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SKILL TRANSFER FROM A PERSON TO A ROBOT

CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to U.S. Provisional Application No.
62/366,659, filed on July 26, 2016, the contents of which are incorporated by reference herein

in their entirety.

BACKGROUND

[0001] Embodiments relate to robotics and, more specifically, to skill transfer from a
person to a robot.

[0002] Learning from demonstration is an important problem in the context of
training robots using non-expert operators, i.e., operators who are not equipped to reprogram
the robots. For instance, to teach a task to a robot, the robot can be given the ability to leam
motion from demonstrations of the task performed by a user. Thus, the user, despite being a
non-expert operator, can teach the task to the robot by demonstrating the task. This technique
may enable robots to perform, for example, in manufacturing contexts or as assistants to the

elderly.

SUMMARY

[0003] According to an embodiment of this disclosure, a computer-implemented
method includes recording one or more demonstrations of a task performed by a user.
Movements of one or more joints of the user are determined from the one or more
demonstrations. A neural network or Gaussian mixture model incorporating one or more
contraction analysis constraints is learned by a computer processor based on the movements
of the one or more joints of the user. The one or more contraction analysis constraints
represent motion characteristics of the task. A first initial position of a robot is determined. A
first trajectory of the robot to perform the task is determined based, at least in part, on the
neural network or Gaussian mixture model and the first initial position.

[0004] In another embodiment, a system includes a memory having computer
readable instructions and one or more processors for executing the computer readable
instructions. The computer readable instructions include recording one or more
demonstrations of a task performed by a user. Further according to the computer readable

instructions, movements of one or more joints of the user are determined from the one or
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more demonstrations. A neural network or Gaussian mixture model incorporating one or
more contraction analysis constraints is learned, based on the movements of the one or more
joints of the user. The one or more contraction analysis constraints represent motion
characteristics of the task. A first initial position of a robot is determined. A first trajectory of
the robot to perform the task is determined based, at least in part, on the neural network or
Gaussian mixture model and the first initial position.

[0005] In yet another embodiment, a computer program product for transferring a
skill to a robot includes a computer readable storage medium having program
instructions embodied therewith. The program instructions are executable by a processor to
cause the processor to perform a method. The method includes recording one or more
demonstrations of a task performed by a user. Further according to the method, movements of
one or more joints of the user are determined from the one or more demonstrations. A neural
network or Gaussian mixture model incorporating one or more contraction analysis
constraints is learned, based on the movements of the one or more joints of the user. The one
or more contraction analysis constraints represent motion characteristics of the task. A first
initial position of a robot is determined. A first trajectory of the robot to perform the task is
determined based, at least in part, on the neural network or Gaussian mixture model and the
first initial position.

[0006] Additional features and advantages are realized through the techniques of the
present invention. Other embodiments and aspects of the invention are described in detail
herein and are considered a part of the claimed invention. For a better understanding of the

invention with the advantages and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The subject matter regarded as the invention is particularly pointed out and
distinctly claimed in the claims at the conclusion of the specification. The foregoing and
other features and advantages of the invention are apparent from the following detailed
description taken in conjunction with the accompanying drawings in which:

[0008] Fig. 1 is a block diagram of a learning system used to control a robot, by
learning a skill through one or more user demonstrations of a task, according to one or more
embodiments of this disclosure;

[0009] Fig. 2 is a flow diagram of a method for learning semi-contracting or partially
contracting nonlinear dynamics from the one or more demonstrations for the purpose of robot

motion planning, according to one or more embodiments of this disclosure;
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[0010] Fig. 3 is a flow diagram of a method for causing a robot to perform the task,
according to one or more embodiments of this disclosure; and
[0011] Fig. 4 is a block diagram of a computer system for implementing some or all

aspects of the learning system, according to one or more embodiments of this disclosure.

DETAILED DESCRIPTION

[0012] Some embodiments of this disclosure are learning systems that are based on a
method of contracting dynamic system primitive (CDSP). Using CDSP, the learning system
may learn motion dynamics, specifically a complex human motion dynamic model, using a
neural network (NN) or a Gaussian mixture model (GMM) subject to motion trajectory
constraints of a task, such as a reaching task. According to some embodiments, a human
arm’s reaching motion is modeled using a dynamic system (DS) x = f(x), where f(x) is
represented using a NN or GMM that is learned based on one or more demonstrations of the
task by a human user.

[0013] In some embodiments, the problem of learning motion dynamics is formulated
as a parameter learning problem of a NN or GMM under stability constraints given by
contraction analysis of nonlinear systems. The contraction analysis may yield global
exponential stability, in the form of a globally semi-contracting or partially contracting
function, of the nonlinear systems.

[0014] There may be various benefits to learning a globally semi-contracting or
partially contracting function in this context. For instance, motion trajectories may converge
to a goal location from various initial conditions. Thus, regardless of the initial conditions
when a robot performs a task, the robot may reach the desired goal location. A further benefit
may be that, with the addition of an obstacle avoidance feature, trajectories generated for the
robot may still converge to the goal location in the existence of obstacles.

[0015] Fig. 1 is a block diagram of a learning system 100 used to control arobot 110,
by learning a skill through one or more user demonstrations, according to one or more
embodiments of this disclosure. As shown, the learning system 100 may include a
preprocessing unit 120, a training unit 130, a trajectory generation unit 140, and a motion
planning unit 150. Generally, the preprocessing unit 120 may observe one or more
demonstrations of a task performed by a user and may perform preprocessing tasks, such as
obtaining position, velocity, and acceleration of the human’s movements in performing the
task; the training unit 130 may define parameters of the NN or GMM and may obtain weights
for the NN or GMM; the trajectory generation unit 140 may observe a state of the robot and

3
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generate a trajectory enabling the robot to perform the task, based on the NN or GMM; and
the motion planning unit 150 may apply the trajectory to the robot 110, thus causing the robot
110 to perform the task. The preprocessing unit 120, training unit 130, trajectory generation
unit 140, and motion planning unit 150 may include hardware, software, or a combination of
both. Further, although these units are illustrated as separate in Fig. 1, one of skill in the art
will understand that they may share hardware, software, or both.

