«» UK Patent Application .,GB .,2542707

(43)Date of A Publication

(13)A

29.03.2017

(21) Application No: 1618768.4
(22) Date of Filing: 03.07.2015
Date Lodged: 07.11.2016

(62) Divided from Application No
1511740.1 under section 15(9) of the Patents Act 1977

(71) Applicant(s):
SISP Technologies Ltd
47 Albemarle Street, Mayfair, LONDON, W1S 4JW,
United Kingdom

(72) Inventor(s):
Stuart Marlow
Nicholas Stavrinou

(74) Agent and/or Address for Service:
Mathys & Squire LLP
The Shard, 32 London Bridge Street, LONDON,
SE1 9SG, United Kingdom

(61) INT CL:
HO3M 7/40 (2006.01)

(56) Documents Cited:
US 7773634 B1

(58) Field of Search:
INT CL HO3M, HO4L

HO4L 9/06 (2006.01)

US 20020021754 A1

Other: WPI, EPODOC, INSPEC

(54) Title of the Invention: Data processing method and apparatus
Abstract Title: Data compression or encryption by dividing input data, performing frequency analysis and

assigning frequency-based labels

(57) A method of processing data, for use in compression or encryption, is disclosed in which an input sequence of bits
is divided into a plurality of portions. Each portion is sub-divided into a plurality of sub-divisions. Frequency analysis
is performed to determine the number of occurrences of each sub-division permutation and new values are
assigned, based on the frequency analysis, to each of the sub-division permutations. For each portion a label
representing the permutation of bits in that portion is assigned. The label comprises a representation of a value
resulting from adding the new values associated with the sub-division permutations of that portion. A processed
sequence of bits is generated by replacing, within the input sequence of bits, bit portions with the respective label

representing the permutation of bits in that portion.

Figure 5B

Frequency analysis of bit portion vaiues having a bit length of 4 bits

Occurrence-

B based Level Occurrence-
Ranking Fortion Number of {total b;spe‘zlsyluew
value occurrences occurences) alue
v b v v v
Most -~ B
accurring [} 27369 o
1 18620 - levlo 1
0 (64539)
2 18541 2
; s ;
4 11079 s
5 7900 tevel 1 4
(38803)
7178 A
3923 5
3857 5
3658 5
3414 5
16e Levei 2 6
3074 (27730) s
2605 5
2068 5
Least 1052)

oceurring
Total number of
4-bit portions:
131072

Total number of
bits analysed:
524288

New BP

value in initial Occurrence-

Disambiguation
label 403 based Label

binary value in binary
¥ v v sizg
000 - 000
001 - 001 3 bits
010 - 010
o011 0 0110
011 1 0111
100 0 1000 4 bits
100 1001
101 00 10100
101 01 10101
101 10 10110
101 11 o111
110 00 11000 5 bits
110 01 11001
110 10 11010
110 1 11011
3 bits

No. of bits
used
N

183617

128840

5886

Total number of
bits used:
483555

The claims were filed later than the filing date but within the period prescribed by Rule 22(1) of the Patents Rules 2007.

vV L0L¢vGc 899

1728

GGG sinpouwl
Buipoosp

S

07 wawbes Buissestid

256 Sjnpoll
= Buipooap

B0z weotubos passsntid

jopesH

Naﬁ.mi ispEsH

10¢C
Sl

506 sneledde uoissaidwosa

N

¢

sji4 passasdwon

—_—

apreH

6l

wsbes possentiy

e
P,
T

£5¢ 2inpotu
Loheleuan
JopesH

GOt snededde uoissaidwio)

$3Q g = 4]

A

G2 elnpow

g
- £5¢ sinpow — 202 wuswibes Buissedoid
uoniod g

swubissy
fege

102
i

No

S

125

¢

" Is potential compression
~._ levei for current segment

~.

Use current segment with no
{further) processing as
processed segment

Divide into processing
segments

~.
- ~
.

-
7
-
-

. acceptable?

.
~.
~.
~.
~.
~.
N

-
-
L
~
~
L~
~
—

Yes

11

(,)'

111

~.
~.

~.

&
SR
-

~

127

¢

Use processed

5

Process current segment and
generate associated
extraction information for
current segment (typically
include exiraction information
in processed segment
header)

segment (including
header if present) as
current segment
7}

129

¢

Use next segment as
current segment

"~ Attempt to reprocess
__ current segment?

Cutput processed

segment

2
e \fm-/

. .

e o
P ‘
<_Another seg ment/;

1o process? -
. //

~. P
e

\\l/N o)

Qutput processed segmenis
together as processed file

123

Use first processed segment of |
processed file as current segment ¢

131

No

Use current segment with no
{further) reconstruction as
reconstructed segment

7 T 133
" Extraction information ("
available for current = e
T segment? T 147
~ - ot

~ -
~ -

Use reconstructed
segment as current

v 135

Yés l <,J

(

145

segiment

Obtain extraction information {(e.g

from header} for current segment iUse next segment as

current segment

.

/

Reconstruct segment prior to
149

processing based on extraction
information

Qutput reconstructed

-

segment

l

ST

P VY
S

/'/4 .
<__Another segment >
“lo process?

s

Yeas

e

MNo

Output reconstrucied segments

143
together as reconstructed file T~

rd @%mmm 707 sAelie uoneuIqUIO?

(8 OLLD J04] 0OLL JEQ

-
<«

G0e uotuod ug

00tbLL | | oLioot |l oobiio

510 93 ~SHQ G—¥—SHG 9>
48 ybus| ug ~———"

O¢ Juswbas Buissanold

4 /28

A PS

A4
A
X
A4

dx v9 a3 vo

2
Y

LOC el

A4

490 ¢

i

51728

- - o [o v oo0ooc tojtoo v io 1] Suq 8
; ; o "o sloooct voJoo 1 v o 1] suq J
- - o~ - "o tooelo i v o olo b v 1o] U9
- - o~ "ol ooo t]rotoolr to 1] SR
ou e o - [0 L 0 0j0 t L 0lL 0O Lit t 0 }] SR
ou 1 [0~~~ olr oo v vJo v oJo v +]1 o 1] sua €
o ! [o -~ o tJo oo 1]v ofr olo 1]y 1o 1] S99 2
~ 0 SO suotuod 3¢ ~
osh sjons] dg
<P uoissaudwios ¢ 9 70 3 1
somby 10 o J0 soqun — _ Wbus] g
PUOS smuueiea 0 O L 000 L L0 L OO0 Lt L o L

Tz weawbog Buissanoid

6/28

fgp=2 Frequency analysis of bit portion values having a bit lsngth of 2 bits
)] Number of
Ranking Bit portion value OoCUrences Level
Most —
oocuring 0 n 65,538
- . }\‘>, sty
1 85,537 (1% Level
2 65,536
Least 3 1019} 65,533
ocCuring

Total number of
2-bit portions:
fzag(?g ‘ézns of levels: 1

Total number

Fig E_,E F@ 3 B More than 50% of elements in use

Lpp= Frequency analysis of bit portion values having a bit length of 3 bits
Ranking Bit portion value Number of Occurrence-
occurances based Level
Most occurring 0 21,851 ~
1 21 840
2 21,648
3 21,647
Level 0
4 21,840 :
5 £ B 21,845
! 0 21,844
Least ococurring 7 10 1 21,833

Total number of
Total number of 3-bit levels: 1
portions: 174763

E: Eg L,E r@ EC More than 50% of elemenis in use

Lgpm 4

7128

Frequency analysis of bit portion values having a bit length of 4 bits

Most occurring g

N

Ranking Po?;iien Number of Level total Cccurrence-
. vajixe occur\ﬂ;ences Occurifnces based\?:evai
0 0 0 1} 2738
“““““ . C[TTETT] 18629 \ 84539 \ Level 0
2 VVVVVVV 00 1 1] 18541 >
3 VVVVVVV 10 0 1] 12888 —, & N
VVVVVVV 4 [1 1 1 1] 11079
- 7000 > 38803 = Level
6 """ o] ns D
o [3os s
: g [T770 1] 3857
ERIIEEE 3658
10 10 0 1 0 3191
VVVVVVVVVVVV 1m |11 oee 3169 - 27730 > Level 2
VVVVVV 12 10 10 ¢ 3074
VVVVV 13 |10 2605
VVVVV 14 |0 1 0 2068
VVVVV 15 {1 1 0 1962 |

Total number of
4-bit portions:
131072

Figure 3D

Total number of

lavels: 3

8/28

v @inbi

- - [0 [0 o001t 1 o]t oo Lt Lo L] SHa 8
@ ; i ¢ Lo o0 L Lo L]oo i L Lo L] i 2
ou i [0~ 0 L 006 L L ¢ L 0]0 L L0 L SHG ©
ou) (o ol 0 0 € bt © L 0 0Lt L L o L SHG §
ou] (o - Jer ooclo v v olr oo t]r 1ot g ¥
ou 1 [0 " ofroofo v tfevole v] o 1] SHG £
0 T o .
Juaseid S|oA8| G0C suomiod kg
senjes uomuod uomssaudwioo ¢ o 0 5 e yibuel ug
g sjqissod 10 Jaquinu
a3l 10 %05 DeULILILISC L Yt O S Nt ¢ Y e A T T

o7 wewbag Buisss00ld

9/28

Lgp= Bit portion values having a bit length of 7 bits
Number of
Ranking Bit portion value oocurances Level
4 ¥ v \E
Most coourring 0 111000 1] 8,331)
1 110101 1} 8,330
2 11000 1 1} 8,329
3 111100 1} 8,329
4 100 1 1 1 1/ 8,327 ~ Level 0
5 11000 0 0} 8,326
3 110010 1} 8,325
7 0010100 0} 8,324
8 110 110 1} 8,278
g 1000 100 1} 0
10 000010 1 0} 0
11 oo o 10 1 1] o
12 10 0 0 1 0 0| 0
13 00 0 1 0 1| 0
14 10 0 0 1 10| 0
15 10 0 0 1 101)
40 00001 1 1] o
113 1000000 D 8
NN
Least ocourring
197 P14 1 1 1 1 1} 6
thai number of 7 Thial number
bit ocourrences: of levels: 1
74,889

F Eg u r@ 4“ E Fewer than 50% of elements in use

10728

G 2inbi

%G1
Y%yl
%52
%l
%01
Yl
%t

g

uoissaldwod
[Bluelad

o (0L 000 L L OfjL 6O L } 4 0 I
o 8 410 06 0 L L O L]0 8 L } L O L]
[0 8 L 0 010 L L 0 4 ol0 L L Lo L]
o (L 00 6 b 0L 0 ofL } L 0)
o 8 L 0 010 L L O{L 0 8 Li} i O L]
[0 ol 0 0lo L tio 4 olo L 1jL o 1]
o 8 L]0 olo 1iL ot 0f0 L{) ti0 1

SOZ suood 3g
& o v ¥
0 0L 000 L b0 L 00 L b b0 L]

Tz weawbog Buissanoid

SHG 8
SHG L
SHG 9
SHG &
SHG ¥
SHG €
SHG 2

N
&mim

yibusl ug

11728

555£8Y a6 =in mm - z0igt 887523

posh Sy suoiuod ja-v ‘paskiBue 519
1O JOGUINU 2101 1O JOGLUNU BI0L 10 J8guinu jeloL
i , - 3 e BULMNG00
98as SUq ¢ A,,/ it - [L o6t , L 1SBaT
C L0 bl oLL g 8902 1T
0L Gt OLi] 5092
LOOLL L0 gLi 9 0817 pZAN
) 00041 0o kb 9 [6918
88T sHgs <
LLLOLE Pl LOL g vive
OLLOL Gt LOL g 859%
LOLOLE L0 LOL G L88¢
“““ 0010} 00 1oL 5 2
- nap) 0oL ¥ 3V
{c0ggeg)
ZT7SST sugy 0001 0 00t 4 TiEAd] 0064
LLLD b LLO ¢ 8011
iiiiiiii / - !.@w:un@;:i:ioi:!!!!mwaciii:!!:im!!i:sii:!!/uﬁ S¥aci
\ 310 - 010 Z (5SCH0) LPG8L
£19¢61L sig ¢ /\/ LO0 - L00 2 {0 i9Aa] ‘AH, 1A
Buiinogoo
o (00 - 000 0] L 88¢le SO
0 & O 0 0 0 T 0
i gN
wmmm - wmmmg T 1oqe Aseuiqg ulonjea AJeuig anieA dg {SO2UBINI30 SHJUILNIZ0 aNIBA Bupjury
3 JO "ON ~83UBLN90 ET vonenbBiguuiesiy Ul 8NjBA MON PIsSey 12303 J0 Jaqiunn UOIHO -
dE MmaN -esudunosg 18AYT paseq g
~3IUBLNIIG f = 487

SUG ¥ 10 Wbus ng v Buiaey senjea uoiuiod Mg 310 sisAleue Asusnbaiyg

12728

£880LY
:pasn sug o
Jsguuny 1o}
P
0Z6/1T SHGG <
A
TAYAYA) mﬁmw‘AA
g
\\‘
geeTer ¥4 mﬁﬂ
0 0
pash aZis
SO jeqe] jei
o oN pestundg

0G ainbi

12327
OLbitL
bOLLL

000

%
e 19G¥]
ferug

b
0L
10

T
AfeLHg Ul anjRA

uonenBiguiesig

213
bLL
bLL

000

A/
fisuig

HESTT

BN

P~

P~

0

1
anjes Man

ZL0LEL
:suoitod ug-p

JO JBGWNY 2104

-
{

{($o5e2)
ZBAsy <

/

\

{e0c0e)
TRAet <

(58144)

<

0 RADT

ﬁmwumm,tzuuo
ieo})
Yy
pasiuapdQ

jaAaT paseq
~SIUBLNIZO

SHG ¥ 40 YiBus) ug v Bulapy ssniea uoneod 14 jo sisfjrue Asusnbaig

gEEVLE
pesAjBuE SHg
10 JOGIUNU [B10)

A% 51
8802
082
¥i08
69Le
L6LT
859¢
L58E
S¥ivy
8L1L
006.
8011
ovaci
b¥a8l
B8Ca8l

BOTLC
...m...

L o000
A
sa3UBLNINe SNEA
Jo ssquunp UOHIOd
ug

BULLINGO0
sBaT

4N

Bu1inooo
(S

Sunjuey

y =

13728

paiinbal paiinbal
sHq. sug

y 404 2718 Lmnmmxw

14 /28

m.‘l.(miﬂihﬁhcw

[--uutuul
-yl
-uttuul
Fuuruuyl
- -uuul
Fuuturuyl
~uuuuyl
ww'uyuyl

4

&Yls>

U

U

U

u
™

ishelie
10
‘DUXZ Z
SioAs| 10
OU 81O)

O

8
0L
0l

Zi
%

shenie
JO OU XZ

W W W O T M

..}

eI
ou B0 L

bl
F- el
Fepeed
F-ed
Fepl
R AR A
I A A
T
Sjans)
uoissasduioo

10 J8GUinu
eI ETg!

[o L L 0 010 1 L O L OO 1t L O i
oo oyD WO YD YO YD
1 1 11
0 it o ofo 1 otlo L ooto ol oo b
[0 L 11ololo 1 v oltledo t ¢ vloft]
[0 L viofotols L ofriofol L t Lo
[0 L oLiofofo bl oftioto 4L Lio]L]
[0 LoLiotofoltly oftdofolelL vio]]
[0 viriolojo ¢ LjolLlofo L biLioli]
[0]y 0 ofolt t]oltiojoly vltlo]]
[0 vitlaloto slefolilolo tfi]iols]
[o i fololo i iel ool] olt]
0 L L 0o 0 L L0 L0 0 L i LoD}
¢ & ¥ 5
B 0 1L 8000 L L8 L 00 L L L oL

o7 wawbeg Buissenold

in'o'o'o'o'al

io'o'o'o'eel

LNOE
fo'o'v'e L]
ooz il
o'z el
o'oe' L il
A
ozl
Dl
0
U

oneinBiuns
WO ABLE

USHBUIGLUOD

L2

174

T

N 2 T O ©

0
A

[} LN
Byuog

15728

Lgp=86 Chg Frequency analysis of 1% combination arrays
Ranking CA Value i‘;fgi’"czi g:;:gi::iu

Most occurring g 30,000 ’”’\\\/ et 0
1 20,000 J
2 9,000 =

3 8,000 - Level 1
4 8,000 ‘
4,400

3 6 T 400 ' Level 2

Leastoccurring 7 3,981

Total number of
3-bit portions:
87382

Total number
of levels: 3

Figure 6B

Lapzﬁ CA1
Frequency analysis of 2" combination arrays
Ranking CA Value Number of Ooourrence-
ococurances based Lavel
Most ocourring 0 01 1 49,940 / Level 0
1 5752 |
2 6,240 Leveld
3 010 5,251 4
‘ a7
4375
i . > Level 2
N 8 1 1 0 4,158 (
Least occurring 7 3 033 J

Total number

Total number of of levels: 3

3-bit portions:
87382

Figure 6C

a9 ainbi

o L 1 0 0lo ¢ Lo 4L 0lo L1 L o i lopoood X
AV A W S W
uonenbyuo uaso
4 BUOD VO HO T o~ 3]y o oJo r o v ofo 1 il o 1] lowoossl 9z
o0
Q| o
— T v opjojofo ¢ L otitiodo 1oL rlolil ooyl L
(9] (o - fofofely volsfefolv v v Tolr] fooves 9
- T L rjototo vl olilale vl vloltl IooEEiil &
T vojojodolilr oftiodolt sjoll fovvEryd b
[0~ aifolofo v 1Telvofo v 1 [vTolt] Iooei' €
o~ v o ofoly vlolelodolr e folv] Ioveed 4
lo o aDJelole slvlelsole v [sloln] oz !
o - vivfolodalelsfolitodoliivltolr] Divbeyl 0
o L L0 00 b L0 Lo o L b oLoo | T T
vopeinbyuco JBqUinN
€ & ¥9 > wo Aeue SSIEIRIEY

O L L0 L 0O b L ob oD i uoneuiquiop Uoneinbyucd

Lee]
o
.
]
<

7 wewibog Buissenoidg

28€.8

g/ ainbi Lisnoo SR Butsinooo
zt 9 g g) g s Lo o+ P
2 y 2 z zt ¢ £ ionen \ Z jorat = ssiv [0 4 i] 9
¥ Z }] zZi ¢ GLE'Y L L L G
0 0 I A T i.i. - 7 I
5 4 L ! 8 z | onor)8 foren \ wsz's [0 1 0] ¢
0 0 0 0 8 z N , ovze [0 o0 0] 2
.Ei,.,EEE,!EEanEEm.,EEEwEEEEWEEEEaﬂ;@ . zare [Lool
- - - 0 0 0 ORI ot L gpgey [T10] o ?mwm%
YDz YO0l 'WDJO0 eoumsup 0L onjep TBY enjeA [BAa7 (@@ paseq SSOUBINIIO gea D Buiuey
[OABE UM 1RAS] YRR [OAS] BM V3O Map A pesiund0 -33UBLNII0 $0 ISGQUUINN)
Buiuipuos Buuiguios Suwuguiods
F07 anjea vonenbigiuesig sAeviie uopeulquCs | 7 J0 sisAjeur Aouanbaidg 'O
m {m, @@Bmmum £ :S18A8} IO %Sm%mmmﬁ-m BULLINS00
oo, 1SQUNUEIOL O JSQLUNU [BI0L isean
P £ £ £ g - coweet [0 o 1] 4 R
A z z £ g Zione < zieroT ooy [i) o
3 ! ¢ g | N 00’y o 11 G
¢ 0 e g — © o oooe Lo i) v
L L z z oren Lera ooo's |1t o] ¢
c sz _z. coos [L o o] z
i 0]] S oo - A ponan - 0000 [0001 b 00
- 0 0 0 - - aoo'oe [0 L o] o 15O
o g e TELEA TEonen el 1ot seweman smnvo unues e

sfese uoneUKWIOD | jo sisdjeue Asuanbaiy

181728

, , New CA, Values
“““““““““““““““““““““““““““““““““““““) 4 8 12
o g 4 8 12
New CAg 1 1 5 g 13
Values 2 2 6 10 14
3 3 7 11 15
VV Combined New CA Values 5
Figure 8A
, : New CA, Values
““““““““““““““““““““““““““““““““““ 0 4 8 12
000000 {0100 1000 1100
New CAg 1000001 (0101 1001 1101
Values 2@@0010 0110 1010 1110
300011 0111 1011 1111

