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(57) Abstract

In a telecommunication controller (1), a messaging system allows real time communication between sub-systems such as a main
controller (2) and line cards (3). Requesting applications (5) create a proxy (12) which controls the function call via a middleware engine
(11) in each of the sub-systems (2, 3). A resource middleware engine (11) calls a server (13) which in turn controls performance of the
function on the resource (10). The proxies (12) are transient. The servers (13) are static but may be easily added or deleted according to

resource changes. Applications (5) and resources (10) are decoupled

from the messaging system.
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« A TELECOMMUNICATION CONTROLLER MESSAGING SYSTEM”

INTRODUCTION

Field of the Invention

The invention relates to a messaging system for a telecommunication controller
operating in real time and which comprises multiple distributed sub-systems such as
a main controller and multiple line cards. The invention relates particularly to such

systems which include a number of circuits having embedded software.

Prior Art Discussion

Heretofore, the approach for messaging within such systems has been to provide
dedicated communication protocols tied into hardware buses and interface circuits in
order to achieve real time performance. Such an approach has been satisfactory for

many situations.

However, in recent years there has been a growing requirement for
telecommunication controllers to have inherant flexibility to allow modification.
Such modification is required both to change the functionality of the system and also
to allow growth to cater for ever-increasing transaction volumes. Messaging
protocols which are bound to the higher-level and lower-level functionality tend to

inhibit the ability to modify telecommunication controllers.

Objects of the Invention

It is an object of the invention to provide a messaging system for a

telecommunication controller which allows simple modification of resources which
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perform telecommunication functions and of applications which control and request
the functions.

A development of this object is to decouple the messaging system from the
applications and resources soO that they may be modified independently of the

messaging system.

Another object is to achieve this flexibility without affecting response time so that

real time performance is still achieved.

SUMMARY OF THE INVENTION

The invention provides a messaging system in a telecommunication controller

comprising a plurality of distributed sub-systems, the messaging system comprising:-

means in a requesting sub-system for creating a proxy to control messaging
for a function to be carried out in real time by a resource on a resource sub-
system, the function being requested by an application on the requesting sub-

system;

a middleware engine in the requesting sub-system comprising means for
acting in response to the proxy in real time to generate a function request

message and to transmit said message to the resource sub-system;

a middleware engine in the resource sub-system comprising means for reading
the message, determining a server associated with the function, and activating

the server;

means in the server for controlling performance of the function by the

resource;
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means in the resource middleware engine for passing control back to the

proxy when the function is complete; and
means in the requesting sub-system for terminating the proxy when the
requesting application is satisfied.

Preferably, each middleware engine comprises means for operating as a requesting Or

as a resource middleware engine whereby function requests are bi-directional.

In one embodiment,the sub-systems comprise a main system controller and a

plurality of line cards.

In another embodiment, the requesting application comprises means for creating the

proxy and for terminating the proxy.

In one embodiment, the proxy is an instance of a proxy object class.

Preferably, the server is an instance of a server object class.

In one embodiment, the server is stored in non-volatile memory.

In another embodiment, the requesting middleware engine is coupled to the
application only via the proxy, whereby the application may be created or modified
independently of the middleware engine.

In a further embodiment, the resource middleware engine is coupled to the resource
only via the server, whereby the resource may be created or modified independently

of the middleware engine.

Preferably, the server registers automatically with the resource middleware engine.
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[n a further embodiment, the servers for both active and redundant resources register

with the resource middlware engine to provide automatic redundancy.

Preferably, the requesting application comprises means for creating the proxy by
presenting a logical or a physical key for the resource and the function.

In one embodiment, the message includes the key function parameter arguments.

In a further embodiment, the proxy controls one of a plurality of types of message
transactions, including a synchronous type in which the function is invoked, a
response is awaited and a return value is passed to the requesting application, and a

synchronous type in which the function is invoked only.

In another embodiment, the proxy controls a deferred synchronous transaction in
which a function is invoked, a reply is transmitted and an application retrieves the

reply later.

In one embodiment the proxy initiates multiple re-tries upon failure of the requested

function.

In another aspect, the invention provides a telecommunication system comprising a

messaging system as claimed in any preceding claim.

DETAILED DESCRIPTION OF THE INVENTION

Brief Description of the Drawings

The invention will be more clearly understood from the following description of
some embodiments thereof, given by way of example only with reference to the

accompanying drawings in which:-
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Fig. 1 1s a diagrammatic representation of a telecommunication controller
messaging system and interaction with applications and resources of the

controller;

Figs. 2 to 5 inclusive are diagrams illustrating messaging system components;

and

Figs. 6 to 18 inclusive are message flow diagrams illustrating operation of the

messaging system.