[0016] In some embodiments, as will be described further below, the learning system
100 may formulate an optimization problem, which may be used to compute weights of the
NN or GMM subject to one or more contraction conditions of underlying dynamics. One or
more contraction constraints may vyield a state-dependent matrix inequality condition (i.e., a
contraction inequality constraint), which may be nonconvex in the weights of the NN or
GMM. In the case of a NN, the contraction inequality constraint may be reformulated as
linear inequality conditions (i.e., linear inequality constraints) by assuming that a contraction
metric is a constant and the number of neurons in a hidden layer of the NN is equal to the
number of inputs. In the case of a GMM, the contraction inequality constraint may be
reformulated as a polynomial matrix inequality constraint by assuming that the elements of a
contraction metric are polynomial functions in the state.

[0017] Further, in some embodiments, the learning system 100 may use sequential
quadratic programming (SQP), in a novel learning algorithm, subject to the relaxed
contraction constraints. The learning system 100 may select good initial conditions for the
constrained SQP based on the solutions obtained by solving an unconstrained optimization
problem first.

[0018] In some embodiments, as will also be described further below, the CDSP
method may be enhanced with an obstacle avoidance strategy by using a gradient of a
repulsive potential function. Because the semi-contracting or partially contracting trajectories
being modeled are globally converging to a goal location (i.e., the location of an object being
reached for), the addition of local repulsive potential need not change attractor behavior at the
goal location.

[0019] Further, because the demonstrations are not directly performed by moving the
robot arm, some robots may not be able to follow the parts of trajectories generated by the
learned dynamics. To circumvent this problem, a low-level motion planning algorithm or
inverse kinematics may be used for implementation of the trajectories generated by the

learned model on a specific robot platform.
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[0020] In some embodiments, CDSP is robust to abrupt changes in trajectories that
may appear due to disturbances, such as sensor failures or malfunctioning of the robot 110.
The learned motion model may recreate paths that converge to the goal locations in spite of
such disturbances. Another other advantage of CDSP, in some embodiments, is that the
trajectories may be learned based on a single demonstration, although learning paths based on
multiple demonstrations can be beneficial, especially in the case of a bad single
demonstration.

[0021] Fig. 2 is a flow diagram of a method 200 of learning semi-contracting or
partially contracting nonlinear dynamics from one or more demonstrations for the purpose of
robot motion planning, according to one or more embodiments of this disclosure.

[0022] As shown, at block 210, the learning system 100 may observe one or more
demonstrations of a user performing a task. For example, and not by way of limitation, the
task may be a reaching task, such as for loading or unloading a dishwasher, placing food in a
microwave, opening a door, or picking up something. In some embodiments, this may
include recording joint positions of the user, which may be done with a three-dimensional
(3D) video camera such as Microsoft® Kinect® for Windows®. At block 220, the learning
system 100 may obtain training data describing the user’s movements when performing the
demonstrations. For example, and not by way of limitations, this training data may include
estimates of position, velocity, and acceleration of the user’s hand, joints, or other body part.
In other words, the learning system 100 may determine positions and movements of the user
based on the demonstrations. In some embodiments, the estimates may be obtained by
computing them through application of a local Kalman filter to the joint positions of the user.

[0023] For encoding motions of the demonstrations, there may exist a state variable
x(®) = [p®T, v(©)T]" € R?¢, where p(t) € R is the position and v(t) € RY is the velocity
of a point in d dimensions at time t. Let a set of N demonstrations {D;}}\, be a set of solutions
to the dynamic model x(t) = f(x(t)). where f: R4 —» R?4 is a nonlinear, continuously
differentiable, autonomous function. Each demonstration may correspond to a reaching
motion ending at x* = [g7, 0,.q]". where g € RY is the goal location. Each demonstration
may be associated with a set of trajectories of the states {x(t)}{=1 and a set of trajectories of
the state derivatives {X(t)}=] from timet=0tot="T.

[0024] In the case of point-to-point reaching motions, the trajectories of a human
hand can start from various initial locations and end at the goal location. Additionally, in

some embodiments, the velocity and acceleration is zero at the goal location.



WO 2018/022718 PCT/US2017/043889

[0025] In some embodiments, the preprocessing unit 120 may perform blocks 210-
220 of the method 200.

[0026] At block 230, the learning system 100 may define parameters of a NN or
GMM to be used as a model. These parameters may define a structure for the NN or GMM
and may include, for example, the number of neurons in the hidden layer of the NN or a
number of Gaussians in the GMM. The parameters may vary based on implementation and
may be a design choice. For instance, as the number of neurons in the hidden layer increases,
the learning system 100 may take longer to compute trajectories for the robot 110, but the
trajectories may be more precise and may thus result in improved performance of the task by
the robot 110.

[0027] At block 240, the learning system 100 may compute weights for initializing
the NN or GMM without constraints, based at least in part on the training data.

[0028] As discussed above, the learning system 100 may utilize contraction analysis
to analyze exponential stability of nonlinear systems. A non-linear, non-autonomous system
may have the form x = f(x, t) (hereinafter “Formula 17°), where x(t) € IR" is a state vector,

and f: IR — R" is a continuously differentiable nonlinear function. In this case, the relation

Ox =

af();t) 0x holds, where 6x is an infinitesimal virtual displacement in fixed time. The

squared virtual displacement between two trajectories of Formula 1 in a symmetric,
uniformly positive definite metric M(x,t) € R™*" may be given by 6x"M(x,t)8x, and its
T .

time derivative may be given by % (6x™M(x, £)8x) = 6xT (% M(x,t) + M(x,t) +

of
M(x, ) ) 8x.

T .
[0029] If the inequality %M(X, t) + M(x, t) + M(x,t) % < 0V, vx Is satisfied, then

the system of Formula 1 may be deemed to be semi-contracting. Further, the trajectory of

Formula 1 may converge to a single trajectory regardless of initial conditions.
T .
[0030] If the inequality % M(x,t) + M(x, t) + M(x,t) % < —2yM(x,t), Vt, Vx is

satisfied for a strictly positive constant y, then the system of Formula 1 may be deemed to be
contracting with the rate y. Further, the trajectory of Formula 1 may converge to a single
trajectory regardless of initial conditions.

