PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 99/66672
HO4L 12/24, GO6F 9/46 Al . .

(43) International Publication Date: 23 December 1999 (23.12.99)

(21) International Application Number: PCT/IE98/00108 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 15 December 1998 (15.12.98)

(30) Priority Data:
980475
S980714

IE
IE

17 June 1998 (17.06.98)
31 August 1998 (31.08.98)

(71) Applicant (for all designated States except US): TELLABS
RESEARCH LIMITED {IE/IE]; Shannon Industrial Estate,
Shannon, County Clare (IE).

(72) Inventor; and
(75) Inventor/Applicant (for US only): BARR, Stuart [GB/IE]; 38
Fairyfield, Parteen, County Clare (IE).

(74) Agents: O’BRIEN, John, A. et al.; John A O’Brien &
Associates, Duncairn House, 3rd floor, 14 Carysfort Avenue,
Blackrock, County Dubin (IE).

BY, CA, CH, CN, CU, CZ, DE, DE (Utility model), DK,
DK (Utility model), EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, 8], SK, SL, TJ, TM, TR, TT,
UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report,

(54) Titlee A TELECOMMUNICATION CONTROLLER MESSAGING SYSTEM

13 / 3
1 \
A Sen
Vel ——» (ine Card
NMS < » Middleware
20 Proxy Application
124 Lc-c 10
LC-C,
< > (Middleware
Line Card
2 ASNI (H

\ l'/ 3
Main Controlier n

6 Line Card L

SNMP Agenf < —> Middleware
cL1c
5 calac 2 nl M o
CC Server ——>
Maln |—> Proxy <«—}» Middleware ﬁ’;e |I(<::?th(ljor7/
™~ Confroller | Middlewde < Proxy P!
Application | «— sepver
Y A}
13 VL 12

(57) Abstract

In a telecommunication controller (1), a messaging system allows real time communication between sub-systems such as a main
controller (2) and line cards (3). Requesting applications (5) create a proxy (12) which controls the function call via a middleware engine
(11) in each of the sub-systems (2, 3). A resource middleware engine (11) calls a server (13) which in turn controls performance of the
function on the resource (10). The proxies (12) are transient. The servers (13) are static but may be easily added or deleted according to

resource changes. Applications (5) and resources (10) are decoupled

from the messaging system.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

20

88
wh

W
0 99/66672 PCT/IE98/00108

o1-

« A TELECOMMUNICATION CONTROLLER MESSAGING SYSTEM”

INTRODUCTION

Field of the Invention

The invention relates to a messaging system for a telecommunication controller
operating in real time and which comprises multiple distributed sub-systems such as
a main controller and multiple line cards. The invention relates particularly to such

systems which include a number of circuits having embedded software.

Prior Art Discussion

Heretofore, the approach for messaging within such systems has been to provide
dedicated communication protocols tied into hardware buses and interface circuits in
order to achieve real time performance. Such an approach has been satisfactory for

many situations.

However, in recent years there has been a growing requirement for
telecommunication controllers to have inherant flexibility to allow modification.
Such modification is required both to change the functionality of the system and also
to allow growth to cater for ever-increasing transaction volumes. Messaging
protocols which are bound to the higher-level and lower-level functionality tend to

inhibit the ability to modify telecommunication controllers.

Objects of the Invention

It is an object of the invention to provide a messaging system for a

telecommunication controller which allows simple modification of resources which

10

(89
wn

WO 99/66672 PCT/IE98/00108

22

perform telecommunication functions and of applications which control and request
the functions.

A development of this object is to decouple the messaging system from the
applications and resources soO that they may be modified independently of the

messaging system.

Another object is to achieve this flexibility without affecting response time so that

real time performance is still achieved.

SUMMARY OF THE INVENTION

The invention provides a messaging system in a telecommunication controller

comprising a plurality of distributed sub-systems, the messaging system comprising:-

means in a requesting sub-system for creating a proxy to control messaging
for a function to be carried out in real time by a resource on a resource sub-
system, the function being requested by an application on the requesting sub-

system;

a middleware engine in the requesting sub-system comprising means for
acting in response to the proxy in real time to generate a function request

message and to transmit said message to the resource sub-system;

a middleware engine in the resource sub-system comprising means for reading
the message, determining a server associated with the function, and activating

the server;

means in the server for controlling performance of the function by the

resource;

10

15

20

[R0]
w

WO 99/66672 PCT/IE98/00108

23-

means in the resource middleware engine for passing control back to the

proxy when the function is complete; and
means in the requesting sub-system for terminating the proxy when the
requesting application is satisfied.

Preferably, each middleware engine comprises means for operating as a requesting Or

as a resource middleware engine whereby function requests are bi-directional.

In one embodiment,the sub-systems comprise a main system controller and a

plurality of line cards.

In another embodiment, the requesting application comprises means for creating the

proxy and for terminating the proxy.

In one embodiment, the proxy is an instance of a proxy object class.

Preferably, the server is an instance of a server object class.

In one embodiment, the server is stored in non-volatile memory.

In another embodiment, the requesting middleware engine is coupled to the
application only via the proxy, whereby the application may be created or modified
independently of the middleware engine.

