Office de la Propriete Canadian CA 2444543 A1 2002/11/07

Intellectuell Intellectual P
du Canada Office P oy 2 444 543
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2002/04/26 (51) Cl.Int.//Int.Cl.” GOBF 9/38

(87) Date publication PCT/PCT Publication Date: 2002/11/07 | (71) Demandeur/Applicant:

. : : _ INTERNATIONAL BUSINESS MACHINE
(85) Entree phase nationale/National Entry: 2003/10/17 CORPORATION. US

(86) N° demande PCT/PCT Application No.: US 2002/013394
(72) Inventeurs/Inventors:

(87) N° publication PCT/PCT Publication No.: 2002/088941 ALTMAN ERIKR., US:

(30) Priorité/Priority: 2001/04/30 (09/845,693) US GLOSSNER, CLAIR JOHN III, US;
HOKENEK, ERDEM, US;

MELTZER, DAVID, US;
MOUDGILL, MAYAN, US

(74) Agent: ROSEN, ARNOLD

(54) Titre : SYSTEME ET PROCEDE A TAMPONS DINSTRUCTIONS DISTRIBUES CONTENANT UNE SECONDE

FORME DINSTRUCTIONS
(54) Title: SYSTEM AND METHOD INCLUDING DISTRIBUTED INSTRUCTION BUFFERS HOLDING A SECOND

INSTRUCTION FORM

r— 321

' Cache and
memory

subsystem |

M-
I

—

nstruction

Address in Local

Fetch Predecoded
Unit Instruction Storage
and Sequence
Controls to Each
Execution Unit

Instruction
OP-Decode
Unit

1
i

Execution Queues

Instruction
Issue

31

(57) Abrége/Abstract:
A processor for processing a first instruction form and a second instruction form of an instruction set comprises execution units

(301-305) connected to an Instruction fetch unit (322) for the first instruction form and a sequencer (325) for the second
Instruction form. The processor comprises a decode unit (323) for decoding Instructions of the first instruction form into control
sighals for the execution units (301-305), and buffers (306-310), proximate to the execution units (301-305), for storing

predecoded instructions of the second instruction form.

N iy [[[|

I*I - - o, B e
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca oric B w omE
OPIC - CIPO 191

WO 02/088941 Al

CA 02444543 2003-10-17

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(10) International Publication Number

7 November 2002 (07.11.2002) PCT WO 02/088941 A1

(51) International Patent Classification’: GO6F 9/38 (US). HOKENEK, Erdem; 3426 Fairview Court, York-
town Heights, NY 10598 (US). MELTZER, David;

(21) International Application Number: PCT/US02/13394 268 Maloney Road, Wappingers Falls, NY 12590 (US).
MOUDGILL, Mayan; 143 Juniper Hill Road, White

_ Plains, NY 10607 (US).
(22) International Filing Date: 26 April 2002 (26.04.2002)
(74) Agents: CHALU, Frank et al.; F. Chau & Associates, LLP,

(25) Filing Language: English 1900 Hempstead Turnpike, Suite 501, East Meadow, NY
11554 (US).

(26) Publication Language: English

(30) Priority Data:

09/845,693 30 April 2001 (30.04.2001) US

(71) Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard
Road, Armonk, NY 10504 (US).

(72) Inventors: ALTMAN, Erik, R.; 240 Franklin Street
Extension, Danbury, CT 06811 (US). GLOSSNER,
Clair, John, III; 26 Benedict Place, Carmel, NY 10512

(81) Designated States (national): CA, CN, DE, GB.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD INCLUDING DISTRIBUTED INSTRUCTION BUFFERS HOLDING A SECOND IN-

STRUCTION FORM

—— 821

|
Cache and |
‘ memory |

l
il

subsystem J
L

i

Execution Queues

320

g

Address in Local

Predecoded
instruction Storage
and Sequence
Conlrols to Each
Execution Unit

307

306

(§7) Abstract: A processor for processing a first instruction form and a second instruction form of an instruction set comprises
execution units (301-305) connected to an instruction fetch unit (322) for the first instruction form and a sequencer (325) for the
second instruction form. The processor comprises a decode unit (323) for decoding instructions of the first instruction form into
control signals for the execution units (301-305), and buffers (306-310), proximate to the execution units (301-305), for storing

predecoded instructions of the second instruction form.

d

10

15

20

25

30

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

SYSTEM AND METHOD INCLUDING DISTRIBUTED INSTRUCTION BUFFERS
HOLDING A SECOND INSTRUCTION FORM

BACKGROUND OF THE INVENTION

. Field of the Invention
The present invention relates to the design of semiconductor processors, and more

particularly, to processors which can execute two or more operations per processor cycle.