[0031] For an auxiliary system of the form y = f(y, x, t) (hereinafter “Formula 2”),
T .
where y(t) € R" is an auxiliary variable, if the inequality %M(y, t) + M(y,t) + M(y,t) :—}f, <

—2yM(y, t), Vt, Vy is satisfied for a strictly positive constant y, then the auxiliary system of

6
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Formula 2 may be deemed to be contracting and the system of Formula 1 may be deemed to
be partially contracting. Further, if any particular solution of the auxiliary system of Formula
2 verifies a smooth specific property, then all the trajectories of the system of Formula 1
verify this specific property exponentially.

[0032] In some embodiments, a set of N demonstrations {D;}} , performed by the
user are solutions to an underlying dynamic model governed by the first-order differential
equation x(t) = f(x(t)) (hereinafter “Formula 3”), where the state variable x € R", and
f:R = R" is anonlinear continuous and continuously differentiable function.

[0033] Each demonstration may include trajectories of the states {x(t)}{=] and
trajectories of the state derivatives {X(t)}{Z] from time t = 0 to t = T. Because the state
trajectories of the demonstrations of a specific stable DS may exponentially converge to a
single trajectory or a single point (i.e., the goal location), the system defined in Formula 3
may be considered a globally contracting system.

In some embodiments of the learning system 100, the nonlinear function f is modeled

using a NN given by f(x(t)) = WTO'(UTS(t)) + €(s(t)) (hereinafter “Formula 47). In

Formula 4, s(t) = [x(t)T, 1]" € R™** is an input vector to the NN; O'(UTS(t)) =

[ L L L ]T 1S a vector-sigmoid activation
Trexp((-UTs©)n)’ " " Trexp((-UTs@0)’ " " 1+exp((-UTS(O)ny) g

function, and (UTs(t)), is the i element of the vector (UTs(t)), U € RO the
14

elements of W € R™*™ are bounded constant-weight matrices; e(s(t)) € R" is a function
reconstruction error that goes to zero after the NN is fully trained; and np is the number of
neurons in the hidden layer of the NN.

[0034] In some embodiments of the learning system 100, the nonlinear function f is

modeled using a GMM given by f(x(t)) =Yl (X(t))(A X() + by) + e(x(t)) (hereinafter

“Formula 57). In Formula 5, hk(x(t)) = % is the scalar weight associated with the

kth Gaussian such that Y hy(x()) = 1 and 0 < hy(x(t)) < 1, p(k) is the prior probability,

-1 ror 1 Zrey Zka’cx
and Ak = Zk' (ka) > bk = lu'k- - Aknu'kx: nu'k = I:.u'kxuu'k. ] and z:k = Z Z are
e * x k k

X x X
the mean and covariance of the kth Gaussian, respectively.
[0035] Given the one or more demonstrations, the learning system 100 may learn the

function f, which is modeled using a NN or GMM under contraction conditions. This may



WO 2018/022718 PCT/US2017/043889

enable the leaming system 100 to generate converging trajectories, governed by a stable DS
and starting from a given arbitrary initial condition. As a result, the learning system 100 may
cause the robot 110 to execute such a trajectory, by performing the task demonstrated in the
one or more demonstrations, given arbitrary initial conditions.

[0036] In some embodiments, the constrained optimization problem to be solved by

the learning system 100 to train the semi-contracting NN may be {W, U} =
T
argminy y{aEp + BEw} (hereinafter “Formula 67), such that %M + M% <0, M>0

(hereinafter “Formula 7). In Formula 6 and Formula 7, Ep = YN, [y; — a;]" [y; — a;] may be
the sum of squared errors; a; € R™ and y; € R™ may respectively represent the end location
and the NN’s output corresponding to the ith demonstration; Ew may be the sum of the
squares of the NN weights; o and B may be parameters of regularization; and M € R™" may

represent a constant positive symmetric matrix. The learning system may compute the

. af  of
Jacobian — as — =

T
— as— wT % = WT[Z/(UTs)]U]. In the above, for any b € R ¥'(b) €

R™>"h may be a diagonal matrix given by X'(b) = diag (c(bl)(l — c(bl)), c(bz)(l —

c(bz)),. Co O'(bp) (1 — c(bnh))> (hereinafter “Formula 87); and Uy € R™*™ may be a sub-

matrix of U formed by taking the first n rows of U.
[0037] In some embodiments, the constrained optimization problem to be solved by

the learning system 100 to train the partially contracting GMM may be {@G} =
- .
argming{aEp + BEw]} (hereinafter “Formula 97), such that % M(y) + M(y,t) + M(y) :—}f’ <

0, M(y) >0, Agx*+ by = 0,Vy,k (hereinafter “Formula 10”), where x* is the desired
equilibrium point of the GMM. In Formula 9 and Formula 10, Ep = XN . [y; — a;][y; — ai]
may be the sum of squared errors; a; € R" and y; € R" may respectively represent the end
location and the GMM’s output corresponding to the ith demonstration; Eyy may be the sum
of the squares of the GMM parameters; o and 5 may be parameters of regularization; and
M(y) € R™ " may represent a uniformly positive symmetric matrix.

[0038] Formula 7 and Formula 10 are examples of contraction constraints
incorporated into the learning process of the learning system 100. They are derived from
contraction theory, which studies the behavior of trajectories. This constraint on the Jacobian,
which is the first order derivative of the function f with respect to the state, may ensure that
all the trajectories learned will converge to the goal location as well as achieve zero velocity

at the goal location regardless of initial conditions.
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[0039] At block 250, based on the initialization of the NN or GMM in block 240, the
learning system 100 may learn the NN or GMM with contraction analysis constraints.
Constraints may embody motion characteristics, or motion limitations, of the task that was
demonstrated. For example, and not by way of limitation, if the task is a reaching task, the
user’s hand likely reached a specific velocity (e.g., a zero velocity) at the object being
reached for during the demonstrations, and if the task is polishing a table, the task likely
includes some periodicity as the user rubbed the table in a circular motion. In some
embodiments, learning with contraction analysis constraints may be achieved by solving an
optimization problem, as described below.

