
(19) United States 
(12) Patent Application Publication 

Arrouye et al. 

US 2010O257179A1 

(10) Pub. No.: US 2010/0257179 A1 
(43) Pub. Date: Oct. 7, 2010 

(54) 

(76) 

(21) 

(22) 

(60) 

(+ Optionally 

METHODS AND SYSTEMIS FORMANAGING 
DATA 

Inventors: Yan Arrouye, Mountain View, CA 
(US); Dominic Giampaolo, 
Moutain View, CA (US); Andrew 
Carol, Half Moon Bay, CA (US) 

Correspondence Address: 
APPLE INCABSTZ. 
BLAKELY SOKOLOFF TAYLOR & ZAFMAN 
LLP 
1279 OAKMEAD PARKWAY, SUITE 300 
SUNNYVALE, CA 94085-4040 (US) 

Appl. No.: 12/748,340 

Filed: Mar. 26, 2010 

Related U.S. Application Data 

Division of application No. 1 1/112,422, filed on Apr. 
22, 2005, now Pat. No. 7,693,856, which is a continu 

OS 
Kernel 

Importers 
Software 

Exporters) 
of Metadata 

File 
System 
Directory 

for 

Metadata 
Database 

415 

Metadata 

400 

ation-in-part of application No. 10/877.584, filed on 
Jun. 25, 2004, now Pat. No. 7,730,012. 

Publication Classification 

(51) Int. Cl. 
G06F 7/30 (2006.01) 
G06F 7/00 (2006.01) 

(52) U.S. Cl. ................. 707/741; 707/812; 707/E17.002; 
707/E17.044 

(57) ABSTRACT 

Systems and methods for managing data, Such as metadata or 
indexes of content of files. In one exemplary method, notifi 
cations to update a metadata database oran index database are 
combined into a combined notification. According to other 
aspects, an order among logical locations on a storage device 
is determined in order to specify a sequence for Scanning for 
files to be indexed. According to another aspect, a method 
includes determining whether to index a file based on a path 
name of the file relative to a plurality of predetermined path 
aCS. 

403 

405 

File System 
GUI SW 

Metadata Processing 

Applications 

419 
Content 
Software 

421 

  

  



Patent Application Publication Oct. 7, 2010 Sheet 1 of 66 US 2010/02571 79 A1 

Mass Storage 
Microprocessor(s) (e.g., HardDrive) 

103 106 

Bus(es) 102 

Display Controller I/O 
and Controller(s) 

Display Device 108 
104 

I/O Devices 
(e.g., MOUSe Or 
Keyboard or 
Modem Or 

NetWOrk Interface Or 
CD Drive, etc.) 

109 

FIG. 1 

  



Patent Application Publication Oct. 7, 2010 Sheet 2 of 66 US 2010/02571 79 A1 

Capture metadata from a variety 201 
of different application programs 

Make Captured metadata available to a 
Searching facility (e.g., a file management 203 

system software for searching) 

Allow Searching of metadata acroSS all 205 
applications having captured metadata 

Provide User Interface of search engine 2O7 
and Search results 

FIG. 2 

  



Patent Application Publication Oct. 7, 2010 Sheet 3 of 66 US 2010/02571 79 A1 

301 

JPEG image File Metadata 

ISO Setting Image Width 

Flash Setting Image Height 

f) Stop Image Color Space 

Camera Brand Information BitS/Pixel 

User Added Keywords Other Fields. 

FIG. 3A 

331 

MP3 Music File Metadata 

Artist Song Play Times 

Genre Other Fields. 

Album 

Song names 

FIG. 3B 

  



Patent Application Publication Oct. 7, 2010 Sheet 4 of 66 US 2010/02571 79 A1 

Importers Metadata Processing 
(+ Optionally Software 
Exporters) 
of Metadata 

File 

Metadata System 
Database Drey COntent 

Metadata Software 

417 

400 

  



Patent Application Publication Oct. 7, 2010 Sheet 5 of 66 US 2010/02571 79 A1 

Receive notification of change for a file (e.g., receive 
notification from OS kernel or software application of 501 
Creation of new file or modification of existing file or 

deletion of existing file). 

Determine type of file (e.g., an Acrobat PDF file or an 503 
RTF Word processing file or a JPEG image file, etc.) 

Activate capture Software for determined file type 
(e.g., a plug in for the application which Creates 505 

the type of file) 

Import appropriate metadata (for particular file type) 507 
into a metadata database 

Store metadata in a database (e.g., a flat file 
format database) 

Receive search parameter inputs and perform search 511 
of metadata database and display results 

FIG. 5 

509 

  



Patent Application Publication Oct. 7, 2010 Sheet 6 of 66 US 2010/02571 79 A1 

601 

603 Metadata from file 1 of Application A (File A1) 

605 Metadata from file 1 of Application B (File B1) 

607 Metadata from file 2 of Application A (File A2) 

609 Metadata from file 1 of Application C (File C1) 

611 Metadata from file 2 of Application B (File B2) 

617 Metadata from filen of Application C (File Cn) 

FIG. 6 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 7 of 66 Patent Application Publication 

  



US 2010/02571 79 A1 

seun old III 

EEE SEEEEEE 3. 2 NY 3. 

Oct. 7, 2010 Sheet 8 of 66 

Ee 3. 2 x 3. M S S 

Patent Application Publication 

  



US 2010/02571 79 A1 

Set 3. 

Oct. 7, 2010 Sheet 9 of 66 

ESSEE ESSE & 

/0/a se6eu]@ a SXSIC] [eooT 
/ | / 9 || || 

S % 

Patent Application Publication 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 10 of 66 Patent Application Publication 

2 x s SSESS 2 As S 

  



US 2010/02571 79 A1 

EEE SEEEED 3 

Oct. 7, 2010 Sheet 11 of 66 

s e 3 3. 3 

Patent Application Publication 

  



US 2010/02571 79 A1 

| 09 

Oct. 7, 2010 Sheet 12 of 66 Patent Application Publication 

douso douso douso douso douso douso douso douso douso douso douso douso dou?so douso douso douso douso douso 

909 

609 108 8908 WG08 908 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 13 of 66 

Z08 

Patent Application Publication 

88 

| Z8 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 14 of 66 Patent Application Publication 

906 | Z6 606 

Jepul-I! [2] 

  



US 2010/02571 79 A1 Patent Application Publication 

S?uÐUunoOClGael R] 

O 

1801 ggo? (CO) 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 16 of 66 Patent Application Publication 

| || || 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 17 of 66 

890|| 

ZLx6L sold uqor Q 

Patent Application Publication 

  



US 2010/02571 79 A1 

90|| ~ 

Oct. 7, 2010 Sheet 18 of 66 

890|| 

60|| 

Patent Application Publication 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 19 of 66 Patent Application Publication 

sÁep 09 pJOAA 

890|| 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 20 of 66 Patent Application Publication 

so?oud (3) 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 21 of 66 Patent Application Publication 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 22 of 66 Patent Application Publication 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 23 of 66 Patent Application Publication 

  



US 2010/02571 79 A1 

Cd 

o 

108|| 

Patent Application Publication 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 25 of 66 Patent Application Publication 

ø | |al | 0 

TJ. T9 Tg T9 
Nfff:ffff:ffff; 

?oueas weN \o 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 26 of 66 

. . . . . f. f. f. f. f. f. f. f. f. ff.) 

Patent Application Publication 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 27 of 66 Patent Application Publication 

  

  

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 28 of 66 Patent Application Publication 

?d['2000OSO 

  



US 2010/02571 79 A1 

, ,× 

Oct. 7, 2010 Sheet 29 of 66 Patent Application Publication 

  



US 2010/02571 79 A1 

Oulap{{}} 
[5] [5] [5] E] [5] [5] Gj [5] [5] [5] [5] [5] [5] 

Oct. 7, 2010 Sheet 30 of 66 Patent Application Publication 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 31 of 66 Patent Application Publication 

  



Patent Application Publication Oct. 7, 2010 Sheet 32 of 66 US 2010/02571 79 A1 

O Smart Folder 

COn Size: 128 x 128 

Small Large 

Text size: 12pt C 

Label position: 
O) Bottom ORight 
OSnap to grid 
OShow item info 
OShow icon preview 

1430 

RM Keep arranged by 

Name 
Background: 
OWhite 
O) Color 
O Picture 

FIG. 14D 

  



Patent Application Publication Oct. 7, 2010 Sheet 33 of 66 US 2010/02571 79 A1 

1502 

Documents Shakelt.gadget.zip 
PDF DOCuments don'tshakeit out.pdf 

E don'tshakeit.pdf 

1501 

FIG. 15A 

  



Patent Application Publication Oct. 7, 2010 Sheet 34 of 66 US 2010/02571 79 A1 

1502 1505 

X () Thu 10:47 AM o 
1507 

Show All (392) 1509 

Top Hit actionbutton 1515 

1511 Documents button.psd 
ACtion Button. Cir 

Action Button.dir 

Metal buttons.psd 
animgif.txt 
animgif.txt 
bitmap.txt 
bitmap.txt 
bitmap.txt 
bitmap.txt 

g button. Wav 
d button. Wav 

CurSOr.txt 

CurSOr.txt 

default.txt 

default.txt 

1513 Folders actionbutton 
new buttons 

action button icon 
alex - clear button 

1503 

FIG. 15B 

  



Patent Application Publication Oct. 7, 2010 Sheet 35 of 66 US 2010/02571 79 A1 

di Finder File Edit View Go Window Help 

G testo (Work) 
SCratch 

Chd 
Pictures 

DOCuments 

g This Week 

FIG. 15C TO FIG. 15C COntinued -> 

  



Patent Application Publication Oct. 7, 2010 Sheet 36 of 66 US 2010/02571 79 A1 

1505 

\ 3 () Thu 11.09AMo 
g d 

B Picture 18 Stocks.gadget.zip testo ( 
OutK. pSC g 

Picture 19 

U 
ork) 

C 

Ct h U 

g 
icture 6 SCratch 

g 
re 7 

S 

Picture 8 Weather.gadget.zip 

r 
icture 9 Weather.gadget 

r y 

icture 10 shakeit gadget.zip 

r 
adget.zip 9 

P 

P 

P 

P 

Picture 11 WebCan. 

P 

P 

P 

P 

P icture 12 
N 

icture 13 
v 

, 

icture 14 
a 

P CCC 321 
icture 15 Picture 4 

Y 

Picture 16 Picture 5 

Picture 17 Stocks.gadget 

-> From FIG. 15C FG 15C COntinued 

  



Patent Application Publication Oct. 7, 2010 Sheet 37 of 66 US 2010/02571 79 A1 

di Finder File Edit View Go Window Help 

(o) (OO) Search: todo 
10 Results 

VDOCuments 
todo.tif NOWember 2002 
DiskDoubler/AutoDoubler 3.714 September 2001 

vimages EEE 
todolist.tif Today 11:08 am 
todo.tif October 30, 12:03 pm 

a bigtodo.tif October 30, 12:02 pm 
vtodo March 2002 

V PDF DOCuments 
davis.jpg Reader.pdf May 2002 

Acrobat.pdf May 2002 
Reader.pdf May 2002 
Snapz ProXDOCs (Espanol).pdf January 2002 

FIG. 15D TO FIG. 15D COntinued -> 

  



Patent Application Publication Oct. 7, 2010 Sheet 38 of 66 US 2010/02571 79 A1 

1507 1505 

\ 3 () Thu11:09 AMO 

EShowAll(13) 
g Applications () Safari 

Picture 19 O Safari 
O Safari 

DOCuments O 9p Safari.icns 
Group By: Picture 20 OneWSafari.icnS 
Kind O Safari 
Date Safari. pSC 
People Folders safari 
Flat List safari 
Within Group Sort by: safaritabs 
Name Images El Safari.tif 
Date Safari.tif 
Kind 
People PDF DOCUments Safari 

Search: g 
Everywhere Picture 11 WebCamgadget.zip 
N N A. 

Gower) g 
SCratch Picture 12 Picture 1 
hd 

Picture 4 
y g 

Picture 16 Picture 5 

Picture 17 StockS.gadget 

-> From FIG. 15D FIG. 15D COntinued 

  



Patent Application Publication Oct. 7, 2010 Sheet 39 of 66 US 2010/02571 79 A1 

1625 1601 1603 

O) O O Search: button 

1614 NS 392 Results O button (3) 

1611 Group BW: Oup BV: button.psd September 193:55 pm GD top y 
Action Button.dir June 2003 GDI Date 
Action Button.dir June 2003 GD People 1605 
Metal buttons.psd March 2003 GD Flat List 
animgiftxt December 2002 GDI 

1612 Within Group 
Sort by: 

1613 Name 
actionbutton January 54:45pm GDI Date 

up new buttons April 2003 GD Kind 1607 
action button icon February 2003 GDPeople 

to alex- clear button December 2002 GD Search: 
Help Button November 2002 GD Everywhere 

Home 1609 
1615 - VHTML testo (Work) 

16ButtonS8.html November 1999 GD scratch 
16ButtonS9.html NOWember 1999 G) hd 1627 
16ButtonS4.html November 1999 GD 
16ButtonS5.html NOWember 1999 GD 
16ButtonS6.html NOWember 1999 GD 
10 more... - 1830 

1617-vimages E 
SR) buttonsymbols.gif NOWember 2002 GO-1831 

button in place.gif NOvember 2002 GD 
buttonbackground.gif NOWember 2002 GD 
buttonlaver.dif NOvember 2002 GD 
PushButton G11 (graphite).pct November 2002 GD 
107 more... 

FIG. 16A To FIG, 16A continued 

  



Patent Application Publication Oct. 7, 2010 Sheet 40 of 66 US 2010/02571 79 A1 

From FIG. 16A 
VPDF DOCuments 

AHIG.5/10/pdf November 2002 
Norton Disk Editor X.pdf September 2002 GD 
Reader.pdf May 2002 
MacUsersGuide ToPocketPCs.pdf November 2001 
Designing AirPort Networks2.pdf October 2001 
18 more... 

VSOUrCe COce 
S GraphicsButton.java May 2001 
E. SunSphereButton.java May 2001 
E. SunSphereEastButton.java May 2001 
E. SunSphereinfoButton.java May 2001 
E. SunSphereNorthButton.java May 2001 

11 more... 

1619 

1621 

VWOrd DOCUmentS 
E fop uibugs 082301.doc November 2002 

Radar 5.0.1 User manual January 2002 
E Radar 4.0 User manual August 2000 

CD Player bits June 2000 
E Required Changes to the AAP (8) June 2000 

1 more... 

1623 

FIG. 16A COntinued 

  



Patent Application Publication Oct. 7, 2010 Sheet 41 of 66 US 2010/02571 79 A1 

1625 1601 1603 

O) O O Search: button 
1614A 392 Results 

1611 
1613 

new buttons April 2003 GD 
Flat List 

alex - clear button December 2002 gll 
group 
Name 

1615 Date 
316Buttons8.html November 1999 GD Kind 

16Buttons9.html NOWember 1999 GD People 
16ButtonS4.html NOVember 1999 GD 

16Buttons5.html November 1999 E. verywhere 
Home 
testo (Work) 

1617-vimages EEE Scratch 
SR) buttonsymbols.gif November 2002 G) 

buttonbackground.gif November 2002 GD 
buttonlayer.gif November 2002 GD 
PushButton G11 (graphite).pct November 2002 GD 

1619 
AHIG.5/10/pdf NOWember 2002 
Norton Disk Editor X.pdf September 2002 
Reader.pdf May 2002 
MacUsersGuide ToPocketPCs.pdf November 2001 
Designing AirPort Networks2.pdf October 2001 
18 more... 

GD 

FIG. 16B To FIG.16B Continued 

  

  



Patent Application Publication Oct. 7, 2010 Sheet 42 of 66 US 2010/02571 79 A1 

FrOm FG 16B 

- N - N-N-N-N-N- 
1621 

1623 
E fop ulbugs 082301.doc November 2002 () 

FIG. 16B COntinued 

  



US 2010/02571 79 A1 

/ 

G99|| —? Ip'uonna uollow [] 
up’uonna uonovi Q.] 

Oct. 7, 2010 Sheet 43 of 66 Patent Application Publication 

  



Patent Application Publication Oct. 7, 2010 Sheet 44 of 66 US 2010/02571 79 A1 

C O O Search: button 

1814 392 Results 

1811 DOCuments 
button.psd September 193:55 pm GD 
Action Button.dir June 2003 
Action Button.dir June 2003 
Metal buttons.psd March 2003 
animgiftxt December 2002 
191 more... 

1813 - V Folders 
Jactionbutton January 5 4:45pm 
up new buttons April 2003 

action button icon February 2003 
alex- clear button December 2002 
Help Button November 2002 Everywhere 
19 more... Home 

1815 - VHTML testo (Work) 
16ButtonS8.html NOWember 1999 SCratch 
16ButtonS9.html NOWember 1999 
16ButtonS4.html NOWember 1999 
16ButtonS5.html NOWember 1999 
16ButtonS6.html NOWember 1999 
10 more... 

1817- VImages 

s 

st at 
Flat List GD 

Within Group 
Sort by: 
Name 
Date 
Kind 
People 

Search: 

t 

button...Ols.gif button.ace.gif button...nd.gif buttonlayer.gif PushBu.te).pct 
November 2002 NOWember 2002 NOVember 2002 NOWember 2002 November 2002 

1812 107 more... 

FIG. 18A To FIG. 18A continued 

  

  



Patent Application Publication Oct. 7, 2010 Sheet 45 of 66 US 2010/02571 79 A1 

From FIG. 18A 

VPDF DOCuments 
AHIG.5/10/pdf NOVember 2002 
Norton Disk Editor X.pdf September 2002 GD 
Reader.pdf May 2002 
MacUsersGuideToPocketPCs.pdf November 2001 
Designing AirPort NetWorks2.pdf October 2001 
18 more... 

VSOUrce COce 
E. GraphicsButton.java May 2001 
E. SunSphereButton.java May 2001 

SunSphereEastButton.java May 2001 
E. SunSphereinfoButton.java May 2001 
E SunSphereNorthButton.java May 2001 

11 more... 

1819 
GD 

1821 

1823-VWord DOCuments 
E fop ulbugs 082301.doc NOWember 2002 
E Radar 5.0.1 User manual January 2002 GD 

El CD Player bits June 2000 GD 

FIG. 18A COntinued 

  

  

  

  



Patent Application Publication Oct. 7, 2010 Sheet 46 of 66 

O O O Search: button 

1814 
1811 DOCuments 

button.psd 
Action Button.dir 
Action Button.dir 
Metal buttons.psd 
animgiftxt 
191 more... 

