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actual opcode byte is not identified. The predecoding operation associates
an instruction length to each instruction byte. The instruction length is
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two or three instruction bytes are read. Based on the instruction length
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including a designation of instruction length and a designation of classification
group is stored for each instruction byte. The instruction bytes and associated
predecode information are applied to a decoder that includes a plurality of
first group instruction decoders for decoding a plurality of parallel-decodable
instructions in parallel and a second group instruction decoder for decoding
instructions that are not decodable in parallel.
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INSTRUCTION PREDECODE AND MULTIPLE INSTRUCTION DECODE

TECHNICAL FIELD

This invention relates to processors. More specifically. this invention relates to processors having an

instruction decoder for decoding multiple instructions simultaneously and a predecoder for preparing instructions for

rapid decoding.

BACKGROUND ART

Advanced microprocessors, such as P6-class x86 processors. are defined by a common set of features.
These features include a superscalar architecture and performance. decoding of multiple x86 instructions per cycle
and conversion of the multiple x86 instructions into RISC-like operations. The RISC-like operations are executed
out-of-order in a RISC-type core that is decoupled from decoding. These advanced microprocessors support large

instruction windows for reordering instructions and for reordering memory references.

In a microprocessor having a superscalar architecture, multiple computer instructions are transferred from a
memory, decoded and executed simultaneously so that the execution of instructions is accelerated. A RISC-type
processor typically has no problem decoding multiple instructions per cycle because all instructions are the same
length. When all instructions are the same length, multiple instructions are easily transferred from memory in
parallel because the memory locations of all instructions is known or readily ascertainable, allowing multiple
instructions to be simultaneously transferred to instruction registers inside the processor. However, many
microprocessors and computers, such as x86 processors that have a complex instruction set computer (CISC) type
architecture, use a CISC-type variable-length instruction set in which different instructions have different instruction
lengths, varying from one byte (8 bits) to fifteen bytes (120 bits) in length. Thus the locating of multiple
instructions is a sequential process, and therefore slow process, because one instruction must be decoded to

determine the length of the instruction before the starting location of the next decodable instruction is ascertained.

Decoding of multiple x86 instructions in parallel has additional difficulties. For example, the actual iength
of various instructions depends not only on the first byte of the instruction, generally the opcode byte which defines
the operation of the instruction, but also depends on additional bytes as a complicated function of the opcode and
other instruction fields. The minimum-size instruction in the x86 architecture is a single byte, usually containing an
8-bit opcode. X86 instruction opcode fields range in length from 8 bits to 16 bits long. For some instructions, a
byte containing the opcode field (the "opcode"” byte) also contains a register field. X86 operations include register-
to-register, register-to-memory, or memory-to-register (but not memory-to-memory) operations. An optional
modrm field following the opcode field contains the register specifier and specifies memory addressing of the
instruction. In some instructions, the modrm field, employed in a slightly different format, selects condition flags.
Some instructions contain an immediate data field that ranges from 0 to 4 bytes in length. Some instruction fields
specify whether or not other fields are present. For example, modrm and sib fields indicate whether a displacement
(DISP) field is present and the length of the DISP field. The DISP field is further modified by a prefix byte that

changes the address size of an instruction. The modrm field has various possible formats. The first byte of the
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modrm field always contains a modrm specifier of register and addressing mode. The modrm field also contains an
optional displacement or offset field for address computation. The 8-bit sib field specifies the operative manner of

address computation.

Length of the displacement and immediate fields depends on the data-width mode of the instruction.
Various instructions operate on 8-bit, 16-bit, or 32-bit data. Data width is determined primarily by a segment
descriptor in the memory management architecture, but the default for the segment can be overridden by a bit in the

instruction (a w-bit) or by a prefix byte which toggles the effect of the w-bit.

Prefix bytes can appear before any instruction. A prefix byte changes the interpretation of the instruction.
A prefix byte, for example. changes the memory address or operand size of the instruction, changes the default
segment used in memory addressing, or indicates that the instruction should be executed with the external bus
locked. In some instructions more than one prefix is included before an instruction. Each type of prefix byte is

independent of the others, so that the maximum instruction length is 15 bytes for non-redundant prefixes.

What is needed is a system and method for accessing a plurality of variable-length instructions and
preparing the variable-length instructions for decoding of multiple instructions in parallel. One aspect of this

system and method is a technique for determining the length of the variable-length instructions in parallel.

DISCLOSURE OF THE INVENTION

In accordance with the present invention, variable-length instructions are prepared for simultaneous
decoding and execution of a plurality of instructions in parallel by predecoding each byte of an instruction,
assuming each byte to be an opcode byte since the actual opcode byte is not identified. The predecoding operation
associates an instruction length to each instruction byte. The instruction length is found for some instructions by
reading a single instruction byte. For other instructions require more information to determine the instruction length
and two or three instruction bytes are read. Based on the instruction length determination, instructions are classified
into a group of instructions in which multiple instructions are decoded in parallel and a group of instructions in
which multiple instructions are not decoded in parallel. Predecode information including a designation of
instruction length and a designation of classification group is stored for each instruction byte. The instruction bytes
and associated predecode information are applied to a decoder that includes a plurality of first group instruction
decoders for decoding a plurality of parallel-decodable instructions in parallel and a second group instruction

decoder for decoding  instructions that are not decodable in parallel.

Predecode information is useful for quickly identifying the next instructions to be decoded, facilitating the
decoding of multiple instructions per cycle. Predecode information also determines whether an instruction is
decodable in paralle] with other instructions and aids quick calculation of the length of instructions that are
decodable in parallel to determine whether a sufficient number of bytes of the instruction are available in an
instruction register for a full instruction to be decoded. Predecode information includes a HASMODRM bit that is

useful for determining whether predecode bits are valid for an instruction.
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In accordance with one aspect of the present invention, an apparatus and method determines and stores in a
memory, for many instruction bytes, the location of a following instruction byte assuming that each of the
instruction bytes is the first byte of an instruction. The instruction bytes are subsequently transferred from the
memory and a first byte of an actual instruction is located. followed by rapid determination of the location of first
bytes of subsequent actual instructions. A plurality of subsequent instructions are identified, allowing simultaneous

loading of instructions into several instruction registers for simultaneously decoding and executing instructions.

Many advantages are achieved using the described system and method. Multiple instructions are
advantageously decoded per cycle in a processor architecture that resists decoding in parallel. An inherently serial
decoding operation is advantageously converted to a parallel operation. Instructions that can execute in parallel and
instructions that cannot are recognized prior to decoding so that decoding in parallel is advantageously
accomplished only for those instructions that would benefit from decoding in parallel. Predecode information is
advantageously derived and stored as a combination of instruction length and program counter information so that

data pointers are easily determined and instructions easily accessed.

It is advantageous that the predecode bits designate instruction location in the form of a list and that, in
some embodiments, the list controlier is implemented to avoid time-consuming calculations. thus allowing for fast

traversal of a list while reducing storage space consumed to store each pointer.

It is advantageous that the predecode bits are compactly stored and easily expanded for usage to reduce the

size of memory storage.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention believed to be novel are specifically set forth in the appended claims. However,
the invention itself, both as to its structure and method of operation. may best be understood by referring to the

following description and accompanying drawings.

Figure 1 is a block diagram which illustrates a computer system in accordance with one embodiment of the

present invention.

Figure 2 is a block diagram illustrating one embodiment of processor for usage in the computer system

shown in Figure 1.

Figure 3 is a timing diagram which illustrates pipeline timing for an embodiment of the processor shown

in Figure 2.

Figure 4 is a schematic block diagram showing an embodiment of an instruction decoder used in the

processor shown in Figure 2.
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Figure 5 is a block diagram of a memory including sixteen addressable memory locations holding sixteen
instruction bytes that make up, for example, three variable length instructions. in combination with predecode bits

indicative of following-instruction location information.

Figure 6 is a flow chart illustrating a method for efficiently storing a pointer and rapidly identifying the
address of a next element in a list of a plurality of elements in accordance with one embodiment of the present

invention.

Figure 7 is a pictorial diagram illustrating a 32-word memory storage. such as an instruction cache, for
storing a plurality of memory elements or units and pointers. in which the elements of the list are ordered in

increasing sequential address locations.

Figure 8 is a block diagram of a memory including sixteen addressable memory locations holding sixteen
instruction byte values that make up. for example. three variable length instruction codes, in combination with

predecode bit codes indicative of following-instruction location information,

Figure 9 is a flow chart illustrating a method of preparing computer instructions for rapid decoding in

accordance with an embodiment of the present invention.

Figure 10 is a schematic block diagram showing a circuit for preparing computer instructions for rapid

decoding in accordance with the present invention.

Figure 11 is a schematic circuit diagram showing an embodiment of a circuit for preparing computer

instructions for rapid decoding in accordance with an embodiment of the present invention.

Figure 12 is a schematic pictorial diagram of an addressable memory location containing an instruction
code byte and a code for the location of the next instruction assuming that the instruction code byte is the starting

byte of an instruction.

Figure 13 is a block diagram of a personal computer incorporating a processor having an instruction

decoder including emulation using indirect specifiers in accordance with an embodiment of the present invention.

MODE(S) FOR CARRYING OUT THE INVENTION

Referring to Figure 1, a computer system 100 is used in a variety of applications, including a personal
computer application. The computer system 100 includes a computer motherboard 110 containing a processor 120
in accordance with an embodiment of the invention. Processor 120 is a monolithic integrated circuit which executes
a complex instruction set so that the processor 120 may be termed a complex instruction set computer (CISC).
Examples of complex instruction sets are the x86 instruction sets implemented on the well known 8086 family of
microprocessors. The processor 120 is connected to a level 2 (L2) cache 122, a memory controller 124 and local

bus controllers 126 and 128. The memory controller 124 is connected to a main memory 130 so that the memory
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controller 124 forms an interface between the processor 120 and the main memory 130. The local bus controliers
126 and 128 are connected to buses including a PCI bus 132 and an ISA bus 134 so that the local bus controllers
126 and 128 form interfaces between the PCI bus 132 and the ISA bus 134.

Referring to Figure 2, a block diagram of an embodiment of processor 120 is shown. The core of the
processor 120 is a RISC superscalar processing engine. Common x86 instructions are converted by instruction
decode hardware to operations in an internal RISC86 instruction set. Other x86 instructions, exception processing,
and other miscellaneous functionality is implemented as RISC86 operation sequences stored in on-chip ROM.
Processor 120 has interfaces including a system interface 210 and an L2 cache control logic 212. The system
interface 210 connects the processor 120 to other blocks of the computer system 100. The processor 120 accesses
the address space of the computer system 100, including the main memory 130 and devices on local buses 132 and
134 by read and write accesses via the system interface 210. The L2 cache control logic 212 forms an interface
between an external cache, such as the L2 cache 122. and the processor 120. Specifically, the L2 cache control
logic 212 interfaces the L2 cache 122 and to an instruction cache 214 and a data cache 216 in the processor 120.
The instruction cache 214 and the data cache 216 are level 1 (L1) caches which are connected through the L2 cache

122 to the address space of the computer system 100.

The instruction cache 214 is a 16 KByte instruction cache with associated control logic. The instruction
cache 214 is organized as a two-way set associative cache having of line size of 32 Bytes. The instruction cache
214 has a total physical storage of 24 Kbytes for storing 16 Kbytes of instruction and 8 Kbytes of predecode
information. This physical storage is configured as three units, including two instruction units and one predecode
information unit, of a 512 x 128 cache RAM structure. The instruction cache 214 is logically dual-ported including

a read port and a write port, although the cache has only a single physical port.

Instructions from main memory 130 are loaded into instruction cache 214 via a predecoder 270 for
anticipated execution. As the instruction cache 214 is filled with instructions, the predecoder 270 predecodes the
instruction bytes, generating predecode information that is also stored in the instruction cache 214. Data in the
instruction cache 214 are subsequently transferred to begin decoding the instructions, using the predecode
information to facilitate simultaneous decoding of multiple x86 instructions. A fundamental impediment to efficient
decoding of x86 instructions is the variable-length narure of these instructions in which x86 instruction length varies
in a range from one word to fifteen words. The predecode information facilitates decoding of variable-length
instructions by specifying the length of each x86 instruction, thereby designating the instruction boundaries for
typically a plurality of x86 instructions. Once the instruction boundaries are known, multiple instruction decoding

in parallel is substantially simplified.

The predecoder 270 generates predecode bits that are stored in combination with instruction bits in the
instruction cache 214. The predecode bits, for example 3 bits, are fetched along with an associated instruction byte
(8 bits) and used to facilitate multiple instruction decoding and reduce decode time. Instruction bytes are loaded

into instruction cache 214 thirty-two bytes at a time in a burst transfer of four eight-byte quantities. Logic of the
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predecoder 270 is replicated sixteen times so that predecode bits for all sixteen instruction bytes are calculated
simultaneously immediately before being written into the instruction cache 214. Instructions in instruction cache
214 are CISC instructions, referred to as macroinstructions. An instruction decoder 220 converts CISC instructions
from instruction cache 214 into operations of a reduced instruction set computing (RISC) architecture instruction set
for execution on an execution engine 222. A single macroinstruction from instruction cache 214 decodes into one

or multiple operations for execution engine 222.

Instruction decoder 220 has interface connections to the instruction cache 214 and an instruction fetch
control circuit 218 (shown in Figure 4). Instruction decoder 220 includes a macroinstruction decoder 230 for
decoding most x86 instructions, an instruction decoder emulation circuit 231 including an emulation ROM 232 for
decoding instructions including complex instructions. and a branch unit 234 for branch prediction and handling.
Several types of macroinstructions are defined relating to the general type of operations into which the
macroinstructions are converted. The general types of operations are register operations (RegOps), load-store
operations (LdStOps), load immediate value operations (LIMMOps), special operations ( SpecOps) and floating

point operations (FpOps).

Execution engine 222 has a scheduler 260 and six execution units including a load unit 240, a store unit
242, a first register unit 244, a second register unit 246. a floating point unit 248 and a multimedia unit 250. The
scheduler 260 distributes operations to appropriate execution units and the execution units operate in parallel. Each
execution unit executes a particular type of operation. In particular, the load unit 240 and the store unit 242
respectively load (read) data or store (write) data to the data cache 216 (L1 data cache), the L2 cache 122 and the
main memory 130 while executing a load/store operation (LdStOp). A store queue 262 temporarily stores data from
store unit 242 so that store unit 242 and load unit 240 operate in parallel without conflicting accesses to data cache
216. Register units 244 and 246 execute register operations (RegOps) for accessing a register file 290. Floating
point unit 248 executes floating point operations (FpOps). Multimedia unit 250 executes arithmetic operations for

multimedia applications.

Scheduler 260 is partitioned into a plurality of, for example, 24 entries where each entry contains storage
and logic. The 24 entries are grouped into six groups of four entries, called Op quads. Information in the storage of
an entry describes an operation for execution, whether or not the execution is pending or completed. The scheduler

monitors the entries and dispatches information from the entries to information-designated execution units.

Referring to Figure 3, processor 120 employs five and six stage basic pipeline timing. Instruction decoder
220 decodes two instructions in a single clock cycle. During a first stage 310, a fetch cycle stage, the instruction
fetch control circuit 218 fetches CISC instructions into instruction cache 214, Predecoding of the CISC instructions
during stage 310 reduces subsequent decode time. During a second stage 320, a decode cycle stage, instruction
decoder 220 decodes instructions from instruction cache 214 and loads an Op quad into scheduler 260. During a
third stage 330, an issue cycle stage, scheduler 260 scans the entries and issues operations to corresponding

execution units 240 to 252 if an operation for the respective types of execution units is available. Operands for the
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operations issued during stage 330 are forwarded to the execution units in a fourth stage 340. For a RegOp, the
operation generally completes in the next clock cycle which is stage 350, but LdStOps require more time for address

calculation 352, data access and transfer of the results 362.

