequence S from class U and adds it to the SL class.

After completing resolving step 364, for a given inter-SID
cache-line c, class U is empty and the sequences that use
cache-line c are classified to classes ML, SL, RD and FD.
The sequences in the ML and SL classes are defined as
loading cache-line c individually from device memory 56,
and this definition will not change by Subsequent iterations
of the process.
The compiler now attempts to allocate intra-SID

resources for providing the inter-SID variables to the
sequences in the RD class, at a placement step 368. Typi
cally, as long as there are sequences remaining in any of the
RD class lists in database H, the compiler performs the
following process for a given inter-SID cache-line c.

1) From among the sequences in the RD class of cache
line c, the compiler selects the sequence S having the
smallest data size it needs from this cache-line. The compiler
chooses (using function P) a path p (or a combination of
multiple paths), which uses a minimum amount of Intra-SID
cache-line resources to deliver the required variables to
sequence S from sequences that already possess these vari
ables. Note that if path p traverses more than one hop (i.e.,
reaches sequence S via one or more intermediate sequences)
then the resources over these multiple Intra-SID cache-lines
along the path should be taken into account.

2) If no suitable path p is found, step 368 terminates.
3) If a suitable path p is found, the compiler removes

sequence S from class RD and adds it to class PL.
4) The compiler commits (allocates) usage of Intra-SID

cache-lines over path p to transport the inter-SID variables
of cache-line c that are required by sequences. The compiler
refreshes function P to reflect possible changes in possible
paths due to the newly-allocated resources.
At this stage, the compiler typically committed intra-SID

communication resources to some of the sequences in class
RD, and moved them to class PL accordingly. For the
sequences remaining in class RD, the compiler did not
Succeed in finding a path with available resources for
providing them with the necessary inter-SID variables.
The compiler now reshuffles the sequences in classes RD

and FD, at a reshuffling step 372. In this step, the compiler
moves all the sequences in the RD and FD classes (if any
remain) to class U. The compiler checks whether class U is
empty, at an empty checking step 376. If there are sequences
remaining in class U, the method loops back to step 364
above, and the compiler continues to attempt resolving the
currently unresolved sequences. If class U is empty, all
sequences are classified to classes ML, SL or PL, and the
method terminates, at a termination step 380. Each sequence
in classes ML and SL will load the inter-SID cache-line
individually from the device memory.

Each sequence in class PL will receive the necessary
inter-SID variables from other sequences, over a predefined
and pre-committed path of one or more intra-SID cache

US 9,684,494 B2
29

lines. Thus, when using this technique, the number of
inter-SID cache-line load operations from device memory
56 is reduced, and the overall SID execution time is reduced
accordingly.

Example Dependency Problem Applications

The methods and systems described herein can be used to
Solve dependency problems in a wide range of fields and
applications. Generally, any computing task that can be
represented as a set of Processing Elements (PEs) having
execution dependencies, can be parallelized and executed
efficiently using the disclosed techniques. The description
that follows outlines several example types of dependency
problems. The disclosed techniques are in no way limited to
these examples, however, and can be used to solve any other
suitable type of dependency problem.

In some embodiments, the dependency problem solved by
system 20 comprises a task of verifying a hardware design
by simulation. This application is addressed in detail in PCT
Application PCT/IL2009/000330, cited above. In a typical
design verification application, server 24 of FIG. 1 accepts
from a user, e.g., a verification engineer, a definition of the
design to be simulated. The design is typically accepted as
one or more files that are written in a Hardware Description
Language (HDL) such as VHDL or Verilog. The server also
accepts test-bench definitions, which specify the verification
environment of the design. The test-bench specifies external
asynchronous events (e.g., clock signals, reset signals and
various inputs) that are to be applied to the design. The
test-bench also specifies tests that are to be applied to the
simulated design. The test bench typically comprises Soft
ware written in C, Verilog, or in a verification-specific
language Such as E or System-Verilog.
The compiler running on CPU 28 compiles the test-bench

and design to produce simulation code, and then runs the
simulation code on CPU 28 and GPUs 32. In particular, the
compiler represents the design and test-bench into a depen
dency graph having PEs and dependencies, extracts a-cyclic
Sub-graphs from the dependency graph, and generates a SID
for each sub-graph. The GPU is then invoked to execute the
different SIDs, so as to produce simulation results. The
simulation results (e.g., reports as to which tests have passed
and which failed, Suspected faults, fault locations, and/or
any other information that may assist the user in verifying
the design) are provided to the user.

