«» UK Patent Application «.GB .2 341699 ., A

{43) Date of A Publication 22.03.2000

{21} Application No 9820410.0 {(51) INTCL
GO6F 13/00 // GO6F 13/40
{22) Date of Filing 18.09.1998
i {52) UK CL (Edition R)
G4A AFGN AMB
(71} Applicant(s) H4P PPK
Pixelfusion Limited
(Incorporated in the United Kingdom) (56) Documents Cited
2440 The Quadrant, Aztec West, Almondsbury, GB 2184270 A EP 0242882 A2 WO 96/41250 A2
BRISTOL, BS32 4AQ, United Kingdom
(568) Field of Search
{72} Inventor(s) UK CL (Edition P) G4A AFGN AMB AMG1
Richard Carl Phelps INT CL® GO6F 12/00 12/08 13/00 13/12 13/16 13/18
Paul Anthony Winser 13/36
Online: COMPUTER, EPODOC, INSPEC, WPI
(74) Agent and/or Address for Service
Haseltine Lake & Co
Imperial House, 15-19 Kingsway, LONDON,
WC2B 6UD, United Kingdom
(54) Abstract Title

Inter-module data transfer

(67) Apparatus for a computer system comprises a plurality of modules; a storage device (86) and means (83)
for receiving read transaction requests from modules, each request including address data (84) indicating the
location of the data to be retrieved, and identity data indicating the source of the transaction message. The
apparatus also includes means (84) for sending the address data to the storage device, means (85, 87) for
storing the identity data in a queue; means for receiving a retrieved data item from the storage device, means
for matching the retrieved data item with the identity data at the head of the queue, and means for returning
the retrieved data to the module identified by the matched identity data.

86
VAR NEY I
[TRANSACTION ADDRESS (+ WRITE DATA)
/
FULL FLAG MASTER ID & SEQUENCE 84
)2 83 -] /
8 85
TRANSACTION
FIFO U
|~ 87 TARGET
BUS MODULE
TAG FUNCTION
QUEUE
88
.) READ PACKET TAGS TT
L 4
READ PACKET DATA
80 —] y
A\ =

FIG. 29

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

V 669 LvEC 99D

1/16

CONTROL BUS

MODULE #1 MODULE #n
M1 Mn

READ / WRITE BUS

FIG. 1

Vi

(PRIOR ART)

M1 Mn Mn+1 Mn + X

\ /) /
MODULE |. .| MODULE MODULE | .| MODULE
#1 #n #n+ 1 #n + X
5
3 (4
PRIMARY-TO- /
PRIMARY BUS SECONDARY BUS SECONDARY BUS
INTERFACE MODULE \
LATENCY INTOLERANT © LATENCY TOLERANT

MODULES F ' G - 2 MODULES

2/16

¢ Old

3

\

—

r 3

v
F

v
r 3

A 4
r

L g

N

SN8 AYVYANQD3S

i

S hd
X + ug b-X+ugl 1 og+us G+ up b+ ug €+ upt z+ug b+ ug
ERigle{e]}] IINGONW AINAOW 31NAaon IINAONW FINAON 3TINAON JTNAONW
L+ UN

X+ UN

~OL-AdVWIHd

3T1NAONW
JOV4Y3LNI
sng
AYVANOD3S

(

S

SNE AYVINIY

i€

)

U# Lt
37NAOW

37NAONW

(

un

M1 Mn

x s

MODULE MODULE
#1 #n

PRIMARY BUS

3/16

PRIMARY-TO-
SECONDARY BUS
INTERFACE MODULE

\r

5
{1
J

PRIMARY-TO-
SECONDARY BUS
INTERFACE MODULE

¥
N

5

] 2

\
PRIMARY-TO-
SECONDARY BUS
INTERFACE MODULE

¥
N

FIG. 4

Mn+1 Mn + X
\ |
7 7
MODULE MODULE
#n+1 #n + X

ﬂ SECONDARY BUS

MODULE
#n+1

MODULE
#n+ X

SECONDARY BUS

MODULE
#n + 1

MODULE
#n+ X

SECONDARY BUS

4/16

INPUTS TO UNITS ARE
\ SIMPLY BUS DROPS : {
MASTER TARGET
UNIT UNIT
OUTPUTS FROM UNITS

ARE MULTIPLEXED
/} WITH UPSTREAM DATA

TRANSACTION PIPE

WRITE DATA PIPE \)

NN\

READ DATA PIPE

FIG. 5

WRITE DATABUS Wp, «—1— DATA

TRANSFERRED
AS ONE PACKET

TRANSACTION BUS W,

TIMESLOT | t !
I

DATA
WRITE DATABUS | Wp,, Wp,, «—~__ TRANSFERRED
AS TWO

! l ! HALF-PACKETS

IDLE SLOT ON
TRANSACTION BUS Wr, ~T™~~——— TRANSACTION BUS

COULD BE USED FOR
1 I ' (

FG.7

5/16

READ DATABUS

WRITE DATABUS ~ WRITE
DATABUS
! ! IS UNUSED
TRANSACTION BUS Ry,
TIMESLOT | t |
| |
» t
I 1
J |
READ DATABUS Rpa ~1—~_ DATA
TRANSFERRED
TIMESLOT | t I AS ONE PACKET
1 [
» t
| : | DATA TRANSFERRED AS
TWO HALF-PACKETS
Rpa1 Rpa2

TIMESLOT |
I

I t+1

FIG. 10

t

6/16

21~ ARBITRATION
UNIT
22
\ b
M1 M2 M3 M4 M5
2 ﬂ
BUS ‘
)
FIG. 11 20
21
i
25 26 27
]) !
22 REQUES{' STACK
Y RECEIVE ST PRIORITY LEVEL
D ORAGE STORAGE MEANS
MEANS MEANS
h
y A\ 4 L\ 4
424

CONTROL MEANS

FIG. 12

7116

Avv(START)

y

B ~ ASSIGN INITIAL

STACK
POSITIONS

<

y

C

RECEIVE
TRANSACTION
REQUEST

A 4

™ OBTAIN

HIGHEST
PRIORITY
REQUEST

A 4

E —

MASK OUT ALL
LOWER PRIORITY
REQUESTS

y

OBTAIN STACK
POSITIONS OF
REMAINING
REQUESTS

G

H ~ SEND

y

~1 SELECT
HIGHEST
REQUEST

y

TRANSACTION
GRANT
MESSAGE

Y

y

MODULE
USES BUS

J

FIG. 13

J_/‘

MODULE STACK
ENTRY PLACED AT
END OF STACK

8/16

))))))