The decode cycle stage 320 includes two half cycles. In a first decode half cycle, the instruction cache 214
is accessed, the D-bit is checked to determine whether the predecode instruction length bits are to be adjusted for D-
bit status, and the predecode bits are converted from an indication of length into a pointer. In a second decode half
cycle, it is determined whether the instruction cache 214 or a branch target buffer (BTB) is the source of instructions
for decoding, and it is further determined whether this instruction source is to provide the instructions or if an
instruction buffer is to source the instructions. Also in the a second decode half cycle, the instruction bytes and
predecode information are presented to rotators. data is rotated by the rotators to find the starting instruction byte,
additional bytes of the first instruction and the predecode information associated with the starting instruction byte.
A predecode index is used to rotate the instruction byte data to find a second instruction byte of an instruction and
additional bytes of the second instruction. Specifically, low-order bits of a program counter control a first rotator to
rotate a first instruction. Subsequent rotators are controlled to rotate subsequent instructions under control of the
predecode information of the immediately preceding instruction. Also in the a second decode half cycle, output
instruction data are rotated to determine various other fields within an instruction register, any OF prefix is stripped
from an instruction, the instruction and control bits are registered. and instruction buffers are updated and the

updated data is presented to rotators.

For branch operations, instruction decoder 220 performs a branch prediction 324 during an initial decoding
of a branch operation. A branch unit 252 evaluates conditions for the branch at a later stage 364 to determine
whether the branch prediction 324 was correct. A two level branch prediction algorithm predicts a direction of
conditional branching, and fetching CISC instructions in stage 310 and decoding the CISC instructions in stage 320
continues in the predicted branch direction. Scheduler 260 determines when all condition codes required for branch
evaluation are valid, and directs the branch unit 252 to evaluate the branch instruction. If a branch was incorrectly
predicted, operations in the scheduler 260 which should not be executed are flushed and decoder 220 begins loading
new Op quads from the correct address after the branch. A time penalty is incurred as instructions for the correct
branching are fetched. Instruction decoder 220 either reads a previously-stored predicted address or calculates an
address using a set of paraliel adders. If a previously-predicted address is stored, the predicted address is fetched in
stage 326 and instructions located at the predicted address are fetched in stage 328 without a delay for adders.

Otherwise, parallel adders calculate the predicted address.

In branch evaluation stage 364, branch unit 252 determines whether the predicted branch direction is
correct. If a predicted branch is correct, the fetching. decoding, and instruction-executing steps continue without
interruption. For an incorrect prediction, scheduler 260 is flushed and instruction decoder 220 begins decoding

macroinstructions from the correct program counter subsequent to the branch.
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Referring to Figure 4, a schematic block diagram illustrates an embodiment of an instruction preparation
circuit 400 which is connected to the main memory 130. The instruction preparation circuit 400 includes the
instruction cache 214 that is connected to the main memory 130 via the predecoder 270. The instruction decoder
220 is connected to receive instruction bytes and predecode bits from three alternative sources, the instruction cache
214, a branch target buffer (BTB) 456 and an instruction buffer 408 The instruction bytes and predecode bits are
supplied to the instruction decoder 220 through a plurality of rotators 430, 432 and 434 via instruction registers
450, 452 and 454. The macroinstruction decoder 230 has input connections to the instruction cache 214 and
instruction fetch control circuit 218 for receiving instruction bytes and associated predecode information. The
macroinstruction decoder 230 buffers fetched instruction bytes in an instruction buffer 408 connected to the
instruction fetch control circuit 218. The instruction buffer 408 is a sixteen byte buffer which receives and buffers
up to 16 bytes or four aligned words from the instruction cache 214. loading as much data as allowed by the amount
of free space in the instruction buffer 408. The instruction buffer 408 holds the next instruction bytes to be decoded
and continuously reloads with new instruction bytes as old ones are processed by the macroinstruction decoder 230.
Instructions in both the instruction cache 214 and the instruction buffer 408 are held in "extended" bytes, containing
both memory bits (8) and predecode bits (5), and are held in the same alignment. The predecode bits assist the

macroinstruction decoder 230 to perform multiple instruction decodes within a single clock cycle,

Instruction bytes addressed using a decode program counter (PC) 420, 422, or 424 are transferred from the
instruction buffer 408 to the macroinstruction decoder 230. The instruction buffer 408 is accessed on a byte basis
by decoders in the macroinstruction decoder 230. However on each decode cycle, the instruction buffer 408 is
managed on a word basis for tracking which of the bytes in the instruction buffer 408 are valid and which are to be
reloaded with new bytes from the instruction cache 214. The designation of whether an instruction byte is valid is
maintained as the instruction byte is decoded. For an invalid instruction byte, decoder invalidation logic (not
shown), which is connected to the macroinstruction decoder 230, sets a "byte invalid" signal. Control of updating
of the current fetch PC 426 is synchronized closely with the validity of instruction bytes in the instruction buffer
408 and the consumption of the instruction bytes by the instruction decoder 220.

The macroinstruction decoder 230 receives up to sixteen bytes or four aligned words of instruction bytes
fetched from the instruction fetch control circuit 218 at the end of a fetch cycle. Instruction bytes from the
instruction cache 214 are loaded into a 16-byte instruction buffer 408. The instruction buffer 408 buffers
instruction bytes, plus predecode information associated with each of the instruction bytes, as the instruction bytes
are fetched and/or decoded. The instruction buffer 408 receives as many instruction bytes as can be accommodated
by the instruction buffer 408 free space, holds the next instruction bytes to be decoded and continually reloads with
new instruction bytes as previous instruction bytes are transferred to individual decoders within the
macroinstruction decoder 230. The instruction predecoder 270 adds predecode information bits to the instruction
bytes as the instruction bytes are transferred to the instruction cache 214. Therefore, the instruction bytes stored
and transferred by the instruction cache 214 are called extended bytes. Each extended byte includes eight memory

bits plus five predecode bits. The five predecode bits include three bits that encode instruction length, one D-bit
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that designates whether the instruction length is D-bit dependent, and a HasModRM bit that indicates whether an

instruction code includes a modrm field. The thirteen bits are stored in the instruction buffer 408 and passed on to
the macroinstruction decoder 230 decoders. The instruction buffer 408 expands each set of five predecode bits into
six predecode bits. Predecode bits enable the decoders to quickly perform multiple instruction decodes within one

clock cycle.

The instruction buffer 408 receives instruction bytes from the instruction cache 214 in the memory-aligned
word basis of instruction cache 214 storage so that instructions are loaded and replaced with word granularity.
Thus, the instruction buffer 408 byte location 0 always holds bytes that are addressed in memory at an address of 0
(mod 16).

Instruction bytes are transferred from the instruction buffer 408 to the macroinstruction decoder 230 with
byte granularity. During each decode cycle, the sixteen extended instruction bytes within the instruction buffer 408
, including associated implicit word valid bits, are transferred to the plurality of decoders within the
macroinstruction decoder 230. This method of transferring instruction bytes from the instruction cache 214 to the
macroinstruction decoder 230 via the instruction buffer 408 is repeated with each decode cycle as long as
instructions are sequentially decoded. When a control transfer occurs. for example due to a taken branch operation,

the instruction buffer 408 is flushed and the method is restarted.

The current decode PC has an arbitrary byte alignment in that the instruction buffer 408 has a capacity of
sixteen bytes but is managed on a four-byte word basis in which all four bytes of a word are consumed before
removal and replacement or the word with four new bytes in the instruction buffer 408. An instruction has a length
of one to eleven bytes and multiple bytes are decoded so that the alignment of an instruction in the instruction buffer
408 is arbitrary. As instruction bytes are transferred from the instruction buffer 408 to the macroinstruction decoder

230, the instruction buffer 408 is reloaded from the instruction cache 214.

Instruction bytes are stored in the instruction buffer 408 with memory alignment rather than a sequential
byte alignment that is suitable for application of consecutive instruction bytes to the macroinstruction decoder 230.
Therefore, a set of byte rotators 430, 432 and 434 are interposed between the instruction buffer 408 and each of the
decoders of the macroinstruction decoder 230. Four instruction decoders, including three short decoders SDec0
410, SDecl 412 or SDec2 414, and one combined long and vectoring decoder 418, share the byte rotators 430, 432
and 434. In particular, the short decoder SDec0 410 and the combined long and vectoring decoder 418 share byte
rotator 430. Short decoder SDec1 412 is associated with byte rotator 432 and short decoder SDec? 414 is associated
with byte rotator 434.

A plurality of pipeline registers, specifically instruction registers 450, 452 and 454, are interposed between
the byte rotators 430, 432 and 434 and the instruction decoder 220 to temporarily hold the instruction bytes, predecode

bits and other information, thereby shortening the decode timing cycle. The other information held in the instruction
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registers 450, 452 and 454 includes various information for assisting instruction decoding, including prefix (e.g. OF)

status, immediate size (8-bit or 32-bit), displacement and long decodable length designations.

Although a circuit is shown utilizing three rotators and three short decoders, in other embodiments,
different numbers of circuit elements may be employed. For example, one circuit includes two rotators and two

short decoders.

Instructions are stored in memory alignment, not instruction alignment, in the instruction cache 214, the
branch target buffer (BTB) 456 and the instruction buffer 408 so that the location of the first instruction byte is not

known. The byte rotators 430, 432 and 434 find the first byte of an instruction.

The macroinstruction decoder 230 also performs various instruction decode and exception decode
operations, including validation of decode operations and selection between different types of decode operations.
Functions performed during decode operations include prefix byte handling, support for vectoring to the emulation
code ROM 232 for emulation of instructions. and for branch unit 234 operations, branch unit interfacing and return
address prediction. Based on the instruction bytes and associated information, the macroinstruction decoder 230
generates operation information in groups of four operations corresponding to Op quads. The macroinstruction
decoder 230 also generates instruction vectoring control information and emulation code control information. The
macroinstruction decoder 230 also has output connections to the scheduler 260 and to the emulation ROM 232 for
outputting the Op quad information, instruction vectoring control information and emulation code control
information. The macroinstruction decoder 230 does not decode instructions when the scheduler 260 is unable to

accept Op quads or is accepting Op quads from emulation code ROM 232,

The macroinstruction decoder 230 has five distinct and separate decoders, including three "short" decoders
SDec0 410, SDecl 412 and SDec2 414 that function in combination to decode up to three "short" decode operations
of instructions that are defined within a subset of simple instructions of the x86 instruction set. Generally, a simple
instruction is an instruction that translates to fewer than three operations. The short decoders SDec0 410, SDec |
412 and SDec? 414 each typically generate one or two operations, although zero operations are generated in certain
cases such as prefix decodes. Accordingly for three short decode operations, from two to six operations are
generated in one decode cycle. The two to six operations from the three short decoders are subsequently packed
together by operation packing logic 438 into an Op quad since a maximum of four of the six operations are valid.
Specifically, the three short decoders SDec0 410, SDecl 412 and SDec2 414 each attempt to decode two operations,
potentially generating six operations. Only four operations may be produced at one time so that if more than four
operations are produced, the operations from the short decoder SDec? 414 are invalidated. The five decoders also
include a single "long" decoder 416 and a single "vectoring” decoder 418. The long decoder 416 decodes
instructions or forms of instructions having a more complex address mode form so that more than two operations
are generated and short decode handling is not available. The vectoring decoder 418 handles instructions that
cannot be handled by operation of the short decoders SDec0 410, SDec] 412 and SDec2 414 or by the long decoder

416. The vectoring decoder 418 does not actually decode an instruction. but rather vectors to a location of
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emuilation ROM 232 for emulation of the instruction. Various exception conditions that are detected by the
macroinstruction decoder 230 are also handled as a special form of vectoring decode operation. When activated, the
long decoder 416 and the vectoring decoder 418 each generates a full Op quad. An Op quad generated by short
decoders SDec0 410, SDec] 412 and SDec2 414 has the same format as an Op quad generated by the long and
vectoring decoders 416 and 418. The short decoder and long decoder Op quads do not include an OpSeq field. The
macroinstruction decoder 230 selects either the Op quad generated by the short decoders 410, 412 and 414 or the
Op quad generated by the long decoder 416 or vectoring decoder 418 as an Op quad result of the macroinstruction
decoder 230 are each decode cycle. Short decoder operation, long decoder operation and vectoring decoder
operation function in paralle] and independently of one another. although the results of only one decoder are used at

one time.

Each of the short decoders 410, 412 and 414 decodes up to seven instruction bytes, assuming the first byte
to be an operation code (opcode) byte and the instruction to be a short decode instruction. Two operations (Ops) are
generated with corresponding valid bits. Appropriate values for effective address size. effective data size. the
current x86-standard B-bit, and any override operand segment register are supplied for the generation of operations
dependent on these parameters. The logical address of the next "sequential" instruction to be decoded is supplied
for use in generating the operations for a CALL instruction. Note that the word sequential is placed in quotation
marks to indicate that, although the "sequential" address generally points to an instruction which immediately
precedes the present instruction, the "sequential” address may be set to any addressed location. The current branch
prediction is supplied for use in generating the operations for conditional transfer control instructions. A short
decode generates control signals including indications of a transfer control instruction (for example, jcc, LOOP,
JMP, CALL), an unconditional transfer control instruction (for example, JMP, CALL), a CALL instruction, a prefix
byte, a cc-dependent RegOp, and a designation of whether the instruction length is address or data size dependent.
Typically one or both operations are valid, but prefix byte and JMP decodes do not generate a valid op. Invalid

operations appear as valid NOOP operations to pad an Op quad.

The first short decoder 410 generates operations based on more than decoding of the instruction bytes. The
first short decoder 410 also determines the presence of any prefix bytes decoded during preceding decode cycles.
Various prefix bytes include OF. address size override, operand size override. six segment override bytes,
REP/REPE, REPNE and LOCK bytes. Each prefix byte affects a subsequent instruction decode in a defined way.

A count of prefix bytes and a count of consecutive prefix bytes are accumulated during decoding and furnished to
the first short decoder SDec0 410 and the long decoder 416. The consecutive prefix byte count is used to check
whether an instruction being decoded is too long. Prefix byte count information is aiso used to control subsequent
decode cycles, including checking for certain types of instruction-specific exception conditions. Prefix counts are
reset or initialized at the end of each successful non-prefix decode cycle in preparation for decoding the prefix and
opcode bytes of a next instruction. Prefix counts are also reinitialized when the macroinstruction decoder 230

decodes branch condition and write instruction pointer (WRIP) operations.
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Prefix bytes are processed by the first short decoder 410 in the manner of one-byte short decode
instructions. At most, one prefix byte is decoded in a decode cycle, a condition that is enforced through invalidation
of all short decodes following the decode of a prefix byte. Effective address size, data size, operand segment
register values, and the current B-bit, are supplied to the first short decoder 410 but can decode along with

preceding opcodes.

The address size prefix affects a decode of a subsequent instruction both for decoding of instructions for
which the generated operation depends on effective address size and for decoding of the address mode and
instruction length of modr/m instructions. The default address size is specified by a currently-specified D-bit, which

is effectively toggled by the occurrence of one or more address size prefixes.

The operand size prefix also affects the decode of a subsequent instruction both for decoding of
instructions for which the generated operation depends on effective data size and for decoding of the instruction
length. The default operand size is specified by a currently-specified x86-standard D-bit, which is effectively

toggled by the occurrence of one or more operand size prefixes.

