
(19) United States
US 2016.0328218A1

(12) Patent Application Publication (10) Pub. No.: US 2016/0328218 A1
NSHIDA (43) Pub. Date: Nov. 10, 2016

(54) PROGRAM EXECUTION DEVICE AND
COMPLERSYSTEM

(71) Applicant: SOCIONEXT INC., Kanagwa (JP)

(72) Inventor: Yoshitaka NISHIDA, Osaka (JP)

(21) Appl. No.: 15/217,633

(22) Filed: Jul. 22, 2016

Related U.S. Application Data
(60) Division of application No. 13/913,130, filed on Jun.

7, 2013, which is a continuation of application No.
PCT/JP2011/004214, filed on Jul. 26, 2011.

(30) Foreign Application Priority Data

Jan. 12, 2011 (JP) 2011-004246

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)
G06F 2/1027 (2006.01)
G06F 2/09 (2006.01)

LOGICAL ADDRESS
SPACE

LOGICAL ADDRESS

2O

MACHINE LANGUAGE
PROGRAM

MACHINE
LANGUAGE CODE 21

ACCESS
FREQUENCY
INFORMATION

22

PROGRAM
LOADER

ADDRESS
CONVERSION

TABLE CREATOR

(52) U.S. Cl.
CPC. G06F 8/36 (2013.01); G06F 8/75 (2013.01);

G06F 12/109 (2013.01); G06F 12/1027
(2013.01); G06F 221 2/637 (2013.01); G06F

221 2/68 (2013.01)

(57) ABSTRACT

A program execution device includes a program loader
reading a machine language program including a machine
language code and access frequency information; an address
conversion table creator creating an address conversion table
including entries, each of which indicates a relation between
a logical address range and a physical address range; and a
TLB register registering, in a TLB, an entry of the address
conversion table storing a logical address range accessed
according to the machine language code. When determining
that the frequency of access to a logical address range is high
based on the access frequency information, the address
conversion table creator adjusts the size of an entry storing
this logical address range to an appropriate size.

3 2

PHYSICAL ADDRESS
SPACE

PHYSICAL ADDRESS

TLB
REGISTER

LOGICAL | PHYSICAL
ADRESS ADDRESS PAGE SIZE
OxDOOOO 0x904DC

US 2016/0328218A1 Nov. 10, 2016 Sheet 1 of 10 Patent Application Publication

èHELSIOERH ETI_L TE
SSERHOJCIV/ T\/OIS), HoH

SSERHOJCIV/ T\/OIOOT EO\/dS SSEY-HOJCIV TVOI!OOT

Patent Application Publication Nov. 10, 2016 Sheet 2 of 10 US 2016/0328218A1

FIG.2

13

LOGICAL PHYSICAL PAGE loANSEATE
ADDRESS ADDRESS SIZE FLAG

OxEO 100 Ox804AC 16 KB 1

OxDOOOO Ox904DC 4KB

OXCOOOO OXAO4DC 4KB

LOGICAL
ADDRESS

OxEO 100

PHYSICAL
ADDRESS

Ox804AC

PAGE
SIZE

16 KB

OxDOOOO 0x904DC 4KB

OxCOOOO OxAO4DC 4KB

Patent Application Publication Nov. 10, 2016 Sheet 3 of 10 US 2016/0328218A1

FIG.3

S301 DOES THE ADDRESS
HAVE A HIGH ACCESS

FREQUENCY WHEN A PAGE
FAULT OCCURS7

SELECT A MINIMUM PAGE SIZE
WHERE THE ADDRESS RANGE

CAN BE STORED
S302 SELECT A DEFAULT

PAGE SIZE

S303 DOES THE ADDRESS
RANGE HAVE THE HIGHEST
ACCESS FREQUENCY?

SELECT IT AS A LOCK
CANDIDATE S304

Patent Application Publication Nov. 10, 2016 Sheet 4 of 10 US 2016/0328218A1

FIG.4

START

IS THE ENTRY A
LOCK CANDIDATE

S402
IS THERE AFREE SPACE

IN THE LOCK FIELD?