Description of the Embodiments

Referring initially to Fig. 1, a messaging system in a controller 1 is initially briefly
described. The controller 1 comprises a main controller 2 and line cards 3. The
main controller 2 comprises a main controller application 5 and a SNMP agent 6
interfacing with a management station 7. The main controller 2 also comprises 2
middleware engine 11 which interacts with the application 5 via proxies 12. The
middleware engine 11 communicates via a message handling layer and a physical
layer indicated generally by the numeral 20 with corresponding middleware engines
11 in the line card 3. The middleware engine 11 of each line card 3 is coupled to a
line card application 10 via servers 13. In addition, there is an IDL interface between
the line card application 10 and the middleware engine 11 to allow line card to line
card communication. In this interface, the proxies and the servers are not explicitly

illustrated, for clarity

The servers 13 are registered In 2 generic fashion to the middleware engine, and not
by a form of hard coding. This ensures that the middleware engine does not need

modification on creation of additional servers.
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The controller centric IDL interfaces involve use of a middleware engine 11 in a
requesting sub-system and a middleware engine 11 in a resource sub-system. Each
middleware engine 11 includes functionality to provide bi-directional function calls.
However, for the purposes of this description, the terms “requesting middleware
engine” and “resource middleware engine” are used to indicate the roles they are

playing for a particular function call.

The messaging system comprises the middleware engine 11 in each of the sub-
systems 2 and 3, the server objects 13 (which are stored in non-volatile memory), and
functionality in applications for creating proxies. The proxies and the servers are
both instances of object classes. However, the proxies are transient in nature as they
exist only during a particular function call, while the servers ar¢ permanent as they

are associated with resources rather than particular function calls.

Referring again to Fig. 1, as the controller application 5 requests 2 function on a
resource of a remote line card 3, a proxy is created by the application. The proxy is
an instance of a proxy object class. The proxy is created by presenting a logical or a
physical key which identifies the server. The proxy takes over control of the function
call and requests a message to be sent via the middleware engine 11 to the remote
line card 3 which supports the requested services. The resource middleware engine
determines the server 13 to be called and passes the operation on to that server. The
server 13 then calls the real resource functionality by calling the local function. On
completion, the server 13 returns data to the invoking proxy, which in turn returns
control to the requesting application. When the application has completed the

operation, the proxy is terminated.

Many advantages will be apparent from this construction of messaging system. One
such advantage is the fact that there is very little memory Or processing overhead in
the requesting sub-system because the proxies are transient and exist only during the

function call. This helps to achieve real time performance in an embedded
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environment, traditionally limited by memory and processing power. Another major
advantage is the fact that the requesting application 15 only coupled the
middleware engine via the proxies. The application creates the proxy and the proxy
then takes over control by directing the middleware engine to transmit the function
request message. Therefore, the requesting applications may be modified, deleted or
added independently of the middleware engine. Likewise, the resource middleware
engine is only coupled to the resources via the server objects 13. The server objects
13 automatically register with the middleware engine. Therefore, the resources may

be modified, added or deleted independently of the resource middleware engine.

The requesting application does not need to know what redundancy is provided and
which is the currently active resource. This level of functionality is achieved
automatically by virtue of the proxy-creating key identifying 2 logical or physical

address, and multi-casting of the message by the middleware engine to all line cards.

The requesting application only needs to identify a resource key to create the proxy.
This may be a logical key for logical resources. An example of a situation in which
logical keys are used is generation of a local alarm in a line card. A physical key
would be used, for example, to set a performance threshold for a particular line card.
The proxy avoids message handling overhead in the requesting application by
automatically controlling the function call and performing actions such as

automatically re-trying the call if failures arise.

Three types of transactions may be involved for a function call. These are
synchronous, asynchronous, and deferred synchronous. For a synchronous
transaction, the function 1s invoked, the server waits until the function has been
performed, and the server transmits a return value to the requesting proxy. For an
asynchronous ransaction, the function is invoked only and no further action arises.
For a deferred synchronous rransaction, the function is invoked by the application

creating the proxy and the middleware returning immediately to the application.
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The application can later query the middleware response, for example, upon expiry

of a timer.

Referring now to Figs. 2 to 5, the mechanisms behind the messaging system are
described in more detail. The proxy 12 comprises a proxy object 12(a) and a meta
level architecture 12(b). The messaging engine 11 is connected to a lower level
message handling system (MHS) 30, in turn connected to a physical layer 31 for
message transfer. The server 13 comprises an object adapter 13(a), ameta level 13(b),
and an object 13 (¢). In Fig. 2, the requesting and resource middleware engines 11

are combined in the one box for illustrative purposes.

As shown in Fig. 3, the proxy comprises operation, interface and generic

components 40, 41 and 42 at the meta level.

