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PREDICTION OF IMMUNOGENICITY

The project leading to this application has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement No 964998.
FIELD OF THE DISCLOSURE

The present disclosure relates to methods for predicting whether an antigen is likely to be
immunogenic. The present disclosure also relates to methods and compositions for the treatment

of diseases which make use of such methods.
BACKGROUND TO THE DISCLOSURE

T lymphocytes (T cells) are essential mediators of immune response to pathogens as well as
malignant cells. Activation of T cell requires recognition of the antigens in the context of Major
Histocompatibility Complex (MHC) molecules. Thus, successful recognition of antigens by the
immune system requires presentation of the antigens by Major Histocompatibility Complex (MHC)
molecules, and specific binding of the peptides bound to MHC molecules by a T-cell receptor
(TCR).

Tremendous progress has been made in the prediction of peptide-MHC binding and presentation,
with algorithms such as NetMHCpan (Reynisson et al., 2020) and MHCflurry (O’Donnell et al.,
2020) achieving high performance predictions of peptide-MHC binding from sequence alone,
thanks to increasing amounts of data available from in vitro binding assays as well as
immunopeptidomics (which detect antigen presentation rather than just binding). However, when
using these tools to identify peptides that may be immunogenic, very high error rates are still
observed, because these predictions do not capture the TCR recognition part that is essential to

immunogenicity.

In recent years, a number of methods have been proposed to attempt to predict immunogenicity,
taking into account both the MHC and the TCR part of the immunogenicity process (see e.g.
PMTnet (Lu et al. 2021) and Imrex (Moris et al., 2020)).

SUMMARY OF THE INVENTION

The present inventors have identified that existing methods for predicting immunogenicity of a
peptide, while seemingly achieving good accuracies on specific datasets, suffer from a lack of
generalisability. Thus, the inventors recognised that there was a need for improved methods for
predicting whether an antigen is likely to be immunogenic. The inventors postulated that such
methods would benefit from taking into account both the TCR and MHC molecule sequence when
considering a particular peptide, and further that the generalisability problem was at least in part
due to biases and a lack of diversity in the negative data used to train the models. Thus, the present
inventors have developed a new method for predicting whether an antigen is likely to be

immunogenic that addresses one or more of the problems of prior art approaches. The method
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uses a machine learning approach to predictimmunogenicity from the sequence of a peptide, MHC
molecule and TCR, where the machine learning model has been trained using three different types
of native training data that each capture a different aspect of the antigen-recognition process. The
present inventors demonstrated that this approach outperformed all prior art approaches at
predicting immunogenicity of peptides. The effect was particularly stringent when the methods
were evaluated using test data specifically filtered to exclude data present in the training data of

the models (i.e. specifically designed to test the generalisability of the methods).

Thus, according to a first aspect, there is provided a method of predicting whether an antigen is
likely to be immunogenic, the method comprising: obtaining, by a processor, a triplet of sequences
comprising: an amino acid sequence of a peptide encoding the antigen, an amino acid sequence
of a candidate MHC molecule or a part thereof, and an amino acid sequence of a candidate T cell
receptor (TCR) beta chain and/or alpha chain or a part thereof; and providing, by said processor,
the triplet of sequences or information derived therefrom as inputs to a machine learning model
trained to predict a score representing the probability that the antigen is immunogenic in the context
of the candidate MHC molecule and the candidate TCR. The machine learning model is a machine
learning model that has been trained using training data comprising amino acid sequences or
information derived therefrom for negative peptide-MHC-TCR triplets comprising: a. a first set of
one or more peptide-MHC-TCR triplets each comprising: (i) a TCR-MHC pair comprising an MHC
molecule and a TCR chain or chains known to bind the MHC molecule (positive TCR-MHC pair),
and (ii) a peptide not known to interact with the TCR-MHC pair; b. a second set of one or more
peptide-MHC-TCR triplets each comprising: (i) a peptide-MHC pair comprising an MHC molecule
and a peptide known to bind the MHC molecule (positive peptide-MHC pair), and (ii) a TCR chain
or chains not known to interact with the peptide-MHC pair, wherein the peptide-MHC pair has been
previously found to interact with a TCR (immunogenic positive peptide-MHC pair); and c. a third
set of one or more peptide-MHC-TCR triplets each comprising: (i) a peptide-MHC pair comprising
an MHC molecule and a peptide known to bind the MHC molecule (positive peptide-MHC pair),
and a TCR chain or chains not known to interact with the peptide-MHC pair, wherein the peptide-
MHC pair has been previously found to not be immunogenic (non-immunogenic positive peptide-
MHC pair).

The use of a negative training set that captures different aspects of the biology of immunogenicity
results in a model that has improved performance in predicting immunogenicity, particularly when
confronted with molecules (especially peptides) that are not part of the data set on which it has
been trained (improved generalisability). In this context, the present inventors postulated that a
training data set that captures the following aspects would be particularly beneficial: (i) peptides
and MHC molecules can effectively bind without the resulting complex being immunogenic, (ii) the
same TCR and MHC molecules can interact to trigger an immune reaction in the presence of some

peptides but not others, and (iii) peptides and MHC molecules can effectively bind to result in a
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complex that has the potential to be immunogenic given the right TCR. Thus, the method results
in a more robust prediction. Robustness / generalisability is an extremely important aspect of the
performance of a model for predicting immunogenicity. Indeed, in real clinical situations the
diversity of peptides and TCR sequences is extremely high, and a model that performs well on a
restricted (and biased) test set may in fact perform poorly on “real” data. This is problematic not
only because it results in bad predictions, but also because without a proper assessment of the
model with data outside of its training distribution, one may not be aware that the model’s
predictions are unreliable. By contrast, the inventors have described herein models that are
designed to generalise well, and have rigorously benchmarked these against other models to verify
that this is the case. Even at comparative performance on the respective sets described in the
original publications for comparative models, the data shown herein demonstrates that in a realistic
rigorous benchmarking setting the performance of immunogenicity prediction models in the prior
artis in fact lower than expected, and lower than the models of the present disclosure. The method

of the present aspect may have one or more of the following features.

The terms “peptide” and “antigen” may be used interchangeably to refer to the peptide that
comprises the sequence of the antigen. A peptide may be considered likely to be immunogenic if
the probability is above a predetermined threshold. The predetermined threshold may be identified
using test data comprising triplets with known immunogenicity status, for example by selecting a
probability threshold that results in a desired sensitivity and/or specificity of classification of triplets

as immunogenic vs non-immunogenic.

The first, second and/or third sets of negative peptide-MHC-TCR triplets may have been derived
from amino acid sequences or information derived therefrom for a plurality of positive peptide-
MHC-TCR triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that
are known to interact with each other to induce an immune response. The positive peptide-MHC-
TCR triplets may also be comprised in the training data used to train the machine learning model.
Thus, the machine learning model may have been trained using training data further comprising
amino acid sequences or information derived therefrom for a plurality of positive peptide-MHC-
TCR triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that are
known to interact with each other to induce an immune response. The positive peptide-MHC-TCR
triplets used to derive the first, second and/or third sets of negative peptide-MHC-TCR triplets may
be a subset (including a complete subset) of the positive peptide-MHC-TCR triplets used to train
the machine learning model. In other words, the training data may comprise positive triplets and

negative triplets derived from the positive triplets.

The TCR chain or chains in the second set may have been selected from a database or reference
dataset. The TCR chain or chains in the second set may have been selected from a source other
than the plurality of peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule and

a TCR chain or chains that are known to interact with each other to induce an immune response
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(positive peptide-MHC-TCR triplets). The TCR chain or chains and the peptide-MHC pairs in the
second set may not form a triplet that is present in the plurality of peptide-MHC-TCR triplets each
comprising a peptide, an MHC molecule and a TCR chain or chains that are known to interact with
each other to induce an immune response (positive peptide-MHC-TCR triplets). The peptide-MHC
pairs in the second set may have been selected from the plurality of peptide-MHC-TCR triplets
each comprising a peptide, an MHC molecule and a TCR chain or chains that are known to interact
with each other to induce an immune response (positive peptide-MHC-TCR triplets). The second
set of negative triplets may be generated using TCR sequences from a database or other data
source, rather than by shuffling the TCR chains from the positive data. This increases the diversity
of the negative set, widens the distribution of TCRs that the model is trained to recognise, and
reduces the risk of false negative labelling where TCRs (or at least TCRs with specific CDR3
sequences) are able to recognise multiple peptide-MHC complexes. This in turn improves the
performance of the trained model on any test data set, but particularly on test datasets that do not

comprise subsets of the training data.

The peptides in the first set may have been selected from a database or reference dataset. The
peptides in the first set may have been randomly selected from a reference proteome. The peptides
in the first set may have been selected from a source other than the plurality of peptide-MHC-TCR
triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that are known
to interact with each other to induce an immune response (positive peptide-MHC-TCR triplets).
The peptides and the TCR-MHC pairs in the first set may not form a triplet that is present in the
plurality of peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule and a TCR
chain or chains that are known to interact with each other to induce an immune response (positive
peptide-MHC-TCR triplets). The TCR-MHC pairs in the first set may have been selected from the
plurality of peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule and a TCR
chain or chains that are known to interact with each other to induce an immune response (positive
peptide-MHC-TCR triplets). The first set of negative triplets may have been generated using
peptide sequences from a database or other data source, rather than by shuffling the peptides
from the positive data. This increases the diversity of the negative set, and improves the
performance of the trained model on any test data set, particularly on test datasets that do not
comprise peptides similar to those in the training data. In other words, this results in a model with

higher and/or more robust performance.

The TCR chain or chains in the third set may have been selected from the plurality of peptide-
MHC-TCR triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that
are known to interact with each other to induce an immune response (positive peptide-MHC-TCR
triplets). The third set of negative triplets may have been generated using peptide-MHC
combinations which have been found to be non-reactive in one or more immunogenicity

experiments. The third set of negative triplets may have been generated using TCR sequences
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sampled from the positive triplets. This captures the fact that peptide-MHC pairs that do form stable
complexes may be non-reactive, even when paired with TCR sequences that are known to be
reactive. This helps the model to learn differences between peptide-MHC binding and

immunogenicity in the context of TCRs that are otherwise known to bind peptide-MHC complexes.

The training data may comprise a ratio of negative triplets to positive triplets of at least 100:1, at
least 150:1, between 100:1 and 300:1, preferably between 150:1 and 250:1, or around 200:1. The
use of higher negative to positive ratios in the training data increases the diversity in the dataset
and provides a more realistic classification situation. Indeed, when assessing the immunogenicity
of a peptide, for example in a clinical situation, a large number of candidate TCRs are likely to be
considered, whether from a database or reference dataset or from TCR repertoire sequencing from
a patient. Thus, at each training iteration, the model may take as input a triplet sampled from the
training data, which may be a negative triplet or a positive triplet, but where negative triplets are
more likely to be sampled than positive triplets (e.g. 100, 150 or 200 times more likely to be
sampled). A loss function may be evaluated based on the prediction for the triplet, and this may

be used to update the parameters of the model as known in the art.

The training data may comprise similar proportions of negative triplets from the first, second and
third sets. For example, the training data may comprise approximately as many negative triplets in
the first, second and third sets. For example, approximately 33% of the total number of negative
triplets may belong to the first set, approximately 33% may belong to the second set, and
approximately 33% may belong to the third set. Variations around these proportions are envisaged.
For example, each of the first, second and third sets of negative triplets may respectively represent
between 10 and 40% of the total number of negative triplets, provided that the total does not
exceed 100%. The negative triplets may comprise additional types of negative triplets, in which
case each of the first, second and third sets of negative triplets may represent at least 10%, at
least 20% or at least 30% of the total number of negative triplets. The negative triplets may not
comprise additional types of negative triplets, such all negative triplets belong to one of the first,

second or third sets.

The machine learning model may take as input an amino acid sequence comprising a part of the
variable region of one or more chains of a TCR, or information derived therefrom. The machine
learning model may take as input an amino acid sequence comprising one or more CDRs of one
or more chains of a TCR, or information derived therefrom. The machine learning model may take
as input an amino acid sequence comprising or consisting of the CDR3 sequence of one or more
chains of a TCR, or information derived therefrom. The machine learning model may take as input
an amino acid sequence comprising or consisting of the sequence of the CDRS region of the alpha
and/or beta chain of a TCR, or information derived therefrom. The machine learning model may
take as input an amino acid sequence comprising or consisting of the sequence of the CDR3 region
of the beta chain of a TCR.
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The machine learning model may take as input the triplet of amino acid sequences and produce
an encoding for each sequence. The machine learning model may take as input an encoding for
each sequence of a triplet of amino acid sequences. The amino acid sequences may be encoded
using encoding schemes selected from: a predetermined token for each amino acid and optionally
a padding character, one-hot-encoding, an encoding using a substitution matrix, an encoding using
an embedding matrix, and an encoding using physicochemical descriptors. One or more of the
amino acid sequences may be encoded as fixed length strings with a token for each amino acid
and a padding character. The TCR sequence may be encoded as a fixed length string. The peptide
sequence may be encoded as a fixed length string. The MHC sequence may be encoded as a
sequence or pseudosequence with fixed length. A fixed length string for the TCR sequence may
have a length of 26 tokens. A fixed length string for the peptide may have a length of at least 7, 8,
9, 10, 11, 12 or 12 tokens, such as e.g. a length of 16 tokens. The MHC molecule may also be
encoded as a fixed length string. A fixed length string for the MHC molecule may have a length of
34 tokens. Reference to a “fixed length” may refer to the input having a predetermined length, such
that a candidate sequence that has a length shorted than the predetermined length may be input
with padding characters, and a candidate sequence that has a length longer than the
predetermined length may be input as a pseudosequence (e.g. selecting a predetermined subset
of the positions in the sequence) and/or a set of sequences of length equal to the predetermined
length (e.g. by tiling). A suitable predetermined length for the TCR sequence (respectively, the
peptide) may be the maximum length (or maximum length with a frequency above a predetermined
threshold, e.g. maximum length that occurred in at least 1% of a predetermined data set) observed
for a TCR sequence (respectively, peptide sequence) in a data set of paired peptide-TCR

sequences (or triplets), such as e.g. the maximum length observed in the training data.

The machine learning model may be a deep learning model. The machine learning model may
comprise one or more natural language processing models. The machine learning model may
comprise a first encoder or pair of encoders for encoding the TCR sequence, and a second
encoder for encoding the peptide and MHC sequences. The first and/or second encoders may
have been pretrained prior to training the machine learning model using the training data
comprising the negative triplets. The machine learning model may have been trained using the
training data comprising the negative triplets with the parameters of the first and/or second
encoders maintained to their pretrained values. Alternatively, the training of the machine learning
model using the training data comprising the negative triplets may have included fine-tuning the
parameters of one or more of the encoders. Thus, the machine learning model may be trained
using the training data comprising the negative triplets with the parameters of the first and/or
second encoders frozen, or the training may include fine-tuning of the parameters of one or more
of the encoders. The first encoder or pair of encoders may comprise a single encoder taking as
input a TCR beta chain or a part thereof. The first encoder or pair of encoders may comprise a

single encoder taking as input a part of a TCR beta chain comprising or consisting of the CDR3
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region. The first encoder or pair of encoders may comprise a single encoder taking as input the
concatenation of a TCR beta chain or a part thereof and a TCR alpha chain or a part thereof. The
first encoder or pair of encoders may comprise a pair of encoders taking as input respectively a
TCR beta chain or a part thereof and a TCR alpha chain or a part thereof. A part of a TCR chain
may comprise or consist of the CDRS region of the respective chain. The first encoder or pairs of
encoders may have been trained in a self-supervised manner to encode TCR sequences or parts
thereof. Training in a self-supervised manner can be used, e.g. a random masking task (also
referred to as a masked language modelling task). The first encoder or pair of encoders may have
been trained in a self-supervised manner using random masking. The first encoder may have been
pretrained as part of a machine learning model comprising the encoder and one or more fully
connected layers. The one or more fully connected layers may be configured to reconstruct the
input of the model from the output of the encoder. When a pair of encoders are used, each encoder
may have been independently trained in this manner. When a pair of encoders are used, the
encoders may have been trained separately using training data comprising TCR beta chain
sequences or parts thereof and TCR alpha chain sequences or parts thereof, respectively.
Alternatively, a first encoder of the pair of encoders may have been trained using training data
comprising sequences for a first TCR chain or parts thereof, then the second encoder of the pair
of encoders may have been trained using training data comprising sequences for the second TCR
chain or parts thereof and the weights of the first encoder as starting weights for the training. In
other words, the second encoder may be trained by transfer learning using the first encoder. The
first encoder can be the TCR beta chain encoder (as TCR beta chain sequences are typically

available in large amounts for training than TCR alpha chain sequences).

The second encoder may take as input a peptide sequence and an MHC sequence. The second
encoder may have been trained as part of a model trained to predict whether the peptide is likely
to bind the MHC molecule, whether the peptide is likely to be presented by the MHC molecule,
and/or whether the peptide and MHC molecule are likely to form a stable complex. The second
encoder may have been trained as part of a model trained to predict the binding affinity between
a peptide sequence and an MHC molecule corresponding to the MHC sequence. This may be
referred to as binding affinity prediction. The binding affinity may be predicted as a normalised
binding affinity metric with a value between 0 and 1. The second encoder may have been trained
as part of a model trained to classify pairs comprising a peptide sequence and an MHC sequence
between a first class comprising peptide-MHC pairs known to bind to each other and be presented
on the surface of cells, and a second class comprising peptides-MHC pairs that are not expected
to bind to each other and be presented on the surface of cells. This may be referred to as training
for eluted ligand prediction. The use of a pretrained encoder for encoding the peptide-MHC
(second encoder) as part of a model that performs eluted ligand prediction is particularly
advantageous as it results in a pretrained model that can reliably produce encodings that

distinguish peptides that would be very unlikely to be presented as peptide-MHC complexes. This
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is by contrast to TCR binding models of the prior art which are not as good at identifying those
peptides. The second encoder may have been trained as part of a model trained using training
data comprising peptide-MHC pairs known to bind to each other on the basis of the peptide being
an eluted ligand for the MHC molecule from which the MHC sequence is derived (e.g. as
determined using mass spectrometry identification of eluted ligands from samples with known
MHC molecules, also referred to as “eluted ligand” data or “immunopeptidomics” data). Such
peptides may be expected to have strong binding affinity to their cognate MHC molecule (such as
e.g. <500 nM). The second encoder may have been trained as part of a model trained using
training data comprising peptide-MHC pairs known to bind to each other, such as peptide-MHC
molecules with a binding affinity lower than a predetermined threshold (e.g. <500 nM) as
determined using any experimental method known in the art. The second encoder may have been
trained as part of a model trained using training data comprising peptide-MHC pairs that are not
expected to bind to each other, such as e.g. peptides having very weak binding affinity (e.g.
>30,000 nM) as determined using any experimental method known in the art, such as e.g.
immunopeptidomics. For example, the data used in O’'Donnell et al., 2020 and Reynisson et al.
2020 comprises negative mass spectrometry data from eluted ligand experiments. The second
encoder may have been trained as part of a model trained to predict a metric indicative of the
stability of a complex comprising the peptide and MHC molecule corresponding to the MHC
sequence. This may be referred to as binding stability prediction. The metric indicative of the
stability of a complex comprising the peptide and MHC molecule corresponding to the MHC
sequence may be a normalised metric with a value between 0 and 1. The second encoder may
take as input a peptide sequence and an MHC sequence, and may produce as output a probability
that the peptide and MHC sequence bind to each other (eluted ligand prediction), a normalised
binding affinity metric, or a normalised metric indicative of the stability of the complex comprising
the peptide and MHC molecule corresponding to the MHC sequence. Normalised metrics may be
metrics normalised to take values between 0 and 1. The second encoder may have been trained
as part of a model that has been: (i) pretrained to predict whether the peptide is likely to bind the
MHC molecule, and/or whether the peptide is likely to be presented by the MHC molecule; and (ii)
pre-trained, optionally after step (i), for predicting whether the peptide and MHC molecule are likely
to form a stable complex. At step (i) the second encoder may have been trained as part of a model
that has been pretrained to predict whether the peptide is likely to bind the MHC molecule, then
further trained using transfer learning to predict whether the peptide is likely to be presented by
the MHC molecule. A model trained to predict whether the peptide and MHC molecule are likely to
form a stable complex may be a model configured to take as input a peptide and MHC sequence
or information derived therefrom and produce as output a metric indicative of the stability of a
complex comprising the peptide and MHC molecule corresponding to the MHC sequence. The

metric may be a half-life or scaled (also referred to as “normalised”) half-life.
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A peptide and MHC sequence may be provided as a concatenated sequence or as separate input
sequences. The probability that the peptide and MHC sequence bind to each other may represent
a probability that the peptide and MHC sequence pair is identified in an eluted ligand experiment
(this may also be referred to as the probability that the peptide-MHC pair is an eluted ligand). The
second encoder may comprise a first input branch that encodes the peptide sequence and a
second input branch that encodes the MHC sequence. Each input branch may be individually
referred to as an “encoder’. WWhen these encoders are transformer based, they may be referred to
as “self-attention” models. Optionally, the input to the first and/or second branches may itself be
the output of an encoder, such as e.g. a model that has been trained for general purpose encoding
of proteins such as protGPT2 (Ferruz et al., 2022). Alternatively, the input to the first and/or second
branches may be amino acid sequences or pseudosequences for the peptide and/or MHC
molecule. In the embodiments exemplified herein, the input to the first and second branches are a
peptide amino acid sequence and a MHC amino acid pseudosequence, respectively. In other
words, an additional encoding model has not been found to be necessary to obtain a benefit over
the prior art. The output of the first and second input branches may be concatenated and input
into a further model that is configured to learn from both encoded sequences. The further model
may also be seen as an encoder in that it encodes the information in the pair of peptide and MHC
sequences. When the further model is a transformer based model this may be referred to as a
“cross attention” model. The first and second input branches and the further model may together
form the second encoder. The output of the further model may be provided as input to one or more
fully connected layers configured to predict whether the peptide is likely to bind the MHC molecule
/ the probability that the peptide and MHC sequence bind to each other / classify pairs comprising
a peptide sequence and an MHC sequence between a first class comprising peptide-MHC pairs
known to bind to each other (such as e.g. on the basis of the peptide being an eluted ligand for the
MHC molecule from which the MHC sequence is derived) and a second class comprising peptides-
MHC pairs that are not expected to bind to each other. Thus, the second encoder may be
pretrained as part of a model comprising the first and second input branches, the further model
(together forming the second encoder) and the one or more fully connected layers. In other words,
after pretraining of a model comprising the first and second input branches, the further model and
the one or more fully connected layers, the one or more fully connected layers may be removed to

obtain the second encoder used in the machine learning model.

The encoders may each independently be selected from: transformer-based encoders,
autoencoders, and recurrent neural network encoders such as long-short-term memory (LSTM)
networks, and/or wherein the encoders are transformer-based encoders. An autoencoder may be
an autoencoder with one or more convolutional layers. The present inventors have found

transformer-based encoders to perform particularly well.
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The machine learning model may further comprise a deep learning block that takes as input the
concatenated outputs of the first and second encoders, and produces as output the probability that
the antigen is immunogenic in the context of the candidate MHC molecule and the candidate TCR.
The deep learning block may comprise a first block that learns from the combined outputs of the
first and second encoders. The deep learning block may comprise a second block comprising one
or more fully connected layers producing a single numerical output and optionally a sigmoid
activation function. The first block may comprise a deep artificial neural network model and/or a
natural language processing model. The natural language processing model may be a transformer-
based model. The present inventors tested the use of both a deep ANN and a transformer-based
model for the first block, and found both to perform satisfactorily. A transformer-based model was

found to perform slightly better and was thus selected in the particular models exemplified.

The machine learning model may have been trained by fine tuning a peptide-MHC immunogenicity
prediction model, wherein a peptide-MHC immunogenicity model is a machine learning model that
has been trained to take as input a doublet of sequences comprising an amino acid sequence of
a peptide encoding the antigen, and an amino acid sequence of a candidate MHC molecule or a
part thereof, or information derived from the doublet of sequences, and provide as output a score
representing the probability that the antigen is immunogenic in the context of the candidate MHC
molecule. The peptide-MHC immunogenicity model may have been trained using training data
comprising amino acid sequences or information derived therefrom for (i) positive peptide-MHC
doublets comprising a peptide and MHC sequences that have been experimentally demonstrated
to form an immunogenic complex; and (ii) negative peptide-MHC doublets comprising: (a) a first
set of one or more peptide-MHC doublets each comprising: a MHC molecule selected from the
positive peptide-MHC doublets and a peptide sequence not known to interact with the selected
MHC molecule, optionally a randomly sampled peptide sequence, and (b) a second set of one or
more peptide-MHC doublets each comprising: a peptide-MHC pair comprising an MHC molecule
and a peptide known to bind the MHC molecule (positive peptide-MHC pair), wherein the peptide-
MHC pair has been previously found to not be immunogenic (non-immunogenic positive peptide-
MHC pair). The peptide-MHC immunogenicity model may have any of the features described
herein in relation to the machine learning model. In particular, the peptide-MHC immunogenicity
model may comprise a peptide-MHC encoder having any of the features of a peptide-MHC encoder
(second encoder) described herein. The peptide-MHC immunogenicity model may comprise a
peptide-MHC encoder, the output of which is provided to a classification head (e.g. comprising a
transformer layer and classification block). The machine learning model may comprise the peptide-
MHC encoder of the peptide-MHC immunogenicity model and the classification block of the
peptide-MHC immunogenicity model, and a TCR encoder (first encoder). The outputs of the first
and second encoders may be concatenated, provided as input to a transformer layer, the output
of which is provided to a classification block which is initialised using the trained weights of the

peptide-immunogenicity model. The same architecture can be used without initialisation of the
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classification block weights using weights from a peptide-MHC immunogenicity model. However,
the use of such an initialisation step was found to advantageously enable the training of the
machine learning model to benefit from exposure to a broader variety of training data (particularly
in relation to peptide diversity) than would be possible using training of the immunogenicity
(classification) block using triplet data alone. In embodiments, obtaining the triplet of sequences
comprises obtaining an amino acid sequence of a peptide encoding the antigen, an amino acid
sequence of a candidate MHC molecule or a part thereof, and an empty TCR sequence vector as
candidate TCR, and the score predicted by the machine learning model represents the probability
that the antigen is immunogenic in the context of the candidate MHC molecule and an unknown
TCR.