VFOlderS 

actionbutton 
new buttons 
action button icon 
alex - clear button 
Help Button 
19 more... 

VHTML 
16ButtonS8.html 
16ButtonS9.html 
16ButtonS4.html 
16ButtonS5.html 
16Buttons5.html GD 
10 more... / 

VImages Show top 5 EEE 

Sy) 

button...Ols.gif button...ace.gif button...nd.gif buttonlayer.gif PushBute).pct 
NOWember 2002 NOVember 2002 NOWember 2002 NOWember 2002 NOVember 2002 

Elia series September 193:55 pm GD 
June 2003 
June 2003 
March 2003 
December 2002 

GD 

GEO G. 
1813 

GD January 5 4:45pm 
April 2003 
February 2003 
December 2002 
NOWember 2002 

d new buttons April 2003 GD 
GD 
GD 
GD 

1815 
NOWember 1999 
NOWember 1999 
NOWember 1999 
NOWember 1999 
NOWember 1999 

GD 
GD 
GD 
GD 

1817 

1818A 

FIG. 18B 

US 2010/02571 79 A1 

Group By: 
Kind 
Date 
People 
Flat List 

Within Group 
Sort by: 
Name 
Date 
Kind 
People 

Search: 
Everywhere 
Home 
testo (Work) 
SCratch 
hd 

392 ResultS (O button OX) 

To FIG. 18B continued 

  



Patent Application Publication Oct. 7, 2010 Sheet 47 of 66 

From FG 18B 

O) 

PushBu.pc. 10 01. Button 1202...button 1203...button 1204, button 
NOvember 2002 November 2002 NOYember 2002 November 2002 NOYember 2002 

1205...button 1218.button 1219...button 1222...button 135 E.button 
NOYember 2002 November 2002 NOYember 2002 NOVember 2002 NOYember 2002 

1365.uttons 1400...Button 1500.uttons 161 B.ecitor 162 BRaised 
NOYember 2002 November 2002 NOYember 2002 NOVember 2002 NOYember 2002 

FIG. 18B COntinued 

US 2010/02571 79 A1 

  



Patent Application Publication Oct. 7, 2010 Sheet 48 of 66 US 2010/02571 79 A1 

1925 - 1901 1903 
O) O O Search: im?an 

30 Results Gimran 7 (3) 
1911 

CD Player bits June 2000 GPP 
Date 1905 

People 1906 
1913-V No Authors Flat List 

Group 
rty. 

Simran June 172:06 am GDI Date 1907 
Kind 

17 more... June 10: 5:23 pm People 
1915 

Spl agenda 082201.doc November 2002 GD For 
pl minutes 081701.doc November 2002 GDE" 1908 
pl timeline 082201.doc November 2002 (D) testo (Work) 

Gminutes O73101.doc November 2002 GDSCratch 
1917- V Susan McGarry hd 

GWWDC 2000-HILabs May 2000 

Spl minutes 081701.doc November 2002 GD 
Gpl-timeline 082201.doc. November 2002 GD 
Gminutes O73101.doc. November 2002 GD 

v Susan McGarry 

FIG. 19A 1925A 

  



Patent Application Publication Oct. 7, 2010 Sheet 49 of 66 US 2010/02571 79 A1 

1925 1901A 1903 

O) O O Search: imran 
30 Results (O 

CD Player bits June 2000 GD 
E Required Changes to the AAP (B) June 2000 GD 
Elcon Text O) 1905 

Keywords - - 
Copyright -- 

Last used date May 2000 Within Group 
Sort by: 

E. pl. agenda_082201.doc November 2002 GD or py 
E. pl. minutes 081701.doc November 2002 GD Date 1907 

pl timeline 082201.doc November 2002 GD Kind 
G minutes O73101.doc November 2002 GDPeople 
E. WWDC 2000-HILabs MaV 2000 GD Search: 

imran MaV 2003 GD Everywhere 
window pix for imran July 24:36pm GD Homé 1908 
window pix for imran July 7 11:42 am GDI testo (WOrk) 
imran Thursday 4:39 pm GDSCratch 
Help for imran January 2000 GD 

D System preferences V imran.psd January 2001 GD 
Bas & imran 

Flat List 1909 

Keywords - - 
Copyright -- 

Last used date July 2000 
Height 1536 
Width 2048 

FIG. 19B To FIG. 19B continued 

  



Patent Application Publication Oct. 7, 2010 Sheet 50 of 66 US 2010/02571 79 A1 

From FIG. 19B 

quake(imran).pSd DeCember 1999 

Junk (imranOapple.com.mbox) May 245:29 pm 
Sent Messages (imran.0apple.com.mbox) June 105:23 pm 
Drafts (imranClapple.Com).mbOX June 172:06 am 
Southwest AirlinesTicketless Travel Confirmation April 29 11:45pm 

ELIST May 241:21 pm 
Gimran June 152:16 pm 

FIG. 19B COntinued 

  



Patent Application Publication Oct. 7, 2010 Sheet 51 of 66 US 2010/02571 79 A1 

1925 1930 

O) O O 

1903 

Search: te 
68861 Results 

v Future 

Date 
5OFF13D5-C608-11D8-9DF7- Kind 
OOO3938E381CIABPerSO.VCf People 

Keywords - 
Copyright Search: 

Everywhere 
Home 
testo (Work) 
SCratch 

1932 

Flat List 

Within Group 
Sort by: 
Name 

1907 

1908 

Apple Computer Inc. Today 11:12 am GD O 

imran oday 11:12am T 

info.plist Today 11:12am GD 
44 more... 

v Yesterday 

30 more. 
N-N-N- 

FIG. 19C TO FIG. 19C continued 

Today 11:12 am GD 
1926 

1936 

    

  

  

  

  

  

      

  

  

    

  

  

    

    

    

    

    

  



Patent Application Publication Oct. 7, 2010 Sheet 52 of 66 US 2010/02571 79 A1 

From FIG. 19C 
1938 

Tuesday 6:51 pm GD 
Tuesday 6:48pm GD 
Tuesday 6:46 pm GD 
Tuesday 6:45pm GD 
Tuesday 6:44 pm GD 

System Preferences 
uVolumes 

Utilities 
Applications 
474 more... 

VLaSt month 

22434 
1940 

June 1411:37 pm GD 

FIG. 19C COntinued 

  



Patent Application Publication Oct. 7, 2010 Sheet 53 of 66 

1925 1950 

O) O O Search: te 

US 2010/02571 79 A1 

1903 

64 Results 

1952 v Today 

34 more. 
v Yesterday 1954 

Group By: 
Kind 
Date 
People 
Flat List 

1905 

Within Group 
Sort by: 
Name 
Date 
Kind 
People 

1907 

iTunes Music Library.xml Yesterday 8:24 pm CD 

1 more... I 
v Last week 

14 The Brouhaha.m4a une 16 11:05am GD 
13 Crawlspace.m4a une 16 11:05am GD 
12 An Open Letter TO NYC.m4a June 16 11:04 am GD 
11 Shazam.m4a une 16 11:04 am GD 
10 more... 

V Later 
index.html 
Web share.gif 
apache_pb.gif 

XmaCOSxlogo.gif 

1956 

1958 
August 75:36 pm 
August 75:36 pm 
May 2001 
May 2001 

FIG. 19D 

Search: 
Everywhere 
Home 
testo (Work) 

v 
2 

1908 

SCratch 
hd 

1925A 

  



US 2010/02571 79 A1 Oct. 7, 2010 Sheet 54 of 66 Patent Application Publication 

:3.13 LIWA 
G. G. G. G. G. G. 

  



Patent Application Publication Oct. 7, 2010 Sheet 55 of 66 US 2010/02571 79 A1 

Display a system wide Menu for inputting 2001 
Search queries 

Input Search, and as Search query is inputted, 
perform the search (begin searching and 

displaying search results before user finishes 2003 
inputting Search query) 

Perform search through files, metadata, 
emails within an email program, address book 2005 

entries within an address book, Calendar entries 
Within a Calendar program, etc. 

Display an abbreviated (incomplete) list of hits 
(if there are more than a certain number of 
hits), SOrted by relevance and Segregated 2007 

into groupS (Categories) 

Receive Command to display all hits 2009 

Display a search results window with ability 
to display 2 different types of view (e.g., icon 2011 
and list views) within the same closeable, 

resizable, mOveable windoW 

FIG. 20 

  



Patent Application Publication Oct. 7, 2010 Sheet 56 of 66 US 2010/02571 79 A1 

Receive one or more inputs indicating a 
Selection of a plurality of items (e.g., data 2101 
files, folders, application programs, etc.) 

Receive a Command requesting both the 
Creation of a new storage facility and an 2103 
association of the plurality of items with 

the new storage facility 

Create the new Storage facility (e.g., a new 
folder with a predetermined directory pathname 
Or a user Specified directory pathname) and 2104 
asSociate (e.g., move Or Copy) the Selected 
plurality of items with the new storage facility 

FIG. 21 

  

  



Patent Application Publication Oct. 7, 2010 Sheet 57 of 66 US 2010/02571 79 A1 

2219 2221 22O1 

2227 

2203 2223 2205 2225 22O7 

FIG.22A 

2219 2221 22O1 

2227 

2203 2223 2225 2211 2205 2207 

FIG.22B 

  



Patent Application Publication Oct. 7, 2010 Sheet 58 of 66 US 2010/02571 79 A1 

MOVetO Trash 

Create a New 
Folder and MOWe 
items to New 

FOlder 

Create a New 
Folder and Copy 
items into New 

FOlder 

2203 2205 22O1 2207 

NEW FOLDER 

) 

2251 2223 2225 2252 2227 2253 

FIG.22D 

  

  



Patent Application Publication Oct. 7, 2010 Sheet 59 of 66 US 2010/02571 79 A1 

DETERMINE ORDER OF SCANNING OF FILES FOR 2301 
INDEXING (E.G. HIGHEST PRIORITY LOCATIONS FIRST 

SUCH ASUSERS' HOME FOLDERS AND THEN 
"DOCUMENTS"FOLDERS AND THEN"DESKTOP", ETC) 

USE RULES TO FILTER FILES TO BEINDEXED 2303 
(E.G. IGNORE FILES INTRASH AND INTEMPORARY 
DIRECTORIES AND INVISIBLE FILES AND OPERATING 
SYSTEM FILES AND SCAN THROUGH PATHNAME OF 

FILE TO DETERMINE IF FILE IS ASYSTEMFILE) 

2305 

COALESCE NOTIFICATIONS AND FILTER THE FILES IN 
THE NOTIFICATIONS 

2307 
PERFORMINDEXING OF FILTEREDFILES TO CREATE 
INDEX OF FILES AND UPDATE INDEX (E.G. FULL 

TEXT OF CONTENTINDEX) DATABASE AND UPDATE 
METADATA DATABASE 

FIG. 23 

  



Patent Application Publication Oct. 7, 2010 Sheet 60 of 66 US 2010/02571 79 A1 

2401 
DETERMINE WHETHER ALL FILES WITHINA 

DIRECTORY AND/OR SPECIFICFILES WITHINA 
DIRECTORY SHOULD BE INDEXED 

2403 

INDEX FILE ANDFILES WITHINA DIRECTORY 
IF FILTERED "IN" 

2405 

ADDRESULT OF INDEXING TO INDEX 
(FULL TEXT CONTENT) DATABASE 

FIG. 24 

  



Patent Application Publication Oct. 7, 2010 Sheet 61 of 66 US 2010/02571 79 A1 

DETERMINEPATHNAMES (FOR A GIVENTYPE OF 
VOLUME) CONTAINING FILES WHICH SHOULD NOT BE 
INDEXED (E.G. "INVISIBLE"FILES, OPERATING SYSTEM 
(OS) FILES, FILES INA"TRASH"DIRECTORY, FILES IN 

TEMPORARY DIRECTORIES, ETC) 

CREATE RULES (FOR A GIVENTYPE OF VOLUME) 
FOR FILTERING: A SUBSET OF RULES MAY EXIST FOR 

SPECIFICDIRECTORIES (E.G. A USER HOME 
DIRECTORY) 

SCANTHROUGH FILES (E.G., INAPREDETERMINED 
ORDER, SUCH AS SPECIFIED BY PROBE POINTS) USING 
THE RULES (E.G., CANDIDATEFILES ARE PRESENTED 
ASPATHS IN THE HERARCHY OF PATHNAMES AND 

COMPARED TO PATHNAMES IN THE RULES) 

DETERMINE WHETHER, BASED ON THE RULES, AFILE 
IS TO BEINDEXED (IFYES, ADD THE FILESIDENTIFIER, 
SUCH ASAPERSISTENT, UNIQUE IDENTIFICATION 
NUMBER, TO A "TO BEINDEXED"QUEUE STORED IN 
NON-VOLATILESTORAGE WHICHUSESAJOURNAL 
FILE SYSTEM TOLOGWRITE TRANSACTIONS TO THE 
NON-VOLATILESTORAGE) (IFNO, OPTIONALLY MARK 

THE FILEAS NOT TO BEINDEXED) 

FIG. 25 

2501 

2503 

2505 

2507 

  



Patent Application Publication Oct. 7, 2010 Sheet 62 of 66 US 2010/02571 79 A1 

26O1 
RECEIVENOTIFICATIONABOUT A FILE (E.G. 
AN EXISTING FILE HAS BEEN MODIFIED OR A 

NEWFILE HAS BEEN CREATED) 

2603 
DETERMINEHOW TO FILTER THE NOTIFICATION 
(IF"FILTER OUT", DO NOT ADD FILE'S METADATA 

TOMETADATA DATABASE) 

2605 
IMPORT DATA FROM FILE INTO METADATA 

DATABASE WHICH HAS METADATA FROM FILES 
OF DIFFERENT TYPES 

FIG. 26 

  



Patent Application Publication Oct. 7, 2010 Sheet 63 of 66 US 2010/02571 79 A1 

SETA PRIORITY AMONG LOCATIONS ONA 2701 
STORAGEDEVICE, THE PRIORITY SPECIFYING AN 
ORDER TO SCAN FILES FOR INDEXING (THE ORDER 
IS NORMALLY BASED ONUSER RELEVANCE OF THE 

FILES) 

SCAN THROUGH THE LOCATIONS TO DETERMINE 2703 
FILESTO INDEX SCANACCORDING TO THE ORDER 
(E.G., USER'S HOME FOLDERFIRST, THENUSER 
CREATED FOLDERSOUTSIDE THE HOME FOLDER 

THEN THE DESKTOP, ETC) 

2705 
AS THE SCAN REVEALS FILESTO INDEX, ADD THE 

FILESTOA"TO BEINDEXED"QUEUE WHICH 
RESEMBLES AFIFO BUFFER 

FIG. 27 

  



Patent Application Publication Oct. 7, 2010 Sheet 64 of 66 US 2010/02571 79 A1 

DETERMINE THAT A GROUP OF RELATED OBJECTS 2803 
(E.G. APACKAGE OF FILES) HAS BEENSTORED 
ONTO ASTORAGEMEDIUM (E.G. THE PACKAGE 
WAS COPIED ON THE STORAGEMEDIUM) 

2805 

CREATE ASET OF NOTIFICATIONS (E.G. ONE 
NOTIFICATION) FOR UPDATING AMETADATA DATABASE 

2807 

UPDATE THE METADATA DATABASEAFTER 
RECEIVING THE SET OF NOTIFICATIONS 

FIG. 28 

  



Patent Application Publication Oct. 7, 2010 Sheet 65 of 66 US 2010/02571 79 A1 

DETERMINE THATAN OPERATION (E.G. A COPYING 
OPERATION) HAS BEENPERFORMED ON APACKAGE'S 
FILE (E.G. LAUNCHSERVICES SPECIFIES THAT THE 

FILE IS PART OF APACKAGE) 

ADD FIRST NOTIFICATION FROM THE OPERATION 
ON THE PACKAGE TO A CACHE OF A SOFTWARE 

COALESCING UNIT 

COALESCING UNIT RECEIVES FURTHER NOTIFICATIONS 
FROM THE OPERATION ON THE PACKAGE (ASEACH 
FILE WITHIN THE PACKAGE IS COPIED, ETC.) AND 
THE COALESCING UNIT DROPS THOSE FURTHER 

NOTIFICATIONS 

AFTER A PERIOD OF TIME (OR WHEN THE CACHE OF 
THE COALESCING UNIT BECOMES FULL), ADD THE 
FIRST NOTIFICATION TO THE "TO BE IMPORTED" 

QUEUE (THIS FIRST NOTIFICATIONIDENTIFIES THE 
ENTIRE CONTENTS OF THE PACKAGE) 

PROCESS THE NOTIFICATIONS FROM THE QUEUE 
(INORDER TOUPDATE THE METADATA DATABASE) 

FIG. 29 

  



Patent Application Publication Oct. 7, 2010 Sheet 66 of 66 US 2010/02571 79 A1 

RECEIVE FIRST NOTIFICATION THAT FILE"ABC.TXT" 
HAS BEEN MODIFIED 

ADD NOTIFICATION TO CACHE OF COALESCING UNIT 
(OPTIONAL) 

ADD NOTIFICATION TO "TO BE IMPORTED"QUEUE 

RECEIVE SECOND NOTIFICATION THAT FILE ABC.TXT 
HAS BEEN MODIFIED (E.G.INRESPONSETOUSER 
SELECTING ASAVE COMMAND FOR THE SECOND 

TIME INA SHORTPERIOD TIME) 

DETERMINE WHETHER THE FIRST NOTIFICATION FOR 
THE FILE ABC.TXT HAS BEEN DEQUEUED AND IMPORTED 

(IFNOT THENDROP THE SECOND NOTIFICATION, 
OTHERWISE PROCEED TO NEXT OPERATION) 

DETERMINE WHEN NEXT NOTIFICATION FOR THE FILE 
ABC.TXT IS LIKELY TO BE THE LAST ONE (E.G. THE 
PROGRAMIS QUITTING AND A SAVE IS OCCURRING 
ORWAIT APERIOD OF TIME (CHECKSYSTEM CLOCK) 
AND DROP ALL OTHER PRIOR NOTIFICATIONS AND ADD 
THE LAST NOTIFICATION TO THE "TO BE IMPORTED" 

QUEUE 

DEQUEUE THE (EXPECTED) LAST NOTIFICATION 
AND IMPORT CHANGES IN ABC.TXT INTO THE 

METADATA DATABASE 

FIG. 30 

  



US 2010/02571 79 A1 

METHODS AND SYSTEMIS FORMANAGING 
DATA 

0001. This application is a divisional of co-pending U.S. 
patent application Ser. No. 11/112,422, filed on Apr. 22, 2005, 
which is a continuation-in-part of co-pending U.S. patent 
application Ser. No. 10/877.584, filed on Jun. 25, 2004. This 
application also claims priority to co-pending U.S. Provi 
sional Patent Application No. 60/643,087 filed on Jan. 7, 
2005, which provisional application is incorporated herein by 
reference in its entirety; this application claims the benefit of 
the provisional's filing date under 35 U.S.C. S119(e). This 
present application hereby claims the benefit of these earlier 
filing dates under 35 U.S.C. S.120. 