Combined New CA Values in binary

Figure 8B

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV New CA, Yalues
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV . Y, Y, Y, Y,
o Ko+ Yy Ko +Yy Ao+ Y5 Ko+ Y3 Ko+ Y,
X, X +Yq Xi+Yy X +Ys Xy +Ys X +Y,
New CAg X Xz+¥e DYy Xz +Yy IXp+Ys X+ Y,
Values iy, Xy+¥y DG+Y, [Xa+Y, [Xy+Yy X3 +Y,
Kn Xa+ Y5 Xo+ Yy X, +Y, Ko+ Y3 Xp+Ya
5 Combined New CA Values using addition

Figure 8C

T New CAs Values
Yo Y1 Y2 ¥3 ¥a
Xg Zo Z1 Zn Z2 Z4
Mew CAy X i Zg Z7 Iy g
Values Ky 719 741 712 Zi3 Zs4
Xz 215 215 217 Z1g Z1g
T Combined New CA Values

Figure 8D

SNIBA "SI PRUIGIUOT

6 8inbi

S3NFEA, "SI POUKWIOD

o
=l

4

10 0c

SONeA, "SIa Oy

SSNEEA "SIC PAUIGWIa]
TT1T 1107 1110 1100 |3
0111 0101 0110 0100 z senjep
TOTT 1007 1070 1000 T “S13 Oy
A 00071 o010 0000)
71 g ¥)
sBN{EA "SI0 WD
(Z13AT1 YD
(Z 13A37) o2
SSIEA "SI PRUIGRUOT
TI1 110 3t
[010 Z SBNEA
) 100 T “S1g3)
00T 000]
v)
SoijeA "SI .H.QU
% (113731} YWD
N (7 13A31) 092
Ehi
an FETSITENY
e "SECH PRUGRUOD
Tiic
oige sanjep
105t "SI 090
,\,omc
Safen
“SI 1Y
{01371} YWD

(T 13A31) 5D

4

1

senjen il w3

RETEN R e)
{1 13A37} O

111 101 110 100 P L SBeA
011 0071 010 000 Wa ‘s1q D
g v z o
sanjep sig Ty
AT WD
PRETE L o]
SPNIRA "5 PBUIMOT
11 1 i serjep
[o 4 S My
Z 0
SBNBA "SIG WD
(T 13A71) W0
{1 13A37} 0D
SBNERA "S1Q
peulg o)
1 T sanjes
5 i) 5103 O3
SBIHEA
Si WD

(213731 W2

(0 13A3T)

o
o3

sanyeEp
"514) PRUIGUIOT

1

8]

sanjEn, "SI ByD

T

4]

SBREEA SI0 PgD

Q ELER R
0 13A3T 9D

SaNiRA

uonenduesiq oN

S 13AST) Y
0 13A31 B0

201728

0l 8nbidg

i1 0 110 0 1|

. UONB IO
bbbt (G1) st SnjEA MBN
_ b PP P bbb Areuig {uopBUIGUWIOS XBU)
nding HONRLIQILGD
UOIIR IO
0L 00 L | L e oLit (i) ot z anjEA MaN
Areulg {ucHBUIGUIOD XBW)
inding UORBLHYCD i 0 0 m
UOHB LI
i bt - i uonenBiguesig
oL00 51z 0 g SREA MSN
b 0100 Areuig {ucBUIGUWIOS XBW)
wnding UORBUIGICT _ L L O m i 0 0 m
))) UGB LAICU
uonenBigesig
0000 CIRY 0 snjeA MaN
Aeuig {uonBHIGQWOD Xew)
HORBUIGLIOTD uoHRUIqUIoD g L 0 m

lege]

il L L1l 0 0]
i1 L 0l 0 0]
i1 L 010 1 0

G0z uoiuod)ig

21728

Labe! outputs using CA configuration [3,3,0,0,0,0] {No Occurrence Sort)

Value Bit portion {CAQ CAal Label Value Bit portion {CAG CAL Label
0] 000000 000 000 10010 321100000 100 000 1011011
1000001 000 001 0101 331100001 100 001 011111
21000010 000 010 10011 341100010 100 010 1011111
31000011 000 011 0001 351100011 100 011 001111
41000100 000 160 110100 36{100100 100 100 11110011
5{000101 000 101 110111 371100101 100 101 11111111
6{000110 000 110 110110 381100110 100 110 11111011
71000111 000 111 110101 391100111 100 111 11110111
81001000 001 000 101000 401101000 101 000 1011000
91001001 001 001 {1100 411101001 101 001 011100
10{001010 001 010 101010 421101010 101 010 1011100
111001011 001 011 00100 431101011 101 011 001100
121001100 001 100 1110000 441101100 101 100 11110000
131001101 001 101 1110110 451101101 101 101 11111100
141001110 001 110 1110100 461101110 101 110 11111000
151001111 001 111 1110010 470101111 101 111 11110100
16{010000 010 000 10000 431110000 110 000 1011001
171010001 010 001 {1000 491110001 110 001 011101
18010010 010 010 10001 501110010 110 010 1011101
191010011 010 011 0000 511110011 110 011 001101
201010100 010 100 110000 521110100 110 100 11110001
211010101 010 101 110011 531110101 110 101 11111101
221010110 010 110 110010 541110110 110 110 11111001
23{010111 010 111 110001 551110111 110 111 11110101
241011000 011 000 101001 56111000 111 000 1011010
25{011001 011 001 01011 571111001 111 001 011110
26{011010 011 010 101011 581111010 111 010 1011110
271011011 011 011 00101 591111011 111 011 001110
281011100 011 100 1110001 601111100 111 100 11110010
29{011101 011 101 1110111 614111101 111 101 11111110
30{011110 011 110 1110101 62{111110 111 110 11111010
31011111 011 111 1110011 £3{111111 111 111 11110110

Figure 11

22128

vZ 1 @inbid

qel ainbi4

% Z Z
€ T Z
z 0 Z
€ z T
Z T T
1 0 T
z Z 0
T i 0
0 0 0

wsusugl 9y |99

........................... uopenSiquesial o Oy

51 TTI1T 1
st CTitt 13
st 10111 4
g Gotit 8¢
Vi 11011 Lz
¥ [gz
i 10011 B14
vt Goott ¥e
€T 11101 54
£l CTiot [44
4 TOL0L T
L GOI0tT i
it 11001 61
11 CToot 81
5} 10001 LT
ot G000t ELS
& 11110 st
5 CTiT0 vl
8 10110 el
8 o110 4"
L 11010 1
L [ot
9 10010 &
9 o010 g
14 A L S 11100 L
14 o1y 9 g CTi00 E]
14 101 g 4 10100 S
E14 001 ¥ 4 o100 4
[4% 110 £ € 11000 €
[43 oLo 4 4 CTo00 [4
91 10C T T 10000 1
0 000 0 0 0000 0
3njea §{AseUig)anjea jeuiBio anjeAa {{Aieuig) anjep euI8LIo
vomaN | yD [eulBlQ YOMaN | v jeuduo
SHE £ -3 SHE G- %D

23128

azi ainbi4

Ozl ainbi4

T S z 3
6 Iz T <
2 5 0 c
e tr z z
] 13 T 4
7 7 i z
2 3 4 T
n 4 T T
?) I 0 T
[4 4 0
2] I T 0
S 0 0 0
yiduat ug yisua g ELEy Lt
[3qeT) uoilenBiquesIg))

JA TTTTT TE
JA 0TTIT 0t
JA T0TTT 67
JA 00TTT 87
JA TI0TT LT
JA 0101t 9z
JA 10011 52
L 000TT i
Ej TITIO0T e
Ej 0TI0T (44
Ej TOTO0T TZ
Ej 00T0T o
9 1T00T T
9 01001 1
9 10001 1
9 00001 1
g ITIT0 i
g 0TTI0 i
g 10110 i
g 00110 1
¥ 11010 i
¥ 01010 T
¥ 10010 &
¥ 60010 3
T 117 L € TTI00 JA
T 01t 9 € 61100 Ej
T 107 S € 10700 5
T 00T 172 € 60100 4
81 110 £ Z 11000 £
81 010 Z Z 61000 Z
8 100 1 T 10000 T
0 000 0] ¢0000]
snjep {Aseuig) anjep . snjea thieuig)
. [BUIBLIO SRHEA jeuigLQ
V3 MSN vo leulBug Y3 MSN 3 [euiSio
SHg € s1g s

{suq g} {suq +&)
QLOLLLOO GOLLEEGLLLOLLICEOO0O00I0
Usilim sjig uajiiiss sud
0] 1
QY 0 00}
2 bbb
s g ot
2 Lo L
ﬁm b L LG
O s Lo o
0 000
g 01 G
(asn iy (a5 U
JayIRyMm U0 JayleyMm uo
n , S oD
suq (voy),z SYRUILLOSID M”,mﬁw W BIBURLILIOSID
‘shemie $90D) = UUVE jou RElsls)]
paiosun KeW DaLIos
‘s8nEA ‘saniBA
YO HY YOUY

Vel 2inbid

suq (OB E U
SHG YO, (TOE nei

uq L
sug (13A31 ~ ")

sig (1EATT - YD)
spg (AT - YD)

Sy (O A
SHq YO O xep

¥q L
SHG (T3ATT~ OvD)
sHg (T3IATT - WD)

sHg (T3IATT - WD)
suqz 63

(uepusdap NdD '68559-0 1) sug o B3

SHq 997

(uspuadap Ndo) sig ¥ 63

sygze 03

4 T e e o e e e e I e e 4 4 4

{pauosun}
0 uey} 1ejeaid aie
S80OUBLIND00 JBLIeYM
10 (PBUOS) UOIBLLIOH
Sunuesl senjea yo

&P2LO0S SanieA My

LNNOS™2T 13A3T

ANNOCD 0 1=3ATT

{pauosun)
0 usy ieeasb aip
SSOUBLINDI0 Jaylaym
10 {Pp2LI0S) UONBLLIOLU
Bupues senjga o0

£P2HO0S S8NH{RA MyO

ANMOO™OT 13ATT

LNACD 0 TEAFT

LYINHOL M3AYIH

2218 INIFWOHES

NOLLYHNDIINOD VO

(=87} HONZT Lig

FHNLYNDIS 4815

HORBULOIU YYD

L

uoneLLoul
o A
S 26

0 1eUO - Japea

{sug 8)

0LOLLLOO
UM Sug

T

O

L

4]

b

i

A

0

{
o0
O
e,
L0
QY
£ g 1 1
Z L. 0 @
3 [T ¢
O g & 8
Bupjuey

uoneiaidiaiy

0

{asn Ul JBUIBUM UO SIBUILLLIDSID
SB0P) PAJOSUN ‘SONBA YO IIY

{sug gi)
O0LO0LO0LI0LLOLLOL
UBIIM SHY

1

- - 0 [1 3]
- 0 b ;
. - 0 (L0 t]
. - 0 [0 0 1]
L oo) [L & 0]
. . 0 [0t o]
L Lo 1 [0 o]
. 0 w 0.0 0]
Tt Cema U zalb | ONEA VO
BIUBLINODG
Lo Lo
S0USIIND00 JO
Asuenbaly anjea Byn

¢l ainbi4 \

v

SHG (YOE TN
SHG {Z + O, (YOZ X

W
spgy T
b '
. — U Fa Y
sHg (13A3T ~ v &
N A
sug (1A ~ ")
o oy
SHO (1IATT - VD
A4
A

SHO (YOTvE ui
SHY (T + 77 (YONGT xRy

sig (V3ATT ~ 9D)
ug (1EAET ~ oY)
spo g By

(uapuadep
NdD '65559-04) siig o1 03
S)0 98
(iuspusdsp NdY) sug v B3

suq 2¢ 63

UOIBLUIOIU] B2URLINDDD
10 Aouanbay) snjea Yy o

LPEHOS S8NIBA YWD

ANAQO™Y™T 1EATT

ANNGCO 0 1gAZT

UCHBLUICHU] 8DURLINI0D
10 Aouanbay) snjeAa Sy o

£ PoHos saniea 0y o

ANACO™ 88T

ANNCD 0 13AZT

LYWHOL H3CYIH

218 LNBWDIS

NOLLYENDIANOD VO

(=9 HONFT L9

TANLYNDIS 4818

—

-

oo Yy

P

LB
/e

L 1BULO S JBpEeH

26 /28

(s1g 8)
0L0LLLO0 Come
UBHIIM SHE

b b1 0
0 g ¢ 0

Bunjuey uoneiaidiaiug

[aY]

™ paw)
< -~
3 L

D¢ @inbi

sug Oz
sheampy

{osn Ll JSUIOUM U0 SIBURLILIDSID
S20[) PIMOSUN 'SONBA YO IV

B3O = = O O

S (19
(s1q £2) wa (YONZ

+ O UHIN
0LOCLOBLLOLLOLLOLOLL000
USNLIM S3ig sHq (Z + 770

\m, « OO E IXep

34 e} D
o b e 1O IO

O i
L3 D 0 e e} fe

b L O b

" 0
snjea byo Jojesipuy JOIBOIDULG
paddemg demsg ueyl isiealf 8niBA 0yoy
82UBLNT00

- - A
]
0
0
]
0
)
]

o
OO
<3

QLL 2N A v G0 ‘onjeA VO
BLLIN000 1887 SULIND00 15844

UOIBLLIOUL 82UBLINDD0
1o Aauanbaiy anjea dyn

SHO (OVT U
S (Z + O, (YOE e

S3q L
g (13ATT ~ v

g CI3ATT ~ YD)
s3g (13ATT ~"vO)

SHY (YT Ul
SUG (Z + VO L PO)T X

na)
S3G (13ATT - YO
sig (13A31 ~ YD)
sug (13AF1 ~ 9D
sHqZ 53
(uspusdsap
NdD ‘585630 4) s 9} B3

SHG <87

{luspuadsp NdD) sug ¥ 53

el v

g
_
M

UOIBULOM] BOUSLND00
10 Asusnbay) anfea Yy D

UOIIBLUICIU] YD

\
£POYCS SanjeA Yy
LNNCDY9T 13AFT
LNNOC2 6 13ATT i,
™
UOBULIOJL] S0UBLINDD0
10 Asusnbay) anea 0y
uoleLUIoU
7O

/PeUes sanjea Sy o

ANNCT™PT 1EAEN

LNAO2 0 1EATN /

1YINEO- d30V3H

4718 INJWDIS

NOILVANOIINGD v2

{(#¥) HONIT Lg

FANLYNDIS JSI8

Z 1BUIO] JepeaH

2728

Header Format 3

SISP SIGNATURE E£.g. 32 bits
X _
BIT LENGH (Lgp) £.g. 4 bits (CPU dependent)
CA CONFIGURATION Lge bits
&
E.g. 16 bits (if 0-65535, CPU
SEGMENT SEZE dependeﬂf)
HEADER FORMAT | | Eg 2bits
/k LEVEL O COUNT {CA; — LEVEL) bits
Cho - (CA; — LEVEL) bits
information
| LEVEL Leac COUNT {(CAy; — LEVEL) bits
o | LEVEL 0 COUNT (CA, — LEVEL) bits
An

informatianﬁ: {CA, ~ LEVEL) bits

LEVEL Lca, COUNT (CA, — LEVEL) bits

Figure 13D

281728

Number of BP values/CA
values in processing segment .
) Target Maximum CA/BP Value
with an occurrence greater
than 0
1 1
2 1
3 1
4 3
5 3
& 3
7 3
23 3
9 3
10 3
11 3
13 3
14 3
15 3
i6 7
17 7
30 7
32 7
33 7
64 7
127 7
128 7
254 7
255 7
256 15

Figure 14

10

15

20

25

30

35

40

Data Processing Method and Apparatus

The present invention relates to a method and apparatus of processing data, in particular for
compressing (and/or encrypting) data.

Background

Currently, information held on a computer is stored as ones and zeros (bits) which are grouped
into sets of eight bits which are referred to as bytes. Two bytes are referred to as a word (16 bits),
and four bytes are referred to as a double word (32 bits) or can be used as the mathematical
storage referred to as a 32-bit integer (int32 or Long). An integer which has a bit length of 32 can
hold a value between -2147483648 and +2147483647; or by removing the sign and making it an
unsigned 32-bit integer (UInt32), the longest number that can be stored is 4294967295 (2%2-1).

It is desirable to represent information using the smallest number of bits possible in order to
reduce the space required for storage and to minimise the resources required for signalling
information from one entity to another. In computer science and information theory, data
compression (also referred to as source coding) involves encoding information using fewer bits
than the original representation. Furthermore, it is important that sensitive data, represented
using the American Standard Code Information Interchange (ASCII) standard or by other means,
is protected, for example by preventing access to this data by unauthorised persons or machines.
Therefore, methods of encrypting and decrypting data form an integral part of information
technology.

Compression can be either lossy or lossless. Lossless compression reduces bits by identifying
and eliminating statistical redundancy. No information is lost in lossless compression. In contrast,
lossy compression reduces the total number of bits by identifying marginally important information
and removing it.

Once data has been compressed, it must subsequently decompressed in order for it to be used.
Both compression and decompression require computer processing. Therefore, data
compression/decompression must find a compromise between the level of compression achieved
and the computer processing required for compression and decompression. For example, a
compression scheme for video may require expensive hardware for the video to be
decompressed fast enough for it to be watched as it is being decompressed, and the option to
decompress the video in full before watching it may be inconvenient and may require additional
storage.

The present invention seeks to provide improved methods of compression and/or decompression
and/or improved methods of encryption and/or decryption.

According to one aspect of the invention there is provided a method of processing data
comprising an input sequence of bits, the method comprising the steps of. (i) identifying a
processing bit length for use in processing said input sequence of bits; (ii) dividing the input
sequence of bits into a plurality of portions wherein each portion has a respective portion bit
length equal to said processing bit length and wherein the bits in each portion are arranged in a
respective portion permutation; (iii) respectively sub-dividing each portion into a plurality of sub-
divisions comprising at least a first sub-division and a second sub-division, wherein each sub-

10

15

20

25

30

35

40

division of the plurality of sub-divisions comprises at least one bit, wherein the at least one bit of
each first sub-division is arranged in a respective first sub-division permutation, and wherein the
at least one bit of each second sub-division is arranged in a respective second sub-division
permutation; (iv) performing frequency analysis: to determine, for each of a plurality of
possible first sub-division permutations, how many times, within said input sequence of bits, a
portion comprises a first sub-division having bits arranged in that possible first sub-division
permutation; and to determine, for each of a plurality of possible second sub-division
permutations, how many times, within said input sequence of bits, a portion comprises a second
sub-division having bits arranged in that possible second sub-division permutation; (v) assigning,
based on said frequency analysis, a first respective sub-division value to each of said plurality of
possible first sub-division permutations and assigning a second respective sub-division value to
each of said plurality of possible second sub-division permutations; (vi) for each portion
permutation of a plurality of possible portion permutations, generating a respective label
representing that portion permutation, wherein said generating comprises combining: the first
sub-division value assigned to the first sub-division permutation corresponding to the first sub-
division of that portion permutation; with the second sub-division value assigned to the second
sub-division permutation corresponding to the second sub-division of that portion permutation;
wherein said respective label comprises a representation of a combined value resulting from said
combining; and (vii) forming a processed sequence of bits by replacing, within said input
sequence of bits, bit portions comprising bits arranged in one of said plurality of possible portion
permutations, with the respective label representing that one of said plurality of possible portion
permutations.

When generating, for each portion permutation, a respective label representing that portion
permutation, said combining may comprise arithmetically adding said first sub-division value
assigned to the first sub-division permutation corresponding to the first sub-division of that portion
permutation to said second sub-division value assigned to the second sub-division permutation
corresponding to the second sub-division of that portion permutation. The combined value may
then comprise a result of the addition.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when a particular first sub-division value is assigned
for a plurality of different first sub-division permutations), generating, for each of said respective
plurality of different first sub-division permutations having that particular first sub-division value, a
different respective first additional value for use in discriminating between said respective plurality
of first sub-division permutations having that particular first sub-division value.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when a particular second sub-division value is to be
assigned for a plurality of different second sub-division permutations, generating, for each of said
respective plurality of different second sub-division permutations having that particular second
sub-division value, a different respective second additional value for use in discriminating
between said respective plurality of second sub-division permutations having that particular
second sub-division value.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when a first additional value and a second additional

10

15

20

25

30

35

40

value have been generated for a particular portion permutation: combining said first additional
value and said second additional value to produce a combined additional value, wherein the
label for that particular portion permutation comprises a representation of the combined value
together with the combined additional value for that particular portion permutation.