Alternatively, the methods and systems described herein
can be used to perform computing tasks encountered in
applications such as real-time video processing, image pro
cessing, Software-Defined Radio (SDR), packet processing
in various communication applications and error correction
coding. All of these applications typically involve complex
computing tasks that can be represented as dependency
problems, such as, for example, digital filtering and Fast
Fourier Transform (FFT) computation. Such tasks lend
themselves naturally to parallelization and Solving using the
methods and systems described herein. Specific examples of
representing a digital filter and an FFT computation element
using a dependency graph are shown in FIGS. 18 and 19
below. Once a given computational task (e.g., the examples
given herein or any other task) is represented as a depen
dency graph, it can be parallelized and solved using the
methods and systems described herein. As noted above, the
dependency graph can be converted to a set of Sub-graphs,
each sub-graph is compiled to produce a SID, and the GPU
executes the SIDs to produce a result.

10

15

25

30

35

40

45

50

55

60

65

30
FIG. 18 is a diagram that schematically illustrates a

dependency graph 400 representing a Finite Impulse
response (FIR) digital filter, in accordance with an embodi
ment of the present invention. The digital filter represented
by graph 400 filters an input signal xn] by a set N of filter
coefficients denoted ao,..., a , to produce a filtered output
signal yn. The filter operation is given by

FIR filters of this sort are common in many signal
processing applications, such as in communication receivers
and transmitters, image processing applications and medical
imaging applications.
Graph 400 comprises several types of PEs, e.g., flip-flop

PES 410 that are synchronized to a common clock signal,
multiplier PEs 414 and an adder PE 418. The execution
dependencies are shown as arrows in the figure. For
example, in a given clock cycle, a given multiplier PE 414
can multiply the output of a given flip-flop PE 410 by the
corresponding filter coefficient only after the flip-flop PE
completed execution and its output is valid. Other kinds of
digital filters, such as Infinite Impulse Response (IIR) filters,
can also be represented as dependency graphs in a similar
a.

FIG. 19 is a diagram that schematically illustrates a
dependency graph 420 representing a Fast Fourier Trans
form (FFT) computation element, in accordance with an
embodiment of the present invention. FFT computation, as
is well-known in the art, can be performed efficiently by a set
of basic computation elements, sometimes referred to as
“butterflies.” dependency graph 420 represents a single
computation element. In a typical FFT application, multiple
Such elements are connected in series and/or in parallel.
Dependency graph 420 comprises adder/multiplier PEs 424.
Each PE 424 accepts two inputs. When a certain PE input is
marked with a weight W, the PE multiplies the input by
the weight before adding it to the other input. For example,
the PE at the top left of the figures produces an output given
by vO+v1.W. W^ is given by W^-e'). In a
typical implementation of N=4, the weights are given by
W=1, W =i, W=-1 and W=-i. Alternatively, any
other suitable weight values can be used. FFT computation
elements of this sort are common in a wide range of
applications, such as frequency-domain signal processing
and Error Correction Coding (ECC).

Additional Embodiments and Variations

In some embodiments, the compiler applies a process that
attempts to merge PEs into PEGs. The output of this process
is a graph comprising vertices (representing the PEGs) and
edges (representing inter-PEG dependencies). The process
typically attempts to group the PEs into PEGs in a way that
minimizes the number of inter-PEG dependencies. A group
ing of this sort typically results in a SID having less
inter-sequence SYNCs. An example merging process is
described in section 5.5.1 of U.S. Provisional Patent Appli
cation 61/110,676, cited above.

In some embodiments, the compiler attempts to build the
SID iteratively, progressing along the PE execution time. In
this process, the compiler places the PEs having long
Forward Phases (FP) first, and places them in less-populated
execution sequences. Moreover, the compiler gives higher

US 9,684,494 B2
31

priority to placing a PE in a sequence in which it does not
require addition of a SYNC. An example SID generation
process is described in section 6.3.6 of U.S. Provisional
Patent Application 61/110,676, cited above. Generally, the
compiler may place the PEs in the execution sequences
based on any other criterion or heuristic that considers the
FP lengths of the PEs, the occupancy levels of the execution
sequences and/or the possible addition of SYNCs.

In some embodiments, the CPU and GPU jointly run an
event-driven (EDE) simulator that simulates the dependency
problem. Event-driven operation is addressed, for example,
in section 6.8 of U.S. Provisional Patent Application 61/079,
461, cited above, and in sections 5.1-5.3 of U.S. Provisional
Patent Application 61/086,803, cited above. In particular,
the compiler may identify cases in which executing a certain
SID would trigger execution of another SID within a
requirement for immediate update of a simulation running
on the CPU. This scheme saves the latency of interaction
between the GPU and CPU. This technique is addressed, for
example, in section 5.2.1 of U.S. Provisional Patent Appli
cation 61/086,803, cited above.