2. Description of Related Art

Modern computer processors have several independent execution units which are
capable of simultaneous operation. However, the number of execution units which can
actually do useful work (confirmed or speculative) is limited by the number of instructions
issued per cycle and the logic in the instruction issue unit. The issue logic determines
dependencies prior to sending the instructions to the execution units. For out-of-order
processors, the issue logic limits the performance of the processor, while in-order processors
are limited by the available instruction fetch bandwidth to the memory subsystem.

The use of very long instruction word (VLIW) instruction sets for in-order processors
is one proposed solution to the issue logic limitation. However, use of a VLIW 1s
accompanied by significant demands on the instruction fetch bandwidth to the memory
subsystem.

Compressed VLIW instruction sets using format bits are also known 1n the art.
Format bits can be used to reduce the size of code without compromising the issue width
advantages of the VLIW format. Other proposed solutions for reducing the stored size of
VLIW programs are known in the prior art, however, these systems require decompression of
the code as well as full decoding of each of the resulting VLIW instructions.

For example, subset encoding for some part of a reduced instruction set computer

(RISC) instruction set has been used in ARM® architecture based processors to reduce the

size of instructions without reducing the issue width. A two instruction set processor 1n
which the second instruction set is a proper subset of the first instruction set is one example
of subset encoding. Each instruction set may be decoded by different instruction decoders,
but executed on the same pipeline. This results in an instruction encoding of the second

instruction set which includes fewer bits per instruction but which may be processed by the

10

15

20

23

30

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

same instruction fetch/decode/issue logic as the primary encoding. However, the processor
must decompress the encoded second instruction set and then perform a full decode on the
decoded instruction, or provide an alternate decoder for the second instruction set.

Another proposed solution includes a processor which executes a complex instruction
set computer (CISC) instruction set and a RISC instruction set by translating each into the
same format control word which is sent to the pipeline execution resources. The format
control word is the output of the instruction decoder, as in any conventional processor, and 1s
not stored nor visible to software.

Some prior art systems have used modified instruction set encoding to increase the
efficiency with which an instruction set can accomplish useful work. These encodings need a
full instruction decoder to generate the controls for the execution resources and the pipeline
connections between them. The alternate encoding uses the same pipeline template no matter
which instruction format is used. The choice between which mechanism to use can be made
by a compiler with a view of the source code and an execution profile. This compiler would
need to analyze the execution profile and encode the instructions for the program into the
different instruction formats based on execution performance and code size. In one proposed
system, the code output from a compiler is formatted so that different routines may be in
different instruction sets as directed by a programmer with the appropriate transfer between
them. However, no known system or method exists for scheduling to different instruction
sets based on performance and usage.

For processors (e.g., signal processors) which spend a significant percentage of
execution time in small kernels, it would be desirable to have an instruction
fetch/decode/execute mechanism and pipeline template which would permit increased use of
the execution resources and eliminate the work associated with instruction decoding.
Therefore, a need exists for a system and method including distributed instruction buffers

holding a second instruction set.

SUMMARY OF THE INVENTION
According to an embodiment of the present invention, a method 1s provided for
processing a first instruction set and a second instruction set in a single processor. The

method includes storing a plurality of control signals in a plurality of buffers proximate to a

10

15

20

25

30

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

plurality of execution units, wherein the control signals are predecoded instructions of the
second instruction set, executing an instruction of the first instruction set in response to a
branch instruction of the first instruction set, and executing the control signals for an
Instruction of the second instruction set 1n response to a branch instruction of the second
instruction set.