The method may further comprise: (i) repeating one or more times the steps of: obtaining, by said
processor, a triplet of sequences comprising: an amino acid sequence of a peptide encoding the
antigen, an amino acid sequence of a candidate MHC molecule or a part thereof, and an amino
acid sequence of a candidate T cell receptor (TCR) beta chain and/or alpha chain or a part thereof;
and providing, by said processor, the triplet of sequences or information derived therefrom as
inputs to the machine learning model trained to predict a score representing the probability that
the antigen is immunogenic in the context of the candidate MHC molecule and the candidate TCR,
wherein each ftriplet of sequences differs in the amino acid sequence of the candidate MHC
molecule or part thereof, and/or in the amino acid sequence of the candidate T cell receptor (TCR)
beta chain and/or alpha chain or part thereof, thereby obtaining a plurality of respective
probabilities that the antigen is immunogenic; and (ii) selecting the highest of the plurality of
probabilities as the probability that the antigen is immunogenic. The method may further comprise
identifying the antigen from a sample. The method may comprise performing the method of any
preceding embodiment using one or more candidate MHC molecules and/or one or more candidate
TCR molecules identified from a sample. The sample may be a sample from which the antigen has
been identified or a related sample. The sample may have been previously obtained from a subject.
The subject may be a human subject. The subject may be a mammalian subject. The subject may
be a subject who has been diagnosed as having cancer or being likely to have cancer. The sample
may be tumour sample. A related sample may be a sample previously obtained from the same
subject from which another sample has been previously obtained. A related sample may be a
tumour sample (such as e.g. a tumour biopsy or sample comprising circulating tumour DNA or
circulating tumour cells) or a normal sample (such as e.g. a blood sample). Identifying the antigen
from the sample may comprise analysing DNA and/or RNA sequence data from the sample.
Identifying the antigen from the sample may comprise obtaining DNA and/or RNA sequence data
from the sample. Identifying candidate MHC and/or TCR molecules may comprise analysing DNA
and/or RNA sequence data from the sample. Identifying candidate MHC and/or TCR molecules

may comprise obtaining DNA and/or RNA sequence data from the sample.
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According to a second aspect, there is provided a method of providing a tool for predicting whether
an antigen is likely to be immunogenic, the method comprising: (i) obtaining, by a processor, a
training dataset comprising amino acid sequences or information derived therefrom for a plurality
of peptide-MHC-TCR triplets, each triplet comprising an amino acid sequence of a peptide
encoding the antigen, an amino acid sequence of a candidate MHC molecule or a part thereof,
and an amino acid sequence of a candidate T cell receptor (TCR) beta chain and/or alpha chain
or a part thereof; and (ii) training, using said training data, a machine learning model that predicts
the probability that an antigen is immunogenic in the context of a candidate MHC molecule and a
candidate TCR provided as a triplet of sequences or information derived therefrom as input to the
machine learning model. The plurality of peptide-MHC-TCR triplets comprise: a. a first set of one
or more peptide-MHC-TCR triplets each comprising: (i) a TCR-MHC pair comprising an MHC
molecule and a TCR chain or chains known to bind the MHC molecule (positive TCR-MHC pair),
and (ii) a peptide not known to interact with the TCR-MHC pair; b. a second set of one or more
peptide-MHC-TCR triplets each comprising: (i) a peptide-MHC pair comprising an MHC molecule
and a peptide known to bind the MHC molecule (positive peptide-MHC pair), and (ii) a TCR chain
or chains not known to interact with the peptide-MHC pair, wherein the peptide-MHC pair has been
previously found to interact with a TCR (immunogenic positive peptide-MHC pair); and c. a third
set of one or more peptide-MHC-TCR triplets each comprising: (i) a peptide-MHC pair comprising
an MHC molecule and a peptide known to bind the MHC molecule (positive peptide-MHC pair),
and a TCR chain or chains not known to interact with the peptide-MHC pair, wherein the peptide-
MHC pair has been previously found to not be immunogenic (non-immunogenic positive peptide-
MHC pair).

The method of the present aspect may have any one or more of the following features. The method
according to the present aspect may have any of the features disclosed in relation to the first
aspect. In particular, references to features of the trained model in relation to the first aspect may
be interpreted as active steps of training the model in relation to the present aspect. The method
according to the present aspect may further comprise performing the method of any embodiment
of the first aspect. Thus, also envisaged herein is a method comprising providing and using a tool
as described herein. Further, any features of the model architecture (e.g. configuration of the
various parts of the model, characteristics of inputs and outputs, etc.), training or training data
apply equally to the present aspect. For example, the method may comprise obtaining the first,
second and/or third sets of negative peptide-MHC-TCR triplets using amino acid sequences or
information derived therefrom for a plurality of positive peptide-MHC-TCR triplets each comprising
a peptide, an MHC molecule and a TCR chain or chains that are known to interact with each other
to induce an immune response. Obtaining the training data may further comprise obtaining amino
acid sequences or information derived therefrom for a plurality of positive peptide-MHC-TCR
triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that are known

to interact with each other to induce an immune response. Obtaining the second set of triplets may
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comprise selecting the TCR chain or chains in the second set from a database or reference
dataset. Obtaining the second set of triplets may comprise selecting the TCR chain(s) in the second
set, wherein selection is not from the plurality of peptide-MHC-TCR triplets each comprising a
peptide, an MHC molecule and a TCR chain or chains that are known to interact with each other
to induce an immune response (positive peptide-MHC-TCR triplets), or not from the plurality of
peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule and a TCR chain or
chains that are known to interact with each other to induce an immune response (positive peptide-
MHC-TCR triplets). Obtaining the second set of triplets may comprise selecting the peptide-MHC
pairs in the second set from the plurality of peptide-MHC-TCR triplets each comprising a peptide,
an MHC molecule and a TCR chain or chains that are known to interact with each other to induce
an immune response (positive peptide-MHC-TCR triplets). Obtaining the first set of triplets may
comprise selecting the peptides in the first set from a database or reference dataset, such as by
randomly selecting peptides from a reference proteome. Obtaining the first set of triplets may
comprise selecting the peptides, wherein the selecting is not from the plurality of peptide-MHC-
TCR triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that are
known to interact with each other to induce an immune response (positive peptide-MHC-TCR
triplets). Obtaining the first set of triplets may comprise selecting the TCR-MHC pairs in the first
set from the plurality of peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule
and a TCR chain or chains that are known to interact with each other to induce an immune
response (positive peptide-MHC-TCR triplets). Obtaining the third set may comprise selecting the
TCR chain or chains in the third set from the plurality of peptide-MHC-TCR triplets each comprising
a peptide, an MHC molecule and a TCR chain or chains that are known to interact with each other

to induce an immune response (positive peptide-MHC-TCR triplets).

Obtaining the training data may comprise obtaining positive triplets and obtaining the first, second
and third sets (negative triplets) such that the training data comprises a ratio of negative triplets to
positive triplets of at least 100:1, at least 150:1, between 100:1 and 300:1, preferably between
150:1 and 250:1, or around 200:1.Thus, obtaining the training data may comprise obtaining at least
100, at least 150, between 100 and 300, between 150 and 250, or about 200 times more negative

triplets than positive triplets in the training data.

The machine learning model may comprise a first encoder or pair of encoders for encoding the
TCR sequence, and a second encoder for encoding the peptide and MHC sequences. The method
may comprise pretraining the encoders prior to training the machine learning model using the
training data comprising the negative triplets. Training the machine learning model may comprise
training the model with the parameters of the encoders maintained to their pretrained values.
Pretraining the encoders may comprise training the first encoder or pairs of encoders in a self-
supervised manner to encode TCR sequences or parts thereof, optionally using random masking.

The method may comprise pretraining the second encoder as part of a model trained to predict
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whether the peptide is likely to bind the MHC molecule and be presented by cells, trained to predict
the binding affinity between the peptide and MHC molecule, and/or trained to predict the stability
of a complex comprising the peptide and MHC molecule corresponding to the MHC sequence.
The method may comprise pretraining the second encoder: (a) as part of a model trained to classify
pairs comprising a peptide sequence and an MHC sequence between a first class comprising
peptide-MHC pairs known to bind to each other and a second class comprising peptides-MHC
pairs that are not expected to bind to each other, (b) as part of a model trained to predict a binding
affinity metric for the peptide-MHC pair, and/or (c) as part of a model trained to predict a stability
metric for the peptide-MHC pair.

According to a third aspect, there is provided a method of identifying one or more tumour-specific
peptides that are likely to be immunogenic, the method comprising: obtaining the amino acid
sequence of one or more candidate tumour-specific peptides derived from one or more tumour-
specific mutations previously identified in a tumour; and determining whether the one or more
candidate peptides are likely to be immunogenic using the method of any of embodiment of the
first aspect. The method may further comprise selecting one or more of the tumour-specific
peptides as peptides likely to be immunogenic using one or more criteria applying to the results of
the step of determining whether the one or more candidate peptides are likely to be immunogenic.
The one or more criteria may be selected from: selecting peptides with a probability above a
predetermined threshold, and selecting a predetermined number or proportion of tumour-specific
peptides with the highest probability amongst a plurality of peptides for which immunogenicity was
predicted.

According to a fourth aspect, there is provided a method of characterising an immunogenic
composition comprising a plurality of candidate peptides or sequences encoding a plurality of
candidate peptides, the method comprising: determining whether the one or more candidate
peptides are likely to be immunogenic using the method of any embodiment of the first aspect, and
identifying which one or more of the candidate peptides are likely to be immunogenic by applying
one or more predetermined criteria to the results of the determining. The immunogenic composition
may comprise a plurality of candidate peptides. The immunogenic composition may be a peptide
vaccine. The immunogenic composition may be a composition for use in obtaining a population of
cells that display the candidate peptides, and/or a composition for use in obtaining a population of

cells that are reactive to one or more of the candidate peptides.

According to a fifth aspect, there is provided a method of designing or providing an immunotherapy
for a subject that has been diagnosed as having cancer, the method comprising: obtaining a set of
one or more candidate neoantigens for the subject, wherein the one or more candidate
neoantigens were identified using a process comprising analysing one or more samples from the
subject comprising tumour genetic material, and designing an immunotherapy that targets one or

more of the neoantigens identified, wherein the designing comprises identifying at least one
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peptide encoding at least one of the candidate neoantigens that is immunogenic using the method

of any embodiment of the first aspect.

The methods according to the present aspect may have any one or more of the following optional

features.

The one or more neoantigens may be clonal neoantigens. The immunotherapy that targets the one
or more of the neoantigens may be an immunogenic composition, a composition comprising
immune cells or a therapeutic antibody. The method may further comprise producing one or more
peptides selected from the identified peptides. The method may further comprise producing one
or more sequences encoding one or more peptides selected from the identified peptides. The
method may further comprise producing an immunotherapy using one or more peptides selected
from the identified peptides. The method may further comprise identifying one or more cancer
neoantigens for the subject, wherein the one or more candidate neoantigens are identified using a
process comprising analysing one or more samples from the subject comprising tumour genetic
material. Also provided are methods for expanding a T cell population for use in the treatment of
cancer in a subject using a neoantigen identified as immunogenic using a method described

herein.

Also described are compositions comprising a population of T cells obtained or obtainable by such
a method. Also described are compositions comprising a neoantigen peptide, a sequence
encoding a neoantigen peptide, a neoantigen peptide specific immune cell, or an antibody that
recognises a neoantigen peptide, for use in the treatment or prevention of cancer in a subject,
wherein said neoantigen peptide has been identified using the methods described herein. Also
described are uses of said products and compositions in the manufacture of a medicament for use
in the treatment or prevention of cancer in a subject, and methods of treating a subject that has
been diagnosed as having cancer, the method comprising administering an immunotherapy that

has been provided using the methods described herein, or a composition as described herein.

According to a sixth aspect, there is provided a method of treating a subject that has been
diagnosed as having cancer, the method comprising administering an immunotherapy that has
been provided using the method of any embodiment of the fifth aspect. The method may comprise
providing the immunotherapy for the subject using the method of any embodiment of the fifth

aspect.

According to a further aspect, there is provided a system comprising: a processor; and a computer
readable medium comprising instructions that, when executed by the processor, cause the
processor to perform the steps of any method described herein, such as a method according to

any embodiment of the first, second, third, fourth or fifth aspects above.

According to a further aspect, there is provided one or more computer readable media comprising

instructions that, when executed by one or more processors, cause the one or more processors to

15



10

15

20

25

30

WO 2024/194208 PCT/EP2024/057046

perform the steps of any method described herein, such as a method according to any embodiment

of the first, second, third, fourth or fifth aspects above.

According to a further aspect, there is provided a computer program comprising code which, when
the code is executed on a computer, causes the computer to perform the steps of any method
described herein, such as a method according to any embodiment of the first, second, third, fourth

or fifth aspects above.

As the skilled person understands, the complexity of the operations described herein (due at least
to the complexity of, and the amount of data and computation that is typically required for training
of deep learning models as used herein, as well as the size (number of parameters and
computations) of such models) are such that they are beyond the reach of a mental activity. For
example, models as demonstrated herein may be trained using over 40,000 different triplets of
sequences identified experimentally as positive (each having lengths of up to multiple dozens of
amino acids that are individually encoded), from which over 8 million negative triplets are
generated and used to train a model. Further, training of models as demonstrated herein involves
determining the value of 700,000 to 800,000 parameters. Thus, unless context indicates otherwise
(e.g. where sample preparation or acquisition steps are described), all steps of the methods

described herein are computer implemented.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 illustrates schematically the interaction between a T cell and an antigen presenting cell
(APC) presenting a peptide in the context of a MHC class | molecule (A), the concept of predicting
whether an antigen is likely to be immunogenic (B), and the training data used to obtain tools that

can predict whether an antigen is likely to be immunogenic according to the present disclosure.

Figure 2 is a flowchart illustrating schematically a method of predicting whether an antigen is likely

to be immunogenic and a method of providing a tool according to the disclosure.

Figure 3 is a flowchart illustrating schematically a method of designing or providing an

immunotherapy for a subject.

Figure 4 shows an embodiment of a system for predicting whether an antigen is likely to be

immunogenic and/or for providing an immunotherapy.

Figure 5 shows schematically the process of obtaining training data used in an example of the

present disclosure.

Figure 6 shows schematically a model architecture that can be used to predict immunogenicity

according to an example of the present disclosure.

Figure 7 shows a ROC (receiver operating characteristic) curve illustrating the performance of a

model as described herein. The performance of the model was assessed on a test set comprising
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827626 triplets of which 4148 are positive triplets. Continuous line=method of the disclosure
(“Genesis”) (AUC=0.758), dashed line=chance prediction.

Figure 8 shows ROC (receiver operating characteristic) curves illustrating the performance of a
model as described herein, compared to prior art models predicting CDR3-pMHC interactions. A.
The performance of the models was assessed on a test set comprising 44590 triplets of which
1829 are positive triplets, restricted to triplets not contained in any model’s training datasets.
pmiNet (Lu et al., 2021) AUC=0.565, imrex (Moris et al., 2020) AUC=0.548, ERGO (Springer et
al., 2021) AUC=0.590, model of the present disclosure AUC=0.633. B. The performance of the
models was assessed on a test set comprising 439887 triplets of which 789 are positive triplets,
restricted to epitope sequences not contained in any model’s training dataset. pmtNet AUC=0.502,
imrex AUC=0.525, ERGO AUC=0.512, model of the present disclosure (Genesis) AUC=0.737.

Dashed lines=chance prediction.

Figure 9 shows a ROC (receiver operating characteristic) curve illustrating the performance of a
model as described herein, compared to prior art models predicting peptide-MHC interactions. The
performance of the models was assessed on a test set comprising 11267 doublets of which 217
are positive doublets, restricted to epitope sequences not contained in any model's training
datasets. bigMHC (Albert et al., 2022) AUC=0.800, DeepAttentionPan (Jin et al., 2021)
AUC=0.727, NetMHCpan (Reynisson et al., 2020) elution prediction AUC=0.534 and affinity
prediction AUC=0.728, MHCflurry (O’Donnell et al, 2020) AUC=0.635, IEDB
(tools.iedb.org/analyze/html_mhcibinding20071227/mhc_binding.html) AUC=0.673, Prime
(Schmidt e al., 2021) AUC=0.627, Genesis AUC=0.779. Dashed line=chance prediction.

Figure 10 shows ROC (receiver operating characteristic) curves illustrating the performance of a
model as described herein, compared to prior art models predicting peptide-MHC interactions. The
comparative models are the same as on Figure 9 but the test dataset for each subplot only contains
epitope sequences not contained in the training sets of the particular models being compared. A.
NetMHCpan elution prediction AUC=0.600, NetMHCpan binding affinity prediction AUC=0.792,
model of the present disclosure AUC=0.791. Test set comprising 12144 doublets including 374
positive doublets. B. MHCflurry AUC=0.690, Genesis AUC=0.789. Test set comprising 12149
doublets including 368 positive doublets. C. DeepAttentionPan AUC=0.797, model of the present
disclosure AUC=0.798. Test set comprising 11527 doublets including 414 positive doublets. D.
Prime AUC=0.667, model of the present disclosure AUC=0.803. Test set comprising 12003
doublets including 282 positive doublets. E. bigMHC AUC=0.819, Genesis AUC=0.791. Test set

comprising 12029 doublets including 349 positive doublets. Dashed lines=chance prediction.

Figure 11 shows ROC curves illustrating the performance of a model as described herein, using
different ratios of the number of negative and positive triplets in the data used for training and

testing.
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Figure 12 shows schematically a model architecture that can be used to predict immunogenicity
according to an example of the present disclosure. A. peptide-MHC only based immunogenicity
prediction, trained with peptide-MHC immunogenicity data. B. peptide-MHC optional TCR
immunogenicity prediction, trained with combination of peptide-MHC and peptide-MHC-TCR
immunogenicity data, or peptide-MHC-TCR immunogenicity prediction, trained with peptide-MHC-
TCR immunogenicity data. C. Pretraining of pMHC transformer encoder. E. Pretraining of TCR

encoder.

Figure 13 shows results of stability prediction using a pMHC transformer encoder (A) and
immunogenicity prediction using a pMHC transformer encoder trained using a stability prediction
task and comparative models (B). B shows Receiver Operator Characteristic (ROC) and Precision
Recall curves, with the AUC and average precision (AP), respectively, indicated for each model.
The number of observations (doublets) used to obtain these results is indicated as N=2601 of

which 951 are positive doublets.

Figure 14 shows results of TCR specificity prediction using methods of the disclosure and
comparative methods. A. Comparison of TCR specificity prediction performance between methods
of the disclosure (Genesis) and comparative method (NetTCR). Precision Recall and ROC curves,
respectively with average precision (AP) and AUC provided for each model. B. Comparison of TCR
specificity prediction performance between methods of the disclosure (Genesis) and comparative
method (STAPLER). Precision Recall curves for each fold of the cross-validation with average

curve in bold. Average precision (AP) provided for each model.

Figure 15 shows the results of an analysis of the effect of including TCR information when

predicting immunogenicity of a pMHC complex.

DETAILED DESCRIPTION

In describing the present invention, the following terms will be employed, and are intended to be

defined as indicated below.
The disclosure relates at least in part to the prediction of immunogenicity of antigens.

The term “immunogenicity” refers to the ability of an antigen peptide to bind an MHC molecule for
presentation of the antigen and recognition of the peptide-MHC complex by a T cell receptor on a
T cell. This recognition process underlines the triggering of an immune reaction, also referred to
as “cellular immune reaction”. The terms “antigen”, “peptide” and “antigen peptide” are used
interchangeably to refer to a peptide that is potentially immunogenic. Thus, such a peptide can
also be referred to as a candidate antigen peptide. Figure 1A illustrates the process of antigen
recognition. An MHC molecule 3 is expressed on the surface of a cell 2 (which can be an antigen
presenting cell, APC, or any other cell such as e.g. a cancer cell). The MHC molecule displays a
peptide 6. The complex formed by the MHC molecule 3 and the peptide 6 is recognised by a T cell

receptor 5 expressed on the surface of a T cell 4. The present disclosure provides methods to
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predict whether a peptide is likely to be immunogenic, as illustrated on Figure 1B. The methods
use the sequence of the peptide 6, the sequence of at least a part of the MHC molecule 3, and the
sequence of at least a part of the TCR molecule 5 (also referred to herein as a “triplet”), as inputs
to a machine learning model 10. The machine learning model is trained to use this information to
predict whether the peptide, MHC and TCR will interact or not. The method can also be seen a
predicting whether a triplet will interact, or whether any member of the triplet will interact with the

other members to trigger an immune response.

MHC (major histocompatibility complex) molecules are cell-surface proteins encoded by the
human leukocyte antigen (HLA) gene complex, and which are an important part of the adaptive
immune system. MHC molecules are typically classified as “class I” or “class II”. Class | MHC
molecules present peptides from inside the cells for recognition by T cell receptors as will be
explained further below. Class | MHC molecules are normally expressed on the surface of all cells.
The peptides presented are typically produced from digested proteins produced in the
proteasomes, and are typically about 8-11 amino acids in length. There are 3 types of MHC class
I molecules (A, B and C), each encoded by a separate gene. Class Il MHC molecules present
antigens from outside the cells for recognition by T cells. Class [| MHC molecules are primarily
found on antigen-presenting cells such as dendritic cells, mononuclear phagocytes, some
endothelial cells, thymic epithelial cells and B cells. There are 6 types of MHC class |l molecules:
DP, DM, DOA, DOB, DQ and DR, each encoded by a separate gene. The HLA locus is highly
polymorphic and therefore many different alleles exist for each gene. The process of HLA typing
refers to determining which alleles of each of one or more HLA genes is present in a sample or
subject. The term “MHC sequence” as used herein refers to the amino acid sequence of an MHC
molecule or part thereof. The MHC molecule may be a class | MHC molecule or a class || MHC
molecule. The models described herein are typically trained using a single class of MHC molecule,

and used for prediction for this class.

The term “TCR sequence” as used herein refers to the amino acid sequence of a T cell receptor
or part thereof. A T cell receptor is a membrane anchored protein expressed on the surface of T
cells. AT cell receptor comprises a pair of protein chains that together form a binding moiety that
recognises a cognate antigen. The TCR chains are expressed in a complex with constant T cell
coreceptor chains CD3 (illustrated as reference numeral 7 in Figure 1A), comprising a CD3y chain,
a CD3b chain, and two CD3¢ chains in mammals. The constant chains associate with the T cell
receptor and the constant -chain to form the TCR complex, which together is able to generate a
signal upon antigen binding to the T cell receptor. As illustrated on Figure 1A, the TCR 5 is a
heterodimeric protein, comprising two highly variable chains 5a and 5b, the a and B chains (in the
majority of T cells), or the alternative y and © chains (in a minority of T cells). Each chain comprises
two extracellular domains: a variable region (or variable domain; 50a, 50b) and a constant region

(or constant domain, proximal to the cell membrane; 50a’, 50b’), a transmembrane region and a
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short cytoplasmic tail. The variable regions together bind to a peptide (antigen) 6, within the context
of a MHC (major histocompatibility complex) molecule 3 in the case of ap TCRs. Each variable
domain contains three hypervariable regions referred to as the complementarity-determining
regions (CDRs, respectively referred to as CDR1, CDR2 and CDR3 on each of the chains), which
together form an antigen binding site. A TCR sequence may comprise the complete sequence of
one or both chains of a TCR, or a part of one or both chains. In the context of the present disclosure,
a TCR typically comprises a and B chains, and thus a TCR sequence comprises the sequence of
at least a part of a TCR a chain and/or a at least a part of a TCR B chain. Most of the information
currently available about TCR repertoire has been obtained by bulk-sequencing on single chain
repertoires, mostly the p chain repertoire. Paired chain information (i.e. information about the
sequence of both the a and B chain of a TCR) as well as information about the sequence of the a
chain repertoire is not as extensive at present. Therefore, the models described herein may use
only TCR sequences from the B chain. This may enable models to be trained in an optimal manner
(by using large amounts of data for better constraining of the model) and applicable to a wider
range of situations (where a chain sequence may not be available). However, as the skilled person
understands, it is also possible to make use of a chain sequences when available, as described

further herein.

The term “sequence data” refers to information that is indicative of the presence of genomic
material (DNA or RNA) or proteomic material in a sample that has a particular sequence. Thus,
sequence data may comprise one or more nucleotide sequences and/or one or more amino acid
sequences. Such information may be obtained using sequencing technologies, such as e.g. next
generation sequencing (NGS), for example whole exome sequencing (WES), whole genome
sequencing (WGS), whole transcriptome sequencing (RNAseq) or sequencing of captured
genomic loci (targeted or panel sequencing). When NGS technologies are used, the sequence
data may comprise a count of the number of sequencing reads that have a particular sequence.
Sequence data may be mapped to a reference sequence, for example a reference genome, using
methods known in the art (such as e.g. Bowtie (Langmead et al., 2009)). Thus, counts of
sequencing reads or equivalent non-digital signals may be associated with a particular location or
locus (where the “location” refers to a location in the reference genome or transcriptome to which
the sequence data was mapped). Further, a location may contain a mutation, in which case counts
of sequencing reads or equivalent non-digital signals may be associated with each of the possible
variants (also referred to as “alleles”) at the particular location. The process of identifying the
presence of a mutation at a particular location in a sample is referred to as “variant calling” and
can be performed using methods known in the art (such as e.g. general purpose NGS variant
callers such as the GATK HaplotypeCaller, gatk.broadinstitute.org/hc/en-
us/articles/360037225632-HaplotypeCaller or tools specifically designed for immune sequences
such as IgBLAST, www.ncbi.nim.nih.gov/igblast/, [Ye et al., 2013]). Genomic sequence data may

be converted to amino acid sequences by translating coding regions in silico (directly from an
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MRNA sequence or from identified coding regions in a genomic sequence), as known in the art.
This may be performed for example to obtain a peptide from a coding sequence comprising a
coding mutation (a mutation that alters the sequence of amino acid encoded by a DNA or RNA

sequence).

The term "peptide” is used in the normal sense to mean a series of residues, typically L-amino
acids, connected one to the other typically by peptide bonds between the a-amino and carboxyl
groups of adjacent amino acids. The term includes modified peptides and synthetic peptide
analogues. In particular, peptides as used herein may include one or more non-canonical amino

acids (also referred to as “nonstandard amino acids” or “modified amino acids”).