In a further embodiment, the resource middleware engine is coupled to the resource
only via the server, whereby the resource may be created or modified independently

of the middleware engine.

Preferably, the server registers automatically with the resource middleware engine.

10

15

20

WO 99/66672 PCT/IE98/00108

-4 -

[n a further embodiment, the servers for both active and redundant resources register

with the resource middlware engine to provide automatic redundancy.

Preferably, the requesting application comprises means for creating the proxy by
presenting a logical or a physical key for the resource and the function.

In one embodiment, the message includes the key function parameter arguments.

In a further embodiment, the proxy controls one of a plurality of types of message
transactions, including a synchronous type in which the function is invoked, a
response is awaited and a return value is passed to the requesting application, and a

synchronous type in which the function is invoked only.

In another embodiment, the proxy controls a deferred synchronous transaction in
which a function is invoked, a reply is transmitted and an application retrieves the

reply later.

In one embodiment the proxy initiates multiple re-tries upon failure of the requested

function.

In another aspect, the invention provides a telecommunication system comprising a

messaging system as claimed in any preceding claim.

DETAILED DESCRIPTION OF THE INVENTION

Brief Description of the Drawings

The invention will be more clearly understood from the following description of
some embodiments thereof, given by way of example only with reference to the

accompanying drawings in which:-

10

15

20

25

WO 99/66672

PCT/IE98/00108

.5-

Fig. 1 1s a diagrammatic representation of a telecommunication controller
messaging system and interaction with applications and resources of the

controller;

Figs. 2 to 5 inclusive are diagrams illustrating messaging system components;

and

Figs. 6 to 18 inclusive are message flow diagrams illustrating operation of the

messaging system.

Description of the Embodiments

Referring initially to Fig. 1, a messaging system in a controller 1 is initially briefly
described. The controller 1 comprises a main controller 2 and line cards 3. The
main controller 2 comprises a main controller application 5 and a SNMP agent 6
interfacing with a management station 7. The main controller 2 also comprises 2
middleware engine 11 which interacts with the application 5 via proxies 12. The
middleware engine 11 communicates via a message handling layer and a physical
layer indicated generally by the numeral 20 with corresponding middleware engines
11 in the line card 3. The middleware engine 11 of each line card 3 is coupled to a
line card application 10 via servers 13. In addition, there is an IDL interface between
the line card application 10 and the middleware engine 11 to allow line card to line
card communication. In this interface, the proxies and the servers are not explicitly

illustrated, for clarity

The servers 13 are registered In 2 generic fashion to the middleware engine, and not
by a form of hard coding. This ensures that the middleware engine does not need

modification on creation of additional servers.

10

15

20

25

30

WO 99/66672 PCT/IE98/00108

-6 -

The controller centric IDL interfaces involve use of a middleware engine 11 in a
requesting sub-system and a middleware engine 11 in a resource sub-system. Each
middleware engine 11 includes functionality to provide bi-directional function calls.
However, for the purposes of this description, the terms “requesting middleware
engine” and “resource middleware engine” are used to indicate the roles they are

playing for a particular function call.

The messaging system comprises the middleware engine 11 in each of the sub-
systems 2 and 3, the server objects 13 (which are stored in non-volatile memory), and
functionality in applications for creating proxies. The proxies and the servers are
both instances of object classes. However, the proxies are transient in nature as they
exist only during a particular function call, while the servers ar¢ permanent as they

are associated with resources rather than particular function calls.

Referring again to Fig. 1, as the controller application 5 requests 2 function on a
resource of a remote line card 3, a proxy is created by the application. The proxy is
an instance of a proxy object class. The proxy is created by presenting a logical or a
physical key which identifies the server. The proxy takes over control of the function
call and requests a message to be sent via the middleware engine 11 to the remote
line card 3 which supports the requested services. The resource middleware engine
determines the server 13 to be called and passes the operation on to that server. The
server 13 then calls the real resource functionality by calling the local function. On
completion, the server 13 returns data to the invoking proxy, which in turn returns
control to the requesting application. When the application has completed the

operation, the proxy is terminated.

Many advantages will be apparent from this construction of messaging system. One
such advantage is the fact that there is very little memory Or processing overhead in
the requesting sub-system because the proxies are transient and exist only during the

function call. This helps to achieve real time performance in an embedded

10

15

[S¥]
W

wOo
99/66672 PCT/IE98/00108

_7-

environment, traditionally limited by memory and processing power. Another major
advantage is the fact that the requesting application 15 only coupled the
middleware engine via the proxies. The application creates the proxy and the proxy
then takes over control by directing the middleware engine to transmit the function
request message. Therefore, the requesting applications may be modified, deleted or
added independently of the middleware engine. Likewise, the resource middleware
engine is only coupled to the resources via the server objects 13. The server objects
13 automatically register with the middleware engine. Therefore, the resources may

be modified, added or deleted independently of the resource middleware engine.

The requesting application does not need to know what redundancy is provided and
which is the currently active resource. This level of functionality is achieved
automatically by virtue of the proxy-creating key identifying 2 logical or physical

address, and multi-casting of the message by the middleware engine to all line cards.