The instructions of the first form and instructions of the second form are generated by
a compiler based on execution frequency. Instructions of the second form are more frequently
executed than instructions of the first form.

Executing the control signals for the instruction of the second instruction set
comprises de-gating a plurality of execution queues storing a plurality of control signals of
the first instruction set, and pausing the fetching of the first set of instructions. Executing the
control signals for the instruction of the second instruction set further includes addressing the
control signals, of the instruction, in the buffers, and sequencing the addressed control signals
to the execution units. The control signals of the second set of instructions are a logical
subset of the control signals for the first instruction set.

Executing an instruction of the first instruction set may include fetching an instruction
of the first set from a memory storing instructions of the first instruction set, decoding the
instruction into a plurality of control signals, and issuing the control signals to the execution
units. Each execution unit is associated with one buffer.

According to an embodiment of the present invention, a processor 1s provided for
processing a first instruction set and a second instruction set. The processor includes a
plurality of execution units which receive control signals, and a branch unit connected to an
instruction fetch unit of the first instruction set and a sequencer of the second instruction set.
The processor includes a decode unit which decodes instructions of the first instruction set
into control signals for the execution units, and a plurality of buffers, proximate to the
execution units, for storing decoded instructions of the second instruction set. The processor
further includes a compiler which generates instructions of the first form and instructions ot
the second form based on execution frequency, wherein instructions of the second form are
executed more frequently than instructions of the first form.

The sequencer, engaged by the branch unit, addresses the decoded instructions of the

second instruction set stored in the buffers and sequences control signals of the second

10

15

20

235

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

instruction set. The sequencer 1s connected to a plurality of gates connected between a
plurality of execution queues for storing the control signals of the first instruction set and the
plurality of execution units, the sequencer controls the gates. Each execution unit 1s
connected to a buffer.

The branch unit switches the processor from the first instruction set to the second
instruction set in response to an unconditional branch instruction of the first instruction set.
The branch unit switches the processor from the second instruction set to the first instruction
set in response to an unconditional branch instruction of the second instruction set.
Alternatively, a switch bit in a buffer connected to the branch unit signals the sequencer to
stop fetching from the buffers and enables instruction fetching in primary instruction
memory, fetching the next instruction after the unconditional branch. The execution
bandwidth of the execution units is larger than the fetch/decode/issue bandwidth. The control

signals of the second instruction set are a logical subset of the control signals of the first

instruction set.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will be described below 1n more
detail, with reference to the accompanying drawings:

Fig. 1 shows an illustration of a multi-issue processor with an 1ssue width of three and
an execution width of five;

Fig. 2 shows a pipeline template according to the processor of Fig. 1 and a branch
penalty without branch prediction;

Fig. 3 shows a representation of a processor according to an embodiment of the

present invention; and
Fig. 4 shows a pipeline template according to the processor of Fig. 3 when executing

from an execution local pre-decoded instruction buffer according to an embodiment of the

present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
According to an embodiment of the present invention, a system and method is

provided for a processor which can execute at least two operations per processor cycle and

10

15

20

25

30

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

the execution bandwidth is wider than the instruction fetch/decode/issue bandwidth used in

processing programs developed by compilers which analyze the code to be run on the

processor.

It 1s to be understood that the present invention may be implemented in various forms
of hardware, software, firmware, special purpose processors, or a combination thereof. In one
embodiment, the present invention may be implemented in software as an application
program tangibly embodied on a program storage device. The application program may be
uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the
machine 1s implemented on a computer platform having hardware such as one or more central
processing units (CPU), a random access memory (RAM), and input/output (I/O) interface(s).
The computer platform also includes an operating system and micro instruction code. The
various processes and functions described herein may either be part of the micro instruction
code or part of the application program (or a combination thereof) which is executed via the
operating system. In addition, various other peripheral devices may be connected to the
computer platform such as an additional data storage device and a printing device.

It 1s to be further understood that, because some of the constituent system components
and method steps depicted in the accompanying figures may be implemented in software, the
actual connections between the system components (or the process steps) may differ
depending upon the manner in which the present invention is programmed. Given the
teachings of the present invention provided herein, one of ordinary skill in the related art will
be able to contemplaté these and similar implementations or configurations of the present
Invention.