[0040] The optimization problem defined in Formula 6 and Formula 7 above can be
rewritten as {W, U} = argminy y {a XN, [y; — a1 [y; — a] + B(r(WTW) +
tr(UTU)) } (hereinafter “Formula 117), such that U, [Z'(UTs)]TWM + MWT[2/(UTs)]U} <
0, M > 0 (hereinafter “Formula 127).

[0041] As shown below, the nonconvex constraints of Formula 12 can be relaxed to
LMI constraints, which may be used by the learning system 100 to update the NN. It can be
shown that the constraints defined in Formula 12 may be always satisfied if the following
constraints are satisfied: n = np, Uy > 0,W < 0, M > 0 (hereinafter “Formula 13”).

[0042] The sigmoid function o() is in the range [0,1], and thus the derivative of
0() (1 — o()) may have upper and lower bounds given by 0 < c()(1 —o()) < 0.25
(hereinafter “Formula 14”). Using Formula 14 and the fact that ’() is given by Formula 8,
each diagonal element of the matrix X’(U"s) may be lower bounded by 0. The lower bound
of the whole matrix may be given by £'(U"s) > 0 (hereinafter “Formula 15). Multiplying
MW7 on the left and U on the right of Formula 15 yields MWT[2'(UTs)]U] > 0 (hereinafter
“Formula 16) and U,[2'(U"s)]TWM < 0 (hereinafter “Formula 177).

[0043] Given Formula 16 and Formula 17, U4 [2'(U"s)]"WM may be upper bounded
as Ug[Z'(UTs)]TWM + MWT[2/(UTs)]U < 0 (hereinafter “Formula 18). If the constraints
defined in Formula 13 hold, as presumed above, then Formula 13 and Formula 18 together
may yield U [2'(UTs)]TWM + MWT[Z/(UTs)]US < O (hereinafter “Formula 197). Thus, the
constraint of Formula 12, being equal to Formula 19, may be satisfied where Formula 13 is
true.

[0044] As shown below, the optimization problem defined in Formula 9 and Formula

10 above can be rewritten as {W, U} = argminy, o {a XN, [y; — aj]"[y; — a;] +
BEw } (hereinafter “Formula 207), such that ALM (y) + Mk(y) + M&)A; <
9
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—yM(y), M(y) > 0,Axx* + by, = 0, Vy,k (hereinafter “Formula 217), where the ijth

dM;ij(y)

element of the matrix M (y) is given by Mki]. (y) 2 3 (A +by).
[0045] Given the Jacobean :—; 2 Y {h(x)Ay} and the decomposition of the

contraction metric M(y) = Yy hx(%) Mk(y), Formula 10 can be rewritten as
Tichi() {AIME) + M) + MDA < —YM(), M) > 0, A’ + by = 0,vy,k

(hereinafter “Formula 227). Using the facts Y h(x(t)) = 1 and 0 < hy(x(t)) < 1, it may
be shown that Formula 10 is satisfied where Formula 21 is satisfied. Note that, during
implementation, in some embodiments, the constraint in Formula 21 may be evaluated at x
since the GMM is partially contracting and the trajectories y(t) and x(t) converge to each
other exponentially.

[0046] Note that, in some embodiments, Formula 21 depends on the state variable and
must be enforced at every point in the state space, rendering the optimization problem
intractable in practice. As shown below, the above noted state-dependence issue of the
condition in Formula 21 may be overcome by rewriting it as G, < 0, Agx* + by =
0, vk (hereinafter “Formula 23”).

[0047] On defining the matrices Gy 2 ALM(y) + M (y) + M(x)Ay + YM(y), the
condition in Formula 21 may be rewritten as z" Gyz < 0, Vz, where z € R" is a vector of
indeterminates. By the way of sum of squares decomposition, it can be shown that z' G,z =
m(x,z)TGym(x, z), where m(x,z) € R", is a vector of monomials in the elements of x and z;
the elements of the matrix Gy, are polynomials in the elements of the unknown parameters and
may be obtained by coefficient matching,

[0048] Blocks 230-250, described above, may be performed by the training unit 130
in some embodiments. At block 260, the method 200 may exit, having trained the NN with
contraction analysis constraints.

[0049] Fig. 3 is a flow diagram of a method 300 for causing a robot to perform the
task, according to one or more embodiments of this disclosure. This method 300 may be
executed by the learning system 100 after having executed the method 200 of Fig. 2.

[0050] The trajectory generated by the semi-contracting NN or the partially
contracting GMM defined above does not take obstacles into consideration. In other words,
the feedback being considered by the NN or GMM of the learning system 100, as described
above, may be only the current state of the robot 110. However, some embodiments of the

learning system 100 may also execute obstacle avoidance in performing reaching tasks.

10
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[0051] To this end, at block 310, the learning system 100 may obtain locations of one
or more obstacles o; in a workspace of the robot 110; an initial location of an end effector
x(0) (e.g., a point on the robot’s hand) intended to reach the goal location, to be treated as an
origin; and the goal location x4 of the end effector. At block 320, the learning system 100
may translate the origin to the goal location. In some embodiments, the learned NN or GMM
generates trajectories to the origin. Thus, this translation may be performed to generate
trajectories to the goal location instead. Blocks 310-320 may be implemented by various
means known in the art.

[0052] At block 330, the learning system 100 may implement obstacle avoidance.

[0053] In some embodiments, implementing obstacle avoidance includes computing a
size of a domain of influence Di for each obstacle. For instance, the learning system 100 may
use an artificial repulsive potential field in the workspace of the robot 110, in addition to the
semi-contracting dynamics learned above. The repulsive potential V for the i'" obstacle and
the origin may be given by

1 /1 1\
Vi (x) = ETI(m_D_;‘) ,  di® <Dy
0, di(x) > Df

(hereinafter “Formula 247).