Parallelized Execution of Multiple Clock-Set-Reset
Logic

Some hardware designs are characterized by a large
number of relatively small logic sections, each section
triggered by a different respective signal. For example, the
design may comprise a large number of clock signals, each
triggering a respective Small section of the overall design. As
another example, in designs that use flip-flop circuits, the
SET and RESET signals typically trigger different logic
sections. In many practical cases, each individual logic
section is limited in parallelization, and is far from exploit
ing the parallel processing capability of GPU 32 on its own.

In some embodiments, the compilation process performed
by CPU 28 produces a highly parallel SID 90 that executes
a large number of logic sections in parallel. As explained
above, each section is triggered by a respective signal, e.g.,
clock, set or reset signal.

Generally, the parallelism in SID 90 may be implemented
using any desired number of execution sequences 98 and/or
any desired number of PEs 76 that execute in parallel in a
given sequence. The embodiments described herein focus on
an implementation in which the multiple logical sections are
compiled into a single execution sequence.
On one hand, this sort of SID generation makes better use

of the parallel processing capabilities of the GPU. On the
other hand, in order to retain the true functionality of the
design, the logic corresponding to each section should be
executed only if its triggering signal is indeed asserted.

Thus, in some embodiments, CPU 28 compiles into the
execution sequence one or more additional PEs, referred to
as ancillary PEs, which selectively execute only the logic
corresponding to the logic sections whose triggering signals
are asserted. If a certain logic section should not be
executed, because its triggering signal is not asserted, the
ancillary logic retains the current state of that logic section.

Consider, for example, an execution sequence comprising
PEs that simulate two logic clouds denoted LC1 and LC2. In
this example, LC1 is sampled with a Flip Flop FF1 on the
rising edge of a clock signal CLK1, and LC2 is sampled with
a Flip Flop FF2 on the rising edge of another clock signal
CLK2. The compiler defines this execution sequence to be
executed on the rising edge of CLK1 and/or CLK2. If only
CLK1 rises, the ancillary logic should maintain the correct
value for FF2. One possible implementation is to sample the

10

15

25

30

35

40

45

50

55

60

65

32
previous value of FF2 again. If only CLK2 rises, the current
state of FF1 is retained in a similar manner.

(Note that, in some implementations, inhibiting execution
of a certain logic section involves execution of additional
logic, not necessarily less logic. For example, when inhib
iting execution is implemented by sampling the previous
value of a FF, this sampling may involve additional logic.)

In an alternative embodiment, each execution sequence
corresponds to a respective logic section and begins with an
ancillary PE that checks whether the triggering signal of this
logic section (e.g., clock, set and/or reset signal) is asserted.
If asserted, the ancillary PE enables execution of the
sequence. Otherwise, the ancillary PE inhibits execution of
the sequence.

Implementations that combine multiple logic sections in
the same execution sequence are typically preferable in
scenarios in which many logic sections are likely to run
simultaneously. Implementations that map each logic sec
tion to a separate execution sequences will typically perform
well in low-activity scenarios in which only few logic
sections run concurrently.
The description above referred mainly to logic that

involves sampling, such as in Flip Flop circuits. Such logic
is typically divided into three stages calculation of the logic
before sampling, Sampling in response to a triggering signal,
and generation of visible signals. In this sort of logic, there
is a distinction between the input signals to the logic and the
triggering signals (e.g., clock, set or reset). The disclosed
techniques can also be used to simulate combinatorial logic
and other types of logic when the visible signals at the output
are produced immediately from the input. In this sort of
logic, each input signal is also regarded as a triggering
signal.

FIG. 20 is a diagram that schematically illustrates the
above-described scheme for parallelized execution of mul
tiple clock-set-reset logic, in accordance with an embodi
ment of the present invention. In the present example, the
original design to be simulated comprises multiple logic
sections 430A . . . 430E, also referred to as logic clouds.
Logic sections 430A . . . 430E are triggered by respective
triggering signals 434A. . . 434E. (For the sake of clarity, the
present example relates more to combinatorial logic, where
the input signals are also regarded as triggering signals. In
Flip Flop or other sampling logic, the triggering signals are
the signals that affect the Flip Flop, for example, clock, set
or reset signals.)
As part of the compilation process, the compiler running

on CPU 28 produces a combined logic cloud 438 that
combines the functionalities of sections 430A. . . 430E. The
combined cloud receives the multiple triggering signals
434A. . . 434E as inputs.
The compiler converts combined cloud 438 into a SID

442 that comprises one or more execution sequences 446. In
one embodiment, the SID comprises a single execution
sequence that accepts the various triggering signals as input.
When the SID is invoked at run-time, the ancillary logic
checks the triggering signals. If the triggering signal corre
sponding to a certain logic section is asserted, the ancillary
logic enables execution of the PEs corresponding to that
logic section. Otherwise, the ancillary logic inhibits execu
tion of those PEs.