The segment override prefixes affect the decode of a subsequent instruction only in a case when the
generation of a load-store operation (LdStOps) is dependent on the effective operand segment of the instruction.
The default segment is DS or SS, depending on the associated general address mode, and is replaced by the segment

specified by the last segment override prefix.

The REP/REPE and REPNE prefixes do not affect the decode of a subsequent instruction. If the
instruction is decoded by the macroinstruction decoder 230. rather than the emulation code ROM 232, then any
preceding REP prefixes are ignored. However, if the instruction is vectored, then the generation of the vector
address is modified in some cases. Specifically, if a string instruction or particular neighboring opcode is vectored,
then an indication of the occurrence of one or more of the REP prefixes and designation of the last REP prefix
encountered are included in the vector address. For all other instructions the vector address is not modified and the

REP prefix is ignored.

A LOCK prefix inhibits all short and long decoding except the decoding of prefix bytes, forcing the
subsequent instruction to be vectored. When the vector decode cycle of this subsequent instruction occurs, so long
as the subsequent instruction is not a prefix, the opcode byte is checked to ensure that the instruction is within a
“lockable" subset of the instructions. If the instruction is not a lockable instruction, an exception condition is
recognized and the vector address generated by the vectoring decoder 418 is replaced by an exception entry point
address.

Instructions decoded by the second and third short decoders 412 and 414 do not have prefix bytes so that

decoders 412 and 414 assume fixed default values for address size. data size. and operand segment register values.
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Typically, the three short decoders generate four or fewer operations because three consecutive short
decodes are not always performed and instructions often short decode into only a single operation. However, for
the rare occurrence when more than four valid operations are generated, operation packing logic 438 inhibits or
invalidates the third short decoder 414 so that only two instructions are successfully decoded and at most four

operations are generated for packing into an Op quad.

When the first short decoder 410 is unsuccessful, the action of the second and third short decoders 412 and
414 are invalidated. When the second short decoder 412 is unsuccessful, the action of the third short decoder 414 is
invalidated. When even the first short decode is invalid, the decode cycle becomes a long or vectoring decode
cycle. In general, the macroinstruction decoder 230 attempts one or more short decodes and, if such short decodes
are unsuccessful, attempts one long decode. If the long decode is unsuccessful, the macroinstruction decoder 230
performs a vectoring decode. Multiple conditions cause the short decoders 410, 412 and 414 to be invalidated.
Most generally, short decodes are invalidated when the instruction operation code (opcode) or the designated
address mode of a modr/m instruction does not fall within a defined short decode or "simple" subset of instructions.
This condition typically restricts short decode instructions to those operations that generate two or fewer operations.
Short decodes are also invalidated when not all of the bytes in the instruction buffer 408 for a decoded instruction
are valid. Also, "cc-dependent” operations, operations that are dependent on status flags, are only generated by the
first short decoder 410 to ensure that these operations are not preceded by and ".cc” RegOps. A short decode is
invalidated for a second of two consecutive short decodes when the immediately preceding short decode was a
decode of a transfer control instruction, regardless of the direction taken. A short decode is invalidated for a second
of two consecutive short decodes when the first short decode was a decode of a prefix byte. In general, a prefix

code or a transfer control code inhibits further decodes in a cycle.

Furthermore, no more than sixteen instruction bytes are consumed by the macroinstruction decoder 230
since the instruction buffer 408 only holds sixteen bytes at one time. Also, at most four operations can be packed
into an Op quad. These constraints only affect the third short decoder 414 since the length of each short decoded

instruction is at most seven bytes and operations in excess of four only arise in the third short decoder 414.

In a related constraint, if the current D-bit value specifies a 16-bit address and data size default, then an
instruction having a length that is address and/or data dependent can only be handled by the first short decoder 410
since the predecode information is probably incorrect. Also, when multiple instruction decoding is disabled, only

the first short decoder 410 is allowed to successfully decode instructions and prefix bytes.

Validation tests are controlled by short decoder validation logic (not shown) in the macroinstruction
decoder 230 and are independent of the operation of short decoders 410, 412 and 414. However, each of the short
decoders 410, 412 and 414 does set zero, one or two valid bits depending on the number of operations decoded.
These valid bits, a total of six for the three short decoders 410, 412 and 414, are used by the operation packing logic
438 to determine which operations to pack into an Op quad and to force invalid operations to appear as NOOP (no

operation) operations. The operation packing logic 438 operates without short decoder validation information since
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valid short decodes and associated operations are preceded only by other valid short decodes and associated

operations.,

The short decoders 410, 412 and 414 also generate a plurality of signals representing various special
opcode or modr/m address mode decodes. These signals indicate whether a certain form of instruction is currently
being decoded by the instruction decoder 220. These signals are used by short decode validation logic to handle

short decode validation situations.

The instruction bytes, which are stored unaligned in the instruction buffer 408, are aligned by byte rotators
430, 432 and 434 as the instruction bytes are transferred to the decoders 410-418. The first short decoder SDec0
410, the long decoder 416 and the vectoring decoder 418 share a first byte rotator 430. The second and third short
decoders SDec1 412 and SDec2 414 use respective second and third byte rotators 432 and 434. During each decode
cycle. the three short decoders SDec0 410. SDec! 412 and SDec2 414 attempt to decode what are, most efficiently,
three short decode operations using three independently-operating and parallel byte rotators 430. 432 and 434.
Although the multiplexing by the byte rotators 430. 432 and 434 of appropriate bytes in the instruction buffer 408 to
each respective decoder SDec0 410, SDec] 412 and SDec2 414 is conceptually dependent on the preceding
instruction decode operation, instruction length lookahead logic 436 uses the predecode bits to enable the decoders

1o operate substantially in parallel.

The long and vectoring decoders 416 and 418, in combination, perform two parallel decodes of eleven
instruction bytes, taking the first byte to be an opcode byte and generating either a long instruction decode Op quad
or a vectoring decode Op quad. Information analyzed by the long and vectoring decoders 416 and 418 includes
effective address size, effective data size, the current B-bit and DF-bit, any override operand segment register, and
logical addresses of the next sequential and target instructions to be decoded. The long and vectoring decoders 416
and 418 generate decode signals including an instruction length excluding preceding prefix bits, a designation of
whether the instruction is within the long decode subset of instructions, a RET instruction, and an effective operand

segment register, based on a default implied by the modr/m address mode plus any segment override.

During a decode cycle in which none of the short decoders SDec0 410, SDec1 412 and SDec2 414
successfully decodes a short instruction, the macroinstruction decoder 230 attempts to perform a long decode using
the long decoder 416. If a long decode cannot be performed, a vectoring decode is performed. In some
embodiments, the long and vectoring decoders 416 and 418 are conceptually separate and independent decoders,
just as the long and vectoring decoders 416 and 418 are separate and independent of the short decoders 410, 412
and 414. Physically, however, the long and vectoring decoders 416 and 418 share much logic and generate similar
Op quad outputs. Instructions decoded by the long decoder 416 are generally included within the short decode
subset of instructions except for an address mode constraint such as that the instruction cannot be decoded by a
short decoder because the instruction length is greater than seven bytes or because the address has a large
displacement that would require generation of a third operation to handle to displacement. The long decoder 416

also decodes certain additional modr/m instructions that are not in the short decode subset but are sufficiently
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common to warrant hardware decoding. Instruction bytes for usage or decoding by the long decoder 416 are
supplied from the instruction buffer 408 by the first byte rotator 430. the same instruction multiplexer that supplies
instruction bytes to the first short decoder SDecO 410. However, while the first short decoder SDec0 410 receives
only seven bytes, the long decoder 416 receives up to eleven consecutive instruction bytes, corresponding to the
maximum length of a modr/m instruction excluding prefix bytes. Thus. the first byte rotator 430 is eleven bytes
wide although only the first seven bytes are connected to the first short decoder SDec0 410. The long decoder 416
only decodes one instruction at a time so that associated predecode information within the instruction buffer 408 is

not used and is typically invalid.

The first byte of the first byte rotator 430 is fully decoded as an opcode byte and, in the case of a modr/m
instruction, the second instruction byte and possibly the third are fully decoded as modr/m and sib bytes,
respectively. The existence of a OF prefix is considered in decoding of the opcode byte. The OF prefix byte inhibits
all short decoding since all short decode instructions are non-OF or "one-byte" opcodes. Because all prefix bytes are
located within the "one-byte" opcode space. decoding of a OF prefix forces the next decode cycle to be a two-byte
opcode instruction, such as a long or vectoring decode instruction. In addition to generating operations based on the
decoding of modr/m and sib bytes, the first byte rotator 430 also determines the length of the instruction for usage
by various program counters, whether the instruction is a modr/m instruction for inhibiting or invalidating the long
decoder, and whether the instruction is an instruction within the long decode subset of operation codes (opcodes).
The long decoder 416 always generates four operations and, like the short decoders 410, 412 and 141, presents the
operations in the form of an emulation code-like Op quad, excluding an OpSeq field. The long decoder 416 handles
only relatively simple modr/m instructions. A long decode Op quad has two possible forms that differ only in
whether the third operation is a load operation (LdOp) or a store operation (StOp) and whether the fourth operation

is a RegOp or a NOOP. A first long decode Op quad has the form:

LIMM t2.<imm32>
LIMM t1,<disp32>
LD.b/d t8L/8,@(<gam>)0S.a
<RegOp> ...

A second long decode Op quad has the form:

LIMM 12,<imm32>
LIMM tl.<disp32>
STb/d @(<gam>).12L/2.0S.a
NOOP

The @(<gam>) address mode specification represents an address calculation corresponding to that
specified by the modr/m and/or sib bytes of the instruction, for example @(AX + BX*4 + LD). The <imm32> and
<disp32> values are four byte values containing the immediate and displacement instruction bytes when the

decoded instruction contains such values.

The long decoder 416, like the first short decoder 410, generates operations taking into account the
presence of any prefix bytes decoded by the short decoders during preceding decode cycles. Effective address size,

data size, operand segment register values, and the current B-bit are supplied to the long decoder 416 and are used
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to generate operations. No indirect size or segment register specifiers are included within the final operations

generated by the long decoder 416.

Only a few conditions inhibit or invalidate an otherwise successful long decode. One such condition is an
instruction operation code (opcode) that is not included in the long decode subset of instructions. A second

condition is that not all of the instruction buffer 408 bytes for the decoded instruction are valid.

The vectoring decoder 418 handles instructions that are not decoded by either the short decoders or the
long decoder 416. Vectoring decodes are a default case when no short or long decoding is possible and sufficient
valid bytes are available. Typically, the instructions handled by the vectoring decoder 418 are not included in the
short decode or long decode subsets but also result from other conditions such as decoding being disabled or the
detection of an exception condition. During normal operation, only non-short and non-long instructions are
vectored. However, all instructions may be vectored. Undefined opcodes are always vectored. Only prefix bytes

are always decoded. Prefix bytes are always decoded by the short decoders 410, 412 and 414.

When an exception condition is detected during a decode cycle, a vectoring decode is forced, generally
overriding any other form of decode without regard for instruction byte validity of the decoded instruction. When a
detected exception condition forces a vectoring decode cycle, the generated Op quad is undefined and the Op quad
valid bit for presentation to the scheduler 260 is forced to zero. The Op quad valid bit informs the scheduler 260
that no operations are to be loaded to the scheduler 260. As a result, no Op quad is loaded into the scheduler 260

during an exception vectoring decode cycle.

Few conditions inhibit or invalidate a vectoring decode. One such condition is that not all of the bytes in

the instruction buffer 408 are valid.

When an instruction is vectored, control is transferred to an emulation code entry point. An emulation
code entry point is either in internal emulation code ROM 232 or in external emulation code RAM 236. The
emulation code starting from the entry point address either emulates an instruction or initiates appropriate exception

processing.

A vectoring decode cycle is properly considered a macroinstruction decoder 230 decode cycle. In the case
of a vectoring decode, the macroinstruction decoder 230 generate the vectoring quad and generate the emulation
code address into the emulation code ROM 232. Following the initial vectoring decode cycle, the macroinstruction
decoder 230 remains inactive while instructions are generated by the emulation code ROM 232 or emulation code
RAM 236 until a return from emulation (ERET) OpSeq is encountered. The return from emulation (ERET)
sequencing action transitions back to macroinstruction decoder 230 decoding. During the decode cycles following
the initial vectoring decode cycle, the macroinstruction decoder 230 remains inactive, continually attempting to
decode the next "sequential" instruction but having decode cycles repeatedly invalidated until after the ERET is

encountered, thus waiting by default to decode the next "sequential” instruction.
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Instruction bytes for usage or decoding by the vectoring decoder 418 are supplied from the instruction
buffer 408 by the first byte rotator 430, the same instruction multiplexer that supplies instruction bytes to the first
short decoder SDec0 410 and to the long decoder 416. The vectoring decoder 418 receives up to eleven
consecutive instruction bytes, corresponding to the maximum length of a modr/m instruction excluding prefix bytes.
Thus, the full eleven byte width of the first byte rotator 430 is distributed to both the long decoder 416 and the
vectoring decoder 418. The predecode information within the instruction buffer 408 is not used by the vectoring

decoder 418.

As in the case of the long decoder 416, the first byte of the first byte rotator 430 is fully decoded as an
opcode byte and, in the case of a modr/m instruction, the second instruction byte and possibly the third are fully
decoded as modr/m and sib bytes, respectively. The vectoring decoder 418 generates operations taking into account
the presence of any prefix bytes decoded by the short decoders during preceding decode cycles. The existence of a
OF prefix is considered in decoding of the opcode byte. In addition to generating operations based on the decoding
of modr/m and sib bytes, the first byte rotator 430 also determines the length of the instruction for usage by various
program counters, whether the instruction is a modr'm instruction for inhibiting or invalidating the long decoder,
and whether the instruction is an instruction within the long decode subset of operation codes (opcodes). If not, a
vectoring decode is initiated. Effective address size. data size and operand segment register values are supplied to
the vectoring decoder 418 and are used to generate operations. No indirect size or segment register specifiers are

included within the final operations generated by the vectoring decoder 418.

During a vectoring decode cycle, the vectoring decoder 418 generates a vectoring Op quad, generates an
emulation code entry point or vector address, and initializes an emulation environment. The vectoring Op quad is

specified to pass various information to initialize emulation environment scratch registers.

The value of the emulation code entry point or vector address is based on a decode of the first and second
instruction bytes, for example the opcode and modr/m bytes, plus other information such as the presence of an OF
prefix, a REP prefix or the like. In the case of vectoring caused by an exception condition, the entry point or vector

address is based on a simple encoded exception identifier.

The emulation environment is stored for resolving environment dependencies. All of the short decoders
410, 412 and 414 and long decoder 416 directly resolve environmental dependencies, such as dependencies upon
effective address and data sizes, as operations are generated so that these operations never contain indirect size or
register specifiers. However, emulation code operations do refer to such effective address and data size values for a
particular instance of the instruction being emuiated. The emulation environment is used to store this additional
information relating to the particular instruction that is vectored. This information includes general register
numbers, effective address and data sizes, an effective operand segment register number, the prefix byte count, and
arecord of the existence of a LOCK prefix. The emulation environment also loads a modr/m reg field and a

modr/m regm field are loaded into Reg and Regm registers. The emulation environment is initialized at the end of a
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successful vectoring decode cycle and remains at the initial state for substantially the duration of the emulation of an

instruction by emulation code, until an ERET code is encountered.

The vectoring decoder 418 generates four operations of an Op quad in one of four forms. All four forms
include three LIMM operations. The four forms differ only in the immediate values of the LIMM operations and in

whether the third operation is an LEA operation or a NOOP operation.