The requesting application only needs to identify a resource key to create the proxy.
This may be a logical key for logical resources. An example of a situation in which
logical keys are used is generation of a local alarm in a line card. A physical key
would be used, for example, to set a performance threshold for a particular line card.
The proxy avoids message handling overhead in the requesting application by
automatically controlling the function call and performing actions such as

automatically re-trying the call if failures arise.

Three types of transactions may be involved for a function call. These are
synchronous, asynchronous, and deferred synchronous. For a synchronous
transaction, the function 1s invoked, the server waits until the function has been
performed, and the server transmits a return value to the requesting proxy. For an
asynchronous ransaction, the function is invoked only and no further action arises.
For a deferred synchronous rransaction, the function is invoked by the application

creating the proxy and the middleware returning immediately to the application.

10

15

20

[(®]
wn

WO 99/66672
PCT/IE98/00108

8-

The application can later query the middleware response, for example, upon expiry

of a timer.

Referring now to Figs. 2 to 5, the mechanisms behind the messaging system are
described in more detail. The proxy 12 comprises a proxy object 12(a) and a meta
level architecture 12(b). The messaging engine 11 is connected to a lower level
message handling system (MHS) 30, in turn connected to a physical layer 31 for
message transfer. The server 13 comprises an object adapter 13(a), ameta level 13(b),
and an object 13 (¢). In Fig. 2, the requesting and resource middleware engines 11

are combined in the one box for illustrative purposes.

As shown in Fig. 3, the proxy comprises operation, interface and generic

components 40, 41 and 42 at the meta level.

As shown in Fig. 4, the server 13 comprises void-related components 50, operation-

related components 51 and 52, and interface-related components 53 and 54.

Fig. 5 is a middleware static model associated with the dynamic model sequence
diagrams of Figs. 6 to 18. Referring now to Figs. 6 to 18, examples of function calls
are illustrated. These demonstrate the synchronous, asynchronous, and deferred

synchronous transaction types.

Fig. 6 shows a synchronous call for the method foo, which is a synchronous
operation. The proxy does not return until the server completes and returns a result
to the proxy. The sequence is as follows.

- The requesting application instructs the system 1 to create a proxy X.

- The client calls the function foo on the proxy X.

10

15

20

WO 99/66672 PCT/IE98/00108

- The proxy X packages the request as a message and transmits it
through to the object adapter which interprets the message and calls

function foo on the server X using the server object.

- The return value of foo is passed back to the object adapter which

sends the result to the proxy X as a message.

- The proxy X interprets the message and returns the result as the return

value from function foo.

A deferred synchronous call may also be made. For example the client may invoke
the method longfoo on server X without waiting for the remote server to execute and
return a reply. This allows the client to perform other tasks in the interim, checking

periodically in a non-waiting mode for a reply.

As shown in Fig. 7, the client creates a ProxyOperationOn proxy, specifying that it is
on the operation longfoo. The client calls the method sendDeferred, passing it the
required parameters, if any. This method packages the request as a message and
transmits it through to the object adapter, stores the handle internally, and returns to
the client. The client calls pollResponse on the ProxyOperationOn object. This in
turn calls isReplyAvailable on the middleware engine, but since no reply is available
yet, this returns false. The object adapter interprets the message and calls the
function longfoo on the server X. The result of longfoo is passed back to the object
adapter which sends the result to the proxy X via a message. The client calls
pollResponse on the ProxyOperationOn object, this time returning true. The

response is then retrieved and interpreted by the client.

One way requests are also handled by the system. The method shortfoo is a one way
operation. This method is called on the proxy X as shown in Fig. 8. The proxy X

packages the request as before and transmits it through to the object adapter. The

10

15

20

25

WO 99/66672 PCT/IE98/00108

- 10 -

function shortfoo on the proxy X returns immediately, the object adapter interprets
the message and calls the function shortfoo on the server X. The object adapter does

not send a reply as it knows that the method is one way.

Fig. 9 shows the situation in which a message is not sent from the message layer. In
this case the proxy clears the proxy’s exception object. After attempting to send the
message failure is encountered, upon which the failure is passed back to the proxy.
The proxy interprets this as SendFail and sets the exception object. The proxy
method returns a reply, and the client checks the proxy’s exception object and detects
the exception, and handles it in the appropriate manner.

The system also handles situation where a message is sent but not received as shown
in Fig. 10. In this case, after the operation executes and returns true the message 1s
never received at the destination. The proxy awaits a response and times out. This
is interpreted as a time-out and the exception object is set. This allows the client to

detect the exception and handle it as appropriate.

Fig. 11 illustrates the situation in which a message is sent and received, but the client
times-out while waiting. Such a scenario may arise if the duration of a remote
operation is unpredictable, or if the remote server is busy. Clearly, the deferred
synchronous mechanism should be used if it is anticipated that a time-out may arise.
As shown in Fig. 11, while the object adapter calls longfoo on server X the proxy has
executed a getReplyMsg to retrieve the reply from the server but times out waiting
for a reply. The proxy sets the exception object with a timeout and the method
returns. The client checks the proxy’s exception object 11, detects the exception, and
handles it. Later, longfoo has completed and returns a reply indicating successful

completion, but the message is discarded by the messaging layer.