28 29
\ !/
MODULE PRIORITY
M1 H
M2 M
M3 L
M4 H
M5 M
FIG. 14
30 M1 30\ Mt {H M
= M2 | om2 M
M3 M3 _JL
M4 M4 |H | M4
M5 ms (M
FIG. 15 FIG. 16
30\ M1 |H o M1 | M1
oMM
M3__E_>
M4 |H o M4
MS___M__’

FIG. 17

9716

30 M2 (M] M2 R~
~ M3 |L
-t
M4
M5 M M5
M1

30 M3
N M4
M5

M1

M2

FIG. 19

31
ARBITRATION UNIT
32 33
/ ¢
INITIATION RETIREMENT
ARBITER ARBITER
Y Y
<34
v L v v

Y
TO /FROM MODULES

FIG. 20

10/ 16

35T R1 Wi1 R2 | W2 | R3 | W3
36 ~W W1A | W1B [W2A | W2B | W3A | W3B
37 —~R R1A | R1B
TIME t t t t t t
39
/
ARBITRATION UNIT
40 41
! /
WRITE BUS READ BUS
ARBITER ARBITER
A Ar 4
42
\V \ 4 JV JV
— J
h S
TO MODULES
43 —"TW >
44 — W »
45—R >
46 — TR —>

FIG. 23

11/16

43—TW [W1 W2 W3
44 ~W |W1A | W1B | W2A | W2B | W3A | W3B
45 ~R R1A | R1B | R2ZA R2B
46 ~TR | R1 R2 | R3

TIME| t t t t t t

FIG. 24

50 51
)) 58
MODULE |/
»| ADDRESS AVAILABILITY
DECODER RECEPTION
v
ADDRESS /
AVAILABILITY
COMPARISON
4~ 52
2 TO
- 53 ARBITRATION
TRANSACTION S UNIT
REQUEST T
GENERATOR
54

FIG. 25

12716

Sy

(T —

I

M1A

M1B

M2A

M2B

65|

S SN
\/—————\/
\\‘55
FIG. 26
?1| 63I
M1A ‘—is
¥
0, ‘_. S
M1B »
(/
62I 64I
%1n 63n
MNA l—:s
{2
S
MNB » -
y g
62 64

.27

YY)

13/16

ey

sng

0.

8¢ 9Ol

NW

{

L1,
\ A
¥ILSYW Sng
OV1 3ONINDIS 13M0OVd Qv3y
1¥0d aLm |
_/ 5.
V1va LINOVd av3y v\\
(NOILONNS
9/ | <F<oom§3wzoo S1NaON
¥344ng - 8/ f
H30H03Y 1¥0d Qvay 6/
¥3.LNNOD
¥INNSNOD N
JON3IND3S Z
SS34AAV NOILOVSNYYL l— vz £
SH3LNNOD JONINDIS YILSYN
¥3LNNOD
¥30NA0¥d
\ 20NINOIS |~ |y

OV.L 3ION3IND3S NOILOVSNYYHL

14 /16

6Z Ol

NOILONNA
INAon
1394Vl

68
V.Lva 13MOVd av3y
D
L SOVL 1IN0V Avay {
88
3N3NO
ovL
18-
I Ol
NOILOVSNVL
G8 zQ
/ _—~ €8 /
bg 3ON3ND3IS ? QI ¥ILSYW Ov14 1IN
(vLVQ ILIMM +) SS33aqV NOILOVSNVYL]

98~

sng

»

12

T~
.
—~—

06
» -
0
16 16 e
cN N N
ITINAON J1NAON IMNAOW

16/ 16

d311849Y
AUVYINIYC

€

)

SNg AYVYNIYd

3T1NACW
JOVIHILNI
sng
AdYANOI3S
Ol AdVINIYd

lE Old

SNg AYYANOD3S

N/

d31184v
AHVYANOO3S

L +U

Z+u

X+ U

10

15

20

25

30

35

2341699

-1-

APPARATUS FOR USE IN A COMPUTER_SYSTEM:
TECHNICAL FIELD OF THE INVENTION

The invention relates to apparatus for use in a
computer system, and in particular, to apparatus
utilising a bus architecture.

BACKGROUND TO THE INVENTION

Figure 1 of the accompanying drawings shows a
computer system including a typical communications bus
architecture. A plurality of modules are connected to
a combined read and write bus and to a separate control
bus, both of which are well known tri-state buses. The
modules may be, for example, memory devices, graphics
controllers, CPU’'s, and so on. The control bus and the
read/write bus service all the requirements of the
system, enabling the modules to transfer data between
one another or externally, for example to external
memory or control devices.

With the ever increasing need to integrate more
complexity and functionality into computer systems, and
in particular into systems provided on a single
integrated circuit, i.e. system-on-chip solutions, bus
architectures need to be flexible enough to cope with
the differing needs that individual modules will place
on the system.

One aspect that a system has to take into
consideration is "latency". Latency is the amount of
time that a module has to wait in order to transmit or
retrieve data. Some modules are more sensitive, or
intolerant, to this waiting period than others.
Therefore, if latency sensitive, or latency intolerant,
modules are forced to wait beyond a certain time limit,
they will behave in a manner that will adversely affect
the system performance and functionality.

As more modules are connected to a bus, the size

of the bus inevitably needs to be increased. This in

10

15

20

25

30

35

-2-

turn can lead to an increased module-to-module
distance, which increases the time taken to transfer
data between modules. This can have an adverse effect
on latency sensitive, or intolerant, modules.

In systems which use a large amount of data that
must be processed at high speed, for example graphics
systems, it is important to be able to have efficient,
high speed data transfer between modules of the system.
A communications bus is therefore desirabkle which can
enable different usage of the bus and is able to
support high speed and high volume of traffic data
transfer.

SUMMARY OF THE INVENTION
The aim of the present invention is to provide an

improved computer system.

According to the present invention, there is
provided apparatus for a computer system comprising:

a plurality of modules;

a storage device;

means for receiving read transaction requests from
modules, each request including address data indicating
the location of the data to be retrieved, and identity
data indicating the source of the transaction message;

means for sending the address data to the storage
device; '

means for storing the identity data in a queue;

means for receiving a retrieved data item from the
storage device;

means for matching the retrieved data item with
the identity data at the head of the queue; and

means for returning the retrieved data to the
module identified by the matched identity data.

' Apparatus embodying the invention may also include

a bus architecture comprising:

a primary bus having latency intolerant modules

10

15

20

25

30

35

connected thereto;

a secondary bus having latency tolerant modules
connected thereto; and

a primary to secondary bus interface module
interconnecting the primary and secondary buses.

The length of the secondary bus will usually be
greater than that of the primary bus. The primary bus
is preferably less than, or equal to, three pipeline
stages in length.

Latency tolerant modules connected to the
secondary bus can be arranged such that the least
tolerant modules are located closer to the primary bus
than the more tolerant modules.