A first vectoring decode Op quad has the form:

LIMM t2,<imm32>
LIMM tl,<disp32>
LEA t6,@(<gam>), .a
LIMM t7,LogSeqDecPC[31..0)//logical seq. next
//instr. PC
A second vectoring decode Op quad has the form:
LIMM 12,<imm32>
LIMM t1,<disp32>
NOOP
LIMM t7,LogSeqDecPC[31..0]
A third vectoring decode Op quad has the form:
LIMM 2,<+/- 1/2/4>  //equiv to "LDK(D)S t2,+1/+2"
LIMM t1,<+/- 2/4/8> //equiv to "LDK(D)S t1,+2/+4"
NOOP
LIMM t7,LogSeqDecPC[31..0]
A fourth vectoring decode Op quad has the form:
LIMM 12,<+2/4> /lequiv to "LDKD 2,+2"
LIMM t],<disp32>
LD t6,@(SP).SS.s
LIMM t7,.LogSeqDecPC[31..0]
//predicted RET target adr
/ffrom Return Address Stack

The first two forms of vectoring Op quads apply for most opcodes. The first form is used for memory-
referencing modr/m instructions for which the LEA operation is used to compute and load a general address mode
effective operand address into a treg. The second form is used for non-modr/m and register-referencing modr/m
instructions. For instructions having the second form no address is necessarily computed, although the <imm32>
and <disp32> values remain useful insofar as they contain instruction bytes following the opcode byte. The third
form of vectoring Op quad is used for all string instructions plus some neighboring non-modr/m instructions. A

fourth form of vectoring Op quad supports special vectoring and emulation requirements for near RET instructions.

The macroinstruction decoder 230 has four program counters, including three decode program counters
420, 422 and 424, and one fetch program counter 426. A first decode program counter, called an instruction PC
420, is the logical address of the first byte. including any prefix bytes. of either the current instruction being

decoded or, if no instruction is currently decoding, the next instruction to be decoded. If the decode operation is a
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multiple instruction decode, instruction PC 420 points to the first instruction of the multiple instructions to be
decoded. The instruction PC 420 corresponds to the architectural address of an instruction and is used to generate
instruction fault program counters for handling of exceptions. The instruction PC 420 is passed down the scheduler
260 with corresponding Op quads and is used by an operation commit unit (OCU) (not shown) of the scheduler 260
to produce instruction fault program counters to be saved during exception processing. When an Op quad is
generated by the macroinstruction decoder 230. the current instruction PC 420 value is tagged to the Op quad and
loaded into the Scheduler 260 Op quad entry along with the Op quad. A second decode program counter. called a
logical decode PC 422, is the logical address of the next instruction byte to be decoded and addresses either an
opcode byte or a prefix byte. A third decode program counter. called a linear decode PC 424, is the linear address
of the next instruction byte to be decoded and addresses either an opcode byte or a prefix byte. The logical decode
PC 422 and the linear decode PC 424 point to the same instruction byte. The linear decode PC 424 designates the

address of the instruction byte currently at the first byte rotator 430.

The various decoders in the macroinstruction decoder 230 function on the basis of decoding or consuming
either prefix bytes or whole instructions minus any prefix bytes so that prefixes are generally handled as one-byte
instructions. Therefore, the address boundaries between instruction and prefix byte decodes are more important
than instruction boundaries alone. Consequently. at the beginning of each decode cycle, the next instruction byte to

be decoded is not necessarily the true beginning of an instruction.

At the beginning of a decode cycle the logical decode PC 422 and the linear decode PC 424 contain the
logical and linear addresses of the next instruction to be decoded, either an instruction or a prefix byte. The linear
decode PC 424 is a primary program counter value that is used during the decoding process to access the instruction
buffer 408. The linear decode PC 424 represents the starting point for the decode of a cycle and specifically
controls the byte rotator feeding bytes from the instruction buffer 408 to the first short decoder 410 and to the long
and vectoring decoders 416 and 418. The linear decode PC 424 also is the reference point for determining the
instruction addresses of any further short decode instructions or prefix bytes, thus generating control signals for the

byte rotators feeding the second and third short decoders 412 and 414.

The linear decode PC 424 also acts secondarily to check for breakpoint matches during the first decode
cycles of new instructions, before prefix bytes are decoded, and to check for code segment overruns by the

macroinstruction decoder 230 during successful instruction decode cvcles.

The logical decode PC 422 is used for program counter-related transfer control instructions, including
CALL instructions. The logical decode PC 422 is supplied to the branch unit 234 to be summed with the
displacement value of a PC-relative transfer control instruction to calculate a branch target address. The logical
decode PC 422 also supports emulation code emulation of instructions. The next sequential logical decode program
counter (PC) 422 is available in emulation code from storage in a temporary register by the vectoring Op quad for
general usage. For example, the next sequential logical decode PC 422 is used to supply a return address that a

CALL instruction pushes on a stack.
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A next logical decode PC 428 is set to the next sequential logical decode program counter value and has
functional utility beyond that of the logical decode PC 422. The next logical decode PC 428 directly furnishes the
return address for CALL instructions decoded by the macroinstruction decoder 230. The next logical decode PC
428 also is passed to emulation code logic during vectoring decode cycles via one of the operations within the

vectoring Op quad.

During a decode cycle, the linear decode PC 424 points to the next instruction bytes to be decoded. The
four least significant bits of linear decode PC 424 point to the first instruction byte within the instruction buffer 408
and thereby directly indicate the amount of byte rotation necessary to align the first and subsequent instruction bytes
in the instruction cache 214. The first byte rotator 430 is an instruction multiplexer, specifically a 16:1 byte
multiplexer, for accessing bytes in the instruction buffer 408 that are offset by the linear decode PC 424 amount.
The first byte rotator 430 is seven bytes wide for the first short decoder SDec0 410 and eleven bytes wide for the
long decoder 416 and the vectoring decoder 418 in combination. Shared logic in the first short decoder SDecO 410,
the long decoder 416 and the vectoring decoder 418 generate a first instruction length value ILen0 for the first
instruction. The second and third byte rotators 432 and 434 are seven byte-wide instruction multiplexers,
specifically 16:1 byte multiplexers. The second byte rotator 432 accesses bytes in the instruction buffer 408 that are
offset by the sum of the linear decode PC 424 amount and the first instruction length ILen0. Logic in the second
short decoder SDec0 412 generate a second instruction length value ILen1 for the second instruction. The third
byte rotator 434 accesses bytes in the instruction buffer 408 that are offset by the sum of the linear decode PC 424
amount and the first and second instruction lengths ILen0 and ILen!. The byte rotators 430, 432 and 434 multiplex
instruction bytes but not predecode bits. The byte rotators 430, 432 and 434 are controlled using predecode
information in which the predecode bits associated with the first opcode byte or the first byte of the first instruction
directly controls the second rotator 432. The first bvte of the second instruction directly controls the third rotator
434. Each predecode code implies an instruction length but what is applied to the next rotator is a pointer. The
pointer is derived by taking the four least significant bits of the program counter at the present instruction plus the

length to attain the program counter to the next instruction.

The first and second short decoders SDec0 410 and SDec! 412 do generate the instruction byte lengths
ILen0 and ILen] as a matter of course so that the process of decoding multiple short decode instructions occurs
serially. However, such serial processing is unacceptable for achieving a desired decoding speed. To hasten the
decoding process. the three short decoders SDec0 410, SDec] 412 or SDec2 414 are operated in paralle] by including
separate instruction length lookahead logic that quickly, although serially, determines the instruction lengths ILen0

and ILen| using the predecode bits associated with the instruction bytes in each instruction buffer 408.

The predecode bits associated with each instruction byte in the instruction buffer 408 are the ILen bits
specifying the length of an instruction starting with that byte. A parameter more useful than ILen for computation
by lookahead logic is the value ILen0 plus linear decode PC 424 (mod 16) and the value ILen0 plus ILen] plus linear
decode PC 424 (mod 16). Consequently, the four instruction length predecode bits of the six predecode bits

associated with each instruction byte in the instruction buffer 408 are set to point to the first byte of the next
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instruction assuming that this byte is the opcode byte which begins an instruction. As a result, the predecode bits
associated with the first opcode byte multiplexed by the first byte rotator 430 and applied to the first short decoder
SDec0 410 directly specify the instruction buffer 408 byte index of the first opcode byte for the second short
decoder SDecl 412. The predecode bits associated with the second opcode byte multiplexed by the second byte
rotator 432 and applied to the second short decoder SDec1 412 directly specifyv the instruction buffer 408 byte index
of the first opcode byte for the third short decoder SDec2 414. The instruction lookahead logic includes two four-
bit-wide 16:1 multiplexers which produce instruction buffer 408 index bits for the multiplexers of second and third
byte rotators 432 and 434. Structurally. all of the instruction buffer 408 predecode bits are connected separately
from the instruction buffer 408 instruction bytes. The predecode bits are used solely by the lookahead logic. The

instruction bytes are applied to the instruction multiplexers of the short decoders 410, 412 and 414.

The instruction lookahead logic also inciudes logic for determining whether sets of predecode bits used
during decode cycle are valid. Specifically, the instruction lookahead logic determines whether an instruction byte
is the first byte of a valid short decode instruction. If the predecode bits for a particular byte in the instruction
buffer 408 point to the particular byte, implying a zero instruction length for an instruction starting at the location
of the particular byte, then that byte is not the start of a short decode instruction and no further short decoding is
possible. Otherwise, a short decode operation is possible and the predecode bits point to the beginning of the next

instruction.

The following pseudo-RTL description summarizes the structure and functionality of the instruction buffer
408 (IBuf), the instruction multiplexers (IMux), the instruction lookahead and multiplexer control logic, and the
multiplexer connections to the different instruction decoders. The instruction buffer 408 is IBuf, including
instruction bytes IByte[8] and predecode bits PreDec[4]. The linear decode PC 424 is DecPC[3..0].

struct ExtIByte {
IByte[8]
PreDec[4]
} IBuf[16]

IBIndex0[3..0] = DecPCJ3..0]

IBindex1[3..0] = IBuf[IBIndex0[]].PreDec[]
IBIndex2[3..0] = IBuf[IBIndex1[]].PreDec[]
IBindex3[3..0] = [Buf[IBIndex2[]].PreDec|[]

Index0V = ~(IBIndex1[2..0] = IBIndex0[2..0])
Index1V = ~(IBIndex2[2..0] = IBIndex1[2..0])
Index2V = ~(IBindex3[2..0] = IBindex2[2..0])

for (i=0..10)
IMux0[i][] = IBuf[(IBIndex0[]+i) mod 16].I1Byte[]
LVOpQuad... = LongVecDecode(IMux0[10..0][])

SDecOp0[].SDecOpl[],... = ShortDecode(IMux0[6..0][])

for (i=0..6)
IMux1{i][] = IBuf[(IBIndex1[]+i) mod 16).IByte[]
SDecOp2(].SDecOp3([],... = ShortDecode(IMux 1[6..0][])
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for (i=0..6)
IMux2[i][] = IBuf{(IBIndex2[}+i) mod 16).IByte[]
SDecOp4[],SDecOp5][],... = ShortDecode(IMux2[6..0][])
The short decoders SDec0 410, SDec] 412 or SDec2 414 each generate up to two Ops. The long and
vectoring decoder 418 generates a full Op quad. The six Ops from the three short decoders SDec0 410, SDec1 412
or SDec2 414 are subsequently packed together by Op packing logic into a proper Op quad having at most four of

the Ops which are guaranteed to be valid.

Either the Op quad generated by the short decoders or the Op quad generated by the long/vectoring

decoder is chosen as the Op quad result of the macroinstruction decoder 230 for a decode cycle.

The instruction buffer 408 is accessed on a bvte basis by instruction multiplexers of the macroinstruction
decoder 230, but the instruction buffer 408 is managed on an instruction word basis each decode cycle for tracking
validity of instruction bytes in the instruction buffer 408 and for determining which instruction bytes of the
instruction buffer 408 are to be reloaded with new instruction bytes from the instruction cache 214. The predecode
information is also used to determine whether the instruction bytes that are decoded and used by each decoder
within the macroinstruction decoder 230 decoder are valid. When an instruction byte is not valid, an invalid valid

signal is asserted and applied to decoder validation logic (not shown) associated with that decoder.

Control of updating of the current fetch PC 426, which is used to address the next instruction cache 214
access, is synchronized closely with the consumption of valid instruction bytes by the various decoders within the
instruction buffer 270. In this manner, control of updating of the current fetch PC 426 is also managed by the
control logic (not shown) within the instruction buffer 408. Control logic within the instruction buffer 408 is
described in pseudo-RTL as follows:

struct ExtIByte {
IByte[8]
PreDec{4]

} 1Bufl16]

Instruction buffer 408 word validity signals are described as follows:
IBufEmpty = ~(FetchPC[4] ~ DecPC[4]) + ~DEC_ValidIF
FullFetch = ('b00 = FetchPC[3..2))

IBOV = ~IBufEmpty (~FullFetch + ('b00 >= DecPC[3..2]))
= ~]|BufEmpty (~FullFetch + ('b00 = DecPC[3..2]))

IB1V = ~IBufEmpty (~FullFetch + ('b01 >= DecPC[3..2]))
= ~IBufEmpty (~FullFetch + ~DecPC[3])

IB2V = ~IBufEmpty (~FullFetch + ('b10 >= DecPC[3..2]))
= ~IBufEmpty (~FullFetch + ~('b11 = DecPC[3..2]))

IB3V = ~IBufEmpty (~FullFetch + ('b11 >= DecPC[3..2}))
= ~|BufEmpty
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Wraparound is detected within the instruction buffer 408 in response to collective instruction byte

consumption of the short decoders in logic functionally described as follows in pseudo-RTL:

DecPCWrap = (SeqDecPC[3..2] < DecPC[3..2])

Instruction buffer 408 word load control signals are described as follows:

LoadIB0 = ~IBOV + DecTakenXC + Declnstr majority(('b00 >= DecPCJ[3..2]),
('b00 < SeqDecPC[3..2]),DecPCWrap)
= ~IBOV + DecTakenXC + Declnstr majority({'b00 = DecPC[3..2]),
~('b00 = SeqDecPC[3..2]),DecPCWrap)

LoadIB1 = ~IB1V + DecTakenXC + Declnstr majority(('b01 >= DecPC[3..2]),
('b01 < SeqDecPC[3..2]).DecPCWrap)
=~IB1V + DecTakenXC +
Declnstr majority(~DecPC[3].SeqDecPC[3).DecPC Wrap)

LoadIB2 = ~IB2V + DecTakenXC + Declnstr majority(('b10 >= DecPC{3..2]),
('b10 < SeqDecPC[3..2]).DecPCWrap)
=~IB2V + DecTakenXC + Declnstr majority(~('bl 1 = DecPC[3..2]).
('bl1 = SegDecPC[3..2]).DecPCWrap)

LoadIB3 = ~IB3V + DecTakenXC + Declnstr majority(('b11 >= DecPCJ[3..2]),
('b11 < SeqDecPC[3..2]),DecPCWrap)
=~IB3V + DecTakenXC + Decinstr DecPCWrap

Loading of the instruction buffer 408 is described by the following pseudo-RTL:

@clk: if (LoadIB0) IBuf{3..0] = IBufIn[3..0]
@clk: if (LoadIB1) IBuf{7..4] = IBufln[7..4]
@clk: if (LoadIB2) IBuf[11..8] = IBufIn[11..8]
@clk: if (LoadIB3) IBuf[15..12] = IBufIn{15..12]

Valid instruction byte signals that are indicative of valid bytes received from the instruction buffer 408 are

described for each decoder in the instruction decoder 270 as follows:

IBufSOV = ~IBufEmpry ( (IBIndex1[3..2] < FetchPC[3..2)) +
(IBIndex1[3..2] >= IBIndex0[3..2]) )