According to the present disclosure, the probability that a peptide is immunogenic in the context of
a candidate MHC sequence and a candidate TCR sequence (which can also be interpreted as the
probability that the peptide, candidate MHC molecule and candidate TCR molecule interact with
each other) is predicted using one or more machine learning models. The term “machine learning
model” refers to a mathematical model that has been trained to predict one or more output values
based on input data, where training refers to the process of learning, using training data, the
parameters of the mathematical model that result in a model that can predict outputs values that
satisfy an optimality criterion or criteria. In the case of supervised learning, training typically refers
to the process of learning, using training data, the parameters of the mathematical model that result
in a model that can predict outputs values that with minimal error compared to comparative (known)
values associated with the training data (where these comparative values are commonly referred
to as “labels”). The term “machine learning algorithm” or “machine learning method” refers to an
algorithm or method that trains and/or deploys a machine learning model. The machine learning
model may comprise one or more natural language processing models. The machine learning
model may comprise one or more encoders trained to encode one or more of the sequences in a
triplet. Encoding refers to processing of input data to generate a latent representation of the input
data, from which a prediction can be made or the input data can be reconstructed. An encoder
may be selected from: transformer-based encoders, autoencoders, and recurrent neural network
encoders such as long-short-term memory (LSTM) networks. Transformer-based encoders include
bidirectional encoders trained by masked language modeling, such as the BERT model described
in Devlin et al. (BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, arXiv:1810.04805). In embodiments, the machine learning model comprises one
or more artificial neural network (ANNs, also referred to simply as “neural network” (NN)). ANNs
are typically parameterized by a set of weights that are applied to the inputs of each of a plurality
of connected neurons in order to obtain a weighted sum that is fed to an activation function to
produce the neuron’s output. The parameters of an NN can be trained using a method called
backpropagation through which connection weights are adjusted to compensate for errors found

in the learning process, in combination with a weight updating procedure such as stochastic
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gradient descent. An ANN may be a deep neural network, i.e. a neural network comprising more
than one layer (also referred to as “hidden layer”) between the input layer and the output layer. In
embodiments, a machine learning model comprises an ensemble of models whose predictions are
combined. Alternatively, a machine learning model may comprise a single model. The training data
may comprise, for a plurality of triplets: the primary structure of the peptides (i.e. amino acid
sequence) or features derived from said primary structure by encoding as described further herein;
and a status label identifying a triplet as a triplet that has been experimentally determined to interact
(positive triplet), or a triplet that is not expected to interact (negative triplet). Figure 1C illustrates
the types of triplets included in the training data according to the present disclosure. This comprises
one or more positive triplets 8, and a first, second and third sets of negative triplets 9a, 9b, 9c.
Triplets in the first set of negative triplets 9a comprise an MHC-TCR pair that is known to interact,
and a peptide that is not known to interact with this MHC-TCR pair. This may also be referred to
as a “negative peptide” set. Triplets in the second set of negative triplets 9b comprise a peptide-
MHC pair that is known to bind and is expected to be immunogenic given the right TCR, and a
TCR that is not known to interact with this peptide-MHC pair. This may also be referred to as a
“‘negative TCR” set. Triplets in the third set of negative triplets 9¢c comprise a peptide-MHC pair
that is known to interact and is also known not to be immunogenic, and a TCR sequence. This
may also be referred to as a “non-immunogenic pMHC” set. Advantageously, the training data
may comprise or consists of data that relates to triplets identified in an organism that is the same
as that from which the triplets for which immunogenicity is to be predicted originates. The training
data may comprise data for at least 10,000, at least 20,000, at least 30,000 or at least 40,000
unique positive triplets. The training data may comprise data for at least 100 times, at least 150
times, or at least 200 times more negative triplets than positive triplets. For example, the training
data may comprise data for at least 8 million negative triplets. The training data may be divided
between a training set and a test set. The training set may comprise data for at least 10,000, at
least 15,000, at least 25,000 or at least 35,000 unique positive triplets. The test set may comprise
data for at least 1000, at least 2000, at least 3000, or at least 4000 unique positive triplets. The
training of the model may be performed using cross-validation, as known in the art, wherein a
model is trained multiple times using a subset of the training set and evaluated using the remaining
subset of the training set, then performance of the multiple models obtained is combined when

evaluating the model.

A “sample” as used herein may be a cell or tissue sample, a biological fluid, an extract (e.g. a DNA
extract obtained from the subject), from which genomic material can be obtained for genomic
analysis, such as genomic sequencing (e.g. whole genome sequencing, whole exome
sequencing). The sample may be a cell, tissue or biological fluid sample obtained from a subject
(e.g. a biopsy). Such samples may be referred to as “subject samples”. In particular, the sample
may be a blood sample, or a tumour sample, or a sample derived therefrom. The sample may be

one which has been freshly obtained from a subject or may be one which has been processed
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and/or stored prior to genomic analysis (e.g. frozen, fixed or subjected to one or more purification,
enrichment or extraction steps). The sample may be a cell or tissue culture sample. As such, a
sample as described herein may refer to any type of sample comprising cells or genomic material
derived therefrom, whether from a biological sample obtained from a subject, or from a sample
obtained from e.g. a cell line. In embodiments, the sample is a sample obtained from a subject,
such as a human subject. The sample is preferably from a mammalian (such as e.g. a mammalian
cell sample or a sample from a mammalian subject, such as a cat, dog, horse, donkey, sheep, pig,
goat, cow, mouse, rat, rabbit or guinea pig), preferably from a human (such as e.g. a human cell
sample or a sample from a human subject). Further, the sample may be transported and/or stored,
and collection may take place at a location remote from the genomic sequence data acquisition
(e.g. sequencing) location, and/or any computer-implemented method steps described herein may
take place at a location remote from the sample collection location and/or remote from the genomic
data acquisition (e.g. sequencing) location (e.g. the computer-implemented method steps may be

performed by means of a networked computer, such as by means of a “cloud” provider).

A “normal sample” or “germline sample” refers to a sample that is assumed not to comprise tumour
cells or genetic material derived from tumour cells. A germline sample may be a blood sample, a
tissue sample, or a purified sample such as a sample of peripheral blood mononuclear cells from
a subject. Similarly, the terms “normal’, “germline” or “wild type” when referring to sequences or
genotypes refer to the sequence / genotype of cells other than tumour cells. A germline sample
may comprise a small proportion of tumour cells or genetic material derived therefrom, and may
nevertheless be assumed, for practical purposes, not to comprise said cells or genetic material. In
other words, all cells or genetic material may be assumed to be normal and/or sequence data that

is not compatible with the assumption may be ignored.

The terms “tumour-specific mutation”, “somatic mutation” or simply “mutation” are used
interchangeably and refer to a difference in a nucleotide sequence (e.g. DNA or RNA) in a tumour
cell compared to a healthy cell from the same subject. The difference in the nucleotide sequence
can result in the expression of a protein which is not expressed by a healthy cell from the same
subject. For example, a mutation may be a single nucleotide variant (SNV), multiple nucleotide
variant (MNV), a deletion mutation, an insertion mutation, a translocation, a missense mutation, a
translocation, a fusion, a splice site mutation, or any other change in the genetic material of a
tumour cell. A mutation may result in the expression of a protein or peptide that is not present in
a healthy cell from the same subject. Mutations may be identified by exome sequencing, RNA-
sequencing, whole genome sequencing and/or targeted gene panel sequencing and or routine
Sanger sequencing of single genes, followed by sequence alignment and comparing the DNA
and/or RNA sequence from a tumour sample to DNA and/or RNA from a reference sample or
reference sequence (e.g. the germline DNA and/or RNA sequence, or a reference sequence from

a database). Suitable methods are known in the art.
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An "indel mutation" refers to an insertion and/or deletion of bases in a nucleotide sequence (e.g.
DNA or RNA) of an organism. Typically, the indel mutation occurs in the DNA, preferably the
genomic DNA, of an organism. In embodiments, the indel may be from 1 to 100 bases, for example
11090, 11050, 1to 23 or1to 10 bases. An indel mutation may be a frameshift indel mutation. A
frameshift indel mutation is a change in the reading frame of the nucleotide sequence caused by
an insertion or deletion of one or more nucleotides. Such frameshift indel mutations may generate
a novel open-reading frame which is typically highly distinct from the polypeptide encoded by the
non-mutated DNA/RNA in a corresponding healthy cell in the subject.

A “neoantigen” (or “neo-antigen”) is an antigen that arises as a consequence of a mutation within
a cancer cell. Thus, a neoantigen is not expressed (or expressed at a significantly lower level) by
normal (i.e. non-tumour) cells. A neoantigen may be processed to generate distinct peptides which
can be recognised by T cells when presented in the context of MHC molecules. As described
herein, neoantigens may be used as the basis for cancer immunotherapies. References herein to
"neoantigens” are intended to include also peptides derived from neoantigens. The term
"neoantigen” as used herein is intended to encompass any part of a neoantigen that is
immunogenic. An "antigenic" molecule as referred to herein is a molecule which itself, or a part
thereof, is capable of stimulating an immune response, when presented to the immune system or
immune cells in an appropriate manner. The binding of a neoantigen to a particular MHC molecule
(encoded by a particular HLA allele) results on the neoantigen being presented by said MHC
molecule on the cell surface, a necessary but not sufficient condition for immunogenicity.
Immunogenicity further requires recognition of the peptide-MHC complex by a T cell receptor. As
used herein a “candidate neoantigen” refers to a peptide or sequence thereof that arises as a
consequence of a mutation within a cancer cell, the immunogenicity of which has not yet been
verified. The present disclosure provides methods to predict whether a candidate neoantigen is

likely to be immunogenic, i.e. a bona fide neoantigen.

A “clonal neoantigen” (also sometimes referred to as “truncal neoantigen”) is a neoantigen that
results from a mutation that is present in essentially every tumour cell in one or more samples from
a subject (or that can be assumed to be present in essentially every tumour cell from which the
tumour genetic material in the sample(s) is derived). Similarly, a “clonal mutation” (sometimes
referred to as “truncal mutation”) is a mutation that is present in essentially every tumour cell in
one or more samples from a subject (or that can be assumed to be present in essentially every
tumour cell from which the tumour genetic material in the sample(s) is derived). Thus, a clonal
mutation may be a mutation that is present in every tumour cell in one or more samples from a
subject. A “sub-clonal” neoantigen is a neoantigen that results from a mutation that is presentin a
subset or a proportion of cells in one or more tumour samples from a subject (or that can be
assumed to be present in a subset of the tumour cells from which the tumour genetic material in

the sample(s) is derived). Similarly, a “sub-clonal” mutation is a mutation that is presentin a subset
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or a proportion of cells in one or more tumour samples from a subject (or that can be assumed to
be present in a subset of the tumour cells from which the tumour genetic material in the sample(s)
is derived). As the skilled person understands, a neoantigen or mutation may be clonal in the
context of one or more samples from a subject while not being truly clonal in the context of the
entirety of the population of tumour cells that may be presentin a subject (e.g. including all regions
of a primary tumour and metastasis). Thus, a clonal mutation may be “truly clonal”’ in the sense
that it is a mutation that is present in essentially every tumour cell (i.e. in all tumour cells) in the
subject. This is because the one or more samples may not be representative of each and every
subset of cells present in the subject. Thus, within the context of the present disclosure, a “clonal
neoantigen” or “clonal mutation” may also be referred to as a “ubiquitous neoantigen” or “ubiquitous
mutation”, to indicate that the neoantigen is present in essentially all tumour cells that have been
analysed, but may not be present in all tumour cells that may exist in the subject. The terms “clonal’
and “ubiquitous” are used interchangeably unless context indicates that reference to “true clonality”
was intended. The wording “essentially every tumour cell” in relation to one or more samples or a
subject may refer to at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least
91%, at least 92%, at least 93%, at least 94% at least 95%, at least 96%, at least 97%, at least

98%, or at least 99% of the tumour cells in the one or more samples or the subject.

A cancer immunotherapy (or simply “immunotherapy”) refers to a therapeutic approach comprising
administration of an immunogenic composition (e.g. a vaccine), a composition comprising immune
cells, or an immunoactive drug, such as e.g. a therapeutic antibody, to a subject. The term
“immunotherapy” may also refer to the therapeutic compositions themselves. In the context of the
present disclosure, the immunotherapy typically targets a neoantigen. For example, an
immunogenic composition or vaccine may comprise a neoantigen, neoantigen presenting cell or
material necessary for the expression of the neoantigen. As another example, a composition
comprising immune cells may comprise T and/or B cells that recognise a neoantigen. The immune
cells may be isolated from tumours or other tissues (including but not limited to lymph node, blood
or ascites), expanded ex vivo or in vitro and re-administered to a subject (a process referred to as
“adoptive cell therapy”). Instead or in addition to this, T cells can be isolated from a subject and
engineered to target a neoantigen (e.g. by insertion of a chimeric antigen receptor that binds to the
neoantigen) and re-administered to the subject. As another example, a therapeutic antibody may
be an antibody which recognises a neoantigen. One skilled in the art will appreciate that if the
neoantigen is a cell surface antigen, an antibody as referred to herein will recognise the
neoantigen. Where the neoantigen is an intracellular antigen, the antibody will recognise the
neoantigen peptide-MHC complex. As referred to herein, an antibody which "recognises” a
neoantigen encompasses both of these possibilities. Further, an immunotherapy may target a
plurality of neoantigens. For example, an immunogenic composition may comprise a plurality of
neoantigens, cells presenting a plurality of neoantigens or the material necessary for the

expression of the plurality of neoantigens. As another example, a composition may comprise
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immune cells that recognise a plurality of neoantigens. Similarly, a composition may comprise a
plurality of immune cells that recognise the same neoantigen. As another example, a composition
may comprise a plurality of therapeutic antibodies that recognise a plurality of neoantigens.
Similarly, a composition may comprise a plurality of therapeutic antibodies that recognise the same

neoantigen.

A composition as described herein may be a pharmaceutical composition which additionally
comprises a pharmaceutically acceptable carrier, diluent or excipient. The pharmaceutical
composition may optionally comprise one or more further pharmaceutically active polypeptides
and/or compounds. Such a formulation may, for example, be in a form suitable for intravenous

infusion.

References to "an immune cell" are intended to encompass cells of the immune system, for
example T cells, NK cells, NKT cells, B cells and dendritic cells. In a preferred embodiment, the
immune cellis a T cell. An immune cell that recognises a neoantigen may be an engineered T cell.
A neoantigen specific T cell may express a chimeric antigen receptor (CAR) or a T cell receptor
(TCR) which specifically binds a neoantigen or a neoantigen peptide, or an affinity-enhanced T cell
receptor (TCR) which specifically binds a neoantigen or a neoantigen peptide (as discussed further
hereinbelow). For example, the T cell may express a chimeric antigen receptor (CAR) ora T cell
receptor (TCR) which specifically binds to a neo-antigen or a neo-antigen peptide (for example an
affinity enhanced T cell receptor (TCR) which specifically binds to a neo-antigen or a neo-antigen
peptide). Alternatively, a population of immune cells that recognise a neoantigen may be a
population of T cell isolated from a subject with a tumour. For example, the T cell population may
be generated from T cells in a sample isolated from the subject, such as e.g. a tumour sample, a
peripheral blood sample or a sample from other tissues of the subject. The T cell population may
be generated from a sample from the tumour in which the neoantigen is identified. In other words,
the T cell population may be isolated from a sample derived from the tumour of a patient to be
treated, where the neoantigen was also identified from a sample from said tumour. The T cell

population may comprise tumour infiltrating lymphocytes (TIL).

The term "Antibody” (Ab) includes monoclonal antibodies, polyclonal antibodies, multispecific
antibodies (e.g., bispecific antibodies), and antibody fragments that exhibit the desired biological
activity. The term "immunoglobulin” (Ig) may be used interchangeably with "antibody". Once a
suitable neoantigen has been identified, for example by a method according to the disclosure,

methods known in the art can be used to generate an antibody.

An “‘immunogenic composition” is a composition that is capable of inducing an immune response
in a subject. The term is used interchangeably with the term “vaccine”. The immunogenic
composition or vaccine described herein may lead to generation of an immune response in the
subject. An "immune response" which may be generated may be humoral and/or cell-mediated

immunity, for example the stimulation of antibody production, or the stimulation of cytotoxic or killer
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cells, which may recognise and destroy (or otherwise eliminate) cells expressing antigens
corresponding to the antigens in the vaccine on their surface. The immunogenic composition may
comprise one or more neoantigens, or the material necessary for the expression of one or more
neoantigens. In addition, a neoantigen may be delivered in the form of a cell, such as an antigen
presenting cell, for example a dendritic cell. The antigen presenting cell such as a dendritic cell
may be pulsed or loaded with the neo-antigen or neo-antigen peptide or genetically modified (via
DNA or RNA transfer) to express one, two or more neo-antigens or neoantigen peptides, for
example 2, 3, 4, 5, 6, 7, 8, 9 or 10 neo-antigens or neo-antigen peptides. Methods of preparing

dendritic cell immunogenic compositions or vaccines are known in the art.

An antigen peptide refers to a peptide that is capable of binding to an MHC molecule and interact
with a TCR receptor in the context of an MHC molecule to elicit an immune response. The term
“peptide” as used herein encompasses an antigen peptide and a peptide that is a candidate
antigen peptide, i.e. a peptide for which immunogenicity is to be predicted for example as described
herein, or a fragment thereof. By way of example, a peptide which is capable of binding to an MHC
class | molecule is typically 7 to 13 amino acids in length, or more specifically 8 to 11 amino acids.
When longer peptides are used, such as e.g. peptides longer than the maximal length of sequence
that can be provided as input to a machine learning model as described herein (e.g. longer than
16 amino acids), immunogenicity may be predicted as described herein for one or more fragments
of the peptide. Such fragments may also be referred to herein as “minimal peptides”. For example,
immunogenicity may be predicted for one or more fragments of at least a minimal length (such as
e.g. 7 or 8 amino acids) and/or at most a maximal length (such as e.g. 11 or 13 amino acids). A
prediction for a longer peptide may be obtained as a summarised prediction over a set of fragments
of the peptide. For example, the average or maximum predicted probability amongst probabilities
predicted for the one or more fragments of the peptide may be taken as the probability predicted

for the peptide.

A “neoantigen peptide” as described herein refers to a peptide that comprises a cancer cell specific
mutation (e.g a non-silent amino acid substitution encoded by a single nucleotide variant (SNV),
an indel or any other genetic alteration that results in a change in primary structure of a peptide or
protein) at any residue position within the peptide. As mentioned above, in a peptide that has a
length of between 7 and 13 amino acids, the amino acid substitution may be present at position 1,
2,3,4,5,6,7,8,9,10, 11,12 or 13 in a peptide comprising thirteen amino acids. In embodiments,
longer peptides, for example 15-31-mers, may be used, and the mutation may be at any position,
for example at the centre of the peptide, e.g. at positions 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16.
Such peptides can also be used to stimulate both CD4 and CD8 cells to recognise neoantigens.
As used herein "treatment” refers to reducing, alleviating or eliminating one or more symptoms of
the disease which is being treated, relative to the symptoms prior to treatment. "Prevention” (or

prophylaxis) refers to delaying or preventing the onset of the symptoms of the disease. Prevention
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may be absolute (such that no disease occurs) or may be effective only in some individuals or for

a limited amount of time.

As used herein, the terms “computer system” or “computer device” includes the hardware, software
and data storage devices for embodying a system or carrying out a method according to the above-
described embodiments. For example, a computer system may comprise one or more processing
units such as a central processing unit (CPU) and/or a graphical processing unit (GPU), input
means, output means and data storage, which may be embodied as one or more connected
computing devices. Preferably the computer system has a display or comprises a computing
device that has a display to provide a visual output display (for example in the design of the
business process). The data storage may comprise RAM, disk drives or other computer readable
media. The computer system may include a plurality of computing devices connected by a network
and able to communicate with each other over that network. For example, a computer system may
be implemented as a cloud computer. The term “computer readable media” includes, without
limitation, any non-transitory medium or media which can be read and accessed directly by a
computer or computer system. A computer readable medium may be a tangible computer
readable medium. A computer readable medium may be realized as a plurality of discrete tangible
computer readable media. The media can include, but are not limited to, magnetic storage media
such as floppy discs, hard disc storage media and magnetic tape; optical storage media such as
optical discs or CD-ROMs; electrical storage media such as memory, including RAM, ROM and

flash memory; and hybrids and combinations of the above such as magnetic/optical storage media.

Prediction of immunogenicity

The present disclosure provides methods for predicting immunogenicity of antigens, and methods
for providing a tool for predicting the immunogenicity of one or more antigens. As the skilled person
understands, the methods described herein can provide a prediction of immunogenicity of a
candidate antigen in the context of a particular MHC molecule and TCR molecule. Therefore, the
methods described herein can also be seen as providing a prediction of immunogenicity of a triplet
comprising an antigen, an MHC molecule and a TCR molecule, and/or providing a prediction of
whether a TCR molecule can recognise a candidate peptide-MHC complex. In other words, the
methods can be used primarily with the aim of characterising any member of the triplet, including

but not limited to the peptide.

An illustrative method for providing a tool and/or predicting the immunogenicity of one or more
antigens will be described by reference to Figure 2. At step 10, one or more triplets of sequences
is/are obtained for a peptide. A triplet of sequences corresponds to a peptide-MHC-TCR triplet and
comprises at least part of the sequence of the peptide, the MHC molecule, and the TCR molecule
in the triplet. Step 10 may comprise step 10a of providing one or more candidate MHC sequences,

and one or more candidate TCR sequences, and step 10b of providing the peptide sequence to
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be analysed. The peptide sequence to be analysed may be a predicted peptide sequence derived
from a cancer specific mutation identified in a sample or patient. The one or more candidate MHC
sequences may be obtained or may have been previously obtained from a database, computing
device or user interface. The one or more MHC sequences may comprise or consist of sequences
that are associated with a particular patient or sample. The step of obtaining the one or more MHC
sequences may comprise identifying one or more MHC sequences that are presentin a patient or
sample (a process referred to as “HLA typing”). Methods for HLA typing are known in the art and
include e.g. flow cytometry-based methods and methods based on sequencing data such as
Polysolver (Shukla et al. 2015) and OptiType (Szolek et al. 2014). The one or more candidate MHC
sequences may be sequences of HLA alleles determined not to have been lost in a sample or
patient (a process called “HLA Loss of Heterozygosity”, HLA LOH). Methods for identifying HLA
LOH are known in the art and include e.g. the method described in WO2019/012296. The patient
/ sample may be the same patient / sample from which the peptide sequence to be analysed has
been derived. The one or more candidate TCR sequences may be obtained or may have been
previously obtained from a database, computing device or user interface. The one or more TCR
sequences may comprise or consist of sequences that are associated with a particular patient or
sample. The step of obtaining the one or more TCR sequences may comprise identifying one or
more TCR sequences that are present in a patient or sample (for example by TCR repertoire
sequencing, also referred to as “TCRseq”). The one or more TCR sequences may be an empty
TCR sequence vector. In other words, an empty TCR sequence vector can be used as input to the
machine learning model as described further below. In such embodiments, the score predicted by
the machine learning model (as will be described further below) represents the probability that the
antigen is immunogenic in the context of the candidate MHC molecule and an unknown TCR. By
contrast, when a single candidate TCR sequence is provide as part of the triplet, the score
predicted by the machine learning model (as will be described further below) represents the
probability that the antigen is immunogenic in the context of the candidate MHC molecule and the
particular candidate TCR sequence. The one or more candidate MHC sequences may comprise
the sequence of a part of a MHC molecule, such as e.g. the sequence of a part of an MHC
corresponding to the peptide binding groove, or the sequence of a complete MHC molecule chain.
The sequence of the part of MHC molecule may include the whole sequence corresponding to the
binding groove or a portion thereof. The one or more candidate TCR sequences may comprise the
sequence of a part of a TCR molecule. For example, the one or more candidate TCR sequences
may each comprise the sequence of one or more CDR regions of a TCR. As another example, the
one or more candidate TCR sequences may each comprise the sequence of one or more chains
of a TCR. The one or more CDR regions typically comprise at least the CDR3 region of the TCR
B chain. The one or more CDR regions may comprise the CDRS3 region of the TCR a chain. Any
one or more of the CDR1B, CDR2p, CDR1a and CDR2a regions may also be represented. Where

multiple non connected sequences (e.g. a plurality of CDR sequences, sequences from the two
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TCR chains, etc) are provided, these can be concatenated into a single sequence, or they can be
processed and input into the model separately. Similarly, the peptide and MHC molecule sequence
can be concatenated into a single sequence, or they can be processed and input into the model
separately. The one or more triplets may be obtained by combining the peptide sequence with a
candidate MHC sequence and a candidate TCR sequence. When a plurality of candidate TCR
and/or MHC sequences are provided, a plurality of triplets may be obtained each comprising the

peptide and a unique combination of candidate MHC and TCR sequences.

At step 12, each of the sequences in the triplet (or the plurality of triplets) is encoded to obtain
information derived from the respective sequences. Each type of sequence (peptide, TCR, MHC)
may be encoded using a respective encoding scheme. The same encoding scheme may be used
for at least the peptide and the MHC sequence. The same encoding scheme may be used for all
sequences. The peptide and MHC sequences can be concatenated and encoded together, or
they can be encoded individually. Encoding uses a predetermined encoding scheme. Suitable
encoding schemes include: the use of predetermined tokens for each amino acid (e.g. a number
for each amino acid and optionally a further number for a padding character, all of which can be
consecutive integers, such as e.g. numbers from 0 to 20), the use of predetermined tokens for
multiple amino acids (e.g. doublets or triplets of amino acids, or even full sequences can be
encoded with a single token, at the extreme it is even possible for a single token to be used to
represent e.g. an MHC molecule, where each token may e.g. correspond to an MHC allele), one-
hot encoding, the use of substitution matrices (such as e.g. BLOSUM) , and the use of a set of
physicochemical descriptors for each amino acid. Examples of encoding schemes for amino acid
sequences are provided in EIAbd et al. 2020. Advantageously, the encoding scheme may be one
that encodes every amino acid of an input sequence separately. This may increase the resolution
of the model, enabling it to learn from interactions between all amino acid positions. In
embodiments, the peptide amino acid sequence is encoded using: (a) a predetermined amino acid
encoding scheme to produce an amino acid sequence embedding, and (b) a fixed or learned
encoding scheme applied to hydrophobicity values associated with each of the amino acids in the
sequence. The amino acid sequence embedding and hydrophobicity-based embedding can be
combined to obtain an encoded sequence for the peptide using a positional encoding scheme,
where the hydrophobicity based encodings are used as positional encodings. The amino acid
sequence embedding and hydrophobicity-based embedding can be combined by summing the
amino acid sequence embedding and the hydrophobicity based embedding. The hydrophobicity
values can be Kyte-Doolittle values. For example, the following hydrophobicity values
(corresponding to the Kyte-Doolittle scale) can be used for canonical amino acids: A: 1.8; C: 2.5
D:-35 E:-35;F:28;,G:-04;H:-32;1:45;K:-39;L:3.8 M: 1.9; N: -3.5; P: -16; Q: -3.5; R: -
45;S5:-0.8;T:-0.7;V: 4.2, W: -0.9; and Y: -1.3. Note that other hydrophobicity scales can be used,

such as e.g. the Engelman scale, the Eisenberg scale, and the Hopps-Woods scale. A fixed
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encoding scheme can be any encoding scheme known in the art (e.g. one hot encoding, or use of
the hydrophobicity values themselves). A learned encoding scheme can be any encoding that is
specified through the use of an encoding block (e.g. a fully connected layer) that is trained when
training the model that takes the peptide sequence as input (e.g. the peptide-MHC module as

described further below).