Referring now to Fig. 12, a situation is shown in which the target operation is not
recognised. In this case, the object adapter fails to interpret the message and a reply

indicating this is sent to the proxy. The proxy receives the Replymessage from the

10

15

20

o
wn

WO 99/66672 PCT/IE98/00108

211 -

messaging layer, retrieves the exception information and sets the proxy’s exception

object. This allows the client to handle it.

Fig. 13 shows the sequence if the server operation fails. In this example the method
foo is called. When the failure occurs, the foo method retrieves the UserException
object and sets an error status, causing the object adapter to In turn send a message
indicating a user level failure. The proxy in turn sets the exception object 11, again

allowing the client to handle the failure.

As described above, the messaging system interacts between an application level and
a message delivery layer. Fig. 14 shows a situation in which a client determines a
card state. The client calls getCard on a Card proxy. The system operates as
described above until the getCard method is invoked on the server object supporting
the requested interface. This method calls a C function which returns the actual card
state to the object adapter. This is packaged as a method and sent back to the proxy

object, which interprets the message and returns the card state to the client.

Fig. 15 shows a sequence to determine the line status of a physical termination of a
DS1 card (physical transmission medium). In this case a DS1 proxy is used and the
object adapter locates the DS1 server object and calls its getLineStatus method. The

DS1 proxy subsequently receives the reply.

Fig. 16 illustrates a situation in which an alarm notification and loss of signal on DS1
is transmitted. This is a one-way operation. The IPC software detects a loss of
signal on the DS1 line, and retrieves the controller DS1 proxy and calls the
commsAlarmOccured method on the proxy, passing it the port identifier. After its
operation, the proxy returns without a reply. The commsAlarmOccured method is

invoked on the Controller DS1 server.

o
W

WO 99/66672
PCT/IE98/00108

212 -

The deferred synchronous method may be used for a software download, as shown
in Fig. 17. The client creates a ProxyOperationOn object, specifying that it is on the
operation startDownload. The client calls the method sendDeffered, passing it the
required parameters. After the request is packaged as a message, the message handle
is stored by the ProxyOperationOn object and this in turn calls is ReplyAvailable on
the messaging layer. As no reply is available, this returns false. On the target card,
the software download task has completed and the result is returned to the object
adapter which sends a reply message back to the controller containing the result.
The controller again calls pollResponse in the ProxyOperationOn object, this time
returning true. The controller then calls getResponse. This gets the returned
message, checks for an error code in the reply, extracts the result and returns it to the
controller. The controller checks the exception object to seé if an exception

occurred, but finds it clear, indicating that the result is valid.

Finally, referring to Fig. 18 initialisation of a new card is illustrated. An initialised
method on the server object is called and it is passed a string through which it can
identify itself to the object adapter. The card software processes the generic method
initialise (namelD) on the server object. The server object stores the namelID and
calls the registerInterface method on the object adapter, and passes itself to it. This
makes the object adapter aware of its presence and allows requests t0 be passed to it.

The object adapter indicates whether or not registration was successful.

It will be appreciated that the invention provides real time message transfer in a
telecommunication controller in a manner in which allows flexibility in design and
modification of the controller itself. This, for example, allows addition of new

functionality, and also expansion of resources to perform existing functionality.

The invention is not limited to the embodiments described but may be varied in

construction and detail within the scope of the claims.

10

15

20

88
N

WO 99/66672 PCT/IE98/00108

Claims

-13 -

A messaging system in a telecommunication controller comprising a plurality

of distributed sub-systems, the messaging system comprising:-

means in a requesting sub-system for creating a proxy to control messaging
for a function to be carried out in real time by a resource on a resource sub-
system, the function being requested by an application on the requesting sub-

system;

a middleware engine in the requesting sub-system comprising means for
acting in response to the proxy in real time to generate a function request

message and to transmit said message to the resource sub-system;

a middleware engine in the resource sub-system comprising means for reading
the message, determining a server associated with the function, and activating

the server;

means in the server for controlling performance of the function by the

Iesource;

means in the resource middleware engine for passing control back to the

proxy when the function is complete; and

means in the requesting sub-system for terminating the proxy when the

requesting application is satisfied.

A system as claimed in claim 1, wherein each middleware engine comprises
means for operating as a requesting or as a resource middleware engine

whereby function requests are bi-directional.

10

15

20

(8]
wh

WO 99/66672 PCT/IE98/00108

10.

.14 -

A system as claimed in claim 1 or 2, wherein the sub-systems comprise a

main system controller and a plurality of line cards.

A system as claimed in any preceding claim, wherein the requesting

application comprises means for creating the proxy and for terminating the

proxy.

A system as claimed in any preceding claim, wherein the proxy is an instance

of a proxy object class.

A system as claimed in any preceding claim, wherein the server is an instance

of a server object class.

A system as claimed in claim 6, wherein the server is stored in non-volatile

memory.

A system as claimed in any preceding claim, wherein the requesting
middleware engine is coupled to the application only via the proxy, whereby

the application may be created or modified independently of the middleware

engine.