IBufS1V = ~IBufEmpty majority( IBIndex1[3..2] >= FetchPC[3..2],
IBIndex2[3..2] < FetchPC[3..2],
IBIndex2[3..2] >= IBIndex1[3..2] )

1BufS2V = ~IBufEmpty majority( IBlndex2[3..2] >= FetchPC[3..2],
IBindex3[3..2] < FetchPC[3..2],
IBindex3[3..2] >= IBIndex2[3..2])

IBufLVV = ~IBufEmpty ( (LVSeqDecPC[3..2] >= DecPC][3..2]) +
(LVSegDecPC[3..2] < FetchPC[3..2]))

A valid bit relating to requests of the instruction fetch control circuit 218 is evaluated as foliows:
@clk: if (SC_Vec2Dec + RUX_WrIP + ERM_StoplF + IC_StoplF + SI_Reset)

DEC_ValidIF = (SC_Vec2Dec + RUX_WTrIP) ~SI_Reset
A valid bit for instruction bytes received from the instruction cache 214 is evaluated as follows:

IFetchV = DEC_ValidIF ~IC_HoldIF ~ITB_HoldIF ~ITB_PgViol &
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~(EmcMode DEC_ExtEmc)

A next sequential fetch PC value is evaluated as follows:

SeqFetchPC[31..4] = (IBufEmpty + DecPCWrap Declnstr) ? FetchPC[31..4]+]
- FetchPC[31..4]

SeqFetchPC[3..2] = if ( (IBufEmpty + DecPCWrap Declnstr) FetchPC[4] )

'b00

else
(IBufEmpty + ~Declnstr) ? DecPCJ3..2]
: SeqDecPC[3..2]

A new fetch PC value having two least significant bits invariably set to 'b00 is evaluated as follows:

DEC_NextFetchAddr{31..2] = if (SC_Vec2Dec + RUX_Wrlp +
DecTakenXC ~BtbHit + DecRetXC)

NewDecPC[31..2]

elseif (DecTakenXC BtbHit)
BtbFetchAddr[31..2)

elseif (IFetchV)
SeqFetchPC[31..2]

else
FetchPC[31..2]

@clk: FetchPC[31..2] = DEC_NextFetchAddr[31..2]

A processor typically operates by transferring program instructions from a memory into instruction
registers, then decoding and executing the instructions. Execution speed of a processor is improved by transferring,
decoding and executing more than one instruction atatime. In some processors, all instructions are the same
length and transferring of data from memory for decoding is simple because the memory locations of all instructions
are readily determined, allowing several instructions to be simultaneously transferred into several instruction
registers. However, x86 instructions have variable lengths so that each instruction must typically be decoded to
determine the instruction length before the starting location of the next decodable instruction is ascertainable,
making the locating of instructions a slow, sequential process. To allow simultaneous decoding of multiple
variable-length instructions, the predecoder 270 includes logic for preparing instructions for rapid decoding.
Predecoder 270 determines and stores in the instruction cache 214, for many instruction bytes, the location of the
next succeeding instruction by assuming that each instruction byte is the first byte of an instruction. When
instructions are transferred from the instruction cache 214, logic for preparing instructions for rapid decoding
locates the actual first byte of an instruction so that several subsequent instructions are rapidly located and allowing
simultaneous loading of instructions into a plurality of instruction registers for simultaneous decoding and

execution.

When instruction bytes are loaded from main memory 130 into the instruction cache 214, a preliminary
decode operation of these instruction bytes is performed to generate additional bits that are stored with each
instruction byte in the instruction cache 214. The predecode bits are fetched in combination with the associated
instruction bytes, loaded into the instruction buffer 408, and subsequently used to facilitate the processing of
simultaneous decoding of multiple instruction bytes. A pseudo-RTL declaration summarizes this aspect of the
instruction cache 214 tag RAM and data RAM entries. as follows:
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struct ExtICByte {
1Byte[8]
PreDec{3]
} IDataEntry[64]
Predecode bits associated with each instruction byte serve to locate the next instruction boundary relative
to an opcode byte. Prefix bytes are decoded in the form of single-byte long “instructions”. Bits of the prefix bytes
are used directly by instruction lookahead logic to generate the control signals for instruction multiplexers feeding

the instruction decoders. More specifically, the following two values are quickly computed by the lookahead logic:

(DecPC{3..0]+ILen0) mod 16
(DecPC[3..0]+ILen0+ILenl) mod 16
where DecPC[3:0] is the linear decode PC 424, ILen0 is the instruction length of the instruction applied to the first

short decoder SDec0 410 and ILen1 is the instruction length of the instruction applied to the second short decoder
SDecl 412.  In some embodiments, both ILen0 and ILen] are calculated for every instruction byte in the
instruction buffer 408 when instruction bytes are first loaded into the instruction buffer 408. Because instruction
bytes are stored in the instruction buffer 408 with memory-alignment. the calculation of ILen0 and ILen| are
possible very early in the instruction processing path. In particular. the ILen0 and ILen] are performed when the
associated instruction bytes are loaded into the instruction cache 214 and the resulting ILen0 and ILenl values are
stored in the instruction cache 214 as predecode bits. The instruction byte in the instruction buffer 408 is indexed
by Linear decode PC 424 and has a fixed value for the low four bits of the instruction byte memory address which
is equal to linear decode PC 424. The instruction length ILen of an instruction starting with an opcode byte equal to
linear decode PC 424 is calculated solely on the basis of the opcode byte or, in some cases, on the basis of the

opcode byte and the next byte following the opcode byte.

The instruction buffer 408 index of the first byte of the next instruction is ILen plus a constant (mod 16),
specifically (DecPC[3..0]+ILen0) mod 16. The computation of (DecPC[3..0]+ILen0+ILen1) mod 16 results simply
from taking the value (DecPC[3..0)+ILen0) mod 16. which is generated by the first computation indexed by
(DecPC[3..0)+ILen0) mod 16. In this manner, only (DecPC[3..0]+ILen0) mod 16 is computed for each instruction

byte and becomes the predecode value for the instruction byte.

Instruction bytes are loaded into the instruction cache 214 during cache fills sixteen bytes at a time so that
predecode logic is replicated sixteen times and predecode bits for all sixteen bytes are calculated simultaneously
immediately before the sixteen bytes are written into the data RAM of the instruction cache 214. Predecode logic

effectively adds an extra half cycle to the miss/fill latency of the instruction cache 214.

Each of the sixteen sets of predecode logic. one set for each instruction byte loaded into the instruction
cache 214, examines the associated instruction byte plus, for instruction bytes equal to some opcodes, the following
one or two instruction bytes. The first instruction byte is decoded as an opcode byte, regardless of whether the byte
actually is an opcode. If the first instruction byte is a modr/m opcode, the second and third instruction bytes are
decoded as modr/m and sib bytes. Based on these three bytes alone. the length ILen of the instruction is determined

and the instruction is assigned to be inside or outside the subset of short decode instructions of the instruction set.
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For some opcodes, the short decode instruction subset is defined by the opcode byte alone. For modr/m opcodes,
the short decode instruction subset is specified by the opcode byte in combination with the modr/m and sib bytes. A
fixed value of the four memory byte address least significant bits corresponding to a particular set of predecode
logic (mod 16) is added to the computed length ILen to determine the predecode expression, (DecPC[3..0]+ILen0)
mod 16. If the opcode is, in fact, a short decode instruction opcode, then the resulting four-bit value is assigned as
the predecode bits that are loaded into the instruction cache 214. Otherwise, the fixed four-bit memory address
least significant bit value for the instruction byte is used as the predecode bits as though the instruction length was

Zero.

Predecode information is only used to facilitate the decoding of multiple short decode instructions,
therefore instruction length is determined accurately only for short decode instructions. The length of all short
decode instructions ranges from one to seven bytes. For instructions that are not short decode instructions, the
predecoder 270 specifies an effective instruction length of zero to enable the instruction lookahead logic to quickly
and easily determine the validity of the predecode information that is calculated during each decode cycle. In
particular, instruction lookahead logic compares the values of the predecode bits and the fixed address least
significant bits for an instruction byte in the instruction buffer 408. If the values match, then the instruction byte is

not the starting byte of a short decode instruction.

Short decode instructions are never longer than seven bytes so that the difference between the four
predecode bits and the fixed byte address least significant bit values is never more than seven bytes. Accordingly
only three instruction length predecode bits of six total predecode bits are stored in the instruction cache 214
because the most significant bit is readily reconstructed from the least significant three bits plus the associated fixed
byte address least significant bit value. The reconstruction or expansion of the three instruction length predecode
bits into four bits is performed as instruction bytes are fetched from the instruction cache 214 and loaded into the
instruction buffer 408. More specifically. the instruction buffer 408 includes input circuitry with sixteen sets of
predecode expansion logic which independently and simultaneously expand the predecode bit values associated

with all sixteen instruction bytes transferred from the instruction cache 214.

For the final two bytes of the sixteen bytes that are predecoded and loaded into the instruction cache 214,
only one and two bytes are available for examination by the predecode logic. For non-modr/m opcodes a full
predecode analysis is possible. However, for modr/m opcodes the full instruction length cannot be determined.
Consequently, predecode logic for bytes 14 and 15. having address least significant bits of 1110 and 1111
respectively, are modified versions of the predecode logic associated with the byte 0 through 13. For byte 15, an
effective instruction length of zero is forced for all modr/m opcodes as well as for non-short decode instructions.
For byte 14, an effective instruction length of zero is forced for non-short decode instructions and for modr/m

opcodes having an address mode which requires examination of a sib byte to reliably determine instruction length.

Various uncertainties arise in the predecoding process. For example, a prefix byte having a hexidecimal

value of OF may be included in the instruction byte stream. Also uncertainty concerning the effective address and
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operand sizes arises due to the possible presence of a prefix byte and a possible difference between the D bit value
in effect at cache fill time and the D bit value in effect when the predecode information is used at decode time.
Predecode logic addresses these uncertainties by handling the instruction bytes under the assumption that the
opcode byte is, in fact, a one byte opcode, and that the effective address and operand sizes are both 32 bits. This
assumption results in appropriate handling of a prefix byte in the same manner as handling of a long and vectoring
decode so that no predecode information is used. With regard to the variable D-bit value, the assumption that the
instruction byte is actually a one byte opcode leads to appropriate handling because, when the D-bit value in effect
during a decode cycle indicates a sixteen-bit address. decoding of muitiple instructions by the short decoder is
inhibited. The proper effective address and operand size are used by the first short decoder SDec0 410 but
associated predecode information is not used. The effective address sizes for the second and third short decoders

SDec1 412 and SDec2 414 always match the current D-bit value.

The following pseudo-RTL description summarizes logic within the predecoder 270 logic for one
instruction byte channel of the sixteen instruction byte channels. Logic in the predecoder 270 examines each of
sixteen instruction bytes prior to loading into the instruction cache 214 and determines. for each instruction byte
independently of the other instruction bytes, a three-bit predecode value. The three-bit predecode value is
determined on the basis of a calculation of two values, Short] and SlLen[2..0], from a predecode operation
performed on each instruction byte and the immediately following one or two instruction bytes. For the final two
instruction bytes, bytes 14 and 15, of a group of sixteen instruction bytes, a reduced predecode operation employing
analysis of only one or two instruction bytes is performed. The values Shortl and SILen[2..0] specify whether the
instruction byte, as an opcode byte, is included within the short decode subset of instructions. If the instruction is a
short decode instruction, then the values Shortl and SiLen[2..0] also specify the length, in bytes, of the short

decode instruction.

In this description a Shortl function applies to fully decode opcode, modr/m, and sib bytes for all short
decode cases, excluding the determination of sib address modes for instruction byte fourteen of the sixteen
instruction byte channels and excluding all modr/m opcodes for instruction byte fifteen. In contrast, the SiLen[2..0)
function applies to partially decode opcode, modr/m and sib bytes using non-short decode opcode and address mode
cases as don’t cares. Instruction length is determined using the SILen function.

if (Shortl)

PreDec[2..0] = FixedAddr[2..0] + SILen[2..0]
else

PreDec[2..0] = FixedAddr[2..0]

Here, FixedAddr is equal to i for instruction byte i.

The following pseudo-RTL description summarizes the pre-decode expansion logic:

if (PreDec[2..0] < FixedAddr[2..0])
PreDec[3] = ~FixedAddr[3]

else
PreDec[3] = FixedAddr{3]
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The predecoder 270 may be implemented using various circuits, methods and techniques. including
conventional logic circuits. To most simply express the function of the predecoder 270 a functional definition is
given in terms of a lookup table and a small amount of additional logic. The lookup table includes 512 entries and
is indexed by the first opcode byte plus an additional signal that is decoded from part of a byte following the first
opcode byte. Each entry contains the following fields: ILen[2..0], Short]V, Modrm, NoLrgDisp, and
OnlySubOpc7. The ILen field directly furnishes the instruction length value for non-modr/m instructions. For
modr/m instructions, the ILen field in combination with an address mode-dependent value, furnishes the instruction
length value. Final SILen[2..0] values range from 1 to 7 bytes for valid short decode instructions. The ShortlV
field largely indicates whether the byte is a short decode instruction. The Modrm field is used to gate or mask
ShortlV for the sixteenth byte. Other fields represent additional constraints, in the case of modr/m opcodes. relating

to whether the particular address mode or sub-opcode of the instruction is acceptable in conjunction with that

opcode.

The following table designates table entries potentially corresponding to the short decode instructions.
Non-short decode instruction table entries have undefined field values except for Short]V=0. Equations following
the table define the computation of the final, effective Shortl signal in response to input signals including three
predecoded bytes, Opc0{7..0), Opc1{7..0]. and Opc2[7..0]. For the fifteenth and sixteenth bytes. the third byte
Opc2 or the second and third bytes Opcl and Opc2. respectively. correspond to existing bytes having values that are
not previously defined.