At step 14, a probability that the peptide is immunogenic is predicted. This may comprise step 14A
of, for each triplet, inputting the encoded sequences into a model trained to predict the probability
that the peptide is immunogenic in the context of the candidate MHC sequence and the candidate
TCR sequence in the triplet. Step 14 may further comprise step 14B of determining a probability
of the peptide being immunogenic based on the results of step 14A. For example, the maximum
probability amongst the probabilities obtained for all of the one or more triplets may be selected as

the probability that the peptide is immunogenic.

A method of obtaining a model for use in step 14 will now be described. The method may comprise
step 10’ of providing training data for training the model. The training data comprises the sequence
of a plurality of peptide-MHC-TCR triplets (i.e. a plurality of triplets of sequences), and a status
label for each triplet indicating whether the triplet is a positive triplet (comprising sequences for a
peptide, MHC and TCR molecules that are known to interact) or a negative triplet (comprising
sequences for a peptide, MHC and TCR molecules that are not expected to interact). The status
labels may be set to any binary value, such as e.g. 0 for negative triplets and 1 for positive triplets.
Any binary label may be used. The values may eventually be converted to values of “0” or “1” to
train the model to predict a value between 0 and 1 being as close as possible to 1 for positive
triplets and a value as close as possible to O for negative triplets. Alternatively, the values may not
be used as such (i.e. they may simply be used as a class label) and the model may be trained to
predict a value between 0 and 1 that is the probability of a triplet belonging to a first class (e.g.
positive triplets), rather than a second class (e.g. negative triplets). Step 10’ may comprise step
10’a of obtaining sequences for a plurality of positive triplets. Sequences for positive triplets may
be obtained from one or more databases, computing devices or user interfaces. Sequences for
positive triplets may be sequences of peptide-MHC-TCR triplets that have been experimentally
demonstrated to interact. The positive triplets may all be from the same organism. For example,
the positive triplets may all comprise human sequences. All positive triplets are associated with a
“positive” status label. Step 10’ may further comprise step 10b’ if obtaining a first, second and third
set of negative triplets, each comprising one or more triplets associated with a “negative” status
label. The first set of triplets each comprise: (i) a TCR-MHC pair comprising an MHC molecule and
a TCR chain or chains known to bind the MHC molecule (positive TCR-MHC pair), and (ii) a peptide
not known to interact with the TCR-MHC pair. The positive TCR-MHC pair may be selected from
the positive triplets. The peptide may be selected from any collection of peptides including the

peptides in the positive triplets, or peptides extracted from a reference dataset (e.g. a reference
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proteome), for example from a database. Peptide sequences from a reference dataset may
comprise sequences selected from a collection of protein sequences from the same organism as
the organism from which one or more positive triplets have been identified. For example, the
human proteome (as defined in e.g. Uniprot, www.uniprot.org) may be used as a reference
sequence. The peptide sequences may be selected randomly or may be selected from a set of
proteins comprising the peptide sequences in the positive triplets. Advantageously, the peptide
sequences may be selected independently from the peptide sequences in the positive triplets. For
example, the peptide sequences may be randomly selected from a reference proteome. The
second set of triplets each comprise: (i) a peptide-MHC pair comprising an MHC molecule and a
peptide known to bind the MHC molecule (positive peptide-MHC pair), and (ii) a TCR chain or
chains not known to interact with the peptide-MHC pair, wherein the peptide-MHC pair has been
previously found to interact with a TCR (immunogenic positive peptide-MHC pair). The positive
peptide-MHC pair may be selected from the positive triplets. The TCR sequences may be selected
from the positive triplets, or independently from the positive triplets. For example, the TCR
sequences may be selected from a database or reference dataset. For example, the TCR
sequences may be selected from a TCR sequence database such as e.g. VDJdb. The TCR
sequences are typically from the same organism as at least one or more of the positive triplets.
The third set of triplets each comprise: (i) a peptide-MHC pair comprising an MHC molecule and a
peptide known to bind the MHC molecule (positive peptide-MHC pair), and a TCR chain or chains
not known to interact with the peptide-MHC pair, wherein the peptide-MHC pair has been
previously found to not be immunogenic (non-immunogenic positive peptide-MHC pair). The
positive peptide-MHC pair in the third set of negative triplets cannot be obtained from the positive
triplets (as all of these are immunogenic). Therefore, the third set of negative triplets cannot be
obtained by resampling the positive dataset, which is a common way to obtain negative data in the
art. Instead, the positive peptide-MHC pairs of the third set of negative triplets are peptide-MHC
pairs that have been experimentally shown to form a complex that is notimmunogenic. These may
be identified experimentally as part of the method, and/or may be obtained from one or more

databases, computing devices or user interface.

At step 12’, all of the sequences are encoded substantially as described in relation to step 12. At
step 14A’, the TCR sequence of one or more triplets in the training data is used to pretrain a model
to encode TCR sequences (also referred to herein as “TCR encoder”, “TCR encoding module” or
“self-supervised TCR block”). This may instead or additionally use TCR sequences that are not
comprised in triplets, such as e.g. sequences from TCR repertoires or databases. In other words,
the pretraining of the TCR model does not require the use of TCR sequences that are parts of
triplets. The model is able to learn the “language” of TCR sequences based solely on TCR
sequences themselves. In other words, the model learns the sequence features that characterise
a “real” TCR sequence. Thus, step 14A’ may further comprise obtaining one or more further TCR

sequences, such as e.g. from a TCR sequence database. The model obtained at step 14A’ may
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be referred to as a “TCR model”. The TCR model may comprise an encoder or a pair of encoders
each encoding a different part of a TCR molecule (e.g. a part of the alpha and beta chains,
respectively). The model may be trained in a self-supervised manner, for example using masked
language modelling as described in Devlin et al. (Jacob Devlin, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, arXiv:1810.04805). The TCR model may be trained as an encoder only model
comprising an encoder (e.g. transformer-based) and a fully connected layer (or layers) for
reconstructing the input from the output of the encoder. The fully connected layer(s) may be
removed after training such that only the encoder is used as part of the full machine learning model.
When the TCR sequence comprises sequence from pairs of chains, a single TCR model may be
trained using as input the concatenation of the sequences in the pair. Alternatively, separate TCR
models may be trained for the respective chains (i.e. taking the sequence from the respective chain

as input), and the outputs of these models may be combined.

At step 14A”, the peptide and MHC sequences are used to train a model comprising an encoder,
the output of which is used by the model to determine whether a peptide-MHC pair is likely to be
a positive or negative doublet (i.e. a doublet determined experimentally to bind or not bind to each
other and/or to form a peptide-MHC complex that is presented on the surface of cells, such as e.g.
by identifying the peptide as an eluted ligand of the MHC molecule and/or by determining the
binding affinity of the peptide to the MHC molecule), and/or to determine whether the peptide and
MHC molecule are likely to form a stable complex. This can comprise classifying the doublets
between a negative and a positive class, for example producing a probability that the peptide-MHC
is in the positive class (classification task), or predicting a scaled binding affinity or metric indicative
of the stability of the complex (regression task). The scaled binding affinity or metric indicative of
the stability of the complex can each be treated as equivalent to a probability of the doublet being
a positive doublet. This model may be referred to as a “peptide-MHC model”, “pMHC module” or
“‘pMHC encoder”, and is trained to predict the probability of binding, presentation and/or stability

between a peptide and an MHC molecule on the basis of their sequence.

Training of the peptide MHC model can comprise training a model that takes a doublet of
sequences (or information derived therefrom, by encoding using a predetermined encoding
scheme) as input and produces as output a prediction of the binding affinity between the peptide
sequence and a MHC molecule corresponding to the MHC sequence in the doublet. This can also
be referred to as “binding affinity” prediction. This can be trained as a regression task (e.g.
predicting a binding affinity metric value) or as a classification task (e.g. predicting whether the
doublet has a binding affinity within each one of a plurality of classes associated with different
respective ranges of binding affinities). In embodiments, the model is trained to provide as output

a prediction of the binding affinity between the peptide sequence and a MHC molecule
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corresponding to the MHC sequence in the doublet as a continuous value (i.e. the model is trained

for a regression task), such as a scaled binding affinity metric.

Training of the peptide MHC model can comprise training a model that takes a doublet of
sequences (or information derived therefrom, by encoding using a predetermined encoding
scheme) as input and produces as output a classification between a first class comprising peptide-
MHC pairs known to bind to each other and be presented on the surface of cells, and a second
class comprising peptides-MHC pairs that are not expected to bind to each other and be presented
on the surface of cells. This can also be referred to as “eluted ligand” prediction because the model
can be trained using training data from immunopeptidomics (i.e. eluted ligand information). The
model may be a model that has been previously pretrained for binding affinity prediction, and is
fine-tuned for eluted ligand prediction. This may also be referred to as “transfer learning’, i.e. a
trained binding affinity prediction model can be trained for eluted ligand prediction using transfer

learning.

Training of the peptide MHC model can comprise training a model that takes a doublet of
sequences (or information derived therefrom, by encoding using a predetermined encoding
scheme) as input and produces as output a metric indicative of the stability of a complex comprising
the peptide and MHC molecule corresponding to the MHC sequence. This can be referred to as
“stability” prediction. The model may be a model that has been previously pretrained for binding
affinity and/or eluted ligand prediction, and is fine-tuned for stability prediction. Thus, the peptide-
MHC model may have been trained using one or more transfer learning steps in which the model
is pretrained for a first task and fine-tuned for one or more further tasks. The tasks can each be
selected from binding affinity prediction, eluted ligand prediction and stability prediction. The metric
indicative of stability can be a half-life or scaled half-life. For example, the metric indicative of
stability of a complex comprising the peptide and MHC molecule corresponding to the MHC
sequence can be a scaled half-life measured using a method as described in Rasmussen, M. et
al. 2016. The metric indicative of stability can be a metric indicative of relative stability compared
to one or more reference peptides (e.g. a percentage ELISA signal compared to a reference). For
example, the metric indicative of stability can be a metric obtained using a NeoScreen assay as
described in Lie-Andersen et al. 2023. The metric indicative of stability can be metric obtained
through a TR-FRET assay as described in Gurung et al. 2023. The metric indicative of stability can
be a metric indicative of the temperature yielding half-maximal denaturation of the complex. This
can be a metric measured using UV-cleavable peptide/HLA class | complexes and differential
scanning fluorimetry as described in Blaha et al. 2019. The metric indicative of stability can be a
metric indicative of the presence of stable complexes on TAP knockout cells, as described in
Kaseke et al. 2021. In embodiment, the model is trained to provide as output the value of a metric
that quantifies the stability of a complex comprising the peptide and MHC molecule corresponding

to the MHC sequence (i.e. the model is trained for a regression task), such as a scaled half-life or
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metric correlating with half-life. Alternatively, the model can be trained as a classification task (e.g.
predicting whether the doublet has a binding stability within each one of a plurality of classes
associated with different respective ranges of a metric that quantifies the stability of a complex

comprising the peptide and MHC molecule corresponding to the MHC sequence).

Training of the peptide-MHC model (comprising the peptide-MHC encoder that will be used in the
full immunogenicity model) at step 14A” can comprise training a model that takes as input peptide
and MHC sequences for one or more or all of the following tasks (each of which can be performed
as described above): determine whether a peptide-MHC pair is likely to bind to each other (binding
affinity prediction), determine whether a peptide-MHC is likely to form a peptide-MHC complex that
is presented on the surface of cells (eluted ligand prediction), and determine whether the peptide
and MHC molecule are likely to form a stable complex (stability prediction). Each task can be set
up as a regression task or a classification task. The binding affinity prediction task can be set up
as a regression task. This is advantageous as continuous binding affinity data is often available
and as such regression more completely captures the range of possible binding affinities between
peptides ad MHC molecules. The eluted ligand prediction can be set up as a classification task.
This is advantageous as eluted ligand data is typically binary. The stability prediction task can be
set up as a regression task, particularly when continuous binding stability data is available for
training, such as e.g. measured half lives or metrics indicative of half-life of peptide-MHC
complexes. Training for any of the tasks can be performed as a transfer learning step after training
for another one of the tasks. Thus, training of the peptide-MHC model can comprise training the
model for a first task, and using the trained weights as a starting point to train the model for a
second task. The trained weights after this step can optionally be further used as a starting point
to train the model for a third task. The first, second and third tasks can be selected from any of the
above. In other words, the peptide-MHC model can be trained for binding affinity prediction, eluted
ligand prediction and/or stability prediction in any order. In embodiments, such as e.g. as
demonstrated in the examples, the peptide-MHC model is trained for binding affinity prediction,
then eluted ligand prediction, then optionally stability prediction. Alternatively, the peptide-MHC
model can be trained only for eluted ligand or binding affinity prediction. Each of the training steps
of the peptide-MHC model may comprise training the model to produce an output between 0 and
1. In the context of a classification task, this can be the probability of a peptide-MHC belonging to
a first class. In the context of a regression class, this can be a normalised binding affinity or stability
metric. The model can be configured such that the first class is a class associated with positive
peptide-MHC pairs. Positive peptide-MHC pairs in this context are pairs that are presented by the
MHC, bind the MHC and/or form a stable complex with the MHC molecule. In other words, positive
peptide-MHC pairs can be pairs where the peptide is an eluted ligand for the MHC, the peptide
has a binding affinity with the MHC molecule sufficient to be considered a binder, and/or the peptide
and MHC molecule form a stable complex. The model can be configured such that the normalised

binding affinity or stability metric is such that positive peptide-MHC pairs are associated with scores
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closer to 1 than negative peptide-MHC pairs. Thus, the model can be trained using binding affinity
and/or stability training data that has been normalised to be between 0 and 1 and to be such that
values closer to 1 are indicative of higher binding affinity / stability than values closer to 0. As the
skilled person understands, the reverse is also possible, for example the model can be trained to
predict the probability of a peptide not being an eluted ligand, and a normalised binding affinity
and/or stability metric between 0 and 1 where values closer to 0 are indicative of higher binding
affinity / stability than values closer to 1. This advantageously means that the same classification
/ regression head can be fine-tuned for all tasks. For example, a fully connected network (e.g. a 2-
layer network) can be used as a classification head for the eluted ligand prediction task, then used
in a transfer learning step as a regression head for the binding affinity or stability prediction tasks

(and vice versa).

Training of the peptide-MHC model may instead or in addition to peptide-MHC pairs from positive
triplets, use sequences from peptide-MHC complexes that are known to bind to each other but that
are not necessarily part of the positive triplets in the training data obtained at step 10’. In other
words, the peptide-MHC model may be trained to predict peptide-MHC binding independently from
immunogenicity. As such, step 14A” may comprise obtaining one or more further paired peptide
and MHC molecule sequences, for example from one or more databases. Thus, the full training
data set may comprise: (a) the triplet data obtained at step 10’ (used to train the whole
immunogenicity prediction model as will be described further below, and optionally also to pretrain
the TCR and/or peptide-MHC models); and optionally (b) TCR sequence data obtained at step
14A’ (used to pretrain the TCR model) and/or (c) peptide-MHC sequence data obtained at step
14A” (used to train the peptide-MHC model). The MHC sequence used as input for the peptide-
MHC model may be a pseudosequence. Schemes for obtaining pseudosequences for MHC
molecules are described e.g. in O’'Donnell et al. 2020 and Jurtz et al. 2017. These use specific
positions selected by multiple sequence alignment as evolutionary conserved. The term “MHC
sequence” is used throughout this disclosure to encompass both a “real” sequence (i.e. a part or
whole amino acid sequence of an MHC molecule), and a pseudosequence, unless context
indicates otherwise. Similarly, the TCR sequence used as input for the TCR model may be a
pseudosequence and the term “TCR sequence” is used throughout this disclosure to encompass
both a “real” sequence (i.e. a part or whole amino acid sequence of a TCR molecule), and a
pseudosequence, unless context indicates otherwise. In embodiments, the TCR sequence used
as input for the TCR model is a “real” TCR sequence. A pseudosequence may be a string of
characters derived from a sequence and which includes information about selected positions in
the sequence. For example, a pseudosequence for an MHC sequence may comprise the amino
acids at a plurality of selected positions in the sequence, the plurality of positions being selected
based on the expected relevance of the positions. Expected relevance of the positions may be
derived from e.g. alignment of MHC sequences across a plurality of species. Thus, the selected

positions may be positions that are conserved across a plurality of species. Instead or in addition
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to evolutionary conserved residues, residues may be chosen as those at specific positions in a
multiple sequence alignment that are believed to be important to the function of the molecule, such
as e.g. residues of an MHC molecule that are thought to contact a cognate peptide. This may be
based on predicted or experimentally determined structural information instead of or in addition to
evolutionary conservation. At step 14A’", the full immunogenicity model may be trained using the
triplet data obtained at step 10’. Steps 14A’ and 14A” may be referred to as “pretraining”, while
step 14A”” may be referred to as “training”. The training may comprise determining the parameters
of the full immunogenicity model using training data and the parameters of any parts of the
pretrained models included in the full immunogenicity model. The parameters of any parts of the
pretrained models included in the full immunogenicity model can be frozen (i.e. fixing those
parameters to the values obtained in pretraining for some or all of the training process), or fine-
tuned (i.e. used as starting parameters, which are further trained as part of the full immunogenicity
model, for the immunogenicity prediction task). Parameters of the models may also be referred to
as “weights”. The model may comprise the encoder or pair of encoders of the pretrained TCR
model, and the encoder of the pretrained peptide-MHC model. The model may combine the
outputs of the encoders (e.g. by concatenation), and further process the combined output in an
immunogenicity prediction block. This further processing allows the model to extract information
associated with the combination of the TCR and peptide-MHC sequences and transform this to a
probability (a score between 0 and 1). By contrast, each of the pretrained encoders learn
information associated with TCR sequence (for the TCR model encoder(s)) and peptide-MHC
sequence and binding (for the peptide-MHC model encoder). The immunogenicity prediction block
may comprise a natural language processing model such as e.g. a model comprising a transformer
block. The immunogenicity prediction block may further comprise e.g. one or more fully connected
layers and an activation function to obtain a single value between 0 and 1 that can be interpreted
as the probability that the TCR, peptide and MHC molecule will bind (and hence that the peptide
is immunogenic in the context of the TCR and MHC molecule). During training of the full
immunogenicity model, the weights of the pretrained encoders may be fixed (also referred to as
“frozen”) and the remaining parameters of the model may be trained (e.g. parameters of the
immunogenicity prediction block). Alternatively, the weights of the pretrained encoders may be

fine-tuned during training of the full immunogenicity model.

Training the full immunogenicity model at step 14A’”” may comprise a first step in which a peptide-
MHC immunogenicity model is trained, and a second step in which the full immunogenicity model
comprising this peptide-<HC immunogenicity model is fine tuned. A peptide-MHC immunogenicity
model is a machine learning model that has been trained to take as input a doublet of sequences
comprising an amino acid sequence of a peptide encoding the antigen, and an amino acid
sequence of a candidate MHC molecule or a part thereof, or information derived from the doublet
of sequences, and provide as output a score representing the probability that the antigen is

immunogenic in the context of the candidate MHC molecule. This model comprises the previously
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trained peptide-MHC model encoder, but does not comprise the TCR model encoder(s). The
peptide-MHC immunogenicity model may be trained using training data comprising amino acid
sequences or information derived therefrom for (i) positive peptide-MHC doublets comprising a
peptide and MHC sequences that have been experimentally demonstrated to form an
immunogenic complex; and (ii) negative peptide-MHC doublets comprising: a. a first set of one or
more peptide-MHC doublets each comprising: (i) a MHC molecule selected from the positive
peptide-MHC doublets and a peptide sequence not known to interact with the selected MHC
molecule, optionally a randomly sampled peptide sequence, and; b. a second set of one or more
peptide-MHC doublets each comprising: (i) a peptide-MHC pair comprising an MHC molecule and
a peptide known to bind the MHC molecule (positive peptide-MHC pair), wherein the peptide-MHC
pair has been previously found to not be immunogenic (non-immunogenic positive peptide-MHC
pair). Indeed, the present inventors have found that such a peptide-MHC immunogenicity model
already improves on prior art models for immunogenicity prediction, even without inclusion of the
TCR encoder (although inclusion of the TCR encoder and training of the resulting full model using

the three types of negative triplets as described herein was found to yield even greater benefits).

Thus, the present disclosure also provides a computer-implemented method of predicting whether
an antigen is likely to be immunogenic, the method comprising:

obtaining a doublet of sequences comprising: an amino acid sequence of a peptide
encoding the antigen, and an amino acid sequence of a candidate MHC molecule or a part thereof;
and

providing the triplet of sequences or information derived therefrom as inputs to a machine
learning model trained to predict a score representing the probability that the antigen is
immunogenic in the context of the candidate MHC molecule (peptide-MHC immunogenicity model),
wherein the machine learning model has been trained using training data comprising amino acid
sequences or information derived therefrom for:
(i) positive peptide-MHC doublets comprising a peptide and MHC sequences that have been
experimentally demonstrated to form an immunogenic complex; and
(i) negative peptide-MHC doublets comprising: a. a first set of one or more peptide-MHC doublets
each comprising: a MHC molecule selected from the positive peptide-MHC doublets and a peptide
sequence not known to interact with the selected MHC molecule, optionally a randomly sampled
peptide sequence, and; c. a second set of one or more peptide-MHC doublets each comprising: a
peptide-MHC pair comprising an MHC molecule and a peptide known to bind the MHC molecule
(positive peptide-MHC pair), wherein the peptide-MHC pair has been previously found to not be

immunogenic (non-immunogenic positive peptide-MHC pair).

Similarly, also provided herein is a computer-implemented method of providing a tool for predicting

whether an antigen is likely to be immunogenic, the method comprising:
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(1) obtaining a training dataset comprising amino acid sequences or information derived therefrom
for a plurality of peptide-MHC doublets, each doublet comprising an amino acid sequence of a
peptide encoding the antigen, and an amino acid sequence of a candidate MHC molecule or a part
thereof, wherein the plurality of peptide-MHC doublets comprise:

(i) positive peptide-MHC doublets comprising a peptide and MHC sequences that have been
experimentally demonstrated to form an immunogenic complex; and

(i) negative peptide-MHC doublets comprising: a. a first set of one or more peptide-MHC doublets
each comprising: a MHC molecule selected from the positive peptide-MHC doublets and a peptide
sequence not known to interact with the selected MHC molecule, optionally a randomly sampled
peptide sequence, and; b. a second set of one or more peptide-MHC doublets each comprising: a
peptide-MHC pair comprising an MHC molecule and a peptide known to bind the MHC molecule
(positive peptide-MHC pair), wherein the peptide-MHC pair has been previously found to not be
immunogenic (non-immunogenic positive peptide-MHC pair); and

(2) training, using said training data, a machine learning model that predicts the probability that an
antigen is immunogenic in the context of a candidate MHC molecule provided as a doublet of

sequences or information derived therefrom as input to the machine learning model.

The methods above using doublets of sequences can have any of the features described herein
in relation to a model that takes a triplet of sequences as input, to the extent that they are applicable
to a doublet model. Further, these methods can also be used in the context of any of the methods
described herein in relation to a model that takes a triplet of sequences as input, such as methods
of identifying one or more tumour-specific peptides that are likely to be immunogenic, methods of
characterising an immunogenic composition comprising a plurality of candidate peptides or
sequences encoding a plurality of candidate peptides, methods of designing or providing an

immunotherapy for a subject that has been diagnosed as having cancer.

For example, the peptides in the first set of one or more peptide-MHC doublets can have been
selected from a database or reference dataset. For example, optionally the peptides in the first set
may have been randomly selected from a reference proteome. The peptide-MHC pair in the
second set may have been experimentally identified as not immunogenic. The training data can
comprise a ratio of negative doublets to positive doublets of at least 100:1, at least 150:1, between
100:1 and 300:1, preferably between 150:1 and 250:1, or around 200:1.

