wO 20207192542 A1 |0 0000 KPP0 0 0 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
01 October 2020 (01.10.2020)

(10) International Publication Number

WO 2020/192542 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 7/00 (2006.01)

(21) International Application Number:
PCT/CN2020/080149

(22) International Filing Date:
19 March 2020 (19.03.2020)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

62/822.,463 22 March 2019 (22.03.2019) UsS

(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD.
[CN/CN]; Huawei Administration Building, Bantian, Long-
gang District, Shenzhen, Guangdong 518129 (CN).

(72) Inventors: GHAZAL, Ahmad; 1914 Harriman Lane, Unit
B, Redondo Beach, CA 90278 (US). HU, Ron-Chung;
37 Erstwild Court, Palo Alto, CA 94303 (US). ZHANG,

Mingyi, 1092 Sunlite Drive, Santa Clara, CA 95050 (US).
(81)

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

KR,KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
with international search report (Art. 21(3))

(54) Title: QUERY PROCESSING USING LOGICAL QUERY STEPS HAVING CANONICAL FORMS

4
128 124

102 104 100
QUERY
QUERY PROGESSOR
110
140
12 4
LOGICAL- LEVEL
‘ QUERY TREE H OPTMIZER ‘
o
| I
i ALTERNATIVE :
DATABASE | EXECUTION PLANS i
CATALOG | i
I 122 |
! I
! I
T |
i PLAN |
i SELEGTION |
[caroivaumy i
| ESTIMATION i
1= |
! I
! 1
! 1
[I

COSTOPTIMIZER

EXEC

RESULTS

156

FIG. 1

ENGINE

INTERMEDIATE
RESULTS
154

UTION

INTERFACE
S—
DATABASE

130

(57) Abstract: A query processing device includes a communication interface
accessing a database and a database catalog, a memory storing instructions,
and a processor coupled to the memory and to the communication interface.
The processor executes the instructions to parse a query to generate first and
second execution plans for the query, retrieve respective previously determined
cardinality values for previously executed logical steps of the first and second
execution plans from the database catalog, select an execution plan from the
first execution plan or the second execution plan, the selected execution plan
having a lower cost based on the previously determined cardinality values, and
execute the selected execution plan on data accessed from the database. The
query processing system stores actual cardinality values determined during the
execution of the logical steps in the database catalog for use by subsequent
queries. The query processing device therefore re-uses previously-determined
cardinality values.

WO 2020/192542 PCT/CN2020/080149

10

[y
U

20

QUERY PROCESSING USING LOGICAL QUERY STEPS BAVING

CANONICAL FORMS

CROSS-REFERENCE TO RELATED APPLICATIONS
10601} This application claims priority to and benefit of U.S. Provisional
Application No. 62/822,463, filed on March 22, 2019, entitled “Query
Processing Using Logical Query Steps having Canonical Forms,” which

application is hereby incorporated by reference.

TECHNICAL FIELD
10001} The present disclosure is related to guery processing in a database
management system (DBMS), and in particular to a DBMS that parses gueries

into logical steps having canonical forms and stored cardinality information.

BACKGROUND
[0602] Database query optimization methods use cardinality and data
size estimation to formulate betier queries in a cost-based query optimization
system. Cardinality is a measure of the unigueness of data values in a particular
column of a database. A low cardinality value for the column may indicate a
large number of duplicated elements in the column. Cardinality estimates include
row counts and nombers of distinct values of base tables (e.g., database columns)
and intermediate results (e.g., intermediate data resulting from operations on the
base tables). The amount of oniput data from the execution of each operator is
also a cardinality value that can affect performance. Row count, number of

distinet values, and data size play important roles in operations such as join

WO 2020/192542

5

10

15

N2
W

ordering, selecting the type of join method and selecting the type of aggregation
method to be used in the execution plan for a particular query.

[6603] For example, DBMSs employ two types of join algorithms, the
Nested Loop joio algorithm and the Sort Merge jown algorithm. For an example
join operation, JOIN (A, B), the Nested Loop algorithm compares each record in
table A to cach record in table B to generate the joined table while the Sort
Merge join algorithm scparately sorts table A and table B and comabines the
sorted tables to generate the joined table. The Nested Loop algorithm is more
efficient with relatively small tables while the Sort Merge algorithm is more
efficient for relatively large tables. Thus, the guery optimizer for the DBMS

would benefit from knowing the cardinality of the tables to be joined.

SUMMARY
10604] A DBMS parses a query to generate an execution plan. In the
examples described below, an execution plan is a combination of logical steps
that are combined to implement a database query. A logical step is a sub-part of
the query that acts on one or more database columus to produce an intermediate
result. The results of multiple logical steps may be combined in other logical
steps to execute the full query. In the execution plans described below, each of
the logical steps has a canonical form with fully-qualified column names which,
where possible, are arranged in a predetermined {e.g., alphabetical) order. After
executing the plan, the DBMS stores, in a database catalog, statistics for the
execution plan and for the logical steps that make up the execution plan. The
stored statistics are indexed by respective hash value derived {from the canonical
forms of the steps. A query optimizer of the DBMS accesses these stored

statistics when processing later-occurring queries to select one or more query

PCT/CN2020/080149

WO 2020/192542 PCT/CN2020/080149

plans for a later-occurring query that inclodes one or more of the same logical
steps. The statistics are accessed using hash values generated from the canonical-
form steps of the execution plans of the later-occurring queries.
[60603] These examples are encompassed by the features of the
S independent claims. Further embodiments are apparent from the dependent

claims, the description and the figures.
100606} According to a first aspect, a guery processing device includes a
communication interface for accessing a database and a database catalog, a
memory storing instructions, and a processor coupled to the memory and to the

10 communication interface. The processor executes the instructions to parse a
query to generate first and second execution plans for the query, each of the first
and second execution plans including one or more logical steps, retrieve
respective previously determined cardinality valoes for previously execuled

logical steps of the {irst and second execution plans from the database catalog,

[
h

select an execution plan from the first execution plan or the second execution
plan, the selected execution plan having a lower cost based on the previously
determined cardinality values, and execute the sclected execution plan on data
accessed from the database via the communication interface.

[0607] In a first implementation form of the device according to the first
20 aspect as such, the processor is configured to parse the query configure the
processor to generate the logical steps in respective canonical forms having
defined syntaxes and including respective source names.

[6608] In a second implementation form of the device according to the
first aspect as such, the processor is configured o retrieve previously determined

25 cardinality values for the first and second execution plans.

WO 2020/192542 PCT/CN2020/080149

10609] In a third implementation form of the device according to the first
aspect as such, the processor is configured to fully-qualify each source name of
each logical step in cach of the first and second execution plans. The processor is
also configured to determine that a first logical siep of the one or more logical

S steps has multiple source names and is comumutative and arrange the multiple
source names in the first logical step in a predetermined order.
16019} In a fourth implementation form of the device according to the
first aspect as such, the processor is configured to determine that the first logical
step is for an operation including: Inner Join, Full Join, Multi-Way Join, Union,

10 or Intersect.