RegModrm = (Opc1{7..6} = 'bl1)
Tablelndex(8..0] = {Opc0[7..0],RegModrm}

struct {

ILen[3]

ShortlV

Modrm

NoLrgDisp

} PreDecTable[512]

Entry Short Modr NoLrg Instruction
_# ILen v ul Disp Mnemeonic

02,0 . 2+ 1 1 1 ADD reg8,m8
02,1 2 I 1 0 ADD reg8,r8
03.0 2+ 1 1 ] ADD reg32,m32
03,1 2 1 1 0 ADDreg32,r32
04.x 2 ] 0 X ADD AL,imm8
05,x 5 1 0 X ADD AX, imm32
0A.0 2+ 1 ] l OR reg8,m8
0A.] 2 1 1 0 OR reg8,r8

0B,0 2+ )| 1 1 OR reg32,m32
0B,1 2 ] | 0 OR reg32,r32
0C,x 2 1 0 X OR AL,imm3
0D.x 5 1 0 X OR AX,imm32
OF x 1 1 0 X OF prefix

12,0 2+ 1 | 1 ADC reg8,m8
12,1 2 1 1 0 ADCreg8,r8
13,0 2+ 1 I 1 ADC reg32,m32
13,1 2 1 1 0 ADC reg32,r32
14,x 2 1 0 X ADC AL,imm8
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15,x
1A,0
1A,1
1B,0
1B,1
1C.x
1D,x
22,0
22,1
23,0
23,1
24.x
25
26,x
2A.0
2A,1
2B,0
2B,1
2Cx
Entry

2D x
2E.x
32,0
32,1

33,0
33,1

34,x

35,x
36,x
3A,0
3A,1
3B,0
3B,1
3Cx
3D,x
3Ex
40,x
41,x
42 x
43,x
44.x
45,x
46,x

47.x

48,

49 x
4Ax
4B,x
4C,x
4D.x
4E x
4F x
50,x

51,x

52,x

53.x
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ADC AX, imm32

SBB reg8,m§
SBB reg8.r8
SBB reg32,m32
SBB reg32,r32
SBB AL,imm$§

SBB AX, imm32

AND reg8,m8
AND reg8,r8

AND reg32,m32

AND reg32,r32
AND AL,imm8

AND AX, imm32

ES prefix

SUB reg8,m8
SUB reg8,r8
SUB reg32,m32
SUB reg32,r32
SUB AL,imm8
Instruction

Mnemonic

SUB AX, imm32

CS prefix

XOR reg8,m8
XOR reg8,r8

XOR reg32,m32

XOR reg32,r32
XOR AL,imm8

XOR AX,imm32

SS prefix

CMP reg8,m8
CMP reg8,r8

CMP reg32,m32

CMP reg32,r32
CMP AL,imm8

CMP AX,imm32

DS prefix
INCreg
INCreg
INC reg
INC reg
INC reg
INC reg
INC reg
INC reg
DEC reg
DEC reg
DEC reg
DEC reg
DEC reg
DEC reg
DEC reg
DEC reg
PUSH reg
PUSH reg
PUSH reg
PUSH reg
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54,x 1 ] 0 X PUSH reg
55,x 1 1 0 X PUSH reg
56,x 1 1 0 X PUSH reg
57.x 1 1 0 X PUSH reg
58,x 1 1 0 X POP reg
59.x 1 1 0 X POP reg
S5Ax 1 1 0 X POP reg
5B,x 1 1 0 X POP reg
5Cx 1 I 0 X POP reg
5D,x 1 1 0 X POP reg
Entry Short Modr NoLrg  Instruction
_# ILen v -m Disp Mnemonic
SEx 1 1 0 X POP reg
5Fx 1 1 0 X POP reg
64.x ] 1 0 X FS prefix
65,x 1 1 0 X GS prefix
66,x 1 1 0 X Operand Size prefix
67.x 1 ] 0 X Address Size prefix
70,x 2 1 0 X JCC disp8
71,x 2 1 0 X JCC disp8
72,x 2 ] 0 X JCC disp8
73,x 2 1 0 X JCC disp8
74 x 2 1 0 X JCC disp8
75,x 2 1 0 X JCC disp8
76,x 2 1 0 X JCC disp8
77,x 2 1 0 X ICC disp8
78,x 2 1 0 X JCC disp8
79.x 2 1 0 X JCC disp8
7A,x 2 1 0 X JCC disp8
7B,x 2 1 0 X JCC disp8
7Cx 2 1 0 X JCC disp8
7D,x 2 1 0 X JCC disp8
7E.x 2 ] 0 X JCC disp8
7F,x 2 1 0 X JCC disp8
80,0 3+ 1 ] 1 CMP m8,imm8
80,1 3 ] 1 0 “op” r8,imm8
81,1 6 1 ] 0 “op” r32,imm32
82,0 3+ ] 1 ] CMP m8,imm§
82,1 3 1 1 0 “op” r8,imm8
83,0 3+ ! 1 1 CMP m32,imm8
83,1 3 1 | 0 “op” r32,imm8§
88,0 2+ 1 1 0 MOV m8,reg8
88,1 2 1 1 0 MOV 18 reg8
89,0 2+ 1 1 0 MOV m32,reg8
89,1 2 I 1 0 MOV r32,reg8
8A,0 2+ 1 1 0 MOV reg8,m8
8A,1 2 1 1 0 MOV reg8,r8
8B,0 2+ 1 1 0 MOV reg32,m32
8B,1 2 1 1 0 MOV reg32,r32
8D,0 2+ 1 1 0 LEA reg32,mem
90,x 1 1 0 X XCHG AX,AX/NOP
A0,x 5 1 0 X MOV AL, offs
Alx ] ] 0 X MOV AX,offs
A2.x 5 1 0 X MOV offs, AL
A3x 5 1 0 X MOV offs, AX
BO,x 2 1 0 X MOV reg8,imm§
Bl,x 2 1 0 X MOV reg8,imm8
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B2.x 2 1 0 X MOV reg8,imm8
Entry Short Modr NoLrg  Instruction
_# ILen AV _m Disp n ic
B3.x 2 1 0 X MOV reg8,imm8
B4,x 2 1 0 X MOV reg8,imm8§
B35,x 2 1 0 X MOV reg8,imm8
B6,x 2 1 0 X MOV reg8,imm8
B7,x 2 1 0 X MOV reg8,imm8
B8,x 5 1 0 X MOV reg32,imm32
B9.x 5 1 0 X MOV reg32,imm32
BA,x 5 1 0 X MOV reg32,imm32
BB,x 5 1 0 X MOV reg32,imm32
BC,x 5 1 0 X MOV reg32,imm32
BD,x S 1 0 X MOV reg32,imm32
BE,x 5 1 0 X MOV reg32,imm32
BF x S 1 0 X MOV reg32,imm32
Co,1 3 1 1 0 Shift r8,imm8§
Cl,1 3 1 1 0 Shift r32,imm8
C6,0 3+ 1 1 1 MOV m8,imm8
C7,0 6+ ] i 1 MOV m32,imm32
DO, 1 2 ] 1 0 Shift r8,1
D11 2 I 1 0 Shift r32,1
D2,1 2 1 1 0 Shift r8,CL
D3,1 2 1 1 0 Shift r32,CL
E2,x 2 1 0 X LOOP
E8,x 5 1 0 X CALL disp32
E9,x 5 1 0 X JMP disp32
EB.x 2 1 0 X JMP disp8
FO,x ) 1 0 X LOCK prefix
F2,x ] ] 0 X REPNE prefix
F3,x 1 1 0 X REP/REPE prefix
F6,1 2 1 1 0 NOT r8
F7,1 2 1 1 0 NOT r32
default X 0 X X all other table entries
Entry ILen Short Modrm  NoLrg Instruction
# v Disp Mnemonic

Logic for calculating the effective Shortl value is described by the following pseudo-RTL, as follows:

LrgDisp = "disp32" + "da32"
=(Opcl[7..6] = 'bl10) +
(Opcl[7..6,2..0] ='b00101) +
((Opcl[7..6,2..0] = 'b00100) (Opc2[2..0] = 'b101))
DA16 = (Opcl[7..6,2..0] = 'b00110)

Logic for ensuring that only NOT r/m is recognized as a short decode for this opcode byte value is
described as follows:

SubOpc2 = (Opcl[5..3] = 'b010)

OnlySubOpc2 = (Opc0[7..0] ='b1111011x)

Logic for ensuring that only CMP m,imm is recognized as a short decode for this opcode byte value and

not for other "op"s is described as follows:

SubOpc7 = (Opcl{5..3]="'bl11)
OnlySubOpc7 = (Opc0[7..0] = 'b10000xxx) ~RegModrm
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Logic for ensuring that only non-rotate shift instructions are recognized as short decodes is described as
follows:

RotShift = (Opc0[7..0] = 'b110x00xx) (Opcl[5] = 'b0)

Logic for determining the Short] value for the first fourteen bvtes is described as follows:

Shortl = ShortlV &
~(Modrm (NoLrgDisp (LrgDisp ~ DA16) + OnlySubOpc7 ~SubOpc7 +
RotShift))
Logic for determining the Shortl value for the fifteen byte is described as follows:

Shortl = ShortlV &
~(Modrm (NoLrgDisp (LrgDisp + DA16) + OnlySubOpc? ~SubOpc7 +
RotShift + (Opc1[7..6.2..0] = 'b00100)) )
Logic for determining the Shortl value for the sixteen byte is described as follows:

Shortl = ShortlV & ~Modrm

Logic for determining the ILen value is described as follows:

Sib = (Opcl1{7..6,2..0] = (~'b1 1xxx 'bxx100) )
Disp8 = (Opc1[7..6] = 'b01)
Alen[2..0] =3'b0 ;
if (Sib) ALen[}=ALen[]+ 1 ;
if (Disp8) ALen[]= ALen[]) +1;
if (LrgDisp) ALen[] = ALen[] + 4
SlLen([2..0] = (Modrm) ? (ILen[2..0] + ALen[2..0]) mod 8
: ILen[2..0]
For the instruction MOV m32,imm32 with (Disp8 Sib). then final length ALen=8 which ultimately results

causes this instruction byte to be treated as a non-short decode opcode despite determining a Short! value of 1.

During each decode cycle. the macroinstruction decoder 230 checks for several exception conditions,
including an instruction breakpoint, a pending nonmaskable interrupt (NMI), a pending interrupt (INTR), a code
segment overrun. an instruction fetch page fault, an instruction length greater than sixteen bytes, a nonlockable
instruction with a LOCK prefix, a floating point not available condition. and a pending floating point error
condition. Some conditions are evaluated only during an otherwise successful decode cycle, other conditions are
evaluated irrespective of any decoding actions during the cycle. When an active exception condition is detected, all
instruction decode cycles including short, long and vectoring decode cycles. are inhibited and an "exception”
vectoring decode is forced in the decode cycle following exception detection. The recognition of an exception
condition is only overridden or inhibited by inactivity of the macroinstruction decoder 230, for example, when
emulation code Op quads are accepted by the scheduler 260, rather than short and long or vector decoder Op quads.
In effect, recognition and handling of any exception conditions are delayed until an ERET Op seq returns control to

the macroinstruction decoder 230.

During the decode cycle that forces exception vectoring. a special emulation code vector address 1s

generated in place of a normal instruction vector address. The vectoring Op quad that is generated by the long and
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vectoring decoders 416 and 418 is undefined. The exception vector address is a fixed value except for low-order
bits for identifying the particular exception condition that is recognized and handled. When multiple exception
conditions are detected simultaneously, the exceptions are ordered in a priority order and the highest priority

exception is recognized.

The instruction breakpoint exception, the highest priority exception condition, is recognized when the
linear decode PC 424 points to the first byte of an instruction including prefixes, the linear decode PC 424 matches
a breakpoint address that is enabled as an instruction breakpoint. and none of the instruction breakpoint mask flags
are clear. One mask flag (RF) specifically masks recognition of instruction breakpoints. Another mask flag

(BNTF) temporarily masks NMI requests and instruction breakpoints.

The pending NMI exception, the penultimate priority exception. is recognized when an NMI request is
pending and none of the NMI mask flags are clear. One mask (NF) specifically masks nonmaskable interrupts.

Another mask flag (BNTF) temporarily masks NMI requests and instruction breakpoints.

The pending INTR exception, the next exception in priority following the pending NMI exception, is

recognized when an INTR request is pending and the interrupt flag (IF) and temporary interrupt flag (ITF) are clear.

The code segment overrun exception, the next exception in priority following the pending INTR exception,

is recognized when the macroinstruction decoder 230 attempts to successfully decode a set of instructions beyond a

current code segment limit.

The instruction fetch page fault exception, having a priority immediately lower than the code segment
overrun exception, is recognized when the macroinstruction decoder 230 requires additional valid instruction bytes
from the instruction buffer 408 before decoding of another instruction or prefix byte is possible and the instruction
translation lookaside buffer (ITB) signals that a page fault has occurred on the current instruction fetch. A faulting
condition of the instruction fetch control circuit 218 is repeatedly retried so that the ITB continually reports a page
fault until the page fault is recognized by the macroinstruction decoder 230 and subsequent exception handling
processing stops and redirects instruction fetching to a new address. The fault indication from the ITB has the same
timing as instructions Joaded from the instruction cache 214 and, therefore, is registered in the subsequent decode
cycle. The ITB does not necessarily signal a fault on consecutive instruction fetch attempts so that the
macroinstruction decoder 230 holds the fault indication until fetching is redirected to a new instruction address.

Upon recognition of a page fault, additional fault information is loaded into a special register field.

The instruction length greater than sixteen bytes exception. which has a priority just below the instruction
fetch page fault exception, is recognized when the macroinstruction decoder 230 attempts to successfully decode an
instruction having a total length including prefix bytes of greater than fifteen bytes. The instruction length greater
than sixteen bytes exception is detected by counting the number of prefix bytes before an actual instruction is
decoded and computing the length of the rest of the instruction when it is decoded. If the sum of the prefix bytes

and the remaining instruction length is greater than sixteen bytes, an error is recognized.
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The nonlockable instruction with a LOCK prefix exception, having a priority below the instruction length
exception, is recognized when the macroinstruction decoder 230 attempts to successfully decode an instruction
having a LOCK prefix, in which the instruction is not included in the lockable instruction subset. The nonlockable
LOCK instruction exception is detected based on decode of the opcode byte and existence of a OF prefix. The
nonlockable LOCK instruction exception only occurs during vectoring decode cycles since the LOCK prefix

inhibits short and long decodes.

The floating point not available exception. having a next to lowest priority, is recognized when the
macroinstruction decoder 230 attempts to successfully decode a WAIT instruction or an ESC instruction that is not a
processor control ESC, and the reporting of a floating point error is pending. Macroinstruction decoder 230 detects
the floating point not available exception based on decoding of an opcode and modr/m byte, in addition to the

existence of a OF prefix.

During each decode cycle, the macroinstruction decoder 230 attempts to perform some form of instruction
decode of one or more instructions. Typically, the macroinstruction decoder 230 succeeds in performing either one
or multiple short decodes, one long decode or an instruction vectoring decode. Occasionally no decode is
successful for three types of conditions including detection of an active exception condition. lack of a sufficient
number of valid bytes in the instruction buffer 408, or the macroinstruction decoder 230 does not advance due to an

external reason.

When an active exception condition is detected all forms of instruction decode are inhibited and, during the
second decode cycle after detection of the exception condition, an exception vectoring decode cycle is forced,

producing an invalid Op quad.

When an insufficient number of valid bytes are available in the instruction buffer 408 either no valid bytes -
are held in the instruction buffer 408 or at least the first opcode is valid and one of the decoders decodes the
instruction but the decoded instruction length requires further valid bytes in the instruction buffer 408, not all of

which are currently available.

When an external reason prevents macroinstruction decoder 230 advancement either the scheduler 260 is
full and unable to accept an additional Op quad during a decode cycle or the scheduler 260 is currently accepting

emulation code Op quads so that the macroinstruction decoder 230 is inactive awaiting a return to decoding.

In the latter two cases, the decode state of the macroinstruction decoder 230 is inhibited from advancing
and the macroinstruction decoder 230 simply retries the same decodes in the next decode cycle. Control of
macroinstruction decoder 230 inhibition is based on the generation of a set of decode valid signals with a signal
corresponding to each of the decoders. For each decoder there are multiple reasons which are combined into
decoder valid signals to determine whether that decoder is able to successfully perform a decode. The decoder valid
signals for all of the decoders are then monitored, in combination, to determine the type of decode cycle to perform.

The type of decode cycle is indicative of the particular decoder to perform the decode. The external considerations
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are also appraised to determine whether the selected decode cycle type is to succeed. Signals indicative of the
selected type of decode cycle select between various signals internal to the macroinstruction decoder 230 generated
by the different decoders, such as alternative next decode PC values, and also are applied to control an Op quad
multiplexer 444 which selects the input Op quad applied to the scheduler 260 from the Op quads generated by the

short decoders, the long decoder 416 and the vectoring decoder 418.

In the case of vectoring decode cycles, the macroinstruction decoder 230 also generates signals that initiate
vectoring to an entry point in either internal emulation code ROM 232 or external emulation code RAM 236. The
macroinstruction decoder 230 then monitors the active duration of emulation code fetching and loading into the

scheduler 260.