A system as claimed in any preceding claim, wherein the resource
middleware engine is coupled to the resource only via the server, whereby the

resource may be created or modified independently of the middleware engine.

A system as claimed in claim 9, wherein the server registers automatically

with the resource middleware engine.

10

20

WO 99/66672 PCT/IE98/00108

11

12.

13.

14.

15.

16.

17.

-15-

A system as claimed in claim 10, wherein servers for both active and
redundant resources register with the resource middleware engine to provide

automatic redundancy.

A system as claimed in any preceding claim, wherein the requesting
application comprises means for creating the proxy by presenting a logical or

a physical key for the resource and the function.

A system as claimed in any preceding claim, wherein the message includes

the key and function parameter arguments.

A system as claimed in any preceding claim, wherein the proxy controls one
of a plurality of types of message transactions, including a synchronous type
in which the function is invoked, a response is awaited and a return value is
passed to the requesting application, and a synchronous type in which the

function is invoked only.

A system as claimed in claim 14, wherein the proxy controls a deferred
synchronous transaction in which a function is invoked, a reply is transmitted

and an application retrieves the reply later.

A system as claimed in any preceding claim, wherein the proxy initiates

multiple re-tries upon failure of the requested function.

A telecommunication system comprising a messaging system as claimed in

any preceding claim

PCT/IE98/00108

WO 99/66672

1/18

¢l
\

NeE)
» ———» Axold
| uoyooyddy SIDMBIPPIN €
A 107 Ul
ol PI0D oul <«——— JOAISS
//lm_
0101
< —»
A SIODMB|PPIN pI0D Ul
LL
pInD aul
< —>
O—-j .U'M\V . \lim—
X0.d
COMNM_MMM SIDMSBIPPIN € 3
< JISTVISTY
//
\ el

L1

el
AN

> SIOMBIPPIN
\v\?oi <
) om0

18]|OJU0D UIDIN

)

1oni8s —»| uolo||ddy
19jo1u0D

UIDIA AN

]

E®@< n__\,_Zm

¢l oV

0¢

—Zw<\J / z

/U
SN

PCT/IE98/00108

WO 99/66672

2/18

1o8lqQ lenieg

0¢

auIBu3IBUIBDSSOIN SHIN

OBsNAdajpuss
OBsinAide1e0
ObsinIsenbey|eb
OBsnisenbayipusg
Oaoupnysul

A
)il

1 19ne7 DION 1oAl1eS
@elL

Qeonyleulsisibal

Ousenbagjoexs

Ooaoupysul

1 eidopy 108iq0
()¢l

LL

suIBuzBuIBDsSsSs A

L€

o)zl

108[qO Axold

@zl

BINJOBUYDIY [9AST DIBIN AXOId

¢l

PCT/IE98/00108

WO 99/66672

3/18

ov

Ossuodsayjiab
OQAoppauQpPuUss
ya Qospajal Oosuodssyjjjod
L7 Opula Opuses
Oaxonul
BB mR.U.@.O.QEE_\»xoi
m “ uolpredOAXold
M ' o 1
lllllllll t F
71 Quoydsox3ied
474 Opneb 4/
AXOld4oususs

¢l

PCT/IE98/00108
4/18

WO 99/66672

v Ol

\\/\\\8]

Oajnoaxipulajul Oainosx3puisiu; Oainoaxjpulsiul Oajnoaxgpuwisiul
_ | propugQuolpIadOPIOAISAISS | .&Oc@%__maoﬂu_o>_m>_mm -l ,D_mum/cb{o:gmao_mzmm L c.O.aQ%BanZ%
_ | ” | |
ya Oainoax3jpulsiul
e Qeoupjsul Qainoexs [T ™\
LG
| JODIONSODIBJUIONISS L UQUODIBAOIOAISSIODISAY
p-bEFemm=s ' ¥
Qesiioiul _
4 OswoN;eB sl
14°] Quoypiedoieb k>— Qajnoexs N 4/
q
BODUBUODISAY uolpiedOonysay ¢ cl

PCT/1IE98/00108

WO 99/66672

5/18

Quoydeox3jab
Ooyuibuipuigieb
Osponuoydaoxjjeb Oespolel
Oeponuoldeoxijes Opulg
D80 suJDNIeb
Ouoypladplaysibal Oipsy 0 N4
Quoypiedoieb uoldeoxImiN <y>JODIBINSODIBIUIAXOI]
OawpNIeb pomdmmmosm s !
L Oastonul b e !
Oaounisul
<> JODIBNSODUBIUIIBAISS
r-t==--m====== 1
QOisenbayjjeidiajus
Os|apjioAYAIdS)
Olsenbsagjeinosaxse OAbpauOpPUSs
L [Oeinoexgpulelul OAidaypuss Ossuodsayiod
Ox166 L Oa4noexa Oisenbey)ob Oesuodsay|ieb
X Ooopieupalsibal Opuses OxtesApmauc s,
v 1oAsg _|___ucyoiedoieb OAde}eb O&onul OxieBe,
' N Olsonbapjpuss
.o ! < >uQuolpiadOAxold i wAx0ld
[t v [ttt
840 X — " —
Ooainooxe