The bus architecture can have two or more
secondary buses, each one connected to the primary bus
via a separate primary to secondary interface module.

The primary and/or secondary bus may comprise:

a write data bus for transferring write data
between modules;

a read data bus for transferring read data between
modules;

a transaction bus for transferring control data
between modules,

the read data bus and the write data bus being
physically separate from one another.

With such an architecture, a read transaction by a
master module can typically involve placing read
address data indicating the location of the required
data on the transaction bus to which the master module
is connected, and the master module receiving the
required read data from a target module on the read
data bus to which the master module is connected at an
arbitrary time after the read address has been placed
on the transaction bus, wherein the write and
transaction buses are available for use during

10

15

20

25

30

35

-4 -

reception by the master module of the return read data.

The apparatus may further comprise:

means for assigning each module in the system one
of a predetermined number of priority levels;

means for assigning each module an initial
position within a queue;

means for receiving respective transaction
requests from modules;

means for filtering the transaction requests from
the modules so as to retain the requests from those
modules having the highest priority level of the
modules making such requests, thereby producing a set
of filtered reguests;

means for selecting from the set of filtered
requests, the transaction request from the module
having the highest position within the gueue, and

means for sending a request grant message to the
module from which the selected transaction request was
received.

The number of modules will typically exceed the
predetermined number of priority levels.

The apparatus preferably also includes means to
place a module receiving a transaction grant message at
the bottom of the queue.

"The apparatus can also include a first arbiter
means for controlling initiating transactions on the
bus architecture; and a second arbiter means for
controlling return transactions on the bus
architecture.

When the primary and/or secondary bus includes
separate read, write and transaction control buses,
the first arbiter means preferably controls use of the
write and transaction buses and the second arbiter
means preferably controls use of the read bus.

In apparatus embodying the invention, each module

10

15

20

)
(&

30

35

-5-

can be assigned an address range in a memory map of the
apparatus, and the apparatus can then further comprise:

reception means for receiving and storing
availability data indicative of the availability of
modules;

transaction request means for producing a
transaction request including target address data
indicating a target location in the memory map for the
transaction;

decoding means for decoding the target address
data to produce identity data relating to a target
module, the target module being assigned an address
range in the memory map which includes the target
address data;

comparison means for analysing the stored
availability data corresponding to the target module
identified by the identity data; and

transaction means, responsive to the comparison
means, for terminating the transaction request if the
analyzed availability data indicates that the target
module is unavailable.

Such apparatus can further comprise a control
means for controlling access to the bus architecture by
the modules and wherein the transaction means is
operable to forward the transaction requcst to the
control means, if the analyzed availability data
indicates that the target module is available.

Apparatus embodying the invention can also
comprise:

means for receiving data requests from modules for
respective required data packets, each request
including address data indicating the location of the
datd packet concerned, and sequence data indicating the
timing of the request relative to other data requests;

means for receiving returned data packets and

10

15

20

25

30

35

associated sequence data;

a storage device for storing the returned data
packets in respective storage locations therein, in the
order indicated by the associated sequence data; and

retrieval means for retrieving data packets from
the storage device in the order of the storage
locations of the storage device.

The retrieval means can be operable to cycle
through the storage locations of the storage device.

The storage device can be provided by a dual port
RAM device.

Apparatus embodying the invention can also
comprise:

an arbitration unit for granting access to the bus
in response to requests received from the modules, the
granting of access being in the form of a dedicated
data packet issued from the arbitration unit, whereby
only the module which has been granted access can use
that particular dedicated packet to gain access to the
bus, the arbitration unit being operable to issue empty
data packets during periods when the bus is idle, the
empty data packets being usable by a module to gain
access to the bus without making a specific request to
the arbitration unit for a dedicated packet.

in such apparatus the first module to use the
empty packet gains access to the bus. Each module may
have means for converting a dedicated packet intended
for itself into an empty packet. The arbitration unit
may be located at one end of the bus.

In apparatus embodying the invention the or each
bus may also comprises:

a plurality of bus connection units for connecting
modules to the bus concerned; and

a plurality of bus portions arranged in series,

each bus portion, except the last in the series, being

10

15

20

25

30

35

-7-

connected to the next portion in the series by way of a
bus portion connection unit.

Each bus connection unit may include multiplexer
circuitry for selectively connecting a module to the
bus concerned. Each bus connection unit may include
output circuitry connected to the bus portions to which
the unit is connected, the output circuitry being
optimised for the length of the bus portions concerned.
Preferably, the bus portions are all substantially
equal in length.

Embodiments of the invention are usefully
implemented in a computer system, an integrated
circuit, a graphics processing system, or a games
console including apparatus as set out above.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present
invention, and to show more clearly how it may be
carried into effect, reference will now be made, by way
of example, to the accompanying drawings, in which:-

Figure 1 shows an apparatus having a known bus
architecture for use in a computer system;

Figure 2 shows an apparatus having a different bus
architecture for use in a computer system;

Figure 3 illustrates in more detail the apparatus
of Figure 2; - R

Figure 4 shows an apparatus having a further
different bus architecture for use in a computer
system;

Figure 5 illustrates an apparatus having a further
different bus architecture for use in a computer
system;

Figures 6 and 7 illustrate data transfer during
write transactions in the apparatus of Figure 5;

Figures 8, 9 and 10 illustrate data transfers in

read transactions in the apparatus of Figure 5;

10

15

20

[\
(O]

30

35

-8-

Figure 11 illustrates an apparatus incorporating
an arbitration unit for use in a computer system;

Figure 12 is a block diagram illustrating the
arbitration unit of Figure 11;

Figure 13 is a flow chart illustrating a method of
bus arbitration for the apparatus of Figure 11;

Figure 14 illustrates priority level assignments
used in the scheme of Figure 13;

Figures 15 to 19 illustrate register entries for
the method of Figure 13;

Figure 20 illustrates an arbitration unit for an
apparatus for use in a computer system;

Figure 21 illustrates transaction implementation
using the arbitration unit of Figure 20;

Figure 22 shows an arbitration unit for an
apparatus for use in a computer system;

Figure 23 illustrates a bus structure for use with
the arbitration unit of Figure 22;

Figure 24 illustrates transaction implementation
using in the arbitration unit of Figure 22;

Figure 25 illustrates an address decoding
apparatus;

Figure 26 illustrates a memory map of a computer
system;

Figure 27 illustrates an address dccoder; S

Figure 28 illustrates a representative master
module;

Figure 29 illustrates representative target
module;

Figure 30 illustrates a modular bus topology; and

Figure 31 illustrates an apparatus for use in a
computer system, whereby the apparatus uses idle time

slots to reduce latency.