In an alternative embodiment, the SID comprises multiple
execution sequences 446, one per each logic section. Each
such execution sequence begins with an ancillary PE 450,
followed by one or more PE Groups (PEGs) 454. When the
SID is invoked at run-time, the ancillary PE of a given
execution sequence checks whether any of the triggering

US 9,684,494 B2
33

signals that drive the PEs in that sequence is asserted. If
asserted, the ancillary PE enables execution of the sequence.
Otherwise, the ancillary PE inhibits execution of the
sequence. Typically, each ancillary PE operates indepen
dently of the other ancillary PEs. In other words, the
enable/inhibit decision is taken independently for each
execution sequence.
When using the configurations above, SID 442 is highly

parallelized and thus exploits the parallel processing capa
bilities of the GPU, even though the individual logic sections
(clouds 430A. . . 430E) may have little or no parallelism.

Partitioning of PE Execution Between CPU and
GPU

Typically, CPU 28 and GPU 32 differ from one another in
their parallel execution capabilities and processing power in
general. The GPU typically outperforms the CPU in execut
ing highly-parallel tasks. When a task has little or no
parallelism, however, it may be impossible to exploit the
theoretical processing power of the GPU, in which case the
CPU may outperform the GPU.

In some embodiments, at compilation time, the compiler
in CPU 28 partitions the design (or other dependency
problem) into high-parallelism phases in which the GPU is
expected to outperform the CPU, and low-parallelism
phases in which the CPU is expected to outperform the
GPU. The compiler then generates suitable SIDs so as to
execute the high-parallelism phases by the GPU and the
low-parallelism phases by the CPU.

FIG. 21 is a diagram that schematically illustrates an
execution graph 458 of a dependency problem, in accor
dance with an embodiment of the present invention. Graph
458 comprises multiple PEs 76 and execution dependencies
80 between the PEs. As can be seen in the figure, graph 458
can be divided into three sequential phases 462A . . . 462C.

Phases 462A and 462C are low-parallelism phases, in
which only one or few PEs 76 are executed in parallel. Phase
462B is a high-parallelism phase, in which a relatively large
number of PEs should be executed in parallel. In the present
example (and in many practical scenarios) the low-parallel
ism phases occur at the beginning and/or end of the execu
tion graph. Generally, however, the disclosed techniques can
be used with any suitable number of low-parallelism and
high-parallelism phases, which may occur at any Suitable
location in the execution graph.

Based on the levels of PE parallelism in the various
phases, in phases 462A and 462C the CPU is expected to
outperform the GPU, and in phase 462B the GPU is
expected to outperform the CPU. In some embodiments, the
compiler divides the execution graph into Such low-paral
lelism and high-parallelism phases, assigns the low-paral
lelism phases for execution by CPU 28, and assigns the
high-parallelism phases for execution by GPU 32.

FIG. 22 is a flow chart that schematically illustrates a
method for partitioning an execution graph between CPU 28
and GPU 32, in accordance with an embodiment of the
present invention. The method is typically carried out at
compilation time by CPU 28.
The method begins with the compiler defining the paral

lelism levels that are Suitable for the CPU and the GPU. In
an embodiment, the definition specifies the maximal number
of parallel PEs for which the CPU is still expected to
outperform the GPU, and the minimal number of parallel
PEs for which the GPU is expected to outperform the CPU.
Alternatively, any other suitable definition or criterion can
be used.

10

15

25

30

35

40

45

50

55

60

65

34
The compiler then uses the definition above to divide the

execution graph into low-parallelism phases (in which the
CPU is expected to outperform) and high-parallelism phases
(in which the GPU is expected to outperform), at a graph
partitioning step 474. The compiler may use any Suitable
criterion for selecting the boundaries between low-parallel
ism and high-parallelism phases.
The compiler translates each phase of the execution graph

into a respective SID, at a SID generation step 478. Any
suitable SID generation method can be used, such as the
methods described above. A SID that simulates a low
parallelism phase is assigned for execution by the CPU (and
referred to as a CPU SID). A SID that simulates a high
parallelism phase is assigned for execution by the GPU (and
referred to as a GPU SID).

In the example of FIG. 21 above, phase 462A is translated
into a CPU SID, phase 462B is translated into a GPU SID
that is invoked after the CPU SID of 462A completed
execution, and phase 462C is translated into a CPUSID that
is invoked after the GPU SID of 462B completed execution.
Generally, the compiler may generate any Suitable number
of interleaved CPU and GPU SIDS.

Typically, the compiler maintains data synchronization at
the boundaries of successive SIDs. Data synchronization
means that the signals produced by one SID are made
available to the next SID in the sequence as it is invoked.