REGISTER THE
ENTRY IN THE LOCK
FIELD OF THE TLB

REGISTER THE ENTRY
IN THE NON-LOCK
FIELD OF THE TLB

S403 S404

US 2016/0328218A1 Nov. 10, 2016 Sheet 5 of 10

WELS)NS HETICHWOO

Patent Application Publication

Patent Application Publication Nov. 10, 2016 Sheet 6 of 10 US 2016/0328218A1

FIG.6

27

in t a SIZE A ;
int b (SIZEB)
in t CSIZE.C.
V Oid fun C 1 (Void)

V Oid fun C2 (Void)
{

for (, ,
for (

Patent Application Publication Nov. 10, 2016 Sheet 7 of 10 US 2016/0328218A1

FIG.7

MACHINE LANGUAGE CODE
func1

21

ACCESS FREQUENCY INFORMATION

sizeofa),
sizeofb),
sizeofc), 22

Patent Application Publication Nov. 10, 2016 Sheet 8 of 10 US 2016/0328218A1

FIG.8

START

THERE IS A FUNCTION NOT
REGISTERED IN THE TABLE

REGISTER THE NUMBER OF CALLS OF
THIS FUNCTION IN THE TABLE

REGISTER A VARIABLE ACCESSED BY
THE FUNCTION AND THE NESTED LEVEL
OF THE ACCESSED LOOP IN THE TABLE

COMBINE THE NUMBER OF CALLS OF
THE FUNCTION WITH THE NESTED LEVEL
OF THE LOOP, AND DETERMINE THE

ACCESS FREQUENCY

Patent Application Publication Nov. 10, 2016 Sheet 9 of 10 US 2016/0328218A1

FUNCTION NAME NUMBER OF CALLS 36

FIG.9A

FUNCTION ACCESSED WARIABLE AND 37
NAME NESTED LEVEL OF LOOP

(b.2), (c.2)

38

US 2016/0328218A1 Nov. 10, 2016 Sheet 10 of 10 Patent Application Publication

SSERHOJCIV/ T\/OIS), Hoff E!OV/c+S SSERHOJCIV TVOIS), Hoff

0 || '0I

US 2016/0328218 A1

PROGRAM EXECUTION DEVICE AND
COMPLERSYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This is a Divisional application of U.S. patent
application Ser. No. 13/913,130, filed on Jun. 7, 2013, which
is a continuation of International Application No. PCT/
JP2011/004214 filed on Jul. 26, 2011, which claims priority
to Japanese Patent Application No. 2011-004246 filed on
Jan. 12, 2011. The entire disclosures of these applications
are incorporated by reference herein.

BACKGROUND

0002 The present disclosure relates to a program execu
tion device, and more particularly to a technique for reduc
ing a translation look-aside buffer (TLB) miss rate during
program execution.
0003. An application accessing a memory space that is
enormous in size has increased in popularity in recent years
due to the spread of full high definition (Full HD) equip
ment. In general, an application refers to a TLB for high
speed access to a memory. If a logical address to be accessed
by the application is not in the TLB, it is a TLB miss.
0004 If a TLB miss occurs, the application accesses an
address conversion table managed by an operating system.
Then, a logical address to be accessed and a physical address
corresponding to this logical address are registered to a TLB
entry from the address conversion table, and thus an over
head occurs. This results in reduction in an execution speed
of the application.
0005 FIG. 10 illustrates a conventional address conver
sion system. A central processing unit (CPU) 3 includes a
memory management unit (MMU) 4 including a TLB 5
converting a logical address located in a logical address
space 1 into a physical address located in a physical address
space 2. Conventionally, a page size of a TLB entry is
increased to expand an address range stored in the TLB entry
in order to prevent occurrence of a TLB miss (see, e.g.,
Japanese Patent Publication No. 2000-57054 and Japanese
Patent Publication No. 2010-191645).

SUMMARY

0006. In the technique disclosed in Japanese Patent Pub
lication No. 2000-57054, a page size of a TLB entry is
determined based on the overall size where text portions of
a plurality of programs are merged and the overall size
where data portions of the plurality of programs are merged.
In addition, in the technique disclosed in Japanese Patent
Publication No. 2010-191645, a page size of a TLB entry is
determined to have a size where the largest text portion in a
plurality of programs can be stored. In such manners, in
conventional techniques, as the size of a text portion etc. in
a program becomes larger, a page size becomes larger.
0007. A portion of a TLB entry that does not include a
text portion is a wasted space because an address range not
used by a program is mapped thereon. The wasted space
might increase depending on a relation between the page
size of a TLB entry and the size of a text portion etc. That
is, in conventional techniques, finite TLB resources cannot
be efficiently used, and thus, when a plurality of applications
are concurrently executed, the TLB might not be able to
store the address ranges accessed by these applications.