[0054] The gradient of Formula 24 with respect to a current state x of the robot 110
may be given by

N ] ) I O
0, di(x) > D

(hereinafter “Formula 257).

In the above, d; = ||x — oy]|, may be the Euclidean distance from x to the location of
the it obstacle oi; D} may be the size of a domain of influence of the i" obstacle; n € R may
be a positive constant; and V,d;(x) may denote the derivative of d; (x) with respect to x.

[0055] In some embodiments, the negative gradient of Formula 24, given by the
negative of Formula 25 results in a repulsive force acting on the robot 110. The repulsive
force may drive the robot 110 away from the obstacles and can thus be viewed as a force that
acts along with an attractive force to drive the robot 110 to the goal location. The attractive
force may be provided by the semi-contracting NN or the partially contracting GMM. Thus,

where ng is the number of obstacles to be avoided, the combined dynamics fc() may be
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described by x = f. (X(t)) = f(X(t)) D AAM (X(t)), fori= {1,. e no} (hereinafter
“Formula 26™).

[0056] In some embodiments, implementing obstacle avoidance may involve use of a
differential equation that models the obstacle avoidance. According to a study of human
behavioral dynamics, an additional term for no obstacles causes a change in acceleration that

is given by fobs as follows:
fobs = (x(©) = ) RO V() ¢i(9) exp(~B ¢i(1)
i=1

.. . _ 1 (Oi—p(t))TV(t) .
where y and P are positive scalar constants; ¢;(t) = cos <—|Ioi—p ool S the
steering angle between (oi — p(t)) and v(t); oi is the position of the i obstacle; R(t) is the
rotation matrix that defines a ninety-degree rotation about the axis r(t) = (o; — p(t)) X v(t).

Thus, the combined dynamics fc() are described by

x(0) = f.(x(©) = f(x(©) + [fob(:(g;(lt))

(hereinafter “Formula 277).

[0057] In some embodiments, for M = cl, 4,4, Where ¢ € R is a strictly positive
scalar constant, it can be shown that all the trajectories of the combined dynamics in Formula
27 converge to the goal location x". Based on this, all trajectories of the combined dynamics
in Formula 27 may converge to the goal location. Thus, for all t, X(t) is not equal to zero
anywhere in the state space except at the goal location x”. Therefore, in some embodiments,
there are no local minima present in the state space and the goal location x” is the global
minimum.

[0058] In some embodiments, the combined dynamics given by Formula 27 may
provide the robot 110 with a combination of two forces, one moving it away from the
obstacles and the other toward the goal location.

[0059] At block 340, the learning system 100 may generate a trajectory based on the
learned NN or GMM along with obstacle avoidance, as described in Formula 26 above.

[0060] It can be shown that, where T1(t) is a trajectory of the globally semi-

contracting system of Formula 4 and T2(t) is a trajectory of the combined dynamics of

Formula 26, the smallest distance, defined by S(t) 2 f,;rl ?|16x]l, between T1(t) and T2(t)

—_e~Y1(t—tg) .
satisfies S(t) < S(ty)e Y1 (t-to) 4 e “su [|[d|Ivt = t, (hereinafter “Formula 28),
0 Pxt 0

1
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and as t = 00, S(t) < supy; ltﬂ, where d(x(1)) = — %; V, Vi) fori = {1,. . .,ng}. Thus, in
1

some embodiments, there exists an upper bound on the distance between the trajectory of the
learned contracting model and the trajectory of the combined dynamics (i.e., the learned
contracting model using an obstacle avoidance approach described herein). As a result,
addition of the obstacle avoidance need not lead to the trajectory to monotonically diverge
away from the trajectory of the original learned contracting model.

[0061] A proof of this involves the following. Differentiating the distance S(t) yields
the differential inequality S < —yS + ||d||. whose solution is given by S(t). Let S(t) be the
solution to the differential equation S = —yS + ||d||. The trajectory S(t) is given by S(t) =

S(t)e vitto) 4 | tt e V1D d(x(t))|| dt. Based on Khalil’s comparison lemma, S(t) <
0
S(t), which implies S(t) < S(ty)e Y1 ({t-to) 4 ftt e Y1 (D) d(x(t)) || dt (hereinafter “Formula
0

29”). Taking the supremum of ||d(x(t))|| out of the integral in Formula 29 results in Formula

28. As t — oo, the exponential terms decay and the bound is given by S(t) < supy ”‘jﬂ.
1

[0062] Blocks 330-340 above may be performed by the trajectory generation unit 140
of the learning system 100. At block 350, the learning system 100 may convert the trajectory
generated above from the Cartesian space into a trajectory in the joint space of the robot 110.
In some embodiments, this may be executed through the use of IKFast, a robot kinematics
solver, or by some other solver. At block 360, the learning system 100 may implement the
trajectory, such as by using a low-level joint controller to control the robot 110 according to
the trajectory in joint space. Black 350-360 may be performed by the motion planning unit
150 of the learning system 100. At block 370, the method 300 may exit, with the robot 110
having performed the task through moving according to the joint-space trajectory.

[0063] It will be understood by one skilled in the art that various implementations of
the learning system 100 and the robot 110 may be used. For example, in one embodiment, the
demonstrations may each include a human subject reaching for a target location to pick up an
object, and data describing these demonstrations may be collected using a Microsoft®
Kinect® for Windows®. The learning system 100 may be implemented on a desktop
computer running an Intel® i3 processor and having 8 GBs of memory. The methods
described above may be coded on the desktop computer using Matlab 2014a. The learning
system 100 on the desktop computer may be used to control a robot 110, such as a Baxter
robot, whose hand position in 3D Cartesian space is considered to be the state. Velocity

estimates of the hand may be estimated from position measurements of the hand using a
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Kalman filter. There may be six neurons in the hidden layer of the NN, and the NN weights
or the GMM parameters of the constrained optimization algorithm may be initialized to
weights or parameters obtained by learning the NN or GMM without the constraints. In the
case of the NN, the identity matrix may be used as the metric M. In the case of the GMM, the
parameters of the state-dependent contraction metric may be learned from the one or more
demonstrations. Matlab’s finincon function may be used to solve the optimization problem.
The implementation on the robot may be achieved through IKFast to convert the resulting
trajectory into a trajectory in the joint space of the robot.