DETAILED DESCRIPTION

10

15

20

25

30

35

-9~

Apparatus used in computer systems typically use a
communications bus architecture, or data pipe to
interconnect modules of the computer system. In this
disclosure, a "module" means a functional unit that
connects to the bus, and that provides a particular
function for the computer system. A module is usually
able to transfer data to and from other modules in the
system, and such a transfer of data is known as a
"transaction". A module that initiates a transaction
is known as a "master module" and a module which is the
subject of a transaction is known as a "target module’.
In order to initiate a transaction, a master module
issues a "transaction request" to an arbitration unit
(or "arbiter") which determines how access to the bus
will be controlled. A "data packet" is defined as a
predetermined number of data bytes, for example 32,
which is used for transferring data across the bus
architecture. A write bus is a bus which is used for
transferring data packets to be stored at a target
module, and a read bus is a bus used for transferring
so called "mature data" to a master module in response
to a read transaction. "Mature data" is data which is
ready to be returned from a target module to a master
module in response to a read transaction. A "system
cycle" is defined as one cloun period of the system
clock, and a "pipeline stage" is defined as the bus
length travelled by a data pulse in a single system
cycle.

It will be readily appreciated that the bus
architecture and features described below may be used
in a computer system including individual components
connected to one another by external interfaces, or in
an integrated circuit (on-chip) system in which modules
are formed on a single integrated circuit, or in a

combination of the two. Preferably, such a system

10

15

20

25

30

35

-10-

involves the use of an integrated circuit (on-chip)

system.
PRIMARY AND SECONDARY BUS ARCHITECTURE

Figure 2 illustrates a computer system including

an improved bus architecture which comprises a primary
bus 3 and a secondary bus 4. The primary bus 3 has a
plurality of modules M; ... M, connected thereto. Each
module connected to the primary bus 3 is a latency
intolerant module.

The secondary bus 4 also has a number of modules
Mht1 -+ Mpix connected thereto. However, each module
connected to the secondary bus 4 is a latency tolerant
module. The primary bus and secondary bus are
interconnected by an interface module 5, known as a
primary to secondary bus interface module 5.

In this manner, modules which are expected to
operate at relatively high speed, (i.e. the latency
intolerant, or sensitive modules), are connected to a
dedicated primary bus 3 that can service their speed
requirements. Latency intolerant modules cannot wait
for incoming data, and typically make frequent requests
for relatively small amounts of data.

Latency tolerant, or latency insensitive, modules
are connected to the secondary bus 4. These modules
are prepared to wait for-data, and typiczally make
infrequent requests for relatively large amounts of
data.

Figure 3 shows a more detailed view of the
computer system of Figure 2. The primary bus is
preferably only one pipeline stage in length.
Therefore, if two modules are connected by a single
pipeline stage, a signal will travel between the two
modules during a single clock cycle. Similarly, if a
connection between two modules is two pipeline stages

long, two clock cycles will be required for the signal

10

15

20

25

30

35

-11-

to travel from one module to another.

Since all the modules connected to the primary bus
are less than one pipeline stage apart, the primary bus
guarantees that data transfer between any two modules
on the primary bus is always less than one clock cycle.

The secondary bus, on the other hand, can be of
any length, and can be expected to be much longer than
the primary bus. The secondary bus is made up from a
plurality of pipeline stages. Thus, the secondary bus
cannot guarantee a minimum transaction time between a
master and a target module. For example, in Figure 3,
module M, . is seven pipelines away from module Mnst-
Therefore, data transfer between modules Mp,x and Mp .4
will take seven clock cycles. Although Figure 3 shows
the modules separated at intervals of approximately one
pipeline, they may be several pipeline stage apart, or
several modules may be arranged within a single
pipeline stage.

The interface module 5 serves as a collation point
for all incoming and outgoing requests to/from the
secondary bus. The primary to secondary interface
module 5 has a first-in-first-out register (FIFO) to
hold outgoing requests before they can be accepted on

the primary write bus.

- Preferablys the interface module 5 includes a FIFO

capable of holding a fixed number of pending read
and/or write requests. The FIFO should be sufficiently
large to hold enough requests to keep the primary bus
active should the interface module 5 be allowed to make
consecutive requests, but small enough such that it is
not an overhead. Typically, the FIFO will consist of x
entries of n bits (ie. data and transaction
information) . '

A modification of such a bus architecture provides

a plurality of secondary buses. Figure 4 shows an

10

15

20

25

30

35

-12-

arrangement whereby a plurality of secondary buses 4,
4, and 4, are connected in parallel. Each secondary
bus has a corresponding secondary to primary interface
5, 5; and 5, for connecting each secondary bus to the
primary bus 3.

The provision of a number of secondary buses in
parallel is advantageous when there are too many
modules to connect to a single secondary bus.

Although the primary bus has been described as
being just one pipeline stage in length, the primary
bus could still provide the required latency
sensitivity if it is two, or perhaps three pipeline
stages in length. However, it is unlikely that a
practical embodiment of a system utilising a split
primary-secondary bus would use a primary bus having
more than a single pipeline stage.

SPLIT READ-WRITE BUSES
In the known bus system of Figure 1 described

above, the integrated tristate read and write data bus
has the disadvantage that a read transaction from a
master module involves placing the address to be read
on an address bus, and then awaiting the data which has
been read from the target module to return on the
combined read/write data bus. This wait for the read
data to be-ceturned on the-Zata bus ties up the bus
activity. Other modules wishing to make transactions
are unable to gain access to the bus. Furthermore,
when changing from a write transaction to a read
transaction, (known as turn around), valuable
processing time is lost.

Using a split transaction procedure can overcome
this problem, since a read transaction can adopt a
wfire-and -forget" approach. This means that the read
data is returned at some arbitrary time after the read

address is issued. However, the combined read and

10

15

20

25

30

35

-13-

write bus is still tied up while the read data is
returned.

To overcome this problem, the read and write bus
can be split into separate read and write buses. In
this manner, read data is returned on a dedicated bus,
which means that the write data bus and transaction bus
are available to carry out further transactions. A
benefit of this architecture is that the read latency
does not consume bus time, as happens on a conventional
bus which is frozen while the read cycle is serviced.

Figure 5 shows a split read/write bus. Each
module is connected to a write data bus 13 and a read
data bus 14. A transaction bus 12 controls data
transfer between any two modules 10, 11. If a data
rate of 3.2 GB/s is required, and the operating
frequency is 200 MHz, a 128 bit path will be needed to
sustain this bandwidth.