10018 In a fifth implementation form of the device according to the first
aspect as such, the processor is configured to calculate respective hash values for
each logical step of the first and second execution plans. The processor 1s further

configured to access the database catalog based on the respective hash values to

[
h

retrieve the respective previously determined cardinality values for the logical
steps of the first and second execution plans.
[0612] In a sixth implementation form of the device according to the first
aspect as such, the one or more logical steps include structured query language
{SQL) operations including at least one of a Scan operator, a Join operator, an
20 Aggregate Scan By operator, a Union operator, or an Intersect operator.
10613] In a seventh implementation form of the device according to the
first aspect as such, the Join operator includes at least one of a Single Join
operator, a Multi-Way Join operator, a Left Outer Join Operator, a Semi-Join
Operator, an Anti-Join operator, and a Full Outer Join operator.
25 [0014] In an cighth implementation form of the device according to the

first aspect as such, the processor is configured cxecute cach logical step of the

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

selected execution plan. The processor is also configured to obtain respective
actual cardinality values for each executed logical step and obtain the respective
hash value for each executed logical step. The processor is configured to store
the respective actual cardinality values i the database catalog indexed by the
obtained respective hash values.

10015} In a ninth implementation form of the device according to the first
aspect as such, the processor is further configured to estimate a cardinality for
each logical step in each of the execution plans that does not have a previously
determined cardinality value in the database catalog and to select the one of the
first execution plan or the second execution plan having the lower cost based on
both the retrieved previously determined cardinality values and the estimated
cardinality values.

10616} According to a second aspect, a roethod for processing queries
parses a query to generate first and second execution plans for the query, each of
the first and second execution plans including one or more logical steps. The
method retrieves respective previously determined cardinality values for
previously executed logical steps of the first and second execution plans. Based
on the previously determined cardinality values, the method selects one of the
first execution plan or the second execution plan having a lower cost and
executes the selected execution plan on data from a database.

10617} In a first implementation form of the method according to the
second aspect as such, the parsing of the guery includes generating the logical
steps in respective canonical forms having detined syotaxes and including
respective source names.

16018} In a second implementation form of the method according to the

second aspect as such, the retrieving of the previously determined cardinality

WO 2020/192542 PCT/CN2020/080149

values for the previously executed logical steps of the first and second execution
plans further includes retrieving previously determined cardinality values for the
first and second execution plans.
[6019] In a third implementation form of the method according to the

S second aspect as such, the parsing of the query includes fully-qualifying each
source name of cach logical step in cach of the first and second cxecution plans.
The method further includes determining that a first logical step of the onc or
more logical steps has multiple source names and is commutative and arranging
the multiple source names in the first logical step in a predetermined order.

10 [8824] In a fourth implementation form of the method according to the
second aspect as such, the determining that the first logical step is commutative
inclades determining that the first logical step 1s for an operation including Inner
Join, Full Join, Multi-Way Join, Union, or Intersect.

(00211 In a fifth implementation form of the method according to the

[
h

second aspect as such, the method further includes calculating respective hash

values for each logical step of the first and second execution plans and accessing

a database catalog based on the respective hash values to retricve the respective

previously determined cardinality values for the logical steps of the first and

second execution plans.

20 [6622] In a sixth implementation form of the method according to the
second aspect as such, the parsing of the guery includes parsing a structured
query language (SQL) query into operations including at least one of a Scan
operator, a Join operator, an Aggregate Scan By operator, a Union operator, or
an Infersect operator.

25 [06023] In a seventh implementation form of the method according to the

second aspect as such, the executing of the selected execution plan on data from

WO 2020/192542 PCT/CN2020/080149

the database includes executing each logical step of the selected execution plan.
The method further includes obtaining respective actual cardinality values for
each executed logical step and obtaining the respective hash value for each
executed logical step. The method also includes storing the respective actual
S cardinality values in a database catalog indexed by the obtained respective hash

values.
10024} In an cighth implementation form of the method according to the
second aspect as such, the selecting of one of the first execution plan or the
second execution plan based on the retrieved previously determined cardinality

10 values further includes estimating a cardinality for each logical step in each of
the execution plans that does not have a previously determined cardinality value
in a database catalog. The method also includes selecting the one of the first
execution plan or the second execution plan having the lower cost based on both

the retrieved previously determined cardinality values and the estimated

[
h

cardinality values,

[0025] According to a third aspect, a non-transitory computer-readable
media stores instructions that when executed by one or more processors cause
the one or more processors {0 parse a query to generate first and second
execution plans for the query, each of the first and second execution plans

20 including one or more logical steps, retrieve respective previously determined
cardinality values for previously executed logical steps of the {irst and second
execution plans, select an execution plan from the first execution plan or the
second execution plan, with the selected execution plan having a lower cost
based on the previously determined cardinality values, and execute the selected

25 execution plan on data from a database.

WO 2020/192542 PCT/CN2020/080149

10

it
(921

10626} According to a fourth aspect, a query processing device includes a
communication interface configured for accessing a database and a database
catalog, an execution plan means for parsing a query and generating first and
second execution plans for the query, each of the first and second execution
plans including one or more logical steps, a cardinality means for retrieving
respective previously determined cardinality values for previously executed
logical steps of the first and second execution plans from the database catalog, a
selection means for selecting an execution plan from the first execution plan or
the second execution plan, the selected execution plan having a lower cost based
on the previously determined cardinality values, and an execution means for
executing the selected execution plan on data accessed from the database via the

database interface.

BRIEF DESCRIPTION OF DRAWINGS

[0627] FIG. 1 1s a block diagram of a system for processing database
queries according to an example embodiment.

10628} F1G. 2 is a flowchart of a query processing method according to
an example embodiment.

10629] FIG. 3 is a flowchart of a query processing method according to
another example embodiment.

16030] FI1G. 4 is a block diagram of a computing device for performing

query processing according to an example embodiment,

WO 2020/192542 PCT/CN2020/080149

10

[y
U

DETAILED DESCRIPTION

(60311 In the following description, reference is made to the
accompanying drawings that form a part hereof, and in which is showun by way
of illustration specific cmbodiments which may be practiced. These
embodiments are described in sufficient detail to enable those skilled in the art to
practice the disclosed subject matter, and it is to be understood that other
embodiments may be utilized, and that structural, logical and electrical changes
may be made without departing {rom the scope of the appended claims. The
following description of example embodiments is, therefore, not to be taken to
limit the appended claims.

18632} The execution plans generated by cost-based query optimizers
may be sensitive to the accuracy of cardinality and data size estimations. A cost-
based query optimizer may select an execution plan for a query from among
multiple execution plans as the execution plan having the lowest cost {¢.g., the
shortest response time, lowest CPU and/or /O processing cost, and/or lowest
network processing cost). These costs are significantly affected by the amount of
data being processed (data size) and the number of different data values being
processed (cardinality).