[0064] Technical effects and benefits of some embodiments include the ability to
learn a semi-contracting dynamic motion model in a state space is presented. The learned
model may be used to generate motion trajectories of a robot based on human
demonstrations. Through a CDSP, some embodiments of the learning system 100 may
combine the advantages of global stability with a NN model or a GMM. In some
embodiments, obstacle avoidance and motion planning may be incorporated. The global
semi-contracting nature of the dynamics may make the goal location globally attractive, thus
causing the dynamics to be robust to perturbations and sensor faults. Further, some
embodiments of the learning system 100 may be platform-agnostic and thus compatible with
various types of robots 110, including robots 110 from various manufacturers.

[0065] Fig. 4 illustrates a block diagram of a computer system 400 for use in
implementing a learning system 100 or method according to some embodiments. The
learning systems 100 and methods described herein may be implemented in hardware,
software (e.g., firmware), or a combination thereof. In some embodiments, the methods
described may be implemented, at least in part, in hardware and may be part of the
microprocessor of a special or general-purpose computer system 400, such as a personal
computer, workstation, minicomputer, or mainframe computer. For instance, as described
above, the learning system 100 may be implemented on a desktop computer in
communication with the robot 110.

[0066] In some embodiments, as shown in Fig. 4, the computer system 400 includes a
processor 405, memory 410 coupled to a memory controller 415, and one or more input
devices 445 and/or output devices 440, such as peripherals, that are communicatively coupled
via a local I/O controller 435. These devices 440 and 445 may include, for example, a printer,
a scanner, a microphone, and the like. Input devices such as a conventional keyboard 450 and
mouse 455 may be coupled to the I/O controller 435. The I/O controller 435 may be, for

example, one or more buses or other wired or wireless connections, as are known in the art.
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The 1/0 controller 435 may have additional elements, which are omitted for simplicity, such
as controllers, buffers (caches), drivers, repeaters, and receivers, to enable communications.

[0067] The I/O devices 440, 445 may further include devices that communicate both
inputs and outputs, for instance disk and tape storage, a network interface card (NIC) or
modulator/demodulator (for accessing other files, devices, systems, or a network), a radio
frequency (RF) or other transceiver, a telephonic interface, a bridge, a router, and the like.

[0068] The processor 405 is a hardware device for executing hardware instructions or
software, particularly those stored in memory 410. The processor 405 may be a custom made
or commercially available processor, a central processing unit (CPU), an auxiliary processor
among several processors associated with the computer system 400, a semiconductor based
microprocessor (in the form of a microchip or chip set), a microprocessor, or other device for
executing instructions. The processor 405 includes a cache 470, which may include, but is not
limited to, an instruction cache to speed up executable instruction fetch, a data cache to speed
up data fetch and store, and a translation lookaside buffer (TLB) used to speed up virtual-to-
physical address translation for both executable instructions and data. The cache 470 may be
organized as a hierarchy of more cache levels (L1, L2, etc.).

[0069] The memory 410 may include one or combinations of volatile memory
elements (e.g., random access memory, RAM, such as DRAM, SRAM, SDRAM, etc.) and
nonvolatile memory elements (e.g., ROM, erasable programmable read only memory
(EPROM), electronically erasable programmable read only memory (EEPROM),
programmable read only memory (PROM), tape, compact disc read only memory (CD-
ROM), disk, diskette, cartridge, cassette or the like, etc.). Moreover, the memory 410 may
incorporate electronic, magnetic, optical, or other types of storage media. Note that the
memory 410 may have a distributed architecture, where various components are situated
remote from one another but may be accessed by the processor 405.

[0070] The instructions in memory 410 may include one or more separate programs,
each of which comprises an ordered listing of executable instructions for implementing
logical functions. In the example of Fig. 4, the instructions in the memory 410 include a
suitable operating system (OS) 411. The operating system 411 essentially may control the
execution of other computer programs and provides scheduling, input-output control, file and
data management, memory management, and communication control and related services.

[0071] Additional data, including, for example, instructions for the processor 405 or
other retrievable information, may be stored in storage 420, which may be a storage device

such as a hard disk drive or solid state drive. The stored instructions in memory 410 or in
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storage 420 may include those enabling the processor to execute one or more aspects of the
learning systems 100 and methods of this disclosure.

[0072] The computer system 400 may further include a display controller 425
coupled to a display 430. In some embodiments, the computer system 400 may further
include a network interface 460 for coupling to a network 465. The network 465 may be an
IP-based network for communication between the computer system 400 and an external
server, client and the like via a broadband connection. The network 465 transmits and
receives data between the computer system 400 and external systems. In some embodiments,
the network 465 may be a managed IP network administered by a service provider. The
network 465 may be implemented in a wireless fashion, e.g., using wireless protocols and
technologies, such as WiFi, WiMax, etc. The network 465 may also be a packet-switched
network such as a local area network, wide area network, metropolitan area network, the
Internet, or other similar type of network environment. The network 465 may be a fixed
wireless network, a wireless local area network (LAN), a wireless wide area network (WAN)
a personal area network (PAN), a virtual private network (VPN), intranet or other suitable
network system and may include equipment for receiving and transmitting signals.