Synchronization Between Execution Sequences by
Partitioning Execution into Multiple GPU

Invocations

In some of the embodiments described above, such as in
FIGS. 4 and 6, the compiler achieved synchronization
between different execution sequences by inserting dedi
cated SYNC PEs into the sequences. A SYNC PE would
typically halt its execution sequence until another execution
sequence reaches some predefined execution stage.

In some GPUs or other multi-processor devices, however,
SYNC PEs incur considerable overhead and are costly in
terms of processing power. In alternative embodiments, the
compiler forces the desired synchronization between execu
tion sequences by partitioning the execution sequences into
multiple GPU invocations. In the description that follows,
the invocations are also referred to as phases, and the two
terms are sometimes used interchangeably. Another benefit
of this solution is that, when using SYNC PEs, the number
of execution sequences should not exceed the number of
thread blocks that GPU 32 can run concurrently. Synchro
nization by partitioning into multiple GPU invocations
eliminates this constraint.

FIG. 23 is a diagram that schematically illustrates execu
tion sequences partitioned into multiple GPU invocations, in
accordance with an embodiment of the present invention. In
the present example, the compiler has broken the execution
sequences into five successive invocations 484 of GPU 32.
At run-time, in each invocation, GPU 32 executes one or
more SIDs 480. In some embodiments, although not neces
sarily, each SID 480 comprises a single sequence of PEGs.
Alternatively, however, a SID may comprise multiple PEG
Sequences.

(The term “GPU invocation” does not mean that GPU 32
is invoked by CPU 28 separately for each individual invo
cation. Typically, CPU 28 invokes GPU 32 with the entire
set of invocations 484 seen in FIG. 23, and the GPU is
responsible for Scheduling the invocations and maintaining
data synchronization between them.)

US 9,684,494 B2
35

Under the GPU control, each GPU invocation 484 is
executed in full before the next invocation begins. There
fore, all SIDS in a given invocation are guaranteed to
complete their execution and produce outputs, before the
GPU starts to execute any SID in the next invocation.
Therefore, by using the invocation mechanisms of GPU 32,
it is possible for the compiler to force synchronization
between different execution sequences.

For example, assume that PE2 depends on the output of
PE1, but the two PEs belong to different execution
sequences. In order to preserve this dependency, the com
piler may force synchronization by placing PE1 in one GPU
invocation, and placing PE2 in a Subsequent GPU invoca
tion. In some GPUs or other multi-processor devices, the
overhead incurred by multiple invocations is smaller than
the overhead incurred by SYNC PEs. In such cases, the
technique of FIG. 23 may be preferable.
Criteria for Partitioning Execution Sequences into Phases

Another motivation for dividing the execution sequences
into phases (invocations) is to avoid unnecessary execution
of execution sequences. As will be explained in detail below,
the compiler is capable of inserting into the execution
sequences logic that inhibits unnecessary execution.

This sort of logic may detect, for example, that the input
to a certain execution sequence did not change since the
previous execution of the sequence, that an element (e.g.,
flip-flop) downstream in the sequence is not triggered, or
that the output of the sequence is not being used. In all Such
cases there is no point in executing the execution sequence.
The logic inserted by the compiler detects such conditions at
run-time and inhibits the execution of sequences accord
ingly. These mechanisms are highly efficient in reducing the
simulation run time.
The division of the execution sequences into phases has

considerable impact on the ability to avoid Such unnecessary
execution. For example, short phases (i.e., short execution
sequences per SID) have a better chance of meeting the
above conditions, and therefore increase the ability to avoid
unnecessary execution. On the other hand, short phases
incur more processing overhead because they increase the
number of GPU invocations. in some embodiments, the
compiler divides the execution sequences into phases while
applying a suitable trade-off between avoiding unnecessary
execution and reducing invocation overhead.

FIG. 24 is a diagram that schematically illustrates an
example process for partitioning execution sequences into
phases, in accordance with an embodiment of the present
invention. In this method, the compiler identifies “logical
cones' in the dependency graph, and uses them to divide the
graph into phases. A "logical cone' is defined as a PE
(referred to as an “apex PE') that is last in a certain phase
(invocation), plus the group of PEs that drive this PE up to
a certain depth. Each PE has a “base,” which is defined as
the set of input signals received by PEs in the cone from
outside the cone (e.g., from PEs outside the cone or from the
CPU).

In order to clarify this concept, FIG. 24 shows an example
dependency graph in which two phase boundaries 490 and
492, and an example logical cone 488 is marked. Logical
cone 488 has a depth of 3 (defined as the longest chain of
PEs in the cone) and a base size of 2 (defined as the number
of input signals received from outside the logical cone).
Alternatively, any other suitable values can be used.