BACKGROUND OF THE INVENTION 

0002 Modern data processing systems, such as general 
purpose computer systems, allow the users of such systems to 
create a variety of different types of data files. For example, a 
typical user of a data processing system may create text files 
with a word processing program Such as Microsoft Word or 
may create an image file with an image processing program 
such as Adobe's PhotoShop. Numerous other types of files are 
capable of being created or modified, edited, and otherwise 
used by one or more users for a typical data processing sys 
tem. The large number of the different types of files that can 
be created or modified can present a challenge to a typical 
user who is seeking to find a particular file which has been 
created. 
0003 Modern data processing systems often include a file 
management system which allows a user to place files in 
various directories or subdirectories (e.g. folders) and allows 
a user to give the file a name. Further, these file management 
systems often allow a user to find a file by searching for the 
file's name, or the date of creation, or the date of modification, 
or the type of file. An example of Such a file management 
system is the Finder program which operates on Macintosh 
computers from Apple Inc. of Cupertino, California. Another 
example of a file management system program is the Win 
dows Explorer program which operates on the Windows oper 
ating system from Microsoft Corporation of Redmond, Wash. 
Both the Finder program and the Windows Explorer program 
include a find command which allows a user to search for files 
by various criteria including a file name or a date of creation 
or a date of modification or the type of file. However, this 
search capability searches through information which is the 
same for each file, regardless of the type of file. Thus, for 
example, the searchable data for a Microsoft Word file is the 
same as the searchable data for an Adobe PhotoShop file, and 
this data typically includes the file name, the type of file, the 
date of creation, the date of last modification, the size of the 
file and certain other parameters which may be maintained for 
the file by the file management system. 
0004 Certain presently existing application programs 
allow a user to maintain data about a particular file. This data 
about a particular file may be considered metadata because it 
is data about other data. This metadata for aparticular file may 
include information about the author of a file, a summary of 
the document, and various other types of information. A 
program Such as Microsoft Word may automatically create 
Some of this data when a user creates a file and the user may 
add additional data or edit the data by selecting the “property 
sheet from a menu selection in Microsoft Word. The prop 

Oct. 7, 2010 

erty sheets in Microsoft Word allow a user to create metadata 
for a particular file or document. However, in existing sys 
tems, a user is notable to search for metadata across a variety 
of different applications using one search request from the 
user. Furthermore, existing systems can perform one search 
for data files, but this search does not also include searching 
through metadata for those files. 
0005 Prior existing systems perform indexing of the full 
content of user files either upon user request or upon a sched 
uled time. 

SUMMARY OF THE DESCRIPTION 

0006 Methods for managing data in a data processing 
system and systems for managing data are described herein. 
0007 Various methods and systems for creating and 
updating an index database and/or a metadata database are 
described. Some of these methods and systems include the 
use of notifications to cause an index database to be updated, 
the combining of notifications, the filtering of notifications in 
cases where a database should not be updated, the use of an 
order, based on a user's interest in files, when scanning files to 
determine whether to index the files, and the use of pathnames 
when determining whether to index files. 
0008 According to one aspect of the inventions described 
herein, a method of managing data in one exemplary embodi 
ment includes combining a set of notifications into a com 
bined notification or a smaller set of notifications for updating 
a metadata database and/or index database and updating the 
metadata database and/or the index database after receiving 
the combined notification. The metadata database may 
include a first type of information for metadata for a first type 
of file which differs from a second type of information for 
metadata for a second type of file because the type of infor 
mation in metadata for files of the first type differs from the 
type of information in metadata for files of the second type. In 
certain exemplary embodiments, the method may also 
include filtering the notifications before the combining of the 
notifications; this filtering would normally prevent the updat 
ing of a metadata database or an index database for files that 
should not be in these databases (e.g. temporary files, non 
user files, etc.). 
0009. According to another aspect of the inventions 
described herein, a method of managing data in one exem 
plary embodiment includes determining that a group of 
related objects has been stored onto a storage medium, and 
creating in response to the determining, a set of notifications 
for updating a metadata database and/or index database, and 
updating the metadata database and/or the index database 
after receiving the set of notifications. This exemplary 
embodiment may be used for a package of files which, from 
a user's perspective, appears as one object in the graphical 
user interface but to the system appears as a group of related 
objects. 
0010. According to another aspect of the invention 
described herein, a method of managing data in one exem 
plary embodiment includes determining an order among logi 
cal locations (e.g. directories) on a storage device, wherein 
the order specifies a sequence for scanning for files to be 
indexed on the storage device and the sequence is based upon 
a likelihood of user documents being in the logical locations, 
and the method also includes scanning through the logical 
locations to determine whether files need to be indexed. The 
method further typically includes indexing the full text con 
tent of the files in the order which was determined. This order 



US 2010/02571 79 A1 

may specify, for example, a sequence which includes a user's 
home folder and a user's document folder (e.g. outside of the 
home folder) and then a desktop location and then other 
folders created by the user, rather than the original system 
folders or directories present on an original system from a 
manufacturer. This order may also be based on data indicating 
a user's interest in files, such as data which recorded which 
files or directories a user viewed or otherwise accessed, and 
the order may be based on frequency or recency of the user's 
access. This order may also specify a sequence for scanning 
locations to determine whether metadata from files needs to 
be added into a metadata database. 
0011. According to another aspect of the inventions 
described herein, a method of managing data in one exem 
plary embodiment includes determining whether to index a 
file (or to add metadata from a file into a metadata database) 
based on a file path name of the file and a plurality of prede 
termined path names. In one implementation, the predeter 
mined path names specify predetermined directories which 
include temporary directories and operating system directo 
ries which should not contain user files that need to be 
indexed. The method may further include indexing the files in 
response to determining that a file is to be indexed (and/or 
adding metadata from a file into a metadata database). This 
method may be performed automatically by the data process 
ing system such that the user will allow the system to auto 
matically determine what files need to be indexed (and/or 
what files need to have their metadata added to a metadata 
database) and what files do not need to be indexed. 
0012. Other aspects of the present invention include vari 
ous data processing systems which perform one or more of 
the methods described herein and machine readable media 
which perform one or more of the various methods described 
herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 The present invention is illustrated by way of 
example and not limitation in the figures of the accompanying 
drawings in which like references indicate similar elements. 
0014 FIG. 1 shows an exemplary embodiment of a data 
processing system, which may be a general purpose computer 
system and which may operate in any of the various methods 
described herein. 
0015 FIG. 2 shows a general example of one exemplary 
method of one aspect of the invention. 
0016 FIG. 3A shows an example of the content of the 
particular type of metadata for a particular type of file. 
0017 FIG. 3B shows another example of a particular type 
of metadata for another particular type of file. 
0018 FIG. 4 shows an example of an architecture for 
managing metadata according to one exemplary embodiment 
of the invention. 
0019 FIG. 5 is a flowchart showing another exemplary 
method of the present invention. 
0020 FIG. 6 shows an example of a storage format which 

utilizes a flat file format for metadata according to one exem 
plary embodiment of the invention. 
0021 FIGS. 7A-7E show a sequence of graphical user 
interfaces provided by one exemplary embodiment in order to 
allow searching of metadata and/or other data in a data pro 
cessing System. 
0022 FIGS. 8A and 8B show two examples of formats for 
displaying search results according to one exemplary 
embodiment of the invention. 

Oct. 7, 2010 

0023 FIG. 9 shows another exemplary user interface of 
the present invention. 
0024 FIG. 10 shows another exemplary user interface of 
the present invention. 
0025 FIGS. 11A-11D show, in sequence, another exem 
plary user interface according to the present invention. 
0026 FIGS. 12A-12D show alternative embodiments of 
user interfaces according to the present invention. 
0027 FIGS. 13A and 13B show further alternative 
embodiments of user interfaces according to the present 
invention. 
0028 FIGS. 14A, 14B, 14C, and 14D show further alter 
native embodiments of user interfaces according to the 
present invention. 
0029 FIGS. 15A, 15B, 15C and 15D show another alter 
native embodiment of user interfaces according to the present 
invention. 
0030 FIGS. 16A and 16B show certain aspects of embodi 
ments of user interfaces according to the present invention. 
0031 FIG. 17 shows an aspect of certain embodiments of 
user interfaces according to the present invention. 
0032 FIGS. 18A and 18B show further aspects of certain 
embodiments of user interfaces according to the present 
invention. 
0033 FIGS. 19A, 19B, 19C, 19D, and 19E show further 
illustrative embodiments of user interfaces according to the 
present invention. 
0034 FIG. 20 is a flow chart which illustrates another 
exemplary method of the present invention. 
0035 FIG. 21 is a flow chart showing another exemplary 
method of the present invention. 
0036 FIGS. 22A, 22B, 22C, and 22D illustrate the display 
of a display device on which an embodiment of the method of 
FIG. 21 is performed. 
0037 FIG. 23 is a flow chart which illustrates a combina 
tion of methods according to an exemplary embodiment of 
the present invention. 
0038 FIG. 24 is a flow chart which illustrates an exem 
plary method to filter files as part of an indexing process. 
0039 FIG. 25 is a flow chart which illustrates one exem 
plary method for filtering files. 
0040 FIG. 26 is a flow chart which illustrates an exem 
plary method for filtering files to determine whether or not a 
file's metadata is to be added to a metadata database. 
0041 FIG. 27 is a flow chart which illustrates another 
exemplary method in the process of indexing the content of 
files; in the particular method of FIG. 27, a priority for index 
ing is established based upon the location of the various files 
so that files that are most relevant to a user or which appear to 
be most relevant to a user are indexed first or with a higher 
priority relative to other files. 
0042 FIG. 28 is a flow chart which illustrates another 
exemplary method of the present invention in which notifica 
tions for updating a metadata database may be coalesced. 
0043 FIG.29 is flow chart which illustrates another exem 
plary method of the present inventions in which notifications 
are coalesced. 
0044 FIG. 30 represents another exemplary method in 
which notifications may be coalesced to reduce a first number 
of notifications to a smaller number of notifications. 

DETAILED DESCRIPTION 

0045. The subject invention will be described with refer 
ence to numerous details set forth below, and the accompa 



US 2010/02571 79 A1 

nying drawings will illustrate the invention. The following 
description and drawings are illustrative of the invention and 
are not to be construed as limiting the invention. Numerous 
specific details are described to provide a thorough under 
standing of the present invention. However, in certain 
instances, well known or conventional details are not 
described in order to not unnecessarily obscure the present 
invention in detail. 

0046. The present description includes material protected 
by copyrights, such as illustrations of graphical user interface 
images. The owners of the copyrights, including the assignee 
of the present invention, hereby reserve their rights, including 
copyright, in these materials. The copyright owner has no 
objection to the facsimile reproduction by anyone of the 
patent document or the patent disclosure, as it appears in the 
Patent and Trademark Office file or records, but otherwise 
reserves all copyrights whatsoever. Copyright Apple Com 
puter, Inc. 2004. 
0047 FIG. 1 shows one example of a typical computer 
system which may be used with the present invention. Note 
that while FIG. 1 illustrates various components of a com 
puter system, it is not intended to represent any particular 
architecture or manner of interconnecting the components as 
Such details are not germane to the present invention. It will 
also be appreciated that network computers and other data 
processing systems which have fewer components or perhaps 
more components may also be used with the present inven 
tion. The computer system of FIG.1 may, for example, be a 
Macintosh computer from Apple Inc. 
0048. As shown in FIG. 1, the computer system 101, 
which is a form of a data processing system, includes a bus 
102 which is coupled to a microprocessor(s) 103 and a ROM 
(Read Only Memory) 107 and volatile RAM 105 and a non 
volatile memory 106. The microprocessor 103 may be a G3 or 
G4 microprocessor from Motorola, Inc. or one or more G5 
microprocessors from IBM. The bus 102 interconnects these 
various components together and also interconnects these 
components 103,107,105, and 106 to a display controller and 
display device 104 and to peripheral devices such as input/ 
output (I/O) devices which may be mice, keyboards, 
modems, network interfaces, printers and other devices 
which are well known in the art. Typically, the input/output 
devices 109 are coupled to the system through input/output 
controllers 108. The volatile RAM (Random Access 
Memory) 105 is typically implemented as dynamic RAM 
(DRAM) which requires power continually in order to refresh 
or maintain the data in the memory. The mass storage 106 is 
typically a magnetic hard drive or a magnetic optical drive or 
an optical drive or a DVD RAM or other types of memory 
systems which maintain data (e.g. large amounts of data) even 
after power is removed from the system. Typically, the mass 
storage 106 will also be a random access memory although 
this is not required. While FIG. 1 shows that the mass storage 
106 is a local device coupled directly to the rest of the com 
ponents in the data processing system, it will be appreciated 
that the present invention may utilize a non-volatile memory 
which is remote from the system, Such as a network storage 
device which is coupled to the data processing system 
through a network interface Such as a modem or Ethernet 
interface. The bus 102 may include one or more buses con 
nected to each other through various bridges, controllers and/ 
or adapters as is well known in the art. In one embodiment the 
I/O controller 108 includes a USB (Universal Serial Bus) 

Oct. 7, 2010 

adapter for controlling USB peripherals and an IEEE 1394 
controller for IEEE 1394 compliant peripherals. 
0049. It will be apparent from this description that aspects 
of the present invention may be embodied, at least in part, in 
Software. That is, the techniques may be carried out in a 
computer system or other data processing system in response 
to its processor, such as a microprocessor, executing 
sequences of instructions contained in a memory. Such as 
ROM 107, RAM 105, mass storage 106 or a remote storage 
device. In various embodiments, hardwired circuitry may be 
used in combination with Software instructions to implement 
the present invention. Thus, the techniques are not limited to 
any specific combination of hardware circuitry and Software 
nor to any particular source for the instructions executed by 
the data processing system. In addition, throughout this 
description, various functions and operations are described as 
being performed by or caused by software code to simplify 
description. However, those skilled in the art will recognize 
what is meant by Such expressions is that the functions result 
from execution of the code by a processor, such as the micro 
processor 103. 

Capturing and Use of Metadata Across a Variety of Applica 
tion Programs 

0050 FIG. 2 shows a generalized example of one embodi 
ment of the present invention. In this example, captured meta 
data is made available to a searching facility, Such as a com 
ponent of the operating system which allows concurrent 
searching of all metadata for all applications having captured 
metadata (and optionally for all non-metadata of the data 
files). The method of FIG. 2 may begin in operation 201 in 
which metadata is captured from a variety of different appli 
cation programs. This captured metadata is then made avail 
able in operation 203 to a searching facility, such as a file 
management system software for searching. This searching 
facility allows, in operation 205, the searching of metadata 
across all applications having captured metadata. The method 
also provides, in operation 207, a user interface of a search 
engine and the search results which are obtained by the search 
engine. There are numerous possible implementations of the 
method of FIG. 2. For example, FIG. 5 shows a specific 
implementation of one exemplary embodiment of the method 
of FIG. 2. Alternative implementations may also be used. For 
example, in an alternative implementation, the metadata may 
be provided by each application program to a central source 
which stores the metadata for use by searching facilities and 
which is managed by an operating system component, which 
may be, for example, the metadata processing Software. The 
user interface provided in operation 207 may take a variety of 
different formats, including some of the examples described 
below as well as user interfaces which are conventional, prior 
art user interfaces. The metadata may be stored in a database 
which may be any of a variety of formats including a B tree 
formator, as described below, in a flat file format according to 
one embodiment of the invention. 

0051. The method of FIG. 2 may be implemented for 
programs which do not store or provide metadata. In this 
circumstance, a portion of the operating system provides for 
the capture of the metadata from the variety of different 
programs even though the programs have not been designed 
to provide or capture metadata. For those programs which do 
allow a user to create metadata for a particular document, 
certain embodiments of the present invention may allow the 



US 2010/02571 79 A1 

exporting back of captured metadata back into data files for 
applications which maintain metadata about their data files. 
0052. The method of FIG. 2 allows information about a 
variety of different files created by a variety of different 
application programs to be accessible by a system wide 
searching facility, which is similar to the way in which prior 
art versions of the Finder or Windows Explorer can search for 
file names, dates of creation, etc. across a variety of different 
application programs. Thus, the metadata for a variety of 
different files created by a variety of different application 
programs can be accessed through an extension of an operat 
ing system, and an example of such an extension is shown in 
FIG. 4 as a metadata processing software which interacts with 
other components of the system and will be described further 
below. 

0053 FIGS. 3A and 3B show two different metadata for 
mats for two different types of data files. Note that there may 
be no overlap in any of the fields; in other words, no field in 
one type of metadata is the same as any field in the other type 

Item Parent in 
l8le hierarchy Attribute name Description/Notes CFType 

Oct. 7, 2010 

of metadata. Metadata format 301 may be used for an image 
file such as a JPEG image file. This metadata may include 
information Such as the image's width, the image's height, the 
image's color space, the number of bits per pixel, the ISO 
setting, the flash setting, the F/stop of the camera, the brand 
name of the camera which took the image, user-added key 
words and other fields, such as a field which uniquely iden 
tifies the particular file, which identification is persistent 
through modifications of the file. Metadata format331 shown 
in FIG.3B may be used for a music file such as an MP3 music 
file. The data in this metadata format may include an identi 
fication of the artist, the genre of the music, the name of the 
album, Song names in the album or the song name of the 
particular file, Song play times or the song play time of a 
particular song and other fields, such as a persistent file ID 
number which identifies the particular MP3 file from which 
the metadata was captured. Other types of fields may also be 
used. The following chart shows examples of the various 
fields which may be used in metadata for various types of 
files. 