10633] Cardinality estimation can exhibit considerable variation and may
overestimate or underestimate the true cardinality and data size values. Many
relational DBMSs use the ANALYYZE command to collect cardinality and data
size values. The ANALYZE command generates statistics {or a table or an
individual column of a table. In addition to the total number of values, the
ANALYZE command may return other statistics, such as a break-down of the
number of different entries in the table or column. Running the ANALYZE
command may be expensive, especially on a large data set. Consequently,

9

WO 2020/192542 PCT/CN2020/080149

statistics generated from one invocation of an ANALYZE command may be
stored and used for future operations on the table or cohmmu. After the table or
column has experienced multiple inserts, deletes, and updates, however, these
statistics may become stale and the database administrators need to rerun the
5 ANALYZE comunand to refresh the statistics. As an aliernative to using the
ANALYZE command, a DBMS may obtain cardinality data from histograms of
the table.
10634] Errors in cardinality estimation may also result from correlated
columns referenced in a predicate or join condition. For example, consider the
10 following guery:
SELECT customer_id, purchase_price FROM car_sales WHERE
Maker = ‘Honda’ AND Model = *Accord’
In this guery, “Maker” and “Model” are separate columns of the table. These

columns, however, may have high correlation because the model names used by

[
h

each automaker are typically exclusive (o that automaker.
EHIRRY Another possible source of cardinality estimation errors results
from expressions cotaining “regular expressions.” As used herein, a “regular
expression” is a sequence of characters that define a search pattern. An example
regular expression includes the following:
20 WHERE product_name LIKE ‘%green%’ or
WHERE o_comment NOT LIKE 'Z%special %requests %’
The first expression searches the product name field of a database {for names that
include the characters “green.” The second expression searches the other
comments field of the database for comments that are not special requests.
25 Because the resulis of these searches are unknown, it 1s difficult to estimate size

of the data resulting from use of the expressions.

10

WO 2020/192542 PCT/CN2020/080149

10636} A guery optumizer in a DBMS attempts to choose the best
execution plan {rom among many different execution plans. As described above,
query optimizers use cardinality estimation to select the best plan. A query
optimizer according to an example embodiment overcomes the problems

S described above by breaking each complex query down into a plarality of steps
and capturing the actual cardinality of the complex query and its component
steps when the query 1s executed. These cardinality values are formatted and
stored so that they can be used to select a best guery plan from a set of later-
occurring query plans that include the same queries and/or steps.

10 88371 This embodiments described below reuse statistics from previous
query plan executions to obtain cardinality information for use by later queries.
This sohution includes a producer side and a consumer side. The producer side
captures the cardinality statistics of actual executions, and the execution engine

saves them into a catalog table of the DBMS. The consumer side is the

[y
U

cardinality estimation component of the optimizer, which fetches the cardinality

information from catalog and uses the cardinality information to select the best

execution plan for a received query.

[0038] The device and method can re-use previously-determined

cardinality values, increasing the ability to choose a best execution plan. The

20 device and method can be used for query optimization. The device and method
can be used for selecting an execution plan. The device and method can be used
for selecting a lowest cost execuotion plan. The device and method can be used
for re-using previously generated cardinality values instead of using cardinality
estimates. The device and method can be used to improve database query

25 performance through improved statistics estimation. The device and method can

be used to improve database query performance through re-use of previous

11

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

cardinality values instead of relying on estimates of cardinality values. The
device and method can be used to maximize the reusability of previously
executed query statistics.

16039] FI1G. 1 is a block diagram of a system 100 for processing database
queries according to an example embodiment. The systern 100 in the
embodiment shown includes a query source 102 and/or receives a database guery.
In the examples described below, a query can include information obtained {rom
to a database column, a set of input values, or comprises an intermediate result
generated by a previous logical step. The examples described below use
Structured Query Language (SQL) queries, although it is contemplated that other
query languages may be used. The system 100 in the embodiment shown
inclades a query processor 104, a guery optimizer 110 including a cost-based
(physical-level) optimizer 120, a commuunication interface 132 for
communicating with a database 130, a database catalog 140 and an execution
engine 150. The system 100 in some embodiments comprises a database
management system (DBMS) technology. The communication interface 132 can
communicate with one or both of the database 130 and the database catalog 140.
In some embodiments, the guery processor 104 parses a received query into
multiple logical steps to generate a guery tree 112. A query tree includes a root
logical step, one or more child logical steps, and one or more leaf logical steps
that do not have child logical steps. Each logical step has a canonical form,
{ollowing a defined syntax, and fully-qualified source name(s) arranged in the
predetermined order. The logical steps generated from the gueries by the
examples described below are canonical in that the Jogical steps bave a syntax
defined by rules. such that two queries which include the same logical step

generate the same textual representation of that logical step. Although the

12

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

embodiments described below process SQL queries, it 1s contemplated that other
embodiments may process other types of database gueries.

[6040] The query optimizer 110 processes the logical steps in the guery
irec to generate one or more guery execution plans 126 for execution by the
execution engine 150, such as a first execution plan and a second execution plan.
For simplicity, the discussion will hereinafter recite the {irst execution plan and
the first execution plan, but it should be understood that any number of guery
execution plans may be generated. In order to generate the one or more query
execution plans 126, the query optimizer 110 and cost-based optimizer 120 may
access and/or receive information from the database catalog 140. In the example
embodiment, the database tables searched according to the gueries reside in the
database 130.

(00411 In some embodiments, the query processor 104 checks the
syntactical structure of the query 102 in addition to generating the query tree 112,
The guery processor 104 analyzes the semantics of the query tree 112 to
determine whether issues exist, such as incompatible operations types or
references to non-cxistent tables. Although not shown in FIG. 1, the guery
processor 104 may access information from the database catalog 140 to
implement these functions.

10642} The query optimizer 110 inclhudes a logical-level optimizer 114
that applies rules and retrieves cardinalities of the logical steps in the query tree
112 to generate execution plans for the query tree based on the retrieved
cardinalities and optimization rules. The logical-level optimizer 114 may
calculate separate hash values for the entire query tree 112 and for sub-branches
of the tree 112 including individual logical steps and access cardinality data from

the database catalog 140 based on the hash values. Because the logical steps in

13

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

the query are generated according to the canonical forms, as described below,
the same logical steps occurring in different queries have the same text and, thus,
the same hash value. Thus, if the cardinalities for the logical steps are stored in
the database catalog 140 and are indexed by their hash values, the logical-level
optimizer 114 may quickly retrieve the cardinalities for previously executed
queries and/or for each previously executed subpart. The logical-level optimizer
114 may then generate a plurality of execution plans 122 and evaluate the
different plans based on the returned cardinalities. The execution plans 122 can
specify different orders of execution for the logical steps and/or different types
of operations (e.g., different types of join operations such as Hash Join, Nested
Loop Join, or Merge Join). As described above, the cardinality of the source
and/or column and/or the size of the output results can affect the cost of each
logical step in the execution plan and, thus, the cost of the overall execution plan.
(00431 The cost-based optimizer 120 receives the execution plans 122
and applies these plans to a plan selection module 124, The plan selection
module 124 accesses the database catalog 140 and a cardinality estimation
module 128 to select one or more execution plans of the execution plans 122.
When cardinality data for a logical step of a particular execution plan 122 is
stored in the database catalog 140, the plan selection module 124 uses the stored
data. In example systems, the cardinality data retrieved by the logical-level
optimiizer 114 may be passed with the execution plans 122 to the plan selection
module 124. When the database catalog 140 does not include cardinality data for
a logical step or for a table, the cardinality estimation module 128 generates an
estimate of the cardinality of a table, for example, by using statistics previously
generated by an ANALYZE command, by sampling data in the table, and/or by

generating histograms of the table.