Nov. 10, 2016

Accordingly, while a TLB miss rate can decrease when a
single application is executed, the TLB miss rate may
increase when multiple applications are concurrently
executed.

0008 To solve this problem, a program execution device
of the present disclosure executing a machine language
program includes a program loader, an address conversion
table creator, and a TLB register. The program loader reads
the machine language program including a machine lan
guage code, and access frequency information associated
with a logical address range accessed according to the
machine language code and the frequency of access to the
logical address range. The address conversion table creator
creates an address conversion table including entries, each of
which indicates a relation between a logical address range
and a physical address range. The TLB register registers, in
a TLB, an entry of the address conversion table storing a
logical address range accessed according to the machine
language code. When determining that the frequency of
access to a logical address range is high based on the access
frequency information, the address conversion table creator
adjusts the size of an entry storing this logical address range
to an appropriate size.
0009. In this program execution device, the address con
version table creator can adjust the size of an entry of the
address conversion table storing a logical address range
having a high access frequency to a size appropriate for this
logical address range. Then, the TLB register, in the TLB, an
entry of the address conversion table. Thus, the size of a
TLB entry storing a logical address range having a high
access frequency can be adjusted to a size appropriate for
this logical address range. That is, even if a plurality of
applications access a plurality of logical address ranges, the
size of a TLB entry storing a logical address range having a
high access frequency is adjusted to a large size appropriate
for this logical address range. Therefore, the TLB can be
efficiently used, and a TLB miss can be reduced.
0010 Preferably, the address conversion table creator
selects, as a lock candidate, an entry of the address conver
sion table storing a logical address range including a high
access frequency. The TLB register registers, in a lock field
of the TLB, the entry of the address conversion table
selected as a lock candidate.

0011. In this case, the TLB entry storing a logical address
range having a high access frequency is locked, and thus the
contents in this TLB entry are protected from being changed.
This further reduces a TLB miss.

0012. In addition, a compiler system of the present dis
closure compiling a source program and generating a
machine language program includes an access frequency
analyzer and an output portion. The access frequency ana
lyZer analyzes the source program and obtains the frequency
of access to a logical address range accessed by at least one
variable in the source program. The output portion associ
ates the logical address range with the access frequency,
generates the access frequency information, and outputs the
machine language program including the access frequency
information and the machine language code.
0013 This compiler system generates a machine lan
guage program including access frequency information and
a machine language code. Then, when the program execu
tion device executes the machine language code included in

US 2016/0328218 A1

the machine language program, a TLB miss is reduced. This
improves the speed for executing the machine language
code.

BRIEF DESCRIPTION OF THE DRAWINGS

0014 FIG. 1 is a schematic diagram of an address con
verter including a program execution device of one embodi
ment of the present disclosure.
0015 FIG. 2 is a diagram showing a relation between an
address conversion table and a TLB.
0016 FIG. 3 is a flow chart showing an example of
processing in an address conversion table creator.
0017 FIG. 4 is a flow chart showing an example of
processing in a TLB register.
0018 FIG. 5 is a block diagram showing a configuration
of a compiler system of one embodiment of the present
disclosure.
0019 FIG. 6 illustrates an example of a high-level lan
guage program input to the compiler system of FIG. 5.
0020 FIG. 7 illustrates an example of a machine lan
guage code and access frequency information generated by
the compiler system of FIG. 5.
0021 FIG. 8 is a flow chart showing an example of
processing in an access frequency analyzer.
0022 FIGS. 9A-9C are tables used in the course of
calculating access frequencies.
0023 FIG. 10 is a schematic diagram of a conventional
address converter.