When generating, for each portion permutation, a respective label representing that portion
permutation, said generating may comprise, when one of a first additional value and a second
additional value have been generated for a particular portion permutation, generating a label for
that particular portion permutation that comprises a representation of the combined value
together with that one of a first additional value and a second additional value.

When respectively sub-dividing each portion into a plurality of sub-divisions, said first sub-division
may have a different number of bits to said second sub-division.

When generating, for each portion permutation, a respective label representing that portion
permutation, each label generated may have a respective label bit length, and the labels are
generated such that labels generated for portion permutations which occur a greater number of
times within said input sequence of bits may generally have a smaller label bit length than labels
generated for portion permutations which occur a lesser number of times within said input
sequence of bits.

When generating, for each portion permutation, a respective label representing that portion
permutation, each label generated may have a respective label bit length, and the labels are
generated such that at least some of the labels may have a label bit length which may be smaller
than the processing bit length.

The frequency analysis may comprise, for each one of said plurality of possible first sub-division
permutations, determining a respective occurrence level which is the number of times, within said
sequence of bits, that a portion occurs comprising that one of said plurality of possible first sub-
division permutations. The frequency analysis may comprise may comprise, for each one of said
plurality of possible second sub-division permutations, determining a respective occurrence level
which is the number of times, within said sequence of bits, a portion occurs comprising that one
of said plurality of possible second sub-division permutations.

For a given first sub-division value, the number of first sub-division permutations which are
assigned the given first sub-division value may depend on the occurrence levels associated with
the first sub-division permutations which are assigned the given first sub-division value; and for a
given second sub-division value, the number of second sub-division permutations which are
assigned the given second sub-division value may depend on the occurrence levels associated
with the second sub-division permutations which are assigned the given second sub-division
value.

When assigning, based on said frequency analysis, a first (or second) respective sub-division
value to each of said plurality of possible first sub-division permutations, said assigning may
comprise: grouping, based on said frequency analysis, said plurality of possible first (or second)
sub-division permutations into a plurality of sets (or ‘levels’). Each set may comprise at least one
first (or second) sub-division permutation. The at least one first (or second) sub-division

10

15

20

25

30

35

40

permutation in each set may have a corresponding occurrence level that falls within a different
respective range of occurrence levels associated with that set.

For a given first (or second) sub-division value, the number of first sub-division permutations
which are assigned the given first sub-division value may depend on the set associated with the
first (or second) sub-division permutation(s) which are assigned the given first sub-division value.

Forming a processed sequence of bits may further comprise including a header portion in the
processed sequence, said header portion comprising extraction information for use in
reconstructing said input sequence of bits from said processed sequence, and the extraction
information being configured for use in identifying the respective portion permutation which each
label represents.

The extraction information may be configured for use in identifying how the said plurality of
possible first (or second) sub-division permutations are grouped into sets. The extraction
information may identify how many first (or second) sub-division permutations each set
comprises. The extraction information may be further configured to identify the processing bit
length used in processing said input sequence of bits. The extraction information may be further
configured to identify how each portion is sub-divided into a plurality of sub-divisions. The
extraction information may be further configured to identify how many bits each first sub-division
comprises and how many bits each second sub-division comprises. The extraction information
may be further configured to identify how many bits the input sequence of bits comprises.

The process, may further comprise repeating steps (i) to (vii) at least one further time using said
processed sequence as said input sequence.

According to one aspect of the invention there is provided a method of processing data, the
method comprising the steps of. (i) dividing the data into a plurality of processing segments
wherein each processing segment comprises an input sequence of bits; (ii) identifying a current
processing bit length for use in processing a current processing segment of said data to form a
processed segment meeting at least one predetermined processing criterion; (ii) dividing the
current processing segment into a plurality of portions wherein each portion has a respective
portion bit length equal to said current processing bit length and wherein the bits in each portion
are arranged in a respective one of a number of possible permutations; (iv) assigning a
respective label to each of a plurality of said possible permutations; and (v) forming a processed
segment by replacing, within said current processing segment, bit portions comprising bits
arranged in one of said plurality of possible permutations with the respective label assigned to
that one of said possible permutations; (vi) identifying a new processing bit length for use in
processing a next processing segment of said data to form a processed segment meeting at least
one predetermined processing criterion; (vii) repeating, for each of said plurality of processing
segments, steps (i) to (vi) wherein the new processing bit length is used as the current
processing bit length and the next processing segment of said data is used as the current
processing segment, and wherein a processing bit length used for at least one of said processing
segments of said data is different to a processing bit length used for at least one other of said
processing segments of said data.

According to one aspect of the invention there is provided a method of processing data
comprising an input sequence of bits, the method comprising the steps of. (i) setting a current

10

15

20

25

30

35

40

processing bit length, of at least one bit, for use in processing said input sequence of bits; (ii)
dividing the input sequence of bits into a plurality of portions wherein each portion has a
respective portion bit length equal to said current processing bit length and wherein the bits in
each portion are arranged in a respective one of a number of possible permutations; (iii) for each
of a plurality of possible permutations analysing the input sequence of bits to respectively identify
how many times, within said input sequence of bits, a portion having that possible permutation
occurs; (iv) determining whether at least one predetermined processing criterion has been
achieved by comparing results of said analysing with the predetermined processing criterion; (v)
processing said input sequence of bits based on said determining wherein said processing
comprises: when the determining determines that the predetermined processing criterion has not
been achieved performing at least one of:. setting a new processing bit length that is different to
the current processing bit length and repeating steps (ii) to (v) using said new processing bit
length as the current processing bit length; and ending processing of said input sequence of bits;
and when the determining determines that the at least one predetermined processing criterion
has been achieved: assigning a respective label to each of said plurality of possible permutations;
and forming a processed sequence of bits by replacing, within said sequence of bits, bit portions
comprising bits arranged in one of said plurality of possible permutations with the respective label
assigned to that one of said possible permutations.

The predetermined processing criterion may comprise whether 50% of the possible permutations
which occur in the input sequence of bits occur at least twice as frequently as the other 50% of
the possible permutations which occur in the input sequence of bits.

The predetermined processing criterion may comprise whether 50% of the possible permutations
occur in the input sequence of bits.

According to one aspect of the invention there is provided a method of reconstructing a
processed sequence of bits produced by a method according to any preceding claim, the method
of reconstructing a processed sequence comprising the steps of: obtaining extraction information
for use in reconstructing an original sequence of bits from said processed sequence;
reconstructing said original sequence of bits from said processed sequence based on said
extraction information.

Aspects of the invention extend to computer program products such as computer readable
storage media having instructions stored thereon which are operable to program a programmable
processor to carry out a method as described in the aspects and possibilities set out above or
recited in the claims and/or to program a suitably adapted computer to provide the apparatus
recited in any of the claims.

According to another aspect there is provided a method of compression in which an input
sequence of bits is divided into a plurality of portions; each portion is sub-divided into a plurality of
sub-divisions; frequency analysis is performed to determine the number of occurrences of each
sub-division permutation and new values are assigned, based on the frequency analysis, to each
of the sub-division permutations. For each portion a label, representing the permutation of bits in
that portion, is assigned, wherein the label comprises a representation of a combined value
resulting from combining the new values associated with the sub-division permutations of that

10

15

20

25

30

portion. A processed sequence of bits is generated by replacing, within the input sequence of
bits, bit portions with the respective label representing the permutation of bits in that portion.

Embodiments of the invention will now be described, by way of example only, with reference to
the attached figures in which:

Figure 1a is a simplified schematic block diagram illustrating a system for compressing and
decompressing data;

Figure 1b is a flow chart illustrating an overview of a method of compression;
Figure 1c is a flow chart illustrating an overview of a method of decompression;

Figure 2 illustrates the main data groups used in the methods of compression described below,
including exemplary data sizes/values for the purposes of explanation only;

Figures 3A to 3D illustrate how a bit portion length is selected in a first example;
Figures 4A and 4B illustrate how a bit portion length is selected in a second example;
Figures 5A to 5E illustrate an alternative method of selecting a bit portion length;

Figures 6A to 6D illustrate a method of determining which configuration of combination arrays to
use once a bit portion length has been determined according to one or more of the methods of
Figures 3A to 3D, 4A and 4B and 5A to 5E;

Figures 7A and 7B illustrate a first part of a method of assigning labels to bit portions once a
combination array CA configuration has been selected according to the method illustrated in
Figures 6A to 6D,;

Figures 8A to 8D are tables detailing possible combined new CA values with their corresponding
new CAg values and new CA, values;

Figure 9 is a table detailing possible combination of CA, disambiguation values and CA;
disambiguation values, and the resulting combined disambiguation values, for the example
illustrated in Figures 7A and 7B;

Figure 10 illustrates how labels are assigned to bit portions;

Figure 11 is a table listing all of the possible bit portions of length 6 bits and the labels assigned
to each bit portion, based on the combination arrays CAy and CA; in Figures 7A and 7B;

Figures 12A to 12D are examples of generating new CA values (and disambiguation values) for
bit portions having a bit portion length of 8 bits, using a particular CA configuration;

Figures 13A to 13D are simplified representations of four exemplary header structures; and

Figure 14 illustrates the target maximum BP and/or CA values calculated in accordance with an
alternative embodiment.

Overview — System

10

15

20

25

30

35

Figure 1a is a simplified schematic block diagram illustrating a system for compressing and
decompressing data, and Figures 1b and 1c show related methods. The system of Figure 1a
comprises compression apparatus 105 for compressing a file 201 to produce a compressed file
202.

The system of Figure 1a also comprises decompression apparatus 505 for decompressing a
compressed file 202, which has been compressed using the compression apparatus 105, in order
to re-create the original file 201.

As indicated in Figure 1a the file 201 may comprise, for example, a text document, music data,
the contents of a database or video data.

The compression apparatus 105 is configured to extract data comprising a sequence of bits from
the file 201, the sequence of bits corresponding to a processing segment 203. The processing
segments 203 can be configured, on the fly, to be any suitable size, therefore allowing the
processing segment size to be selected adaptively based, for example, on the processing
capabilities of the compression apparatus 105 or other relevant factors.

The compression apparatus 105 comprises a bit portion module 253, which is beneficially
configured to analyse each of the processing segments 203 and select, based on this analysis, a
bit portion length Lgp for use in dividing the processing segments into smaller data units referred
to as ‘bit portions’ 205. As an example, Figure 1a illustrates a processing segment having been
assigned a bit portion length Lgp of 8 bits by the bit portion module 253, however the bit portion
module 253 is configured to select a respective bit portion length Lge based on frequency analysis
of each processing segment 203, and therefore different processing segments can be assigned
different bit portion lengths. Using this frequency analysis, the bit portion module 253 is
configured to select the bit portion length Lgp based on which bit portion length Lgr apparently
provides the best (or among the best) prospects for compression. The bit portion module 253 can
also be configured to select any bit portion length Lgp with acceptable prospects for compression,
for example to optimise for speed as opposed to compression.

If the bit portion module 253 determines that no bit portion length will allow compression of the
processing segment 203 (or the compression does not meet a predefined compression threshold,
for example a greater than 5% reduction in size), it is configured to refrain from assigning a bit
portion length to the processing segment, and the processing segment 203 will be output by the
compression apparatus 105 in in its original (unprocessed) form.

Once a bit portion length is selected and the processing segment 203 sub-divided into bit portions
205 accordingly, the bit portions 205 may advantageously be further sub-divided into smaller data
sub-divisions referred to as combination arrays (although, depending on requirements, such
further sub-division may not be implemented). These combination arrays represent the smallest
data unit used in processing the processing segment 203.

The way in which a file may be sub-divided into smaller data units to aid efficient processing is
described in more detail below, in the section titled ‘Overview - Main Data Groups’, with reference
to Figure 2.

10

15

20

25

30

35

40

The compression apparatus 105 further comprises a label assignment module 255 which is
configured to assign a respective label to each permutation of bits represented by the bit portions
205, based on analysis of the frequency of occurrence of the bit portion value corresponding to
that permutation, and/or frequency of occurrence of combination array values that form that
permutation, within a processing segment.

The way in which a label for a bit portion permutation may be assigned is introduced below in the
section titled ‘Overview - Assigning Labels’.

Where a bit portion is sub-divided into combination arrays, the respective combination array
values within each bit portion 205 are assigned a new value (or ‘label’). The new values assigned
to the combination array values within each bit portion are combined together and, if necessary,
the resulting combination concatenated with any additional information required for transforming
the resulting combination back into its original form. The respective combination for each bit
portion 205, together with any information concatenated with that combination, form a bit portion
label that is, in effect, assigned to a corresponding permutation bits represented by that bit
portion 205. In so doing, each bit portion label is, in effect, also assigned to every bit potion 205
comprising bits arranged in the permutation associated with that label.

The concept of combining different data values is introduced below, in the section titled ‘Overview
- Combine Method'. The way in which combination array values may be labelled and combined to
form a label for a bit portion permutation is described in more detail below in the section titled
‘Method of Assigning labels to Bit Portion Permutations using Combination Arrays’.

The label assignment module 255 is configured to output a processed segment 209
corresponding to a processing segment 203 in which each bit portion 205 has been replaced with
the bit portion label assigned to the permutation of bits represented by that bit portion 205. In this
example, the resulting processed segment 209 is smaller than the processing segment and can
thus be thought of as a ‘compressed’ segment. The processed segment 209 comprises each of
the labels assigned to the bit portions 205 of the processing segment 203.

The compression apparatus 105 further comprises a header generation module 257 which is
configured to generate a header 211 for each processing segment 203. The header 211
comprises extraction information which is used by the decompression apparatus 505 to extract
the processing segment 203 from the processed segment 209. The extraction information
preferably allows the decompression apparatus 505 to interpret the labels in the processed
segment 209 in order to allow the decompression apparatus 505 to map the labels to their
associated bit portion values.

Preferably, each header starts with a compression method signature, and provides information
relating to the chosen bit portion length Lgp, the combination array configuration used, the size of
the original processing segment 203, and information on how labels were assigned to each of the
bit portions 205.

As visually indicated in Figure 1a, the total size of each of the processed segments 209 in
combination with its header 211 is less than the size of the corresponding processing segment
203. Furthermore, the size of the processed segments 209 and their associated headers 211
may vary.

10

15

20

25

30

35

40

As shown in Figure 1a, the compression apparatus 105 outputs a compressed file 202, which
comprises fewer bits in total than the original file 201. This is due to the fact that the size of each
of the processed segments 209 in combination with its header 211 is less than the size of the
corresponding processing segment 203.

The decompression apparatus 505 is configured to process each header 211 and associated
processed segment 209 of the compressed file 202. Each header can be identified, for example,
by the signature included in the header.

The decompression apparatus 505 comprises a header decoding module 557 and a label
decoding module 555. The header decoding module 557 is configured to decode the information
in the header 211, for use by the label decoding module 555 in decoding the labels in the
processed segment 209 and thus map the labels to their associated bit portion values. The label
decoding module is configured to output a processing segment 203 comprising all the bit portion
values associated with the labels in the processed segment 209. The processing segment 203
therefore corresponds to the original processing segment 203.

The system for compressing and decompressing data illustrated in Figure 1a can alternatively or
additionally be used to encrypt and decrypt data. Any file 202 produced by the apparatus 105 will
exhibit some level of encryption, because the information contained in the file 202 is represented
by different data to that used in the original file 201. In such embodiments where the system of
Figure 1a is used to encrypt and/or decrypt data, the total size of each of the processed
segments 209 in combination with its header 211 may be greater than the size of the
corresponding processing segment 203. Accordingly, when the apparatus 105 is used as
encryption/decryption apparatus, the encrypted file 202 output by the encryption side of the
apparatus 105 may not always be a ‘compressed’ file.

Figure 1b is a flow chart illustrating, in overview, a method of compression that may be employed
by the compression apparatus 105 of Figure 1a.

In the method of Figure 1a, at step 111 an input sequence of bits is divided into the processing
segments. At step 113 the determination is made of whether there is a bit portion length that will
allow compression of the processing segment 203 (or the compression does not meet a
predefined compression threshold, for example a greater than 5% reduction in size). In other
words it is determined whether the potential compression level for the current processing
segment is acceptable, for example whether a predetermined processing criterion is satisfied.

If it is determined that the potential compression level for the current processing segment is
acceptable, the method continues to step 115 in which the current segment is processed, as
described above. Specifically, the possessing segment is analysed and a bit length is selected
based on the analysis. The labels are then assigned to each of the bit portions. Extraction
information for use in reconstructing the original processing segment is then generated and, in
this example, placed in a header. More detail on how the current segment is processed is
provided in Figures 2-10 and the associated description.

At step 117, it is determined whether to attempt to reprocess the current segment. If the current
segment is to be reprocessed, the processed segment (including the header if present) is used

10

15

20

25

30

35

10

as the current segment, and the method returns to step 113. If the current segment is not
reprocessed, the method continues to step 119 where a processed segment is output.

If at step 113 it is determined that the potential compression level for the current processing
segment is not acceptable, the method continues to step 125 in which the current segment is
used as the processed segment, without any processing (or further processing) of the current
segment. Then, at step 119, the processed segment is output.

After the processed segment is output, it is determined at step 121 whether there is another
processing segment in the input sequence of bits for processing. If yes, the next processing
segment of the input sequence of bits is used as the current segment, and the method returns to
step 113.

If it is determined at step 121 that there are no more processing segments in the input sequence
of bits for processing, the processed segments are output together as a processed file at step
123.

Figure 1c is a flow chart illustrating in overview, a method of decompression that may be
employed by the decompression apparatus 505 of Figure 1a.

At step 131 the first processed segment of processed file is used as the current segment.

At step 133 it is determined whether extraction information is available for the current segment. In
this example, any extraction information is found in the header of the processed segment. If
extraction information is available, the method proceeds to step 135 where extraction information
is obtained for current segment, for example from an associated header.

Next, at step 137, the processing segment in its form prior to processing is reconstructed from the
current segment, based on extraction information.

At step 147, the reconstructed segment is used as the current segment, and the method returns
to step 133.

If, at step 133, extraction information is not available, the method proceeds to step 145 where the
current segment is used as the reconstructed segment, without any reconstruction (or further
reconstruction) of the current segment. Then, at step 139, the processed segment is output.

Next, at step 141, it is determined whether there is another processed segment of the processed
file. If yes, the next processed segment of the processed file is used as the current segment, and
the method returns to step 133.

If it is determined at step 141 that there are no more processed segments in the processed file,
the reconstructed segments are output together as a reconstructed file at step 143.

It will be appreciated that the methods of compressing and decompressing data described herein
can beneficially be used in various applications.

For example, compressing data using the methods described herein can allow larger amounts of
data to be stored in a given storage medium, and larger amounts of data to be transmitted in any
given transmission of data. This in turn will reduce the cost for data storage, which could be

10

15

20

25

30

35

40

11

particularly advantageous where large amounts of data need to be stored, such as in data farms.
Cost saving can be made because, for example, data farms will require less power to maintain
their data storing devices. Advantageously, even if different types of data are being stored (e.g. in
a data farm) the methods of compression described allow compression to be achieved for
generally any data, regardless of the data type (e.g. audio, text, video).

In the field of telecommunications, the described techniques can be used to compress data
before transmission, which would allow a reduction in the amount of resources needed to make
transmissions.

Devices can be configured to carry out both compression and decompression of data according
to the described methods, or devices can be configured to carry out only one of compression and
decompression. Media-playing devices, such as mobile phones and DVD players, may only be
configured to decompress compressed media files using the methods described herein. In some
cases such media-playing devices may be provided with a dedicated chip for this purpose, or the
decompression may be performed by software modules in the device which are not tied to any
specific hardware. Providing the processing power of a device is sufficient and enough storage
space is available, entire files can be decompressed before use (for example a short video clip
can be decompressed and then viewed). In other cases, files can be decompressed on the fly
during use (for example a film can be decompressed and watched simultaneously). Considering,
mobile phones, storing data in compressed form and then decompressing the data when required
using the methods described herein would allow significant amounts of space to be saved on
mobile phones, for example allowing multiple high quality films to be stored on the mobile phone
memory.