Consider the above-described mechanism in which
execution of a sequence is inhibited if the inputs to the
sequence did not change since the last execution. Typically,
a logical cone having a large base size is less likely to be

5

10

15

25

30

35

40

45

50

55

60

65

36
inhibited from execution, in comparison with a logical cone
having a small base size. A large-base cone typically has a
large number of inputs, which typically means a small
probability that none of the inputs has changed. A small-base
cone has a smaller number of inputs, and therefore a higher
probability that none of the inputs has changed.

In some embodiments, the compiler chooses the logical
cones in accordance with some selection criterion, and sets
the boundaries between phases at the base of the cones. The
cone selection criterion typically aims to set the desired
trade-off between reducing unnecessary execution and
reducing invocation overhead. In some embodiments, the
compiler chooses the logical cones so as not to exceed a
predefined maximum base size, and so as not to exceed a
predefined maximum depth. Alternatively, however, any
other suitable selection criterion may be used.

In an example process, the compiler starts from phase
boundary 492. The compiler initially chooses PE 76B in
FIG. 24, which is located first in the subsequent phase (i.e.,
immediately following boundary 492). PE 76B receives a
single input from PE 76A. Thus, PE 76B is regarded as a
logical cone with depth=1 and base=1.

In this example this cone size does not yet exceed the
maximum cone size, and therefore the compiler adds the
next PE (PE 76C) to the cone. Adding PE 76C to the logical
cone requires that PE 76D be added, as well. Thus, at this
stage the logical cone comprises PEs 76B, 76C and 76D.
This cone has depth=2 and base-2.

In the present example, this cone size still does not exceed
the maximum cone size, and therefore the compiler adds the
next PE (PE 76E) to the cone. Adding PE 76E means that all
the PEs that drive PE 76E in the current phase be added too.
Thus, at this stage the logical cone comprises all the cones
encircled by curve 488.

In the next iteration the compiler adds the next PE (the PE
driven by PE 76E) and the PEs that drive this PE to the cone.
The last cone exceeds the permitted cone size defined in the
selection criterion. Therefore, the iterative process stops
with cone 488 selected and PE 76E serving as the apex of the
cone. The compiler sets the boundary for the next phase (line
490) immediately following PE 76E. The process above
continues until the entire dependency graph is divided into
phases.

FIG. 25 is a flow chart that schematically illustrates a
method for partitioning execution sequences into phases, in
accordance with an embodiment of the present invention.
The method begins with the compiler in CPU 28 defining a
maximum base size and a maximum depth for the logical
cones, at a criterion definition step 500. The compiler scans
the dependency graph and divides the graph into logical
cones, at a cone definition step 504. The compiler defines the
logical cones in a manner that meets the selection criterion
of step 500 (in the present example maximum base size and
maximum depth). The compiler then divides the graph into
phases based on the logical cones, at a phase partitioning
step 508.

Avoiding Unnecessary Execution Using Sensitivity
Information

In some embodiments, each execution sequence holds an
indication that indicates whether any of the inputs to the
execution sequence has changed since the previous execu
tion of the sequence. This indication, which is referred to
herein as sensitivity information, may change at run-time.
When invoked, the execution sequence checks the current
sensitivity information. If the sensitivity information shows

US 9,684,494 B2
37

that one or more of the inputs to the sequence have changes
since the previous execution, the execution sequence is
executed. Otherwise, the execution sequence is inhibited.

Updating of the sensitivity information at run-time can be
carried out in various ways. In some embodiments, when an
execution sequence is invoked, the GPU checks the current
inputs to the sequence, compares them to the previous input
values and updates the sensitivity information of the
sequence as needed. In alternative embodiments, whenever
a certain signal changes, the GPU updates the sensitivity
information of all the sequences that accept this signal as
input.

FIG. 26 is a flow chart that schematically illustrates a
method for avoiding unnecessary execution using sensitivity
information, in accordance with an embodiment of the
present invention. The method begins with the compiler
generating execution sequences, at a sequence generation
step 510. At an insertion step 514, the compiler inserts into
each execution sequence an ancillary PE that checks
whether inputs to the sequence have changed since the
previous execution.

At run-time, the GPU prepares to execute a certain
execution sequence that was invoked, at an invocation step
518. The ancillary PE of the invoked sequence causes the
GPU to check the sensitivity information, at a sensitivity
checking step 522. If the sensitivity information shows that
one or more inputs to the sequence have changed since the
previous invocation, the GPU executes the sequence, at an
execution step 526. Otherwise, the GPU inhibits execution
of the sequence, at an inhibition step 530.

Avoiding Unnecessary Execution Using Trigger
Information

Another scenario that involves unnecessary execution of
an execution sequence occurs when a simulated component
(e.g., flip-flop) downstream along the sequence is not trig
gered, and therefore will not sample the logic that was
calculated in the sequence. In other words, in the absence of
a trigger, the output of the sequence will not change regard
less of the input and of the processing performed by the
sequence. Therefore, there is no point in executing the
sequence unless the element in question is triggered.