14

WO 2020/192542 PCT/CN2020/080149

16644 The plan selection module 124 also accesses cost functions from
the database catalog 140 to estimate costs for the execution plans 122. The cost
functions can use cardinality estimations {rom the database catalog 140 and/or
from the cardinality estimation module 128 and/or other statistics to estimate the
S cost of executing each plan. The plan selection module 124 selects one or more
of the lower cost exccution plans 122 as the guery execution plan{s) 126.
[0045] The execution engine 150 executes the query execution plan(s)
126 using data in the database 130 to generate intermediate results 154, which
are further processed to generate the output results 156. As a part of executing
10 the query execution plans 126, the execution engine 150 determines the actual
cardinality of the component tables of the queries and of the intermediate results
154. This cardinality data is fed back to the database catalog 140, with the
corresponding hash values, in a closed-loop configuration for use in the

optimization of subsequent queries 102,

[y
U

{88461 As deseribed below, cach SQL query can include one or more
predicates. Each predicate may be defined as a condition under which a given
portion of a data table satisfics a portion of the execution plan 122. Such
predicates can be determined and/or evaluated based on one or more views.
[0647] The plan selection module 124 selects the execution plan 122
20 having the smallest cost. As these costs are based on cardinality estimates, better
cardinality estimates can improve the performance of the plan selection module
124.
[0048] For example, the cost of performing a query may depend on the
order of operations in the execution plans 122, A plan that evaluates the logical
25 steps of the query tree in one order may produce a larger intermediate result than

a plan that evaluates the logical steps in a different order. Thus, it is desirable to

15

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

know not only the cardinality of the source tables but also the cardinality of any
intermediate tables that may be generated by a query plan. As part of execution
plan generation, the logical-level optinuizer 114 may specify the order of query
operations (e.g., predicale evaluation or combination of predicates) such that
operations that are expected generate smaller intermediate resulis 154 occur
early in the exccution plan than query operations that arc expected to generate
larger intermediate results 154, Such ordering can be performed on the basis of
cardinality estimates, which can be regarded as an expected size of the
intermediate result. The execution engine 150 may determine the cardinality of
these intermediate results 154 during execution of a {irst query plan and make
these cardinality valoes available for use by the logical-level optimizer 114
and/or the plan selection module 124 to generate/select the best query execution
plan for a later occurring query.

(00491 The examples below describe a general and logical canonical
form which allows the execution engine 130 to captore inforroation in each
logical step in the query. The canonical form logical steps are generated in the
producer side. The canonical form logical steps (and their corresponding
cardinality statistics) are saved into the database catalog 140 by the execution
engine 150. On the consumer side, the query optimizer 110 generates the query
tree, including the logical canonical form logical steps, and accesses the database
catalog 140 to quickly find the matching canonical forms and their associated
cardinality and data size information.

[6030] The examples described below collect statistics on previously
executed queries and make these statistics available for later-occurring queries.
The canonical forms of the logical steps of the execution plan allows the query

optimizer 110 to determine the best execution plan, based on a set of execution

16

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

steps, because the query optimiizer 110 can quickly determine the cardinality of
the execution steps, database columns, and intermediate results based on the
actual cardinality of the same previously executed steps using the same database
columns and intermediate results. The granularity of statistics roaintained by the
systern is at the execution step level, not at query level. Furthermore, the cost-
based optimizer 120 uses the cardinality data to perform physical query
optimization. The general canonical form, described below, s at the logical level
it does not include information such as join order, join algorithim, group-by order,
or predicate order. The collected cardinality data, however, allows the query
optimizer 110 to select one or more of the alternative execution plans 122 based
on actual cardinality data for each logical step contained in the database.

10651] The cost-based query optimizer 110 performs physical
optimization. The examples below use the terma “physical” {o distinguish
between the query optirnization performed by logical level optimizer 114 and the
cost-based query optimizer 110. Logical query optimization selects plans based
on the retrieved cardinality data for previously performed steps. This cardinality
data may not be complete, however, as not all steps in the query plan may have
been previously executed and not all database columns and intermediate results
may have been previously processed. The physical optimization also takes into
account estimated cardinality values for steps that have not been previously
performed. The cost-based query optimizer 110 also takes into account the
effects of join order, join algorithm, group-by order and predicate order on the
cost of an execution plan.

10652} As described below, each logical step is represented in a
canonical form and has a corresponding hash value. The hash value may be

generated by applying a hash function, for example, the MDS hash function. to

17

WO 2020/192542 PCT/CN2020/080149

the textual representation of the logical step. The hash value allows the logical-
level optimiizer 114 and/or the plan selection module 124 to quickly find
statistics for a particular logical step in the database catalog 140.
[(GG53] The hash value, and its associated statistics information are saved
5 in the database catalog 140. Aliernatively, the canonical text of the logical step
can also be stored in the database catalog 140. Similar to a key-valuc hash map,
the query optimizer 110 uses a matching hash value of a canonical form logical
step {e.g., a key generated from the logical step) to find the corresponding actual
cardinality statistics for the logical step in the database catalog 140. As described
1 above, in the canonical form, table names and/or column names are fully-
qualified. That is to say, the table names and/or column names include all names
in the hierarchic sequence above the given element and the name of the table
and/or column itself. Bach fully-qualified table name or column name is unique

1t the schema of s database. Furthermore, the canonical form contains all the

[
h

dependency logical steps of an execution siep. The canonical forms are
generated recursively by including all the logical steps on which the current
logical step depends. The canonical forms define keywords and syntax structure
for each type of operation. The terms (e.g., table names) inside the canonical
form logical steps are sorted alphabetically to increase their reusability. This is
20 especially useful as many SQL operators have the commutative property, that is
the step execution may be in any order. Thus, the system can match a logical
step with a canonical form even if the order of some terms 1s different {rom the
order of the corresponding teams vused in previous queries. Although the [ully-
qualified table names are described as being in alphabetical order, the table

25 names may be organized in a different predetermined order, for example, first by

18

WO 2020/192542 PCT/CN2020/080149

name length and then alphabetically. Any predetermined order may be used as

long as it is applied to every query processed by the system 100.

(¢354 The materials below describe the canonical forms for various

operators used in execution steps. Each of the logical steps has a canounical form

5 that follows a defined syntax as described below.
[0035] The SCAN operator has the following canonical form:
SCAN(source], PREDICATE(filter-expression)})

The terms SCAN and PREDICATE are keywords and the terms inside [] are

optional. “Source” can be either a base table {e.g., a column of the database) or
10 an intermediate table (e.g., a table resulting {rom performing a previous

operation 1n the query). The name of the table is fuily qualified.

130356] As an example of the application of the canonical form for the

SCAN operator, the SQL query “SELECT * FROM t1 WHERE ¢1>10”

generates the canonical form “SCAN(public.tl, PREDICATE(public.tl cl >

[
h

103)” where “public” is the name of the database, “t17 1s a particular coluran of

the database and “c1” is a variable representing the values in the coluran

public.tl.