[0073] Learning systems 100 and methods according to this disclosure may be
embodied, in whole or in part, in computer program products or in computer systems 400,

such as that illustrated in Fig. 4.
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CLAIMS

What is claimed is:
1. A computer-implemented method comprising:

recording one or more demonstrations of a task performed by a user;

determining, based on the one or more demonstrations, movements of one or more
joints of the user;

learning, by a computer processor, based on the movements of the one or more joints
of the user, a learned model incorporating one or more contraction analysis constraints, the
one or more contraction analysis constraints representing motion characteristics of the task,
wherein the learned model is at least one of a neural network and a Gaussian mixture model;

determining a first initial position of a robot; and

determining a first trajectory of the robot to perform the task, the determining based at
least in part on the learned model and the first initial position.
2. The computer-implemented method of claim 1, further comprising:

determining a second initial position of the robot for performing the task, wherein the
first initial position differs from the second initial position; and

determining a second trajectory of the robot to perform the task, based at least in part
on the learned model and the second initial position;

wherein the first trajectory of the robot and the second trajectory of the robot
converge to a common goal location.
3. The computer-implemented method of claim 1, wherein the learned model is the
neural network, and wherein learning the learned model incorporating the one or more
contraction analysis constraints comprises:

initializing the neural network by solving an optimization problem to generate one or
more weights of the neural network;

generating an updated optimization problem based on the optimization problem and
the one or more contraction analysis constraints; and

updating the neural network by solving the updated optimization problem.
4. The computer-implemented method of claim 1, wherein the first trajectory is in a joint
space of the robot.
5. The computer-implemented method of claim 1, further comprising:

defining a size of a domain of influence for an object in a workspace of the robot; and

generating a second trajectory for performing the task, based at least in part on the

learned model, the first initial position, and the size of the domain of influence of the object;
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wherein the second trajectory avoids the object.
6. The computer-implemented method of claim 5, wherein the first trajectory and the
second trajectory converge to a common goal location.
7. The computer-implemented method of claim 1, wherein the one or more contraction
analysis constraints require a first velocity at a goal location of the task.
8. A system comprising:
a memory having computer readable instructions; and
one or more processors for executing the computer readable instructions, the
computer readable instructions comprising:
recording one or more demonstrations of a task performed by a user;
determining, based on the one or more demonstrations, movements of one or
more joints of the user;
learning, based on the movements of the one or more joints of the user, a
learned model incorporating one or more contraction analysis constraints, the one or more
contraction analysis constraints representing motion characteristics of the task, wherein the
learned model is at least one of a neural network and a Gaussian mixture model;
determining a first initial position of a robot; and
determining a first trajectory of the robot to perform the task, the determining
based at least in part on the learned model and the first initial position.
9. The system of claim 8, the computer readable instructions further comprising:
determining a second initial position of the robot for performing the task, wherein the
first initial position differs from the second initial position; and
determining a second trajectory of the robot to perform the task, based at least in part
on the learned model and the second initial position;
wherein the first trajectory of the robot and the second trajectory of the robot
converge to a common goal location.
10. The system of claim 8, wherein the learned model is the neural network, and wherein
learning the learned model incorporating the one or more contraction analysis constraints
comprises:
initializing the neural network by solving an optimization problem to generate one or
more weights of the neural network;
generating an updated optimization problem based on the optimization problem and
the one or more contraction analysis constraints; and

updating the neural network by solving the updated optimization problem.
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11. The system of claim 8, wherein the first trajectory is in a joint space of the robot.

12. The system of claim 8, the computer readable instructions further comprising:
defining a size of a domain of influence for an object in a workspace of the robot; and
generating a second trajectory for performing the task, based at least in part on the

learned model, the first initial position, and the size of the domain of influence of the object;
wherein the second trajectory avoids the object.

13. The system of claim 12, wherein the first trajectory and the second trajectory

converge to a common goal location.

14, The system of claim 8, wherein the one or more contraction analysis constraints

require a first velocity at a goal location of the task.

15. A computer program product for transferring a skill to a robot, the computer program

product comprising a computer readable storage medium having program instructions

embodied therewith, the program instructions executable by a processor to cause the
processor to perform a method comprising:

recording one or more demonstrations of a task performed by a user;

determining, based on the one or more demonstrations, movements of one or more
joints of the user;

learning, based on the movements of the one or more joints of the user, a learned
model incorporating one or more contraction analysis constraints, the one or more contraction
analysis constraints representing motion characteristics of the task, wherein the learned model
is at least one of a neural network and a Gaussian mixture model;

determining a first initial position of a robot; and

determining a first trajectory of the robot to perform the task, the determining based at
least in part on the learned model and the first initial position.

16.  The computer program product of claim 15, the method further comprising:
determining a second initial position of the robot for performing the task, wherein the

first initial position differs from the second initial position; and
determining a second trajectory of the robot to perform the task, based at least in part

on the learned model and the second initial position;
wherein the first trajectory of the robot and the second trajectory of the robot
converge to a common goal location.

17.  The computer program product of claim 15, wherein the learned model is the neural

network, and wherein learning the neural network incorporating the one or more contraction

analysis constraints comprises:
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initializing the neural network by solving an optimization problem to generate one or
more weights of the neural network;
generating an updated optimization problem based on the optimization problem and
the one or more contraction analysis constraints; and
updating the neural network by solving the updated optimization problem.
18.  The computer program product of claim 15, wherein the first trajectory is in a joint
space of the robot.
19.  The computer program product of claim 15, the method further comprising:
defining a size of a domain of influence for an object in a workspace of the robot; and
generating a second trajectory for performing the task, based at least in part on the
learned model, the first initial position, and the size of the domain of influence of the object;
wherein the second trajectory avoids the object.
20.  The computer program product of claim 19, wherein the first trajectory and the
second trajectory converge to a common goal location.
21.  The computer program product of claim 15, wherein the one or more contraction

analysis constraints require a first velocity at a goal location of the task.
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AMENDED CLAIMS
received by the International Bureau on 05 December 2017 (05.12.2017)

This listing of claims will replace all prior versions and listings of claims in the

application.
1. A computer-implemented method comprising:
recording one or more demonstrations of a task performed by a user;

determining, based on the one or more demonstrations, movements of one or more

joints of the user;

learning, by a computer processor, based on the movements of the one or more
joints of the user, a learned model incorporating one or more contraction analysis
constraints, the one or more contraction analysis constraints representing motion
characteristics of the task, wherein the learned model is at least one of a neural network

and a Gaussian mixture model;
determining a first initial position of a robot; and

determining a first trajectory of the robot to perform the task, the determining

based at least in part on the learned model and the first initial position.
2. The computer-implemented method of claim 1, further comprising:

determining a second initial position of the robot for performing the task, wherein

the first initial position differs from the second initial position; and

determining a second trajectory of the robot to perform the task, based at least in

part on the learned model and the second initial position;

wherein the first trajectory of the robot and the second trajectory of the robot

converge to a common goal location.
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3. The computer-implemented method of claim 1, wherein the learned model is the
neural network, and wherein learning the learned model incorporating the one or more

contraction analysis constraints comprises:

initializing the neural network by solving an optimization problem to generate one

or more weights of the neural network;

generating an updated optimization problem based on the optimization problem

and the one or more contraction analysis constraints; and
updating the neural network by solving the updated optimization problem.