This approach removes the need for tri-state
buses, since each module is "tapped" as a simple
connection, or by way of a multiplexer which drives the
segment of bus up to the next module. This makes the
entire structure point to point with no tri-state
drivers being required. The transaction bus 12 is
provided for information pertaining to the read and
wirite transactions, for example address traffic:— This
bus runs in parallel with the write data bus 13, and
flows in the same direction. The transaction bus 12
can initiate a transaction every clock cycle at 200 MHz
to fit the natural data size of the external
interfaces. A single transaction consists of a packet
of typically 32 data bytes. Larger transfers are
always split into packet transactions which are
independently arbitrated. The data bus width is chosen
to be typically 128 bits (or 16 bytes). This means
that a transaction takes two cycles to process on the

10

15

20

25

30

35

-14-

read or write data buses.

Since read transactions can be initiated every
second cycle, and write transactions likewise, the
transaction bus 12 can alternate initiations of read
and write transactions on each alternate cycle, and
keep both data buses saturated. In this way, such a
bus structure can support, for example, up to 3.2 GB/s
of read traffic and up to 3.2 GB/s of write traffic
simultaneously. In addition, consecutive read
transactions are also allowed, in the absence of any
write transactions requests.

Figure 6 shows data transfer on the write data bus
13 where data is transferred as one packet. In one
cycle, t, information pertaining to the write data
(i.e. address, master ID tag, master sequence tag) Wpg
is placed on the transaction bus 12 and the write data
Wpg is placed on the write data pipe.

Figure 7 shows an alternative whereby the transfer

a

of data takes place over two cycles. In cycle t, the
write address information Wy, is placed on the
transaction bus 12 and the first half of the data is
placed on the write data bus 13. During cycle t+l, the
second half of the write data packet is placed on the
write data bus 13. This leaves an idle slot on the
transaction Las 12, which could be used to request a
read packet.

Figure 8 shows that when a read request packet is
made, the transaction bus 12 conveys the information
Rorg regarding the data-fetch (address etc.). During
such a request, the write data bus 13 is empty.

The read data pipe 14 is used by target modules to
send data to the master modules in response to Read
requests as shown in Figure 8. Figure 9 shows how the
read data bus can convey the data from the target to

the master in one clock cycle, t.

10

15

20

25

30

35

-15-

Alternatively, if only a half-size data bus is
used, the read data is conveyed over two cycles, t and
t+1.

An advantage of partitioning the bus into separate
transaction, write and read buses, is that it is
possible to reduce latency problems in a latency
sensitive environment. Furthermore, there is no need
to rely on tri-state schemes that are complex to
control.

ARBITRATION SCHEME FOR BUS ACCESS

In a computer system such as those described

above, which include more than one module, some form of
arbitration is required to decide which of the modules
is to be allowed access to the communications bus at
any one time.

Figure 11 illustrates such a computer system, in
which five modules M1 to M5 are connected to a
communications bus 20 and also to an arbitration unit
(or arbiter) 21. It will be appreciated that the
communications bus is preferably in accordance with
those described with reference to Figures 2 to 10
above, but that the arbitration scheme is applicable to
any bus architecture. .

The arbitration unit 21 communicates via control
lines 22 with the modules M1 to M5, and the modules
communicate with the bus 20 via links 23. In general
terms, a transaction is completed as follows: the
arbitration unit 21 receives a transaction request from
a module (the "master" module for the transaction), and
if the bus is available to that module, then the
arbitration unit 21 returns a transaction grant
message. The master module concerned then places data
on to the bus. For example, using the split
read/write/transaction bus described above, if module

Ml is to undertake a write transaction, it requests use

10

15

20

25

30

35

-16-

of the write bus by sending a write transaction request
via control lines 22 to the arbitration unit 21. The
arbitration unit 21 decides whether the master module
M1 is able to use the write bus, in accordance with the
method to be explained in more detail below. If the
master module M1l is able to use the write bus, the
arbitration unit 21 issues a transaction grant message
to the master module M1 and a transaction granted
message to the target module. Upon receipt of the
grant message, the master module Ml supplies address
data on the transaction bus and corresponding write
data on the write bus. The target module then receives
the address and write data from the bus and processes
the data appropriately.

Figure 12 is a block diagram illustrating an
arbitration unit 21 for use in the computer system of
Figure 11. The arbitration unit 21 includes a control
means 24 for carrying out the arbitration scheme, a
request receive means 25 for receiving transaction
requests from modules in the computer system, priority
level storage means 27 for storing information
indicating an assigned priority level for each of the
modules in the system, and stack storage means 26 for
storing stack (or queue) information relating to the
modules in the system. '

An arbitration scheme will now be described with
reference to the flow chart of Figure 13 and the
register charts of Figures 14 to 21. The arbitration
scheme to be described can be used for the read and
write buses together, or individually. The result of
the arbitration scheme determines which of the modules
M1 to M5 is granted use of the bus concerned.

Each module M1 to M5 is assigned a relative
priority level. In the example shown in Figure 14,
modules M1 and M4 are assigned a high priority level,

10

15

20

25

30

35

-17-

modules M2 and M5 a medium priority level and module M3
a low priority level. The priority levels are stored
in the priority level storage means 27 in the
arbitration unit 21.

The initial set up of the arbitration scheme is to
arrange the modules into initial stack positions (step
A) which are stored in the stack storage means 26.
These initial positions are illustrated in Figure 15.
It will be appreciated that the initial stack positions
are arbitrarily chosen. 1In the example shown, M1 is at
the top of the stack and M5 at the bottom.

In step B, the arbitration unit 21 receives
respective transaction requests from any number of the
modules M1 to M5. For example, all five modules may
wish to make transaction requests at the same time.

The transaction requests are received by the request
receive means 25 and are forwarded to the control means
24. At step C, the control means 24 determines which
of the transaction requests are associated with the
highest priority level of the modules issuing requests.
In the example where all five modules M1 to M5 issue
transaction requests, modules M1l and M4 can be seen to
have the highest priority levels of the requesting
modules. The control means then masks out {(step E) all
requests from lower priority modules. Thus, only the
requests from modules M1l and M4 are processed further.
This is illustrated in Figure 16.

The second stage of the arbitration scheme is to
determine the stack positions (step F) of the modules
whose requests are to be processed further. The
transaction request from the module occupying the -
highest position in the stack is selected for
acceptance (step G).

This is illustrated in Figure 17 in which it can
be seen that the module M1 is at a higher position in

10

15

20

25

30

35

-18-

the stack than the module M4, and so the request from
module M1 is accepted over that from module M4. 1In
step H, a transaction grant message 1is then sent to the
selected module (M1 in this example) so that the module
can use the bus in the prescribed manner (step I).

The entry in the stack relating to module M1l is
then moved {step J) to the bottom of the stack, and the
entries corresponding to the remaining module M2, M3,
M4 and M5 move up the stack as illustrated in Figure
18. The arbitration scheme is then used again with the
new stack position when the next request or requests
are received from the modules.