The machine learning model can take as input the doublet of amino acid sequences and produce
an encoding for each sequence. Alternatively, the machine learning model can take as input an
encoding for each sequence of a doublet of amino acid sequences. The amino acid sequences
can be encoded using encoding schemes selected from: a predetermined token for each amino
acid and optionally a padding character, one-hot-encoding, an encoding using a substitution
matrix, an encoding using an embedding matrix, and an encoding using physicochemical

descriptors. The one or more of the amino acid sequences can be encoded as fixed length strings
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with a token for each amino acid and a padding character. The peptide sequence can be encoded
as a fixed length string. The MHC sequence can be encoded as a pseudosequence with fixed
length. The machine learning model can be a deep learning model. The machine learning model
can comprise one or more natural language processing models. The machine learning model can
comprise an encoder (referred to as “second encoder” in the context of triplet-based models) for
encoding the peptide and MHC sequences. The encoder may have been pretrained prior to
training the machine learning model using the training data comprising the negative doublets. The
machine learning model may have been trained using the training data comprising the negative
doublets with the parameters of the encoder maintained to their pretrained values. Alternatively,
the training of the machine learning model using the training data comprising the negative doublets
can include fine-tuning the parameters of the encoder. The encoder can take as input a peptide
sequence and an MHC sequence. The encoder can have been trained as part of a model trained
to predict whether the peptide is likely to bind the MHC molecule, whether the peptide is likely to
be presented by the MHC molecule, and/or whether the peptide and MHC molecule are likely to
form a stable complex. The encoder can have been trained as part of a model trained to predict
the binding affinity between a peptide sequence and a MHC molecule corresponding to the MHC
sequence, trained to classify pairs comprising a peptide sequence and an MHC sequence between
a first class comprising peptide-MHC pairs known to bind to each other and be presented on the
surface of cells, and a second class comprising peptide-MHC pairs that are not expected to bind
to each other and be presented on the surface of cells, and/or trained to predict a metric indicative
of the stability of a complex comprising the peptide and MHC molecule corresponding to the MHC
sequence. The encoder can have been trained as part of a model that has been: (i) pretrained to
predict whether the peptide is likely to bind the MHC molecule, and/or whether the peptide is likely
to be presented by the MHC molecule; and (i) fine-tuned for predicting whether the peptide and
MHC molecule are likely to form a stable complex. At step (i) the encoder may have been trained
as part of a model that has been pretrained to predict whether the peptide is likely to bind the MHC
molecule, then further trained using transfer learning to predict whether the peptide is likely to be
presented by the MHC molecule. A model trained or fine-tuned to predict whether the peptide and
MHC molecule are likely to form a stable complex can be a model configured to take as input a
peptide and MHC sequence or information derived therefrom and produce as output a metric
indicative of the stability of a complex comprising the peptide and MHC molecule corresponding to
the MHC sequence. The metric can be a half-life or scaled half-life. The encoder can be selected
from: transformer-based encoders, autoencoders, and recurrent neural network encoders such as

long-short-term memory (LSTM) networks. The encoder can be a transformer-based encoder.

The machine learning model (peptide-MHC immunogenicity model) can comprise the peptide-
MHC encoder and further comprises a deep learning block that takes as input the output of the
encoder, and produces as output the probability that the antigen is immunogenic in the context of

the candidate MHC molecule. The deep learning block can comprise a first transformer block, and
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a second block comprising one or more fully connected layers producing a single numerical output

and optionally a sigmoid activation function.

The method can comprise (i) repeating one or more times the steps of: obtaining a doublet of
sequences, and providing the doublet of sequences or information derived therefrom as inputs to
the machine learning model, wherein each doublet of sequences differs in the amino acid
sequence of the candidate MHC molecule or part thereof, thereby obtaining a plurality of respective
probabilities that the antigen is immunogenic; and (ii) selecting the highest of the plurality of
probabilities as the probability that the antigen is immunogenic. The method can further comprise
identifying the antigen from a sample, and/or performing the method using one or more candidate
MHC molecules identified from a sample wherein the sample is optionally a sample from which the

antigen has been identified or a related sample.

At step 16°, the trained model may be provided to a user for use in predicting whether a peptide is
likely to be immunogenic. The model may optionally be evaluated for example to quantify its
prediction accuracy, sensitivity and specificity or derived values such as e.g. a ROC (receiver
operating characteristic) curve or AUROC, area under the ROC curve, also known as AUC, area
under the curve, as known in the art. The models described herein may have an AUC of at least
0.7, advantageously at least 0.75 when evaluated on an independent test set. An independent test
set may be a test set that is not related to the training set, such as e.g. a data set that does not
comprise any part of the training data, that is not a subset of the training data, or that is not primarily
made of data that is also in the training data. The models described herein may have an AUC of
at least 0.6 when evaluated using a test set comprising no peptides presentin the training set used

to train the model.

Applications

The above methods find applications in the context of designing immunotherapies, particularly
immunotherapies that use peptides or sequences encoding peptides to generate or promote an
immune response. Indeed, peptides that are predicted to be likely to be immunogenic (in general
or in the context of a specific set of candidate MHC molecules and/or candidate TCR molecules,
such as e.g. based on the TCR repertoire and/or MHC alleles identified to be present in a sample
or patient) are more promising candidates for inclusion in the immunotherapy. In particular, the
above methods may be used to provide cancer immunotherapies that target cancer-specific
antigens (also referred to herein as “cancer neoantigens”, or simply “neoantigens”). As the skilled
person understands, a cancer-specific antigen may be truly specific to cancer cells (in the sense
that it is only expressed by the genome of cancer cells), or may be practically specific to cancer
cells (in the sense that it is expressed by cancer cells at a significantly higher level than by normal

cells). The cancer neoantigens may be clonal neoantigens. Thus, also described herein are
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methods of providing an immunotherapy for a subject, the method comprising identifying and
optionally producing one or more peptides that comprise cancer neoantigens predicted to be
immunogenic, wherein the identifying is based on data from one or more samples from the subject
and further comprises predicting whether one or more candidate cancer neoantigen peptides are
likely to be immunogenic using a method as describe herein. An example of such a method will be

described by reference to Figure 3.

The methods described herein further find applications in the context of identifying peptides or
TCR sequences that are likely to be responsible for an observed reactivity in a sample. For
example, a plurality of peptides may be tested for immunogenicity by detecting T cell activation in
vitro, using assays that detect “reactivity” of a T cell population to the one or more peptides. The
“reactivity” of a T cell population to one or more antigens, such as e.g. tumour antigens, refers to
the presence and/or magnitude of an activation response of one or more cells in the T cell
population in response to exposure to said one or more antigens. The activation of T cells can be
assessed by detecting the presence of one or more markers of activation (e.g. IL2RA/CD25), the
secretion of one or more cytokines (e.g. IFNg, TNFa), and/or the proliferation of T cells. Assays for
measuring T cell activation are known in the art. In such cases, the methods of the present
disclosure may be used to identify which one or ones of the plurality of peptides may have triggered
the reactivity, and/or which one or ones of the TCRs expressed by the population of T cells may
have been responsible for the detected reactivity. This information can be used to design
immunotherapies, such as e.g. immunotherapies that use immunogenic peptides or sequences
encoding such peptides and/or immunotherapies that use modified T cells that express a

predetermined TCR.

Figure 3 illustrates schematically an exemplary method of designing or providing an
immunotherapy. At optional step 310, one or more samples comprising tumour genetic material
and one or more germline samples are obtained from a subject. The subject may be a subject that
has been diagnosed as having cancer, and may be (but does not need to be) the same subject for
which the immunotherapy is provided. At step 312, a list of candidate neoantigens is obtained
using methods known in the art, for example as described in WO 2022/207925, WO
2016/16174085, Landau et al. (2013), Lu et al. (2018), Leko et al. (2019), Hundal et al. (2019), and
others. The neoantigens may be clonal neoantigens. Methods to identify clonal neoantigens are
known in the art and include the methods described in WO 2022/207925, WO 2016/16174085,
Landau et al. (2013), Roth et al. (2014), McGranahan et al. (2016). The clonal neoantigens may in
particular be identified using a method as described in WO 2022/207925. The list may comprise a
single neoantigen, or a plurality of neoantigens. Preferably, the list comprises a plurality of
neoantigens. At optional step 313, one or more TCR sequences are obtained, for example by TCR
sequencing of one or more samples from the subject. Alternatively, candidate TCR sequences

may be obtained from a database or other data sources. At step 314, an immunotherapy that
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targets at least one (and optionally a plurality) of the candidate neoantigens is designed. Designing
such an immunotherapy comprises identifying one or more candidate peptides for each of the
candidate clonal neoantigens (step 314A). For example, a plurality of peptides may be designed
for at least one of the candidate clonal neoantigens, which differ in their lengths and/or the location
of a sequence variation that characterises the neoantigen compared to the corresponding germline
peptide. At step 314B, the one or more peptides identified are analysed to determine whether they
are likely to be immunogenic using a method as described herein, and optionally one or more
additional properties such as their expression in the subject’'s tumour, expression in reference
samples or datasets, similarity to a corresponding normal peptide, manufacturability (e.g. as
described in application PCT/EP2023/055383), etc. At step 314C, one or more of the peptides are

selected for production based on at least some of the results of step 314B.

At step 316, the selected peptides (or sequences encoding said peptides) may be obtained.
Peptides with selected sequences may be obtained using any method known in the art but they
are preferably obtained using chemical synthesis. Methods for obtaining sequences that encode
peptides of interest are known. For example, tandem minigenes may be obtained which encode
the selected one or more peptide. At step 318, an immunotherapy may be produced using at least
some of the one or more peptides or sequences encoding said peptides produced at step 316.
The immunotherapy may comprise the one or more peptides (e.g. in the case of an immunogenic
composition such as a synthetic long peptide vaccine), sequences encoding said peptides (e.g. in
the case of a DNA or RNA vaccine) or may comprise molecules or cells that have been obtained
using the selected peptides (e.g. in the case of therapeutic antibodies that selectively bind the
candidate peptides, or immune cells that specifically recognise the candidate peptides). In the
illustrated embodiment, the immunotherapy comprises cells that have been obtained using the
selected peptides. Methods of producing an immunotherapy comprising cells that have been
obtained using neoantigen peptides are known in the art, for example as described in WO
2022/207925, WO 2016/16174085, McGranahan et al. (2016), Lu et al. (2018), Leko et al. (2019),
Robbins et al. (2013). At optional step 320, the immunotherapy may be administered to a subject,
which is preferably the subject from which the samples used to identify the neoantigens have been
obtained. An example of producing an immunotherapy comprising a T cell population selectively
enriched with T cells that recognise one or more neoantigens, preferably clonal neoantigens, will
be described. At step 318A, a population of T cells may be obtained. The T cells may be obtained
from the subject to be treated, but do not need to be. The T cells may be obtained from a tumour
sample, from a blood sample, or from any other tissue sample. At step 318B, a population of
antigen presenting cells (e.g. dendritic cells) may be obtained. For example, a population of
dendritic cells may be derived from mononuclear cells (e.g. peripheral blood mononuclear cells,
PBMCs) from the subject to be treated. At step 318C, the population of dendritic cells may be
pulsed with the selected peptides. At step 318D, the T cell population may be selectively expanded
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using the population of pulsed dendritic cells. Additional expansion factors such as e.g. cytokines

or stimulating antibodies may be used.

Thus, the disclosure provides a method of providing an immunotherapy for a subject that has been
diagnosed as having cancer, the method comprising: optionally identifying one or more cancer
neoantigens for the subject, and designing an immunotherapy that targets one or more of the
cancer neoantigens, wherein the designing comprises performing the method of the first aspect
for one or more candidate peptides comprising the one or more of the cancer neoantigens. The
method may have any one or more of the following features. The immunotherapy that targets the
one or more of the cancer neoantigens may be an immunogenic composition, a composition
comprising immune cells or a therapeutic antibody. The immunogenic composition may comprise
one or more of the candidate peptides (such as e.g. a neoantigen peptide or protein or a cell
displaying the neoantigen). The composition comprising immune cells may comprise T cells, B
cells and/or dendritic cells. The composition comprising a therapeutic antibody may comprise one
or more antibodies that recognise at least one of the one or more of the candidate peptides. An
antibody may be a monoclonal antibody. The immunogenic composition may comprise one or
more nucleic acids encoding the one or more peptides, or a construct comprising such a nucleic
acid.

Designing an immunotherapy that targets one or more of the cancer neoantigens identified may
comprise designing one or more candidate peptides for each of the one or more neoantigens
targeted, each peptide comprising at least a portion of a neoantigen targeted. The method may
further comprise obtaining the one or more candidate peptides. The method may further comprise
testing the one or more candidate peptides for one or more further properties. Further testing may
be performed in vitro or in silico. For example, the one or more peptides may be tested for
immunogenicity, propensity to be displayed by MHC molecules (optionally by specific MHC
molecule alleles, where the alleles may have been chosen depending on the MHC alleles
expressed by the subject), ability to elicit proliferation of a population of immune cells, etc. A
plurality of the one or more peptides may be tested simultaneously for immunogenicity, and upon
determining that the plurality of peptides are able to elicit an immune reaction, the methods
described herein may be used to identify a subset (including a complete subset) of the one or more
peptides that is likely to have caused the observed immune reaction. Thus, also described herein
are methods for characterising a plurality of peptides and compositions comprising such peptides
(including immunotherapies), and methods for selecting peptides from a plurality of peptides, the
methods comprising determining that the plurality of peptides is able to elicit an immune reaction
by in vivo or in vitro testing (preferably in vitro testing or using results previously obtained from in
vitro tests, e.g. from a clinical trial database or other data source), and identifying one or more of
the plurality of peptides that are likely to elicit an immune reaction using a method as described

herein. The one or more of the plurality of peptides may be peptides amongst the plurality of
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peptides that have a probability of being immunogenic as determined used a method as described
herein that satisfies one or more criteria. The one or more criteria may be selected from: a
probability above a predetermined threshold, a probability in the top 1, 5, 10, 15 or 20 of ranked
probabilities for the plurality of peptides, or a probability in the top 1, 5, 10, 15, 20, 30, 40 or 50%
of ranked probabilities for the plurality of peptides. The one or more identified peptides may be

used to design an immunotherapy that targets said peptides.

A method of designing, providing or characterising an immunotherapy may further comprise
producing the immunotherapy. The method may further comprise obtaining a population of
dendritic cells that has been pulsed with one or more of the candidate peptides. The
immunotherapy may be a composition comprising T cells that recognise at least one of the one or
more of the neoantigens identified. The composition may be enriched for T cells that target at least
one of the one or more of the neoantigens identified. The method may comprise obtaining a
population of T cells and expanding the population of T cells to increase the number or relative
proportion of T cells that target at least one of the one or more of the neoantigens identified. The
method may further comprise obtaining a T cell population. A T cell population may be isolated
from the subject, for example from one or more tumour samples obtained from the subject, or from
a peripheral blood sample or a sample from other tissues of the subject. The T cell population may
comprise tumour infiltrating lymphocytes. T cells may be isolated using methods which are well
known in the art. For example, T cells may be purified from single cell suspensions generated from
samples on the basis of expression of CD3, CD4 or CD8. T cells may be enriched from samples
by passage through a Ficoll-paque gradient. The method may further comprise expanding the T
cell population. For example, T cells may be expanded by ex vivo culture in conditions which are
known to provide mitogenic stimuli for T cells. By way of example, the T cells may be cultured with
cytokines such as IL-2 or with mitogenic antibodies such as anti-CD3 and/or CD28. The T cells
may be co-cultured with antigen-presenting cells (APCs), which may have been irradiated. The
APCs may be dendritic cells or B cells. The APCs, for example dendritic cells, may have been
pulsed with the candidate peptides (containing one or more of the identified neoantigens) as single
stimulants or as pools of stimulating neoantigen peptides. Expansion of T cells may be performed
using methods which are known in the art, including for example the use of artificial antigen
presenting cells (aAPCs), which provide additional co-stimulatory signals, and autologous PBMCs
which present appropriate peptides. The APCs may be pulsed with peptides containing
neoantigens as discussed herein as single stimulants, or alternatively as pools of stimulating

neoantigens.

Also described herein is a method for expanding a T cell population for use in the treatment of
cancer in a subject, the method comprising: identifying one or more neoantigen peptides that are
likely to be immunogenic using a method as described herein; obtaining a T cell population

comprising a T cell which is capable of specifically recognising one of the neoantigen peptides;
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and co-culturing the T cell population with a composition comprising the neoantigen peptide. The
method may have one or more of the following features. The T cell population obtained may be
assumed to comprise a T cell capable of specifically recognising one of the neoantigen peptides.
The method preferably comprises identifying a plurality of neoantigen peptides. The neoantigen
peptides may comprise one or more clonal neoantigens. The T cell population may comprise a
plurality of T cells each of which is capable of specifically recognising one of the plurality of
neoantigen peptides, and co-culturing the T cell population with a composition comprising the
plurality of neoantigen peptides. The co-culture may result in expansion of the T cell population
that specifically recognises one or more of the neoantigen peptides. The expansion may be
performed by co-culture of a T cell with the one or more neoantigen peptides and an antigen
presenting cell. The antigen presenting cell may be a dendritic cell. Thus, the expansion may be a
selective expansion of T cells which are specific for the neoantigen peptides. The expansion may
further comprise one or more non-selective expansion steps. Thus, also described herein is a
composition comprising a population of T cells obtained or obtainable by a method as described

above.

Thus, the disclosure also provides a T cell composition comprising a T cell population selectively
enriched with T cells that recognise one or more neoantigens, preferably clonal neoantigens,
wherein the T cell population has been selectively enriched using peptides that have been

produced using any of the methods described herein.

In a T cell composition as described herein the expanded population of neoantigen-reactive T cells
may have a higher activity than the population of T cells which have not been expanded, as
measured by the response of the T cell population to restimulation with a neoantigen peptide.
Activity may be measured by cytokine production, and wherein a higher activity is a 5-10 fold or

greater increase in activity.

References to a plurality of neoantigens may refer to a plurality of peptides or proteins each
comprising a different tumour-specific mutation that gives rise to a neoantigen. Said plurality may
be from 2 to 250, from 3 to 200, from 4 to 150, or from 5 to 100 tumour-specific mutations, for
example from 5 to 75 or from 10 to 50 tumour-specific mutations. Each tumour-specific mutation
may be represented by one or more neoantigen peptides. In other words, a plurality of neoantigens
may comprise a plurality of different peptides, some of which comprise a sequence that includes
the same tumour-specific mutation (for example at different positions within the sequence of the
peptide, or within peptides of varying lengths). Thus, the one or more selected peptides obtained
at step 216 (or any method comprising selecting peptides using the methods described herein)
may comprise from 2 to multiple hundred peptides, such as e.g. between 2 and 400 peptides,
between 2 and 300 peptides, between 2 and 250 peptides, between 2 and 200 peptides, between
10 and 400 peptides, between 10 and 300 peptides, between 10 and 250 peptides, between 10
and 200 peptides, between 50 and 400 peptides, between 50 and 300 peptides, between 50 and
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250 peptides, or between 50 and 200 peptides. In particular, the one or more selected peptides
may comprise up to a maximum number of peptides that is set by the capacity of a synthesis
process or a step thereof, such as for example the number of wells in a reaction plate used for a
single synthesis run or a multiple thereof. For example, when 96 wells plates are used the number
of selected peptides may be set to a maximum of 96, 192, 288, or 384. Instead or in addition to
this, in the context of peptides comprising a different tumour-specific mutation that gives rise to a
neoantigen, the number of peptides selected may be set to a maximum corresponding to the
number of tumour-specific mutations that give rise to a neoantigen identified in a subject, or to the
number of different peptides of a predetermined length that comprise said tumour-specific
mutations. For example, as many as 1,000 to 10,000 peptides comprising one or more coding
mutations may be identified and peptides comprising each of said mutations may be selected using
the methods described herein. A T cell population that is produced in accordance with the present
disclosure will have an increased number or proportion of T cells that target one or more
neoantigens that are represented in peptides selected using the methods described herein. That
is to say, the composition of the T cell population will differ from that of a "native" T cell population
(i.e. a population that has not undergone the expansion steps discussed herein), in that the
percentage or proportion of T cells that target a neoantigen that is produced as described herein
will be increased. The T cell population according to the disclosure may have at least about 0.2,
0.3,04,05,06,07,08,09,1,2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15, 16, 17, 18, 19, 20, 25,
30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100% T cells that target a neoantigen for

which a peptide is produced as described herein.

The immunotherapies described herein may be used in the treatment of cancer. Thus, the
disclosure also provides a method of treating cancer in a subject comprising administering an

immunotherapeutic composition as described herein to the subject.

Suitably, in any embodiment of any aspect described herein, the cancer may be ovarian cancer,
breast cancer, endometrial cancer, kidney cancer (renal cell), lung cancer (small cell, non-small
cell and mesothelioma), bladder cancer, gastric cancer, oesophageal cancer, colorectal cancer,
cervical cancer, endometrial cancer, brain cancer (gliomas, astrocytomas, glioblastomas),
melanoma, merkel cell carcinoma, clear cell renal cell carcinoma (ccRCC), lymphoma, small bowel
cancers (duodenal and jejunal), leukemia, pancreatic cancer, hepatobiliary tumours, germ cell
cancers, prostate cancer, head and neck cancers, thyroid cancer and sarcomas. For example, the
cancer may be lung cancer, such as lung adenocarcinoma or lung squamous-cell carcinoma. As
another example, the cancer may be melanoma. The cancer may be bladder cancer. The cancer
may be head and neck cancer. In embodiments, the cancer may be selected from melanoma,
merkel cell carcinoma, renal cancer, non-small cell lung cancer (NSCLC), urothelial carcinoma of

the bladder (BLAC) and head and neck squamous cell carcinoma (HNSC) and microsatellite
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instability (MSI)-high cancers. In some embodiments, the cancer is non-small cell lung cancer

(NSCLC). In any embodiment of any aspect, the subject may be human.

Treatment using the compositions and methods of the present disclosure may also encompass
targeting circulating tumour cells and/or metastases derived from the tumour. Treatment according
to the present disclosure targeting one or more neoantigens, preferably clonal neoantigens, may
help prevent the evolution of therapy resistant tumour cells which may occur with standard
approaches such as chemotherapy, radiotherapy, or non-specific immunotherapy. The methods
and uses for treating cancer described herein may be performed in combination with additional
cancer therapies. In particular, the immunotherapies (including but not limited to T cell
compositions) described herein may be administered in combination with immune checkpoint
intervention, co-stimulatory antibodies, chemotherapy and/or radiotherapy, targeted therapy,
cancer vaccines or monoclonal antibody therapy. 'In combination' may refer to administration of
the additional therapy before, at the same time as or after administration of the immunotherapy

(e.g. T cell composition) as described herein.

The invention also provides a method for producing an immunotherapeutic composition, the
method comprising predicting whether one or more candidate peptides each comprising a
neoantigen are likely to be immunogenic, selecting one or more peptides from the candidate
peptides based on the predicting, and producing an immunotherapeutic composition that targets

the neoantigen(s).

Also described herein is a composition comprising a neoantigen peptide, neoantigen peptide
specific immune cell, or an antibody that recognises a neoantigen peptide, for use in the treatment
or prevention of cancer in a subject, wherein said neoantigen peptide has been identified using the
methods described herein. Also described herein is a composition comprising a neoantigen
peptide, neoantigen peptide specific immune cell, or an antibody that recognises a neoantigen
peptide, wherein said neoantigen peptide has been produced using the methods described herein.
Also described herein is a neoantigen peptide, immune cell which recognises a neoantigen
peptide, or antibody which recognises a neoantigen peptide, for use in the treatment or prevention
of cancer in a subject, wherein said neoantigen peptide has been produced using the methods
described herein. Also described herein is the use of a neoantigen peptide, immune cell which
recognises a neoantigen peptide, or antibody which recognises a neoantigen peptide, in the
manufacture of a medicament for use in the treatment or prevention of cancer in a subject, wherein
said neoantigen peptide has been produced using the methods described herein. Also described
herein is a method of treating a subject that has been diagnosed as having cancer, the method
comprising administering an immunotherapy that has been provided using the methods described

herein, or a composition as described herein.

48



10

15

20

25

30

35

WO 2024/194208 PCT/EP2024/057046

Systems

Figure 4 shows an embodiment of a system for predicting whether a peptide is likely to be
immunogenic, for designing an immunotherapy, and/or for characterising an immunogenic
composition according to the present disclosure. The system comprises a computing device 1,
which comprises a processor 101 and computer readable memory 102. In the embodiment shown,
the computing device 1 also comprises a user interface 103, which is illustrated as a screen but
may include any other means of conveying information to a user such as e.g. through audible or
visual signals. The computing device 1 is communicably connected, such as e.g. through a network
6, to sequence data acquisition means 3, such as a sequencing machine, and/or to one or more
databases 2 storing sequence data. The one or more databases may additionally store other types
of information that may be used by the computing device 1, such as e.g. reference sequences,
parameters, etc. The computing device may be a smartphone, server, tablet, personal computer
or other computing device. The computing device is configured to implement a method for
predicting whether a peptide is likely to be immunogenic, for designing an immunotherapy, and/or
for characterising an immunogenic composition, as described herein. In alternative embodiments,
the computing device 1 is configured to communicate with a remote computing device (not shown),
which is itself configured to implement a method of predicting whether a peptide is likely to be
immunogenic, for designing an immunotherapy, and/or for characterising an immunogenic
composition, as described herein. In such cases, the remote computing device may also be
configured to send the result of the method to the computing device. Communication between the
computing device 1 and the remote computing device may be through a wired or wireless
connection, and may occur over a local or public network such as e.g. over the public internet or
over WiFi. The sequence data acquisition 3 means may be in wired connection with the computing
device 1, or may be able to communicate through a wireless connection, such as e.g. through a
network 6, as illustrated. The connection between the computing device 1 and the sequence data
acquisition means 3 may be direct or indirect (such as e.g. through a remote computer). The
sequence data acquisition means 3 are configured to acquire sequence data from nucleic acid
samples, for example genomic DNA samples or RNA samples extracted from patient samples,
such as e.g. tumour and/or normal samples (e.g. to identify tumour-specific mutations that can give
rise to neoantigens and/or to identify HLA alleles present in the sample), samples comprising T
cells purified from fluid and/or tissue samples (such as e.g. peripheral blood, spleen, lymph node,
tumour tissue, or any other type of sample comprising B cells or T cells). In some embodiments,
the sample may have been subject to one or more preprocessing steps such as DNA/RNA
purification, fragmentation, library preparation, target sequence capture (such as e.g. exon capture
and/or panel sequence capture). Any sample preparation process that is suitable for use in the
determination of a T cell receptor sequence or repertoire, and/or for the identification of mutations
and/or for the identification of HLA alleles present in a subject may be used within the context of

the present invention. The sequence data acquisition means is preferably a next generation
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sequencer. The sequence data acquisition means 3 may be in direct or indirect connection with
one or more databases 2, on which sequence data (raw or partially processed) may be stored.
The sequence data acquisition means 3 may instead or in addition be configured to acquire
sequence data from peptide samples (such as e.g. by mass spectrometry). The sequence data
acquisition means 3 may be located in a physically separate location from the computing device
1.

The following is presented by way of example and is not to be construed as a limitation to the

scope of the claims.