DETAILED DESCRIPTION

0024 FIG. 1 is a block diagram of an address converter
including a program execution device of one embodiment of
the present disclosure. The address converter illustrated in
FIG. 1 includes a CPU 3 and an operating system (herein
after referred to as OS) 10 serving as a program execution
device.
0025. The CPU 3 includes an MMU 4 including a TLB
5 converting a logical address located in a logical address
space 1 into a physical address located in a physical address
space 2. The TLB 5 includes entries, each of which is
associated with a logical address, a physical address, and a
page size. That is, each of the entries in the TLB 5 can store
a logical address range and a physical address range of
which sizes are indicated by the page size. In this embodi
ment, the entries of the TLB 5 are, e.g., updated by software
processing of the OS 10.
0026. The OS 10 reads and executes a machine language
program 20. Specifically, the OS 10 includes a program
loader 11, an address conversion table creator 12, an address
conversion table 13, and a TLB register 14. The program
loader 11 loads the machine language program 20, and then
outputs access frequency information 22 to the address
conversion table creator 12, while outputting a machine
language code 21 serving as an executable file to a program
executor (not shown). The program loader 11 can concur
rently load a plurality of machine language programs 20.
The access frequency information 22 relates to a relation
between at least one logical address range accessed by the
machine language code 21 and a frequency of access to this
logical address range.
0027. The address conversion table creator 12 creates the
address conversion table 13 including entries, each of which
is associated with a logical address located in the logical

Nov. 10, 2016

address space 1, a physical address located in the physical
address space 2, and a page size. That is, each of the entries
of the address conversion table 13 can store a logical address
range and a physical address range of which sizes are
indicated by the page size. In addition, the address conver
sion table creator 12 determines whether the frequency of
access to a logical address range is high or not based on the
access frequency information 22. The address conversion
table creator 12 can determine, for example, whether or not
the frequency of access to a logical address range is rela
tively high, or whether or not this frequency is higher than
the threshold value thereof. When determining that a fre
quency of access to a logical address range is high, the
address conversion table creator 12 adjusts the page size of
the entry of the address conversion table 13 storing this
logical address range to an appropriate size. This optimizes
the address conversion table. The address conversion table
creator 12 may create the address conversion table 13 such
that the entries are sorted in ascending or descending order
of the access frequency.
(0028. The TLB register 14 registers, in the TLB 5, an
entry of the address conversion table 13 storing a logical
address range accessed according to the machine language
code 21. That is, the page size of the TLB entry storing the
logical address range having a high access frequency is
adjusted to a size appropriate for this logical address range.
0029. The address conversion table creator 12 may
detect, based on the access frequency information 22, a
logical address range that is most frequently accessed during
execution of the machine language code 21, and then select
the entry storing the determined logical address range as a
lock candidate. Specifically, as illustrated in FIG. 2, a lock
candidate flag indicating whether an entry is a lock candi
date or not is added to the address conversion table 13. The
address conversion table creator 12 sets a lock candidate flag
to, e.g., “1” when selecting an entry of the address conver
sion table 13 as a lock candidate, and sets a lock candidate
flag to, e.g., “0” when selecting an entry as a non-lock
candidate. The TLB register 14 registers, in a lock field of
the TLB 5, a logical address range and a physical address
range that are stored in an entry of the address conversion
table 13 of which the lock candidate flag is “1. In addition,
the TLB register 14 registers, in a non-lock field of the TLB
5, an entry of which the lock candidate flag is “O.” Here, the
lock field is an entry of the TLB 5 that is protected from
being overwritten with a newly registered entry.
0030. Next, an example of processing in the address
conversion table creator 12 will be described with reference
to FIG. 3. Specifically, an example of a page fault occurring
when the plurality of logical address ranges are accessed
according to the machine language code 21 will be
described. A page fault occurs when, in the address conver
sion table 13, an accessed logical address range is not
mapped in a physical address range.
0031 First, when a page fault occurs, it is determined
based on the access frequency information 22 whether or not
the logical address range accessed according to the machine
language code 21 has a high access frequency (S301). If the
logical address range has a high access frequency (“Yes” in
S301), a minimum page size where this logical address
range can be stored is selected. If any page size of, e.g., 4
KB, 8 KB, 16 KB, or 32 KB is selectable, and the page size
of the logical address range having a high access frequency
is 10 KB, the page size of 16 KB is selected. Then, a physical