Although the time and/or power taken to compress/decompress a given piece of data can vary, in
many instances compression takes significantly longer (and/or requires more processing power)
than decompression. In some applications this is not especially limiting, for example where films
are compressed at a central internet server, and downloaded or streamed in compressed form
and then decompressed at a user device for viewing.

In some cases the time and/or processing power required for compression using the methods
described herein can be greater than existing compressions techniques. However, the methods
described herein have the advantage that greater compression can be achieved, and additionally
or alternatively substantial compression can be achieved more consistently across different types
of data when compared to existing data compression techniques. The compression methods
described can achieve this because the ability to use different bit lengths and different
combination array configuration when processing data means that, in effect, different
compression algorithms are applied, not only to different iterations of compression for the same
file, but also to different parts of the same file.

As described below, the use of combination arrays allows header sizes to be reduced. This is
advantageous because headers 211 are generally added to all compressed segments 209. This
contrasts with many existing compression techniques in which files are analysed as a whole, and
data for use in decompression, such as a hash table, relates to the file as a whole and is only
included once in the compressed file.

10

15

20

25

30

35

12

The compression methods described herein advantageously analyse each processing segment
203 of a file 201 individually, unlike existing compression methods which analyse a file as a
whole. Analysing the processing segments 203 individually (and analysing a processing segment
in multiple different ways using bit portions and/or combination arrays) allows the described
methods to achieve better and more consistent compression of data.

Overview - Main Data Groups

The way in which a file may be sub-divided into smaller data units to aid efficient processing will
now be described, by way of example only with reference to Figure 2.

Figure 2 illustrates the main data groups used in the methods of compression described below,
including exemplary data sizes/values for the purposes of explanation only.

A file 201 may comprise, for example, a text document, a music file, a database or a video file.
The file 201 may have any size; in this example the file size is 2GB. As a further example, an
ultra-high 4K definition DVD is approximately 100GB. A traditional high definition DVD is
approximately 6GB. An hour of high definition downloadable video from the internet is
approximately 1GB. As an example, using the compression techniques described below, it has
been found that any of these types of file can be compressed, typically down to 1/64 of their
original size.

In the compression methods described below, the file 201 is divided up into one or more
processing segments 203, which are generally smaller in size than the file 201. In this example,
the 2GB file 201 is broken up into a plurality of 64KB processing segments 203. Padding
bits/bytes may be used to ensure a file 201 can be divided into an integer number of segments
203.

The processing segments 203 can be used where the size of the file 201 is too large for a
computer processor to read and/or process the whole file at once. Generally most files fall into
this category, however in some cases a whole file 201 may be read and/or processed without
being divided into processing segments.

The size of the processing segments 203 is usually fixed and selected based on normal computer
processing capabilities; however in some examples the size of processing segments 203 is not
fixed (see Modifications and Alternatives section).

The method involves assigning labels to groups of bits in a processing segment 203, where the
grouping of bits and corresponding labels are chosen in a way which ensures that the number of
bits required to represent the information of the processing segment 203 is less than the original
size of the processing segment 203 in bits. In overview, smaller labels (i.e. labels comprising
fewer bits) are used to represent more frequently occurring groups of bits, while larger labels (i.e.
labels comprising more bits) are used to represent less frequently occurring groups of bits.

In preferred embodiments, two or more main groupings of bits in the processing segment are
used: bit portions 205, and combination arrays 207.

10

15

20

25

30

35

As illustrated in Figure 2, each bit portion 205 generally comprises a plurality of consecutive bits,
and each combination array 207 generally comprises a sub-group of consecutive bits (or a single
bit) from a bit portion 205.

In this example, a 64KB processing segment 203 is divided into a plurality of bit portions 205
each having a bit portion length Lgp of 6 bits. As shown in Figure 2, each of the bit portions 205
comprises a permutation of 6 bits, where the first three bit portions have permutations of 011100,
100110 and 111100 respectively. The first bit portion, comprising the bit permutation 011100, is
considered to have a bit portion (BP) value of 011100, or 28 in base 10.

Dividing each processing segment 203 up into bit portions 205 provides a way of analysing the
characteristics of the processing segment 203, where the results of this analysis are used to
determine the prospects for compressing the segment 203 using a particular bit length.

Advantageously, the size of the bit portions 205 is not predetermined, and it can therefore be
determined for each processing segment 203 what size of bit portion provides the best prospects
for compressing the segment 203.

In this example, the bit portion 205 has a bit portion length Lgr of 6 bits, which are sub-divided
into three combination arrays 207. The first two combination arrays each comprise a single bit,
and the third combination array comprises four consecutive bits. As shown in Figure 2, all bit
portions 205 are divided up into combination arrays of the same configuration — in this example
the configuration is : [1 bit array][1 bit array][4 bit array]. As also shown in Figure 2, while the
configuration (or pattern) of combination arrays 207 is the same for each bit portion 205 of a
processing segment 203, the contents of the combination arrays 207 may vary between each bit
portion 205, depending on the permutation of bits in each bit portion 205.

As shown in Figure 2, each of the combination arrays comprises permutation of any number of
bits (including one bit), where the number of bits in the permutation depends on the combination
array (CA) configuration. In Figure 2, the first three combination arrays have permutations of 0, 1
and 1100 respectively. These first three combination array permutations are considered to have
combination array (CA) values of 0, 1 and 1100 respectively; or 0, 1 and 12 respectively in base
10.

In some alternative embodiments, processing segments are only divided up into groups of
consecutive bits (or single bits) once, without these groups (e.g. bit portions 205) being sub-
divided into further groups of consecutive bits or single bits (e.g. combination arrays 207).

Although in this example the bit portion 205 comprises three combination arrays 207, the bit
portion can advantageously be divided into any number of combination arrays 207, each
combination array 207 having any size. This means that the particular configuration of
compression arrays can be selected to provide optimised compression for a particular segment.
In this example, where the bit portion length Lgp of the bit portions 205 is 6 bits, there are 32
different possible configurations of the combination arrays 207, as set out below:

Configurations for a Combination Array Bit portion length Lgp of 6
{11,11,1,1,{1,11,1,2,03{1,1,1,2,1,0},{1,1,1,3,0,0},{1,1,2,1,1,0},{1,1,2,2,0,0},
{1,1,3,1,0,0},{1,1,4,0,0,03,{1,2,1,1,1,0},{1,2,1,2,0,0},{1,2,2,1,0,0},{1,2,3,0,0,0},

10

15

20

14

{1,3,1,1,0,03,{1,3,2,0,0,0},{1,4,1,0,0,0},{1,5,0,0,0,0},{2,1,1,1,1,0},{2,1,1,2,0,0},

{2.1,2,1,0,03,{2,1,3,0,0,0},{2,2,1,1,0,0},{2,2,2,0,0,0},{2,3,1,0,0,0},{2,4,0,0,0,0},

{3.,1,1,1,0,0},{3,1,2,0,0,0},{3,2,1,0,0,0},{3,3,0,0,0,0},{4,1,1,0,0,0},{4,2,0,0,0,0},
{5,1,0,0,0,0},{6,0,0,0,0,0},

Table 2

In Table 2, each set of six numbers within curly brackets represents a possible configuration of
combination arrays 207. Each number represents the size of a combination array in bits, where O
indicates that no array is used. For example, {1, 1, 3, 1, 0, 0} denotes dividing a bit portion 205
into four combination arrays 207, the first two combination arrays comprising a single bit each,
followed by a 3 bit combination array, in turn followed by another single bit array.

It is noted that the total number of different possible configurations of combination arrays
depends on the bit portion length, where the number of possible configurations is equal to
2Lep—1,

As stated above, the configuration of combination arrays is selected to provide the best
compression of a segment 203. Generally, all bit portions 205 of a particular processing segment
203 are divided into the same configuration of combination arrays and the combination array
configuration exploits any patterns, repetition and/or redundancy in the processing segment 203
in order to achieve effective compression.

QOverview - Combine Method

The concept of combining different data values will now be introduced and explained, by way of
example only.

A byte can hold a value between 0 (00000000) and 255 (11111111). The ASCIl standard
provides for representation of characters, letters or symbols where each character, letter or
symbol is represented using an ASCII code which has a value of between 0 and 255. As a result,
each letter, character or symbol requires one byte of information to be represented, as Table 1,
below, illustrates.

Letter ASCII Binary Letter ASCII Binary
Code Code
a 097 01100001 A 065 01000001
b 098 01100010 B 066 01000010
c 099 01100011 C 067 01000011
d 100 01100100 D 068 01000100
e 101 01100101 E 069 01000101
f 102 01100110 F 070 01000110
g 103 01100111 G 071 01000111
h 104 01101000 H 072 01001000
i 105 01101001 I 073 01001001
j 106 01101010 J 074 01001010
k 107 01101011 K 075 01001011

10

15

20

15

108 01101100
109 01101101
110 01101110
111 01101111
112 01110000
113 01110001
114 01110010
115 01110011
116 01110100
117 01110101
118 01110110
119 01110111
120 01111000
121 01111001
122 01111010

076 01001100
077 01001101
078 01001110
079 01001111
080 01010000
081 01010001
082 01010010
083 01010011
084 01010100
085 01010101
086 01010110
087 01010111
088 01011000
089 01011001
090 01011010

N X S < CcC~0W-~00TO 3> 3 —
N<XXS<CHWIOUOZEZEr

Table 1

Considering, for example, the letters J and o, these have ASCII codes of 74 (01001010) and 111
(01101111) respectively. Therefore, a conventional representation of the name Jo would be
0100101001101111, which is 16 bits long.

The number of bits required to represent the name can be decreased by combining the
respective ASCII values using at least one mathematical operation. For example, the two values
can be added together:

74+111=185

Advantageously, the number 185 can be represented in binary using only 8 bits (10111001),
therefore saving 8 bits on the 16 bit value of 0100101001101111.

However, the letters J and o are not the only combination of letters which would sum to give the
total 185. For example, the letters | and p would also yield the total 185 when added together.
This is referred to as a collision.

Therefore, in this example it is necessary to provide additional disambiguation information in
order to indicate which of the potential combinations of ASCII characters is being represented.

The number of collisions (i.e. combinations resulting in the same total when combined using a
mathematical operation such as addition) can be decreased by changing the numeric value used
to represent the characters being combined.

For example, the first ASCIl character value can be multiplied by 10 before the two values are
combined. Taking the example of “Jo” again:

74x10+111 = 740+111 = 851

The number 851 can be represented in binary using only 10 bits (1101010011), therefore saving
6 bits on the 16 bit value of 0100101001101111.

10

15

20

25

30

35

16

In this example, it is also necessary to provide additional disambiguation information in order to
indicate which of the potential combinations of ASCII characters is being represented.

However, multiplying the first ASCII character value by 10 before the two values are added has
the effect of reducing the number of combinations yielding the same result (“coliisions”. This
means that less additional disambiguation information is required.

Collisions when combining bytes can be reduced still further by replacing the ASCII values used
to represent characters with numeric labels. Labels can also reduce the number of bits used to
represent the combined value. For example, if the letters J and O are represented by the labels 0
and 1 respectively, then combining the two labels using addition results in a combined value of 1.
As long as no other characters are assigned the labels 0 or 1, the combined value of 1 will be
unique, with no collisions occurring. Moreover, in this example the combined value can be
represented using only 1 bit.

Although described with reference to ASCII characters for ease of understanding, the above-
described methods of combining data can be applied to any data, comprising any number of bits.

The methods described herein allow data, such as a file, to be compressed by dividing the data
into groups of bits, assigning labels to the groups of bits and then “combining” two or more of
these groups of data together by combining their respective labels. In some embodiments, the
combining comprises a mathematical operation such as addition.

In an e-book that uses letters and numbers (see Table 1), it is possible that either the first bit or
the last bit is only ever 0 and the 1 is never used, or vice versa, depending on encoding.

Advantageously, in preferred embodiments the way in which a file is divided into groups of bits
can be chosen in order to provide improved compression of the file. For example, when one part
of the file is being processed it may be divided up in a different way to another part of the file.

Also, the preferred embodiments allow data from different types of media, and by extension
having vary different characteristics, to be compressed effectively, due to the flexibility when
dividing the data into groups of bits and assigning labels to the groups of bits. Existing
compression techniques tend to be more effective in compressing particular types of media data
(e.g. text, image data or the like) because they are better optimised for the inherent
characteristics of that data. Advantageously, the preferred embodiments can achieve
compression of files and/or data which would ordinarily be difficult to compress using such
existing compression techniques.

Overview - Assigning Labels

The bits of the processing segment are analysed to determine a way of dividing the processing
segment into groups of bits which will allow compression to be achieved when labels are
assigned to the groups of bits. The processing segment is then divided into groups of bits
according to the determined configuration. The groups of bits may comprise bit portions and/or
combination arrays as introduced above.

Next, a label is assigned to each of the groups of bits, wherein each label is unique (although
generally only unique for the processing segment being processed; labels may be reused

10

15

20

25

30

35

17

between processing segments). Some or all of the labels may comprise multiple parts.
Preferably, all labels comprise a first part which acts as a primary identifier of the bit portion value
(later referred to as “Combined new CA value”).

The first part of the bit label may uniquely (i.e. unambiguously) identify a bit portion value, in
which case the label need only comprise the first part. However, when the first part of the label
does not unambiguously identify the bit portion value (i.e. multiple different bit portion values are
associated with the same first part of the label), the label further comprises a second part (later
referred to as “Combined disambiguation information DI”).

The purpose of the second part of the label is to identify which of the multiple different bit portion
values associated with the first part is being represented by the label.

In order to illustrate this with an example, consider the following four different bit portion values:
01011, 10110, 10111, 10010

Each of these four different bit portion values may be associated with the same first part of a label
(e.g. 11):

01011, 10110, 10111, 10010

1 1 1 l
11 11 11 11

In such a case, each bit portion value can be unambiguously identified using one of four second
parts of the label (e.g. 00, 01, 10, 11):

01011, 10110, 10111, 10010
1 1 1 l
11 11 11 11
00 01 10 11

In the examples provided here, the complete label for the bit portion values would be as follows:

01011, 10110, 10111, 10010

1 1 1 l
1100 1101 1110 1111

Preferably, the length of the first part in bits remains constant for all bit portion values in a
processing segment 203, while the length of the second part can vary, or the second part may
not be used at all to identify some bit portion values.

It can therefore be seen that the label as a whole can vary in length of bits. All the labels used for
the bit portion values of a particular processing segment can vary in length but share a common
minimum length, corresponding to the length of the first part of the label. However, between
different processing segments the length of the first part of the label can vary, as it is assigned
based on frequency analysis of the processing segment (as described in further detail below).

Method of Selecting Bit portion length

10

15

20

25

30

35

18

Figures 3A to 3D illustrate a method of selecting what bit portion length Lgp should be used when
dividing a processing segment 203 into a number of bit portions 205.

This is done by dividing the processing segment 203 up into bit portions 205 of different bit
portion lengths Lgp, and performing frequency analysis for each of the different bit portion lengths
used.

Some existing compression techniques use fixed bit portion lengths. It has been found that by
using variable bit portion lengths, which can change depending on which part of a file is being
processed, additional compression can be obtained which would otherwise not have been
achievable.

Figures 3A and 4A provide overviews of the frequency analysis results obtained for bit portion
lengths 2 to 4 and 3 to 7 respectively, with different exemplary results. Figures 3B, 3C, 3D and 4B
illustrate frequency analysis performed on bit portion lengths of 2, 3, 4 and 7 respectively.

As shown in Figure 3A, in this example a bit portion length of 2 bits is tested first. The processing
segment 203 is divided up into a plurality of bit portions 205, each having a bit portion length of 2
bits. As shown in Figure 3A, frequency analysis is performed on the bit portions 205 of this initial
bit portion length Lgr = 2, and it is determined whether at least one of two criteria are fulfilled.

The first criterion is whether two or more compression “levels” (levels are described further
below) are present within the analysed bit portion BP values, and the second criterion is whether
50% or fewer of the possible bit values are present in the processing segment 203.

If neither of the criteria are fulfilled, the bit portion length is incremented by one bit - to 3 bits - and
the processing segment 203 is re-divided up into a plurality of bit portions 205, this time each
having a bit portion length of 3 bits. For each bit portion length being tested, if the frequency
analysis results fail to fulfil either of the two criteria, the next bit portion length is tested (i.e. the bit
portion length is incremented by one bit and the processing segment 203 is re-divided up into a
plurality of bit portions 205, each having the same number of bits as the current bit portion
length).

Figure 3B illustrates the frequency analysis performed on the plurality of bit portions 205, in this
case each having a bit portion length of 2 bits. As each bit portion 205 of the processing segment
203 is only made up of 2 bits, a bit portion 205 can only have one of four values — 00, 01, 10 or
11. Once the processing segment 203 has been divided into the plurality of bit portions 205, the
number of occurrences of each possible bit portion value is determined (i.e. the frequency of
each value).

The bit portion values are then sorted in order of most occurring to least occurring, as shown in
Figure 3B. In this example, the bit portion value 01 occurs the greatest number of times, with
65,538 occurrences and the bit portion value 00 occurs the least number of times, with 65,533
occurrences.

The number of compression levels is then determined based on the number of occurrences of
each of the bit portions values.

10

15

20

25

30

19

The level in which a bit portion (BP) value is placed determines how many bits the label assigned
to the BP value will have. All BP values in the same level will be assigned the same number of
bits. In preferred embodiments, the 1% level (level 0) is allocated labels with the minimum
possible number of bits. Furthermore, in preferred embodiments, the labels allocated to each
successive level are one bit longer than the previous level. An exemplary set of labels and
associated labels are shown in Table 3 below.

Level Label

0 00

0 01

1 100

1 101

2 1100

2 1101

2 1110

2 1111
Table 3

In preferred embodiments, a “level” is defined as being a group of bit portion values in which
none of the bit portion values occur less than half as frequently as the most occurring bit portion
value in that group. For example, in a group of bit portion values where the most occurring bit
portion value occurs 28,000 times, all of the bit portion values in the group will have occurrences
greater than 14,000. In the example shown in Figure 3B, the least occurring bit portion value
occurs 65,533 times, and therefore all of the bit portion values are considered to occupy the
same level. Bit portion length Lgp = 2 therefore fails to satisfy the first criterion.

Next, it is determined whether 50% of the possible bit portion values occur in the processing
segment. For example, if only the bit portion values 01 and 11 occurred in the processing
segment 203, and bit portion values 10 and 00 both never occurred, then exactly 50% of the
possible bit portion values are present in the processing segment. This would be an indication
that the processing segment 203 can be compressed using the selected bit portion length.
However, in the example illustrated in Figure 3B all four of the possible bit portion values are
present in the processing segment and therefore 100% of the possible bit portion values are
present. As can be seen in Figure 3A, the bit portion length of 2 bits is listed as having one
compression level and as not satisfying the requirement that 50% or fewer of the possible bit
portion values are present. Bit portion length Lgr = 2 therefore fails to satisfy the second criterion.

Therefore, the processing segment 203 is divided into a plurality of bit portions each having a bit
portion length of 3 bits instead of 2 bits and frequency analysis is again performed. This is
illustrated in Figure 3C. Figure 3C shows that if bit portion length Lgp = 3 there are 8 possible bit
portion values.

The bit portion values are then sorted in order of most occurring to least occurring, as shown in
Figure 3C. In this example, the bit portion value 011 occurs the greatest number of times, with
21,851 occurrences and the bit portion value 101 occurs the least number of times, with 21,833
occurrences.

Bit portion length Lgr = 3 therefore fails to satisfy the first criterion.

10

15

20

25

30

35

20

Furthermore, in the example illustrated in Figure 3C all eight (i.e. 100%) of the possible bit portion
values are present in the processing segment. Bit portion length Lges = 2 therefore fails to satisfy
the second criterion.

Next, the processing segment 203 will be divided into a plurality of bit portions 205 having a bit
portion length of 4 bits. This is illustrated in Figure 3D.

Figure 3D shows that if bit portion length Lgp = 4 there are 16 possible bit portion values.

As shown in Figure 3D, bit portion values are sorted in order of most occurring to least occurring.
In this example, the bit portion value 0001 occurs the greatest number of times, with 27,369
occurrences and the bit portion value 1110 occurs the least number of times, with 1,962
occurrences.

Therefore, unlike for bit portion lengths 2 and 3 described above, multiple compression levels are
present within the analysed bit portion BP values. Specifically, the 4" BP value (1001) occurs
12,646 times, which is less than half of 27,369. Therefore, the 4" bit portion value belongs to a
2" level (level 1).