The branch target buffer (BTB) 456 is a circuit employed for usage in a two-level branch prediction
algorithm that is disclosed in detail in U.S. Patent No. 5,454,117, entitled CONFIGURABLE BRANCH
PREDICTION FOR A PROCESSOR PERFORMING SPECULATIVE EXECUTION (Puziol et al., issued
September 26, 1995), U.S. Patent No. 5,327,547, entitled TWO-LEVEL BRANCH PREDICTION CACHE (Stiles
etal., issued July 5, 1994), U.S. Patent No. 5,163.140, entitled TWO-LEVEL BRANCH PREDICTION CACHE
(Stiles et al., issued November 10, 1992), and U.S. Patent No. 5, 093,778, entitted INTEGRATED SINGLE
STRUCTURE BRANCH PREDICTION CACHE (Favor et al., issued March 3, 1993). The BTB 456 stores
quadword data from the first successful fetch of the instruction cache 214 following an event such as a cache miss.
The BTB 456 is used to avoid a one cycle delay that would normally occur between the decode of a transfer instruction
and a decode of the target instructions. The BTB 456 includes sixteen entries, each entry having sixteen instruction
bytes with associated predecode bits. The BTB 456 is indexed by the branch address and is accessed during the decode
cycle. Instructions from the BTB 456 are sent to the instruction decoder 220, eliminating the taken-branch penaity, for

a cache hit of the BTB 456 when a branch history table (not shown) predicts a taken branch.

During each decode cycle, the linear decode PC 424 is used in a direct-mapped manner to address the BTB
456. If a hit, which is realized before the end of the decode cycle, occurs with a BTB entry, a PC-relative conditional
transfer control instruction is decoded by a short decoder and the control transfer is predicted taken, then two actions
occur. First, the initial target linear fetch address directed to the instruction cache 214 is changed from the actual target
address to a value which points to an instruction byte immediately following the valid target bytes contained in the BTB
entry. This modified fetch address is contained in the BTB entry and directly accessed from the BTB entry. Second,
the instruction byte and predecode information from the entry is loaded into the instruction buffer 408 at the end of the
decode cycle. If a PC-relative conditional transfer control instruction is decoded by a short decoder and the control
transfer is predicted taken, but a miss occurs, then a new BTB entry is created with the results of the target instruction
fetch. Specifically, simultaneously with the first successful load of target instruction bytes into the instruction buffer
408 from the instruction cache 214, the same information is loaded into a chosen BTB entry, replacing the previous

contents. The target fetch and instruction buffer 408 load otherwise proceed normally.
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Each entry includes a tag part and a data part. The data part holds sixteen extended instruction bytes including
a memory byte and three associated predecode bits. The correspondence of the memory byte is memory-aligned with
the corresponding instruction buffer 408 location. The tag part of a BTB entry holds a 30-bit tag including the 32-bit
linear decode PC 424 associated with the transfer control instruction having a cached target, less bits [4:1], an entry
valid bit and the 30-bit modified initial target linear instruction fetch address. No explicit instruction word valid bits are
used since the distance between the true target address and the modified target address directly implies the number and

designation of valid instruction words within the BTB 456.

The purpose of the BTB 456 is to capture branch targets within small to medium sized loops for the time
period a loop and nested loops are actively executed. In accordance with this purpose, at detection of a slightest
possibility of an inconsistency, the entire BTB is invalidated and flushed. The BTB 456 is invalidated and flushed upon
a miss of the instruction cache 214, any form of invalidation of instruction cache 214, an ITB miss, or any form of ITB
invalidation. Branch targets outside temporal or spatial locality are not effectively cached. Typically, the BTB 456
contains only a small number of entries so that complexity is reduced while the majority of performance benefit of ideal

branch target caching is achieved.

The instruction cache 214 stores information in the form of a list of a plurality of instruction bytes in a
predetermined order. This predetermined order is specified by associating a pointer with each element in the list
that points to the starting point of the next element in the list. The pointers for the instruction cache 214 list are the
predecode bits. One aspect of predecoder 270 operations is the generation of these pointers and storage of the
pointers as predecode bits in the instruction cache 214. Referring to Figure 5, a list 500 is shown having three
instructions 510, 520 and 530 in a sequence. Each instruction 510, 520 and 530 includes respective instruction byte
data 512, 522 and 532 and respective pointers 514, 524 and 534 where the first two pointers 514 and 524 point to
the respective instructions 520 and 530 in the list 500. Typically, the instruction byte data and pointers are stored in
a binary format with the number of instruction bytes in an instruction byte data group being variable. In this
example, the first instruction byte data group 512 includes four instruction bytes, the second instruction byte data
group 522 includes six instruction bytes and the third instruction byte data group 532 includes three instruction
bytes. The first byte of each instruction is an opcode byte and the address of the opcode byte is the address of the

instruction.

For lists in which the opcode byte of successive instructions are separated by a known maximum number
of bytes, the pointers are defined as an offset between the current address and the next address so that the bit width
of the pointers is limited to correspond to the maximum number of bytes. Accordingly, for a maximum number 2™
of bytes that separate any two instructions, the pointer is m bits wide. The size of memory storage is
advantageously reduced. When the address of the next instruction is sought, the pointer value is easily expanded
into a full storage address for usage by an addressable storage device. In some embodiments of the predecoder 270,
various predefined pointer values represent special events, such as the end of the list or instructions that exceed a
specified instruction byte length. Consequently, the maximum number of storage locations from one instruction to

the next is reduced to 2" less the number of special event instances. The list 500 includes pointers 514, 524 and 534
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that are stored as 3-bit values and the pointer 534 of the last instruction 530 is set to a code that indicates the end of

the list 500.

A pointer that points to a next instruction is equal to the m least significant bits of the address of the next
instruction. Thus, pointers 514 and 524 are equal to the m least significant bits of the addresses of instructions 520

and 530, respectively. Pointer 534 of the third instruction 530 is set to a code, for example zero, that indicates the

end of the list.

Referring to Figure 6, a flow chart shows a method for generating a next instruction address from a
pointer. In a first step 610, the associated pointer and starting address of an instruction are read. The value of the
pointer is compared to the value of the m least significant bits of the instruction starting address in logical step 612.
If the value of the pointer is greater than the value of the m least significant bits of the instruction starting address,
the next instruction is located within the same page as the current instruction. For an instruction buffer memory 408
having 2" memory locations, the remaining n-m most significant bits of the current instruction is located. In step
616, the storage location of the next instruction is determined by appending the n-m most significant bits of the
current instruction starting address to the pointer, the pointer bits being used as the m least significant bits. If the
pointer value is less than the value of the m least significant bits of the address of the current instruction. the next
instruction is located on the page following the current instruction. The n-m most significant bits of the storage
address of the current instruction is adjusted, for example by incrementing the bits, in step 614 prior to being

appended to the pointer in step 616.

Referring to Figure 7, a memory 700 is shown to illustrate operation of the predecoder 270 for handling
the instruction cache 214 as a list. In this example. the memory 700 has a storage capacity of 32 instruction bytes
702 which is extended by three bits of pointer information 704 per instruction byte. In various embodiments, the
pointer bits may be stored with the instruction bytes or contained in a separate memory. Also in this example, three
instructions 710, 720 and 730 having instruction sizes ranging from one to seven instruction bytes are stored in
memory 700. The first byte of each of the instructions 710, 720 and 730 is an opcode instruction byte 712, 722 and
732, respectively. The opcode instruction byte 712 is stored in memory location 0000 and the opcode instruction
byte 722 is stored in memory location 00100 so that a pointer 714 from the first instruction 710 to the second
instruction 720 is 100, which is equal to the three least significant bits of the address of the second instruction 720.
The opcode instruction byte 732 is stored in memory location 01011 so that a pointer 724 associated with the

second instruction 720 is 011.

To traverse the memory 700, the pointer 714 (100) associated with the first instruction 710 in memory
location 00000 is read and compared to the three least significant bits of the first instruction 720 address (000). The
pointer 714 (100) is greater than the first instruction 720 address (000) so that the instruction address of the second
instruction 720 is determined by appending the pointer 714 (100), which represents the least significant bits of the
address of the second instruction 720, to the two most significant bits (00) of the address of the first instruction 710

to produce the address of the second instruction 720 at memory location 00100. The location of the third instruction
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730 is identified by reading the pointer 724 and comparing the pointer value to the three least significant bits (100)
of the address of the opcode instruction byte 722. The pointer 724 (011) is smaller than the three least significant
bits of the address of the opcode instruction byte 722 (100) so that the third instruction 730 is located on the
subsequent page (01) after page (00) of the second instruction 720. The remaining most significant bits (00) of the
address of the second instruction 720 are incremented by one and appended to the pointer 724 to generate the
address of the third instruction 730 (01011). The third instruction 730 is the last instruction in the list so that the
three least significant bits of the third instruction address are stored in the third pointer 734 (011), indicating the end

of the list.

One special event that is represented by a pointer is the end of a list. The pointer indicates the end of a list
when the pointer is equal to the least significant bits of the current instruction. Another special event is a number of
instruction bytes within an instruction that exceeds the maximum allowed instruction length. The pointer aiso

indicates an iliegal instruction length when the pointer is equal to the least significant bits of the current instruction.

In this manner, only an occasional increment of a few bits furnishes memory space conservation of a
typical offset list method without performing a time-consuming addition operation. This technique advantageously

allows for fast traversal of a list while reducing the space consumed to store each pointer.

Instruction codes are composed of bytes of binary ones and zeros. Nearly every combination of bits are
used as opcodes, the first instruction bytes, so that nearly any opcode value could appear to be the first instruction
byte. This concept is illustrated by the pictorial memory 800 representation shown in Figure 8, which shows three
instructions 810, 830 and 850. The first instruction 810 is a four-byte instruction including instruction bytes 812,
814, 816 and 818. In the four-byte instruction 810, any of the instruction bytes 812, 814, 816 and 818 could be the
actual first instruction byte. To decode the instruction 810, a rotator first ascertains which instruction byte is the
first. To ascertain which byte of instruction 810 is first, each of instruction bytes 812, 814, 816 and 818 is assumed
to be the starting byte of the instruction. For every instruction byte 812, 814, 816 and 818, the byte plus, for some
instructions, subsequent instruction bytes identify bytes that could possibly be an instruction. Once an instruction
byte is identified as an actual opcode that is the beginning byte of an instruction, subsequent instruction locations
are readily identified from the information associated with the first actual byte 812 and information with the first
bytes of subsequent instructions 832 and 852 since the predecode bits indicate the number of instruction bytes in

each instruction.

For example, if instructions starting with byte 812 (01110100) were four bytes long and instructions
starting with byte 814 (10110100) were five bytes long, byte 812 could represent the start of an instruction with a
four-byte length and byte 814 could represent the start of an instruction with a five-byte length. While only one of
these bytes could represent the start of an instruction, prior to the actual knowledge of which byte is the starting
byte, both bytes could be assumed to be starting bytes for the purpose of associating the location of the start of the
next instruction with each byte 812 and 814. Thus, pointer information 822 and 824 furnish the location of the next

instruction byte if either respective byte 812 and 814 is the first byte of an instruction. When byte 812 is identified
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as the actual starting byte of the instruction 810, the location of the following instruction 830 is immediately
available using the pointer 822. Pointer 824 is ignored because byte 814 is not the first byte of an instruction. The
pointers associated with bytes that are not actual first bytes are always ignored, resulting in wasted analysis.
However, this wasted analysis is greatly overshadowed by the benefit of rapid knowledge of the start of all actual

instructions and simultaneous decoding of multiple instructions.

Certain instructions, such as complex instructions or instructions that execute over many cycles, are not
executed simultaneously with other instructions even if decoded simultaneously. The analysis to determine the first
byte of an instruction is simplified if no attempt is made to decode these complex instructions in parallel.
Accordingly, some instructions that generally execute rapidly are classified as “short decodable” instructions. For
short decodable instructions, performance is improved by decoding a plurality of instructions in paraliel. Other
instructions that are not short decodable take longer to execute so that no benefit is obtained by rapid decoding.
Accordingly. the location of a subsequent instruction is only determined in advance if the instruction is short

decodable.

Referring to the flow chart shown in Figure 9, a predecoding method 900 of preparing computer
instructions for rapid decoding is shown. In step 910, an instruction byte is selected and assumed to be the starting
byte of an instruction in step 912. The instruction byte is read and a determination is made whether the instruction
byte belongs to the set of short decodable instructions in step 914. For some instruction bytes, subsequent adjacent
instruction bytes are also read to determine short decodable status. If the instruction byte is not within the set of
short decodable instructions, the instruction is indicated to be of a “non-short-decodable” class in step 916.
Although this indication may be made in various ways in different embodiments, in one embodiment an instruction
is identified to be non-short-decodable by specifying an instruction length of zero. Typically no valid instructions
have an instruction length of zero. If the instruction is a short decodable instruction, step 918 determines whether
the instruction length of the instruction is ascertainable. Step 918 typically prohibits predecoding of instructions
that do not contain all information to allow a determination of instruction length. If the instruction length is not
ascertainable, the instruction is indicated to be of a “non-short-decodable” class in step 916. Otherwise, the
instruction length is ascertainable and determined in step 920 in accordance with the instruction set definition of the
processor. The location of the next instruction is then determined in step 922 using the memory location of the first
instruction and the instruction length furnished by the pointer. The location of the following instruction, referenced
to the first byte, is stored in step 924. These steps are typically repeated in accordance with looping step 926, which
determines whether additional bytes are in the memory, and the select next byte step 928. When the final

instruction byte in the memory is analyzed, the method terminates in step 930.

To determine the length of an instruction in step 922, information that is not in the opcode instruction byte
but which is instead contained in subsequent bytes is used for some instructions. In some instruction sets, including
the x86 instruction set, certain instructions cause the interpretation of following instructions to change. For
example, in the x86 instruction set, instruction lengths sometimes vary depending upon the D-bit. For some

instructions, the predecode instruction length is not affected by the data and address size. For other instructions, the
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D-bit sets a 2X instruction length. For still other instructions, the D-bit designates a special instruction length that is
not 2X. Thus a D-bit interpretation change can result in a change in instruction length. Tracking the interpretation
of an instruction prior to actual execution of the instruction is often difficult or impossible. In some cases, some
interpretations of the instruction are short decodable interpretations and other interpretations are non-short
decodable. In these cases, the instruction is assumed to be short decodable. The method, of course, performs
correctly when the assumption is correct and the location of the following instruction is correct. If the assumption is
incorrect, the location of the following instruction is incorrect, but irrelevant, because the location information js
only used for short decodable instructions. At execution time, the selection of a different processor operating mode
causes no search for short decodable instructions to be performed so that the incorrect assumption does not affect

performance.

Figure 10 is a schematic diagram showing the operation of one embodiment of predecode logic 270 for
transferring instructions from the instruction cache 214 to the macroinstruction decoder 230. The cache memory
214 holds a group of instruction bytes 990. One instruction length computation module 996 per cache memory
location is connected to the cache memory 214 to read instruction bytes contained in the cache memory 214. In
other embodiments, fewer instruction length computation modules 996 are used. However, one module 996 per
instruction byte furnishes the fastest computation. The output signal of the instruction length computation module
996 indicates a binary length of an instruction. If the instruction is not predecodable, either because the instruction
is not short decodable or inadequate information is contained in the cache memory 214 to determine an instruction
length, the instruction length computation module 996 indicates this status, for example, by setting the instruction

length to zero.

A next instruction computation module 998 adds the output signal of the instruction length computation
module 996 to a location code of the corresponding byte in the cache memory 214 to produce the location code of
the instruction following the instruction containing the corresponding byte. This location code is stored in the cache
memory 214 to be read when the macroinstruction decoder 230 decodes the instruction bytes 990 stored in the
cache memory 214. This predecode information is determined and stored soon after the instruction byte is placed in
the cache memory 214. This computation is performed regardless of whether the instruction byte is a first
instruction byte, or opcode. Only the predecode information for an actual first instruction is ultimately used for
decoding instructions. However, the operation of computing predecode information for all instruction bytes

furnishes the location of a true next instruction most rapidly.