For example, as shown in Figure 18, if modules M2,
M3 and M5 issue transaction requests together, the
first stage of the arbitration scheme selects M2 and
M5, since these two modules have the highest assigned
priority level of the requesting modules. The second
stage of the arbitration then selects the request from
module M2 since module M2 is at a higher position in
the stack than module M5. Module M2 is then moved to
the bottom of the stack, resulting in the stack shown
in Figure 19, with module M3 at the top of the stack
followed by M4, M5 and M1 with the module M2 at the
bottom.

In the particular bus architecture described
above, using primary and secondary buses and split
read, write and transaction buses, the primary write
bus arbitration scheme as described functions over two
clock cycles which allows sufficient time to gather
transaction requests from master modules, to arbitrate
as described, and to issue transaction grant message to
the successful master module and its target module.

" In, for example, a graphics system, there can be
five possible master modules which can require use of
the write data bus. These are the processor, the

10

15

20

25

30

35

-19-

graphics controller, the interface controller between
the primary and secondary bus system, the advanced
graphic port, the PC component interconnect and the
memory, ie. RAM bus connection. There arxe three
possible target modules, the PC component interconnect,
the advanced graphic port and channels 0 and 1 of the
memory, ie. RAM. In such a system, all masters except
the processor have entries in the stack system in order
to maintain the fairness during arbitration. The
processor is assigned the highest priority of all of
the master modules making requests, and therefore need
not be included in the stack, since whenever the
processor makes a request for bus usage, the bus is
assigned to the processor.

Preferably, the priority level assigned to each of
the modules in the stack can be individually programmed
(either during design, or by the user), for example by
assigning an appropriate two-bit code for each module.
For example, a two bit coding scheme provides three
priority levels; low, medium and high; as well as a
disabled level in which no requests are granted to the
module concerned.

When a master module wishes to make a request, it
transmits its request signal together with the
information concerning the target module and whether a
read or write transaction is to be performed. As
described above, incoming requests are assessed firstly
according to their incoming priority level and secondly
according to their position within the stack. It is
therefore possible to maintain an order of fairness
when granting the requests.

DAL ARBITRATION UNITS - DUAL TRANSACTION ARBITERS .
A system can be implemented using an arbitration
unit which contains two separate arbiters. Figure 20

illustrates an arbitration unit 31 for use in a

10

15

20

25

30

35

-20-

computer system using separate transaction, write and
read buses. The arbitration unit 31 is linked to the
modules (not shown) of the system in order to control
access to the bus. Requests to the arbitration unit
and grant signals are carried by control lines 34.

The arbitration unit 31 contains an initiation
arbiter 32 and a retirement arbiter 33. Each of the
arbiters within the arbitration unit are connected to
the modules. It will be appreciated that many modules
can be connected to a single arbitration unit.

The initiation arbiter 32 is concerned with
initiating (or launching) read and write transactions
on the transaction bus or on the transaction and write
data buses, respectively. For a read transaction, the
initiation arbiter 32 will grant use of the transaction
bus to a master requesting read data. The use can be
granted on the basis of the arbitration method
described above, or on any other basis.

A write transaction, requires simultaneous use of
both the transaction and write buses for a single
cycle.

The retirement arbiter deals with read data when
it arrives back from a target module. Multiple targets
may mature read data in the same cycle, and so
arbitration of the read data bus is controlled
separately from the transaction and write data bus.

The retivement arbiter 33 receives transaction requests
from target modules holding mature data and assigns use
of the read bus in an appropriate way, for example as
described above.

The read data will take time to "mature" at the.
target and then appears on the read data bus at some . R
indeterminate time in the future after the read request
has been made.

Since the two arbiters 32 and 33 operate

10

15

20

25

30

35

-21-

independently, the transaction bus can be fully
utilised, by using the vacant clock cycle associated
with a write data transaction to issue a read
transaction on the transaction bus. This is
illustrated in Figure 21. The transaction bus is
ideally alternated between read and write states so
that the write data bus is also fully utilised carrying
the two packet write data packets.

The initiation arbiter is able to receive requests
and grant bus use within a single clock cycle. When a
module is granted the use of the transaction bus the
transaction address data is placed on the transaction
bus, and, for a write transaction, write data is placed
on the write bus. On the next clock cycle, a read
transaction can be initiated from the same module or
from a different module. This means that transactions
must not be initiated to targets that cannot respond to
them on that cycle or the transaction will fail. A
method is described in more detail below, in which it
is possible to determine whether a target is able to
accept a transaction, before the transaction is
requested.

In addition, multiple modules may request read
data from a single target. Therefore each maturing
data packet must be retired (returned) back to the
master which requested it. To do this, each target
maintains a list of outstanding read transact'ons.
Preferably this is implemented in the form of a first-
in-first-out (FIFO) register having a size equal to the
maximum number of read transactions that can be
processed. Identification data tags can be used and
associated with the requests so that the returning data
can be identified. Such a system will be described in
more detail below.

When read data matures in a target, it requests

10

15

20

25

30

35

-22-

the retirement arbiter for use of the read data pipe
line. When the use is granted, it outputs both the
data packet and the master ID tag from the transaction
data store. The retirement arbiter asserts a strobe to
the master unit which originally requested the data so
that master unit can consume that data. An important
assumption in an ideal system is that the master is
able to consume immediately any data packet which it
has requested.

Arbitration for the read bus can be similar to
that for the write bus but can be simplified if each
master module is able to accept the matured read data
as soon as it is made available. A similar two-stage
filter and stack arbitration system can be used to
arbitrate between the various sources of read response
data, and no interaction is required from the write or
transaction buses. The read data transfer is achieved
over two cycles (two half packets). Once again, the
priorities could be programmable, but in a preferred
example, the priorities are fixed. When mature data 1is
ready at a target, that target module indicates to the
read arbiter that it wishes to send data to a
particular master module. Use of the read bus is then
controlled by the retirement arbiter.

DUAL ARBITERS FOR SPLIT READ/WRITE BUSES

An alterpative arbitration unit includes separate
write bus and read bus arbiters, for example as
illustrated in Figure 22. 1In such a case, the bus
preferably includes two transaction buses-one for read
and one for write. Such a system is illustrated in
Figure 23 where the transaction bus TV 43 is associated
with the write data bus W 44 and the read transaction
bus TR 46 is associated with the read data bus R 45.

As illustrated in Figure 24, since the read and write
data buses 44 and 45 and the read and write transaction

10

15

20

25

30

35

-23-

buses 43 and 46 are entirely separate, then it is
possible to perform simultaneous independent read and
write operations.