EXAMPLES

These examples describe the training and benchmarking of machine learning models (hereafter

referred to as the “Genesis” model) for predicting whether an antigen is likely to be immunogenic.
Data

In the present examples, immunogenicity prediction models were trained using a training data set
comprising positive triplets (triplets of peptide-MHC-TCR amino acid sequences that have been
found to be reactive in previous studies) and negative triplets (triplets of peptide-MHC-TCR amino
acid sequences that are not expected to be reactive), as further described below. Models trained

as described below are referred to as “Genesis” models.

Positive triplets. Figure 5 illustrates the positive training dataset used to train the Genesis models.
The training dataset is comprised of positive triplets comprising peptide-MHC-CDR3- amino acid
sequences that have been found to be reactive in previous studies. All of the data used is publicly
available. In particular, the following datasets were used: VDJdb (vdjdb.cdr3.net, Goncharov et al.,
2022), McPAS-TCR (Tickotsky et al., 2017, friedmanlab.weizmann.ac.illMcPAS-TCR), IEDB
(www.iedb.org, Vita et al., 2019), and pMTnet (github.com/tianshilu/pMTnet, Lu et al., 2021).
Models that also make use of CDR3-a sequences as input have also been investigated but are not
illustrated here as currently public sources of paired CDR3-a sequences are more limited. The

network architecture illustrated in these examples is flexible to format changes to the inputs.

The data was filtered to remove all non-human data, to remove entries with missing data (e.g.
missing HLA allele), and to remove entries with modified amino acids in the TCR (such as e.g.
selenocysteine or pyrrolysine, as the encoding scheme used in the exemplified implementation
only handles the 21 normal proteinogenic amino acids — although different schemes are possible
including extensions of the scheme used in these examples to include representations for one or
more modified amino acids). Depending on the specific filters used, slightly different numbers of
data points may be kept. The data used (including positive and negative triplets obtained as
described above) contained approximately 7 million triplets in total, of which about 40,000 were

positive triplets, comprising approximately 2.5 million unique peptides (including negative peptides
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sampled as explained below), approximately 2 million unique TCRs and 122 human HLA
sequences. A specific example included 7,394,684 triplets, including 37,163 positive triplets,
2,405,462 unique peptides, 2,113,003 unique TCRs and 122 human HLAs.

Negative triplets. Three types of negative data points were used:

1. Negative TCR: Positive pMHC complexes are matched with random CDR3-B sequences from
TCRdb (Chen et al.,, 2021), a database with millions of TCR sequences. This widens the
distribution of TCRs the model has been trained to recognise. These are “real” peptide-MHC
interactions with the “wrong” TCR. The TCR sequences are sampled at each generation of the
training process, using the chosen negative to positive ratio and a predetermined proportion of
each of the three types of negative triplets to determine the number of TCRs to be sampled. For
example, using a positive to negative ratio of 1:200, 66 TCRs are sampled for each positive triplet
(using equal proportions of each of the three types of negative triplets — although other proportions
are possible).

2. Negative Peptides: Positive MHC-CDRS3 pairs are matched with random proteins from the
human proteome extracted from the Consensus CDS database
(www.ncbi.nlm.nih.gov/projects/CCDS/CedsBrowse.cgi). These are sampled as n-mers between
8-15 amino acids in length, by selecting a random CCDS identifier and selecting a random start
location within the sequence corresponding to the identifier, and checking that the sequence
selected is not present in the positive peptide list (in which case another sequence is sampled
instead). These are “real” MHC-TCR interactions with the “wrong” peptide. As above, the peptides
are sampled at each generation of the training process, using the chosen negative to positive ratio
and a predetermined proportion of each of the three types of negative triplets to determine the
number of peptides to be sampled. For example, using a positive to negative ratio of 1:200, 66
peptides are sampled for each positive triplet (when using equal proportions of each of the three
types of negative triplets).

3. Non-immunogenic pMHCs: Peptide-MHC combinations which have been found to be non-
reactive in immunogenicity screening experiments were paired with CDR3 sequences from the
positive triplet dataset to generate negatives which would be likely to form pMHC complexes.
These are “real” peptide-MHC interactions that are not immunogenic, paired with “real” TCRs
randomly selected. As above, these ftriplets are obtained by pairing TCRs sampled with
replacement from the positive set and negative peptide-MHC pairs sampled with replacement from
a set of negative peptide-MHC pairs (described below), using the chosen negative to positive ratio
and a predetermined proportion of each of the three types of negative triplets to determine the
number of triplets to be sampled for each positive triplet (e.g. sampling 66 TCRs for each positive
triplet). 6084 negative peptide-MHC pairs were obtained from: (i) the TESLA study (Wells et al.,
2020) and (ii) data from other peptidomics studies (Gfelleret al., 2022 — data in this paper combines
data from multiple immunopeptidomics studies). 11,807 negative pMHCs were provided by the

Hadrup lab (raw sequencing data available in Holm et al., 2022) which were used as holdout test
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samples. The negative TCR set are pMHCs that are immunogenic given the right TCR, whereas
the non-immunogenic pMHCs are notimmunogenic, and capture the fact that there can be peptide-
MHC binding without necessarily TCR recognition. Additionally, these negatives allow a
comparison of the model of the present disclosure to other immunogenicity models that only look
at the pMHC. The ‘negative TCR’ set only has immunogenic pMHCs so these models see them
as one positive data point per pMHC (whereas they are in fact negative from an immunogenicity
point of view). Those models are all very good at recognising random negative peptides, since the
likeliness of them being presented by the MHC is low. When only using random peptides, most
prior art p-MHC models can achieve high prediction performances (e.g. ROC AUC ~0.9), as does
the model of the present disclosure. However, when using a more realistic set the performance of

these models breaks down (as shown below).

In addition to a diverse set of negative sources, a high negative to positive ratio was used (200:1)
for training. Other values of the negative to positive ratio are envisaged. For example, ratios
between 10:1 and 250:1, preferably between 100:1 and 200:1 may be used. Ratios of
approximately 200:1 have been found to be particularly advantageous. The effect of the negative
to positive ratio on the performance of the model was investigated by testing a plurality of values
between 1:1 and 300:1. For each value, a model was trained using 5 different initialisations of the
negative datasets, and the mean prediction of models trained with the same negative to positive

ratio was used to evaluate the models.

Train: Test split. From the positive set, cancer related peptides (in all datasets used, i.e. VDJdb,
IEDB, McPAS-TCR, pMTNet as described above) were kept for the holdout test set. This
comprised 4148 triplets comprising 450 unique peptides. The remaining 37,163 triplets were used
for the training dataset. This ensured that no peptides appeared in both datasets, as well as
providing challenging and realistic test scenarios for the models (where models are evaluated on
peptides obtained from sources that may not necessarily be represented in the training data). Both
had negatives independently generated at a rate of 200:1, equally proportioned between the three

negative variants.

Stability prediction data. 28,198 half-life measurements were provided by the authors of the
NetMHCstabpan paper (Rasmussen, M. et al. 2016) and one additional study of yellow fever
vaccine epitopes (Stryhn, A. et al., 2020). The raw data is scaled in the same manner as
demonstrated in the NetMHCstabpan paper, S = 271%! where S is the converted value and t0 is
the conversion constant (hl=half life). The constant was set to 1, which was determined to be a
reasonable pan-allotype value in Rasmussen, M. et al. 2016 and which was confirmed in the
inventor’'s early developmental experiments. Negative entries were added from the data in
O’Donnell et al., 2020 where the measurement value was over 20,000nM. 1000 negatives samples
per MHC allele represented in the positive set were sampled. Performance was assessed by

Pearson’s correlation coefficient to the actual half-life values after 5-fold cross validation. The
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scaled stability as described above is a number between 0 and 1, with 0 indicating a half-life of 0

hours.

In the present examples, immunogenicity prediction models were trained using training data set
comprising positive doublets (doublets of peptide-MHC amino acid sequences that have been
found to be reactive in previous studies) and negative doublets (doublets of peptide-MHC amino
acid sequences that are not expected to be reactive), as further described below. Models trained
as described below are also referred to as “Genesis” models (labelled as “peptide MHC

immunogenicity prediction”).

Positive doublets. Training for immunogenicity prediction uses positive epitopes from IEDB,
VDJdb, TESLA, McPAS-TCR and the PRIME model training sets. Positive epitopes are peptide-

MHC complexes that are immunogenic.

Negative doublets. Training for immunogenicity prediction uses two types of negative doublets (i)
negative epitopes from IEDB (Vita et al. 2018), VDJdb (Goncharov et al. 2022) TESLA (Wells et
al. 2020), McPAS-TCR (Tickotsky et al. 2017) and the PRIME model training sets (Gfeller et al.
2023); and (i) negative peptides. Negative peptides are additional negatives that were sampled
from the human proteome using the consensus coding sequence project (CCDS; Pruitt et al. 2009),
as explained above in relation to “Negative Peptides” (i.e. MHC from positive doublets are matched
with random proteins from the human proteome extracted from the Consensus CDS database
www.ncbi.nlm.nih.gov/projects/CCDS/CcdsBrowse.cgi). Negative epitopes are peptide-MHC
complexes that are not immunogenic (i.e. peptide-MHC complexes that have been demonstrated
experimentally to form but to not be immunogenic). This is different from peptide-MHC doublets
that are assumed to be unlikely to be immunogenic because they are unlikely to form a pMHC
complex (as is the case for negative doublets that are obtained by random pairing of a peptide and
MHC).

Importantly, the use of the above set of positive and negative doublets means that the model is
truly trained for immunogenicity prediction (assuming no TCR knowledge). This is different from
predicting peptide-MHC complex formation (i.e. binding affinity and/or eluted ligand status) as a
proxy to immunogenicity. Further, the use of the two types of negatives ensures that the model
can learn peptide-MHC sequence features that result in a lack of immunogenicity for different
biological reasons including a lack of peptide-MHC binding, peptide presentation by MHC, and lack
of recognition by / activation of TCR despite the peptide-MHC complex forming.

Methods

Implementation. As explained further below, the models exemplified here are designed as a
modular immunogenicity model, trained in an iterative manner using different transfer learning
techniques. The model is broken up into different reusable modules depending on the end

prediction goal. All models were developed in Python 3.8.11 using PyTorch 1.12. Training was
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performed on NVIDIA Tesla T4 GPUs with 16GB of VRAM. All models were trained with the

Adamax optimiser to minimise binary cross entropy loss.

Model Architecture. The model architecture for the Genesis model is illustrated on Figure 6. The
chosen model architecture is a language modelling approach, with all sequence embedding
learned during the pre-training steps. The model utilises an end-to-end transformer approach
(Vaswani et al., 2017), with separate transformer-based modules (602, 604) handling the CDR3
(606) and pMHC (608a, 608b) inputs. Each section of the model is modular, with the number of
layers and configuration of layers (in particular, number of attention heads, encoding dimensions
and linear dimensions) being tuneable parameters during the cross validation (i.e. a plurality of
models are trained with different numbers of layers and configuration of layers, and the
performance of the models are compared by cross-validation). The model comprises a pretrained
encoder (602) that is trained to encode TCR sequence data, input as a CDR3-8 sequence encoded
using tokens representing each amino acid (606). The TCR encoder takes the form of an encoder-
only transformer network with a fully connected layer at the head to reconstruct the input. For the
final model the fully connected layer is removed, and the output of the transformer encoder layers
is fed into the combined model. The model further comprises a pretrained peptide-MHC (pMHC)
encoder (604) that is trained to encode peptide-MHC sequences as part of a model trained to
predict the probability of a given pMHC being a true eluted ligand (results on Figures 7-11) or
trained to predict a normalised binding affinity of a given peptide-MHC then further trained using
transfer learning to predict the probability of a given pMHC being a true eluted ligand (results on
Figures 13-15). The architecture of the pMHC encoder is a combined self and cross attention
model. This takes the form of a pair of transformer-based input branches which encode the peptide
and HLA sequences separately, before concatenating the attended sequences for inputinto a final
set of transformer layers attending to the whole peptide-MHC sequence. This model is pretrained
by use of a fully connected layer, trained to predict eluted ligands (either from scratch or as a fine
tuning / transfer learning step from a model trained to predict binding affinity), which is removed in
the final model. The fully connected layer is trained for a classification task (when predicting eluted
ligands) or for a regression task (when predicting binding affinity or stability). The pretrained
peptide-MHC encoder takes as inputs a peptide sequence encoded using tokens representing
each amino acid (608a) and an MHC sequence encoded using tokens representing each amino
acid (608b). In the model exemplified, the MHC sequence was provided as a pseudosequence
comprising the amino acids at 34 positions selected based on a multiple sequence alignment of
MHC class | molecules across a plurality of species, as described in O’Donnell et al., 2020 and
Jurtz et al. 2017. In O’'Donnell et al., the authors represented MHC class | alleles by the amino
acids at 37 positions from a global multiple sequence alignment, comprising 34 peptide-contacting
positions identified in Jurtz et al. 2017 (which describes the NetMHCpan 4.0 pseudosequence),
and 3 additional positions that were selected to differentiate several pairs of alleles that shared

identical 34-mer NetMHCpan 4.0 pseudosequences and were present above a threshold in the
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training data set used by the authors. These additional positions were not found to be necessary
in the present case as those alleles were not common in the training data. However, the 37 amino
acids pseudosequence of O’'Donnell et al. 2020 may also be used. Full length sequences of MHC
molecules may also be used. Both the pMHC and TCR models take in tokens and learn encodings
with an embedding depth of 128. The inputs of both encoders are the respective amino acid
sequences converted to numbers 0-20 (20 amino acids plus a padding character). The inputs of
all encoders have a fixed length (respectively 26 amino acids for the TCR, 16 amino acids for the
peptide, and 34 amino acids for the MHC). Other lengths are possible, up to and including models
that take a full MHC sequence and/or a full TCR chain or chains sequence as inputs. The TCR
and MHC sequences are provided as sequences of length 26 and 34, respectively. The peptide
sequences may be provided with variable lengths. When a peptide sequence with a length below
16 amino acids is used the peptide sequence is middle padded to keep the start and end of the
peptide sequence at the start and end of the input string. Other padding schemes are envisaged.
Other encoding schemes are possible, such as one-hot encoding, BLOSUM encoding (see e.g.
Eddy, 2004, or other encodings using substitution matrices), or physicochemical character-based
schemes such as the principal components score Vectors of Hydrophobic, Steric, and Electronic
properties (VHSES, see Mei et al., 2005), or encoding of amino acids with Atchley factors. For
example, both the use of BLOSUM-50 encodings and Atchley factors (Atchley et al., 2005) were
tested (data not shown) and found to perform satisfactorily, albeit not as well as the simple amino
acid tokenisation scheme used in this example. Other input lengths are also possible. The outputs
of both encoders are concatenated (610) and provided to a transformer head block (612), the
output of which is fed into an immunogenicity prediction block (614) comprising a series of fully
connected layers, producing a single output value that is input into a sigmoid function, generating
a value between 0 and 1. The parameters of all modules, pMHC encoder, TCR encoder and
immunogenicity prediction, (e.g. number of layers, transformer heads and encoding dimensions)
are trainable parameters and models trained with a variety of parameters (e.g. 2, 4 or 6 layers, 6
or 8 heads, 72 or 128 encoding dimensions) were compared by cross-validation. In models also
making use of the sequence of the CDR3- q, this can be appended to the sequence of the CDR3-
B provided as input to the TCR encoder (602). Alternatively, a third encoder similar to the TCR
encoder 602 can be pretrained in a similar manner, using CDR3-a sequences. The outputs of the
pre-trained CDR3-a and CDR3-B can then be concatenated in a similar manner as explained
above. Availability of paired CDR3-a - CDR3-B sequences is currently sufficient to pretrain a
combined encoder or a pair of self-supervised TCR encoders. However, the availability of triplet
data comprising both CDR3-a and CDR3-B sequences for the TCR is currently much lower.

Therefore, only a CDR3-B encoder was included in the present model.

Other architectures are envisaged and may similarly benefit from the training scheme described
herein. For example, the first encoder and second encoders may be selected from autoencoders

and LSTM models, and the outputs of these may be fed directly into a deep neural network. The
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present inventors have found end-to-end transformer-based architectures comprising a first and
second transformer-based encoders followed by a transformer head block and an immunogenicity

prediction block to perform particularly well.

Variants of the above models were also created using components of the model. Figure 12 shows
schematically the model architecture of these variants. Figure 12A shows the architecture of a
peptide-MHC only based immunogenicity prediction model, trained with peptide-MHC
immunogenicity data. Figure 12B shows the architecture of a peptide-MHC optional TCR
immunogenicity prediction, trained with combination of peptide-MHC and peptide-MHC-TCR
immunogenicity data. The model takes as input triplets comprising a peptide, MHC and TCR if
available, and a peptide, MHC and empty TCR vector if no TCR information is available. Figure
12B also shows the architecture of a peptide-MHC-TCR immunogenicity prediction model, trained
with peptide-MHC-TCR immunogenicity data, and optionally pre-trained using peptide-MHC
immunogenicity data. Figure 12C shows the architecture of a p-MHC stability, elution and/or
binding affinity prediction model used to pretrain the pMHC transformer encoder that is used in
each of the models on Figures 12A-B. Figure 12D illustrates the pretraining of the TCR encoder

used in the models of Figure 12B using a masked language modelling task.

Variants of the above model were also created in which peptide hydrophobicity information was
included as part of the inputs to the peptide-MHC model. In particular, this was performed by
adding to the embeddings of the peptide in the peptide-MHC module additional information related
to the known hydrophobicity of each amino acid. In other words, each peptide amino acid can
have an additional fixed embedding added matching its known hydrophobicity at the initial
encoding step before being fed into the first transformer layer, similar to positional encoding
embedding. This provides additional prior knowledge of similarities between amino acids to the
model prior to training. Indeed, hydrophobicity or other physiochemical features can be embedded
in the model embeddings if deemed necessary for a particular application where such features are
found to be important. Genesis is capable of interpreting these features as additional embeddings.
The known hydrophobicity values used were the Kyte-Doolittle scale values. Thus, the first
transformer layer of the peptide-MHC module was provided as input, for the peptide sequence, an
amino acid sequence embedding (of dimension equal to sequence length x embedding depth, here
72) and an amino acid sequence Kite-Doolittle embedding (of dimension equal to sequence length
x embedding depth, here 72). Two versions were tested, one using a fixed embedding for the Kyte-
Doolittle values, and one using a learned embedding. The latter at least showed a small
improvement in terms of AUROC and average precision when tested on the CEDAR dataset (data

not shown).

Training. The full model is trained in three steps. In a first training step, the TCR transformer
encoder is trained in an unsupervised manner (using a random masking approach as described in
Devlin et al., 2018) using data from TCRdb (Chen et al., 2021). 7 million CDR3-p sequences were
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used in the present examples. In a second training step, the pMHC transformer encoder is pre-
trained separately to perform eluted ligand prediction (or binding affinity prediction and eluted
ligand prediction) for a given peptide-MHC pair. This training was performed using a combination
of the MHCFlurry 2.0 (O’Donnell et al., 2020) and netMHCpan 4.1 (Reynisson et al., 2020)
datasets. Following steps 1 and 2 (note that steps 1 and 2 can be performed in any order), the
weights for both encoders are frozen for the remaining of the training, and the final layer from both
encoders is removed. In a third step, the full immunogenicity model is trained. Output from the
encoders representing the TCR and combined peptide-MHC are concatenated before being input
into a final series of transformer layers followed by a series of fully connected layers to produce a
single output value. Following a sigmoid function this is treated as the predicted probability of

binding and immunogenicity.

In versions of the model that only use peptide-MHC information for immunogenicity prediction
(Figure 12A), the pMHC transformer encoder is pre-trained separately to perform one or all of
eluted ligand prediction, binding affinity prediction and stability prediction as explained above (i.e.
in the same way as when the pMHC encoder is pretrained for use in the full model — see Figure
12B). Then, the fully connected network is removed and a transformer block and classification
head (2 layers fully connected network) are added and trained for immunogenicity prediction (i.e.
they convert the classification token to an immunogenicity probability). In other words, the final
transformer block outputs from the pMHC module are provided as the input to a new set of
immunogenicity prediction layers. The pMHC encoder weights are frozen during training of the

immunogenicity prediction layers.

In some of the data shown below, the inventors investigated the use of pMHC encoder models that
are pretrained for stability prediction, either alone or as a fine-tuning step following binding affinity
and/or eluted ligand prediction tasks. In such cases, step 2 comprises training or fine-tuning the p-

MHC encoder for stability prediction.

In the results shown on Figures 13 to 15, the pMHC encoder is trained initially to perform a binding
affinity prediction task, followed by an eluted ligand (EL) prediction task and finally fine-tuned on a
pMHC stability task. The same fully connected network is used for all tasks as a
classification/regression block (although the weights are of course updated at each training step),
which is made possible by the use of normalised binding affinity and stability metrics (both of which
are scores between 0 and 1, with 1 indicating higher affinity / more stable context, which is
compatible with a classification output for eluted ligand prediction being a probability that the
peptide is presented by the MHC, i.e. is an eluted ligand). Note that any order of these tasks may
be used, for example the model may be trained initially to perform an eluted ligand prediction, then
a binding affinity prediction, then a stability prediction. Alternatively, the model may be trained
initially to perform an eluted ligand prediction, then a stability prediction, then a binding affinity

prediction. All results shown in figures 13-15 use training initially for binding affinity prediction, then
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for eluted ligand prediction, and (if used) for stability prediction. Each further training step uses the
previously trained weights as a “warm start”, i.e. as starting point for further training of the model.
Model architecture was selected based on 5-fold cross validation performance on the EL task.
pMHC encoders trained for stability prediction from scratch (i.e. no BA/EL pretraining) were also
investigated. The design presented here (see Figure 12C) is an encoder only protein language
model with separate transformer branches for both the epitope and HLA pseudosequences, which
are then concatenated along with a classification token. Each transformer block is made up of 4
encoder layers. For pMHC training tasks the classification token is fed into a fully connected
network as the input. MHC pseudosequences are based on the MHCFlurry 2.0 alignment
describes in O’'Donnell et al., 2020. Amino acid sequences are encoded by branch independent

embedding layers with a depth of 72.

For the binding affinity training step of the pMHC module the binding affinity portion of the training
set used to train the MHCFlurry 2.0 in O’Donnell et al., 2020 was used. This initially comprised of
219,596 affinity measurements. This was filtered for only human quantitative measurement data,
resulting in a dataset of 99,761 measurements. Binding affinity measurements, in IC50 values,
were scaled to between 1-0 using the formula x = 1 — log(binding affinity)/log(50, 000), where x is
the nanomolar affinity and affinities are capped at 50,000 nM. The model shown on Figure 12C is
trained for binding affinity prediction using this data (regression task, i.e. the fully connected

network illustrated is a regression block).

For the eluted ligand training step, a combination of the eluted ligand data in O’Donnell et al., 2020

and Reynisson et al., 2020 was used as explained above.

Genesis was also benchmarked for TCR specificity prediction (results on Figure 14) using
peptide:HLA:TCR triplets as input. For these experiments, the pMHC prediction module is
unchanged to process the peptide:HLA paired input, but the immunogenicity classification head is
fine-tuned with the addition of TCR based inputs. The results on Figure 14 use the model labelled
as Genesis_BA_EL_STAB_IM, i.e. the model trained for peptide-MHC based (i.e. doublet-based)
immunogenicity prediction using a peptide-MHC module trained for binding affinity, eluted ligand
and stability prediction. Only the immunogenicity prediction portion (i.e. the last transformer block
and the classification block, on Figure 12A) were fine tuned and the peptide-MHC encoding block
weights were frozen. For these benchmarking experiments full length TCRs with both alpha and
beta chains were used to compare to existing state-of-the-art models; however, other configuration
such as CDR3-beta only input is also possible with Genesis. As explained above and as illustrated
on Figure 12D, a set of TCR encoding modules each consisting of a 2-layer transformer encoder
were pre-trained in a self-supervised manner using a random masking approach. Separate
encoders were trained for encoding TCR-alpha and TCR-beta chains, respectively, because this
enabled flexible use of one or both encoders in a final model (e.g. a final model can be built using

only beta chain data, or using both beta chain and alpha chain data). A combined transformer
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taking as input concatenated alpha and beta chain data, each chain preceded by a special token
indicating chain type, could have been trained instead. TCR-beta chains were generated from
datasets available from a sequencing dataset of 666 available from Adaptive Biotechnologies
(Emerson et al. 2017). Full length amino acid sequences were reconstructed using the V and J
allele annotations, with sequences define in IMGT/GENE-DB (Giudicelli, V., Chaume, D. & Lefranc,
2005). Entries containing ambiguous residues or non-standard amino acids were removed.
15,363,111 unique TCR-beta sequences were used to train the base model, with 5% randomly
selected to use as a validation set for hyperparameter optimisation. For alpha chain inputs a
specific encoder was trained by fine-tuning the beta chain encoder with the alpha chain pre-training
set from the STAPLER model (Kwee et al. 2023), resulting in 46,207 unique alpha chains after
processing. The alpha chain encoder was trained as a fine-tuning task from the pretrained beta
chain encoder because beta chain data is typically available in large amounts than alpha chain
data. This approach therefore reduces the risk of overfitting for the alpha chain encoder. It would
have also been possible to train the alpha chain encoder from scratch. Both models were trained
using negative log likelihood loss of reconstructing the original sequence from the masked input
using a projection back to amino acid space using a fully connected layer. The final combined
model is constructed by combining the outputs of the pMHC and TCR modules, separated by
special separation tokens. As with the pMHC immunogenicity model, the combined outputs of the
preceding encoders (and a class token) are provided to a classification head. The classification
head is fine-tuned from the pMHC immunogenicity model rather than being trained from scratch.
For the TCR specificity task versions of Genesis were trained with either encoder weights frozen
as with the pMHC task, or the entire model was fine-tune including the encoders. The use of the
classification head fine-tuned from the pMHC immunogenicity model is advantageous in that the
pMHC model can be trained with different data from the full immunogenicity model (e.g. data in
which only peptide-MHC but not TCR information is available, which can be from different assays
than triplet data). Therefore, training the triplet model (full immunogenicity model) by transfer
learning from the trained p-MHC immunogenicity model means that the training of the full model
(and in particular the classification head that performs the immunogenicity prediction from the
pMHC and TCR encoder outputs) can reflect a broader set of peptides than would be possible if
training only using triplet data. As explained above, the pMHC and TCR encoder weights can be
frozen or fine-tuned during training of the full immunogenicity model. The present inventors found
that the former is particularly advantageous when the triplet data is less diverse than the data on
which the peptide-MHC encoder was trained (which is often the case) as it enables the model to
have better generalisability to unseen epitopes (peptides). In cases where diverse triplet data is
available or a model that is particularly good for a type of epitopes for which triplet data is available,
the latter (fine tuning of the classification head and peptide-MHC encoder and/or TCR encoder)

can be advantageous.
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Benchmarking. To compare the models, the holdout test dataset was used. The presently
developed models (Genesis) were compared against two different types of models: 1. TCR
models: this set of models considers the interaction of a peptide with the TCR in an attempt to
provide a more specific measure of immunogenicity. Note that only a subset of these consider all
parts of the triplet (i.e. peptide, MHC and TCR — see Table 1 below). 2. pMHC models: this set of
models only considers the peptide and MHC portions of the input. These models provide a single
prediction for each pMHC. By contrast, as the present model provides prediction for TCR-pMHC,
it was used to process every triplet comprising a pMHC candidate (i.e. pMHC candidate paired
with a plurality of candidate TCR sequences in the test set, and the maximum score obtained for
the pMHC was taken as the immunogenicity estimate). Each model produced a score between 0
and 1 representing the likelihood of binding / immunogenicity. The models were compared by
obtaining receiver operating characteristic (ROC) curves for classifying each triplet in the test set

as a positive vs. negative triplet.