In some embodiments, when an execution sequence is
invoked, the sequence (e.g., the first PE in the sequence)
checks for the presence of a trigger to the downstream
element. If not found, the sequence is inhibited. The pres
ence or absence of a trigger signal is determined at run-time,
and therefore the selection of whether or not to execute the
sequence is also determined at run-time.

FIG. 27 is a diagram that schematically illustrates execu
tion sequences with triggered elements, in accordance with
an embodiment of the present invention. The present
example shows two execution sequences: The first sequence
comprises logic 540A, followed by logic 542A, whose
output is input to a D Flip-Flop (FF) 544A. The second
sequence comprises logic 540B, followed by logic 542B,
whose output is input to a D Flip-Flop (FF) 544B. Each logic
cloud (540A, 542A, 540B, 542B) may comprise one or more
PEs. FFs 544A and 544B are triggered by trigger signals T1
and T2, respectively.

In Some embodiments, when compiling the execution
sequences of FIG. 27, the compiler inserts an ancillary PE
into each sequence (typically the first PE to be executed).
The ancillary PE of the first sequence is configured to check
whether trigger T1 is asserted or not. If the trigger is not
asserted, the ancillary PE inhibits execution of the sequence

5

10

15

25

30

35

40

45

50

55

60

65

38
(since without T1, executing the first sequence will not affect
the sequence output). The ancillary PE of the second
sequence operates similarly with regard to trigger T2.

In many practical cases, the execution sequence (e.g.,
logic 540A and 542A) is large and complex, and avoiding its
execution increases the simulation efficiency significantly.
As opposed to event-driven simulation techniques, the tech
nique of FIG. 27 decides whether or not to execute a
sequence based on future events that occur downstream in
the sequence.

Avoiding Unnecessary Execution Using Sequence
Output Look-Ahead

Yet another scenario that involves unnecessary execution
of an execution sequence occurs when, for any reason, the
sequence execution does not affect its output. FIG. 28 below
demonstrates one such scenario.

FIG. 28 is a diagram that schematically illustrates an
execution sequence with a multiplexed output, in accor
dance with an embodiment of the present invention. The
execution sequence comprises logic 550, followed by logic
554, whose output is provided as input to a multiplexer
(MUX) 562. Another input to the MUX is provided by logic
558. A SELECT signal selects which of the MUX inputs will
be transferred to the MUX output. The selected MUX output
is provided to a D-FF 566, which is triggered by a trigger
signal T.

In the present example, there is no point in executing logic
550 and 554, unless MUX 562 transfers the output of logic
554 to FF 566. In other words, even if the signals at the input
of logic 550 have changed, and even if trigger T of FF 566
is asserted, executing logic 550 and 554 will not affect the
sequence output unless MUX 562 selects the output of logic
554.

In some embodiments, logic 550 and 554 are large and
complex, and logic 558 is modest. This situation is common,
for example, in Automatic Test Pattern Generation (ATPG)
circuitry in Integrated Circuit (IC) design. In Such cases, the
potential performance gain of avoiding unnecessary execu
tion of logic 550 and 554 is very high.

In some embodiments, when compiling the execution
sequence of FIG. 28, the compiler inserts an ancillary PE
into the sequence (typically the first PE to be executed). At
run-time, the ancillary PE is configured to check whether
MUX 562 is set to select the output of logic 554 or the output
of logic 558. If the latter, the ancillary PE inhibits execution
of logic 550 and 554. If the former, the ancillary PE enables
execution of the entire sequence.
The MUX implementation shown in FIG. 28 is chosen

purely by way of example. In alternative embodiments, the
ancillary PE (or any other logic) may check generally
whether execution of the sequence will affect the sequence
output. If not, the sequence execution is inhibited. Like the
scheme of FIG. 27 above, the look-ahead scheme of FIG. 28
is in sharp contrast to event-driven simulation techniques,
and is highly efficient in reducing simulation run time.

It will be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and Sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip
tion and which are not disclosed in the prior art.