Fig. 1 shows a diagram of a prior art processor including five execution units 102 to
110 coupled to an instruction fetch/decode/issue complex 112 capable of issuing three
istructions per cycle. Each execution unit includes hardware controlled by signals decoded
from the mstruction in the decode, 1ssue and EXecutel cycles and presented to the hardware
in the EXecutel cycle. (See Fig. 2.) The issue of instructions can be limited by any of several
causes, depending on the design of the processor. For example, in a compound instruction
processor, the instruction text length may be too short to encode the controls for five

execution units. Thus, the processor may not realize the potential maximum number of

instructions 1ssued per cycle, e.g., three. Similarly, in a conventional RISC processor, a

10

15

20

23

30

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

limitation in bandwidth between the memory/cache subsystem and instruction fetch unit, or
from a limitation in the dependency scheduling mechanism in the i1ssue logic, may limit the
1ssue of instructions.

Irrespective of the particular limitation, such a design cannot achieve an instruction
pipeline completion rate greater than three-fifths of the potential peak rate for the 1ssue unit.
For small loops which use all execution resources, such as a signal or video processing
kernel, this results in a significant reduction in processor performance. Fig. 2 shows the
pipeline characteristics of a processor in accordance with Fig. 1. The pipeline includes two
cycles of instruction fetch 202 and 204, and separate decode 206 and 1ssue cycles 208,
totaling four cycles. Fig. 2 also shows the branch penalty associated with the pipeline length
210.

Fig. 3 is a diagram of a processor according to an embodiment of the present
invention. The processor includes a decoder 323 for a primary instruction form stored in
the primary instruction cache or memory 321. The processor also includes hardware for
handling an alternate form of the instruction set stored in local predecoded instruction butters
306-310. The alternate form of the instruction is generated by a compiler, or other means, as
control signals (decoded instructions) such that each buffer includes a different set of control
signals.

Instructions to be stored in the primary instruction memory 321 and decoded
instructions (control signals) to be stored in the local predecoded instruction buffers 306-321
can be generated by the code assignment phase of a compiler. The compiler can target the
two instruction formats and issue widths. Instructions of the second format contain one bit for
each of the control signals generated by the instruction decoder of the first format. Because
the second format includes the predecoded form of the first format, instructions of the second
format will be wider, or include more bits, than instructions of the first format. The increase
in instruction width may be accompanied by an increase in execution speed as described
below. The compiler places decoded blocks of machine code (e.g., a small loop which is
frequently accessed) into the local predecoded instruction buffers based either on static
analysis or execution profiling.

Compilers which target two instruction sets in one machine are known 1n the art, e.g.,

compilers which target the ARM instruction set and the THUMB® instruction set. However,

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

these compilers first attempt to put code into the THUMB code and when thas fails, revert to
the ARM code. According to an embodiment of the present invention, a compiler determines
execution frequency for blocks of machine code using any or all of the following: hints
qrovided by a user in the form of source code annotations understandable to the computer;

5 tatic evaluation of the structure of the code to determine, e.g., inner loops as distinguished
rom outer loops; or execution profiling. Those blocks of code which are determined to be the
nost frequently executed and whose size allows them to fit within a local predecoded
nstruction buffer are stored therein in the second (predecoded) instruction format. The
sompiler continues to generate instructions of the alternate, decoded form until all available

10 space in the local predecoded instruction buffers is occupied.

The local predecoded instruction buffers 306-310 are associated one-to-one, in close
shysical proximity, with each execution unit 301-305. Each local predecoded instruction
buffer is statically loaded with decoded instructions (control signals) of the alternate
instruction form. Because these local buffers are smaller than the primary instruction cache

15 321 and proximate to the execution unit, they can be accessed faster than the primary
instruction cache 321. Proximity is a function of speed, in a processor according to the
present invention, there is no significant logic delay in fetching the decoded instructions
stored in the buffers for the execution hardware. Thus, a buffer may be located at a position
specially distant from the execution hardware, however, according to the present invention, a

20 buffer-to-execution hardware pathway with no significant logic delay as coinpared to the
primary instruction fetch mechanism is considered proximate. An alternate fetch/issue
mechanism eliminates any instruction fetch bandwidth limitation.