Furthermore, the 8" BP value (1000) occurs 4,146 times, which is less than half of 12,646.
Therefore, the 4™ bit portion value belongs to a 3 level (level 2).

This means that three levels are present, and bit portion length Lgp = 4 therefore satisfies the first
criterion.

As a result, bit portion length Lgr = 4 would be selected as the chosen bit portion length in this
example.

In the exemplary method of Figure 4A, the processing segment 203 is initially divided up into a
plurality of bit portions 205 each having a bit portion length of 3 bits (rather than 2 bits as
illustrated in Figure 3A). As the exemplary results of Figure 4A, none of bit portion lengths 3 to 6
satisfy either of the criteria.

Figure 4B shows exemplary frequency analysis results for bit portion length Lgp = 7. If bit portion
length Lgp = 7, there are 128 possible bit portion values (some are omitted for legibility).

As shown in Figure 4B, bit portion values are sorted in order of most occurring to least occurring.
In this example, all bit portion values from the 10" value onwards have an occurrence of 0, and
therefore bit portion length Lgr = 7 satisfies the second criterion. BP values with an occurrence of
0 are not assigned to a level, and therefore the total number of levels present for Lgr = 7 is 1 (the
first criterion is therefore not fulfilled).

As a result, bit portion length Lgr = 7 would be selected as the chosen bit portion length in this
example.

It is noted that in the particular example illustrated in Figure 4B, it is possible to achieve improved
compression by assigning levels according to alternative embodiments, such as those described
below.

Alternative method of Selecting Bit portion length

10

15

20

25

30

35

40

21

Figures 5A to 5E illustrate an advantageous alternative method of selecting a bit portion length
Lgr. The method involves testing multiple bit portion lengths and determining if compression of
the processing segment can be achieved using the bit portion length being tested, and if so how
much compression can be achieved.

The determination is made by assigning labels to each of the possible bit portion
(BP) values, and then determining whether the processing segment 203 can be represented
using fewer bits if the bit portions are represented using their respective labels (i.e. determining
whether the processing segment 203 can be compressed using the labels). In order to assign the
labels and make the determination as to whether compression can be achieved, frequency
analysis is performed on the bit portion values to determine how many times each possible bit
portion value occurs within the processing segment 203.

The frequency analysis results in a value for the achievable compression of the processing
segment 203 for each bit portion length tested (i.e. the minimum compression that is known to be
achievable for the processing segment based on the chosen bit portion length). In Figure 5A, bit
portion lengths from 2 bits to 8 bits are tested, with achievable compressions ranging from 3% (2
bits) to 25% (6 bits). It is noted that the final compression achieved for the selected bit portion
length, once the full compression method described below has been carried out, may be higher
than the achievable compression value.

It can also been seen from Figure 5A that the bit portion length having the highest potential
compression is 6 bits, whereas a bit portion length of 8 bits would, for this particular segment
being processed, have a lower potential compression. Therefore, in this case any compression
techniques which divide the processing segment into bytes (i.e. 8 bits) would fail to exploit
potential additional compression.

As illustrated by the exemplary bit values in Figure 5A, the same processing segment 203
comprising the same bits may be analysed multiple times, being divided into bit portions 205 of
different sizes each time.

As shown in Figure 5A, frequency analysis using different bit portion lengths is performed on a
processing segment, in this example of size 64KB (only the first 16 bits and the final bit of the
segment are shown for simplicity).

Figure 5B and 5C illustrate the frequency analysis performed on the processing segment 203
when divided up into a plurality of bit portions 205, each having a bit portion length of 4 bits. As
each bit portion 205 of the processing segment 203 is made up of 4 bits, a bit portion 205 can
have one of sixteen values — from 0 (0000) to 15 (1111).

Once the processing segment 203 has been divided into the plurality of bit portions 205, the
number of occurrences of each possible bit portion value is determined (i.e. the frequency of
each value). The bit portion values are then sorted in order of most occurring to least occurring,
as shown in Figure 5B. In this example, the bit portion value 0001 occurs the greatest number of
times, and the bit portion value 1110 occurs the least number of times.

The default order of bit portion values is from smallest to largest, and therefore when two bit
portion values have the same number of occurrences within a processing segment (which may

10

15

20

25

30

35

22

be, for example, zero), the bit values are not sorted and accordingly will remain in size order. As
shown in Figure 5B, each of the sorted bit portion values is associated with a ranking
corresponding to their sorted position. As can be seen, the most occurring bit portion value is
ranked 0 and the least occurring bit portion value is ranked 15.

In some embodiments, the sorted bit portion values are assigned new values which correspond
to their ranking, with value 0000 corresponding to ranking 0, and value 1111 corresponding to
value 15.

Referring to Figures 5B and 5C, in some embodiments the sorted bit portion values are not
renumbered with new values, for example when fewer than 50% of the BP values occur in the
processing segment being analysed.

The occurrences of the bit portions are then analysed in order to split the BP values into levels
where possible. As explained above, a “level” is defined as being a group of bit portion values in
which none of the bit portion values occur less than half as frequently as the most occurring bit
portion value in that group. For example, in a group of bit portion values where the most occurring
bit portion value occurs 28,000 times, all of the bit portion values in the group will have
occurrences greater than 14,000.

In the example shown in Figure 5B, it is determined that the BP values can be grouped to create
three levels. These levels are referred to as occurrence-based levels. As can be seen, in Level 0
the highest occurring bit portion value has 27369 occurrences; in Level 1 the highest occurring bit
portion value has 12646 occurrences; and in Level 2 the highest occurring bit portion value has
3923 occurrences.

In some alternative embodiments, the levels can be defined using different methods. For
example, the occurrences of the BP values may be analysed in order to determine whether the
occurrences can be divided into two or more groups in which the total number of occurrences of
one group (i.e. all occurrence counts in the group summed) of one group is less than or equal to
half the total number of occurrences of another group.

If there are only two levels in a bit portion, compression cannot be achieved unless the bit portion
is broken up into two or more combination arrays (see below for description of how bit portions
are broken up into combination arrays). For example, if a bit portion length of 4 is used, and two
levels are present within the bit portion values, the bit portion can then be broken into two
combination arrays. It has been found that one combination array may have one level in its CA
values, while the other CA may have three levels in its CA values (this becomes more likely the
longer the bit portion length being used).

Once each of the bit portion values has been assigned to an occurrence-based level, each of the
bit portion values can be assigned an initial label 403. However, in some preferred embodiments
the BP values are first re-grouped into optimised levels before the initial labels 403 are assigned.
This re-grouping of the BP values into optimised levels is illustrated in Figure 5C.

The initial labels are assigned to bit portion values to determine an achievable compression ratio
for the processing segment 203, and whether compression can be achieved at all. They are

10

15

20

25

30

35

40

referred to as “initial labels” because the actual labels assigned to bit portions may be different
once the full compression method as described below is carried out.

As can be seen in Figure 5B, the initial labels 403 have varied lengths, but in general bit portion
values with a high frequency of occurrences are assigned a short initial label (e.g. 3 bits long) and
bit portion values with a low frequency of occurrence are assigned a longer initial label (e.g. 5 bits
long).

As can also be seen from Figure 5B, the initial labels 403 can comprise one or two parts: all initial
labels 403 comprise a new bit portion (BP) value part; while some initial labels 403 additionally
comprise a disambiguation part.

The new values act as primary identifiers of the bit portion values, and all new BP values
assigned have the same length in bits — in the example shown in Figure 5B, all new BP values
are three bits long. The size in bits of the new BP values is determined by the maximum new BP
value. In this case the maximum new BP value is 7, which is represented in binary as 111, and as
a result all new BP values comprise three bits. However, if the maximum new BP value was 8,
this would be represented in binary as 1000, and as a results all new BP values would comprise
4 bits.

However, new BP values do not unambiguously identify an associated bit portion value in all
cases because in some cases the same new BP value is assigned to multiple BP values. In such
cases, a disambiguation value is used to identify a particular one of the multiple bit portion values
associated with the same new BP value.

In order to ensure that the most frequently occurring bit portion values are assigned the shortest
initial labels, the bit portion values in the first level (Level 0) are each assigned unique new
values, as can be seen in Figure 5B. No disambiguation values are therefore used, and the initial
label assigned to the bit portion values of level 0 only comprises the new value part.

When assigning new bit portion values to the bit portion values in level 1 onwards, the same new
BP values can be assigned to multiple BP values. Where this re-use of new BP values occurs,
the number of disambiguation values which are needed corresponds to the number of bit portion
values which have been assigned the same new bit portion value.

For example, if four bit portion values have been assigned the same new bit portion value, four
disambiguation values are required in order to unambiguously identify a particular bit portion
value. This means that each disambiguation value will comprise two bits. It will be appreciated
that, in general, the higher the number of BP values which are assigned the same new BP value,
the larger the disambiguation value which is assigned to each BP value.

To achieve compression, bit portion values with a high frequency of occurrences should generally
be assigned a short initial label and bit portion values with a with a low frequency of occurrence
should generally be assigned a longer initial label. Since the new BP values comprise the same
number of bits for all possible BP values, it is the disambiguation which principally affects the size
of the initial label 403.

As a general rule, the lower the level (where Level O is the lowest), the fewer BP values are
assigned the same new BP value. In this embodiment, the maximum number of repetitions of a

10

15

20

24

new bit portion value is set to be 2X¢V, where Lev is the level of the bit portion values being
assigned new values. For example, in level 2, the same new bit portion value can be assigned to
up to 4 bit portion values.

A more general example of new BP value repetition is shown in Table 4, below.

BP Level New BP Value
Level O Zo
Level O Z
Level O Z,
Level O Z3
Level O 4
Level 1 Zs
Level 1 Zs
Level 1 Ze
Level 1 Ze
Level 2 Z;
Level 2 Z;
Level 2 Z;
Level 2 Z;
Table 4

As shown in Table 4, each new BP value is repeated 2.¢” times. In level 0, new BP values are
repeated 2° = 1 times each. In level 1, new BP values are repeated 2" = 2 times each. In level 2,
new BP values are repeated 22 = 4 times each.

In Figure 5B, level 2 comprises 9 BP values. |n this level new BP values can be assigned to up to
four original BP values. Therefore, the four most-occurring BP values are assigned the new BP
value 5, the next four most-occurring BP values are assigned the new BP value 6, and the
remaining BP value in Level 2 is assigned the new BP value 7.

In such a situation, as can be seen from Figure 5B the new BP value 7 is unique, and therefore
the least-occurring BP value in Level 2 is not assigned a disambiguation value. This means that
the least-occurring BP value in Level 2 has an initial label of only 3 bits, while the rest of the
(more-occurring) BP values in level 2 have initial labels of 5 bits. This is not optimum for
compression, and therefore a method of level optimisation is used to move BP values between
levels, as illustrated in Figure 5C.

Nevertheless, even without any level optimisation having been performed, it can be seen from
Figure 5B that compression can be achieved. The size in bits of each occurrence-based label is
shown in Figure 5B, and from this the number of bits used to represent the BP values in each
level can be determined. This is given by the total number of occurrences for a level multiplied by
the occurrence-based label size.

10

15

20

25

30

25

The total number of bits used to represent all of the BP values in the bit portion 203 can then be
determined by summing the number of bits used for each level. As shown in Figure 5B, this is
equal to 483555, which is less than the total number of bits in the processing segment (524288).
Accordingly, assuming a header size of 121 bits, a 7.7% compression is possible. In some
embodiments, the bit portion length may be selected based on this possible compression
measure, without any optimisation of the levels (since compression is achieved without
optimisation in some cases).

Figure 5C illustrates how the bit portion length is selected according to preferred embodiments,
where levels are optimised before the potential compression is determined.

In Figure 5C, BP values are first re-grouped into optimised levels before the initial labels 403 are
assigned. The occurrence-based levels determined in Figure 5B are indicated on Figure 5C using
dashed braces. It can therefore be seen that the optimised levels are generally different to the
occurrence based levels.

A general aim of level optimisation is to ensure that the number NLBeI; of BP values in each level

is divisible by 2X¢¥ without remainder, where Lev is the level. This ensures efficient use of the
assigned new BP values.

This can be represented mathematically as:
NBP mod 2% = 0 Equation 1

For example, as shown in Figure 5B, Level 2 includes 9 BP values, so NLB;I; = 9, and for Level

2, Lev = 2, therefore the number NP2 of BP values in the level is not divisible by 277 without
a remainder.

Specifically:
NEP mod 2" = 9 mod 22 = 9mod 4 = 1

The result of NEI, mod 25¢Y can be used to indicate how many BP values should be moved out of
the level and into a different level. In this example, one BP value should be moved out of level 2.

In some examples, the condition NEF, mod 2%V = 0 is satisfied by moving the highest-occurring

BP values in the level from level Lev to level Lev -1. In the present example, the most-occurring
BP value, 1000, is moved from level 2 to level 1.

It will be appreciated that in other examples, the condition NLBef, mod 2%V = 0 may be satisfied by

adding additional BP values to the level (e.g. the lowest-occurring BP values from level Lev -1 are
moved to level Lev).

In this way, the levels are optimised such that the number of BP values in each level is a multiple

of 2L¢? or equal to 217, satisfying NEF, mod 2'¢” = 0.

10

15

20

25

30

35

26

This process of determining whether the number NLB;I; of BP values in a level is divisible by

2Lev is repeated for each level, from the highest level to level 0.

It is noted that for level 0, NLB;I:, mod 2"¢” will always equal 0, because 2° is equal to 1.

Therefore, the condition N%, mod 21€7 = 0 is always fulfilled for level 0, regardless of how
many bit portion values are presentin level 0.

Preferred further conditions for optimising bit portion levels are described below.

An initial label 403 is assigned to each BP value based on its level, in a similar way to that shown
in Figure 5B.

The size in bits of each optimised initial label 403 is shown in Figure 5C, and from this the
number of bits used to represent the BP values in each level can be determined. This is given by
the total number of occurrences for a level multiplied by the optimised initial label size.

As can be seen from Figure 5B, the total number of bits used to represent the bit portions 205 of
the processing segment 203 is 483555 when labels are assigned to bit portions 205 based on
occurrences, without any optimisation of the levels. In contrast, as can be seen from Figure 5C,
the total number of bits used to represent the bit portions 205 of the processing segment 203 is
470687 when labels are assigned to bit portions 205 using optimised levels. This demonstrates
that optimising levels results in a higher achievable compression.

Figures 5D and 5E illustrate how the achievable percentage compression of the processing
segment is determined, based on a bit portion length Lgr of 4 bits and the frequency analysis
shown in Figures 5B and 5C.

Figure 5D is a table which summarises the total possible bits used in the header 211 which is
assigned to the compressed portion 209. As shown in Figure 5D, this calculation is based on the
header 211 comprising a signature, and information on the bit portion length, combination array
configuration, and two types of label assignment information — “level counts” and “CA value
information”. A minimum and maximum size of each of these parts is determined, and summed in
order to provide minimum and maximum total sizes of the header 211.

Figure 5E is a table which shows the calculation of the achievable compression of the processing
segment 203 as a percentage of its original size. The maximum header size is used in this
calculation in order to ensure that the percentage compression is achievable.

As shown in Figure 5E, the determined achievable compression for the processing segment
based on a bit portion length Lgp of 4 bits is 10.20%.

Preferred conditions for optimising bit portion levels

In preferred embodiments, in addition to the condition defined by equation 1, level optimisation is
based on the following further conditions.

Firstly, the number of levels in a bit portion should not exceed the bit portion length:

10

15

20

25

27

NLevelsMAX _ | Equation 2

Secondly, the maximum new bit portion value should equal a target maximum new bit portion
value

MaxNewBPVal = TargetMaxNewBPVal Equation 3

Where the target maximum new bit portion value assigned to one or more bit portion values in a
processing segment is defined as follows:

Levels

TargetMaxNewBPVal = 21109:(Nsp"*™)]+1 _ 1 Equation 4

And where the maximum new bit portion value is defined as follows:

Lev:NLevels_1
BP BP

MaxNewBPVal = Z Lev | _ 4

2L€‘U

Lev=0
Equation 5

Lgp is the bit portion length in bits;

NAEVe!S is the number of levels into which the bit portions values of a bit portion 205 are divided:;

NjevelsMAXs the maximum number of levels into which the bit portion values of a bit portion

205 can be divided:;
Lev is the level index, for example Lev = 0 for level 0 and Lev = 1 for level 1;

MaxNewBPVal is the maximum new bit portion value assigned to one or more bit portion values
in a processing segment

TargetMaxNewBPVal is the target maximum new bit portion value assigned to one or more bit
portion values in a processing segment;

NLBe}; is the number of bit portion values in a level;

Splitting the analysed BP values into more levels, while still fulfilling the conditions above,
typically results in a smaller maximum new value and therefore smaller initial labels 403 being
assigned to each of the BP values. This allows greater compression to be achieved.

10

15

20

25

30

28

Method of selecting configuration of combination arrays

Figures 6A to 6D illustrate a method of determining which configuration of combination arrays
207 to use once a bit portion length Lgr has been determined according to one or more of the
methods described above. The method involves dividing the bit portions 205 into combination
arrays 207 according to different configurations and performing frequency analysis on the
combination arrays, in order to determine which configuration of combination arrays 207 has the
best prospects for compressing the processing segment 203.

In Figures 6A to 6D an exemplary bit portion length Lgp of 6 bits is used. As illustrated in Table 2,
above, a bit portion 205 having a bit portion length Lgp of 6 can be divided up into combination
arrays using 32 different configurations. Figure 6A provides a visual overview of how each bit
portion 205 of a processing segment 203 is divided into combination arrays 207 according to the
first 8 combination array (CA) configurations, the 29" CA configuration and the final (32"%) CA
configuration.

As shown in Figure 6A, each of the possible CA configurations is assigned a reference number,
in this example starting at O for the CA configuration [1, 1, 1, 1, 1, 1] and continuing to 31 for the
CA configuration [6, 0, 0, 0, O, 0].

Frequency analysis is performed on each of the combination array CA configurations, and it is
determined whether at least one of two criteria is fulfilled. The first criterion is whether the total
number of levels is greater than or equal to twice the number of arrays. The second criterion is
whether, for any of the combination arrays of a CA configuration, 50% or fewer of the possible
combination array values occur in the processing segment 203. These criteria are explained in
further detail below with reference to Figures 6B and 6C.

For the purpose of explanation, the combination array configuration [3, 3, 0, 0, 0, 0] (reference
number 28) will be considered.

The configuration [3, 3, 0, 0, 0, O] dictates that each bit portion 205 is divided into two arrays,
each comprising 3 bits.

As indicated in Figure BA, the first array is denoted CAg, and the second array is denoted CA;.

It will be appreciated that as CA, and CA, are each 3 bits long, each can have any of 8 different
combination array values (CA values), as set out in Table 5, below.

Possible CAg values | Possible CA; values
(Lcaoc=3) (Lca1 =3)
000 000

001 001

010 010

011 011

100 100

101 101

110 110

111 111
Table 5

10

15

20

25

30

35

29

For each CA configuration (such as number 28 presently being considered), all equivalent
combination arrays in the processing segment 203 are analysed collectively. For example, all the
CA, arrays defined by CA configuration 28 are analysed to determine their values. The frequency
of occurrence of each possible CA, value is determined, from which CA values can be assigned
to levels. This is illustrated in Figure 6B. The same analysis is done on all CA; arrays, as shown
in Figure 6C.

Considering Figure 6B in more detail, the number of occurrences of each possible CA value is
determined (i.e. the frequency of occurrence of each CA value within the segment). As shown,
the most occurring value 010 occurs 30,000 times in the processing segment 203 and the least
occurring value 100 occurs 3,981 times in the processing segment 203.

The CA, values are sorted in order of most occurring to least occurring (as long as more than
50% of the CA, values have an occurrence greater than 0 within the processing segment). The
default order of CA values is from smallest to largest, and therefore when two CA values have the
same number of occurrences within a processing segment (which may be, for example, zero), the
CA values are not sorted and accordingly will remain in size order.

The number of compression levels is then determined based on the number of occurrences of
each of the CA, values. In preferred embodiments, a “level” is defined as being a group of bit
portion values in which none of the bit portion values occur less than half as frequently as the
most occurring bit portion value in that group. In the example shown in Figure 6B, the most
occurring CAo value occurs 30,000 times, and the second most occurring CA, value occurs
20,000 times which is more than half of 30,000 and therefore both of the most occurring values
are assigned to the same level (Level 0).