US 2016/0328218 A1

address of the selected page size is obtained from the
physical address space 2, and stored in an entry of the
address conversion table 13 (S302). This causes the logical
address range relating to the page fault to be mapped in the
physical address range.
0032. After that, it is determined whether or not a logical
address range that is included in the plurality of logical
address ranges accessed according to the machine language
code 21 and is accessed when the page fault occurs has the
highest access frequency (S303). If this logical address
range has the highest access frequency (Yes in S303), the
entry storing this logical address range is selected as a lock
candidate (S304). In other words, the lock candidate flag of
this entry is set to “1,” On the other hand, if the logical
address range accessed when a page fault occurs does not
have the highest access frequency (No in S303), the lock
candidate flag of the entry storing this address range is set to
“0.
0033. On the other hand, if the logical address range
accessed according to the machine language code 21 does
not have a high access frequency when a page fault occurs
(No in S301), 4 KB is selected as a default page size, for
example (S305).
0034. As described above, the page size of an entry of the
address conversion table 13 storing a logical address range
having a high access frequency is increased, and thus
internal fragmentation is less likely to occur. While an entry
storing a logical address range having the highest access
frequency is selected as a lock candidate in S303 and S304,
an entry storing a logical address range having an access
frequency higher than or equal to a threshold value may be
selected as a lock candidate.
0035) Next, an example of processing in the TLB register
14 will be described with reference to FIG. 4. First, the TLB
register 14 refers to the lock candidate flag in the address
conversion table 13 to determine whether an entry of the
address conversion table 13 to be registered in the TLB 5 is
a lock candidate or not (S401). If the entry is a lock
candidate (Yes in S401), it is determined whether or not
there is free space in the lock field of the TLB 5 (S402). If
there is free space in the lock field of the TLB 5 (Yes in
S402), the entry of the address conversion table 13 that is a
lock candidate is registered in the lock field of the TLB 5
(S403). If there exist a plurality of entries that are lock
candidates, these entries may be registered in the lock field
of the TLB 5 in order of processing of the TLB register 14.
If there is no free space in the lock field of the TLB 5 (No
in S402), the entry of the address conversion table 13 that is
a lock candidate is registered in the non-lock field of the
TLB 5 (S404).
0036. On the other hand, if an entry of the address
conversion table 13 to be registered in the TLB 5 is not a
lock candidate (No in S401), this entry is registered in the
non-lock field of the TLB 5 (S404).
0037. That is, the OS 10 of this embodiment increases the
page size of only a TLB entry storing a frequently accessed
logical address range regardless of an increase in the number
of logical address ranges, thereby efficiently using the TLB
5. Accordingly, a TLB miss can be reduced. Moreover, a
lock of a TLB entry storing a logical address range having
a high access frequency enables a TLB hit to occur every
time this logical address range is accessed.
0038. Note that when the OS 10 has completed process
ing of the machine language code 21, the TLB register 14

Nov. 10, 2016

preferably moves, to the non-lock field, an entry that is
registered in the lock field of the TLB 5 and referred to
during execution of the machine language code 21. In this
case, the address conversion table creator 12 changes, from
a lock candidate to a non-lock candidate, the entry of the
address conversion table 13 corresponding to the entry
moved to the non-lock field of the TLB 5.
0039 FIG. 5 is a block diagram showing a configuration
of a compiler system generating the machine language
program 20 illustrated in FIG. 1. A compiler system 30
illustrated in FIG. 5 compiles a high-level language program
27, which is a source program, to generate the machine
language program 20. The compiler system 30 includes a
parser 31, an optimizer 32, a code generator 34, and an
output portion 35.
0040. The parser 31 splits the high-level language pro
gram 27 written in the C language etc. illustrated in FIG. 6
into tokens, and then analyzes a structure of the high-level
language program 27 based on the split tokens to generate an
intermediate code.
0041 Referring back to FIG. 5, the optimizer 32 converts
the intermediate code into an efficient code to minimize time
etc. during which the machine language code 21 is executed.
In addition, the optimizer 32 includes an access frequency
analyzer 33. The access frequency analyzer 33 extracts
information about variables a, b, and c used in the high-level
language program 27 illustrated in FIG. 6. Specifically,
logical address ranges accessed by the variables a, b, and c
are obtained based on start addresses and sizes of the
variables a, b, and c. Moreover, the access frequency ana
lyzer 33 calculates the frequency of access of the variables
a, b, and c to the obtained logical address ranges. The access
frequency analyzer 33 may be provided outside the opti
mizer 32. In this case, the optimizer 32 is optional.
0042. Referring back to FIG. 5, the code generator 34
generates the machine language code 21. The output portion
35 associates a logical address range with its access fre
quency to generate the access frequency information 22, and
then outputs the machine language program 20 illustrated in
FIG. 7 and including the machine language code 21 and the
access frequency information 22. Here, reference numeral
23 in the access frequency information 22 illustrated in FIG.
7 denotes the start addresses of the variables a, b, and c in
the high-level language program 27. Reference numeral 24
denotes the sizes of the variables a, b, and c. Reference
numeral 25 denotes the access frequencies of the variables
a, b, and c. The logical address range is indicated by the start
addresses 23 and the sizes 24 of the variables a, b, and c. The
output portion 35 may separate the access frequency infor
mation 22 from the machine language program 20 to output
the access frequency information 22 to another file.
0043. Next, an example of calculation of the access
frequencies 25 by the access frequency analyzer 33 will be
described with reference to FIGS. 8 and 9A-9C.
0044 First, it is determined whether or not the high-level
language program 27 contains a function not registered in a
table 36 illustrated in FIG. 9A (S801). If there is a function
not registered in the table 36 (Yes in S801), the name of this
function and the total number of calls of this function are
registered in the table 36 (S802). For example, in FIG. 6, a
function func 1 is called only once in the high-level language
program 27, and thus the total number of calls is “1,” Then,
a variable used in a function of the high-level language
program 27 and, if any, a nested level of a loop in which this