Copied 
Multi- User with App 
value Localized settable Gettable copy viewable 

Authors Who created or 
contributed to the 
contents of this item 
A free form text 
comment 

This is the type that is 
determined by UTI 
This is the inheritance of 
the UTI system 
When was this item 
created 
The name of the item as 
the user would like to 
read it. Very well may 
be the file name, but it 
may also be the Subject 
of an e-mail message or 
the full name of a 
person, for example. 
This is a list words set 
by the user to identify 
arbitrary sets of 
organization. The scope 
is determined by the 
user and can be flexibly 
used for any kind of 
organization. For 
example, Family, 
Hawaii, ProjectX, etc. 
A list of contacts that 
are associated with this 
document, beyond what 
is captured as Author. 
This may be a person 
who's in the picture or a 
document about a 
person or contact 
(performance review, 
contract) 
When this item was last 
modified 
A relative rating (0 to 5 
value) on how important 
a particular item is to 
you, whether it's a 
person, file or message 

Item na 

Comment 

ContentType 

ContentTypes 

CreatedDate 

DisplayName 

Keywords 

Contact 
Keywords 

ModifiedDate 

Rating 

CFString Yes No Yes Yes Yes 

CFString No Yes Yes Yes Yes 

CFString Yes 

CFString Yes No Yes Yes Ask 

Address 
Book 

CFString No No Yes Yes Yes 

CFString No No Yes Yes 

CFString Yes No Yes Yes 

CFDate No No No Yes Yes 

Finder (or 
Launch 
Services) 

System- Yes Yes Ask 
provided 
keywords 
(if any) 

Address 
Book 

CFDate No No No Yes 

CFNumber No na Yes Yes 



US 2010/02571 79 A1 Oct. 7, 2010 

-continued 

Copied 
Item Parent in Multi- User with App 
l8le hierarchy Attribute name Description/Notes CFType value Localized settable Gettable copy viewable 

Related Tos A list of other items that CFString Yes No Yes Yes 
are arbitrarily grouped 
together. 

TextContent An indexed version of CFString No No No Yes 
any content text 

Used Dates Which days was the CFDate Yes No No Yes 
document 
opened viewed played 

Content Item Copyright Specifies the owner of CFString No No Yes Yes 
Data this content, i.e. 

Copyright Apple 
Computer, Inc. 

Creator App Keeps track of the CFString No No Yes 
application that was 
used to create this 
ocument (if it's 

known). 
Languages The languages that this CFString Yes Yes Yes Yes 

ocument is composed 
in (for either text or 
audio-based media) 

ParentalControl A field that is used to CFString No Yes Yes 
etermine whether this 

is kid-friendly content or 
not 
The name or a person or CFString Yes No Yes Yes Address 
organization that Book 
published this content. 

Published Date The original date that CFDate No No Yes Yes 
his content was 

published (if it was), 
independent of created 
ate. 

Reviewers A list of contacts who CFString Yes No Yes Yes Address 
have reviewed the Book 
contents of this file. 
This would have to be 
set explicitly by an 
application. 

Review Status Free form text that used CFString No Yes Yes 
to specify where the 
document is in any 
arbitrary review process 

TimeEdited Total time spent editing CFDate No No No Yes 
document 

WhereTos Where did this go to, eg. CFString Yes System- Yes 
CD, printed, backedup provided 

words 
only (if 
any) 

WhereFroms Where did this come CFString Yes System- Yes 
from, e.g. camera, email, provided 
web download, CD words 

only (if 
any) 

Image Data BitsPerSample What is the bit depth of CFNumber No Yes 
the image (8-bit, 16-bit, 
etc.) 

ColorSpace What color space model CFString No Yes ColorSync 
is this document Utility? 
following 

Image:Height The height of the image CFNumber No Yes 
in pixels 

ImageWidth The width of the image CFNumber No Yes 
in pixels 

ProfileName The name of the color CFString No Yes ColorSync 
profile used with for Utility? 
image 

ResolutionWidth Resolution width of this CFNumber No Yes 
image (i.e. dpi from a 
Scanner) 

Publishers 



US 2010/02571 79 A1 

Item 
l8le 

Time 
based 

Parent in 
hierarchy Attribute name 

Data 

ResolutionHeight 

LayerNames 

Aperture 

CameraMake 

CameraModel 

DateTimeOriginal 

ExposureMode 

ExposureTime 

Flash 

GPS 

ISOSpeed 

Orientation 

WhiteBalance 

EXIFversion 

AcquisitionSources 

Codecs 

DeliveryType 
Duration 

Streamable 

TotalBitRate 

AudioBitRate 

AspectRatio 

ColorSpace 

-continued 

Description/Notes 

Resolution height of this 
image (i.e. dpi from a 
Scanner) 
For image formats that 
contain “named layers 
(e.g. Photoshop files) 
The f-stop rating of the 
camera when the image 
was taken 
The make of the camera 
that was used to acquire 
this image (e.g. Nikon) 
The model of the camera 
used to acquire this 
image (Coolpix 5700) 
Dateftime the picture 
was taken 
Mode that was used for 
the exposure 
Time that the lens was 
exposed while taking the 
picture 
This attribute is 
overloaded with 
information about red 
eye reduction. This is 
not a binary value 
Raw value received 
from GPS device 
associated with photo 
acquisition. It hasn't 
necessarily been 
translated to a user 
understandable location. 
The ISO speed the 
camera was set to when 
he image was acquired 
The orientation of the 
camera when the image 
was acquired 
The white balance 
Setting of the camera 
when the picture was 
taken 

The version of EXIF 
hat was used to 
generate the metadata 
for the image 
The name or type of 
evice that used to 
cquire the media 
The codecs used to 
ncode? decode the 
edia 
astStart or RTSP 
The length of time that 
he media lasts 
Whether the content is 
prepared for purposes of 
streaming 
The total bit rate (audio 
& video combined) of 
he media. 
The audio bit rate of the 
media 
The aspect ratio of the 
video of the media 
The color space model 
used for the video aspect 
of the media 

8. 

FType 

FNumber 

FString 

FNumber 

FString 

FString 

FDate 

FString 

FDate 

FNumber 

FString 

FNumber 

FString 

FNumber 

FString 

FString 

FString 

FString 
FNumber 

FBoolean 

FNumber 

FNumber 

FString 

FString 

Multi 
value 

No 

Yes 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 
No 

No 

No 

No 

No 

No 

Localized 

Yes 

Yes 

User 
settable 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Oct. 7, 2010 

Copied 
with App 

Gettable copy viewable 



US 2010/02571 79 A1 

Item Parent in 
l8le hierarchy 

Text Data 

Com- Data 
pound 
document 

PDF Com 
pound 
document 

Attribute name 

FrameHeight 

FrameWidth 

ProfileName 

VideoBitRate 

Subject 

PageCount 

LineCount 

WordCount 

URL 

PageTitle 

Google 
Hierarchy 

<Abstract 

NumberOfPages 

PageSize 

PDFTitle 

PDFAuthor 

PDFSubject 

PDFKeywords 

PDFCreated 

-continued 

Description/Notes CFType 

The frame height in CFNumber 
pixels of the video in the 
media 
The frame width in 
pixels of the video in the 
media 
The name of the color 
profile used on the video 
portion of the media 
The bit rate of the video 
aspect of the media 
The subject of the text. 
This could be metadata 
hat's supplied with the 

text or something 
automatically generated 
with technologies like 
VTWIN 
The number of printable 
pages of the document 
The number of lines in 
he document 
The number of words in 
he document 
The URL that will get 
you to this document (or 
at least did at one time). 
Relevant for saved 
HTML documents, 
bookmarks, RSS feeds, 
etc. 

The title of a web page. 
Relevant to HTML or 
bookmark documents 
Structure of where this 
page can be found in the 
Google hierarchy. 
Relevant to HTML or 
bookmark documents 
There are no specific 
attributes assigned to 
his item. This is to 

catch all app-specific 
file formats that fall 
within Data, but don't fit 
into any of the other 
types. Typically these 
OcumentS have 

multiple types of media 
embedded within them. 
(e.g. P 
The number of printable 
pages in the document 
The size of the page 
stored as points 
PDF-specific title 
metadata for the 
OClel 

PDF-specific author 
metadata for the 
OClel 

PDF-specific subject 
metadata for the 
OClel 

PDF-specific keywords 
metadata for the 
OClel 

PDF-specific created 
metadata for the 
OClel 

CFNumber 

CFString 

CFNumber 

CFString 

CFNumber 

CFNumber 

CFNumber 

CFString 

CFString 

CFString 

na 

CFNumber 

CFNumber 

CFString 

CFString 

CFString 

CFString 

CFDate 

Multi 
value 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

No 

Localized 

na 

User 
settable 

na 

No 

Oct. 7, 2010 

Copied 
with App 

Gettable copy 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

na na 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

viewable 

na 

Address 
Book 



US 2010/02571 79 A1 

Item 
l8le 

Pres 
entation 
(Keynote) 

Appli 
cation 

Message 

Contact 

Parent in 
hierarchy 

Com 
pound 
document 

Item 

Item 

Item 

Attribute name 

PDFModified 

PDFVersion 

SecurityMethod 

SlideTitles 

SlideCount 
SpeakerNotesContent 

Categories 

Recipients 

Priority 

AttachmentNames 

Authors 

Comment 

ContentType 
ContentTypes 
CreatedDate 

DisplayName 
Keywords 

Contact 
Keywords 
Modified Date 
Rating 

Related Tos 

TextContent 

Used Dates 

Company 

E-mails 

IMS 

Phones 

Addresses 

-continued 

Description/Notes 

PDF-specific modified 
metadata for the 
document 
PDF-specific version 
metadata for the 
document 
Method by which this 
document is kept Secure 
A collection of the titles 
on slides 
The number of slides 
The content of all the 
speaker notes from all of 
the slides together 
The kind of application 
this is: productivity, 
games, utility, graphics, 
etc. A setlist that 
Maps to To and Cc: 
addresses in a mail 
meSSage. 
The priority of the 
message as set by the 
sender 
The list of filenames that 
represent attachments in 
a particular message 
(should be actionable 
within the Finder) 
maps to From address in 
mail message 
Not applicable to Mail 
right now (should we 
consider?) 

When was this message 
was sent or received 
Subject of the message 
There will be a way to 
set keywords within 
Mail 

Could be where 
recipients are held 
Not applicable 
A relative rating (0 to 5 
stars) on how important 
a particular message is 
to you (separate from a 
message's Priority) 
Potentially threaded 
messages could be put 
into this category 
An indexed version of 
the mail message 
The daytime in which 
the mail message was 
viewed read 
The company that this 
contact is an employee 
of 
A list of e-mail 
addresses that this 
contact has 
A list of instant message 
handles this contact has 
A list of phone numbers 
that relate to this contact 
A list of physical 
addresses that relate to 
this person 

FType 

FDate 

FString 

FString 

FString 

FString 
FString 

FString 

FString 

FString 

FString 

FString 

FString 

FString 
FString 
FDate 

FString 
FString 

FString 

FDate 
FNumber 

FString 

FString 

FDate 

FString 

FString 

FString 

FString 

FString 

Multi 
value 

No 

No 

No 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

No 

No 
Yes 
No 

No 
Yes 

Yes 

No 
No 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Localized 

No 

No 

No 

Yes 
System 
provided 
keywords 
(if any) 
No 

No 
na 

No 

No 

No 

User 
settable 

Yes 

Yes 

No 
No 
No 

Yes 
Yes 

Yes 

No 
Yes 

Yes 

No 

No 

Gettable copy 

Yes 

Yes 

Yes 

Yes 

Yes 
Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
Yes 
Yes 

Yes 
Yes 

Yes 

Yes 
Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Oct. 7, 2010 

Copied 
with App 

viewable 

Address 
Book 

Yes Address 
Book 

Yes 

Yes 
Yes 
Yes 

Yes 
Ask 

Ask Address 
Book 

Address 
Book 

Mail 

iChat 



US 2010/02571 79 A1 Oct. 7, 2010 
9 

-continued 

Copied 
Item Parent in Multi- User with App 
l8le hierarchy Attribute name Description/Notes CFType value Localized settable Gettable copy viewable 

Authors the name of the owner of CFString Yes No Yes Yes Yes Address 
the Address Book Book 
(current user name) 

Comment CFString No No Yes Yes Yes 
ContentType CFString No No Yes Yes 
ContentTypes CFString Yes No Yes Yes 

Meeting Item CreatedDate date the user entered this CFDate No No No Yes Yes 
(TBD) into his AddressBook 

(either through import or 
direct entry) 

DisplayName Composite name of CFString No Yes Yes Yes Yes 
contact (First Name, 
LastName) 

Keywords There will be a way to CFString Yes System- Yes Yes Ask 
set keywords within provided 
Address Book keywords 

(if any) 
Contact CFString Yes No Yes Yes Ask Address 
Keywords Book 
Modified Date Last time this contact CFDate No No No Yes 

entry was modified 
Rating A relative rating (0 to 5 CFNumber No na Yes Yes 

stars) on how important 
a particular contact is to 
you (separate from a 
message's Priority) 

Related Tos (potentially could be CFString Yes No Yes Yes 
used to associate people 
from the same company 
or family) 

TextContent An indexed version of CFString No No No Yes 
the Notes section 

Used Dates The daytime in which CFDate Yes No No Yes 
the contact entry was 
viewed in Address Book 

Body text, rich text or CFString No Yes 
document that represents 
the full content of the 
event 

Description text describing the event CFString No Yes 
EventTimes time? date the event starts CFDate Yes Yes 
Duration The length of time that CFNumber No Yes 

the meeting lasts 
Invitees The list of people who CFString Yes Yes Address 

are invited to the Book 
meeting 

Location The name of the location CFString No Yes 
where the meeting is 
taking place 

0054. One particular field which may be useful in the Software programs such as a file system graphical user inter 
various metadata formats would be a field which includes an 
identifier of a plug in or other software element which may be 
used to capture metadata from a data file and/or export meta 
data back to the creator application. 
0055 Various different software architectures may be 
used to implement the functions and operations described 
herein. The following discussion provides one example of 
such an architecture, but it will be understood that alternative 
architectures may also be employed to achieve the same or 
similar results. The software architecture shown in FIG. 4 is 
an example which is based upon the Macintosh operating 
system. The architecture 400 includes a metadata processing 
software 401 and an operating system (OS) kernel 403 which 
is operatively coupled to the metadata processing Software 
401 for a notification mechanism which is described below. 
The metadata processing software 401 is also coupled to other 

face software 405 (which may be the Finder), an email soft 
ware 407, and other applications 409. These applications are 
coupled to the metadata processing software 401 through 
client application program interface 411 which provide a 
method for transferring data and commands between the 
metadata processing software 401 and the software 405, 407, 
and 409. These commands and data may include search 
parameters specified by a user as well as commands to per 
form searches from the user, which parameters and com 
mands are passed to the metadata processing software 401 
through the interface 411. The metadata processing Software 
401 is also coupled to a collection of importers 413 which 
extract data from various applications. In particular, in one 
exemplary embodiment, a text importer is used to extract text 
and other information from word processing or text process 
ing files created by word processing programs such as 



US 2010/02571 79 A1 

Microsoft Word, etc. This extracted information is the meta 
data for a particular file. Other types of importers extract 
metadata from other types of files, such as image files or 
music files. In this particular embodiment, a particular 
importer is selected based upon the type offile which has been 
created and modified by an application program. For 
example, if the data file was created by PhotoShop, then an 
image importer for PhotoShop may be used to input the 
metadata from a PhotoShop data file into the metadata data 
base 415 through the metadata processing software 401. On 
the other hand, if the data file is a word processing document, 
then an importer designed to extract metadata from a word 
processing document is called upon to extract the metadata 
from the word processing data file and place it into the meta 
data database 415 through the metadata processing Software 
401. Typically, a plurality of different importers may be 
required in order to handle the plurality of different applica 
tion programs which are used in a typical computer system. 
The importers 413 may optionally include a plurality of 
exporters which are capable of exporting the extracted meta 
data for particular types of data files back to property sheets or 
other data components maintained by certain application pro 
grams. For example, certain application programs may main 
tain some metadata for each data file created by the program, 
but this metadata is only a subset of the metadata extracted by 
an importer from this type of data file. In this instance, the 
exporter may export back additional metadata or may simply 
insert metadata into blank fields of metadata maintained by 
the application program. 
0056. The software architecture 400 also includes a file 
system directory 417 for the metadata. This file system direc 
tory keeps track of the relationship between the data files and 
their metadata and keeps track of the location of the metadata 
object (e.g. a metadata file which corresponds to the data file 
from which it was extracted) created by each importer. In one 
exemplary embodiment, the metadata database is maintained 
as a flat file format as described below, and the file system 
directory 417 maintains this flat file format. One advantage of 
a flat file format is that the data is laid out on a storage device 
as a string of data without references between fields from one 
metadata file (corresponding to a particular data file) to 
another metadata file (corresponding to another data file). 
This arrangement of data will often result in faster retrieval of 
information from the metadata database 415. 

0057 The software architecture 400 of FIG. 4 also 
includes find by content software 419 which is operatively 
coupled to a database 421 which includes an index of files. 
The index of files represents at least a subset of the data files 
in a storage device and may include all of the data files in a 
particular storage device (or several storage devices), such as 
the main hard drive of a computer system. The index of files 
may be a conventional indexed representation of the content 
of each document. The find by content software 419 searches 
for words in that content by searching through the database 
421 to see if a particular word exists in any of the data files 
which have been indexed. The find by content software func 
tionality is available through the metadata processing soft 
ware 401 which provides the advantage to the user that the 
user can search concurrently both the index of files in the 
database 421 (for the content within a file) as well as the 
metadata for the various data files being searched. The soft 
ware architecture shown in FIG.4 may be used to perform the 
method shown in FIG. 5 or alternative architectures may be 
used to perform the method of FIG. 5. 