[0657] The single JOIN operator has the following canonical form:
JOIN(sourcel, source?], PREDICATE(Join-condition)]}

20 The terms SCAN and PREDICATE are keywords and the terms inside | | are

optional. The JOIN operator can be either inner join {with a join condition) or

Cartesian product join (without a join condition). The ileras “sourcel” and

“souce2” can be either base tables or intermediate tables. Sourcel and source2

are in a predetermined sorted order, in an example embodiment, the

25 predetermined order is alphabetical order.

19

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

[0638] As an example of the application of the canonical form for the
JOIN operator, the SQL guery “SELECT * FROM t1, 12 WHERE tl.c1=t2.cl
and t1.c1>10” generates the canonical form “JOIN(SCAN(public.ti,
PREDICATE(public.tl.cl > 10)), SCAN{(public.i2, PREDICATE(public.t2.c1 >
10)). PREDICATE(public.tl.cl = public.t2.c1))” Note that the canonical form
includes canonical form SCAN operator having the predicate from the SQL
query.
[3059] The Multi-Way JOIN Operator (also known as the Consecutive
JOIN operator) has the following canonical form:

JOIN(sourcel, source?, sourced, ...[, PREDICATE(Join-condition}})
A Multi-Way JOIN operator can be {lattened out {e.g., the sources can be
separately specified without regard to the structure of the database that contains
the sources) to increase the reusability of the Multi-Way JOIN canonical form. A
flattened join canonical form having sorted source names allows the cardinality
data to be reused n a futore query even when the future query contains a
different join order. The Multi-Way JOIN operation may be flattened due to the
commutative property of the JOIN operator. {¢.g., (A join B) produces same

resuit as (B join A)}). Hence, (A join B join C) has same canonical form as (B

join C join A).

10660] As an example of the application of the canonical form for the
Multi-Way JOIN operator, the SQL query SELECT * FROM t1 INNER JOIN 2
ON tl.cl=t2.cl INNER JOIN 3 ON t1.cl=t3.c1 WHERE tl.ci>10" generates
the canonical form * JOIN(SCAN(public.tl, PREDICATE(public.tl.cl > 10)),
SCAN(public.i2, PREDICATE(public.t2.¢c1 > 10)), SCAN(public.i3,
PREDICATE(public.t3.c1 > 10)), PREDICATE(public.tl.cl1 = public.t2.cl

AND public.tl.cl = public.t3.¢c1)).”

20

WO 2020/192542 PCT/CN2020/080149

10661} The Left OQuter JOIN operator has the {ollowing canonical form:
LEFTJOIN(sourcel, source2], PREDICATE((Join-condition}])
LEFTIOIN and PREDICATE are keywords. In a Left Outer JOIN operator, the
order of sourcel and source? cannot be changed because the order of these two
S sources matters in the semantics of the Left Outer JOIN operator. Thus, the Lelt
Outer JOIN operator cannot be flattened out. The canonical form for a Right
Quter Join operator (RIGHTIOIN) is similar to the canonical from for a Left
QOuter JOIN operator. Many guery optimizers convert the Right Outer JOIN
operator {0 a Left Outer JOIN operator. As an example of the LEFTIOIN
10 operator, the SQL query “SELECT * FROM 2 LEFT JOIN t1 ON tl.ci=t2.c1”
generates the canonical form “LEFTIOIN(SCAN(public.t2), SCAN(public.tl),
PREDICATE(public.tl.cl = public.tZ.c1)).” Gther Join operators have similar
canovical forms to the Left Outer JOIN operator. These include the Semi-join

operator which has the canonical torm:

[y
U

SEMEJOIN(sourcel, source2], PREDICATE(join-condition}}])
and the Anti-join operator which has the canonical form:
ANTIJOIN(seurcel, source2], PREDICATE(jvin-condition)}})
As with the Left Outer Join operator, the order of sourcel and source2 in the
SEMIJOIN and ANTIJOIN operators cannot be changed because the order
20 matters in the semantics of the operators.
[(062] The Full Outer JOIN operator has the canonical form:
FULLJOIN(sourcel, source2], PREDICATE(join-condition)}}])
The order of sourcel and source? in the Full Outer JOIN operator may be
changed to be in the predetermined order because the Full Outer JOIN operator
25 has the commutative property.

10063} The Aggregate Group By operator has the canonical formu:

21

WO 2020/192542 PCT/CN2020/080149

AGGREGATE(source, GROUPBY (columns)i,
PREDICATE(having-condition)} }}
(33641 in this canonical form, the terms AGGREGATE, GROUPBY and
PREDICATE are keywords, “colamns” is a list of the columns specified in
S GROUP BY clause, and the PREDICATE contains a condition specified in
HAVING clause. As an examnple of the Aggregate Group By operator, the query
“SELECT customer_id, COUNT(order_id) FROM orders GROUP BY
customer_id HAVING COUNT(order_id) > 100" generates the canonical form
operator "AGGREGATE(SCAN(public.orders), GROUPBY (public.orders.
10 customer_id), PREDICATE(count{order_id) > 100))”
13065 The Union operator has the canonical form:
UNION(sourcel, source?, sourced, ...)
In this canonical form, the term “UNION” is a keyword and the sources can be

base tables or intermediate tables. All source names are sorted in the

[
h

predetermined alphabetical order as the Union operator has the commutative
property.
[06066] The Intersect operator has the canonical form:
INTERSEC T(sourcel, sourcel, spurce3, ...)
in this canonical form, the term “INTERSECT” is a keyword and the sources
20 can be base tables or intermediate tables. All source names are sorted i the
predetermined alphabetical order as the Intersect operator has the commutative
property. In addition, consecutive INTERSECT operations can be combined,
sorted, and flattened out to increase reusability.
84671 The operations described above are not all of the operators used
25 in cmbodiments of the DBMS. Canonical forms for other operators can be
generated in a similar way.

22

WO 2020/192542 PCT/CN2020/080149

10668] The query optimizer 110 can be implemented by, {or example, the
computing device 400 of FIG. 4. In some embodiments, the query optimizer 110
comprises a stand-alone unit. Alternatively, in other embodiments the query
optimizer 110 includes one or more of the query processor 104, the DB interface
5 132, the database catalog 140, or the execution engine 150,

[0069] FI1G. 2 is a flowchart of a query processing method according to
an example embodiment. At operation 202, the method 200 receives the SQL
query. At operation 204, the method 200 parses the query into one or more
execution plans having canonical-form logical steps, as described above. At