Referring to Figure 11, a schematic circuit diagram shows an embodiment of a next instruction
computation module 998 for connecting output signals of two instruction length computation modules 996 that are
connected to cache memory locations 0000 and 0001. For each input signal 1110 and 1112, the next instruction
computation module 998 adds the input signals 1110 and 1112 to the memory location code corresponding to the
input signals. The input signal 1110 connects to an instruction length computation module 996 that computes the
instruction length for the byte or bytes starting at cache memory location 0000. The next instruction computation

module 998 adds this input signal to binary 0000 to produce an output signal 1114. For cache memory location
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0000, this sum is equal to the input signal. The next instruction location computation module 998 transfers the input

signal 1110 to the output signal 1114 via a bus 1126.

Input signal 1112 are connected to receive the output signal of the instruction length computation module
996 for the byte or bytes beginning at cache memory location 0001. Output signals 1116 are equal to a binary
representation of the input signals 1112 added to 0001. Inverters 1120, AND gates 1122 and OR gates 1124 furnish
this next instruction computation function. Output signals 1114 and 1116 are typically connected to the

corresponding cache memory locations which hold the location of the next instruction for future potential decoding.

Referring to Figure 12, a schematic pictorial illustration of an arrangement of bits in the cache memory
214 is shown. Instruction bits 1210 are stored adjacent to a predecode code 1212 which indicates the next location.
Eight instruction bits 1210 and five predecode bits 1212 including three next instruction location code bits 1212, a
D-bit 1214 and a HASMODRM bit 1215 are illustrated. In other embodiments, different numbers of bits are used to

encode instruction data and predecode information.

D1 T

A wide variety of computer system configurations are envisioned, each embodying an instruction
predecode and multiple instruction decode in accordance with the present invention. For example. such a computer
system (e.g., computer system 1000) includes a processor 100 providing instruction predecode and multiple
instruction decode in accordance with the present invention, a memory subsystem (e.g., RAM 1020), a display
adapter 1010, disk controller/adapter 1030, various input/output interfaces and adapters (e.g., parallel interface
1009, serial interface 1008, LAN adapter 1007, etc.), and corresponding external devices (e.g., display device 1001,
printer 1002, modem 1003, keyboard 1006, and data storage). Data storage includes such devices as hard disk
1032, floppy disk 1031, a tape unit, a CD-ROM, a jukebox, a redundant array of inexpensive disks (RAID), a flash

memory, etc.

While the invention has been described with reference to various embodiments, it will be understood that
these embodiments are illustrative and that the scope of the invention is not limited to them. Many variations,
modificgtions, additions, and improvements of the embodiments described are possible. Additionally, structures
and functionality presented as hardware in the exemplary embodiment may be implemented as software, firmware,
or microcode in alternative embodiments. For example, the description depicts a macroinstruction decoder having
short decode pathways including three rotators 430, 432 and 434, three instruction registers 450, 452 and 454 and
three short decoders SDec0 410, SDecl 412 and SDec2 414. In other embodiments, different numbers of short
decoder pathways are employed. A decoder that employs two decoding pathways is highly suitable. These and
other variations, modifications, additions, and improvements may fall within the scope of the invention as defined in

the claims which follow.
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I. An apparatus for accessing a plurality of variable-length instructions from an instruction source and
preparing the instructions for execution, the variable length instructions including one or more instruction units, an
instruction unit being a multiple-bit instruction portion, the apparatus comprising:

an instruction cache coupled to the instruction source and having a plurality of instruction storage elements
for storing instruction units and having a plurality of code storage elements for storing code units,
a code unit being a multiple-bit code portion, the instruction storage elements being associated
with corresponding code storage elements and storing instruction units being associated with
corresponding code units;

a predecoder coupled to the instruction cache for reading instruction units, assigning a code indicative of
instruction length based on the read instruction units assuming each instruction unit is a first
instruction of a variable-length instruction;

a decoder coupled to the instruction cache to receive a plurality of instruction units and a plurality of
corresponding code units, the decoder including a plurality of first instruction type decoders and a
second instruction type decoder, the decoder for decoding a plurality of first instruction type
instructions in parallel using the plurality of first instruction type decoders when a first instruction
type instruction unit and a corresponding code unit is received from the instruction cache and

otherwise for decoding an instruction using the second instruction type decoder.

2. An apparatus according to Claim 1 wherein:
the instruction unit is an eight-bit byte; and

the code unit is a plurality of bits designating a next instruction pointer and an instruction type.

3. An apparatus according to Claim 1 wherein the decoder decodes a plurality of first instruction type
instructions in parallel using the plurality of first instruction type decoders when a plurality of consecutive first

instruction type instruction units and corresponding plurality of code units are received from the instruction cache.

4. An apparatus according to Claim 1 further comprising:
a plurality of rotators coupled between respective first instruction type decoders and the instruction cache,

the plurality of rotators for aligning the first instruction type instructions for decoding.

5. An apparatus according to Claim 1 further comprising:

a plurality of instruction registers coupled between respective first instruction type decoders and the
instruction cache, the plurality of instruction registers for temporarily holding the first instruction
type instruction units and corresponding plurality of code units so that a decode timing cycle is

reduced.
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6. An apparatus according to Claim 1 wherein the predecoder includes a circuit for generating an address
of a next instruction in a list of a plurality of instructions, the instruction cache for storing the list of instructions at
addressed locations, the circuit including:

a signal generator having a plurality of output terminals coupled to the instruction cache and having an

input terminal coupled to receive a current address pointer wherein, in response to receipt of the
current instruction pointer, the signal generator activates one of the plurality of output terminals

coupled to the next instruction at an addressed location.

7. An apparatus according to Claim 1 wherein the predecoder includes a circuit for generating a next
address of a next instruction after a current instruction in an increasing sequential list of a plurality of instructions in
the instruction cache, the instruction cache being addressable and storing the list of instructions, the current
instruction including a current instruction pointer and a current instruction address having a first portion that is a
number of most significant bits of the current instruction address and having a second portion that is a number of
least significant bits of the current instruction address. the circuit for generating a next address including:

a next instruction address computation unit coupled to the instruction cache and receiving from the

instruction cache the current instruction pointer and the current instruction address, wherein:

in response to a value of the current instruction address pointer being greater than a value of the second

portion of the current instruction address, the next instruction address computation unit generates
the next instruction address having a first portion equal to the first portion of the current
instruction address and having a second portion equal to the current instruction address pointer;
and

responsive to the value of the current instruction address pointer being less than the value of the second

portion of the current instruction address, the next instruction address computation unit generates
the next instruction address having a first portion of the current instruction address and having a

second portion equal to the current instruction pointer.

8. An apparatus according to Claim 1 wherein the predecoder includes a circuit for generating a next
address of a next instruction after a current instruction in a decreasing sequential list of a plurality of instructions in
the instruction cache, the instruction cache being addressable for storing the list of instructions, the current
instruction including a current instruction pointer and a current instruction address having a first portion that is a
number of most significant bits of the current instruction address and having a second portion that is a number of
least significant bits of the current instruction address, the circuit including:

a next instruction address computation unit coupled to the instruction cache and receiving the current

instruction pointer and the current instruction address from the instruction cache, wherein:
responsive to a value of the current instruction pointer being less than a value of the second portion of the

current instruction address, the next instruction address computation unit generates the next
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instruction address having a first portion equal to the first portion of the current instruction
address and having a second portion equal to the current instruction pointer; and
responsive to the value of the current instruction pointer being greater than the value of the second portion
of the current instruction address, the next instruction address computation unit generates the next
instruction address having a first portion equal to an adjusted value of the first portion of the

current instruction address and having a second portion equal to the current instruction pointer.

9. An apparatus for receiving a plurality of variable-length instructions from an instruction source and
preparing the variable-length instructions for execution, the variable-length instructions including a variable number
of instruction units, an instruction unit being a multiple-bit instruction portion, the apparatus comprising:

a decoder including a plurality of first instruction type decoders for decoding a plurality of instructions in

parallel and including a second instruction type decoder:

a memory coupled to the instruction source to receive a plurality of instruction units in parallel and coupled

to the decoder to supply a plurality of instruction units mutually associated into instructions, the
memory including a plurality of instruction storage units for storing instruction units and a
plurality of respective instruction length storage units associated to respective instruction storage
units; and

a predecoder coupled to the memory and coupled to the decoder for reading one or more instruction units,

determining an instruction length associated to a first instruction unit assuming that the instruction
unit is a first unit of an instruction, storing the instruction length associated to the first instruction
unit, associating instruction units into instructions, determining whether a plurality of instruction
units are decodable by the first instruction type decoder, and applying a plurality of instruction
units to the decoder, the instruction units being applied to the first instruction type decoders for a

plurality of instructions decodable by the first instruction type decoders.

10. An apparatus according to Claim 9 wherein:

the instruction unit is an eight-bit byte.

11. A method of receiving a plurality of variable-length instructions from an instruction source and
preparing the variable-length instructions for execution, the variable-length instructions including a variable number
of instruction units, an instruction unit being a multiple-bit instruction portion, the method comprising the steps of:

receiving a plurality of instruction units in parallel;

storing the plurality of instruction units;

reading one or more instruction units;

determining an instruction length associated to a first instruction unit assuming that the instruction unit is a

first unit of an instruction;

storing the instruction length associated to the first instruction unit;
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associating stored instruction units into instructions;
determining whether a plurality of instruction units are decodable by a plurality of first instruction type
decoders for decoding a plurality of instructions in parallel or are decodable by a second
instruction type decoder serially; and
applying a plurality of instruction units to the first instruction type decoders and the second instruction type
decoder, the instruction units being applied to the first instruction type decoders for a plurality of

instructions decodable by the first instruction type decoders.

12. An apparatus according to Claim 11 wherein:

the instruction unit is an eight-bit byte.

13. An apparatus for receiving a plurality of variable-length instructions from an instruction source and
preparing the variable-length instructions for execution, the variable-length instructions including a variable number
of instruction units, the apparatus comprising:

a decoder including a plurality of first instruction type decoders for decoding a plurality of instructions in

parallel and including a second instruction type decoder;

a memory coupled to the instruction source to receive a plurality of instruction units in parallel and coupled
to the decoder to supply a plurality of instruction units mutually associated into instructions, the
memory including a plurality of instruction storage units for storing instruction units; and

a predecoder coupled to the memory and coupled to the decoder for reading one or more instruction units,
determining an instruction length associated to a first instruction unit assuming that the instruction
unit is a first unit of an instruction, associating instruction units into instructions, determining
whether a plurality of instruction units are decodable by the first instruction type decoder, and
applying a plurality of instruction units to the decoder. the instruction units being applied to the
first instruction type decoders for a plurality of instructions decodable by the first instruction type

decoders.

14. An apparatus for receiving a plurality of instruction units from an instruction source and furnishing
one or more instructions to an instruction decoder, a variable number of instruction units being associated into a
variable length instruction, the apparatus comprising:
an instruction length encoder for accessing a plurality of instruction units from the instruction source in
parallel and assigning an instruction length to a designated instruction unit, the instruction length
being indicative of the number of instruction units for forming an instruction characterized by the
designated instruction unit; and
an instruction type seiector coupled to the instruction length encoder for determining an instruction type of
a plurality of instructions, a first type of instruction being a type in which a plurality of

instructions are decodable in parallel.
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15. An apparatus for preparing processor instructions received from an instruction source for parallel
accessing comprising:

an addressable storage having an input terminal coupled to the instruction source and having an output
terminal, the addressable storage for storing:

a plurality of instruction units, one or more instruction units combining to form one processor instruction:
and

a plurality of location codes, the location codes respectively corresponding to the plurality of instruction
units, ones of the location codes for indicating a location of a subsequent processor instruction
following the ones of location codes; and

one or more next instruction location computation modules, ones of the next instruction location modules
having one or more input terminals and one or more output terminals, the output terminal being
coupled to the addressable storage, one or more input terminals for accepting an instruction
length, the next instruction location computation module for generating and presenting at the one
or more output terminals a code representing a sum of the instruction length coupled to the input
terminal and an addressable storage address corresponding to the instruction unit representing a

portion of a processor instruction having a length presented at the input terminal.

16. An apparatus according to Claim 15 wherein the location of the subsequent processor instruction
includes an addressable storage location of an instruction unit which immediately follows a processor instruction
including the instruction unit representing a portion of a processor instruction having a length presented at the input

terminal of the next instruction location computation module.
17. An apparatus according to Claim 16 wherein:
ones of the plurality of instruction units are stored in a different location in the addressable storage; and
the output terminal of ones of the next instruction computation modules are coupled to a different location

in the addressable storage module.

18. An apparatus according to Claim 17 wherein ones of the locations in the addressable storage are

coupled to a different next instruction location computation module.

19. An apparatus according to Claim 18 wherein the next instruction computation module includes a

plurality of logic gates.

20. An apparatus according to Claim 15 wherein an instruction unit is a byte.

21. A computer system comprising;
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a memory subsystem which stores data and instructions; and

a processor operably coupled to access the data and instructions stored in the memory subsystem, wherein
the processor includes an apparatus for accessing a plurality of variable-length instructions from
an instruction source and preparing the instructions for execution, the variable length instructions
including one or more instruction units, an instruction unit being a multiple-bit instruction
portion, the apparatus including:

an instruction cache coupled to the instruction source and having a plurality of instruction storage
elements for storing instruction units and having a plurality of code storage elements for
storing code units, a code unit being a multiple-bit code portion, the instruction storage
elements being associated with corresponding code storage elements and storing
instruction units being associated with corresponding code units;

a predecoder coupled to the instruction cache for reading instruction units, assigning a code
indicative of instruction length based on the read instruction units assuming each
instruction unit is a first instruction of a variable-length instruction;

a decoder coupled to the instruction cache to receive a plurality of instruction units and a plurality
of corresponding code units, the decoder including a plurality of first instruction type
decoders and a second instruction type decoder, the decoder for decoding a plurality of
first instruction type instructions in parallel using the plurality of first instruction type
decoders when a first instruction type instruction unit and a corresponding code unit is
received from the instruction cache and otherwise for decoding an instruction using the

second instruction type decoder.

22. In a computer system having a memory subsystem which stores data and instructions; and a processor
operably coupled to access the data and instructions stored in the memory subsystem, the processor including an
apparatus for accessing a plurality of variable-length instructions from an instruction source and preparing the
instructions for execution, the variable length instructions including one or more instruction units, an instruction
unit being a multiple-bit instruction portion, the apparatus characterized as comprising:

an instruction cache coupled to the instruction source and having a plurality of instruction storage elements
for storing instruction units and having a plurality of code storage elements for storing code units,
a code unit being a multiple-bit code portion. the instruction storage elements being associated
with corresponding code storage elements and storing instruction units being associated with
corresponding code units;

a predecoder coupled to the instruction cache for reading instruction units, assigning a code indicative of
instruction length based on the read instruction units assuming each instruction unit is a first
instruction of a variable-length instruction;

a decoder coupled to the instruction cache to receive a plurality of instruction units and a plurality of
corresponding code units, the decoder including a plurality of first instruction type decoders and a

second instruction type decoder. the decoder for decoding a plurality of first instruction type
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instructions in parallel using the plurality of first instruction type decoders when a first instruction
type instruction unit and a corresponding code unit is received from the instruction cache and

otherwise for decoding an instruction using the second instruction type decoder.
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