4. The computer-implemented method of claim 1, wherein the first trajectory is in a

joint space of the robot.
5. The computer-implemented method of claim 1, further comprising:

defining a size of a domain of influence for an object in a workspace of the robot;

and

generating a second trajectory for performing the task, based at least in part on the
learned model, the first initial position, and the size of the domain of influence of the

object;
wherein the second trajectory avoids the object.

6. The computer-implemented method of claim 5, wherein the first trajectory and the

second trajectory converge to a common goal location.

7. The computer-implemented method of claim 1, whetein the one or more

contraction analysis constraints require a first velocity at a goal location of the task.
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8. A system comprising:
a memory having computer readable instructions; and

one or more processors for executing the computer readable instructions, the

computer readable instructions comprising:
recording one or more demonstrations of a task performed by a user;

determining, based on the one or more demonstrations, movements of one

or more joints of the user;

learning, based on the movements of the one or more joints of the user, a
learned model incorporating one or more contraction analysis constraints, the one or more
contraction analysis constraints representing motion characteristics of the task, wherein

the learned model is at least one of a neural network and a Gaussian mixture model;
determining a first initial position of a robot; and

determining a first trajectory of the robot to perform the task, the

determining based at least in part on the learned model and the first initial position.
9. The system of claim 8, the computer readable instructions further comprising:

determining a second initial position of the robot for performing the task, wherein

the first initial position differs from the second initial position; and

determining a second trajectory of the robot to perform the task, based at least in

part on the learned model and the second initial position;

wherein the first trajectory of the robot and the second trajectory of the robot

converge to a common goal location.
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10.  The system of claim 8, wherein the learned model is the neural network, and
wherein learning the learned model incorporating the one or more contraction analysis

constraints comprises:

initializing the neural network by solving an optimization problem to generate one

or more weights of the neural network;

generating an updated optimization problem based on the optimization problem

and the one or more contraction analysis constraints; and

updating the neural network by solving the updated optimization problem.
11.  The éystem of claim 8, wherein the first trajectory is in a joint space of the robot.
12.  The system of claim 8, the computer readable instructions further comprising:

defining a size of a domain of influence for an object in a workspace of the robot;

and

generating a second trajectory for performing the task, based at least in part on the
learned model, the first initial position, and the size of the domain of influence of the

object;
wherein the second trajectory avoids the object.

13.  The system of claim 12, wherein the first trajectory and the second trajectory

converge to a common goal location.

14. The system of claim 8, wherein the one or more contraction analysis constraints

require a first velocity at a goal location of the task.
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15. A computer program product for transferring a skill to a robot, the computer
program product comprising a computer readable storage medium having program
instructions embodied therewith, the program instructions executable by a processor to

cause the processor to perform a method comprising:
recording one or more demonstrations of a task performed by a user;

determining, based on the one or more demonstrations, movements of one or more

joints of the user;

learning, based on the movements of the one or more joints of the user, a learned
model incorporating one or more contraction analysis constraints, the one or more
contraction analysis constraints representing motion characteristics of the task, wherein

the learned model is at least one of a neural network and a Gaussian mixture model:
determining a first initial position of a robot; and

determining a first trajectory of the robot to perform the task, the determining

based at least in part on the learned model and the first initial position.
16.  The computer program product of claim 15, the method further comprising:

determining a second initial position of the robot for performing the task, wherein

the first initial position differs from the second initial position; and

determining a second trajectory of the robot to perform the task, based at least in

part on the learned model and the second initial position,;

wherein the first trajectory of the robot and the second trajectory of the robot

converge to a common goal location.
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PN

17.  The computer program product of claim 15, wherein the learned model is the
neural network, and wherein learning the neural network incorporating the one or more

contraction analysis constraints comprises:

initializing the neural network by solving an optimization problem to generate one

or more weights of the neural network;

generating an updated optimization problem based on the optimization problem

and the one or more contraction analysis constraints; and
updating the neural network by solving the updated optimization problem.

18.  The computer program product of claim 15, wherein the first trajectory isina

joint space of the robot.
19.  The computer program product of claim 15, the method further comprising:

defining a size of a domain of influence for an object in a workspace of the robot;

and

generating a second trajectory for performing the task, based at least in part on the
learned model, the first initial position, and the size of the domain of influence of the

object;
wherein the second trajectory avoids the object.

20.  The computer program product of claim 19, wherein the first trajectory and the

second trajectory converge to a common goal location.

21.  The computer program product of claim 15, wherein the one or more contraction

analysis constraints require a first velocity at a goal location of the task.
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22.  The computer program product of claim 15, further comprising determining a
time derivative of a state of the robot, wherein the state of the robot comprises one or
more positions of the robot and one or more velocities of the robot, wherein the first

trajectory of the robot is parameterized based on the time derivative of the state of the

robot.

23.  The system of claim 8, further comprising determining a time derivative of a state
of the robot, wherein the state of the robot comprises one or more positions of the robot
and one or more velocities of the robot, wherein the first trajectory of the robot is

parameterized based on the time derivative of the state of the robot.

24.  The computer-implemented method of claim 1, further comprising determining a
time derivative of a state of the robot, wherein the state of the robot comprises one or
more positions of the robot and one or more velocities of the robot, wherein the first
trajectory of the robot is parameterized based on the time derivative of the state of the

robot,
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