In a processor according to Fig. 3 the total pipeline length may be reduced by up to
two cycles for predecoded instructions fetched from the local predecoded instruction

25 buffers. Fig. 4 shows this pipeline stage reduction for a non-branch instruction. The
instruction fetch has been reduced to one cycle due to the faster buffer access as compared to
the primary instruction cache 321. The decode cycle has been eliminated since the contents of
the local buffers are predecoded. Fig. 4 shows the pipeline stages for a taken branch
instruction within the local decoded instruction buffers, for example, for a loop closing

30 branch. Comparing this with Fig. 2 shows that the shorter pipeline has reduced the branch

penalty, or the number of stages between issue of the branch and the issue of the target of the

10

15

20

25

30

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

taken branch, by two. Therefore, high frequency sequences of instructions, as determined by
the compiler, stored in the local predecoded instruction buffers, which may include looping
code, execute 1n fewer cycles due to the reduction in branch penalty without the need for

branch prediction and target prefetch mechanisms.

The processor also includes a branch unit 305. A program counter in the processor
advances through the instructions in the primary memory 321. However, upon determining an
unconditional switch branch instruction of the primary instruction form, the branch unit shifts
the processor from the primary fetch/decode/issue mechanism 322-324 to the alternate
mechanism for the alternate instruction form stored in the buffers.

A sequencer 325 1s provided to control the fetching of the alternate instruction form
because the addressing 1s different than that understood by the instruction fetch hardware 323.
The alternate fetch/issue mechanism is embodied in the sequencer 325. The sequencer is
invoked by an unconditional branch instruction (e.g., branch_to C$) detected by the
decode/issue/branch mechanism, 323/324/305, of the primary instruction form. The branch
instruction suspends primary instruction fetch/decode/issue/execute functions and enables the
alternate mechanism of the sequencer 325.

After the sequencer 325 1s invoked, it switches a plurality of gates 316-320 prior to
the execution queues 301-305 for the primary instruction form, de-gating the primary
instruction form. In addition, the branch unit 305 signals the fetch unit 322 to stop fetching
instructions of the primary form from memory 321. The sequencer 325 includes an alternate
program counter for directing the fetching of the decoded instructions. Further, the sequencer
325 sequences of the decoded instructions (control signals) from the local predecoded
instruction buffers. Individual program counters can be implemented for each buffer to
improve the efficiency with which the buffer space is used.

Because each execution unit is associated with its own buffer, a full complement of
instructions (e.g., five) can be executed per clock cycle. In a processor according to Fig. 3,
five instructions of the alternate form can be executed during each clock cycle. Thus, for the
predecoded blocks of code (instructions), the potential instruction pipeline completion rate
can be achieved.

An exit from the alternate instruction fetching can be signaled to the sequencer 325 by

any of several means. For example, a switch bit in the buffer 310 local to the branch unit 305

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

may signal the sequencer 325 to stop fetching from the local predecoded instruction buffers

306-310 and enable instruction fetching in primary instruction memory 321, fetching the next
instruction after the unconditional switch branch. Another example may include defining a
RETURN TO NORMAL FETCHING

5 1nstruction in the buffer 310 which can behave as a branch to a designated instruction in the

primary instruction memory 321. Fig. 4 shows the pipeline when fetching from the local

buffer as well as the reduced branch penalty compared to the prior art.
Having described embodiments of a system and method for a distributed instruction

buffer holding a second instruction form, it is noted that modifications and variations can be
10 made by persons skilled in the art in light of the above teachings. It 1s therefore to be

understood that changes may be made 1n the particular embodiments of the invention

disclosed which are within the scope and spirit of the invention as defined by the appended

claims. Having thus described the invention with the details and particularity required by the

patent laws, what 1s claimed and desired protected by Letters Patent is set forth in the

15 appended claims.