10 operation 200, the method 200 fully qualifies the table names and, for operators
having the commutative property, reorders the table names in the predetermined
order. At operation 208, the method 200 calculates respective hash values for
each execuotion plan and subsets of cach execution plan, including respective

hash values {or the individual logical steps. Operation 210 then searches a

[
h

database catalog {or the cardinality values based on the calculated hash values.
The method 200, at operation 212, determines whether cardinalities have been
found for the parsed query or any of its subparts and whether the cardinality
values have current timestamps. If operation 212 determines that current
cardinalities have been found, operation 214 passes on the parsed query with the
20 {ound cardinality values and, optionally, the hash values of the execution plans
for the query and their sub-parts for cost optimization. If operation 212
determines that no cardinalities were found, or that the cardinalities which were
found have older timestamps, indicating that they are likely to be unreliable.
Operation 216 sends only the parsed query for cost optimnization.
25 [06074] F1G. 3 is a flowchart of a query processing method 300 according

to another example cmbodiment. The method 300 comprises a recursive guery

23

WO 2020/192542 PCT/CN2020/080149

processing method in some embodiments. The method 300 executes the steps of
the execution plan{s). As described above, the execution plan is in the formof a
tree. The root of the tree is the overall query and the branches are sub-parts of
the tree. The leaves of the tree are fundamental operations, for example the
S SCAN operations described above. The method 300 begins at operation 302,

processing the root step in the cxecution plan. At operation 304, the method 300
determines whether the current step is an empty step, which occurs when the
previous step was a leaf step that has no child steps. If the current step is a leaf
step, the method 300 ends at operation 306. When operation 304 determines that

10 the current step is not an empty step, the method 300 executes operation 308 to
determine whether the current step is a pass-through step. A pass-through step is
a step in the execution plan that is not affected by cardinality. Example non-
pass-through steps include, without limitation, SCAN, JOIN, AGGREGATE,

UNION, INTERSECT, MINUS, and LIMIT. These steps are sensitive to the

[
h

cardinality and/or size of the data being processed. Example pass-through steps
include, without limitation, SORT, window functions (¢.g., SUM, COUNT,
AV(G), and REDISTRIBUTE. These steps are not sensitive to data cardinality
and/or size. When operation 308 determines that the current step is a pass-
through step, operation 310 sets the current step to the child of the pass-through
20 step and branches back to operation 302 to process the new current step.
10671} When operation 308 determines that the current step is not a pass-
through step, then the method 300 processes the cardinality data. At operation
312, the method 300 determines whether the actual cardinality data determined
when the step was executed at operation 302 is different from the estimated
25 cardinality. The estimated cardinality may be included with the execution plan or

may be obtained from a database catalog, for example. When there 15 no

24

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

difference between the actual and estimated cardinality values, method 300
passes control {o operation 318, described below, which recursively invokes the
method 300 {or the two sub-trees of the current step.

10672] When operation 312 deterrines that the actual cardinality
determined at operation 302 is different from the cardinality estimate stored in
the database catalog or received with the query execution plans, operation 314
produces the canonical form and the hash value of the current step. Operation
314 may produce these values from the execution plan or may reproduce the
canonical form for the step using the rules described above. Similarly, the hash
value may be received with the execution plan or may be computed from the
canontcal form of the step. At operation 316, the actual and estimated
cardinalities of the step are stored in the database catalog, indexed by the hash
value,

(00731 After operation 316, or afier operation 312 if the cardinality of the
step 1s the same as the estimated cardinality, operation 318 invokes the method
300 for the left and right child steps of the current step. This is indicated by the
branch {rom operation 318 {o operation 302.

(6674 As an alternative to the method described above, operation 318
may occur immediately before operation 302, causing the method to recursively
invoke the method until the leaves of the query tree are encountered. The method
processes the leaves to generate intermediate results which are passed back to
the higher-level invocations of the method to be processed according to the
branches of the query tree. This continues until the logical step at the root node
is processed using the intermediate resulis generated by its child logical steps.
10675] FI1G. 4 is a block diagram of a computing device 400 for

performing query processing according to an example cmbodiment. In some

25

WO 2020/192542 PCT/CN2020/080149

embodiments, the computing device 400 implements the query processor 110 of
FIG. 1. All components need not be used in various embodiments. For example,
the clients, servers, and network resources may cach use a different set of
components, or in the case of servers, larger storage devices.

5 [0076] The computing device 400 may include a processor 402, memory
403, removable storage 410, and non-removable storage 412. The computing
device 400 may be in different forms in different embodiments. For example, the
computing device 400 may instead be any computing device configured {o
maintain a database. Further, although the various data storage elements are

10 iHustrated as part of the computing device 400, the storage 410 may also or
alternatively include cloud-based storage accessible via a network (not shown),
such as the Internet, or server-based storage.

[O0771 Memory 403 may include volatile memory 414 and non-volatile

memory 408, The computing device 400 may include {or have access to a
o o

[
h

computing environment that includes) a variety of computer-readable media,

such as volatile memory 414 and non-volatile memory 408, removable storage

410 and non-removable storage 412, Computer storage includes random access

memory (RAM)}, read only memory (ROM), erasable programmable read-only

memory (EPROM), electrically erasable programmable read-only memory

20 (EEPROM), flash memory or other memory technologies, compact disc read-
only memory (CB ROM), digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium capable of storing computer-
readable instructions,

25 [0078] The computing device 400 may include or have access to a

computing cnvironment that inchudes input interface 406, output interface 404,

26

WO 2020/192542 PCT/CN2020/080149

and a communication interface 416. Output interface 404 may provide an

interface to a display device, such as a touchscreen, that also may serve as an

input device. The input interface 406 may provide an interface in the formof a

touchscreen, touchpad, mouse, keyboard, camera, one or more device-specific

S5 buttons, one or more sensors tlegrated within or coupled via wired or witeless

data connections to the computing device 400, and/or other input devices. The
computing device 400 may operate in a networked environment using a
communication interface 416 to connect to one or more network nodes or remote
computers, such as database servers. The remote computer may include a

10 personal computer (PC), server, router, network PC, a peer device or other
common network node, or the like. The communication interface 416 may
include an interface to a local area network (LAN), a wide area network (WAN),
cellular, a Wi-Fi network, andfor a Bluetooth® network, for example.

(00791 Computer-readable instructions stored on a computer-readable

[
h

mediom (such as an application or applications 418) are executable by the
processor 402 of the computing device 400. A hard drive, CD-ROM, RAM, and
flash memory are some examples of articles including a non-transitory
computer-readable medium such as a storage device. The terms computer-
readable medium and storage device do not include carrier waves to the extent
20 carrier waves are deemed too transitory.
10680] The functions or algorithms described herein may be
implemented using software in one embodiment. The software may consist of
compuicr executable instructions stored on computer readable media or
compuier readable storage device such as one or more non-transilory memories
25 or other type of hardware-based storage devices, either local or networked, such

as in application 418. A device according to embodiments described herein

27

WO 2020/192542 PCT/CN2020/080149

10

[
h

20

implements software or computer instructions to perform query processing,
including DBMS query processing. Further, such functions correspond to
modules, which may be software, hardware, firmware or any combination
thereof. Multiple functions may be performed n one or more modules as desired,
and the embodiments described are merely examples. The software may be
executed on a digital signal processor, ASIC, microprocessor, or other type of
processor operating on a computer system, such as a personal computer, server
or other computer system, turning such computer system into a specifically
programmed machine.

10081} A query processing device 110 or 400 1n some examples
comprises a communication interface 132 or 416 {or accessing a database 130
and a database catalog 140, a memory 403 storing instructions 418, and a
processor 402 coupled to the memory 403 and to the communication infer{ace
132 or 416. The processor 402 executes the instructions 418 fo parse a query (o
generate first and second execution plans for the query, each of the first and
second execution plans including onc or more logical steps, retricve respective
previously determined cardinality values for previously executed logical steps of
the first and second execution plans from the database catalog 140, select an
execution plan from the first execution plan or the second execution plan, the
selected execution plan having a lower cost based on the previously determiined
cardinality values, and execute the selected execution plan on data accessed from
the database via the communication interface 132 or 416.