ADDRESS DECODING

As described above, in a computer architecture
employing a bus system and multiple modules connected
to that bus system, some form of arbitration is
required to determine which of the modules can have
access to the bus system. Preferably, the computer
system is defined by a memory map in which respective
address ranges are allocated to individual modules. 1In
such a system, each module can address the other
modules simply by using a single address value. Thus,
if module M3 wishes to write data to a particular
address, it simply issues address data equivalent to
that address. This address data needs to be decoded to
determine the target module identity. Preferably, each
module M1, M2 and M3 supplies information to all the
other modules indicating when it is busy (i.e.
unavailable for transactions).

An example of a suitable decoding arrangement 58
is shown in Figure 25 and comprises a transaction
request generator 53, for producing transaction
requests, an address decoder 50, a module availability
reception and storage means 51, and an
address/availability comparison means 52. The
operation of these units will b= described with
reference to Figures 25, 26 and 27. Figure 26
illustrates the memory map space for the computer
system and it shows the address regions assigned to
modules M1 and M2. The address regions are bounded by
specific addresses M1A ard MIB for module 1, and M2A
and M2B for module 2.

When module M3 wishes to perform a transaction
with module M1, for example, module M3 generates a

10

15

20

25

30

35

-24-

transaction request including target address data. The
address decoder means 50 receives the target address
data. The address decoder 22 operates to determine
which of the modules M1 and M2 is assigned the address
region into which the target address data falls.

A specific implementation of the address decoder
is shown in Figure 27 and will be described in more
detail below.

The result of the address decoding is supplied to
the address/availability comparison means 52. The
module availability reception means 51 receives and
stores information indicating whether the modules M1,
M2 and M3 are busy or able to receive a transaction
request. The address/availability comparison means
uses the decoded address information and the relevant
stored module availability data to determine whether
the intended target is able to accept the transaction.
If the availability information corresponding to the
decoded address signal indicates that the module
concerned is unavailable, then the requested
transaction is halted until it is available. However,
if the signal indicates that the module concerned is
available to receive a transaction, then the
transaction request is forwarded to the arbitration
unict.

In this way, the arbitration unit can only be
provided with requests that are made for available
modules.

Figure 27 illustrates one possible implementation
of the address decoder 50. The decoder 50 includes
registers 61 and 62 for storing respectively the upper
and lower boundary address values of a particular
module, In the examples shown, the upper value M1A of
module M1 is stored in register 61 and its lower value

M1B is stored in register 62. A comparator 63 compares

15

20

25

30

35

-25-

the upper value with the incoming address 60 and
outputs a high signal if the address is less than the
value given by M1A. Similarly, a comparator 64 outputs
a high signal if the incoming address 60 1is greater
than or equal to the lower value M1B. The outputs of
the comparators 63 and 64 are combined by an AND gate
65 such that if the incoming address is greater than or
equal to the lower value M1B and less than the upper
value M1A, then a high output is supplied at 66. If,
however, the address signal indicates that the required
address is outside of this range, then the output 66 is
low. Thus, only the selected 66 is high.

The decoding arrangement can thus effectively
provide pre-arbitration stage, which only allows
arbitration of those transaction requests which are
most likely to be successful if granted. Any
transaction request which specifies a target which is
already known to be busy, it will simply not be
forwarded to the arbitration unit.

In an alternative arrangement to the above,
availability information could be sent to an
arbitration unit, and used within the arbitration
process in granting access to the bus (that is, the
module availability reception and storage means 51 and
the address/availability comparison means 52 snown in
Figure 25 could be located within an arbitration unit).

DATA PACKET REORDERING

A complication can arise if a master module

requests read data from two or more targets that
cupports bit transactions. In such a case there is the
possibility that data may mature from the targets in a
different order from that in which it was requested.
The master module could then receive data packets in

the wrong order. This problem, as will be described in

10

15

20

25

30

35

-26-

more detail below, can be solved by providing
transaction tag register in each target so that module
ID code and a transaction sequence code can be utilised
for that module. A sequence code is generated by each
module from, for example, an end bit counter, which is
incremented whenever the module concerned is granted a
read transaction. Thus, when read data is matured in a
target and returned (or retired) back to the requesting
master, it has an associated sequence code transmitted
as well. This means that the master can re-order the
data packets as they arrive.

An advantage of such a scheme is that it is
potentially deadlock free, since the only blocking
condition 1s when a target is full and cannot accept
further transactions. This condition only affects
those masters wishing to access that particular target
and will clear as the target processes its transaction
queue. Read data can always be retired since the
requesting masters are defined as always being able to
accept data they have requested.

A master that makes requests for read data from
more than one target within the overall latency time of
any of those targets may well receive data packets in
the wrong order. Since the master must accept data
packets regardless of the order in which it receives
them, some method is required to re-order the data
packets in the correct order for consumption by the
function provided by the master.

Figure 28 shows representationally a master module
MN, which is connected to a bus 70, and which provides
a module furction 79. The master module MN requests
data using a transaction request inducing transaction
address data supplied on the transaction bus by a
transaction output request stage 74. The transaction

request also includes a transaction sequence tag which

10

15

20

25

30

35

-27-

is produced by a sequence producer counter 71. This
sequence tag indicates the relative order in which the
transaction has been produced. When read data is
received, via an input 76, that read data packet has a
read packet sequence tag associated with it which is
received by an input 77. The read sequence tag, which
is equivalent to the transaction sequence tag output by
the master with its transaction request, is used to
indicate where the read data packet should be stored
within a two port memory, ie. RAM, buffer 75. The read
data packet 76 is input via the memory write port and
is written at a position within the memory indicated by
the sequence tag 77.

The consumer counter 72 provides a signal for
controlling the output from the RAM 75. The data
packets are read from the RAM via its read port in
strict rotation. The consumed data 78 is thereby
provided to the module function 79.

The RAM re-order buffer is treated as a circular
queue, which is addressed by the sequence tags.

Packets arriving on the bus are written to a RAM slot
indicated by the input sequence tag associated with the
packet, whilst packets are read from the buffer in
strict order. The consumption of data by the master
will stall duriug a period of weiting for the next
expected data packet. The arrival of data packets
associated with later transactions are ignored. The
number of transactions that can be awaited in this way
is determined by the number of addresses in the dual
port RAM.

TARGET MODULE DATA TAG QUEUES

A similar function can be provided at a target
module so that the data provided by the target module
in response to a read request is output from the module
in the order in which the transactions are received by

10

15

20

25

30

35

-28-

the target module. This can be used in addition to the
data packet re-ordering scheme mentioned above, or
independently of such a method.