10

15

20

25

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

What Is Claimed Is:

1. A method for processing a first instruction form and a second instruction form of an

instruction set in a processor comprising the steps of:

storing a plurality of instructions of the second form in a plurality of buffers
proximate to a plurality of execution units;

executing at least one instruction of the first instruction form in response to a first
counter; and

executing at least one instruction of the second instruction form in response to at least
a second counter, wherein the second counter 1s invoked by a branch instruction of the first

instruction form.

2. The method of claim 1, wherein the instructions of the first form and instructions of

the second form are generated by a compiler based on execution frequency.

3. The method of claim 2, wherein instructions of the second form are more frequently

executed than instructions of the first form.

4, The method of claim 1, wherein the step of executing at least one instruction of the
second instruction form further comprises the steps of:
de-gating a plurality of execution queues storing a plurality of instructions of the first

instruction form; and

pausing a fetching of the first instruction form from a memory.

5. The method of claim 1, wherein the step of executing at least one instruction of the
second instruction form further comprises the steps of:
fetching at least one instruction in the buffers; and

sequencing a plurality of control signals to the execution units.

6. The method of claim 1, wherein the second instruction form i1s a logical subset of the

first instruction form.

10

10

15

20

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

7. The method of claim 1, wherein the step of executing at least one instruction of the
first instruction form further comprises the steps of:

fetching an instruction of the first form from a memory;

decoding the instruction; and

issuing the decoded instruction at least one execution unit.

8. The method of claim 1, wherein a return to fetching of the first instruction form is

signaled by a switch bit in a buffer of a branch unit storing instructions of the second form.

0. The method of claim 1, wherein a return to fetching of the first instruction form 1s
signaled by a return instruction of the second instruction form stored in a buffer of a branch

unit.
10. The method of claim 1, wherein each execution unit 1s associated with one buffer.

11. A processor for processing a first instruction form and a second instruction form of an
instruction set comprising:

a plurality of execution units for receiving instructions;

a branch unit connected to an instruction fetch unit for the first instruction form and a
sequencer for the second instruction form;

a decode unit for decoding instructions of the first instruction form into control
signals for the execution units; and

a plurality of buffers, proximate to the execution units, for storing predecoded

instructions of the second instruction form.

12. The processor of claim 11, further comprising a compiler for generating the
instructions of the first form and instructions of the second form based on execution
frequency, wherein instructions of the second form are executed more frequently than

instructions of the first form.

11

10

15

20

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

13. The processor of claim 11, wherein the sequencer, engaged by the branch unit,
addresses the decoded instructions of the second instruction form stored in the buffers and

sequences predecoded instructions of the second instruction form to the execution unit.

14. The processor of claim 11, wherein the sequencer 1s connected to a plurality of gates
connected between a plurality of execution queues for storing the decoded instructions of the

first instruction form and the plurality of execution units, the sequencer for controlling the

gates.
15. The processor of claim 11, wherein each execution unit 1s connected to a buffer.
16. The processor of claim 11, wherein the branch unit switches the processor from the

first instruction form to the second instruction form in response to a branch instruction of the

first instruction form.

17. The processor of claim 11, wherein the branch unit switches the processor from the
second instruction form to the first instruction form in response to a branch instruction of the

second instruction form.
18. The processor of claim 11, wherein a switch bit in a buffer connected to the branch
unit signals the sequencer to stop fetching from the buffers and enables instruction fetching

from a memory storing instructions of the first instruction form.

19. The processor of claim 11, wherein the execution bandwidth of the execution units is

larger than the fetch/issue bandwidth of the first form.

20. The processor of claim 11, wherein the second instruction form 1s a logical subset of

the first instruction form.

21. A processor for processing a first instruction form and a second instruction form of an

instruction set comprising:

12

10

15

20

CA 02444543 2003-10-17

WO 02/088941 PCT/US02/13394

a plurality of execution units for receiving instructions:;

a branch unit connected to an instruction fetch unit for the first instruction form and a
sequencer for the second instruction form, wherein the branch unit switches the processor
from the first instruction form to the second instruction form in response to a branch
instruction of the first instruction form and switches the processor from the second instruction
form to the first instruction form in response to a branch instruction of the second instruction
form;

a decode unit adapted to decode instructions of the first instruction form into
instructions for the execution units;

an 1ssue unit adapted to sequence decoded instructions of the first instruction form;

a plurality of buffers, proximate to the execution units, adapted to storing predecoded
instructions of the second instruction form, wherein each execution unit is connected to a
buffer;

a compiler adapted for generatihg instructions of the first form and instructions of the
second form based on execution frequency, wherein instructions of the second form are
executed more frequently than instructions of the first form; and

the sequencer, engaged by the branch unit, adapted to fetch the predecoded
instructions and sequence the predecoded instruction of the second instruction form, wherein
the sequencer 1s connected to a plurality of gates connected between a plurality of execution
queues adapted to store the decoded instructions of the first instruction form and the plurality

of execution units, the sequencer further adapted to control the gates.

13

CA 02444543 2003-10-17

PCT/US02/13394

WO 02/088941

1/4

0/}

80/

30}

{IL

¢0}

g€ N
uonnoax3

APy

¢ 1uN
UONNIaxX3

JIBWYIlY

L Iun
uonnoax3

JNBUWUNY

Bun
210)S/pe0T]

Jun Youesg

sanany) uonnoax3

anss|
LONoNJSU|

Nun
3p099(-dO
uonoNASu|

Hun
U9}
uonoNASuf

wa)sAsqns
Aowsw

pue ayoe”) |

(1ay 10114)
19U

CA 02444543 2003-10-17

PCT/US02/13394

WO 02/088941

214

01¢
~—— fyjjeuad youelg

o ——————— -

—
_ _ | 8jnoaxd | :
aNnss| . anss]
—— e
9p023(] 9p093(J —_—
¢WiRd _ 7 Uojo4
UononJ)suj L ue UCHONJSU| RER
j801eL yoponssuy UOONSUJ
10bie |
UoI2Ipald Yyouelg Jnoyiim youelg uaye|
—
Aemeind }insay
Z 91NoaY3
| 9IN09X3 | :
anss|
80¢ vnoomo
90¢ AVEL
(11 J011g) opmsy
- | | Yojod
N .m.u— r_H EN\ c@.ﬁ:_
¢0¢

UORONIISU| JOUBIGUON

CA 02444543 2003-10-17

PCT/US02/13394

WO 02/088941

3/4

jiun Uuo[NIsXy
4yoe3J 0} sjoAuo)
aouanbag pue
abelo)g uolonsy|
papoI3pal
[B907 Ul SSBJpPY

Jaouanbag
ssaJppy abeio)g
LoNNIISY|
POp02Bpald

| [E907

S¢t

306

L0§

308

608

abeJo)g
LoIjaNI)Su}

Papooapaly
2307

|

¢ Huf

uonnasx3
I

m.meem
uononAsuj

papooapald
18207

m.

¢ #Un
UONNISXJ
QNI

8bel0)g
Lononjsuj
papodspald
6907

L 1N
UoINo8X3

OHSWILY ‘

i

abeioig
LononJsu|

Pap0Japaly
2907

HUM

210)5/PE0T

| mmeew,

UONONASU|
Dap02apald
- [e0]

NUM Youelg

4

0

&

HE

¢I§

&1

$anany) uonnIax3

145

Hn
anss|
UoIONJISU|

Hun

| 9P0I3(d-d0O

LOIONJISU]

jun
Uyolo
UOIONJISY]

‘Wwia)sAsgns
Alowawi
pue ayoen

CA 02444543 2003-10-17

PCT/US02/13394

WO 02/088941

4/4

v Il

Ajjeuad youe.q
ey
| 8JN08Y 3
anss|
P—
Py l Y394
anss| UuoIon)su|
| U318
uonanisuj
jobue| g1Q7 Uly}im ydueig uaye]
P
Aeme)nd Jnsay
AL EN _
| 8)N0aY3
anss|
F—
| Y3194
uononsy]

135iNg UoNONASU| papoda([B20T UIYJIM UORINIISU| YouelguUON

| Cache and

memory
subsystem

L Instruction Address in Local
Fetch Predecoded
Unit Instruction Storage

and Sequence
Controls to Each
Execution Unit

Il
i

nstruction
OP-Decode
! Unit

Instruction
Issue

311

Execution Queues

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - abstract drawing