10082} A query processing device 110 or 400 in some examples
comprises a communication inter{ace 132 or 416 configured for accessing a
database 130 and a database catalog 140, an execution plan means for parsing a

query and gencrating first and second execution plans for the query, cach of the

28

WO 2020/192542 PCT/CN2020/080149

first and second execution plans including one or more logical steps, a
cardinality means for retrieving respective previously determined cardinality
values for previously executed logical steps of the first and second execution
plans from the database catalog, a selection means for selecting an execution
S plan from the first execution plan or the second execution plan, the selected

execution plan having a lower cost based on the previously determined
cardinality values, and an exccution means for executing the selected execution
plan on data accessed from the database via the database interface.
10083] The query processing device 110 or 400 is implemented as the

10 computing device 400 in some embodiments. The query processing device 110
or 400 is implemented as a database management system (BBMS) query
processing device in some embodiments.
(00841 In an example embodiment, the computing device 400 inclodes a

query parser module parsing a query to generate {irst and second execution plans

[
h

for the query, each of the first and second execution plans including one or more
logical steps, a cardinality retrieval module retrieving respective previously
determined cardinality values for previously executed logical steps of the first
and second execution plans, an execution plan selection module selecting an
execution plan from the first execution plan or the second execution plan, with
20 the selected execution plan having a lower cost based on the previously
determined cardinality values, and a plan execution module executing the
selected execution plan on data from a database. In some embodiments, the
computing device 400 may include other or additional modules for performing
any one of or combination of steps described in the embodiments. Further, any

25 of the additional or alternative embodiments or aspects of the method, as shown

29

WO 2020/192542 PCT/CN2020/080149

10

in any of the figures or recited in any of the claims, are also contemplated to
include similar modules.

[(G085] Although a few embodiments have been described in detail above,
other modifications are possible. For example, the logic flows depicted in the
figures do not require the particular order shown, or sequential order, to achieve
desirable results. Other steps may be provided, or steps may be eliminated, from
the described flows, and other components may be added to, or removed from,
the described systems. Other embodiments may be within the scope of the

following claims.

30

WO 2020/192542 PCT/CN2020/080149

CLAIMS
What is claimed is:
1. A query processing device comprising:
a communication interface for accessing a database and a database
catalog;
a memory storing instructions; and
a processor coupled to the memory and to the communication interface,
the processor executing the instructions {o:
parse a query to generate first and second execution plans for the
query, each of the first and second execution plans including one or more
logical steps;
retrieve respective previously determined cardinality values for
previously executed logical sieps of the first and second execution plans
from the database catalog:
select an execution plan from the first execution plan or the
second execution plan, the selected execution plan having a lower cost
based on the previously determined cardinality values; and
execute the selected execution plan on data accessed from the
database via the communication interface.
2. The query processing device of claim 1, wherein the instructions
configuring the processor to parse the query configure the processor to generate
the logical steps in respective canonical forms having defined syntaxes and

including respective source names.

31

WO 2020/192542 PCT/CN2020/080149

3. The query processing device of any of claims 1 to 2, wherein the
instructions configuring the processor {o retrieve the previously determined
cardinality values for the previously executed logical steps of the {irst and
second execution plans further configure the processor to retrieve the previously

deterrmned cardinality values for the first and second execution plans.

4. The guery processing device of any of claims 1 to 3, wherein the
instructions configuring the processor to parse the query configure the processor
to:

fully-qualify each source name of cach logical step in each of the first
and second execution plans;

determine that a first logical step of the one or more logical steps has
multiple source names and is commutative; and

arrange the multiple source names in the first logical step in a

predetermined order.

5. The query processing device of claim 4, wherein the instructions
configuring the processor to determine that the first logical step is commutative
incluade instructions that configure the processor to determine that the first
logical step is for an operation inclading: Inner Join, Full Join, Multi-Way Join,

Union, or Intersect.

6. The query processing device of any of claims 1 to 3, wherein the
instructions further configure the processor to:

calculate respective hash values for cach logical step of the first and
second execution plans; and

32

WO 2020/192542 PCT/CN2020/080149

access the database catalog based on the respective hash values to
retrieve the respective previously determined cardinality values {or the logical

steps of the first and second execution plans.

7. The query processing device of any of claims 1 to 6, wherein the one or
more logical steps include structured query language (SQL) operations including
at least one of a Scan operator, a Join operator, an Aggregate Scan By operator, a

Union operator, or an Intersect operator.

8. The query processing device of claim 7, wherein the Join operator
includes at least one of a Single Join operator, a Multi-Way Join operator, a Left
Outer Join Operator, a Semi-Join Operator, an Anti-Join operator, and a Full

Outer Join operator.

9. The query processing device of any of clairs 1 to 8, wherein the
instructions configuring the processor to execute the sclected execution plan on
data in the database configure the processor to:

execute each logical step of the selected execution plan;

obtain respective actual cardinality values for each executed logical step;

obtain respective hash values for each executed logical step; and

store the respective actual cardinality valnes in the database catalog

indexed by the obtained respective hash values.

10. The query processing device of any of claims 1 to 9, wherein the
instructions configuring the processor to select one of the first cxecution plan or
the second execution plan based on the retrieved previously determined

33

WO 2020/192542 PCT/CN2020/080149

cardinality values further configure the processor to estimate a cardinality value
for each logical step in each of the execution plans that does not have a
previously determined cardinality value in the database catalog and to select the
one of the first execution plan or the second execution plan having the lower cost
based on both the retrieved previously determined cardinality values and the

estimated cardinality values.

It A guery processing method, the method comprising:
parsing a query to generate first and second execution plans for the query,
cach of the first and second execution plans including one or more logical steps;
retrieving respective previously determined cardinality values for
previously executed logical steps of the first and second execution plans;
selecting an execution plan from the f{irst execution plan or the second
execution plan, with the selected execution plan having a lower cost based on the
previously determined cardinality valoes; and

cxecuting the selected execution plan on data from a database.

12. 'The query processing method of claim 11, wherein the parsing the
query includes generating the logical steps in respective canonical forms having

defined syntaxes and including respective source names.

13. The query processing method of any of claims 11 to 12, wherein the
retrieving the previously determined cardinality values for the previously
executed logical steps of the first and second execution plans further includes
retricving the previously determined cardinality values for the first and second
execution plans.

34

WO 2020/192542 PCT/CN2020/080149

14. The query processing method of any of claims 11 to 13, wherein the
parsing the query includes:

fully-qualifying each source name of each logical step in each of the first
and second execution plans;

determining that a first logical step of the one or more logical steps has
multiple source names and is commutative; and

arranging the multiple source names in the first logical step in a

predetermined order.

I5. The query processing method of claim 14, wherein the determining the
first logical step 1s commutative includes determining the first logical step is for

an operation including Tnner Join, Full Join, Multi-Way Join, Union, or Intersect.