Oct. 7, 2010 

0058. The method of FIG.5 may begin in operation 501 in 
which a notification of a change for a file is received. This 
notification may come from the OS kernel 403 which notifies 
the metadata processing software 401 that a file has been 
changed. This notification may come from Sniffer Software 
elements which detect new or modified files and deletion of 
files. This change may be the creation of a new file or the 
modification of an existing file or the deletion of an existing 
file. The deletion of an existing file causes a special case of the 
processing method of FIG.5 and is not shown in FIG.5. In the 
case of a deletion, the metadata processing software 401, 
through the use of the file system directory 417, deletes the 
metadata file in the metadata database 415 which corresponds 
to the deleted file. The other types of operations, such as the 
creation of a new file or the modification of an existing file, 
causes the processing to proceed from operation 501 to opera 
tion 503 in which the type of file which is the subject of the 
notification is determined. The file may be an Acrobat PDF 
file oran RTF word processing file or a JPEG image file, etc. 
In any case, the type of the file is determined in operation 503. 
This may be performed by receiving from the OS kernel 403 
the type of file along with the notification or the metadata 
processing Software 401 may request an identification of the 
type of file from the file system graphical user interface soft 
ware 405 or similar software which maintains information 
about the data file, such as the creator application or parent 
application of the data file. It will be understood that in one 
exemplary embodiment, the file system graphical user inter 
face software 405 is the Finder program which operates on the 
Macintosh operating system. In alternative embodiments, the 
file system graphical user interface system may be Windows 
Explorer which operates on Microsoft's Windows operating 
system. After the type offile has been determined in operation 
503, the appropriate capture software (e.g. one of the import 
ers 413) is activated for the determined file type. The import 
ers may be a plug-in for the particular application which 
created the type of file about which notification is received in 
operation 501. Once activated, the importer or capture soft 
ware imports the appropriate metadata (for the particular file 
type) into the metadata database. Such as metadata database 
415 as shown in operation 507. Then in operation 509, the 
metadata is stored in the database. In one exemplary embodi 
ment, it may be stored in a flat file format. Then in operation 
511, the metadata processing software 401 receives search 
parameter inputs and performs a search of the metadata data 
base (and optionally also causes a search of non-metadata 
Sources such as the index of files 421) and causes the results 
of the search to be displayed in a user interface. This may be 
performed by exchanging information between one of the 
applications, such as the software 405 or the software 407 or 
the other applications 409 and the metadata processing soft 
ware 401 through the interface 411. For example, the file 
system Software 405 may present a graphical user interface, 
allowing a user to input search parameters and allowing the 
user to cause a search to be performed. This information is 
conveyed through the interface 411 to the metadata process 
ing software 401 which causes a search through the metadata 
database 415 and also may cause a search through the data 
base 421 of the indexed files in order to search for content 
within each data file which has been indexed. The results from 
these searches are provided by the metadata processing soft 
ware 401 to the requesting application which, in the example 
given here, was the software 405, but it will be appreciated 
that other components of software. Such as the email software 



US 2010/02571 79 A1 

407, may be used to receive the search inputs and to provide 
a display of the search results. Various examples of the user 
interface for inputting search requests and for displaying 
search results are described herein and shown in the accom 
panying drawings. 
0059. It will be appreciated that the notification, if done 
through the OS kernel, is a global, system wide notification 
process Such that changes to any file will cause a notification 
to be sent to the metadata processing software. It will also be 
appreciated that in alternative embodiments, each application 
program may itself generate the necessary metadata and pro 
vide the metadata directly to a metadata database without the 
requirement of a notification from an operating system kernel 
or from the intervention of importers, such as the importers 
413. Alternatively, rather than using OS kernel notifications, 
an embodiment may use software calls from each application 
to a metadata processing software which receives these calls 
and then imports the metadata from each file in response to 
the call. 
0060. As noted above, the metadata database 415 may be 
stored in a flat file format in order to improve the speed of 
retrieval of information in most circumstances. The flat file 
format may be considered to be a non-B tree, non-hash tree 
format in which data is not attempted to be organized but is 
rather stored as a stream of data. Each metadata object or 
metadata file will itselfcontain fields, such as the fields shown 
in the examples of FIGS. 3A and 3B. However, there will 
typically be no relationship or reference or pointer from one 
field in one metadata file to the corresponding field (or 
another field) in the next metadata file or in another metadata 
file of the same file type. FIG. 6 shows an example of the 
layout in a flat file format of metadata. The format 601 
includes a plurality of metadata files for a corresponding 
plurality of data files. As shown in FIG. 6, metadata file 603 is 
metadata from file 1 of application A and may be referred to 
as metadata file A1. Similarly, metadata file 605 is metadata 
from file 1 of application Band may be referred to as metadata 
file B1. Each of these metadata files typically would include 
fields which are not linked to other fields and which do not 
contain references or pointers to other fields in other metadata 
files. It can be seen from FIG. 6 that the metadata database of 
FIG. 6 includes metadata files from a plurality of different 
applications (applications A, B, and C) and different files 
created by each of those applications. Metadata files 607, 609, 
611, and 617 are additional metadata files created by appli 
cations A, B, and C as shown in FIG. 6. 
0061. A flexible query language may be used to search the 
metadata database in the same way that such query languages 
are used to search other databases. The data within each 
metadata file may be packed or even compressed if desirable. 
As noted above, each metadata file, in certain embodiments, 
will include a persistent identifier which uniquely identifies 
its corresponding data file. This identifier remains the same 
even if the name of the file is changed or the file is modified. 
This allows for the persistent association between the particu 
lar data file and its metadata. 

User Interface Aspects 
0062 Various different examples of user interfaces for 
inputting search parameters and for displaying search results 
are provided herein. It will be understood that some features 
from certain embodiments may be mixed with other embodi 
ments such that hybrid embodiments may result from these 
combinations. It will be appreciated that certain features may 

Oct. 7, 2010 

be removed from each of these embodiments and still provide 
adequate functionality in many instances. 
0063 FIG. 7A shows a graphical user interface which is a 
window which may be displayed on a display device which is 
coupled to a data processing system such as a computer 
system. The window 701 includes a side bar having two 
regions 703A, which is a user-configurable region, and 703B. 
which is a region which is specified by the data processing 
system. Further details in connection with these side bar 
regions may be found in co-pending U.S. patent application 
Ser. No. filed Jun. 22, 2004, and entitled “Methods 
and Apparatuses for Operating a Data Processing System.” by 
inventors Donald Lindsay and Bas Ording, attorney docket 
number 04860. P3306. The window 701 also includes a dis 
play region 705 which in this case displays the results of 
searches requested by the user. The window 701 also includes 
a search parameter menu bar 707 which includes configurable 
pull down menus 713, 715, and 717. The window 701 also 
includes a text entry region 709 which allows a user to enter 
text as part of the search query or search parameters. The 
button 711 may be a start search button which a user activates 
in order to start a search based upon the selected search 
parameters. Alternatively, the system may performa searchas 
Soon as it receives any search parameter inputs or search 
queries from the user rather than waiting for a command to 
begin the search. The window 701 also includes a title bar 729 
which may be used in conjunction with a cursor control 
device to move, in a conventional manner, the window around 
a desktop which is displayed on a display device. The window 
701 also includes a close button 734, a minimize button 735, 
and a resize button 736 which may be used to close or mini 
mize or resize, respectively, the window. The window 701 
also includes a resizing control 731 which allows a user to 
modify the size of the window on a display device. The 
window 701 further includes a backbutton 732 and a forward 
button 733 which function in a manner which is similar to the 
back and forward buttons on a web browser, such as Internet 
Explorer or Safari. The window 701 also includes view con 
trols which include three buttons for selecting three different 
types of views of the content within the display region 705. 
When the contents found in a search exceed the available 
display area of a display region 705, scroll controls, such as 
scroll controls 721, 722, and 723, appear within the window 
701. These may be used in a conventional manner, for 
example, by dragging the scroll bar 721 within the scroll 
region 721A using conventional graphical user interface tech 
niques. 
0064. The combination of text entry region 709 and the 
search parameter menu bar allow a user to specify a search 
query or search parameters. Each of the configurable pull 
down menus presents a user with a list of options to select 
from when the user activates the pull down menu. As shown 
in FIG. 7A, the user has already made a selection from the 
configurable pull down menu 713 to specify the location of 
the search, which in this case specifies that the search will 
occur on the local disks of the computer systems. Config 
urable pull down menu 715 has also been used by the user to 
specify the kind of document which is to be searched for, 
which in this case is an image document as indicated by the 
configurable pull down menu 715 which indicates “images' 
as the selected configuration of this menu and hence the 
search parameter which it specifies. The configurable pull 
down menu 717, as shown in FIG. 7A, represents an add 
search parameter pull down menu. This add search parameter 



US 2010/02571 79 A1 

pull down menu allows the user to add additional criteria to 
the search query to further limit the search results. In the 
embodiment shown in FIG. 7A, each of the search parameters 
is logically ANDed in a Boolean manner. Thus the current 
search parameter specified by the user in the State shown in 
FIG. 7A searches all local disks for all images, and the user is 
in the middle of the process of selecting another search cri 
teria by having selected the add search criteria pull down 
menu 717, resulting in the display of the pull down menu 719, 
which has a plurality of options which may be selected by the 
USC. 

0065 FIG. 7B shows the window 701 after the user has 
caused the selection of the time option within pull down menu 
719, thereby causing the display of a submenu 719A which 
includes a list of possible times which the user may select 
from. Thus it appears that the user wants to limit the search to 
all images on all local disks within a certain period of time 
which is to be specified by making a selection within the 
Submenu 719A. 

0066 FIG. 7C shows the window 701 on the display of a 
data processing system after the user has selected a particular 
option (in this case “past week”) from the submenu 719A. If 
the user accepts this selection, then the display shown in FIG. 
7D results in which the configurable pull down menu 718 is 
displayed showing that the user has selected as part of the 
search criteria files that have been created or modified in the 
past week. It can be seen from FIG. 7D that the user can 
change the particular time selected from this pull down menu 
718 by selecting another time period within the pull down 
menu 718A shown in FIG.7D. Note that the configurable pull 
down menu 717, which represents an add search parameter 
menu, has now moved to the right of the configurable pull 
down menu 718. The user may add further search parameters 
by pressing or otherwise activating the configurable pull 
down menu 717 from the search parameter menu bar 707. If 
the user decides that the past week is the proper search criteria 
in the time category, then the user may release the pull down 
menu 718A from being displayed in a variety of different 
ways (e.g. the user may release the mouse button which was 
being depressed to keep the pull down menu 718A on the 
display). Upon releasing or otherwise dismissing the pull 
down menu 718A, the resulting window 701 shown in FIG. 
7E then appears. There are several aspects of this user inter 
face shown in FIG. 7A-7E which are worthy of being noted. 
The search parameters or search query is specified within the 
same window as the display of the search results. This allows 
the user to look at a single location or window to understand 
the search parameters and how they affected the displayed 
search results, and may make it easier for a user to alter or 
improve the search parameters in order to find one or more 
files. The configurable pull down menus, Such as the add 
search parameter pull down menu, includes hierarchical pull 
down menus. An example of this is shown in FIG.7B in which 
the selection of the time criteria from the pull down menu 717 
results in the display of another menu, in this case a submenu 
719A which may be selected from by the user. This allows for 
a compact presentation of the various search parameters 
while keeping the initial complexity (e.g. without Submenus 
being displayed) at a lower level. Another useful aspect of the 
user interface shown in FIG. 7A-7E is the ability to reconfig 
ure pull down menus which have previously been configured. 
Thus, for example, the configurable pull down menu 713 
currently specifies the location of the search (in this case, all 
local disks), however, this may be modified by selecting the 

Oct. 7, 2010 

pull down region associated with the configurable pull down 
menu 713, causing the display of a menu of options indicating 
alternative locations which may be selected by the user. This 
can also be seen in FIG. 7D in which the past week option has 
been selected by the user (as indicated by “past week” being 
in the search parameter menu bar 707), but a menu of options 
shown in the pull down menu 718A allows the user to change 
the selected time from the “past week” to some other time 
criteria. Another useful aspect of this user interface is the 
ability to continue adding various search criteria by using the 
add search criteria pull down menu 717 and selecting a new 
criteria. 

0067. It will also be appreciated that the various options in 
the pull down menus may depend upon the fields within a 
particular type of metadata file. For example, the selection of 
“images' to be searched may cause the various fields present 
in the metadata for an image type file to appearin one or more 
pull down menus, allowing the user to search within one or 
more of those fields for that particular type offile. Other fields 
which do not apply to “images' types of files may not appear 
in these menus in order reduce the complexity of the menus 
and to prevent user confusion. 
0068 Another feature of the present invention is shown in 
FIGS. 7A-7E. In particular, the side bar region 703A, which 
is the user-configurable portion of the side bar, includes a 
representation of a folder 725 which represents the search 
results obtained from a particular search, which search results 
may be static or they may be dynamic in that, in certain 
instances, the search can be performed again to obtain results 
based on the current files in the system. The folder 725 in the 
example shown in FIGS. 7A-7E represents a search on a local 
disk for all images done on December 10". By selecting this 
folder in the side bar region 703A, the user may cause the 
display in the display region 705 of the results of that search. 
In this way, a user may retrieve a search result automatically 
by saving the search result into the side bar region 703A. One 
mechanism for causing a search result or a search query to be 
saved into the side bar region 703A is to select the add folder 
button 727 which appears in the bottom portion of the win 
dow 701. By selecting this button, the current search result or 
search query is saved as a list of files and other objects 
retrieved in the current search result. In the case where the 
search query is saved for later use rather than the saving of a 
search result, then the current search query is saved for re-use 
at a later time in order to find files which match the search 
query at that later time. The user may select between these 
two functionalities (saving a search result or saving a search 
query) by the selection of a command which is not shown. 
0069 FIGS. 8A and 8B show another aspect of a user 
interface feature which may be used with certain embodi 
ments of the present invention. The window 801 of FIG. 8A 
represents a display of the search results which may be 
obtained as a result of using one of the various different 
embodiments of the present invention. The search results are 
separated into categories which are separated by headers 805, 
807, 809, and 811 which in this case represent periods of time. 
This particular segmentation with headers was selected by the 
user's selecting the heading "date modified using the date 
modified button 803 at the top of the window 801. An alter 
native selection of the kind category by selecting the button 
802 at the top of the window 801A shown in FIG. 8B results 
in a different formatting of the search results which are now 
categorized by headers which indicate the types offiles which 
were retrieved in the search and are separated by the headings 



US 2010/02571 79 A1 

815, 817,819, and 821 as shown in FIG. 8B. The use of these 
headings in the search results display allows the user to 
quickly scanthrough the search results in order to find the file. 
0070 FIG.9 shows another aspect of the present invention 
that is illustrated as part of the window 901 shown in FIG. 9. 
This window includes a display region 905 which shows the 
results of the search and the window also includes two side 
bar regions 903A and 903B, where the side bar region 903A 
is the user-configurable portion and the side bar region 903B 
is the system controlled portion. A folder add button 927 may 
be selected by the user to cause the addition of a search result 
or a search query to be added to the user-configurable portion 
of the side bar. The window 901 also includes conventional 
window controls such as a title bar or region 929 which may 
be used to move the window around a display and view select 
buttons 937 and maximize, minimize and resize buttons 934, 
935, and 936 respectively. The window 901 shows a particu 
lar manner in which the results of a text-based search may be 
displayed. A text entry region 909 is used to enter text for 
searching. This text may be used to search through the meta 
data files or the indexed files or a combination of both. The 
display region 905 shows the results of a search for text and 
includes at least two columns, 917 and 919, which provide the 
name of the file that was found and the basis for the match. As 
shown in column 919, the basis for the match may be the 
author field or a file name or a key word or comments or other 
data fields contained in metadata that was searched. The 
column 921 shows the text that was found which matches the 
search parameter typed into the text entry field 909. Another 
column 911 provides additional information with respect to 
the search results. In particular, this column includes the 
number of matches for each particular type of category or 
field as well as the total number of matches indicated in the 
entry 913. Thus, for example, the total number of matches 
found for the comments field is only 1, while other fields have 
a higher number of matches. 
0071 FIG. 10 shows certain other aspects of some 
embodiments of the present invention. Window 1001 is 
another search result window which includes various fields 
and menus for a user to select various search parameters or 
form a search query. The window 1001 includes a display 
region 1005 which may be used to display the results of a 
search and a user-configurable side bar portion 1003A and a 
system specified side bar portion 1003B. In addition, the 
window 1001 includes conventional scrolling controls such 
as controls 1021 and 1022 and 1021A. The window further 
includes conventional controls such as a title bar 1029 which 
may be used to move the window and view control buttons 
1037 and maximize, minimize, and resize buttons 1034, 
1035, and 1036. A start search button 1015 is near a text entry 
region 1009. A first search parameter menu bar 1007 is dis 
played adjacent to a second search parameter bar 1011. The 
first search parameter search bar 1007 allows a user to specify 
the location for a particular search while two menu pull down 
controls in the second search parameter menu bar 1011 allow 
the user to specify the type of file using the pull down menu 
1012 and the time the file was created or last modified using 
the menu 1013. 