As shown in Fig. 4, the server 13 comprises void-related components 50, operation-

related components 51 and 52, and interface-related components 53 and 54.

Fig. 5 is a middleware static model associated with the dynamic model sequence
diagrams of Figs. 6 to 18. Referring now to Figs. 6 to 18, examples of function calls
are illustrated. These demonstrate the synchronous, asynchronous, and deferred

synchronous transaction types.

Fig. 6 shows a synchronous call for the method foo, which is a synchronous
operation. The proxy does not return until the server completes and returns a result
to the proxy. The sequence is as follows.

- The requesting application instructs the system 1 to create a proxy X.

- The client calls the function foo on the proxy X.
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- The proxy X packages the request as a message and transmits it
through to the object adapter which interprets the message and calls

function foo on the server X using the server object.

- The return value of foo is passed back to the object adapter which

sends the result to the proxy X as a message.

- The proxy X interprets the message and returns the result as the return

value from function foo.

A deferred synchronous call may also be made. For example the client may invoke
the method longfoo on server X without waiting for the remote server to execute and
return a reply. This allows the client to perform other tasks in the interim, checking

periodically in a non-waiting mode for a reply.

As shown in Fig. 7, the client creates a ProxyOperationOn proxy, specifying that it is
on the operation longfoo. The client calls the method sendDeferred, passing it the
required parameters, if any. This method packages the request as a message and
transmits it through to the object adapter, stores the handle internally, and returns to
the client. The client calls pollResponse on the ProxyOperationOn object. This in
turn calls isReplyAvailable on the middleware engine, but since no reply is available
yet, this returns false. The object adapter interprets the message and calls the
function longfoo on the server X. The result of longfoo is passed back to the object
adapter which sends the result to the proxy X via a message. The client calls
pollResponse on the ProxyOperationOn object, this time returning true. The

response is then retrieved and interpreted by the client.

One way requests are also handled by the system. The method shortfoo is a one way
operation. This method is called on the proxy X as shown in Fig. 8. The proxy X

packages the request as before and transmits it through to the object adapter. The
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function shortfoo on the proxy X returns immediately, the object adapter interprets
the message and calls the function shortfoo on the server X. The object adapter does

not send a reply as it knows that the method is one way.

Fig. 9 shows the situation in which a message is not sent from the message layer. In
this case the proxy clears the proxy’s exception object. After attempting to send the
message failure is encountered, upon which the failure is passed back to the proxy.
The proxy interprets this as SendFail and sets the exception object. The proxy
method returns a reply, and the client checks the proxy’s exception object and detects
the exception, and handles it in the appropriate manner.

The system also handles situation where a message is sent but not received as shown
in Fig. 10. In this case, after the operation executes and returns true the message 1s
never received at the destination. The proxy awaits a response and times out. This
is interpreted as a time-out and the exception object is set. This allows the client to

detect the exception and handle it as appropriate.

Fig. 11 illustrates the situation in which a message is sent and received, but the client
times-out while waiting. Such a scenario may arise if the duration of a remote
operation is unpredictable, or if the remote server is busy. Clearly, the deferred
synchronous mechanism should be used if it is anticipated that a time-out may arise.
As shown in Fig. 11, while the object adapter calls longfoo on server X the proxy has
executed a getReplyMsg to retrieve the reply from the server but times out waiting
for a reply. The proxy sets the exception object with a timeout and the method
returns. The client checks the proxy’s exception object 11, detects the exception, and
handles it. Later, longfoo has completed and returns a reply indicating successful

completion, but the message is discarded by the messaging layer.

Referring now to Fig. 12, a situation is shown in which the target operation is not
recognised. In this case, the object adapter fails to interpret the message and a reply

indicating this is sent to the proxy. The proxy receives the Replymessage from the
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messaging layer, retrieves the exception information and sets the proxy’s exception

object. This allows the client to handle it.

Fig. 13 shows the sequence if the server operation fails. In this example the method
foo is called. When the failure occurs, the foo method retrieves the UserException
object and sets an error status, causing the object adapter to In turn send a message
indicating a user level failure. The proxy in turn sets the exception object 11, again

allowing the client to handle the failure.

As described above, the messaging system interacts between an application level and
a message delivery layer. Fig. 14 shows a situation in which a client determines a
card state. The client calls getCard on a Card proxy. The system operates as
described above until the getCard method is invoked on the server object supporting
the requested interface. This method calls a C function which returns the actual card
state to the object adapter. This is packaged as a method and sent back to the proxy

object, which interprets the message and returns the card state to the client.

Fig. 15 shows a sequence to determine the line status of a physical termination of a
DS1 card (physical transmission medium). In this case a DS1 proxy is used and the
object adapter locates the DS1 server object and calls its getLineStatus method. The

DS1 proxy subsequently receives the reply.