The third most occurring CA, value, 001, occurs 9,000 times within the processing segment 203.
Since 9,000 is less than half of 30,000, the third most occurring CAq value 001 is assigned to a
second level — Level 1.

As 9,000 is the highest occurring value in Level 1, any CA, values with an occurrence of less than
4,500 will be assigned to a different level. As shown in Figure 6B, the sixth most occurring CAq
value, 110, has an occurrence of 4,400, and therefore it is assigned to a third level — Level 2. No
CA, values have an occurrence of less than 2,200, and therefore CAg, has three levels in total.

Next, considering Figure 6C in more detail, the second combination array CA, is analysed in the
same way as for CA, in Figure 4B. The frequency of occurrence of each possible CA; value is
determined. As shown, the most occurring value 011 occurs 19,000 times in the processing
segment 203 and the least occurring value 101 occurs 9,000 times in the processing segment
203.

In a similar way as performed for CA,, the CA; values are sorted in order of most occurring to
least occurring (as long as more than 50% of the CA, values have an occurrence greater than 0
within the processing segment).

The number of compression levels is then determined based on the number of occurrences of
each of the CA, values.

10

15

20

25

30

35

30

Using this technique for defining levels, it is found that the total number of levels for CA; is two
levels.

The total number of levels for the CA configuration 28 [3, 3, 0, 0, 0, 0] is therefore 5 levels (3
levels for CAg + 2 levels for CA,).

Turning back to Figure 6A, the total number of levels for CA configuration 28 can be seen in the
“total no. of levels” column. The “2x number of arrays” column indicates 4 for CA configuration 28
(as there are two combination arrays), and therefore the first criterion is fulfilled - the total number
of levels is greater than twice the number of arrays.

It can be seen from Figures 6B and 6C that all the possible CAq values and all the possible CA;
values occur in the processing segment 203, and therefore the second criterion is not fulfilled —
for both of the combination arrays, more that 50% (in fact 100%) of the possible combination
array values occur in the processing segment 203.

Figure 6D illustrates that CA configuration 28 is treated at the chosen configuration, based on the
analysis performed in Figures 6B and 6C. The chosen CA configuration is then used to compress
the whole processing segment 203, by assigning labels to each of the bit portions 205 in the
processing segment 203, where the labels are generated by splitting the bit portions 205 up into
combination arrays 207 in accordance with CA configuration 28. This method of compressing the
processing segment 203 is explained further below.

After the processing segment 203 is compressed using the chosen CA configuration, it is
checked whether the compression has been successful (e.g. whether any compression has been
achieved, or whether the compression is greater than a predefined threshold). If it is determined
that compression has not been successful, the method will return to analysing CA configurations
as shown in Figure 6A, and a new CA configuration is chosen for use in compressing the
processing segment 203.

If none of the possible CA configurations fulfil either of the two criteria, then the processing
segment 203 is not compressed and is output by the compression apparatus 105 in its original
form.

In some alternative embodiments, if none of the possible CA configurations fulfil either of the two
criteria, a new bit portion length is selected using one or more of the methods described above. A
new CA configuration can then be chosen based on the two criteria for selecting CA
configurations. In such cases, it is preferable to set a processing time limit for attempting to
compress a single processing segment, where expiry of the time limit results in the processing
segment 203 not being compressed and being output by the compression apparatus 105 in its
original form.

Furthermore, if none of the chosen CA configurations are found to result in successful
compression, the processing segment 203 is not compressed and is output by the compression
apparatus 105 in its original form.

Why Combination Arrays are used

10

15

20

25

30

35

31

In a similar way to assigning levels to bit portions (explained above), the level in which a CA
value is placed affects how large the disambiguation value assigned to the CA value can be.

In preferred embodiments, CA values in the 1% level (level 0) are not allocated disambiguation
values, and therefore all new CA values assigned to CA values in Level 0 must be unique.

It is noted that a bit portion having only 2 levels may not be able to be compressed using only the
bit portion, or using a single combination array comprising all the bits of the bit portion (unless not
all bit portion values, or not all CA values, occur within the processing segment 203). In such
cases dividing the bit portion up into a plurality of combination arrays can allow compression to
be achieved.

It is also noted that the higher the number of levels, the more compression will be achieved,
because the resulting label will be smaller.

Frequency analysis is performed on the bit portions 205. In preferred embodiments, the bit
portions 205 are sub-divided up into smaller combination arrays 207 and frequency analysis is
also performed on these combination arrays 207. For example, the bit portion 205 may be divided
up into a left hand part and a right hand part, such as combination arrays CA, and CA, in Figures
4B and 4C. The frequency analysis of the left hand parts (the CA, values) allows the most
occurring left hand part to be determined. Similarly, the frequency analysis of the right hand parts
(the CA; values) allows the most occurring right hand part to be determined.

In preferred embodiments, the labels assigned to the bit portions are not only dependent on the
frequency of occurrence of the whole bit portions, but also on the frequency of occurrence of the
combination arrays which make up the bit portions. Therefore, in the example where the bit
portion 205 is divided up into a left hand part and a right hand part, the most occurring left hand
part of the bit portion will be associated with the smallest new CA, values, and the most occurring
right hand part of the bit portion will be associated with the smallest new CA; value. Typically
labels generated based on analysis of combination arrays will allow greater compression than
labels generated only based on analysis of bit portions.

Also, breaking up bit portions 205 into combination arrays 207 allows the header 211 to use
fewer bits. For example, consider a bit portion comprising 5 bits. Table 6 illustrates two possible
CA configurations which can be used for a bit portion length of 5 bits — [5,0,0,0,0] and [2,3,0,0,0].

As shown in Table 6, if a CA of length 5 bits is used, the number of possible CA values (and BP
values as in this case the combination array is the same as the bit portion) is:

2Llea =25 =32

For each of the 5 combination arrays, in the biggest header format all of the possible CA values
are written out in order of occurrence, and therefore the maximum number of bits used for CA
values within header is 32 * 5 = 160 bits in total.

As shown in Table 6, if two CAs of length 2 and 3 bits are used, the number of possible CA
values (and BP values as in this case the combination array is the same as the bit portion) for CA
length 2 is:

10

15

20

25

30

32

2lcao =22 =4

The number of possible CA values (and BP values as in this case the combination array is the
same as the bit portion) for CA length 3 is:

2lcar =23 =g

For each of the 2 CA; combination arrays, in the biggest header format all of the possible CA
values are written out in order of occurrence, and therefore the maximum number of bits used for
CA values within header is 32 * 5 = 160 bits in total.

Table 6 illustrates the maximum number of bits used for CA values within the header for the bit
portion alone (which can considered as a combination array comprising 5 bits) and for the bit
portion being divided in to two combination arrays of 2 bits and 3 bits respectively.

CA configuration | Maximum no. of bits used for
CA values within header

[5,0,0,0,0] 160 bits in total (32 * 5)
[2,3,0,0,0] 32 bits in total (4 * 2) + (8 * 3)
Table 6

As can be seen in Table 6, dividing the bit portion up into combination arrays results in fewer bit
being used for the CA values in the header.

Method of Assigning labels to Bit Portion Permutations using Combination Arrays

Figures 7A and 7B illustrate a first part of a method of assigning labels to the permutations of bits
represented by bit portions 205, and hence to the corresponding bit portions 205, once a
combination array CA configuration has been selected according to the method illustrated in
Figures 6A to 6D.

In this example, the CA configuration 28 [3,3,0,0,0,0] was selected (as shown in Figure 6D),
which means that each bit portion 205 is split up into two combination arrays — CA, and CA;.
Figures 7A and 7B illustrate how, for each possible CA, value and each possible CA; value, a
new CA value 701 and a disambiguation value 703 is assigned. Figure 10, described below,
illustrates how these new CA values 701 and disambiguation values 703 are used to generate
labels for bit portion permutations.

The way in which new CA values 701 and disambiguation values 703 are assigned to CA values
is similar to the way in which new BP values and disambiguation values are assigned to bit
portion values, as shown in Figures 5B and 5C.

As stated above, the level to which a CA value is assigned affects how large the disambiguation
value 703 assigned to the CA value can be.

The CA, and CA, values are initially assigned occurrence based levels, as explained above in
reference to Figures 6B and 6C. However, in preferred embodiments, before new CA values 701
and disambiguation values 703 are assigned, the division of the CA; and CA, values into levels is

10

15

20

25

30

optimised. The optimisation of levels for CA values follows a similar principle to optimisation of bit
portion values, as described above.

A general aim of level optimisation is to ensure that the number NLCe“}] of CA values in each level

is divisible by 2X¢¥ without remainder, where Lev is the level. This ensures efficient use of the
assigned new CA values and disambiguation values.

This can be represented mathematically as:
NEA mod 24 = Equation 6

For example, as shown in Figure 6B, Level 2 includes 3 CA values, so NLCe[,l, = 3, and for Level

2, Lev = 2, therefore the number Nfe[,l] of CA values in the level is not divisible by 2-€V

a remainder.

without

Specifically:
NEA mod 2'° = 3 mod 2° = 3mod 4 = 3

In some examples, the condition NLCe“,‘, mod 2%V = 0 is satisfied by moving the highest-occurring
CA values in the level from level Lev to level Lev -1. In other examples, the condition

NLC(;‘,‘, mod 2Y¥Y = 0 may be satisfied by adding additional CA values to the level (e.g. the least-
occurring CA value(s) from level Lev -1 are moved to level Lev).

In the present example, the least-occurring CA value, 101, from level 1 is moved to level 2.

In this way, the levels are optimised such that the number of CA values in each level is a multiple

of 2L¢? or equal to 2-€?, thus satisfying N4, mod 217 = 0.

This process of determining whether the condition NLCe“,‘, mod 2'¢V = 0 is satisfied is repeated for

each level of each combination array, in this example combination arrays CA,; and CA,.

As described in relation to optimising levels of BP values, for level O, NLCe[,lJ mod 25V wil

always equal 0, because 2° is equal to 1. Therefore, the condition NLCe[,l, mod 2V = 0 is
always fulfilled for level O, regardless of how many CA values are presentin level 0.

Preferred further conditions for optimising CA levels are described below.

In Figures 7A and 7B, the levels of CA, and CA, are optimised using the condition above and the
further preferred conditions for optimising described below.

Once the levels of CA; and CA; have been optimised, each of the CA; and CA, values can be
assigned a new CA value 701 and a disambiguation value 703.

As described below, where a bit portion permutation is made up of a particular CA, value and a
particular CA; value, the new CA values 701 and disambiguation values 703 associated with the

10

15

20

25

34

CA, value and the CA, value are combined to generate a label for the bit portion value
represented by that permutation.

In a simplified example, the CA, value 011 may be assigned a new CA value of 2, and a
disambiguation value of 1. The CA, value 101 may be assigned a new CA value of 3, and a
disambiguation value of 2.

To generate a label for the bit portion permutation 011101, the new CA values and
disambiguation values for the CA values 011, 101 are combined. Specifically, new CA values 2
and 3 are combined by addition to give a combined new CA value of 5. New disambiguation
values 1 and 2 are combined by addition to give a combined disambiguation value of 3. The label
for bit portion permutation 011101 is created using the combined new CA value and the
combined disambiguation value, so the label is 5, 3 — which is preferably represented in binary,
as 10111. The bit portion permutation 011101, comprising 6 bits, is therefore represented using
the label 10111, which comprises 5 bits. As the label comprises fewer bits that the bit portion
permutation it represents, compression is achieved for all bit portions 205 having bits arranged in
that bit portion permutation.

As can be seen in Figures 7A and 7B, new CA values 701 are assigned based on the level a CA
value is in, in a similar way to assigning new BP values as described above. As a general rule,
the lower the level (where Level O is the lowest), the fewer CA values are assigned the same
(repeated) new CA value. In this embodiment, maximum number of repetitions of a new CA value
is set to be 2.¢Y, where Lev is the level of the CA values being assigned new values. This
ensures that the maximum instance of CV values with a high frequency of occurrences is small
and the maximum instance of CV values with a low frequency of occurrence is larger. For
example, in level 3, the same new CA value can be assigned to up to 8 CA values.

A more general example of new CA value repetition is shown in Table 7, below.

CA Value | CA Level New CA Value
ao Level O jo
a, Level O i1
a Level O i2
as Level O i
ay Level O ja
as Level 1 s
ag Level 1 s
a, Level 1 i
ag Level 1 i
ag Level 2 j7
a1o Level 2 j7
ary Level 2 j7
ary Level 2 j7
Table 7

10

15

20

25

30

35

35

As shown in Table 7, each new CA value is repeated 2V times. In level 0, new CA values are
repeated 2° = 1 times each. In level 1, new CA values are repeated 2' = 2 times each. In level 2,
new CA values are repeated 2° = 4 times each.

Since the assigned new CA values do not unambiguously identify an associated CA value in all
cases, a disambiguation value is used to identify a particular one of the multiple CA values
associated with the same new CA value.

The condition that the maximum number of repetitions of a new CA value in a level is 2L¢¥
ensures that the most frequently occurring CA values are assigned the shortest disambiguation
values. For example, the CA values in the first level (Level 0) are each assigned unique new
values, since 2° = 1 (as can be seen in Figures 7A and 7B). No disambiguation values are
therefore used for CA values in level 0.

When assigning new CA values 701 to the CA values in level 1 onwards, the same new CA
values 701 can be assigned to multiple CA values. Where this re-use of new CA values 701
occurs, the number of disambiguation values 703 which are needed corresponds to the number
of bit portion values which have been assigned the same new bit portion value.

Considering Figures 7A in detail, in CA, the two CA values in level O are assigned new CA values
of 0 and 1 respectively. The instance column in Figure 7A provides a count of new CA values,
starting at 0. As can be seen from the instance column, there is only a single instance of each of
the level 0 CA values. Therefore, no disambiguation information is assigned to either of the level
0 CA values.

The two CA values in level 1 are both assigned a new CA value of 2, and therefore the first (e.g.
most occurring) level 1 CA value is assigned an instance value of 0 and the second (e.g. next
most occurring) level 1 CA value is assigned an instance value of 1. Disambiguation values 703
are also assigned to the CA values. In this first combination array, CA,, the disambiguation
values can simply use the instance values, as there are no previous combination arrays to affect
the disambiguation values.

In Figure 7A there are four CA values in level 2, and therefore these CA values are all assigned a
new CA value of 3, and disambiguation values of 0, 1, 2 and 3, corresponding to their instance
values.

Considering Figure 7B in detail, in CA, level 0 contains two CA values, and each is assigned a
new CA value with a single instance - in this case the new CA values are 0 and 4 respectively.
The two CA values in level 1 of CA; are assigned a new CA value of 8, while the four CA values
in level 2 of CA, are assigned a new CA value of 12.

The new CA values assigned in CA, and CA; are selected such that any combination of new CA
values from each of the combination arrays results in a unique combined new CA value.

Figures 8A to 8D are tables detailing possible combined new CA values with their corresponding
new CAg values and new CA, values.

Figure 8A is a table detailing every possible combination of new CA, values and new CA; values
for the example illustrated in Figures 7A and 7B. As can be seen, the resulting combined new CA

10

15

20

25

30

35

36

values contain no repetitions. Each combined value uniquely identifies a particular combination of
a new CA, value and a new CA; value — for example the combined new CA value 7 can only be
arrived at by combining new CA values 3 and 4 (using addition in this embodiment).

The new CA, values are consecutively numbered from 0 to 3, while the new CA; values are
multiples of 4, from 4*0 to 4*3. As can be seen Figure 8A, this results in efficient assigning of
combined new CA values, because all the resulting values are consecutive, thus ensuring that
the largest combined new CA value is as small as it can be (15 in this example).

More generally, the new CA values assigned for a combination array are multiples of the highest
new CA value in the previous array + 1.

Figure 8B shows the combined new CA values for the example illustrated in Figures 7A and 7B in
binary. The number of binary bits used to represent each of the combined new CA values is
based on the size of the maximum combined new CA value, which in this example is 15. The
number 15 is represented using four bits in binary (1111) and therefore all combined new CA
values are represented using four bits.

Figure 8C shows generalised new CA values for CAq and CA; where CAy is assigned new CA
values from X, to X, and CA; is assigned new CA values from Y, to Y,. As can be seen in Figure
8C, in preferred embodiments the combined new CA values are generated by adding the
corresponding new CA, and CA, values together.

Figure 8D shows a further generalised way of assigning combined new CA values. In this Figure,
each of the combined new CA values are unique (represented by values z, to z,), however these
values can be generated using any method and are not necessarily generated by adding together
new CA values of CA; and CA;.

As can be seen from Figure 7A and 7B, the way in which the disambiguation values 703 are
assigned for a configuration array depends on the disambiguation values 703 used in the
previous combination array. In Figure 7B, the “Instance” column shows the same Instances as
Figure 7A. However, the three disambiguation value columns in Figure 7B show how the
disambiguation values of CA, change based on the previous combination array, CA,.

In a similar way as described above in relation to new combination arrays, the disambiguation
values of combination arrays, such as CA, and CA,, are combined to generate a combined
disambiguation value.

The disambiguation values assigned in CA, and CA, are selected such that any combination of
disambiguation values from each of the combination arrays results in a unique combined
disambiguation value. Furthermore, the disambiguation values are preferably selected such that
the smallest possible integers are used as disambiguation values, while still resulting in unique
combined disambiguation values.

This can be seen in Figure 9, which is a table detailing possible combination of CAq
disambiguation values and CA; disambiguation values, and the resulting combined
disambiguation values, represented in binary.

10

15

20

25

30

35

40

37

As can be seen, the disambiguation values associated with the combination array depends on
the level of the CA values being combined.

If both of the new CAy and CA; values are in level 0, there are no disambiguation values to be
combined. This means that the resulting label for the bit portion permutation corresponding to
such CA values will include a combined new CA value (in this example comprising four bits) but
will not include a combined disambiguation value. The new CA values in level O are the most
occurring values and therefore this method of generating labels ensures that the bit portions
comprising the most occurring CA values will be assigned the shortest labels.

In all other instances, Figure 9 shows the possible CA disambiguation values for each
combination array and the resulting combined disambiguation values for the example illustrated
in Figures 7A and 7B.

As can be seen, the disambiguation values for CA, are 0-1 for level 1 and 0-3 for level 2. The
disambiguation values for CA; for level 1 can be 0-1, 0 and 2, or 0 and 4; while for level 2 the
disambiguation values can be 0-3; 0, 2, 4 and 6; or 0, 4, 8 and 12.

This ensures that all the resulting combined disambiguation values contain no repetitions. Each
combined disambiguation value uniquely identifies a particular combination of a CAq
disambiguation value and a CA, disambiguation value. Furthermore, as can be seen Figure 9,
this results in efficient assigning of combined disambiguation values, because all the resulting
combined disambiguation values in each table of Figure 9 are consecutive, thus ensuring that for
each possible combination of disambiguation values the largest combined disambiguation value
is as small as it can be (maximums may be 1, 11, 111 or 1111 in this example).

More generally, the disambiguation values assigned for the CA; combination array are multiples
of the highest disambiguation value in CA, + 1 (with the multiples starting at 0).

The number of bits used to represent each combined disambiguation value depends on the
maximum combined disambiguation value for the levels being combined. For example, combining
the disambiguation value 2 from level 2 of CA, and 4 from level 2 of CA; results in a combined
disambiguation value of 6 which is represented in binary using 4 bits as 0110 because the
maximum combined disambiguation value for combining CA, level 2 with CA; level 2 is 15 which
in binary using 4 bits is 1111. It can be seen in Figure 9 that by adding together the levels
associated with each combination array determines the length, in bits, of the combined
disambiguation values, for example combining CA, level 1 with CA; level 2 results in a 3 bit
disambiguation length.

Generally, the higher-occurring the CA values being combined are, the fewer bits will be present
in the combined disambiguation value. As explained above, the bit portions comprising the most
occurring CA values will be assigned the shortest labels, in which the labels do not include
disambiguation information.

Figure 10 illustrates how labels are assigned to bit portions permutations, by dividing the bit
portion into combination arrays according to the chosen CA configuration and combining the new
CA values and instance values associated with the combination array values of each of the
combination arrays 207 of the bit portion 205.

10

15

20

25

30

35

40

38

As shown in the example of Figure 10, the length of the first part (the “Combined new CA value”)
in bits remains constant for all bit portion values in a processing segment 203, while the length of
the second part can vary, or the second part may not be used at all to identify some bit portion
values.