As shown in Figure 29, a representative target
module having a target module function 86 is connected
to a bus 80 for transferring data packets to and from
requesting master modules (not shown). A transaction
request is received by the transaction input line 81
and is stored in a transaction first in first out
(FIFO) register 83. If the register 83 is full, then a
full flag is returned via a control line 82 to the
requesting module or arbitration unit (not shown) .

The first in first out FIFO register 83 supplies
address data to the target function 86, whilst
identification and sequence data is passed to a further
first in first out FIFO buffer 87. This buffer 87
provides a tag queue, and is used so that master module
identification and sequence data can be recombined with
data packets read by the target function 86. When a
data packet to be output to the master is returned by
the target function 86, then the associated tag (ID and
sequence data) 1is output onto the bus at the same time,
thereby identifying the output read data. The tags are
output using control lines 88 and the read data packet
output on the line 89.

If the transaction concerned is a write
transaction, where write data is to be written to the
target function 86, then the address and write data is
passed to the target function 86 from the transaction
FIFO 83, but the ID and sequence data is not
transferred to the tag queue, since no return data is
required in that case.

Tt will be readily appreciated that the use of
first-in-first-out (FIFO) registers 83 and 87 provides

a method of ordering incoming transactions and outgoing

10

15

20

25

30

35

-29-

data.
MODULAR TOPOLOGY

In all the bus architectures described above, the
common aspect is that a number of modules M1, M2 and M3
etc. are connected to a single bus. It is therefore
desirable to provide a scheme in which modules can be
easily attached to the bus architecture, without a
corresponding change in bus properties.

Figure 30 illustrates a modular bus architecture
topology. Three modules are shown in the example of
Figure 30, but any number of modules could be connected
in this way. A bus 90 is punctuated by a number of bus
connection modules 914, 91, and 914 which are
preferably, but not necessarily, equally spaced along
the bus 90. Each of the connection modules 921, 92, or
924 allows a module M1, M2 or M3 to be connected to the
bus.

The bus connection modules 91,, 91, and 913 are
typically controlled such that only one of the modules
M1, M2 or M3 is connected to the bus at any one time.
This is achieved by the connection modules 91 being
controlled by respective inputs 931, 93, and 935 from
the bus architecture arbitration unit (not shown).

Each of the bus connection modules 91 includes
buffering and outpur circuitry which can be tailored
for the particular length of bus between it and the
next connection module. Thus, the signal
characteristics along the bus can be optimised since
the load on each of the buffers from the
interconnection modules is known. A particular
advantage of this system is that if, for example,
module M2 is not required in a particular application,
then it can be simply omitted from the design, but the
connection module 91, enables the bus characteristics

to be maintained along the length of the bus.

10

15

20

25

30

35

-30-

In the split bus examples described earlier, using
split read/write and transaction buses, each of the
buses can be treated in the same way illustrated in
Figure 30. More particularly, the schematic diagram
shown in Figure 30 is applicable to each of the read,
write and transaction buses individually as well as
appropriate combinations thereof. 1In a particular
example, the write and transaction buses will be
connected to modules in the manner shown in Figure 30,
put the read bus could be hard wired and permanently
connected to each of the modules. This could be made
possible by associating identity data with the incoming
read data so that each of the modules is able to
identify the data packets intended for its consumption
without need for reference to the arbitration unit.
This is a result of the split read/write buses being
able to maintain separate read and write transactions
on the bus architecture.

SECONDARY BUS IDLE USAGE
A further improvement may be made to the latency

of the secondary bus by utilising the time when the bus
is idle.

Referring to Figure 31, the secondary arbitration
unit is normally located at the end of the secondary
bus 4. When a master unit, (for example module Mp,.) .
wishes to make a transaction, a request is sent to the
arbitration unit. The arbitration unit decides whether
to grant the request according to the arbitration
techniques described above. Since module M, . is
located near the arbitration unit, this request for
making a transaction is serviced in a small number of
clock cycles.

" However, if module M, , wishes to make a
transaction, the request must also be sent to the
arbitration unit, which may be many pipeline lengths

10

15

20

25

30

-31-

away. As a consequence, a request from module M1
takes longer to service than a request from module
Mp+x-

To overcome this problem, whenever the bus is
idle, the arbitration unit places "empty" packets on
the bus at every available clock cycle. The empty
packets travel along the bus, and may be used by any
module that wishes to make a transaction. A module can
then grab a free packet rather than requesting a
dedicated packet and awaiting its return.

If module M, 6, makes a request for a transaction,
but in the meantime receives an empty packet from the
arbitration unit, it is free to use the empty packet
rather than await for its requested packet to return.
However, when the requested packet eventually returns
at a later time, module M, ,, can then convert this
packet which it no longer needs into an empty packet.
This converted packet can then continue along the bus,
and may be used by another module wishing to make a
transaction.

Using the idle bus time in this manner enables the
average transaction request time to be significantly
reduced.

The apparatus described above may be used in many
applications, for example, personal computers, laptops,
microprocessors, microcomputers, graphics systems,
Simultaneous Instruction Multiple Data (SIMD)
applications, parallel processing, set-top boxes
(satellite decoders and digital television decoders),

or consumer appliances.

10

15

20

25

-32-

CLAIMS

1. Apparatus for a computer system comprising:

a plurality of modules;

a storage device;

means for receiving read transaction requests from
modules, each request including address data indicating
the location of the data to be retrieved, and identity
data indicating the source of the transaction message;

means for sending the address data to the storage
device;

means for storing the identity data in a queue;

means for receiving a retrieved data item from the
storage device;

means for matching the retrieved data item with
the identity data at the head of the queue; and

means for returning the retrieved data to the
module identified by the matched identity data.

2. A computer system comprising apparatus as
claimed in claim 1.

3. An integrated circuilt comprising apparatus as
claimed in claim 1.

4. A graphics processing system comprising
apparatus as claimed in claim 1.

5. A games console comprising apparatus as

claimed in claim 1.

A AL Vi ¥
v v
It ‘N
=
Omce INVESTOR IN PEOPLE

R

Application No: GB 9820410.0 Examiner: Geoffrey Western
Claims searched: 1-5 Date of search: 4 March 1999

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.Q): G4A (AFGN AMB AMGI)
Int C1 (Ed.6): GO6F 12/00 12/08 13/00 13/12 13/16 13/18 13/36

Other:

Online : COMPUTER, EPODOC, INSPEC, WPI

Documents considered to be relevant:

Category) Identity of document and relevant passage Relevant
to claims
A | GB2184270 A (A.T.T.)
X EP 0242882 A2 (HITACHI) N.b. Figs 2-4, pages 18-22 1-5
X WO 96/41250 A2 (S MOS SYSTEMS) N.b. Fig 3, pages 14-15 1-5
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before
with one or more other documents of same category. the filing date of this invention.

E Patent document published on or afier, but with priority date earlier

& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