The following models were compared: 1. TCR models: pmtNet (Lu et al., 2021), imrex (Moris et
al., 2020), and ERGO (Springer et al., 2021). Only these models are arguably comparable to those
of the present disclosure. Table 1 below summarises the main features of these models as far as
they are relevant to the comparison with the model of the present disclosure. 2. pMHC models:
bigMHC  (Albert et al, 2022), DeepAttentionPan (Jin et al, 2021), IEDB
(tools.iedb.org/immunogenicity/, Calis et al., 2013), MHCflurry (O’Donnell et al., 2020),
NetMHCpan 4.1 elution prediction (Reynisson et al., 2020), NetMHCpan binding affinity prediction
(Reynisson et al., 2020), Prime 2.0 (Schmidt et al., 2021; Gfeller et al., 2023). These models are
not directly comparable to the models of the present disclosure as they solve a simpler task that
does not necessarily map to immunogenicity (since peptides can bind to MHC molecules without

the complex being able to interact with a TCR and trigger an immune reaction).

Model Model input Model output Model architecture

Genesis Sequences of Probability of 4 components: (i) pretrained
peptide, MHC, TCR | binding and transformer-based encoder trained
CDRS3beta. immunogenicity. | in self-supervised manner — other
Amino acids encoder architectures envisaged, (ii)
encoded as tokens pretrained transformer-based
(0-20, one for each encoder trained as part of model for
amino acid and a peptide-MHC binding prediction
padding character). (elution likelihood) — other
Other encoding architectures envisaged, (iii)
schemes envisaged transformer block taking
such as one-hot concatenated encoded data as
encoding, input, (iv) immunogenicity block
substitution taking transformer block output as
matrices and input, comprising fully connected
physicochemical layers producing a single value fed
descriptors. into a sigmoid function.
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PMTnet (Lu | Sequences of Single variable 3 components: (i) trained TCR
et al. 2021) CDR3b, peptide between 0 and autoencoder, (i) pMHC model is a
and MHC. 1, percentile long-short term memory (LSTM)
pMHC model input | rank of the model trained to predict whether the
is based on predicted peptide binds the MHC (categorical
netMHCpan binding strength | output), (iii) deep neural network
(pseudosequences | between the combining encodings of (i) and (ii).
comprising selected | TCR and the The prediction deep neural network
key residues, pMHC, with uses a differential learning scheme:
encoded with respectto a two identical copies of the model,
BLOSUM). TCR pool of 10,000 one is fed a true binding pair of TCR
model input is randomly and pMHC and one is fed a
CDR3beta sampled TCRs | negative pair with the same pMHC
sequence encoded | (background in each training cycle. Loss function
with distribution) taking both outputs into account —
physicochemical against the weights are the same in both
descriptors. same pMHC models.
Imrex (Moris | Amino acid Value between | This interaction map is fed into a
etal., 2020) | sequences of the 0 and 1 for an convolutional neural network (image
TCR’s CDRS region | epitope-TCR recognition model) that produces a
and the epitope. pair. single output value.
Sequences are
converted into an
interaction map: a
set of 4 single
channel 2D
pseudoimages
comprising a pixel
for each pair of
amino acids from
the CDR3 and the
peptide sequences,
the value of the
pixel being the
absolute difference
between the value
ofa
physicochemical
property for the
amino acids in the
pair.
ERGO CDR3beta and Categorical: LSTM (peptide) and LSTM or
(Springer et | peptide sequence. | TCR-peptide autoencoder (TCR) produce
al., 2021) CDR3beta amino binding / no encodings of the peptide and CDR3
acid sequences are | binding (respectively), and these are fed into
one-hot encoded classification. a multilayer perceptron trained to
for the autoencoder output 1 if the TCR and peptide bind
or encoded using and 0 otherwise.
an encoding matrix
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initialised with 10
random values for
each amino acid.
Peptide sequences
encoded using
encoding matrix.

NetTCR
(Montemurro
et al., 2021)

CDRS3 alpha and
beta or beta only,

Single number
representing

and peptide TCR-peptide
sequence. The binding
CDRS and peptide | probability.

sequences are
encoded using the
BLOSUMS0 matrix.

The encoded sequences are passed
independently through a 1D
convolutional layer and a max-
pooling layer. The extracted
features are then concatenated and
fed into a dense layer with 32
hidden units.

Table 1. Comparison of design of model of the present disclosure and prior art.

Model

Training data positives

Training data negatives

Genesis

37163 positive triplets combined
from multiple datasets.

Negative TCR: Positive pMHC
complexes matched with random
CDR3-b from database (not just
shuffle of positive data);

Negative peptides: Positive MHC-
CDRS pairs are matched with random
proteins from the human proteome.
Non-immunogenic pMHCs: Peptide-
MHC combinations which have been
found to be non-reactive in
immunogenicity screening
experiments were paired with CDR3s
from the positive triplet dataset to
generate negatives which would be
likely to form pMHC complexes.
200:1 negative to positive ratio, i.e.
approx. 7.5 million negative triplets.

PMTnet (Lu et
al. 2021)

32607 positive triplets

Random mixing: 10:1 negative to
positive ratio obtained by creating
negative pairs by random mismatching
of TCR and pMHC of the positive
triplets. Training scheme necessarily
presents both a positive and a
negative triplet.

Imrex (Moris
et al., 2020)

19,842 unique (human only, MHC-1
only, limited length) CDR3-epitope
pairs from VDJdb.

Compared two different methods for
generating negative observations:

1) shuffling the known positive pairs
(pairing CDR3 with peptide randomly
sampled from positive set) and

2) sampling uniformly from a negative
TCR CDR3beta reference repertoire
set and pairing with peptides from

62




10

15

20

25

WO 2024/194208 PCT/EP2024/057046

positive dataset. Positive to negative
ratio kept to 50:50 in all cases.

ERGO Pairs of peptides and TCRs from Pair peptides from positive set with 5
(Springer et two datasets: over 20000 TCRb randomly selected TCRs from positive
sequences matching over 300 set.

al., 2020) unique epitope peptides, and over

40000 TCR sequences and 200
cognate epitopes. Number of
unique pairs unknown.

NetTCR 9204 unique CDRB-peptide pairs 387,598 negative data points of TCRs
explicitly found not to be positive to
any of 19 peptides screened.

(Montemurro
et al., 2021)

Table 1 (continued). Comparison of design of model of the present disclosure and prior art.

Only Genesis and PMTNet consider triplets (peptide-MHC-TCR sequences). All other TCR models
in Table 1 only use the peptide and TCR sequences. Many were trained (and tested in their original

publications) using data from single HLA alleles or clusters, which reduces their generalisability.

The model according to the present disclosure (Genesis) was used by providing a prediction for
every possible peptide-MHC-TCR combination and taking the highest score as the output for that
peptide. Models using pMHCs as the input only see a given entry once without considering an
aspect of the TCR specificity. In other words, there will be only one prediction from pMHC models
for each peptide-MHC pair. By contrast, for peptide-MHC-TCR models, multiple predictions may
be obtained for triplets including a respective TCR sequence. This may enable such models to
take into account the TCR repertoire associated with a sample / patient, when making predictions
of immunogenicity. In the present model, every peptide in the test dataset would appear in multiple
triplets at least because of the way in which the negative triplets in the test data were generated.
The pMHC based models produce a general immunogenicity prediction (i.e. one that is not TCR
specific and hence cannot be patient specific), whereas Genesis can include an additional patient

specific component by taking the TCR repertoire into account.

For benchmarking Genesis for pMHC immunogenicity prediction (results on Figure 13B) two
variants were compared. One with the pMHC module trained up until the EL task and another with
the full training including the stability prediction task in order to assess the utility of this additional
transfer learning to immunogenicity. Genesis was compared to pMHC binding/elution models
netMHCpan 4.1 (Reynisson et al. 2020) and MHCFlurry 2.0 (O’Donnell et al. 2020), the pMHC
stability model netMHCstabpan (Rasmussen et al. 2016), along with the pMHC immunogenicity
models PRIME 2.0 (Gfeller et al. 2023) and BigMHC (Albert et al. 2023). The holdout test set was
compiled by combining the cancer specific dataset CEDAR (Kosaloglu-Yalcin, Z. et al. 2022) and
the holdout MANAFEST assay dataset of 16 cancer patients from Albert et al. 2023. CEDAR was

searched for t-cell assays in humans only. The full set was filtered for pMHC pairs contained in the
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training set for any of the comparison models. This resulted in a Genesis training set of 9101 pMHC
(2673 positives) and a test set of 3551 pMHCs (951 positives).

Genesis was also benchmarked for TCR specificity prediction (results on Figure 14) using
peptide:HLA:TCR triplets as input. The pMHC prediction module is unchanged to process the
peptide:HLA paired input, but the immunogenicity classification head is fine-tuned with the addition
of TCR based inputs. The model was compared to NetTCR-2.1 (Montemurro, A., Jessen, L. E. &
Nielsen, M., 2022) and STAPLER (Kwee et al. 2023). STAPLER is also a transformer-based
model, reading full length TCR alpha and beta chains along with the epitope of interest as a
sequence of tokens. The STAPLER model is trained with a mixture of masked language modelling
and fine-tuning tasks for epitope-TCR pairs. The comparison task with Genesis is performed using
the data provided from the author’s GitHub repository consisting of a fine-tuning training set and a
holdout test set consisting of positive triplets from VDJdb, along with a subset from their other
sources and externally sampled negative TCRs. Positives (in the holdout test set) were a mixture
of seen and unseen epitopes. The authors identified internal shuffling of the VDJdb TCRs to be a
source of data-leakage (i.e. the authors found that there is an underlying similarity within VDJdb
which explains some of the performance that they obtained when just doing random pairing),
indicating this to be a more representative test of generalisable performance (i.e. the STAPLER
model did not generalise well to unseen epitopes after removing the source of bias associated with
VDJdb similarity between test and fine tuning data). This provided a training set of 23,410 triplets
and a test set of 3,372 triplets (562 positive). NetTCR 2.1 is a sequence-based 1-D convolutional
neural network that takes as inputs the amino acid sequences of the six TCR CDR loops, and the
peptide sequence. The sequences are encoded using the BLOSUMS50 encoding scheme then
encoded sequences are processed independently by different convolutional blocks. The output of
the convolutional layers are max-pooled across the sequence length dimension and concatenated,
then processed with a final hidden layer and an output layer with a single neuron outputting a
binding score of the input peptide and TCR. The model was trained with combined data from IEDB,
VDJdb, McPAS and 10X Genomics Single Cell Immune Profiling of four donors, filtered to only
keep data points with both CDRS3 a- and B-chains and V/J gene annotations, remove any cross-
reactive TCRs, restrict the data to TCRs with CDR3a/B lengths in a range from 6 to 20 amino acids,
and only keep peptides with at least 100 positive TCRs. The performance of the NetTCR 2.1 model
as described in the original publication is very specific to a set of 5 epitopes that are well studied

(with multiple hundreds of TCRs each), on which the authors did all their experiments.

Finally, Genesis was benchmarked for TCR assisted immunogenicity prediction (results on Figure
15). Even if TCR specificity on unseen epitopes is still difficult with existing datasets and
architectures, TCR data when available could be used in ranking pMHC complexes for
immunogenicity using a compatible framework. In other words, given a completely unseen peptide,

it is still difficult to predict the specific triplets that the peptide will be involved in (e.g. exact TCR
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sequences that are likely to recognise the peptide). However, the experiments above showed that
the present methods can provide good predictions of whether the peptide will be reactive. In this
set of experiments, the inventors tested whether the TCR information could help with this task, and
found that it does. In other words, the results on Figure 15 show that having the TCR information
helps with the prediction of whether a peptide will be reactive, and can therefore be useful in
ranking / prioritising neoantigens. The pMHC-TCR version of Genesis was compared to the pMHC
only version to assess if TCR data could be useful in improving immunogenicity prediction when
available. For this experiment only the CDR3-beta chains were used due to shortage in datasets
with full paired chain information, particularly for holdout pMHCs unseen by other models. As
explained above, training data was composed of positive triplets from the same sources as the
pMHC only experiments, filtered for datasets with known reactive CDR3-beta sequences. This
resulted in a training set of 37,970 positive triplets covering 1,253 unique epitopes. 3 distinct types
of negative data were generated. First, negative wild type peptides were sampled from the CCDS
and paired with TCRs taken from the positive set. Second, positive pMHCs were paired with
negative TCRs from the background distribution used in the TCR encoder pre-training. Finally,
negative immunogenic pMHCs from the PRIME and TESLA datasets were paired with TCRs from
the positive fraction to create presented but non-immunogenic triplets. These negative types were
produced at equal proportions, with the total negative to positive ration of 100:1. 5-fold cross
validation was used to fit training parameters. The holdout test set was comprised of positives
taken from CEDAR, filtered for t-cell assays of neoepitopes in humans and with beta chain CDR3
sequences available and negatives from the same search without the CDR3 requirement. Negative
samples were paired with the positive TCR set to ensure difference between the positive and
negative datasets could not be detected by a distribution shift in the TCR repertoire alone. Any
epitopes present in both the training and test set were removed from the training set for both
Genesis and the comparison models. To maximise the possible test data BigMHC was compared
to as the best performing other model from the pMHC-only immunogenicity prediction.
NetMHCpan-el was also included to compare against a presentation-only model. This produced a
reduced test set of 115 positive pMHCs with at least one known reactive TCR and 1957 negative
pMHCs paired with the positive fraction’s TCRs. Genesis-TCR scores were aggregated per pMHC

by taking the maximum predicted score.
Results

Figure 7 shows the receiver operating characteristic (ROC) curve of our model alone at classifying
every triplet in the test set. The results show an area under the ROC curve (AUC) of 0.758, which
is well above random and an exceptional performance considering the complexity of the problem,
the small amount of triplet training data available, and the fact that the test set was specifically
selected to be different from the training set (comprising no peptides that appeared in the training

set).
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Figure 8 shows a comparison between the performance of the present model and prior art models
performing a similar task. Figure 8A shows the results when assessed using a test dataset filtered
to ensure that it does not contain any triplet appearing in the training set of any other model being
compared. Figure 8B shows the results when assessed using a test dataset filtered to ensure a
hard epitope separation (i.e. peptides that also appear in the training set are excluded from the
test set) between every model’s training set and the benchmark (test) set. Note that in many prior
art papers, such a hard epitope separation requirement is not applied, resulting in artificially inflated
performance. Indeed, it is known that TCR binding prediction models perform poorly on out-of-
distribution epitopes (see Deng et al., 2022). The models described herein (Genesis) outperform
all prior art approaches in both cases. With the hard epitope split, competing approaches produce
near chance levels of prediction (AUC close to 0.5). By contrast, the approach described herein
combining a language model with targeted negative data generation improves on the prior art and
manages to provide informative (non-random) prediction even with this extremely challenging test

set.

The performance of the model described herein was also compared to models that have been
trained to perform peptide-MHC (pMHC) binding predictions. This is a comparatively simpler task,
at least in part because the phenomenon to be modelled is simpler and the amount of training data
available for p-MHC models is significantly higher than for TCR-peptide-MHC models. However,

peptide-MHC binding is only a crude approximation of immunogenicity.

The test dataset was again filtered to ensure that it does not contain any epitope that appears in
the training set of any model before comparison with the model described herein. Each pMHC
model provides a single immunogenicity prediction for each peptide-MHC. By contrast, the model
of the present disclosure was tested using every triplet in the test set, taking the maximum binding
probability as the prediction for each peptide-MHC pair. The model provides candidate CDR3s
along with the immunogenicity or pMHC presentation prediction — in other words the maximum
binding probability is associated with a candidate TCR CDR3 sequence (which is information that

cannot be provided by the other models).

Because the prior art models are evaluated on the task for which they have been trained (whereas
the model described herein was trained for the different tasks of immunogenicity prediction for a
triplet), one may have expected the model described herein to perform less well than other models.
Figures 9 and 10 show that this was not the case. Indeed, the model described herein (Genesis)
outperformed all the peptide-MHC models other than BigMHC, which performed very slightly
better. Without wishing to be bound by theory, the present inventors believe that the performance
of the BigMHC model is likely to be due at least in part due to the size and level of curation of the
training data used, rather than due to the model and/or training design. Further, as explained
above, all peptide-MHC models are more limited than the model of the present disclosure as they

cannot provide TCR candidate binders along with an immunogenicity prediction. This information
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is very valuable in the context of understanding immunogenicity in a patient specific manner.
Additionally, the prediction in the context of interaction with a TCR is more physiologically relevant
(i.e. it is possible that the model described herein is providing correct predictions of lack of
immunogenicity in cases where peptide-MHC binding does occur — in which case the pMHC
models may appear to outperform the present model but are in fact providing biologically incorrect

predictions).

The results shown on Figures 7 to 9 are further summarised in Table 2 below.

Comparisons Test data AUC
Genesis vs. chance 827626 triplets, 4148 | Genesis: 0.758
positives. No peptides

appearing in the training data.
Genesis vs. CDRS3-pMHC | 445980 triplets, 1829 | Genesis: 0.633

models positives. No triplets | PMTNet: 0.565
appearing in the training data | Imrex: 0.548
of any model. ERGO: 0.590
Genesis vs. CDRS3-pMHC | 439887 triplets, 789 positives. | Genesis: 0.737
models No peptides appearing in the | PMTNet: 0.502
training data of any model. Imrex: 0.525
ERGO: 0.512

Genesis vs. pMHC models 11267 doublets, 217 | Genesis: 0.779
positives. No peptides | BigMHC:0.800
appearing in the training data | DeepAttentionPan:0.727
of any model. IEDB: 0.673

MHCflurry: 0.635
NetMHCpan el: 0.534
NetMHCpan ba: 0.728
Prime: 0.627

Table 2. Summary of benchmarking results.

Figure 11 shows the negative to positive ratio used for training the model. This shows that the
performance of the model initially improves with increasing negative to positive ratios, but that
performance drops off at 300:1. This indicates that there is likely an optimal range of negative to
positive ratio between 100:1 and 300:1, particularly around 200:1. Note that the exact values of
the AUCs are not comparable between the figures provided as the datasets used for testing are
different in each figure, but each figure shows a comparison between the models presented in the

figure.

Peptide-MHC module performance and Peptide-MHC immunogenicity Prediction

The p-MHC sub-module of Genesis was trained to encode peptide-MHC input pairs for
downstream immunogenicity prediction by training iteratively on related pMHC complex prediction
tasks. Performance on these sub-tasks was assessed compared to similar models at two stages,

first after the eluted ligand prediction on the MHCFlurry 2.0 benchmark dataset (O’Donnell et al.
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2020) and during stability training for similarity to the NetMHCstabpan 1.0 (Rasmussen et al. 2016)
results after cross validation.

Figure 13 shows results of these experiments, in particular an evaluation of the performance of
stability prediction using the Genesis pMHC transformer encoder (A) and an evaluation of the
performance of immunogenicity prediction using the Genesis pMHC transformer encoder trained
using a stability prediction task and comparative models (B). Figure 13A shows a comparison of
the performance of Genesis on the stability prediction task (Pearson Correlation Coefficient, PCC,
between stability predicted by Genesis vs ground truth), when Genesis was trained from scratch
for the stability prediction task (left bar in each pair of bars, each pair corresponding to data for a
single HLA allele) or using transfer learning, fine tuning for stability prediction after training for
binding affinity prediction and fine tuning for eluted ligand prediction (right bar in each pair of bars).
Due to the shortage of stability data available, a holdout test set was not practical for this task.
Similarly, a direct comparison with the NetMHCstabpan model was not possible since both models
(Genesis and NetMHCstabpan) use all of the available data in training and NetMHCstabpan is not
currently re-trainable. Nevertheless, the data on Figure 13A show a similarly high Pearson’s
correlation coefficient to that reported for NetMHCstabpan in Rasmussen ey al. 2016, with a best
PCC of 0.88 across all available alleles. The model performed best when pretrained with the BA
and EL tasks compared to being trained from scratch. A significant improvement in runtime is
achieved in Genesis compared to NetMHCstab-pan. Benchmark pools of 50,000 peptide MHC
pairs run through Genesis’s stability module in a uniform 52s on laptop with an M1 chip and 16GB
of RAM, whereas the same pools took between 2-20 minutes with NetMHCstabpan depending on
peptide length and HLA diversity.

The models described above were then fine-tuned for peptide-immunogenicity prediction and
extensively tested and benchmarked against comparative models for this task. The results of these
experiments are shown on Figure 13B. Figure 13B shows the receiver-operator characteristic
(ROC) and precision curves for Genesis (Genesis BA_EL_IM is the pMHC module trained for
binding affinity and eluted ligand prediction, then included in a model trained for pMHC
immunogenicity prediction; Genesis BA_EL_STAB_IM is a model trained using the same principle
but with additional training of the pMHC module for stability prediction by fine tuning after BA and
EL training) compared to its sub-modules (EL model is the pMHC module fine-tuned for eluted
ligand prediction after pretraining for binding affinity prediction; Stability model is the pMHC module
is the pMHC module fine-tuned for stability prediction after pre-training for eluted ligand prediction
and binding affinity prediction) and other published prediction models (netmhcpan_ba and
netmhcpan_el are respectively the binding affinity output and the eluted ligand output of
NetMHCpan 4.1 as described in Reynisson et al. 2020; bigMHC_im is the pMHC immunogenicity
model described in Albert et al. 2023; netmhcstabpan is the p-MHC stability model described in

Rasmussen et al. 2016; mhcflurry is the MHCflurry 2.0 presentation prediction model as described
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in O’Donnell et al. 2020; and Prime is the p-MHC presentation model PRIME 2.0 as described in
Gfeller et al. 2023). Models were compared on both the area under the ROC curve (AUROC or
AUC) and average precision (AP). Two versions of Genesis were compared with an EL-only and
full stability trained pMHC input module. The inclusion of stability pre-training in the pMHC module
resulted in the best overall performance (ROC AUC=0.628, average precision: AP=0.52). The EL
pMHC module alone performed worst of all of the Genesis models, with performance similar to
netMHCpan, indicating peptide elution likelihood was not a highly predictive feature on this dataset
alone. Stability was an overall better individual feature, with both the Genesis stability model and
netMHCstabpan outperforming all the BA/EL models. The data show that immunogenicity specific
training as described herein enables improved discrimination of immunogenic from non-

immunogenic pMHC pairs.

TCR Specificity Prediction

Prediction of TCR specificity from triplets with unseen epitopes has been shown to be limited in
recent studies and reviews (see e.g. O'Brien et al. 2023), with results showing above chance
performance explainable by data leakage from their training sets or frequency shifts (see e.g. Kwee
et al. 2023). For example, Kwee et al. 2023 showed that above chance results are associated with
in-dataset similarities, due to low epitope diversity (as similar TCRs are likely to bind to the same
epitope). Indeed, publicly available triplet datasets typically contain large amounts of information
about a very limited sets of epitopes (e.g. one CMV epitope making up 15k of the ~45k triplets in
public datasets available to date — making it possible for models to easily spot and memorise
similar TCRs, but poorly able to generalise beyond those few epitopes). In other words, current
models are not able to give an exact prediction of a TCR for a known reactive peptide-MHC. This
limits their application to use cases such as designing new TCR-based therapies such as
genetically engineered T cells. This may be due at least partially to biases and lack of diversity in
available triplet-based immunogenicity data. Nevertheless, the present inventors postulated that,
with the beneficial features of the methods described herein, TCR information when available could
still provide valuable information in the context of evaluating antigens themselves (i.e. evaluating
peptide-MHC or peptde immunogenicity). To demonstrate the utility of Genesis as an architecture
for immunogenicity prediction utilising the full peptide-MHC-TCR triplet we initially compare it to
two recent TCR specificity models using data splits provided by the authors to provide a fair
comparison. The results of these experiments are shown on Figure 14, and demonstrate Genesis
as a model design capable of using TCR information in its predictions. In particular, the inventors
showed that the Genesis models as described herein can make use of TCR information if available
to help rank potential peptide-MHCs for immunogenicity. This is particularly useful in the context
of developing therapies (such as immunotherapies) that are antigen based, such as vaccines,

antigen-reactive T cell-based therapies etc.
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Initially Genesis was compared to NetTCR 2.1 (Montemurro, A., Jessen, L. E. & Nielsen, M., 2022),
a 1D convolutional neural network-based approach to TCR specificity. Figure 14A shows the
performance (in terms of Precision-Recall curves, on the left, with average precision “AP” for each
model; and in terms of ROC curves, with area under the ROC curve provided as “AUC” for each
model) compared to Genesis when trained on the same datasets on the holdout 6th fold as
described in Montemurro, A., Jessen, L. E. & Nielsen, M., 2022. NetTCR was retrained using the
codebase provided by the authors. Two versions of Genesis were compared, one with frozen
encoder weights and one with fine-tuning allowed on the whole model (labelled on Figure 14A as
Genesis-TCR and Genesis-TCR-Fine tune respectively). Both versions of Genesis demonstrated
good performance at this TCR specificity task, and both showed improved performance over
NetTCR 2.1. The fine-tuned version of the model performed best, indicating increased fine-tuning

of the encoder sections is beneficial for the TCR specificity prediction task.