Fig. 16 illustrates a situation in which an alarm notification and loss of signal on DS1
is transmitted. This is a one-way operation. The IPC software detects a loss of
signal on the DS1 line, and retrieves the controller DS1 proxy and calls the
commsAlarmOccured method on the proxy, passing it the port identifier. After its
operation, the proxy returns without a reply. The commsAlarmOccured method is

invoked on the Controller DS1 server.
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The deferred synchronous method may be used for a software download, as shown
in Fig. 17. The client creates a ProxyOperationOn object, specifying that it is on the
operation startDownload. The client calls the method sendDeffered, passing it the
required parameters. After the request is packaged as a message, the message handle
is stored by the ProxyOperationOn object and this in turn calls is ReplyAvailable on
the messaging layer. As no reply is available, this returns false. On the target card,
the software download task has completed and the result is returned to the object
adapter which sends a reply message back to the controller containing the result.
The controller again calls pollResponse in the ProxyOperationOn object, this time
returning true. The controller then calls getResponse. This gets the returned
message, checks for an error code in the reply, extracts the result and returns it to the
controller. The controller checks the exception object to seé if an exception

occurred, but finds it clear, indicating that the result is valid.

Finally, referring to Fig. 18 initialisation of a new card is illustrated. An initialised
method on the server object is called and it is passed a string through which it can
identify itself to the object adapter. The card software processes the generic method
initialise (namelD) on the server object. The server object stores the namelID and
calls the registerInterface method on the object adapter, and passes itself to it. This
makes the object adapter aware of its presence and allows requests t0 be passed to it.

The object adapter indicates whether or not registration was successful.

It will be appreciated that the invention provides real time message transfer in a
telecommunication controller in a manner in which allows flexibility in design and
modification of the controller itself. This, for example, allows addition of new

functionality, and also expansion of resources to perform existing functionality.

The invention is not limited to the embodiments described but may be varied in

construction and detail within the scope of the claims.
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A messaging system in a telecommunication controller comprising a plurality

of distributed sub-systems, the messaging system comprising:-

means in a requesting sub-system for creating a proxy to control messaging
for a function to be carried out in real time by a resource on a resource sub-
system, the function being requested by an application on the requesting sub-

system;

a middleware engine in the requesting sub-system comprising means for
acting in response to the proxy in real time to generate a function request

message and to transmit said message to the resource sub-system;

a middleware engine in the resource sub-system comprising means for reading
the message, determining a server associated with the function, and activating

the server;

means in the server for controlling performance of the function by the

Iesource;

means in the resource middleware engine for passing control back to the

proxy when the function is complete; and

means in the requesting sub-system for terminating the proxy when the

requesting application is satisfied.

A system as claimed in claim 1, wherein each middleware engine comprises
means for operating as a requesting or as a resource middleware engine

whereby function requests are bi-directional.
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A system as claimed in claim 1 or 2, wherein the sub-systems comprise a

main system controller and a plurality of line cards.

A system as claimed in any preceding claim, wherein the requesting

application comprises means for creating the proxy and for terminating the

proxy.

A system as claimed in any preceding claim, wherein the proxy is an instance

of a proxy object class.

A system as claimed in any preceding claim, wherein the server is an instance

of a server object class.

A system as claimed in claim 6, wherein the server is stored in non-volatile

memory.

A system as claimed in any preceding claim, wherein the requesting
middleware engine is coupled to the application only via the proxy, whereby

the application may be created or modified independently of the middleware

engine.

A system as claimed in any preceding claim, wherein the resource
middleware engine is coupled to the resource only via the server, whereby the

resource may be created or modified independently of the middleware engine.

A system as claimed in claim 9, wherein the server registers automatically

with the resource middleware engine.
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16.

17.
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A system as claimed in claim 10, wherein servers for both active and
redundant resources register with the resource middleware engine to provide

automatic redundancy.

A system as claimed in any preceding claim, wherein the requesting
application comprises means for creating the proxy by presenting a logical or

a physical key for the resource and the function.

A system as claimed in any preceding claim, wherein the message includes

the key and function parameter arguments.

A system as claimed in any preceding claim, wherein the proxy controls one
of a plurality of types of message transactions, including a synchronous type
in which the function is invoked, a response is awaited and a return value is
passed to the requesting application, and a synchronous type in which the

function is invoked only.

A system as claimed in claim 14, wherein the proxy controls a deferred
synchronous transaction in which a function is invoked, a reply is transmitted

and an application retrieves the reply later.

A system as claimed in any preceding claim, wherein the proxy initiates

multiple re-tries upon failure of the requested function.

A telecommunication system comprising a messaging system as claimed in

any preceding claim
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