<y>UOuUOoHRIBdOIBAISSODISAY

—Amao PUD 19A18S "AXOId UjiMm S9OD}I8}Ul SINJOBHUDID [9A8] DIBN

WO 99/66672 PCT/IE98/00108

6/18
Client :Proxy X :Messaging :Object :Server X
Layer Adapter
; ; ; 1.getRequestMsg() 1 '
- t
1 I i
: 2:foo : D :
A LA f J
3:sendRequestMsg(Q 4:RequestMsg() ; :
11 5:interpretMessage()
6:foo O
7:return value()
8:sendRequestMsg() 1
:
1
L |
i 1
9:getReplyMsg() L ! !
10:ReplyMsg E E
11:return value : :
< : i
1 !
] |
1 '
]]
] 1
t 1
1 1
1 I
1]
1]

R
e]
R

Fig. 6

WO 99/66672 PCT/IE98/00108

7/18
LDeferred Synchronous cail
Client longfoo : ‘Messaging :Object Server X
ProxyOperationOn Layer Adapter

¢ lgetRequestMsg O

U u

) P

I
| I
Zsendbeferred O 3:sendRequestMsg O : :
Ll 1
Aok SRequestMsg O | siinterpretMessage()
- 1
1
8:DoOtherWork T 7:longfoo ()
] :
H : . :
]] i 1 1
’ 9:poliResponse O 1gisReplyAvaiable (1 ! !
» 11:false T] : :
12:DoOtherWork \ : !
1 l ne ! | 1
] 1 1 |
‘ 13:Repl
H : : 14:sendReplyMsg () L Py s
] ' JN
1 N U J
] 1 I
] . t |
' 15:polResponse 0+ 16isReplyAvailable 0 1 , |
Ll 17:true 0 ' '
i : |
L— i t]
18:getResponse () . : 19:getReplyMsg 0+ ‘ \
]]
N 21:Reply < 20:ReplyMsg ; !
I I
]]
]]
1 1
] 1
! 1
] |
1 |
1]
1 !
1 1

WO 99/66672 PCT/IE98/00108

8/18
L]One way synchronous
:Client :Proxy X :‘Messaging :Object Server X
Layer Adapter

. \ i LigetRequestMsg '
] [< '
: : L :
] 1] 1

! 1 ! L)
2ishortfoo) '3isendRequestMsg ! : :
> > . " :
Aok 5:Request Message X
=]
6iinterpretMsg i
| f—o i
X 7shortfoo
: U
I]
I 1
i 1
i 1
! 1
] 1
] 1
' 1
| '
]]
1 '
1]

mmmmmm e]

m——— e[

WO 99/66672

9

/18

L}Comm failure on Messaging Layer; Message not sent

:Client :
MWExcepftion

2:foo0 ()

3:.clear 'D

$4

6:setSendFail

[

H .

Proxy X

t
8:handleException O

]

{ u

]
1
1
|'
7;geTExcepTionCo&e 0O
1 }
]
]
]
1
]

‘Messaging :Object
Layer Adapter

, lL:getRequestMsg()

: H
1 []
1 1
1 1
1 I
4:sendRequestMig O :
> |
1
1
5:.SendFail '
hal 1
1
1
1
'
:
L :
]]
1 i
T i i
1 1 1
] 1]
1 1 !
1] i
] 1 1
1 1 1
1] 1
1 1 I
] I]
1 1 1
] 1 1
]) 1
]] 1

PCT/IE98/00108

Server X

WO 99/66672 PCT/IE98/00108

10/18

LlComm failure on Messaging Layer; Message sent but not received

:Client : :Proxy X :Messaging :Object Server X
MWException Layer Adapfer

'1:getRequestMsgQ)
[1

i
I
: T H
'
t
3iclear 0 [

D 4:sendRequestMsg()
]
1
1
1
1
1
1
!
1
i
1
1
1
1

:
t
;
]
2:foo (b
1
1
]

L

5:.getReplyMsg()

&:timeout

1
1
1
1
1
]
1
1
1
I
t
!
1
1
i
t
1
1
I
]

7:setlimeCQut | |~

]
8:gefExcep’rionCode:O

9:handleException D

P

JE U

]
1
1
]
1
1
i
]
1
1

-

Fig. 10

WO 99/66672 PCT/IE98/00108

11/18
LIApplicoﬁon level timeout
:Client : Proxy X ‘Messaging :Object :Server X
MWException Layer Adapter
i : : 1 1:getRequestMsg() ! !
! ; : :
2longfoo O ! } X
1 t
_:L 3iclear) s : !
U 4:sendRequestMsg Oy))
1 1
! 5:RequestMessage ! 6iinterpretMsg() :
'
i 1 !
! : 7dongfoo O |
] 1
1 i
, ' 8:getReplyMsg() R '
: I : :
i 1 I I
! ! _ 9TimeOut ' |
1 1 . - 1 1
11:getExceptionCode () II JUsetlimeOuto ; :
gl ! !
t]]
12:handieException 0 T X |
] ; n | : :
1 t 1 1 1
! ! ' ! 13result !
: : ! 14:sendReplyMsgQ
' ' _ 1 15:ReplyMessage
| i
! ! 16:discardMessage()
: ; 1
: : .
I I I
']] I T
i I t 1] ot
!] ' 1] 1
b 1 1 1] I
] 1 I i i 1

Fig. 11

WO 99/66672 PCT/IE98/00108

12/18
LlUnrecognised request
:Client : :Proxy X :Messaging :Object :Server X
MWException Layer Adapter

) ' i 1 1:getRequestMsg(! !