Next, Genesis was compared to STAPLER (Kwee et al. 2023). Figure 14B show the results of
these experiments. The figures show the performance of Genesis compared to the STAPLER
model using the train-test split described in Kwee et al. 2023, with their “VDJdb+ with external
negatives” used as the test set. Figure 14B shows that Genesis performs better at the cross-
validation task with an improved average precision. The main difference between these two models
is the inclusion of HLA inputs in Genesis, and the training approach as described above. STAPLER
uses a model architecture that uses a variant of the BERT design. A masking experiment was
conducted, removing the HLA inputs of Genesis and retraining it to identify the influence of this
difference to performance. These HLA masking experiments show that the difference in
performance between STAPLER and a truncated version of Genesis (with HLA masked) was
greatly reduced by removing the HLA element of Genesis and retraining. Thus, the data shows
that Genesis performs better than comparative models at the TCR specificity prediction task at
least in part because the HLA information encoded in the pMHC module contributes to the
performance of the prediction. This is particularly the case for unseen epitopes (i.e. epitopes that
were not part of the training data used for immunogenicity training). Indeed, although the MHC
component explains a small proportion of the variance in seen epitopes, it explains a lot of the
variance for epitopes where no information was available in training about whether they bind to
any TCR. This again underlines the superior power of the Genesis approach for generalisability
beyond the very low diversity triplet data currently available. Generalisability to unseen epitopes
is crucially important in many contexts including in the context of personalised immunotherapy,

where candidate neoantigens to be evaluated with immunogenicity models are patient-specific.
TCR Assisted Immunogenicity Prediction

The previous experiments demonstrated the use of Genesis as an architecture for TCR specificity
prediction tasks, showing its ability to learn information efficiently from TCR-based inputs. An

additional experiment was conducted to investigate whether having candidate TCR information
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would assist in predicting the immunogenicity of a pMHC complex. A reduced test set from CEDAR
where paired CDR3-beta chain information was available was used as input for Genesis, with
negatives constructed using pMHCs marked as negative on TCR assays in CEDAR. The results
of these experiments are shown on Figure 15, demonstrating an improved performance of
Genesis compared to comparative pMHC models NetMHCpan (eluted ligand prediction) and
BigMHC (immunogenicity prediction), which improvement was even greater by including the TCR

information in the model input.

Discussion

The present examples describe and demonstrate the performance of a model for predicting
immunogenicity of candidate triplets comprising a peptide/epitope, a MHC molecule, and a TCR
molecule (represented by a TRC CDR3 B sequence), based solely on the sequence of the
members of the triplet.

Models with CDRS3 inputs have been found to generalise poorly to peptides outside their training
distribution (Moris et al., 2020). This problem has also been observed in immunogenicity models
using only pMHC complex inputs, where models can generalise to similar peptides but poorly to
data too far outside their training distribution, for example an unseen pathogen (Buckley et al.,
2022). The present inventors hypothesised that this was at least in part due to the way in which
negative training data points are generated. Most prior art models which attempt to use CDR3
sequence inputs to predict peptide binding or immunogenicity use random mixing to generate
negative data (see e.g. Lu et al., 2021; Montemurro et al., 2021). This is achieved by randomly
mixing positive peptide-MHC (pMHC) pairs with other CDR3 sequences from the positive set to
generate a likely negative. A shortcoming with this approach is that it restricts the CDR3 diversity
in the dataset to TCRs which have been observed in a positive sample. Additionally, CDR3s are
not specific to a single pMHC complex. Mixing only positive pMHCs with CDR3s from the positive
dataset results in a negative dataset with low diversity and a high rate of false negative labelling

(triplets labelled as “negative” but that may in fact be immunogenic).

Therefore, in order to improve generalisability (which must underline any real clinical use), the
inventors generated three types of negative data points: negative TCR, negative peptide, and non-
immunogenic pMHCs. In addition to a diverse set of negative sources, a high negative to positive
ratio was used (200:1). This was done to both increase the diversity in the dataset and to provide
a more realistic classification situation. Indeed, in a clinical application where peptide ranking is
required there may be a large number of candidate CDR3s. Alternatively a single CDR3 of interest

may be known but needs to be matched to a large number of potential peptides.

The results obtained (see e.g. Figures 7-11) show that the models described herein were able to
improve on the prior art by providing more reliable predictions of immunogenicity for peptide-MHC-
TCR triplets as well as for peptide-MHC pairs, in a realistic scenario where the testing data used

to evaluate the models is not biased to the data that was already used to train the model. The
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results shown on Figures 13-15 further show that best in class performance for immunogenicity
prediction can be obtained using triplet based approaches as described herein (i.e. providing
peptide, MHC and TCR sequence information as inputs to the prediction, and training using 3 types
of negative triplets as described herein), although the approach still shows some benefits for
immunogenicity prediction from doublets (i.e. providing peptide and MHC sequence information as
inputs to the prediction, and training using 2 types of negative doublets as described herein). The
data further shows that the use of a peptide-MHC encoder that has been pre-trained for stability
prediction further enhances the performance of both doublets and triplets-based models as

described herein.

There are many potential practical uses of the methods described herein, where the benefits of
these methods are likely to prove particularly advantageous. For example, the models described
herein can be used for ranking potential neoantigen peptides identified in a patient with cancer. In
particular, when TCR sequencing data is available for the patient, a plurality of candidate
neoantigen peptides could be used as input to the models described herein together with every
TCR identified in the patient, and the model predictions (e.g. maximum prediction for a peptide
across TCRs observed in the patient) can be used to rank neoantigens or peptides associated with
the neoantigens. A similar analysis can be run with a generic distribution of representative TCRs
(e.g. from a TCR sequence database), for example when no patient specific TCR sequence data
is available. As another example, the models described herein can be used for retrospective
analysis of peptide reactivity assays. This can be used to identify which peptides are likely to be
reactive in a pool of peptides that triggered an immune reaction in a reactivity assay. This can be

based on a generic or sample specific set of TCR sequences.

As another example, the models described herein can be used as pre-filters to conduct
immunogenicity screening experiments. For example, in Holm et al. (2022), the authors screened
blood samples from patients treated with an immune checkpoint inhibitor, using patient-specific
neopeptide-MHC multimer libraries, to identify characteristics of neoantigen reactive T cells that
are indicative of treatment response. The libraries were obtained by identifying neoantigens from
whole exome and RNA sequence data, then selecting potential neoantigens based on predicted
MHC class | binding affinity and expression. Such screens would benefit from improved predictions
of likely immunogenic peptides which reflect more than just MHC-I binding. Indeed, this would
enable the generation of more specific screening libraries, which may in turn enable an improved
characterisation of samples forimmunogenicity by avoiding exposing T cells to many peptide-MHC
that they would not in fact be expected to react to, and which could dilute the peptide-MHC that
they would otherwise react to and/or increase the risk of cells developing a non-reactive
phenotype. In other words, in any experiment where immunogenicity of candidate neoantigens

and/or reactivity of T cell samples is assessed, the use of more specific sets of candidate
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neoantigens (i.e. those that are more likely to be in fact immunogenic in the presence of the “right”

T cells) is expected to increase the likelihood that true reactivities would be identified.
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All references cited herein are incorporated herein by reference in their entirety and for all purposes
to the same extent as if each individual publication or patent or patent application was specifically

and individually indicated to be incorporated by reference in its entirety.

The specific embodiments described herein are offered by way of example, not by way of limitation.
Various modifications and variations of the described compositions, methods, and uses of the
technology will be apparent to those skilled in the art without departing from the scope and spirit
of the technology as described. Any sub-titles herein are included for convenience only and are

not to be construed as limiting the disclosure in any way.

The methods of any embodiments described herein may be provided as computer programs or as
computer program products or computer readable media carrying a computer program which is

arranged, when run on a computer, to perform the method(s) described above.

Unless context dictates otherwise, the descriptions and definitions of the features set out above
are not limited to any particular aspect or embodiment of the invention and apply equally to all
aspects and embodiments which are described. Throughout the specification and claims, the
following terms take the meanings explicitly associated herein, unless the context clearly dictates
otherwise. The phrase “in one embodiment” as used herein does not necessarily refer to the same
embodiment, though it may. Furthermore, the phrase “in another embodiment’ as used herein
does not necessarily refer to a different embodiment, although it may. Thus, as described below,
various embodiments of the invention may be readily combined, without departing from the scope
or spirit of the invention. It must be noted that, as used in the specification and the appended

» ou

claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly
dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or
to “about” another particular value. When such a range is expressed, another embodiment includes
from the one particular value and/or to the other particular value. Similarly, when values are
expressed as approximations, by the use of the antecedent “about,” it will be understood that the
particular value forms another embodiment. The term “about’ in relation to a numerical value is
optional and means for example +/- 10%. Throughout this specification, including the claims which
follow, unless the context requires otherwise, the word “comprise” and “include”, and variations
such as “comprises”, “comprising”, and “including” will be understood to imply the inclusion of a
stated integer or step or group of integers or steps but not the exclusion of any other integer or
step or group of integers or steps. Other aspects and embodiments of the invention provide the
aspects and embodiments described above with the term “comprising’ replaced by the term
“consisting of’ or “consisting essentially of’, unless the context dictates otherwise. “and/or” where

used herein is to be taken as specific disclosure of each of the two specified features or
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components with or without the other. For example “A and/or B” is to be taken as specific

disclosure of each of (i) A, (ii) B and (iii)) A and B, just as if each is set out individually herein.

The features disclosed in the foregoing description, or in the following claims, or in the
accompanying drawings, expressed in their specific forms or in terms of a means for performing
the disclosed function, or a method or process for obtaining the disclosed results, as appropriate,
may, separately, or in any combination of such features, be utilised for realising the invention in

diverse forms thereof.
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CLAIMS

1. A computer-implemented method of predicting whether an antigen is likely to be immunogenic,
the method comprising:

obtaining a triplet of sequences comprising: an amino acid sequence of a peptide encoding
the antigen, an amino acid sequence of a candidate MHC molecule or a part thereof, and an amino
acid sequence of a candidate T cell receptor (TCR) beta chain and/or alpha chain or a part thereof;
and

providing the triplet of sequences or information derived therefrom as inputs to a machine
learning model trained to predict a score representing the probability that the antigen is
immunogenic in the context of the candidate MHC molecule and the candidate TCR,
wherein the machine learning model has been trained using training data comprising amino acid
sequences or information derived therefrom for negative peptide-MHC-TCR triplets comprising:

a. a first set of one or more peptide-MHC-TCR triplets each comprising: (i) a TCR-MHC
pair comprising an MHC molecule and a TCR chain or chains known to bind the MHC molecule
(positive TCR-MHC pair), and (ii) a peptide not known to interact with the TCR-MHC pair;

b. a second set of one or more peptide-MHC-TCR triplets each comprising: (i) a peptide-
MHC pair comprising an MHC molecule and a peptide known to bind the MHC molecule (positive
peptide-MHC pair), and (ii) a TCR chain or chains not known to interact with the peptide-MHC pair,
wherein the peptide-MHC pair has been previously found to interact with a TCR (immunogenic
positive peptide-MHC pair); and

c. a third set of one or more peptide-MHC-TCR triplets each comprising: (i) a peptide-MHC
pair comprising an MHC molecule and a peptide known to bind the MHC molecule (positive
peptide-MHC pair), and a TCR chain or chains not known to interact with the peptide-MHC pair,
wherein the peptide-MHC pair has been previously found to not be immunogenic (non-

immunogenic positive peptide-MHC pair).

2. The method of claim 1, wherein the first, second and/or third sets of negative peptide-MHC-TCR
triplets have been derived from amino acid sequences or information derived therefrom for a
plurality of positive peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule and a
TCR chain or chains that are known to interact with each other to induce an immune response,
and/or

wherein the machine learning model has been trained using training data further comprising amino
acid sequences or information derived therefrom for a plurality of positive peptide-MHC-TCR
triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that are known

to interact with each other to induce an immune response.

3. The method of claim 2, wherein the TCR chain or chains in the second set have been selected

from a database or reference dataset, and/or wherein the TCR chain or chains in the second set
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have not been selected from the plurality of peptide-MHC-TCR triplets each comprising a peptide,
an MHC molecule and a TCR chain or chains that are known to interact with each other to induce
an immune response (positive peptide-MHC-TCR triplets), and/or wherein the TCR chain or chains
and the peptide-MHC pairs in the second set do not form a triplet that is present in the plurality of
peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule and a TCR chain or
chains that are known to interact with each other to induce an immune response (positive peptide-
MHC-TCR triplets), and/or wherein the peptide-MHC pairs in the second set have been selected
from the plurality of peptide-MHC-TCR triplets each comprising a peptide, an MHC molecule and
a TCR chain or chains that are known to interact with each other to induce an immune response
(positive peptide-MHC-TCR triplets).

4. The method of claim 2 or claim 3, wherein the peptides in the first set have been selected from
a database or reference dataset, optionally wherein the peptides in the first set have been
randomly selected from a reference proteome, and/or wherein the peptides in the first set have not
been selected from the plurality of peptide-MHC-TCR triplets each comprising a peptide, an MHC
molecule and a TCR chain or chains that are known to interact with each other to induce an
immune response (positive peptide-MHC-TCR triplets), and/or wherein the peptide and the TCR-
MHC pairs in the first set do not form a triplet that is present in the plurality of peptide-MHC-TCR
triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that are known
to interact with each other to induce an immune response (positive peptide-MHC-TCR triplets),
and/or wherein the TCR-MHC pairs in the first set have been selected from the plurality of peptide-
MHC-TCR triplets each comprising a peptide, an MHC molecule and a TCR chain or chains that
are known to interact with each other to induce an immune response (positive peptide-MHC-TCR

triplets).

5. The method of any of claims 2 to 4, wherein the TCR chain or chains in the third set have been
selected from the plurality of peptide-MHC-TCR triplets each comprising a peptide, an MHC
molecule and a TCR chain or chains that are known to interact with each other to induce an

immune response (positive peptide-MHC-TCR triplets).

6. The method of any of claims 2 to 5, wherein the training data comprise a ratio of negative triplets
to positive triplets of at least 100:1, at least 150:1, between 100:1 and 300:1, preferably between
150:1 and 250:1, or around 200:1.

7. The method of any preceding claim, wherein the machine learning model takes as input an
amino acid sequence comprising a part of the variable region of one or more chains of a TCR, or
information derived therefrom, and/or wherein the machine learning model takes as input an amino

acid sequence comprising one or more CDRs of one or more chains of a TCR, or information
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derived therefrom, and/or wherein the machine learning model takes as input an amino acid
sequence comprising the CDR3 sequence of one or more chains of a TCR, or information derived
therefrom, optionally wherein the machine learning model takes as input an amino acid sequence
of the CDRS region of the alpha and/or beta chain of a TCR, or information derived therefrom,
preferably wherein the model takes as input an amino acid sequence comprising or consisting of

the sequence of the CDR3 region of the beta chain of a TCR.

8. The method of any preceding claims, wherein the machine learning model takes as input the
triplet of amino acid sequences and produces an encoding for each sequence, or wherein the
machine learning model takes as input an encoding for each sequence of a triplet of amino acid
sequences, optionally wherein the amino acid sequences are encoded using encoding schemes
selected from: a predetermined token for each amino acid and optionally a padding character, one-
hot-encoding, an encoding using a substitution matrix, an encoding using an embedding matrix,

and an encoding using physicochemical descriptors.

9. The method of claim 8, wherein one or more of the amino acid sequences are encoded as fixed
length strings with a token for each amino acid and a padding character, optionally wherein the
TCR sequence is encoded as a fixed length string, and/or wherein the peptide sequence is
encoded as a fixed length string, and/or wherein the MHC sequence is encoded as a

pseudosequence with fixed length.

10. The method of any preceding claim, wherein the machine learning model is a deep learning
model, and/or wherein the machine learning model comprises one or more natural language

processing models.

11. The method of any preceding claim, wherein the machine learning model comprises a first
encoder or pair of encoders for encoding the TCR sequence, and a second encoder for encoding

the peptide and MHC sequences.

12. The method of claim 11, wherein the encoders have been pretrained prior to training the
machine learning model using the training data comprising the negative triplets, optionally wherein
the machine learning model has been trained using the training data comprising the negative
triplets with the parameters of the encoders maintained to their pretrained values or wherein the
training of the machine learning model using the training data comprising the negative triplets

included fine-tuning the parameters of one or more of the encoders.
13. The method of claim 11 or claim 12, wherein the first encoder or pair of encoders comprises a

single encoder taking as input a TCR beta chain or a part thereof, preferably a part comprising or

consisting of the CDRS region, or wherein the first encoder or pair of encoders comprises a single
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encoder taking as input the concatenation of a TCR beta chain or a part thereof and a TCR alpha
chain or a part thereof, or wherein the first encoder or pair of encoders comprises a pair of encoders
taking as input respectively a TCR beta chain or a part thereof and a TCR alpha chain or a part
thereof,

preferably wherein a part of TCR chain comprises or consists of the CDR3 region of the respective

chain.

14. The method of any of claims 11 to 13, wherein the first encoder or pairs of encoders have been
trained in a self-supervised manner to encode TCR sequences or parts thereof, optionally wherein
the first encoder or pairs of encoders have been trained in a self-supervised manner using random

masking.

15. The method of any of claims 11 to 14, wherein the second encoder takes as input a peptide
sequence and an MHC sequence, and wherein the second encoder has been trained as part of a
model:

(htrained to predict whether the peptide is likely to bind the MHC molecule, whether the peptide is
likely to be presented by the MHC molecule, and/or whether the peptide and MHC molecule are
likely to form a stable complex, and/or

(i) trained to predict the binding affinity between a peptide sequence and a MHC molecule
corresponding to the MHC sequence, trained to classify pairs comprising a peptide sequence and
an MHC sequence between a first class comprising peptide-MHC pairs known to bind to each
other and be presented on the surface of cells, and a second class comprising peptides-MHC
pairs that are not expected to bind to each other and be presented on the surface of cells, and/or
trained to predict a metric indicative of the stability of a complex comprising the peptide and MHC
molecule corresponding to the MHC sequence, optionally wherein the metric indicative of the
stability of a complex comprising the peptide and MHC molecule corresponding to the MHC
sequence is a normalised metric with a value between 0 and 1 and/or wherein the binding affinity

is a normalised binding affinity metric with a value between 0 and 1.

16. The method of any of claims 11 to 15, wherein the second encoder has been trained as part
of a model that has been:

(i) pretrained to predict whether the peptide is likely to bind the MHC molecule, and/or whether the
peptide is likely to be presented by the MHC molecule; and

(i) pre-trained, optionally after step (i), for predicting whether the peptide and MHC molecule are

likely to form a stable complex.

17. The method of claim 16, wherein at step (i) the second encoder has been trained as part of a

model that has been pretrained to predict whether the peptide is likely to bind the MHC molecule,
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then further trained using transfer learning to predict whether the peptide is likely to be presented
by the MHC molecule.

18. The method of any of claims 15 to 17, wherein a model trained to predict whether the peptide
and MHC molecule are likely to form a stable complex is a model configured to take as input a
peptide and MHC sequence or information derived therefrom and produce as output a metric
indicative of the stability of a complex comprising the peptide and MHC molecule corresponding to

the MHC sequence, optionally wherein the metric is a half-life or scaled half-life.

19. The method of any of claims 11 to 18, wherein the encoders are each independently selected
from: transformer-based encoders, autoencoders, and recurrent neural network encoders such as
long-short-term memory (LSTM) networks, and/or wherein the encoders are transformer-based

encoders.

20. The method of any of claims 11 to 19, wherein the machine learning model further comprises
a deep learning block that takes as input the concatenated outputs of the first and second
encoders, and produces as output the probability that the antigen is immunogenic in the context of
the candidate MHC molecule and the candidate TCR, optionally wherein the deep learning block
comprises a first block that learns from the combined outputs of the first and second encoders,
and a second block comprising one or more fully connected layers producing a single numerical
output and optionally a sigmoid activation function, optionally wherein the first block comprises a

deep artificial neural network model and/or a natural language processing model.

21. The method of any preceding claim, further comprising:
(i) repeating one or more times the steps of:

obtaining a triplet of sequences comprising: an amino acid sequence of a peptide encoding
the antigen, an amino acid sequence of a candidate MHC molecule or a part thereof, and an amino
acid sequence of a candidate T cell receptor (TCR) beta chain and/or alpha chain or a part thereof,
and

providing the triplet of sequences or information derived therefrom as inputs to the machine
learning model trained to predict a score representing the probability that the antigen is
immunogenic in the context of the candidate MHC molecule and the candidate TCR,
wherein each ftriplet of sequences differs in the amino acid sequence of the candidate MHC
molecule or part thereof, and/or in the amino acid sequence of the candidate T cell receptor (TCR)
beta chain and/or alpha chain or part thereof,
thereby obtaining a plurality of respective probabilities that the antigen is immunogenic; and
(i) selecting the highest of the plurality of probabilities as the probability that the antigen is

immunogenic.
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22. The method of any preceding claim, wherein the machine learning model has been trained by
fine tuning a peptide-MHC immunogenicity prediction model, wherein a peptide-MHC
immunogenicity model is a machine learning model that has been trained to take as input a doublet
of sequences comprising an amino acid sequence of a peptide encoding the antigen, and an amino
acid sequence of a candidate MHC molecule or a part thereof, or information derived from the
doublet of sequences, and provide as output a score representing the probability that the antigen

is immunogenic in the context of the candidate MHC molecule.

23. The method of claim 22, wherein the peptide-MHC immunogenicity model has been trained
using training data comprising amino acid sequences or information derived therefrom for (i)
positive peptide-MHC doublets comprising a peptide and MHC sequences that have been
experimentally demonstrated to form an immunogenic complex; and (ii) negative peptide-MHC
doublets comprising:

a. a first set of one or more peptide-MHC doublets each comprising: a MHC molecule
selected from the positive peptide-MHC doublets and a peptide sequence not known to interact
with the selected MHC molecule, optionally a randomly sampled peptide sequence, and;

b. a second set of one or more peptide-MHC doublets each comprising: a peptide-MHC
pair comprising an MHC molecule and a peptide known to bind the MHC molecule (positive
peptide-MHC pair), wherein the peptide-MHC pair has been previously found to not be

immunogenic (non-immunogenic positive peptide-MHC pair).

23. The method of any preceding claim, wherein:

obtaining the triplet of sequences comprises obtaining an amino acid sequence of a
peptide encoding the antigen, an amino acid sequence of a candidate MHC molecule or a part
thereof, and an empty TCR sequence vector as candidate TCR; and

the score predicted by the machine learning model represents the probability that the

antigen is immunogenic in the context of the candidate MHC molecule and an unknown TCR.

24. The method of any preceding claim, further comprising identifying the antigen from a sample,
and/or performing the method of any of claims 1 to 23 using one or more candidate MHC molecules
and/or one or more candidate TCR molecules identified from a sample wherein the sample is

optionally a sample from which the antigen has been identified or a related sample.

25. A computer-implemented method of providing a tool for predicting whether an antigen is likely
to be immunogenic, the method comprising:
(i) obtaining a training dataset comprising amino acid sequences or information derived therefrom

for a plurality of peptide-MHC-TCR triplets, each triplet comprising an amino acid sequence of a
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peptide encoding the antigen, an amino acid sequence of a candidate MHC molecule or a part
thereof, and an amino acid sequence of a candidate T cell receptor (TCR) beta chain and/or alpha
chain or a part thereof, wherein the plurality of peptide-MHC-TCR triplets comprise:

a. a first set of one or more peptide-MHC-TCR triplets each comprising: (i) a TCR-MHC
pair comprising an MHC molecule and a TCR chain or chains known to bind the MHC molecule
(positive TCR-MHC pair), and (ii) a peptide not known to interact with the TCR-MHC pair,

b. a second set of one or more peptide-MHC-TCR triplets each comprising: (i) a peptide-
MHC pair comprising an MHC molecule and a peptide known to bind the MHC molecule (positive
peptide-MHC pair), and (ii) a TCR chain or chains not known to interact with the peptide-MHC pair,
wherein the peptide-MHC pair has been previously found to interact with a TCR (immunogenic
positive peptide-MHC pair), and

c. a third set of one or more peptide-MHC-TCR triplets each comprising: (i) a peptide-MHC
pair comprising an MHC molecule and a peptide known to bind the MHC molecule (positive
peptide-MHC pair), and a TCR chain or chains not known to interact with the peptide-MHC pair,
wherein the peptide-MHC pair has been previously found to not be immunogenic (non-
immunogenic positive peptide-MHC pair); and
(ii) training, using said training data, a machine learning model that predicts the probability that an
antigen is immunogenic in the context of a candidate MHC molecule and a candidate TCR provided

as a triplet of sequences or information derived therefrom as input to the machine learning model.

26. A method of identifying one or more tumour-specific peptides that are likely to be immunogenic,
the method comprising:
obtaining the amino acid sequence of one or more candidate tumour-specific peptides
derives from one or more tumour-specific mutations previously identified in a tumour; and
determining whether the one or more candidate peptides are likely to be immunogenic
using the method of any of claims 1 to 24,
optionally wherein the method further comprises selecting one or more of the tumour-specific
peptides as peptides likely to be immunogenic using one or more criteria applying to the result of

the determining.

27. A method of characterising an immunogenic composition comprising a plurality of candidate
peptides or sequences encoding a plurality of candidate peptides, the method comprising:
determining whether the one or more candidate peptides are likely to be immunogenic
using the method of any of claims 1 to 24, and
identifying which one or more of the candidate peptides are likely to be immunogenic by

applying one or more predetermined criteria to the results of the determining.

28. A method of designing an immunotherapy for a subject that has been diagnosed as having

cancer, the method comprising:
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obtaining a set of one or more candidate neoantigens for the subject, wherein the one or
more candidate neoantigens were identified using a process comprising analysing one or more
samples from the subject comprising tumour genetic material; and

designing an immunotherapy that targets one or more of the neoantigens identified,
wherein the designing comprises identifying at least one peptide encoding at least one of the

candidate neoantigens that is immunogenic using the method of any of claims 1 to 24.

29. A system comprising:
a processor; and
a computer readable medium comprising instructions that, when executed by the

processor, cause the processor to perform the steps of the method of any of claims 1 to 28.

30. One or more computer readable media comprising instructions that, when executed by one or
more processors, cause the one or more processors to perform the steps of the method of any of

claims 1 to 28.
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