0072. The window 1001 includes an additional feature 
which may be very useful while analyzing a search result. A 
user may select individual files from within the display region 
1005 and associate them together as one collection. Each file 
may be individually marked using a specific command (e.g. 
pressing the right button on amouse and selecting a command 

Oct. 7, 2010 

from a menu which appears on the Screen, which command 
may be "add selection to current group’) or similar Such 
commands. By individually selecting such files or by select 
ing a group of files at once, the user may associate this group 
of files into a selected group or a “marked’ group and this 
association may be used to perform a common action on all of 
the files in the group (e.g. print each file or view each file in a 
viewer window or move each file to a new or existing folder, 
etc.). A representation of this marked group appears as a 
folder in the user-configurable portion 1003A. An example of 
such a folder is the folder 1020 shown in the user-configurable 
portion 1003 A. By selecting this folder (e.g. by positioning a 
cursor over the folder 1020 and pressing and releasing a 
mouse button or by pressing another button) the user, as a 
result of this selection, will cause the display within the 
display region 1005 of the files which have been grouped 
together or marked. Alternatively, a separate window may 
appear showing only the items which have been marked or 
grouped. This association or grouping may be merely tempo 
rary or it may be made permanent by retaining a list of all the 
files which have been grouped and by keeping a folder 1020 
or other representations of the grouping within the user-con 
figurable side bar, such as the side bar 1003A. Certain 
embodiments may allow multiple, different groupings to 
exist at the same time, and each of these groupings or asso 
ciations may be merely temporary (e.g. they exist only while 
the search results window is displayed), or they may be made 
permanent by retaining a list of all the files which have been 
grouped within each separate group. It will be appreciated 
that the files within each group may have been created from 
different applications. As noted above, one of the groupings 
may be selected and then a user may select a command which 
performs a common action (e.g. print or view or move or 
delete) on all of the files within the selected group. 
0073 FIGS. 11A, 11B, 11C, and 11D show an alternative 
user interface for allowing a user to input search queries or 
search parameters. The user interface shown in these figures 
appears within the window 1101 which includes a user-con 
figurable side bar region 1103A and a system specified side 
bar region 1103B. The window 1101 also includes traditional 
window controls such as a window resizing control 1131 
which may be dragged in a conventional graphical user inter 
face manner to resize the window, and the window further 
includes scrolling controls such as controls 1121, 1122, and 
1123. The scrolling control 1121 may, for example, be 
dragged within the scrolling region 1121A or a scroll wheel 
on a mouse or other input device may be used to cause 
scrolling within a display region 1105. Further, traditional 
window controls include the title bar 1129 which may be used 
to move the window around a desktop which is displayed on 
a display device of a computer system and the window also 
includes view buttons 1137 as well as close, minimize, and 
resize buttons 1134, 1135 and 1136. A back and forward 
button, such as the back button 1132, are also provided to 
allow the user to move back and forth in a manner which is 
similar to the back and forth commands in a web browser. The 
window 1101 includes a search parameter menu bar 1111 
which includes a “search by pull down menu 1112 and a 
“sort by pull down menu 1114. The “search by pull down 
menu 1112 allows a user to specify the particular search 
parameter by selecting from the options which appear in the 
pull down menu once it is activated as shown in FIG. 11B. In 
particular, the pull down menu 1113 shows one example of a 
pull down menu when the “search by pull down menu 1112 



US 2010/02571 79 A1 

has been activated. The “sort by pull down menu 1114 
allows a user to specify how the search results are displayed 
within a display region 1105. In the example shown in FIGS. 
11A-11D a user has used the “sort by pull down menu 1114 
to select the "date viewed' criteria to sort the search results 
by. It should also be noted that the user may change the type 
of view of the search results by selecting one of the three view 
buttons 1137. For example, a user may select an icon view 
which is the currently selected button among the view buttons 
1137, or the user may select a list view or a column view. 
0074 FIG. 11B shows the result of the user's activation of 
a “search by pull down menu 1112 which causes the display 
of the menu 1113 which includes a plurality of options from 
which the user may choose to perform a search by. It will be 
appreciated that there are a number of different ways for a 
user to activate the “search by pull down menu 1112. One 
way includes the use of a cursor. Such as a pointer on a display 
which is controlled by a cursor control device, such as a 
mouse. The cursor is positioned over the region associated 
with the “search by menu title (which is the portion within 
the search parameter menu bar 1111 which contains the 
words “search by’) and then the user indicates the selection of 
the menu title by pressing abutton, such as a mouse's button, 
to cause the pull down menu to appear, which in this case is 
the menu 1113 shown in FIG. 11B. At this point, the user may 
continue to move the cursor to point to a particular option 
within the menu, such as the “time' option. This may result in 
the display of a submenu to the left or to the right of the menu 
1113. This submenu may be similar to the submenu 719A or 
to the menu 1214 shown in FIG. 12A. If the “kind option is 
selected in the menu 1113, the submenu may include a 
generic list of the different kinds of documents, such as 
images, photos, movies, text, music, PDF documents, email 
documents, etc. or the list may include references to specific 
program names such as PhotoShop, Director, Excel, Word, 
etc. or it may include a combination of generic names and 
specific names. FIG. 11C shows the result of the user having 
selected PhotoShop type of documents from a submenu of the 
“kind' option shown in menu 1113. This results in the display 
of the search parameter menu bar 1111A shown in FIG. 11C 
which includes a highlighted selection 1111B which indi 
cates that the PhotoShop type of documents will be searched 
for. The search parameter menu bar 1111 appears below the 
search parameter menu bar 1111A as shown in FIG. 11C. The 
user may then specify additional search parameters by again 
using the “search by pull down menu 1112 or by typing text 
into the text entry field 1109. For example, from the state of 
the window 1101 shown in FIG. 11C, the user may select the 
“search by pull down menu 1112 causing the display of a 
menu containing a plurality of options, such as the options 
shown within the menu 1113 or alternative options such as 
those which relate to PhotoShop documents (e.g. the various 
fields in the metadata for PhotoShop type of documents). A 
combination of such fields contained within metadata for 
PhotoShop type documents and other generic fields (e.g. 
time, file size, and other parameters) may appear in a menu, 
such as the menu 1113 which is activated by selecting the 
“search by pull down menu. The user may then select 
another criteria Such as the time criteria. In this case, the 
window 1101 displays a new search parameter menu bar 1115 
which allows a user to specify a particular time. The user may 
select one of the times on the menu bar 1115 or may activate 
a pull down menu by selecting the menu title “time,” which is 
shown as the menu title 1116. The state of the window 1101 

Oct. 7, 2010 

shown in FIG. 11D would then search for all PhotoShop 
documents created in the last 30 days or 7 days or 2 days or 
today or at any time, depending on the particular time period 
selected by the user. 
0075 FIGS. 12A, 12B, 12C and 12D show another 
example of a user interface for allowing the creation of search 
queries for searching metadata and other data and for display 
ing the results of the search performed using a search query. 
The different implementation shown in FIGS. 12A-12D 
shows a user interface presentation in a column mode; this 
can be seen by noting the selection of the column button, 
which is the rightmost button in the view buttons 1237 shown 
in FIG. 12A. The window 1201 has two columns 1211 and the 
display region 1205, while the window 1251 of FIG. 12C has 
three columns which are columns 1257,1259, and the display 
region 1255, and the window 1271 has three columns which 
are columns 1277, 1279, and the display region 1275. 
0076. The window 1201 shown in FIGS. 12A and 12B 
includes a display region 1205 which shows the results of a 
search; these results may be shown dynamically as the user 
enters search parameters or the results may be shown only 
after the user has instructed the system to perform the search 
(e.g. by selecting a “perform search” command). The window 
1201 includes conventional window controls, such as a resiz 
ing control 1231, a scrolling control 1221, a title bar 1229 
which may be used to move the window, a window close 
button, a window minimize button, and a window resize 
button 1234, 1235, and 1236, respectively. The window 1201 
also includes a user-configurable side bar region 1203A and a 
system specified side bar region 1203B. It can be seen from 
FIG. 12A that a browse mode has been selected as indicated 
by the highlighted “browse' icon 1203C in the system speci 
fied side bar region 1203B. The window 1201 also includes a 
text entry region 1209, which a user may use to enter text for 
a search, and the window 1201 also includes view selector 
buttons 1237. 

0077. A column 1211 of window 1201 allows a user to 
select various search parameters by selecting one of the 
options which in turn causes the display of a Submenu that 
corresponds to the selected option. In the case of FIG. 12A, 
the user has selected the “kind' option 1212 and then has used 
the submenu 1214 to select the “photos’ option from the 
Submenu, resulting in an indicator 1213 (photos) to appear in 
the column 1211 under the “kind' option as shown in FIG. 
12A. It can also be seen that the user has previously selected 
the “time' option in the column 1211 and has selected from a 
submenu brought up when the “time” option was selected the 
“past week” search parameter. When the user has finished 
making selections of the various options and Suboptions from 
both the column 1112 and any of the corresponding Submenus 
which appear, then the display showed in FIG. 12B appears. 
Note that the Submenus are no longerpresent and that the user 
has completed the selection of the various options and Sub 
options which specify the search parameters. Column 1211 in 
FIG. 12B provides feedback to the user indicating the exact 
nature of the search query (in this case a search for all photos 
dated in the past week), and the results which match the 
search query are shown in the display region 1205. 
0078 FIGS. 12C and 12D show an alternative embodi 
ment in which the Submenus which appear on a temporary 
basis in the embodiment of FIGS. 12A and 12B are replaced 
by an additional column which does not disappear after a 
selection is made. In particular, the column 1259 of the win 
dow 1251 functions in the same manner as the submenu 1214 



US 2010/02571 79 A1 

except that it remains within the window 1251 after a selec 
tion is made (wherein the submenu 1214 is removed from the 
window after the user makes the selection from the submenu). 
The column 1279 of window 1271 of FIG. 12D is similar to 
the column 1259. The window 1251 includes a side bar which 
has a user-configurable side bar region 1253A and a system 
defined side bar region 1253B. The system specified side bar 
region 1253B includes a “browse' selection region 1254 
which has a clear button 1258 which the user may select to 
clear the current search query. The window 1271 of FIG. 12D 
provides an alternative interface for clearing the search query. 
The window 1271 also includes a user configurable side bar 
region 1273A and a system specified side bar region 1273B, 
but the clear button, rather than being with the “search region 
1274 is at the top of the column 1277. The user may clear the 
current search parameter by selecting the button 1283 as 
shown in FIG. 12D. 

007.9 FIG. 13 A shows another embodiment of a window 
1301 which displays search results within a display region 
1302. The window 1301 may be a closeable, minimizeable, 
resizeable, and moveable window having a resizing control 
1310, a title bar 1305 which may be used to move the window, 
a text entry region 1306 and a user configurable portion 1303, 
and a system specified portion 1304. The window 1301 fur 
ther includes buttons for selecting various views, including an 
icon view, a list view, and a column view. Currently, the list 
view button 1316 has been selected, causing the display of the 
search results in a list view manner within the display region 
1302. It can be seen that the text (“button”) has been entered 
into the text entry region 1306 and this has caused the system 
to respond with the search results shown in the display region 
1302. The user has specified a search in every location by 
selecting “everywhere' button 1317. Further, the user has 
searched for any kind of document by selecting the “kind' 
option from the pull down menu 1315 and by selecting the 
“any option in the pull down menu 1319. The where or 
location slice 1307 includes a "+” button which may be used 
to add further search parameters, and similarly, the slice 1308 
includes a "+" and a "- button for adding or deleting search 
parameters, respectively. The slice 1307 further includes a 
“save' button 1309 which causes the current search query to 
be saved in the form of a folder which is added to the user 
configurable portion 1303 for use later. This is described 
further below and may be referred to as a “smart folder.” The 
search input user interface shown in FIGS. 13A and 13B is 
available within, in certain embodiments, each and every 
window controlled by a graphical user interface file manage 
ment system, such as a Finder program which runs on the 
Macintosh or Windows Explorer which runs on Microsoft 
Windows. This interface includes the text entry region 1306 
as well as the slices 1307 and 1308. 

0080. The window 1301 shown in FIG. 13B shows the 
activation of a menu by selecting the search button 1323A, 
causing a display of a menu having two entries 1323 and 
1325. Entry 1323 displays recently performed searches so 
that a user may merely recall a prior search by selecting the 
prior search and cause the prior search to be run again. The 
menu selection 1325 allows the user to clear the list of recent 
searches in the menu. 

I0081 FIGS. 14A, 14B, and 14C show examples of another 
window in a graphical user interface file system, such as the 
Finder which runs on the Macintosh operating system. These 
windows show the results of a particular search and also the 
ability to save and use a smart folder which saves a prior 

Oct. 7, 2010 

search. The window 1401 shown in FIG. 14A includes a 
display region 1403, a user configurable region 1405, a smart 
folder 1406, a system specified region 1407, an icon view 
button 1409, a list view button 1410, and a column view 
button 1411. The window 1401 also includes a text entry 
region 1415 and a location slice 1416 which may be used to 
specify the location for the search, which slice also includes a 
save button 1417. Additional slices below the slice 1416 allow 
the user to specify further details with respect to the search, in 
this case specifying types of documents which are images 
which were last viewed this week. The user has set the search 
parameters in this manner by selecting the "kind’ option from 
the pull down menu 1419 and by selecting the “images' type 
from the pull down menu 1420 and by selecting the “last 
viewed option from pull down menu 1418 and by selecting 
“this week” from the pull down menu 1422. The user has also 
selected “everywhere' by selecting the button 1421 so that 
the search will be performed on all disks and storage devices 
connected to this system. The results are shown within the 
display region 1403. The user can then save the search query 
by selecting the “save' button 1417 and may name the saved 
search query as “this week's images' to produce the Smart 
folder 1406 as shown in the user configurable portion 1405. 
This allows the user to repeat this search at a later time by 
merely selecting the Smart folder 1406 which causes the 
system to perform a new search again, and all data which 
matches the search criteria will be displayed within the dis 
play region 1403. Thus, after several weeks, a repeating of 
this search by selecting the smartfolder 1406 will produce an 
entirely different list if none of the files displayed in the 
display region 1403 of FIG. 14A are viewed in the last week 
from the time in which the next search is performed by select 
ing the smart folder 1406. 
I0082 FIG. 14B shows a way in which a user may sort or 
further search within the search results specified by a saved 
search, such as a smartfolder. In the case of FIG.14B, the user 
has selected the smart folder 1406 and has then entered text 
jpg. 1425 in the text entry region 1415. This has caused the 

system to filter or further limit the search results obtained 
from the search query saved as the Smart folder 1406. Thus, 
PhotoShop files and other files such as TIF files and GIF files 
are excluded from the search results displayed within the 
display region 1403 of FIG. 14B because the user has 
excluded those files by adding an additional search criteria 
specified by the text 1425 in the text entry region 1415. It can 
be seen that the “pg” text entry is ANDed logically with the 
other search parameters to achieve the search results dis 
played in the display region 1403. It can also be seen that the 
user has selected the icon view by selecting the icon view 
button 1409. Thus, it is possible for a user to save a search 
query and use it later and to further limit the results of the 
search query by performing a search on the results of the 
search query to further limit the search results. 
0083 FIG. 14C shows the window 1401 and shows the 
search results displayed within the display region 1403, 
where the results are based upon the saved search specified by 
the smart folder 1406. The user has caused a pull down menu 
1427 to appearby selecting the pull down region 1427A. The 
pull down region 1427 includes several options which a user 
may select. These options include hiding the search criteria or 
saving the search (which is similar to selecting the button 
1417) or showing view options or opening the selected file. 
This allows the user, for example, to hide the search criteria, 
thereby causing the slice 1416 and the other search param 



US 2010/02571 79 A1 

eters to be removed from the window 1401 which is a move 
able, resizeable, minimizeable, and closeable window. 
0084 FIG. 14D shows an example of a user interface 
which allows the user to specify the appearance of a Smart 
folder, such as the smart folder 1406. 
I0085 FIGS. 15A, 15B, 15C, and 15D show an example of 
a system wide search input user interface and search result 
user interface. In one particular exemplary embodiment, 
these user interfaces are available on the entire system for all 
applications which run on the system and all files and meta 
data, and even address book entries within an address book 
program, Such as a personal information manager, and calen 
dar entries within a calendar program, and emails within an 
email program, etc. In one exemplary embodiment, the sys 
tem begins performing the search and begins displaying the 
results of the search as the user types text into a text entry 
field, such as the text entry field 1507. The search results are 
organized by categories and are displayed as a shortlist which 
is intentionally abbreviated in order to present only a selected 
number of the most relevant (scored) matches or hits to the 
search query. The user can ask for the display of all the hits by 
selecting a command, such as the “show all command 1509. 
FIG. 15A shows a portion of a display controlled by a data 
processing system. This portion includes a menu bar 1502 
which has at its far end a search menu command 1505. The 
user can select the search menu command by positioning a 
cursor, using a mouse, for example, over the search menu 
command 1505 and by pressing a button or by otherwise 
activating or selecting a command. This causes a display of a 
text entry region 1507 into which a user can enter text. In the 
example shown in FIG. 15A, which is a portion of the display, 
the user has entered the text "shakeit causing the display of 
a search result region immediately below a “show all com 
mand region 1509 which is itself immediately below the text 
entry region 1507. It can be seen that the hits or matches are 
grouped into categories (“documents' and “PDF docu 
ments') shown by categories 1511 and 1513 within the search 
result region 1503. FIG. 15B shows another example of a 
search. In this case, a large number of hits was obtained (392 
hits), only a few of which are shown in the search result region 
1503. Again, the hits are organized by categories 1511 and 
1513. Each category may be restricted in terms of the number 
of items displayed within the search result region 1503 in 
order to permit the display of multiple categories at the same 
time within the search result region. For example, the number 
of hits in the documents category may greatly exceed the 
available display space within the search result region 1503, 
but the hits for this category are limited to a predetermined or 
dynamically determinable number of entries within the 
search result region 1503 for the category 1511. An additional 
category, “top hit is selected based on a scoring or relevancy 
using techniques which are known in the art. The user may 
select the “show all command 1509 causing the display of a 
window, such as window 1601 shown in FIG.16A. FIG.15C 
shows a display of a graphical user interface of one embodi 
ment of the invention which includes the menu bar 1502 and 
the search menu command 1505 on the menu bar 1502. FIG. 
15D shows another example of the search result region 1503 
which appeared after a search of the term "safari’ was entered 
into the text entry region 1507. It can be seen from the search 
result region 1503 of FIG. 15D that the search results are 
again grouped into categories. Another search result window 
1520 is also shown in the user interface of FIG. 15D. It can be 
seen that application programs are retrieved as part of the 

Oct. 7, 2010 

search results, and a user may launch any one of these appli 
cation programs by selecting it from the search result region, 
thereby causing the program to be launched. 
I0086 FIGS. 16A and 16B show examples of search result 
windows which may be caused to appear by selecting the 
“show all command 1509 in FIG. 15A or 15B. Alternatively, 
these windows may appear as a result of the user having 
selected a “find command or a Some other command indi 
cating that a search is desired. Moreover, the window 1601 
shown in FIGS. 16A and 16B may appearin response to either 
of the selection of a show all command or the selection of a 
find command. The window 1601 includes a text entry region 
1603, a group by menu selection region 1605, a sort by menu 
selection region 1607, and a where menu selection region 
1609. The group by selection region 1605 allows a user to 
specify the manner in which the items in the search results are 
grouped according to. In the example shown in FIG.16A, the 
user has selected the “kind option from the group by menu 
selection region 1605, causing the search results to be 
grouped or sorted according to the kind or type of document 
or file. It can be seen that the type of file includes “html files, 
image files, PDF files, source code files, and other types of 
files as shown in FIG.16A. Each type or kind of document is 
separated from the other documents by being grouped within 
a section and separated by headers from the other sections. 
Thus, headers 1611, 1613, 1615, 1617, 1619, 1621, and 1623 
designate each of the groups and separate one group from the 
other groups. This allows a user to focus on evaluating the 
search results according to certain types of documents. 
Within each group. Such as the document groups or the folder 
groups, the user has specified that the items are to be sorted by 
date, because the user has selected the date option within the 
sort by menu region 1607. The user has also specified that all 
storage locations are to be searched by selecting "every 
where' from the where menu selection region 1609. Each 
item in the search result list includes an information button 
1627 which may be selected to produce the display of addi 
tional information which may be available from the system. 
An example of such additional information is shown in FIG. 
17 in which a user has selected the information button 1627 
for item 1635, resulting in the display of an image 1636 
corresponding to the item as well as additional information 
1637. Similarly, the user has selected the information button 
for another item 1630 to produce the display of an image of 
the item 1631 as well as additional information 1632. The 
user may remove this additional information from the display 
by selecting the close button 1628 which causes the display of 
the information for item 1635 to revert to the appearance for 
that item shown in FIG.16A. The user may collapse an entire 
group to hide the entries or search results from that group by 
selecting the collapse button 1614 shown in FIG. 16A, 
thereby causing the disappearance of the entries in this group 
as shown in FIG. 16B. The user may cause these items to 
reappear by selecting the expand button 1614A as shown in 
FIG.16B to thereby revert to the display of the items as shown 
in FIG. 16A. 