]] i]
1 1 1 !
| : | Ll H |
| 1 1 1 '
1 ' ' 1 '
L [] 1 ' '
1 ' 1 : :
2:unkndwnfoo 0 : : ' '
N > : I i
1] 1 1
1 3:.clear 1 1 1
iy 1 1 1
U 4:sendRequestMsg() 1 1
| S — LS:RequesTMessoge , X
] A]
] . . 1

. &iinterpretin

' 7.getReplyMsg(prefing0 !
. > 1 .
1 i
, 8:sendReplyMsgQ X
1] T 1
t 1 1
' ; 9:Reply Message X
110:setUnknownOp (< T !
[T : ;
i]
i ' '
11:getExceptionCode) - : X
‘D . T i |
]) i 1
12:handleException ' : X : :
P ' ' : : .
1 1] 1 i
I] 1 1 A
] 1 1 i 1
1] 1 1]
1 1 I 1 I
1 1 I]]
1 [} 1 t 1
1 1 i ! 1

-

Fig. 12

WO 99/66672 PCT/IE98/00108

13/18

L}Synchronous invocation which generates an user level exception

:Client :MWException Proxy X :Messaging :Object :Server X MWUserException
Layer Adapter

1 :gefRequesTMsg():

2:fioo(> U‘ U

1
1
¥
:
1
3:.clear(i ! !
N 4:sendRequestMsg([:
i)] ! .
! T 5iRequestMsg() ! X ,
J - N [
! : 7.getReplyMsg0 | GinterpretMs¢O .
. ' * f«—1 8iclear) X
i i 1 ’U
t i -]
! ! ! 9:foo() i !
' ' ! > 10:User level exception
1] 1 b
X X ; 1 :se’rExcepTionéode()
! : :
I t 1
!] 1 1
: ' ' 12:getExceptionCode(|
: :l5:sefExcepT|onCofJe(1)4'Re s 13:sendReplyMsg() ! U
N6:getExceptionCode() PG X :
SR J : :
i 1
17:handleException() ; | :
P I : L o l :
]] 1 1 i i
1 1 1 1] 1
1 1] 1 1 |
t 1] 1 1 '
t 1 1 I 1 I
] 1] 1 1 '
1 t 1 1 1 1
1] 1 1 1 1
1 1 I 1 ' 1
1 i] 1 § 1
t 1 1 1 1 t
]] 1 Hl 1 1

Fig. 13

WO 99/66672 PCT/IE98/00108

14718
LGeT the card state
:Controlier :Card ‘Messaging :MHS ‘Messaging :Object IBC Server .C Function
o]
Proxy Layer Layer Adapter
i i i 1 i i '
! ' !) - " ' 1:getRequestMsg) ,
rreceiveMessage
' 3:getCardState() : skl 920 l
b t
1 1 !
4:sendRequestMsg() ! - '
1
5:sendMesscg'eo : !
1 1

1 I

6:Message

[

7:RequestMsg()

'
8:interpretMsgQ
1 :
9:getCardsStateQ)
> 10:getCardState

11.CardState

12:CardState
13:RequestMsg | |
14:sendMessagd()

15:geTReplyMsg() | |

16:receiveMessage()

o m e]
T

R

17:Message

18:ReplyMsg

9.CardState

[|
P UG U |
U SR |

———— -
[|

Fig. 14

WO 99/66672 PCT/IE98/00108
15/18
LGeT Line Status of DS1 on IPC
:Controller APC DS1 :Messaging :MHS :Messaging :Object :DSI Server :C Function
Proxy Layer Layer Adapter
: , , . :getRequestMsg() ! !
1 <
! : | 2:re:ceiveMesscge ' X
1 3:getlineStatysQ ' - ' '
4:sendReqqestMsgo X : :
— 5:sendMessage(g |) ;
1 1
U é6:Message ! ' ' X
7:RequestMsg() | ! i
: - 8:in’rerpreTMsc}40 !
]] 1]
] 1 || 1]
: ' : 9:getlineStatiis() :
I 1 1 > 10:getDS1LineStatus()
' ' 1 >
E E 1 2:ge1'ReplylMng 11:LineStatus
: «
1
: 13:rreceiveMesxage(
1 w]
: l4iLineStatus ;
! . 15:sendReplyMsg !
X ' ' 16:5endMessagd() 0 :
| : : 17:Message T : :
A t] 1 i
t] L] 1 1
i 1 1 1 I
n9:LineStsatus| || 8:ReplyMsd ' ! : '
: : : !
1 t ! 1
] 1 1 1 1
t 1] 1 1 1
1] I 1 | 1
1 1 1 t 1 1
| j 1 [} i 1
t 1 i I t '
' 1 1 1 H 1
1 1] 1 i 1
1 1] | 1 1
1 1 i I I !