Advantageously, using labels in which the length of the first part is constant means that during
decompression the labels can be read more easily by the decompression apparatus 505, for
example requiring less processing power, compared to existing compression methods which use
labels which are based on prefix code alone.

This is because the decompression apparatus does not need to analyse each individual incoming
bit in order to determine the division between labels. Instead, the decompression apparatus 505
can determine from the header 211 how many bits the first part of each label will comprise (for
example in Figure 10 the first part always comprises 4 bits, for instance 0000). It can also
determine from the header how many instance bits (if any) will follow a first part from the value of
the first part itself (e.g. first part 0010 in Figure 10 is always followed by one bit - either a 0 or a

1).

Figure 11 is a table listing all of the possible bit portions of length Lgzp = 6 bits and the labels
assigned to each bit portion permutation, based on the combination arrays CA, and CA; in
Figures 7A and 7B. As can be seen, the labels vary in length from 4 bits to 8 bits. The 4 bit labels
are associated with the most occurring combined CA values, while the 8 bit labels are associated
with the least occurring combined CA values. As explained above, the most occurring CA values
do not have any disambiguation value assigned, and therefore the 4 bit labels associated with the
most occurring combined CA values comprise only the combined new CA value part, without a
combined disambiguation value part.

The labels made up of 5, 6, 7 and 8 bits all comprise a 4 bit combined new CA value part, along
with a combined disambiguation value part which comprises 1, 2, 3 or 4 bits respectively.

It is noted that bit portions with 4 bit labels occur approximately twice as frequently as bit portions
assigned a 5 bit label, four times as frequently as bit portions assigned a 6 bit label, eight times
as frequently as bit portions assigned a 7 bit label and sixteen times as frequently as bit portions
assigned an 8 bit label. This is because each additional bit in the disambiguation value
represents an approximate halving of frequency of occurrence of the combined combination
values. This is in turn due to the fact that the disambiguation value assigned to each CA value,
for example as shown in Figures 7A and 7B, is based on the level of the CA value, which is
determined based on frequency analysis. It is noted that the effect of optimising levels means that
the halving of frequency between successive levels is only approximate.

Figures 12A to 12D are examples of generating new CA values (and disambiguation values) for
bit portions having a bit portion length Lgp of 8 bits, using a CA configuration of [5,3] — a five bit
combination array and a three bit combination array.

Figures 12A shows the new CA values assigned to the original CA values of the 5-bit CAg and the
3-bit CA; combination arrays. The CA values of the 5-bit CA, are divided into 3 levels, and the CA
values of the 3-bit CA, are also divided into 3 levels.

10

15

20

25

30

35

39

Figure 12A shows that the resulting maximum combined new CA value would be 63. This value
can be representing in binary using 6 bits, and therefore the minimum bits label length is 6 bits.

The combined new CA values are generated by combining the two combination arrays - 5-bit CAq
and 3-bit CA; — which each have 3 levels, and therefore the total number of levels in the
combination arrays is 6.

Figure 12B shows the possible disambiguation value lengths (in bits) in relation to the levels of
the CAq and CA, values being combined in Figure 12A.

It can be seen in Figure 12B that each disambiguation value length (in bits) is the sum of levels of
the CA values being combined — for example combining CA, level 1 with CA4 level 2 results in a 3
bit disambiguation length.

The greatest number of bits used for the combined disambiguation values can also be
determined by subtracting the number of arrays being combined from the total number of levels in
the arrays. In this case, the total number of levels in the combination arrays is 6, and the number
of arrays being combined is two, to the maximum combined disambiguation length is 4 (6 — 2 =
4).

As all combined CA values comprise 6 bits, the label length (in bits) is shown in Figure 12B as
the disambiguation bit length + 6.

As can be seen from Figure 12B, only 3 combinations have an label bit portion length of more bits
than the input bit portion length (8 bits), meaning that 67% of the labels are either the same size
or smaller than the input bit portion length.

In in Figure 12C, the same CA configuration of [5,3] is used, however in this example the 5 bit
combination array has been changed to use 4 levels instead of 3.

Figure 12C shows that the resulting maximum combined new CA value would be 31. This value
can be representing in binary using 5 bits, and therefore the minimum bits label length is 5 bits.

The combined new CA values are generated by combining the two combination arrays - 5-bit CAq
and 3-bit CA; —which have 4 and 3 levels respectively, and therefore the total number of levels in
the combination arrays is 7.

Figure 12D shows the possible disambiguation value lengths (in bits) in relation to the levels of
the CAq and CA, values being combined in Figure 12C.

It can be seen in Figure 12D that each disambiguation value length (in bits) is the sum of levels of
the CA values being combined — for example combining CAg level 3 with CA, level 1 results in a 4
bit disambiguation length.

The greatest number of bits used for the combined disambiguation values can also be
determined by subtracting the number of arrays being combined from the total number of levels in
the arrays. In this case, the total number of levels in the combination arrays is 7, and the number
of arrays being combined is two, to the maximum combined disambiguation length is 5 (7 — 2 =
5).

10

15

20

25

40

As all combined CA values comprise 5 bits, the label length (in bits) is shown in Figure 12B as
the disambiguation bit length + 5.

As can be seen from Figure 12D, only 3 combinations have an label bit portion length of more
bits than the input bit portion length (8 bits), meaning that 75% of the labels are either the same
size or smaller than the input bit portion length.

It is noted that even though the number of levels used for CA, in Figures 12C and 12D has
increased from 3 to 4, the maximum label size in bits remains at 10 bits.

Preferred conditions for optimising CA levels

In preferred embodiments, level optimisation is based on the following conditions.

Firstly, the number of levels in a combination array should not exceed the combination array
length:

NievelsMaX _ Equation 7

Secondly, the number NLCe[,lJ of combination array values in each level should be divisible by
2Lev

N4 mod 2t¢7 = 0 Equation 8

Thirdly, the maximum new combination array value assigned to one or more values in a
combination array should equal a target maximum new combination array value.

MaxNewCAVal = TargetMaxNewCAV al Equation 9

Where the target maximum new combination array value assigned to one or more combination
array values is defined as follows:

I NLevels 1
TargetMaxNewCAVal = 2l 0g, (NEH*)| +1 _ 1 Equation 10
And the maximum new combination array value is defined as follows:

Lev=NLgets

N
MaxNewCAVal = Z -1

Equation 11
L¢4 is the combination array length in bits;

NEEVe!S is the number of levels into which the combination array values of a combination array
207 are divided;

10

15

20

25

30

35

41

NLEvelsMAX s the maximum number of levels into which the combination array values of a

combination array 207 can be divided,
Lev is the level index, for example Lev = 0 for level 0 and Lev = 1 for level 1,

MaxNewCAVal is the maximum new combination array value assigned to one or more
combination array values in a processing segment

TargetMaxNewCAVal is the target maximum new combination array value assigned to one or
more bit portion values in a processing segment;

NLCe‘,‘}] is the number of combination array values in a level,

However, in some situations not all conditions can be met. For example, if only two levels are
present, it may not be possible for the maximum new combination array value to equal the target
maximum new combination array value, but all other conditions can be met. In such situations, for
example in Figure 5B, the combination array configuration can still be used, as compression is
still achievable.

Splitting the analysed CA values into more levels generally results in a smaller maximum new
value and ultimately smaller labels being assigned to bit portions.

Hard-to-compress data

It is possible to achieve compression using the above described methods even if the frequency of
occurrence of BP/CA values is substantially even across all possible BP/CA values and thus all
BP/CA values exist in the same level, so long as at least one of the BP values and/or CA values
has an occurrence of 0.

Compression can be achieved in such cases by assigning one of the BP values and/or CA values
to a different level (e.g. assigning the first BP/CA value to level 0 and all others to level 1). This
causes the first BP and/or CA value to be assigned fewer disambiguation value bits than the
remaining BP and/or CA values (for example, the BP value in level 0 may not be assigned a
disambiguation value, and as a result the label assigned to the BP value in level 0 will be 1 bit in
length smaller than the BP values in level 1).

For example, using a bit portion length of 8 bits, the BP value of level 0 is assigned a new BP
value of 0000000 with no disambiguation information. This level 0 BP value is therefore assigned
a label which is 7 bits long; 1 bit shorter than the original 8 bits of the BP value. The remaining BP
values are assigned new BP values of 1-127 (0000001 — 1111111), each with a disambiguation
value of either 0 or 1. Therefore, the level 1 new BP values are assigned labels with 8 bits, which
is the same number of bits as the original BP values.

Due to the relatively small size of the header in most situations, compression can still be
achieved even if BP/CA value in level 0 has exactly the same number of occurrence as all other
BP/CA values. This occurs more often when using smaller bit portion lengths because the
occurrence values are higher and offset the header size. It is noted that that the BP/CA values
are preferable not sorted to achieve this compression, in order to avoid having to use a larger

10

15

20

42

header to indicate how the BP/CA values have been sorted. Therefore, the BP/CA value
assigned to a different level (e.g. level 0) need not be the most occurring.

It should be noted that for each additional BP value and/or CA value that is not in use
(occurrence is 0), the compression which can be achieved increases.

For example, if two BP/CA values have an occurrence of 0, the first two BP/CA values can be
assigned to level 0 and the remaining BP/CA values would be assigned to level 1. The result
would be that the two new BP/CA values in level O are assigned labels which are 1 bit shorter
than the original BP/CA values. All other BP/CA values would be assigned labels which are the
same length as the original BP/CA values.

For a substantially evenly distributed processing segment, new BP/CA values and
disambiguation values are assigned in the same way, until the point at which 50% of the available
BP/CA values be not in use. At this point, all BP/CA values can be assigned to level 0 and
compression can still be achieved.

If more than 50% of the BP/CA values have an occurrence of 0, higher compression can be
achieved by assigning new BP/CA values and disambiguation values are in the same way as
described above. At this point each additional BP/CA value with an occurrence of 0 can be
assigned to level 0, resulting in labels which are two bits shorter. The other BP/CA values can be
assigned to level 1, resulting in labels which are one bit shorter than the original BP/CA values.

Number of BP/CA values with | No. of bits saved in level 0 | No. of bits saved in level 1
occurrence greater than 0

128 to 255 1 bit less 0 bit less

64 to 127 2 bits less 1 bit less

32t063 3 bits less 2 bits less

16 to 31 4 bits less 3 bits less

8to15 5 bits less 4 bits less

4t07 6 bits less 5 bits less

17103 7 bits less 6 bits less

Table 10

Table 10 shows the number of bits saved for a BP/CA with length of 8 bits, depending on the

number of BP/CA values with occurrence greater than 0.

Bit Portion Length | Number of different possible | Expected number of occurrences of
(in bits) BP values (i.e. permutations | each possible BP value in a
of bits) processing segment of length 64KB

1 2 262144

2 4 65536

3 8 21846

4 16 8192

5 32 3277

6 64 1366

7 128 586

8 256 256

9 512 114

10

15

20

25

10 1024 52
11 2048 24
12 4096 11
13 8192 5
14 16384 3
15 32768 2
16 65536 1
Table 11

Table 11 shows the expected number of occurrences of each possible BP value in a processing
segment of length 64KB, where all possible BP values occur in the processing segment, and the
frequency of occurrence of BP values is substantially even across all possible BP values. For
example, if the bit portion length is 1, each of the possible BP values (0 and 1) would be expected
to occur 262144 times in the processing segment of 65536 bytes (64KB).

In the case where the frequency of occurrence of BP values is substantially even across all
possible BP values, but at least one BP value does not occur, the number of bits which can
potentially be saved is the expected number of occurrences of each possible BP value in a
processing segment shown in Table 11 above (less the size of the header). For example, for a bit
portion length of 3, if only 7 of the 8 possible BP values occur in the processing segment, 21846
bits could potentially be saved (less the size of the header). As long as the header does not
exceed the expected number of occurrences, compression can be achieved.

The expected number of occurrences of each possible BP value in Table 11 is given by:

BP _ _ Lps .
Noccurrences = Lppx2LBP Equation 12

Where:
Lpg is the processing segment length in bits.

Table 12 shows the expected number of occurrences of each possible CA value for a bit portion
length of 4 bits.

Bit Portion Combination array | Number of different | Expected number of occurrences of
Length (in Length (in bits) possible CA values | each possible CA value in a processing
bits) (i.e. permutations segment of length 64KB
of bits)
4 1 2 65536
4 2 4 32768
4 3 8 16384
4 4 16 8192
Table 12

The possible CA configuration for a bit portion length of 4 are [1,1,1,1], [1,1,2,0], [1.2,1,0],
[1,3,0,0], [2,1,1,0], [2,2,0,0], [3,1,0,0], [4,0,0,0]. Therefore, as shown in Table 12, CA lengths of 1,
2, 3 and 4 are possible.

Table 12 shows the expected number of occurrences of each possible CA value in a processing
segment of length 64KB, where all possible CA values occur in the processing segment, and the

10

15

20

25

30

35

44

frequency of occurrence of CA values is substantially even across all possible CA values. For
example, if the CA length is 1, each of the possible CA values (0 and 1) would be expected to
occur 65536 times in the processing segment of 65536 bytes (64KB).

In the case where the frequency of occurrence of CA values is substantially even across all
possible CA values, but in one combination array at least one CA value does not occur, the
number of bits which can potentially be saved is the expected number of occurrences of each
possible CA value in a processing segment shown in Table 12 above (less the size of the
header). For example, for a CA length of 3, if only 7 of the 8 possible CA values of a combination
array occur in the processing segment, 16384 bits could potentially be saved (less the size of the
header). As long as the header does not exceed the expected number of occurrences,
compression can be achieved.

The expected number of occurrences of each possible CA value in Table 12 is given by:

CA _ __Lps .
Noécurrences = Lapx2kca Eq uation 13

Header Structure

Figures 13A to 13D are simplified representations of four exemplary header structures.

As stated previously, preferably, each header starts with a compression method signature, and
provides information relating to the chosen bit portion length Lge, the combination array
configuration used, the size of the original processing segment 203, and information on how
labels were assigned to each of the bit portions 205. Figures 13A to 13D are preferred header
structures.

Header Format 0

As shown in Figure 13A, the header starts with a signature. In this example, the signature is
referred to as a “SISP” signature, which is an exemplary trade name for the presently described
compression method. The “SISP” signature is 32 bits long.

The header also specifies the bit portion length Lgp, which in this example is allocated 4 bits in the
header (and therefore, in this example, the bit portion length Lgp can be a maximum of 16 bits).
The number of bits allocated to the bit portion length Lgp in the header may be CPU dependent.

The CA configuration is also specified in the header, which uses Lgp bits. Preferably, the CA
configuration is specified by its reference number, which (in combination with knowledge of the bit
portion length Lgp) unambiguously identifies the CA configuration used to assign labels to the bit
portions 205.

Furthermore, the size of the processing segment (in bytes) is specified, and in this embodiment
the processing segment size can be between 0 and 65535 bytes because the length of the
processing segment size part of the header is 16 bits as shown.

Also, in preferred embodiments, multiple different header formats can be used (e.g. 3). The
header format can be chosen based on which will result in the smallest total header size for a

10

15

20

25

30

35

45

processing segment. Therefore, the header includes a part comprising two bits for indicating the
header choice.

As described above, the CA configuration may use any number of arrays within a range, where
the range is from one array to Lgp arrays (Lgp arrays would occur when all arrays are one bit in
size). The header contains information relating to each of the combination arrays in the
combination array configuration, and therefore as a minimum the header will contain CAq
information if only one array is used by the CA configuration.

In the example given in Figure 13A, the CA configuration uses more than one array, and
therefore the combination array information comprises CA, information through to CA,
information.

As shown, the CA, information comprises a count for each of levels 0 to Lcae, where the count
indicates how many CA, values are present in the respective level. The count can be from level O
to level Lcao because the maximum number of levels in a combination array is length of the
combination array in bits (Lca).

The CA, information further comprises a single bit indicator to indicate whether the CA, values
are sorted (e.g. by frequency of occurrence).

The CA, information also comprises frequency of occurrence information, which indicates the
rankings of CA, values and whether they are in use.

Specifically, if the CA values have been sorted, all possible CA values are written out in order of
occurrence, including any CA values having an occurrence of 0.

If the CA values have not been sorted, then a single bit for each possible CA value is written out
in unsorted order, where a value of O represents no occurrences of the CA value and a value of 1
represents one or more occurrences of the CA value.

As shown, the CA, information comprises the same information fields as the CA, information.

It will be appreciated that equivalent information as the CA, information and CA, information will
be included in the header for any intervening combination arrays present in the CA configuration.

Header Format 1

Figure 13B illustrates header format 1. The header format contains the same parts as header
format O, with the exception of the frequency of occurrence information.

Specifically, for header format 1, if the CA values have been sorted, a single bit for each possible
CA value is written out in unsorted order, where a value of 0 represents no occurrences of the CA
value and a value of 1 represents one or more occurrences of the CA value. In addition to the
occurrence indicating bit, additional bits may be included after this bit, depending on whether or
not the occurrence is 0 and whether the CA value has been swapped with another CA value. If
the occurrence of a CA value is greater than O and the CA value has not been swapped, a “swap
indicator” bit of O is included after the occurrence indictor bit. If the occurrence of a CA value is
greater than 0 and the CA value has been swapped, then a “swap indicator” bit is included after

10

15

20

25

30

35

46

the occurrence indictor bit along with the swapped CA value assigned to the CA value (where the
swapped CA value is represented in bits).

If the CA values have not been sorted, then a single bit for each possible CA value is written out,
where a value of 0 represents no occurrences of the CA value and a value of 1 represents one or
more occurrences of the CA value.

As shown, the CA, information comprises the same information fields as the CA, information.

It will be appreciated that equivalent information as the CA, information and CA, information will
be included in the header for any intervening combination arrays present in the CA configuration.

Advantageously, header format 1 does not write out every possible CA value in the CA value
frequency of occurrence information part, and therefore the resulting header is smaller.

Header Format 2

Figure 13C illustrates header format 2. The header format contains the same parts as header
format 1, with the exception that the frequency of occurrence information specifies the first
occurring CA value (in this example 000) and the last occurring CA value (in this example 110),
and that no information on CA values before and after these first and last occurring CA values is
included.

As shown, the CA, information comprises the same information fields as the CA, information.

It will be appreciated that equivalent information as the CA, information and CA, information will
be included in the header for any intervening combination arrays present in the CA configuration.

Advantageously, header format 2 does not write out every possible CA value in the CA value
frequency of occurrence information part, and therefore the resulting header is smaller.

Header Format 3

Figure 13C illustrates header format 3. This header format contains the same parts as the other
header formats, with the exception that no frequency of occurrence information is included. This
means that header format 3 is preferably only be used if all CA; to CA, values occur in the
processing segment and no sort has occurred.

It is noted that the headers advantageously don’t require the mapping between each CA (or BP)
value and the corresponding new value (or label) to be written out specifically. The header
instead just indicates how the permutations (BP or CA values) have been grouped, which allows
a decompression apparatus to determine the mapping between each CA (or BP) value and the
corresponding new value (or label).

Reprocessing processed_segments and associated headers

Once all of the bit portions 205 of a processing segment 203 have been assigned labels, a
processed_segment 209 is output in which the bit portions are represented using their respective
labels. A header 211 is output with the processed_segment 209 in order to allow the processed
segment 209 to be decompressed (e.g. by a decompression apparatus 505).

10

15

20

25

30

35

47

In preferred embodiments, the processed_segment 209 and associated header 211 are then
reprocessed, using the methods described above, treating the processed_segment 209 and
associated header 211 as a new processing segment 203. The reprocessing of the processed
segment 209 and associated header 211 results in the generation of a new processed_segment
209 and new associated header 211, where the total size in bits of the new processed_segment
209 and new associated header 211 is less than the total size in bits of the processed_segment
209 and associated header 211.

In alternative embodiments, the compressed file 202 is reprocessed, by dividing the compressed
file 202 into new processing segments and performing the methods for compression described
above.

Although it is recognised that generally it is not possible to recompress data using the same
compression method, the methods of compression described in this application advantageously
allow the way in which data is processed to be significantly varied, on the fly, (for example
changing bit length, changing CA configuration, changing grouping (levels) of permutations (BP
or CA values), in order to allow data to be recompressed at least once.