0087. The search results user interface shown in FIGS. 
16A and 16B presents only a limited number of matches or 
hits within each category. In the particular example of these 
figures, only the five top (most relevant or most highly sorted) 
hits are displayed. This can be seen by noticing the entry at the 
bottom of each list within a group which specifies how many 
more hits are within that group; these hits can be examined by 
selecting this indicator, such as indicator 1612, which causes 



US 2010/02571 79 A1 

the display of all of the items in the documents category or 
kind for the search for “button' which was entered into the 
text entry region 1603. Further examples of this behavior are 
described below and are shown in conjunction with FIGS. 
18A and 18B. It will be appreciated that window 1601 is a 
closeable and resizable and moveable window and includes a 
close button and a resizing control 1625A. 
0088 FIGS. 18A and 18B illustrate another window 1801 
which is very similar to the window 1601. The window 1801 
includes a text entry region 1803, a group by menu selection 
region 1805, a sort by menu selection region 1807, and a 
where menu selection region 1809, each of which function in 
a manner which is similar to the regions 1605, 1607, and 1609 
respectively of FIG.16A. Each item in a list view within the 
window 1801 includes an information button 1827, allowing 
a user to obtain additional information beyond that listed for 
each item shown in the window 1801. The window 1801 
further includes headers 1811, 1813, 1815, 1817, 1819, 1821, 
and 1823 which separate each group of items, grouped by the 
type or kind of document, and sorted within each group by 
date, from the other groups. A collapse button 1814 is avail 
able for each of the headers. The embodiment shown in FIGS. 
18A and 18B shows the ability to switch between several 
modes of viewing the information. For example, the user may 
display all of the hits within a particular group by selecting the 
indicator 1812 shown in FIG. 18A which results in the display 
of all of the images files within the window 1801 within the 
region 1818A. The window is scrollable, thereby allowing the 
user to scroll through all the images. The user can revert back 
to the listing of only five of the most relevant images by 
selecting the “show top 5” button 1832 shown in FIG. 18B. 
Further, the user can select betweenalist view oran icon view 
for the images portion shown in FIGS. 18A and 18B. The user 
may select the list view by selecting the list view button 1830 
or may select the icon view by selecting the icon view button 
1831. The list view for the images group is shown in FIG.16A 
and the icon view for the images group is shown in FIGS. 18A 
and 18B. It can be seen that within a single, moveable, resiz 
able, closeable search result window, that there are two dif 
ferent views (e.g. a list view and an icon View) which are 
concurrently shown within the window. For example, the 
PDF documents under the header 1819 are displayed in a list 
view while the images under the header 1817 are displayed in 
an icon view in FIGS. 18A and 18B. It can also be seen from 
FIGS. 18A and 18B that each image is shown with a preview 
which may be capable of live resizing as described in a patent 
application entitled “Live Content Resizing” by inventors 
Steve Jobs, Steve Lemay, Jessica Kahn, Sarah Wilkin, David 
Hyatt, Jens Alfke, Wayne Loofbourrow, and Bertrand Serlet, 
filed on the same date as this application, and being assigned 
to the assignee of the present inventions described herein, and 
which is hereby incorporated herein by reference. 
I0089 FIG. 19A shows another example of a search result 
window which is similar to the window 1601. The window 
1901 shown in FIG. 19A includes a text entry region 1903 and 
a group by menu selection region 1905 and a sort by menu 
selection region 1907 and a where menu selection region 
1908. Further, the window includes a close button 1925 and a 
resizing control 1925A. Text has been entered into the text 
entry region 1903 to produce the search results shown in the 
window 1901. The search results again are grouped by a 
category selected by a user which in this case is the people 
options 1906. This causes the headers 1911, 1913, 1915, and 
1917 to show the separation of the groups according to names 

Oct. 7, 2010 

of people. Within each group, the user has selected to sort by 
the date of the particular file or document. The user interface 
shown in FIG. 19A allows a user to specify an individual's 
name and to group by people to look for communications 
between two people, for example. FIG. 19B shows another 
way in which a user can group a text search (“imran') in a 
manner which is different from that shown in FIG. 19A. In the 
case of FIG. 19B, the user has selected a flat list from the 
group by menu selection region 1905 and has selected 
“people' from the sort by menu region 1907. The resulting 
display in window 1901A is without headers and thus it 
appears as a flat list. 
0090 FIG. 19C shows the user interface of another search 
result window 1930 which includes a text entry region 1903 
and the selection regions 1905, 1907, and 1908 along with a 
scrolling control 1926. The results shown in the window 1930 
have been grouped by date and sorted within each group by 
date. Thus, the headers 1932, 1934, 1936, 1938, and 1940 
specify time periods such as when the document was last 
modified (e.g. last modified today, oryesterday, or last week). 
Also shown within the search results window 1930 is the 
information button 1942 which may be selected to reveal 
further information, such as an icon 1945 and additional 
information 1946 as shown for one entry under the today 
group. This additional information may be removed by 
selecting the contraction button 1944. 
0091 FIG. 19D shows a search result window 1950 in 
which a search for the text string “te' is grouped by date but 
the search was limited to a “home” folder as specified in the 
where menu selection region 1908. Time specific headers 
1952, 1954, 1956, and 1958 separate items within one group 
from the other groups as shown in FIG. 19D. 
0092 FIG. 19E shows an alternative embodiment of a 
search result window. In this embodiment, the window 1970 
includes elements which are similar to window 1901 such as 
the selection regions 1905, 1907, and a scrolling control 1926 
as well as a close button 1925 and a resizing control 1925A. 
The Search result window 1970 further includes a “when 
menu selection region 1972 which allows the user to specify 
a search parameter based on time in addition to the text 
entered into the text entry region 1903. It can be seen from the 
example shown in FIG. 19E that the user has decided to group 
the search results by the category and to sort within each 
group by date. This results in the headers 1973, 1975, 1977, 
and 1979 as shown in FIG. 19E. 
0093 FIG. 20 shows an exemplary method of operating a 
system wide menu for inputting search queries, such as the 
system wide menu available by selecting the search menu 
command 1505 shown in FIG. 15A or 15B, or 15C. In opera 
tion 2001, the system displays a system wide menu for input 
ting search queries. This may be the search menu command 
1505. The user, in operation 2003, inputs a search, and as the 
search query is being inputted, the system begins performing 
and begins displaying the search results before the user fin 
ishes inputting the search query. This gives immediate feed 
back and input to the user as the user enters this information. 
The system is, in operation 2005, performing a search 
through files, metadata for the files, emails within an email 
program, address book entries within an address book pro 
gram, calendar entries within a calendar program, etc. The 
system then, in operation 2007, displays an abbreviated (e.g. 
incomplete) list of hits if there are more than a certain number 
of hits. An example of this abbreviated listing is shown in 
FIG. 15B. The listing may be sorted by relevance and segre 



US 2010/02571 79 A1 

gated into groups such as categories or types of documents. 
Then in operation 2009, the system receives a command from 
the user to display all the hits and in operation 2011 the 
system displays the search results window, Such as the win 
dow 1601 shown in FIG. 16A. This window may have the 
ability to display two different types of views, such as an icon 
view and a list view within the same closeable, resizable, and 
moveable window. It will be appreciated that the searching, 
which is performed as the user is typing and the displaying of 
results as the user is typing may include the searching through 
the metadata files created from metadata extracted from files 
created by many different types of software programs. 
0094 FIGS. 21, and 22A, 22B, 22C, and 22D will now be 
referred to while describing another aspect of the inventions. 
This aspect relates to a method of selecting a group of files, 
Such as a group of individual data files. In an exemplary 
method of this aspect, a data processing system receives a 
selection of a plurality of items. Such as data files, folders (e.g. 
graphical user interface representations of Subdirectories), 
application programs or a combination of one or more of 
these items. This selection may be performed by one of the 
many conventional ways to select a plurality of items such as 
(a) positioning a cursor at each item individually (e.g. through 
the movement of a mouse) and indicating a selection indi 
vidually by, for example, pressing and releasing a button, 
Such as a mouse's button; (b) pointing a cursor at a first item 
in a list and indicating a selection of the first item and pointing 
the cursor at a last item in a list of items and indicating a 
selection of all items from the first item to the last item in the 
list; (c) drawing a selection rectangle by a dragging operation 
of the cursor, etc. Thus operation 2101 shown in FIG. 21 
receives one or more inputs indicating a selection of a plural 
ity of items. The system in operation 2103 receives a com 
mand requesting both the creation of a new storage facility 
(e.g. a folder) and an association of the plurality of items with 
the new storage facility. While the operation 2103 is shown 
following operation 2101, in certain embodiments operation 
2103 may precede operation 2101. The association of opera 
tion 2103 may be a copy or a move operation. For example, 
the user may select multiple items and then command the 
system to move those items from their existing locations to a 
new folder which is created in one operation as a result of the 
move and create new folder command. In response to the 
command received in operation 2103, the system creates a 
new storage facility, such as a new folder, with a predeter 
mined directory path name or a user specified path name and 
the system further associates the selected plurality of items 
with the new storage facility. This association may be either a 
move or a copy operation. A copy operation would typically 
involve making a copy of each selected item and storing the 
item with a path name that reflects the storage of the item 
within the new folder having a predetermined directory path 
name or a user specified directory path name. A move opera 
tion, in which the items are moved into the new folder, may 
merely change the path names associated with each of the 
selected items (rather than making a copy of the items) which 
changed path names will reflect the new file system location 
(e.g. within the subdirectory of the new folder) of the selected 
items. 

0095 FIGS. 22A-22D show one example of the method of 
FIG. 21. A desktop 2201 on a display device is shown con 
taining multiple windows and also an icon 2227 on the desk 
top. A cursor 2211 is also shown on the desktop. The windows 
2203, 2205, and 2207 each contain a plurality of items shown 

Oct. 7, 2010 

as icons. In particular, window 2203 includes a data file 
represented by icon 2215 in a folder (e.g. a graphical repre 
sentation of a Subdirectory in a file storage system) repre 
sented by icon 2217. The window 2205 includes a program 
icon 2223 and a document icon 2219 and another document 
icon 2225 and a folder icon 2221. The window 2207 shows a 
list view of several files including “File B. The user may 
then, using the cursor 2211 or using other conventional user 
interface techniques, select multiple items. This may be done 
with one input or more inputs which indicate the selection of 
multiple items. FIG. 22B shows the result of the user having 
selected icons 2215, 2217, 2223, 2225, 2227, and “File B' in 
window 2207. It can be seen that the cursor 2211 is positioned 
adjacent to the icon 2225 at this point in the operation. Then 
the user, after having selected a plurality of items, may invoke 
the command referred to in operation 2103. An example of 
this is shown in FIG. 22C which represents a portion of the 
desktop 2101, which portion is designated 2201A as shown in 
FIG.22C. The user has caused a pop up menu 2230 to appear, 
which pop up menu includes three options 2231, 2232, and 
2233. Option 2231 would allow a user to move all the selected 
items into the trash (e.g. delete them) while options 2232 and 
2233 relate to the command referred to in operation 2103 of 
FIG. 21. In particular, option 2232 is a command which is 
selectable by the user to create a new folder and, in the same 
operation, move the items which have been selected into the 
new folder. Option 2233 is a command which allows the user 
to, in one operation, create a new folder and copy the selected 
items into the new folder. In the example shown in FIGS. 
22A-22D, the user will select option 2232, thereby causing 
the system to create a new storage facility, such as a new 
folder with a predetermined directory name (e.g. “new 
folder') or alternatively, a user specified path name. This 
result is shown in FIG. 22D in which the desktop 2201 now 
includes a new window labeled “new folder' which repre 
sents and shows the contents of this new folder, which is also 
shown as the folder 2253 which is a graphical user interface 
representation of this new folder. 
0096. It will be appreciated that this method may employ 
various alternatives. For example, a window may appear after 
the command option 2232 or 2233 has been selected, and this 
window asks for a name for the new folder. This window may 
display a default name (e.g. “new folder') in case the user 
does not enter a new name. Alternatively, the system may 
merely give the new folder or new storage facility a default 
path name. Also, the system may merely create the new folder 
and move or copy the items into the new folder without 
showing the new window as shown in FIG. 22D. 
(0097. The indexing of the full text content of user files on 
a data processing system can be computationally time con 
Suming. For example, the indexing of the full content of user 
files for the purpose of creating an index database that repre 
sents the full content of the files that have been indexed can 
take considerable computation time as well as considerable 
storage input/output (I/O) time in reading and writing data to 
a storage device. Such as a hard drive of a data processing 
system. This may impact a user who is attempting to use the 
system while the system is automatically indexing user files. 
Similarly, the importation of metadata from user files into a 
metadata database can also take considerable computation 
time and considerable input/output (I/O) time. Some directo 
ries and files are uninteresting to users, and thus the indexing 
or importation of such directories and files can often be 
avoided. Avoiding the indexing and/or importation of a file or 



US 2010/02571 79 A1 

an entire directory of files can potentially save significant 
processing overhead in a data processing system. Further, 
Some operations which imply a need for an importation or 
indexing may be redundant, and thus it may be possible to 
avoid extra work for those operations. The techniques 
described herein may be used alone or in a combination of the 
techniques. A combination of two or more techniques 
described herein, which include filtering, reducing of the 
number of notifications by a coalescing mechanism and by 
establishing an order for Scanning, which may be referred to 
as the use of “probe points.” may be used together to reduce 
the amount of computation time and I/O time required to 
perform indexing of user files and to add (e.g. import) meta 
data from user files into a metadata database. These tech 
niques may be particularly useful for removable Volumes. A 
removable volume may be considered to be a storage Volume 
which can be easily electrically coupled to a first data pro 
cessing system (e.g. to a first computer) and used to read data 
from the storage Volume and/or write data to the storage 
Volume while it is coupled to the first data processing system 
and then it can be easily electrically uncoupled from the first 
data processing system and electrically coupled to a second 
data processing system to also read and write data to the 
storage Volume while it is coupled to the second data process 
ing system. A USB flash drive and a USB, bus powered hard 
drive are examples of a removable volume. The methods of 
the inventions can be implemented on both non-removable 
storage Volumes (e.g. those which require opening the case of 
a computer system to remove the volume) and removable 
storage Volumes. 
0098 FIG. 23 shows an example of a method which com 
bines the use of probe points, filtering and coalescing of 
notifications. It will be appreciated that there are often two 
distinct aspects involved in the use of a data processing sys 
tem; in particular, a Volume (which may be a removable 
volume) which has not been indexed or which needs to be 
re-indexed may require a considerable amount of activity 
which includes scanning for files to index and also indexing 
of the files. Another aspect relates to user modifications to 
existing files which have already been indexed or imported 
into an index database or a metadata database respectively. 
These modifications will cause notifications to be made in 
order to cause the updating of metadata (for the files that have 
been changed) in the metadata database and in order to cause 
the updating of the index database. It will be appreciated that 
FIG. 23 shows a particular sequence of operations but that 
other sequences may also be utilized in alternative embodi 
ments. In operation 2301, the system determines an order of 
scanning of the files for indexing. This order typically places 
the highest priority on those locations which are most relevant 
to a user, such as a user's home folder or all the users’ home 
folders and then document folders and then the desktop and 
then other folders which have been created by the user or 
users. The lowest priority locations would typically be oper 
ating system directories, such as folders, which typically do 
not contain user created or user useful data. The order may, 
either in addition to these locations or as an alternative to 
using these locations, be based on data indicating a user's 
interest in files, such as data which recorded (e.g. by record 
ing pathnames) which files or directories a user viewed or 
otherwise accessed, and the order may be based on frequency 
or recency of the user's access. Normally, system files which 
are invisible to a user are not included in the order; invisible 
files or directories are marked so that they are not displayed to 

Oct. 7, 2010 

the user in a normal file viewer such as the Finder in Macin 
tosh 10.3. This order determined in operation 2301 normally 
would specify the order of scanning for files to determine 
whether there are any files that need to be indexed. As the 
scanning proceeds to discover files which need to be indexed, 
rules may be used to filter the files to determine whether they 
should be indexed. Operation 2303 illustrates the use of such 
rules to decide whether the files should be indexed. In certain 
exemplary embodiments files in the trash or recycle bin and 
files in temporary directories, such as directories which are 
created by a program or the operating system to store tempo 
rary files which will be discarded automatically by the system 
or the application program should not be indexed as they are 
not interesting to a user. Further, “invisible' files and operat 
ing system files should not normally be indexed. One tech 
nique for the use of these rules is to scan through the path 
name of a file to determine if the file is a system file or in a 
temporary directory or in the trash or recycle bin. 
0099. The combination oftechniques which is represented 
by FIG. 23 also includes the coalescing of notifications which 
are used to cause the updating of a metadata database and/or 
an index database. The coalescing of notifications typically 
involves combining a first set of notifications into a smaller 
set of notifications, which may be a single, combined notifi 
cation. This is shown in operation 2305 in which notifica 
tions, such as notifications from an operating system kernel as 
described above, are coalesced into a smaller number of noti 
fications. Also as illustrated by operation 2305, the notifica 
tions may themselves be filtered using the rules described 
above or optionally separate rules which may be different 
than the rules used to filter for scanning and indexing of the 
full content of a file. The combining of several notifications 
into a smaller number of notifications, such as one notifica 
tion derived from ten notifications, will typically improve the 
performance of the data processing system. After the notifi 
cations have been coalesced and filtered and after the scan 
ning of files according to a certain order has been performed, 
then operation 2307 may be performed in which the indexing 
of the full content of the files which have been filtered is 
performed to create or add to an index database of the files 
(representing the full content of the files) and metadata from 
the files is imported from the files which have caused notifi 
cations to be generated in order to update the metadata data 
base. It will be appreciated that the Scanning which occurs to 
determine whether there are files which need to be indexed 
may also cause the importing of metadata from the files being 
scanned into a metadata database. For example, if a remov 
able storage device, such as a removable hard drive is first 
attached to a data processing system which includes the func 
tionality described herein, the data processing system may 
scan the hard drive to determine that files have not been 
indexed and the metadata from the files has not been imported 
into a metadata database. Thus, the scanning of the files on 
that hard drive may cause both the importing of metadata 
from the files into a metadata database as well as the indexing 
of the full text content of the files to create an index database 
representing the full content of the indexed files. It will be 
appreciated that in alternative embodiments, a Subset of the 
filtering, coalescing, and determining of the order of scanning 
may be utilized rather than the full set of operations. For 
example, an alternative embodiment may employ filtering 
and coalescing without the use of probe points (which is one 
exemplary implementation used in the determination of order 
of scanning). 