US 9,684,494 B2
39

The invention claimed is:
1. A computing method, comprising:
accepting a definition of a computing task, which com

prises multiple Processing Elements (PEs) having
execution dependencies; 5

compiling the computing task for concurrent execution on
a multiprocessor device, by arranging the PEs in a
series of two or more invocations of the multiprocessor
device, including assigning the PEs to the invocations
depending on the execution dependencies; and 10

invoking the multiprocessor device to run software code
that executes the series of the invocations, so as to
produce a result of the computing task, wherein assign
ing the PEs to the invocations comprises evaluating a
criterion that aims to maximize a likelihood that the 15
sequence will not be executed and wherein evaluating
the criterion comprises dividing the computing tasks
into logical cones, wherein a maximum depth or a
maximum base size of the logical cones are specified
based on the likelihood. 2O

2. The method according to claim 1, wherein the multi
processor device completes a preceding invocation before
beginning a subsequent invocation in the series, such that
outputs of the PEs in the preceding invocation are available
as input to the PEs in the subsequent invocation. 25

3. The method according to claim 1, wherein assigning the
PEs to the invocations comprises assigning a first PE to a
first invocation and assigning a second PE, which according
to the execution dependencies is to be executed after the first
PE, in a second invocation that is later than the first 30
invocation in the series.

4. The method according to claim 1, wherein assigning the
PEs to the invocations comprises interleaving in the series
one or more invocations of a Central Processing Unit (CPU)
in addition to the invocations of the multiprocessor device, 35
and assigning one or more of the PEs to the invocations of
the CPU.

5. The method according to claim 4, wherein assigning the
PEs to the invocations comprises identifying a first portion
of the computing task whose execution by the multiproces- 40
sor device is expected to outperform execution by the CPU,
identifying a second portion of the computing task whose
execution by the CPU is expected to outperform execution
by the multiprocessor device, assigning the first portion to
the invocations of the multiprocessor device, and assigning 45
the second portion to the invocations of the CPU.

6. The method according to claim 4, wherein assigning the
PEs to the invocations comprises assigning the PEs in a first
portion of the computing task, which has a first level of
parallelism, to the invocations of the multiprocessor device, 50
and assigning the PEs in a second portion of the computing
task, which has a second level of parallelism that is lower
than the first level, to the invocations of the CPU.

7. The method according to claim 1, wherein compiling
the computing task comprises defining a sequence of the PEs 55
that is to be executed conditionally depending on a condition
that is evaluated at run-time.

8. The method according to claim 7, wherein each logical
cone comprising an apex PE that is last in a respective
invocation and a group of the PEs on which the apex PE 60
depends, and setting invocation boundaries at respective
bases of the logical cones.

40
9. A computing apparatus, comprising:
an interface, which is configured to accept a definition of

a computing task, which comprises multiple Processing
Elements (PEs) having execution dependencies; and

a processor, which is configured to compile the computing
task for concurrent execution on a multiprocessor
device, by arranging the PEs in a series of two or more
invocations of the multiprocessor device, including
assigning the PEs to the invocations depending on the
execution dependencies, and to invoke the multipro
cessor device to run software code that executes the
series of the invocations, so as to produce a result of the
computing task, wherein assigning the PEs to the
invocations comprises evaluating a criterion that aims
to maximize a likelihood that the sequence will not be
executed and wherein evaluating the criterion com
prises dividing the computing tasks into logical cones,
wherein a maximum depth or a maximum base size of
the logical cones are specified based on the likelihood.

10. The apparatus according to claim 9, wherein the
multiprocessor device completes a preceding invocation
before beginning a subsequent invocation in the series, such
that outputs of the PEs in the preceding invocation are
available as input to the PEs in the subsequent invocation.

11. The apparatus according to claim 9, wherein the
processor is configured to assign a first PE to a first invo
cation and to assign a second PE, which according to the
execution dependencies is to be executed after the first PE,
in a second invocation that is later than the first invocation
in the series.

12. The apparatus according to claim 9, wherein the
processor is configured to interleave in the series one or
more invocations of a Central Processing Unit (CPU) in
addition to the invocations of the multiprocessor device, and
to assign one or more of the PEs to the invocations of the
CPU.

13. The apparatus according to claim 12, wherein the
processor is configured to identify a first portion of the
computing task whose execution by the multiprocessor
device is expected to outperform execution by the CPU, to
identify a second portion of the computing task whose
execution by the CPU is expected to outperform execution
by the multiprocessor device, to assign the first portion to the
invocations of the multiprocessor device, and to assign the
second portion to the invocations of the CPU.

14. The apparatus according to claim 12, wherein the
processor is configured to assign the PEs in a first portion of
the computing task, which has a first level of parallelism, to
the invocations of the multiprocessor device, and to assign
the PEs in a second portion of the computing task, which has
a second level of parallelism that is lower than the first level,
to the invocations of the CPU.

15. The apparatus according to claim 9, wherein the
processor is configured to define a sequence of the PEs that
is to be executed conditionally depending on a condition that
is evaluated at run-time.

16. The apparatus according to claim 15, wherein each
logical cone comprising an apex PE that is last in a respec
tive invocation and a group of the PEs on which the apex PE
depends, and to set invocation boundaries at respective
bases of the logical cones.

ck ck k k ck