16. The query processing method of any of claims 11 to 15, further
comprising:

calculating respective hash values for each logical step of the first and
second execution plans; and

accessing a database catalog based on the respective hash values to
retrieve the respective previously determined cardinality values {or the logical

steps of the first and second execution plans.

17. The query processing method of any of claims 11 to 16, wherein the
parsing the query includes parsing a structured query language (SQL) query nto
operations including at least one of a Scan operator, a Join operator, an

Aggregate Scan By operator, a Union operator, or an Intersect operator.

S g ~

35

WO 2020/192542 PCT/CN2020/080149

18. The query processing method of any of claims 11 to 17, wherein the
executing the selected execution plan on data from the database includes:
exccuting each logical step of the selected execution plan;

obtaining respective actual cardinality values for each executed logical

obtaining respective hash values for each executed logical step; and
storing the respective actual cardinality values in a database catalog

indexed by the obtained respective hash values.

19. The query processing method of any of claims 11 to 18, wherein the
selecting of one of the first execution plan or the second execution plan based on
the previously determined cardinality values further includes estimating a
cardinality for each logical step in each of the execution plans that does not have
a previously determined cardinality value in a database catalog and selecting the
one of the first execution plan or the second execution plan having the lower cost
based on both the previously determined cardinality values and the estimated

cardinality values.

20. A non-transitory computer-readable media storing computer
instructions, that when executed by one or more processors, cause the one or
more processors (o perform the steps of:
parse a query to generate first and second execution plans for the query,
cach of the first and second execution plans including one or more logical steps;
retrieve respective previously determined cardinality values for

previously executed logical steps of the first and second execution plans;

36

WO 2020/192542 PCT/CN2020/080149

select an execution plan {rom the first execution plan or the second
execution plan, with the selected execution plan having a lower cost based on the
previously determined cardinality values; and

exccute the selecied execution plan on data from a database.

21, A guery processing device, comprising:

a communication interface configured for accessing a database and a
database catalog;

an execution plan means for parsing a query and generating first and
second execution plans for the query, each of the first and second execution
plans including one or more logical steps;

a cardinality means {or retrieving respective previously determined
cardinality values for previously executed logical steps of the first and second
execution plans {rom the database catalog;

a selection means for selecting an execution plan from the {irst execution
plan or the second exccution plan, the selected execution plan having a lower
cost based on the previously determined cardinality values; and

an execution means for executing the selected execution plan on data

accessed from the database via the database interface.

37

WO 2020/192542 PCT/CN2020/080149

’1,02 L04 }/ 100
| QUERY
QUERY PROCESSOR
110
140
g I 114
.| LOGICAL- LEVEL
QUERY TREE OPTIMIZER
A
< -220
: Ty T
' ALTERNATIVE |
DATABASE | EXECUTION PLANS |
CATALOG | v ,
: 122 v |
|
P ' R |
| PLAN .
: SELECTION |
.| CARDINALITY - :
|| ESTIMATION > ,
A I 4 4 |
: 128 124 |
|
l |
ICOSTOPTIMIZER _ _ | _ _ _ ____ l
QUERY OPTIMIZER
A
QUERY EXECUTION
PLAN(S)
{
126
v X0 1%

EXECUTION || COMM.
ENGINE "1 INTERFACE
A

A

y

A 4

y
RESULTS INTERMEDIATE) | pATABASE
7 RESULTS
7
154 130

FIG. 1

1/4

WO 2020/192542 PCT/CN2020/080149

200\

RECEIVE QUERY ~202

v

PARSE QUERY INTO
CANONICAL STEPS ~204

!

FULLY QUALIFY TABLE NAMES
AND REORDER TABLES FOR
COMMUTATIVE STEPS

Y

CALCULATE HASH VALUE OF
PARSED QUERY AND OF EACH STEP

!

SEARCH CATALOG FOR

~206

~208

~210

HASH VALUES
SEND PARSED
CURRENT Y
CARDINALITIES FOUND FOR QUERY TO 6
QUERY/STEPS ? COST OPTIMIZER

SEND PARSED QUERY
AND CARDINALITY
VALUES TO COST

OPTIMIZER

~214

FIG. 2

2/4

WO 2020/192542

PCT/CN2020/080149

Vs 300

v

PROCESS STEP

~302

STOP

~306

SET
CURRENT
STEP TO
CHILD
(SOURCE)
STEP

YES
PASS-THROUGH
STEP?

~310

ACTUAL
CARDINALITY DIFFERENT
FROM ESTIMATE?

PRODUCE CANONICAL FORM
AND HASH VALUE OF [~314
CURRENT STEP

'

INSERT CANONICAL FORM,

ACTUAL AND ESTIMATED p-316
CARDINALITY INTO

DATABASE CATALOG

g

CALL PROCESS STEP FOR
LEFT CHILD; 318

CALL PROCESS STEP FOR
RIGHT CHILD

FIG. 3

3/4

WO 2020/192542

400

PCT/CN2020/080149

s 402 403
418
APPLICATIONS
£ 414
PROCESSOR VOLATILE
408
401 — NON-VOLATILE
MEMORY
410 416
REMOVABLE L
STORAGE COMMUNICATION
INTERFACE
412 406 404
NON-REMOVABLE INPUT OUTPUT
STORAGE INTERFACE INTERFACE

FIG. 4

4/4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2020/080149

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 7/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT;CNKLWPLEPODOC:query, database, execute, plan, logical, cardinality, select, catalog, generate

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™® Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

2004 (2004-05-18)
description, column 2, line 5 to column 3, line 9,

X US 6738755 B1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 18 May 1-21

column 4, line 44 to column 5, line 28

the whole document

A US 2005267877 A1 (MICROSOFT CORPORATION) 01 December 2005 (2005-12-01) 1-21

October 2009 (2009-10-15)
the whole document

A US 2009259641 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 15 1-21

the whole document

A US 2004181521 Al (SIMMEN, David E.) 16 September 2004 (2004-09-16) 1-21

(2013-02-13)
the whole document

A CN 102930003 A (ZHEJIANG TUXUN TECHNOLOGY CO., LTD.) 13 February 2013 1-21

D Further documents are listed in the continuation of Box C.

See patent family annex.

Special categories of cited documents:

document defining the general state of the art which is not considered

to be of particular relevance

earlier application or patent but published on or after the international

filing date

document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other

special reason (as specified)

«“0” document referring to an oral disclosure, use, exhibition or other
means

“p> document published prior to the international filing date but later than

the priority date claimed

«T> later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

«3» document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

«y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

100088
China

Facsimile No. (86-10)62019451

19 May 2020 18 June 2020
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Ji Bridge, Haidian District, Beiji
, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing JIAO,Yue

Telephone No. 86-(10)-53961306

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members

PCT/CN2020/080149

. Pat(.ant document Publication date Patent family member(s) Publication date

cited in search report (day/month/year) (day/month/year)
uUs 6738755 BI1 18 May 2004 None

Us 2005267877 Al 01 December 2005 us 2004010488 Al 15 January 2004
uUs 2009259641 Al 15 October 2009 None
uUs 2004181521 Al 16 September 2004 None
CN 102930003 A 13 February 2013 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report