US 2010/02571 79 A1 

0100 FIG. 24 shows an exemplary embodiment of one of 
the aspects of the inventions described herein. This embodi 
ment utilizes filtering in order to determine whether files 
should be indexed in order to produce an index database of the 
content of the files that have been indexed. This particular 
method may be performed independently of the other meth 
ods described herein or may be performed in combination 
with one or more of the other methods, such as the filtering of 
notifications as in FIG. 26. Operation 2401 determines 
whether all files within a directory and/or specific files within 
a directory should be indexed. There are numerous tech 
niques which may be utilized to make this determination. For 
example, the path name of the file may be compared to pre 
determined path names to determine whether the file is stored 
in an operating system directory or in a temporary directory or 
a trash directory. If it is determined in operation 2401 that the 
file is to be indexed, then it is determined that it is filtered “in”, 
which means that the file will be indexed in operation 2403 
and the result of that indexing will be added to the index 
database in operation 2405. 
0101 FIG. 25 is an exemplary method which provides a 
more specific example about how filtering maybe performed. 
Default rules, based on the type of volume, as well as optional 
user supplied rules are used to build a filter engine (which 
may be implemented in software). The default rules for a 
bootable volume may differ from the default rules for a gen 
eral disk or a specialized disk such as an iPod device. The 
filtering attempts to determine the locations of user home 
directories from different volumes so that correct filtering can 
be employed. It may even attempt to correctly map through 
aliases and links to find user home directories on unexpected 
disks and employ the correct filtering rules in that case. The 
filtering engine can be thought of as a form of a byte code 
which is interpreted by the program as part of the evaluation 
of the candidate file. Candidate files are presented in the form 
of paths, and the byte code is interpreted as the pathis scanned 
and decisions are made as to which rule is applicable for the 
path. The path is checked character by character until the 
entire path is matched or there is a mismatch. The result will 
be the result defined for the last fully matched element of the 
path. Ifa result is not defined for that part of the path, the result 
will be inherited from the last result defined through that path. 
The results from this process would normally be filtered in 
(meaning the file should be indexed or metadata from the file 
should be imported) or filtered out, meaning the file should 
not be indexed and/or metadata from the file should not be 
imported into a metadata database. Alternatively, the results 
from this process could be a tentative decision offiltered in or 
filtered out, with the final decision being delayed. Follow on 
filtering may be pursued after the initial results. If, for 
example, it is determined that the path is for a user home 
directory, then a more specific filtering engine which is 
designed for user home directories may be employed in fil 
tering the files within the user home directories. 
0102 The exemplary method of FIG. 25 begins in opera 
tion 2501 in which path names containing files which should 
not be indexed are determined. This determination of path 
names may be for a certain type of volume, such as a bootable 
volume rather than a non-bootable volume because the types 
of path names differ between the two volumes. For example, 
a bootable Volume will typically include operating system 
files which are required in order to boot a data processing 
system while non-bootable volumes will not include these 
files. Thus, the path names which are determined in operation 
2501 will differ depending on the type of volume. In the 
example of operation 2501, files which should not be indexed 
include invisible files, operating system files, files in the trash 

20 
Oct. 7, 2010 

directory, and files in temporary directories which were cre 
ated by the data processing system automatically. Rules may 
then be created in operation 2503 for a given type of volume. 
These rules are used in filtering to determine whether files 
should be indexed or have their metadata imported into a 
metadata database. A Subset of rules may exist for specific 
directories, such as a user home directory as indicated above. 
The files are scanned through in operation 2505 using the 
rules. Optionally, the scanning may proceed in an order which 
is specified by probe points which are discussed herein. In 
operation 2507, it is determined whether, based on the rules, 
a file is to be indexed and/or have its metadata imported into 
a metadata database. As shown in operation 2507, if the file is 
to be indexed, then the file's identifier, such as a persistent, 
unique identification number, is added to a “to be indexed 
queue Stored in a nonvolatile storage. Optionally, a transac 
tion log may be employed for that nonvolatile storage system 
to create a log of write transactions to the “to be indexed 
queue on the nonvolatile storage system. In this manner, the 
queue may be preserved through the use of the log which 
maintains a record of write transactions to the queue Stored on 
the nonvolatile storage. Typically, the nonvolatile storage 
would be the volume, such as a hard drive or removable hard 
drive, which is being indexed. This transaction log may be 
implemented as a simple transaction log, without the use of a 
journal file system, or it may be implemented as the records in 
a journal of a journal file system which is ACID (Atomicity: 
Consistency; Isolation, and Durability) compliant. 
0103 FIG. 26 shows an exemplary method in which fil 
tering is employed to determine whether metadata from a file 
should be imported into a metadata database. It will be appre 
ciated that this method may be performed independently of 
and separately of other methods described herein or may be 
employed in combination with other methods, such as the 
filtering of files for indexing operations, an example of which 
is shown in FIG. 24. Operation 2601 involves receiving noti 
fications about a file, Such as an existing file which has been 
modified or a new file which has been created. In operation 
2603 it is determined how to filter the notification. In particu 
lar, filter rules may be employed to determine whether to filter 
the file “in” or filter the file “out'. If a file is filtered in, then 
metadata from the file will be imported into the metadata 
database, and if the file is filtered out, then metadata from the 
file will not be imported into the metadata database. Opera 
tion 2605 shows that if the filtering determines that the file's 
metadata is to be imported, then the data is imported into the 
metadata database. The rules used to filter in operation 2603 
may be similar to the rules used to filter in operation 2505. 
0104 FIG. 27 shows an exemplary method of using probe 
points which establish a sequence for scanning through loca 
tions to determine whether there are files to index and/or to 
determine whether there are files which need to have their 
metadata imported into a metadata database. The method of 
FIG. 27 may be performed independently of other methods 
described herein or in a combination with of one or more of 
the other methods. Operation 2701 includes the setting of 
priority among locations on a storage device. This priority 
specifies an order in which to scan the files for indexing or for 
the importation of metadata into a metadata database or a 
combination of the indexing and importing. The order is 
typically based on user relevance of the files and assumptions 
of where users store their files. Examples of these locations 
have been described and include a user's home folder, user 
created folders outside the home folder and the desktop. 
Operation 2703 shows that the system scans through the 
locations, according to the order, to determine whether files 
should be indexed or whether files should have their metadata 



US 2010/02571 79 A1 

imported into a metadata database or a combination of the 
indexing and importation. In one exemplary embodiment, the 
order may specify the user's home folder first and then the 
user created folders outside the home folder and then the 
desktop and then other locations, such as other user created 
folders. Operation 2705 of FIG. 27 shows that as the scan 
reveals files to index (or files to have their metadata imported 
into a metadata database) the files are added to a “to be 
indexed queue (and/or a metadata import queue), which 
resembles a FIFO buffer. The use of what may be referred to 
as “probe points' as shown in FIG. 27 typically includes a 
final probe point which is typically a catch all that scans and 
indexes everything else starting at the root of the disk or 
Volume. This final probe point attempts to capture what has 
not already been indexed as the remainder of the volume is 
scanned. As the Scanning comes upon locations covered by 
earlier probe points, and filtering can tell the scanner that this 
place is filtered in, and since it is also a higher priority probe 
point, it is known not to re-scan that location. 
0105. It will be appreciated that the filtering technique 
described herein may also be used as a plug in by another 
program to use. 
0106 While filtering provides for a way to reduce the 
impact of indexing or importation of files into an indexing 
database or a metadata database respectively, other tech 
niques, such as the coalescing of notifications may also be 
employed. FIGS. 28, 29, and 30 relate to various embodi 
ments in which notifications are coalesced. Coalescing is 
useful as there will some times be a series of operations which 
would individually require importing of metadata from files 
into the metadata database. Done naively, this will result in 
redundant work as consecutive operations re-import meta 
data from the same file. Coalescing of notifications may also 
be used when indexing files into an index database. 
0107 FIG. 28 shows a general example according to cer 
tain embodiments in which notifications may be coalesced. 
This general example relates to cases where there is one or 
more groups of related objects, such as a package of files 
which is typically a hierarchy of files presented to the user as 
a single file. Such as an application program written for the 
Macintosh 10.3 operating system. In operation 2803, it is 
determined that a group of related objects, such as a package 
of files, has been stored onto a storage medium. For example, 
the package was copied on the storage medium thereby cre 
ating a duplicate copy of the package, potentially in a differ 
ent location than the original location of the package of files. 
In operation 2805, a set of notifications such as a single 
notification is made to cause the updating of the metadata 
database, and in response in operation 2807, the metadata 
database is updated after receiving the set of notifications 
which may be one or more notifications but less than the total 
number of notifications had there been no coalescing of noti 
fications. 

0108. A typical notification will include an identification 
of the file which is the subject of the notification and an 
identification of the operation on the file and other pertinent 
data Such as, if the operation is a renaming operation, then the 
file's name before the renaming and the file's name after the 
renaming or, if the operation is a permissions change, infor 
mation specifying permissions before and after. The identifi 
cation of the file may be by a pathname of the file and/or a 
persistent, unique file identification number or set of charac 
terS. 

0109 FIG. 29 shows a more detailed example for coalesc 
ing notifications when an operation is performed on a group 
of related objects. Such as a package of files (other examples 
of related objects include objects involved in copying a big 

Oct. 7, 2010 

hierarchy of files or coalescing based on events in indexing or 
metadata queues). Operation 2901 determines that an opera 
tion, Such as a copying operation, has been performed on a 
package. This may occur, for example, by having a Software 
component known as Launch Services specify that the file 
which has been copied is part of a package of files. The 
notification from the operating system about the first file may 
also include an indication that it is part of a package, or 
alternatively, a Software coalescing unit which is part of the 
metadata database Software may request Launch Services to 
identify whether the file is part of a package. In operation 
2903, the first notification from the operation on the package 
is added to a cache of a software coalescing unit. The cache 
delays the addition of the notification to the importer queue, 
such as the “to be imported queue. The caching unit of the 
coalescing unit may remember every notification as it arrives 
and can coalesce any two notifications which are in progress 
regardless of the number of notifications. On the other hand, 
in a different implementation, partial caching remembers 
only a limited subset of files arriving into the cache and relies 
on temporal locality of locations to achieve most of the ben 
efits of full caching with a significantly smaller investment of 
memory and computation. The coalescing unit in operation 
2905 continues to receive further notifications from the 
operation on the package (for example, as each file within the 
package is copied the coalescing unit receives additional noti 
fications), and the coalescing unit drops those further notifi 
cations since they are part of the same package. Once it 
becomes probable that no more notifications are coming for 
the package then a single notification (or a set of notifications 
which is less than the total number of notifications) is pushed 
to the importer to cause the importation of metadata into the 
metadata database. Operation 2907 represents one way of 
determining that no further notifications are coming. After a 
period of time, as shown in operation 2907, the first notifica 
tion is added to the “to be imported' queue. This first notifi 
cation identifies the entire contents of the package which can 
then be imported by processing the notification as in opera 
tion 2909 in order to update the metadata database. The period 
of time may be a short period of time. Such as a fraction of a 
second. An alternative technique of determining when no 
further notifications are probable is when there is an overflow 
in the notification cache. In this case, the last notification for 
the item is pushed out of the cache to make room for the new 
element and if another notification does arrive it is treated as 
if it was the first in the list. 

0110 Coalescing of notifications for single files which are 
not part of packages or a group of related objects may also be 
performed according to certain embodiments of the inven 
tion. FIG. 30 shows an exemplary method for performing 
coalescing of notifications for a single file. Generally, the 
probability of a follow-on notification after a first notification 
for a single file is relatively low, so the notification may be 
placed directly into an importer queue as soon as possible. It 
may optionally pass through a caching unit of a coalescing 
unit as shown in FIG. 30. If a similar notification arrives 
before the original notification is de-queued and imported, 
then the coalescing unit declares the new notification redun 
dant and drops it. The effect is that all notifications, which 
occur before the original notification is de-queued, are col 
lapsed into a single notification. Alternatively, they may be 
collapsed into a set of notifications which is smaller than the 
original group of notifications would have been. If the noti 
fication has already been de-queued, further notifications are 
coalesced in a slightly different mode which may be referred 
to as a “bookend mode.” If the first importation has already 
occurred for the file, then a follow-on notification arrives too 



US 2010/02571 79 A1 

late for it to be coalesced with the prior notification. In book 
end mode, the last notification which followed on from the 
de-queued notification is saved, while all further notifications 
for that file are dropped until it becomes probable that no 
further notifications will be received. At this point, the very 
last notification which is received or the last saved notification 
is passed to the metadata importer. The effect is to bookend 
the series of notifications into a smaller set of notifications, 
Such as a single notification at the beginning and a single 
notification at the end. FIG. 30 represents an exemplary 
method for coalescing notifications for a single file. This 
method may also be used to coalesce notifications for updat 
ing an index database for the content of a file. 
0111. In operation 3001, the first notification that a file 
“ABC.txt has been modified is received. This notification is 
optionally added to a cache of a coalescing unit in operation 
3003, and then the notification is added to a “to be imported 
queue in operation 3005. A second notification that the file 
ABC.txt has been modified is received in operation 3007. 
This notification may be in response to the user selecting a 
“save' command for the second time in a short period of time. 
For example, a user may have caused the first notification by 
saving the file at a first instant of time and then Subsequently 
causing a save command to occur merely three seconds later 
after the first save command was caused by the user. In 
response to receiving the second notification, the system 
determines in operation 3009 whether the first notification for 
the file ABC.txt has been de-queued and imported. If it has 
not, then the second notification is dropped, and otherwise 
processing proceeds to operation 3011. In other words, if the 
first notification is still queued in the “to be imported queue. 
then the second notification is dropped and processing pro 
ceeds to operation 3011. If the first notification has been 
de-queued and imported, then the second notification is saved 
in the queue and processing proceeds to operation 3011. 
Operation 3011 attempts to determine when the next notifi 
cation for the file is likely to be the last one. This may occur 
when detecting that the program which has created the file is 
quitting and the save is occurring or by waiting for a period of 
time. All notifications arriving before that last notification are 
dropped and the last notification is added to the “to be 
imported' queue. Then in operation 3013, the last expected 
notification is de-queued which thereby causes changes in the 
ABC.txt file to be imported into the metadata database. In an 
alternative embodiment, data may be retained from at least 
Some (or all) dropped notifications, and this data may be 
examined to determine whether and when to index the file (or 
group of files). 
0112. In the foregoing specification, the invention has 
been described with reference to specific exemplary embodi 
ments thereof. It will be evident that various modifications 
may be made thereto without departing from the broader 
spirit and scope of the invention as set forth in the following 
claims. The specification and drawings are, accordingly, to be 
regarded in an illustrative sense rather than a restrictive sense. 
What is claimed is: 
1. A machine implemented method of processing data, the 

method comprising: 
determining whether to index a file based on a file path 
name of the file and a plurality of predetermined path 
names, 

indexing the file in response to determining that the file is 
to be indexed. 

22 
Oct. 7, 2010 

2. A method as in claim 1 wherein files within predeter 
mined directories are not to be indexed. 

3. A method as in claim 2 wherein the predetermined 
directories are specified at least in part by the plurality of 
predetermined pathnames and comprise temporary directo 
ries and operating system directories. 

4. A method as in claim 1 wherein the determining is based 
on at least a portion of the file pathname. 

5. A machine readable medium providing instructions 
which when executed by a data processing system cause the 
data processing system to perform a method of processing 
data, the method comprising: 

determining whether to index a file based on a file path 
name of the file and a plurality of predetermined path 
names, 

indexing the file in response to determining that the file is 
to be indexed. 

6. A medium as in claim 5 wherein files within predeter 
mined directories are not to be indexed. 

7. A medium as in claim 6 wherein the predetermined 
directories are specified at least in part by the plurality of 
predetermined pathnames and comprise temporary directo 
ries and operating system directories. 

8. A medium as in claim 5 wherein the determining is based 
on at least a portion of the file pathname. 

9. A data processing system comprising: 
means determining whether to index a file based on a file 

pathname of the file and a plurality of predetermined 
pathnames: 

indexing the file in response to determining that the file is 
to be indexed. 

10. A system as in claim 9 wherein files within predeter 
mined directories are not to be indexed. 

11. A system as in claim 10 wherein the predetermined 
directories are specified at least in part by the plurality of 
predetermined pathnames and comprise temporary directo 
ries and operating system directories. 

12. A method as in claim 9 wherein the determining is 
based on at least a portion of the file pathname. 

13. A machine readable medium providing instructions 
which when executed by a data processing system cause the 
data processing system to perform a method of processing 
data, the method comprising: 

determining whether to add metadata from a file to a meta 
data database based on a file pathname of the file and a 
plurality of predetermined pathnames; 

add the metadata of the file into the metadata database in 
response to the determining. 

14. A medium as in claim 5 wherein files within predeter 
mined directories are not to have their metadata added to the 
metadata database. 

15. A medium as in claim 6 wherein the predetermined 
directories are specified at least in part by the plurality of 
predetermined pathnames and comprise temporary directo 
ries and operating system directories. 

16. A medium as in claim 5 wherein the determining is 
based on at least a portion of the file pathname. 

c c c c c 