Alternative Method for Calculating Target Maximum BP values and CA values

Figure 14 illustrates the target maximum BP and/or CA values calculated in accordance with an
alternative embodiment. In this embodiment, the target maximum new bit portion value assigned
to one or more bit portion values in a processing segment is defined as follows:

{1092 [1092 (Ng}’)esent)J

+1

TargetMaxNewBPVal = 2 -1 Equation 14
NPresent : : : : : :
BP is the number of bit portions with an occurrence greater than 0 in the processing
segment.

Similarly, in this embodiment, the target maximum new CA value assigned to one or more CA
values in a processing segment is defined as follows:

Present) J

{log2 llogz(NCA +1

-1 Equation 15

TargetMaxNewCAVal = 2

NETesent s the number of combination arrays with an occurrence greater than 0 in the

processing segment.

As can be seen from Figure 14, in an example where only 255 out of 256 possible bit portions are
present in a processing segment (where a bit portion length Lgr = 8 is being used), the target
maximum BP value is 7 rather than 15. Since 7 can be represented in binary using one less bit
than 15, this means that the label assigned to the most occurring BP values will be one bit less.

This method of calculating the target maximum new bit portion value can advantageously achieve
higher levels of compression; however it may require additional manipulation of the levels. For
example, in some cases the number of levels determined using frequency analysis will be too low
to achieve the target maximum new bit portion value. Therefore, in some embodiments where

10

15

20

25

30

48

this method of calculating the target maximum new bit portion value is used the bit portions
values may be divided into levels using methods different to those described above.

Modifications and Alternatives

Detailed embodiments have been described above. As those skilled in the art will appreciate, a
number of modifications and alternatives can be made to the above embodiments whilst still
benefiting from the inventions embodied therein.

Although it is described above that a “file” is compressed, it will be appreciated that any data may
be compressed using the same methods as described.

The processing segments 203 can have different sizes to one another even when forming part of
the same file. In one example this allows the final segment 203 of a file 201 to have a smaller
size than the other segments, avoiding the need to use padding bits/bytes. In other examples the
size of the processing segments 203 can be chosen using a similar method to that used to
choose the size of bit portions 205.

The bit portions 205 are generally all of the same size within a processing segment 203; however
in some embodiments the bit portions 205 may be of different sizes (i.e. have different bit portion
lengths) within a processing segment 203.

In some alternative embodiments, each bit portion corresponds to a byte (i.e. 8 bits) of the
processing segment, and there is no further division of the bit portions into combination arrays.

In some embodiments, different bit portions of the same processing segment may be divided into
different configurations of combination arrays, which allows further exploitation of patterns,
repetition and/or redundancy in a processing segment 203.

Although Figure 3A shows the frequency analysis starting with a bit portion length of 2 bits, it can
start at any bit portion length, for example 1 bit or 3 bits.

In other alternative embodiments, the target maximum new bit portion value assigned to one or
more bit portion values in a processing segment is defined as follows:

NLevels
TargetMaxNewBPVal = Lgp — { P]

2

Similarly, in this embodiment, the target maximum new CA value assigned to one or more CA
values in a processing segment is defined as follows:

N Levels
TargetMaxNewCAVal = L¢cy — { =]

2

This method of calculating the target maximum new bit portion value and/or new CA value is
simpler and therefore the calculation can be made more quickly and/or using less processing
power, although the level of compression achieved may not always be as high.

Although in the description above “levels” are defined

10

15

20

25

30

35

49

In some alternative embodiments, the labels assigned to bit portions may be configured to be
larger than the bit portions themselves, for example to increase the level of encryption.

It will be appreciated by those skilled in the art that binary can be written right to left or left to
right. For example, the binary string 00010 would be considered to represent the number 2 if
written right to left, but would be considered to represent the number 16 if written left to right. In
preferred embodiments, the binary used in the methods described above is written left to right as
this can make the decompression process quicker and easier when using variable bit length. For
example, writing the binary left to right can make it easier to identify any padding bits included at
the end of a processing segment.

In some alternative embodiments, no extraction information is included in a compressed file. In
some cases, the same configurations are used to process all processing segments, and therefore
the decompression apparatus can use information corresponding to a “static header” for
decompressing all processed segments. In some alternative embodiments, extraction information
is output separately to the processed segments.

Not including a header with processed segments can be particularly advantageous when
encrypting data, as the “static header” acts as a key for compression, where the key is private
and only available to the compression and decompression apparatus.

In some embodiments, for example when processing large amounts of similar data, all
processing segments are processed in the same way, using the same configurations, and
therefore no header is guaranteed by the compression apparatus 105, and the decompression
apparatus 505 decodes all processed segments 209 in the same way.

It is noted that not all permutations may be assigned labels.

Various other modifications will be apparent to those skilled in the art and will not be described in
further detail here.

The disclosure of this application also includes the following numbered clauses:

1. A method of processing data comprising an input sequence of bits, the method
comprising the steps of:

(i) identifying a processing bit length for use in processing said input sequence
of bits;

(ii) dividing the input sequence of bits into a plurality of portions wherein each
portion has a respective portion bit length equal to said processing bit length and
wherein the bits in each portion are arranged in a respective portion permutation;

(i) respectively sub-dividing each portion into a plurality of sub-divisions
comprising at least a first sub-division and a second sub-division, wherein each sub-
division of the plurality of sub-divisions comprises at least one bit, wherein the at least

10

15

20

25

30

50

one bit of each first sub-division is arranged in a respective first sub-division
permutation, and wherein the at least one bit of each second sub-division is arranged
in a respective second sub-division permutation;

(iv) performing frequency analysis:

to determine, for each of a plurality of possible first sub-division
permutations, how many times, within said input sequence of bits, a portion
comprises a first sub-division having bits arranged in that possible first sub-
division permutation; and

to determine, for each of a plurality of possible second sub-division
permutations, how many times, within said input sequence of bits, a portion
comprises a second sub-division having bits arranged in that possible second
sub-division permutation;

(v) assigning, based on said frequency analysis, a first respective sub-division
value to each of said plurality of possible first sub-division permutations and assigning
a second respective sub-division value to each of said plurality of possible second
sub-division permutations;

(vi) for each portion permutation of a plurality of possible portion permutations,
generating a respective label representing that portion permutation, wherein said
generating comprises combining:

the first sub-division value assigned to the first sub-division permutation
corresponding to the first sub-division of that portion permutation; with

the second sub-division value assigned to the second sub-division
permutation corresponding to the second sub-division of that portion
permutation;

wherein said respective label comprises a representation of a combined
value resulting from said combining; and

(vii) forming a processed sequence of bits by replacing, within said input
sequence of bits, bit portions comprising bits arranged in one of said plurality of
possible portion permutations, with the respective label representing that one of said
plurality of possible portion permutations.

A method according to clause 1, wherein when generating, for each portion
permutation, a respective label representing that portion permutation, said combining

comprises:

10

15

20

25

30

51

arithmetically adding said first sub-division value assigned to the first
sub-division permutation corresponding to the first sub-division of that portion
permutation to said second sub-division value assigned to the second sub-
division permutation corresponding to the second sub-division of that portion
permutation;

wherein said combined value comprises a result of said addition.

A method according to any preceding clause, wherein when generating, for each
portion permutation, a respective label representing that portion permutation, said
generating further comprises:
when a particular first sub-division value is assigned for a plurality of
different first sub-division permutations:
generating, for each of said respective plurality of different first
sub-division permutations having that particular first sub-division value,
a different respective first additional value for use in discriminating
between said respective plurality of first sub-division permutations
having that particular first sub-division value; and
when a particular second sub-division value is to be assigned for a
plurality of different second sub-division permutations:
generating, for each of said respective plurality of different
second sub-division permutations having that particular second sub-
division value, a different respective second additional value for use in
discriminating between said respective plurality of second sub-division
permutations having that particular second sub-division value.

A method according to clause 3, wherein when generating, for each portion

permutation, a respective label representing that portion permutation, said generating
further comprises:

when a first additional value and a second additional value have been

generated for a particular portion permutation:

combining said first additional value and said second additional

value to produce a combined additional value, wherein the label for

that particular portion permutation comprises a representation of the

10

15

20

25

30

52

combined value together with the combined additional value for that

particular portion permutation.

A method according to clause 3, wherein when generating, for each portion
permutation, a respective label representing that portion permutation, said generating
further comprises:
when one of a first additional value and a second additional value have
been generated for a particular portion permutation:
generating a label for that particular portion permutation that
comprises a representation of the combined value together with that
one of a first additional value and a second additional value.

A method according to any preceding clause, wherein, when respectively sub-dividing
each portion into a plurality of sub-divisions, said first sub-division has a different
number of bits to said second sub-division.

A method according to any preceding clause, wherein when generating, for each
portion permutation, a respective label representing that portion permutation, each
label generated has a respective label bit length, and the labels are generated such
that labels generated for portion permutations which occur a greater number of times
within said input sequence of bits generally have a smaller label bit length than labels
generated for portion permutations which occur a lesser number of times within said
input sequence of bits.

A method according to any preceding clause, wherein when generating, for each
portion permutation, a respective label representing that portion permutation, each
label generated has a respective label bit length, and the labels are generated such
that at least some of the labels have a label bit length which is smaller than the
processing bit length.

A method according to any preceding clause, wherein said frequency analysis
comprises:
for each one of said plurality of possible first sub-division permutations:

10

15

20

25

10.

11.

12.

determining a respective occurrence level which is the number of times,
within said sequence of bits, that a portion occurs comprising that one
of said plurality of possible first sub-division permutations; and

for each one of said plurality of possible second sub-division permutations:
determining a respective occurrence level which is the number of times,
within said sequence of bits, a portion occurs comprising that one of
said plurality of possible second sub-division permutations.

A method according to clause 9, wherein, for a given first sub-division value, the
number of first sub-division permutations which are assigned the given first sub-
division value depends on the occurrence levels associated with the first sub-division
permutations which are assigned the given first sub-division value; and

wherein, for a given second sub-division value, the number of second sub-division
permutations which are assigned the given second sub-division value depends on the
occurrence levels associated with the second sub-division permutations which are
assigned the given second sub-division value.

A method according to clause 9 or 10, wherein when assigning, based on said
frequency analysis, a first (or second) respective sub-division value to each of said
plurality of possible first sub-division permutations, said assigning comprises:

grouping, based on said frequency analysis, said plurality of possible first (or

second) sub-division permutations into a plurality of sets (or ‘levels’);

wherein each set comprises at least one first (or second) sub-division
permutation; and

wherein the at least one first (or second) sub-division permutation in each set
has a corresponding occurrence level that falls within a different respective

range of occurrence levels associated with that set.

A method according to clause 11, wherein for a given first (or second) sub-division
value, the number of first sub-division permutations which are assigned the given first
sub-division value depends on the set associated with the first (or second) sub-
division permutation(s) which are assigned the given first sub-division value.

10

15

20

25

13.

14.

15.

16.

17.

18.

19.

20.

21.

54

A method according to any preceding clause, wherein forming a processed sequence
of bits further comprises including a header portion in the processed sequence of bits,
said header portion comprising extraction information for use in reconstructing said
input sequence of bits from said processed sequence of bits, and the extraction
information being configured for use in identifying the respective portion permutation
which each label represents.

A method according to clause 13, wherein said extraction information is configured for
use in identifying how the said plurality of possible first (or second) sub-division

permutations are grouped into sets.

A method according to clause 14, wherein said extraction information identifies how
many first (or second) sub-division permutations each set comprises.

A method according to any of clauses 13 to 15, wherein the extraction information is
further configured to identify said processing bit length used in processing said input
sequence of bits.

A method according to any of clauses 13 to 16, wherein the extraction information is
further configured to identify how each portion is sub-divided into a plurality of sub-

divisions.

A method according to clause 17, wherein the extraction information is further
configured to identify how many bits each first sub-division comprises and how many
bits each second sub-division comprises.

A method according to any of clauses 13 to 18 wherein the extraction information is
further configured to identify how many bits the input sequence of bits comprises.

A method according to any preceding clause, further comprising repeating steps (i) to
(vii) at least one further time using said processed sequence of bits as said input
sequence of bits.

A method of processing data, the method comprising the steps of:

10

15

20

25

30

22.

55

(i) dividing the data into a plurality of processing segments wherein each
processing segment comprises an input sequence of bits;

(ii) identifying a current processing bit length for use in processing a current
processing segment of said data to form a processed segment meeting at least one
predetermined processing criterion;

(ii) dividing the current processing segment into a plurality of portions wherein
each portion has a respective portion bit length equal to said current processing bit
length and wherein the bits in each portion are arranged in a respective one of a
number of possible permutations;

(iv) assigning a respective label to each of a plurality of said possible
permutations; and

(v) forming a processed segment by replacing, within said current processing
segment, bit portions comprising bits arranged in one of said plurality of possible
permutations with the respective label assigned to that one of said possible
permutations;

(vi) identifying a new processing bit length for use in processing a next
processing segment of said data to form a processed segment meeting at least one
predetermined processing criterion;

(vii) repeating, for each of said plurality of processing segments, steps (ii) to
(vi) wherein the new processing bit length is used as the current processing bit length
and the next processing segment of said data is used as the current processing
segment, and wherein a processing bit length used for at least one of said processing
segments of said data is different to a processing bit length used for at least one other
of said processing segments of said data.

A method of processing data comprising an input sequence of bits, the method
comprising the steps of:

(i) setting a current processing bit length, of at least one bit, for use in
processing said input sequence of bits;

(ii) dividing the input sequence of bits into a plurality of portions wherein each
portion has a respective portion bit length equal to said current processing bit length
and wherein the bits in each portion are arranged in a respective one of a number of

possible permutations;

10

15

20

25

30

23.

24,

25.

56

(i) for each of a plurality of possible permutations analysing the input
sequence of bits to respectively identify how many times, within said input sequence
of bits, a portion having that possible permutation occurs;

(iv) determining whether at least one predetermined processing criterion has
been achieved by comparing results of said analysing with the predetermined
processing criterion;

(v) processing said input sequence of bits based on said determining wherein
said processing comprises:

when the determining determines that the predetermined processing
criterion has not been achieved performing at least one of: setting a new
processing bit length that is different to the current processing bit length and
repeating steps (ii) to (v) using said new processing bit length as the current
processing bit length; and ending processing of said input sequence of bits;
and

when the determining determines that the at least one predetermined
processing criterion has been achieved: assigning a respective label to each of
said plurality of possible permutations; and forming a processed sequence of
bits by replacing, within said sequence of bits, bit portions comprising bits
arranged in one of said plurality of possible permutations with the respective
label assigned to that one of said possible permutations.

A method according to clause 21 or 22, wherein said predetermined processing
criterion comprises whether 50% of the possible permutations which occur in the input
sequence of bits occur at least twice as frequently as the other 50% of the possible
permutations which occur in the input sequence of bits.

A method according to clause 21 or 22, wherein said predetermined processing
criterion comprises whether 50% of the possible permutations occur in the input
sequence of bits.

A method of reconstructing a processed sequence of bits produced by a method
according to any preceding clause, the method comprising the steps of:

(i obtaining extraction information for use in reconstructing an original sequence
of bits from said processed sequence of bits;

10

26.

27.

57

(i) reconstructing said original sequence of bits from said processed sequence of
bits based on said extraction information.

A computer implementable instructions product comprising computer implementable
instructions for causing a programmable communications device to perform the
method according to any preceding clause.

Apparatus for processing data, the apparatus comprising at least one of an electronic
circuit, an integrated circuit chip and a computer processor configured to implement
the method of any of clauses 1 to 25.

10

06 01 %7

N
o

30

58

Claims

A method of processing data comprising an input sequence of bits, the method
comprising the steps of:

(i) setting a current processing bit length, of at least one bit, for use in
processing said input sequence of bits;

(ii) dividing the input sequence of bits into a plurality of portions wherein each
portion has a respective portion bit length equal to said current processing bit length
and wherein the bits in each portion are arranged in a respective one of a number of
possible permutations;

(i) for each of a plurality of possible permutations analysing the input
sequence of bits to respectively identify how many times, within said input sequence
of bits, a portion having that possible permutation occurs;

(iv) determining whether at least one predetermined processing criterion has
been achieved by comparing results of said analysing with the predetermined
processing criterion;

(v) processing said input sequence of bits based on said determining wherein
said processing comprises:

when the determining determines that the predetermined processing
criterion has not been achieved performing at least one of: setting a new
processing bit length that is different to the current processing bit length and
repeating steps (ii) to (v) using said new processing bit length as the current
processing bit length; and ending processing of said input sequence of bits;
and

when the determining determines that the at least one predetermined
processing criterion has been achieved: assigning a respective label to each of
said plurality of possible permutations; and forming a processed sequence of
bits by replacing, within said sequence of bits, bit portions comprising bits
arranged in one of said plurality of possible permutations with the respective
label assigned to that one of said possible permutations.

A method of processing data, the method comprising the steps of:
(i) dividing the data into a plurality of processing segments wherein each
processing segment comprises an input sequence of bits;

10

06 01 17

30

59

(ii) identifying a current processing bit length for use in processing a current
processing segment of said data to form a processed segment meeting at least one
predetermined processing criterion;

(ii) dividing the current processing segment into a plurality of portions wherein
each portion has a respective portion bit length equal to said current processing bit
length and wherein the bits in each portion are arranged in a respective one of a
number of possible permutations;

(iv) assigning a respective label to each of a plurality of said possible
permutations; and

(v) forming a processed segment by replacing, within said current processing
segment, bit portions comprising bits arranged in one of said plurality of possible
permutations with the respective label assigned to that one of said possible
permutations;

(vi) identifying a new processing bit length for use in processing a next
processing segment of said data to form a processed segment meeting at least one
predetermined processing criterion;

(vii) repeating, for each of said plurality of processing segments, steps (ii) to
(vi) wherein the new processing bit length is used as the current processing bit length
and the next processing segment of said data is used as the current processing
segment, and wherein a processing bit length used for at least one of said processing
segments of said data is different to a processing bit length used for at least one other

of said processing segments of said data.

A method according to claim 1 or 2, wherein said predetermined processing criterion
comprises whether 50% of the possible permutations which occur in the input
sequence of bits occur at least twice as frequently as the other 50% of the possible
permutations which occur in the input sequence of bits.

A method according to claim 1 or 2, wherein said predetermined processing criterion
comprises whether 50% of the possible permutations occur in the input sequence of
bits.

A method according to any preceding claim, wherein when generating, for each
portion permutation, a respective label representing that portion permutation, each

label generated has a respective label bit length, and the labels are generated such

10

06 61 17

20

60

that labels generated for portion permutations which occur a greater number of times
within said input sequence of bits generally have a smaller label bit length than labels
generated for portion permutations which occur a lesser number of times within said
input sequence of bits.

A method according to any preceding claim, wherein when generating, for each
portion permutation, a respective label representing that portion permutation, each
label generated has a respective label bit length, and the labels are generated such
that at least some of the labels have a label bit length which is smaller than the
processing bit length.

A method of reconstructing a processed sequence of bits produced by a method
according to any preceding claim, the method comprising the steps of:

(i obtaining extraction information for use in reconstructing an original sequence
of bits from said processed sequence of bits;

(i) reconstructing said original sequence of bits from said processed sequence of
bits based on said extraction information.

A computer implementable instructions product comprising computer implementable
instructions for causing a programmable communications device to perform the
method according to any preceding claim.

Apparatus for processing data, the apparatus comprising at least one of an electronic
circuit, an integrated circuit chip and a computer processor configured to implement
the method of any of claims 1to 7.

) n
7, A
az) R

Intellectual
Property
Office

Application No:

Claims searched:

61

GB1618768.4
1,39

Examiner: Mr Steven Davies

Date of search: 21 January 2017

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category |Relevant | Identity of document and passage or figure of particular relevance
to claims
A - US7773634 B1
(Machiraju)
A - US2002/0021754 Al
(Pian et al)
Categories:
X Document indicating lack of novelty or inventive =~ A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent tamily E Patent document published on or after, but with priority date
earlier than, the filing date of this application.

Field of

Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX :

Worldwide search of patent documents classified in the following areas of the IPC

| HO3M; HO4L

The following online and other databases have been used in the preparation of this search report

| WPL, EPODOC, INSPEC

International Classification:

Subclass Subgroup Valid From
HO3M 0007/40 01/01/2006
HO4L 0009/06 01/01/2006

Intellectual Property Office is an operating name of the Patent Office

www.gov.uk/ipo

	Front Page
	Drawings
	Description
	Claims
	Search Report