[

Fig. 15

WO 99/66672 PCT/IE98/00108

16/18

LAlorm Notification of loss of signal on DS1 (One way)

4PC Software :Controller :Messaging :MHS :Messaging :Object :Controller
DSt Proxy Layer Layer Adapter DS1 Server

" :gefReques‘rMsg()

2:receiveMessage

3:commsAlarmPccurred()

4:sendRequestMsgO
5:sendMessage()

:
i

6:Message

> 7:RequesTM§g-

8.interpretMsgQ

]
1
1
1
1
1
!
I
1
i
]
1
|
1
1
1
|
1
1
'
t
1

9:commsAIormsfccurred

1
1
1
I
1
t
'
]
i
1
1
1
1
1
t
t
]
1
1

|
ek
T !
R

- —— -

Fig. 16

WO 99/66672

17/18

L]Deferred Synchronous - Soffware Download

PCT/IE98/00108

:Controller StartDownload: :Messaging ‘MHS :Messaging :Object :Sw download
. ProxyOperationOn Layer Layer Adapter task
MWException
1 1 ') : : 1:getRequestiMsgQ :
1 1] 1 ¥
: : : : 1 2receiveMessag :
: 3:sendDeferred() ! : . X
1 I
v diclear() : ;) 8 !
5:sendRequesstg() ' X . |
! 6:sendMessage() . ! ! :
X 7Message - 8:RequesTMes;scge |
) > QiinferpretMsg(1
I]
]]:pollr?ésponseo ‘ i;O:s‘roerownloo'd
' 12:isReplyAvdipble() — T
13:fdlse

T

14:queuePeek(

]
|
i
'
'
i
I}

] -t

T
1
T 1 '
1 | '
1 1 1
| 1 '
' 1
' '
1 '
]

17:sendMessage

|

18:poliResponse() .
19:isReplyAvailable
21:ftue 20:queuePeek(y ,
I i i ; i \
t ! 1 ' H 1
22:getResponse() ! 23:getReplyMsg() X ! !
! »r 24:18CeiveMessage() 1 1
1 - 1 1
X _ 25:Message ! '
27-reshilt 26:ReplyMesgage ! :
28:getExceptionCode() : :
29:NoError : :
: :
1 1
1 1

Fig. 17

1 é:sendReply!»"lng 15:result

WO 99/66672 PCT/IE98/00108

18/18
LIServer initialisation
:Main Server :Object
Object Adapter

Vinitialise(namelD)

2:registerinterface ()

3:.0k

4.0k

T
I ——
_.______.__.____l

Fig. 18

INTERNATIONAL SEARCH REPORT

Intes nal Application No

PCT/IE 98/00108

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 HO4L12/24 GO6F9/46

According to Intemational Patent Classification (IPC) or to both national classification and [PC

8. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F HO4L

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to ciaim No.

Y US 5 678 006 A (VALIZADEH H S ET AL) 1,3-6,

14 October 1997 8-10,
12-15,17

see column 1, line 15 - column 2, line 24;
figure 1

Y HEITE R ET AL: "EXTENDING DCE RPC BY 1,3-6,
DYNAMIC OBJECTS AND DYNAMIC TYPING" 8-10,
DCE — THE OSF DISTRIBUTED COMPUTING 12-15,17

ENVIRONMENT. CLIENT/SERVER MODEL AND
BEYOND. INTERNATIONAL DCE WORKSHOP,

7 October 1993, pages 214~228, XP000609570
see paragraph 1

/.._

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents : . . ! -

T later document published after the international filing date
or pricnty date and not in conflict with the application but
citad 1o understand the principle or theory underlying the
nvention

sccument of particular relevance; the claimed invention
annat ca considered novel or cannot be considered to
«2 an inventive step when the document is taken alone

=nt ~t particular relevance; the claimed invention

"A" document defining the general state of the art which is not
considered to be of particular relevance
"E" earlier document but published on or after the international «
filing date)
"L" documeant which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another b
citation or other special reason (as specified) a-net B2 2onsidered to involve an inventive step when the
"O" document referring to an oral disciosure, use, exhibition or - wmant 1s combined with one or more other such docu-
other means —arts sucn combination being obvious to a person skilled

"P* document published prior to the intemational filing date but amaan

later than the priority date claimed

Jocumant mamber of the same patent family

Date of the actual completion of the international search

29 April 1999

Date of mailing of the international search report

09/06/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Strobeck, A

Formn PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Intet nal Application No

PCT/IE 98/00108

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A BINDU RAMA RAO: "MAKING THE MOST OF
MIDDLEWARE"

DATA COMMUNICATIONS,

vol. 24, no. 12, 1 September 1995, page
89/90, 92, 94, 96 XP000527750

see page 89, "Middleware for the Muddled"

14,15

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

«formation on patent family members

Intes nal Application No

PCT/IE 98/00108

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5678006 A 14-10-1997 AU 5578396 A 18-11-1996
CA 2217001 A 31-10-1996
EP 0873618 A 28-10-1998
Wo 9634475 A 31-10-1996

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