US 2016/0328218 A1

variable appears are associated with the name of the func
tion, and then registered in the table 37 illustrated in FIG.9B
(S803). For example, in FIG. 6, the nested level of the loop
in which the variable a appears in the function func 1 is “1.”
Thus, “(a, 1) is associated with the function func 1, and
registered in the table 37. The process subsequently returns
to step S801 to repeat from step S801 to step S803. In such
a manner, the tables 36 and 37 are created. Note that if a
variable appears outside the loop, the nested level thereof
only has to be “1.”
0045. On the other hand, if there is no function not
registered in the table 36 (No in S801), an access frequency
is calculated based on the tables 36 and 37 (S804). Specifi
cally, regarding a function name common to the tables 36
and 37, an access frequency f can be calculated by the
equation: f the number of calls of a function in the table
36xm +the nested level of a loop in the table 37xn, where the
parameterm represents the weight of the number of calls of
a function in the table 36, and the parametern represents the
weight of the nested level of a loop in the table 37.
0046. Thus, from the tables 36 and 37, access frequencies

fa, fb, and fe of the variables a, b, and c used in the
high-level language program 27 illustrated in FIG. 6 can be
calculated by

and

respectively. The variables a, b, and c, and the access
frequencies thereof are subsequently registered in the table
38 illustrated in FIG. 9C. Here, the access frequencies 25
illustrated in FIG. 7 are values determined by

where the parameter m is 10 and the parameter n is 20.
0047. In such a manner, a TLB miss rate can be mini
mized when the OS 10 illustrated in FIG. 1 executes the
machine language program 20 generated by the compiler
system 30 of this embodiment.

Nov. 10, 2016

0048 Generally, in many high-level language programs,
a nested level of a loop in which a variable appears, and the
number of calls of at least one function for which the
variable is used are static, and the number of loops is
dynamic. When the nested level of a loop and the number of
calls of at least one function increase, the access frequencies
25 increase.
0049. Thus, the access frequencies 25 are preferably
calculated based on the nested level of a loop and the
number of calls of at least one function. Alternatively, the
access frequencies 25 may be calculated based on only the
number of calls of at least one function. In addition, the
values of the parameters m and n are arbitrary.
0050. Note that if the number of a loop in which a
variable appears is static in a high-level language program,
this number of a loop may serve as the access frequency 25.
In addition to the number of calls of at least one function and
a nested level of a loop, the compiler system 30 may read,
from a profile etc., dynamic information affecting fluctua
tions of the access frequencies 25 to calculate the access
frequencies 25.
What is claimed is:
1. A compiler system configured to compile a source

program and generate a machine language program, the
compiler system comprising:

an access frequency analyzer configured to analyze the
Source program and obtain a logical address range
accessed by at least one variable in the Source program,
and the frequency of access to the logical address
range; and

an output portion configured to associate the logical
address range with the access frequency to generate
access frequency information, and output the machine
language program including the access frequency infor
mation and the machine language code.

2. The compiler system of claim 1, wherein
the access frequency analyzer calculates the access fre

quency based on the number of calls of at least one
function in which the variable appears.

3. The compiler system of claim 2, wherein
when the variable appears in a loop, the access frequency

analyzer considers the nested level of this loop to
calculate the access frequency.

4. The compiler system of claim 3, wherein
the access frequency analyzer weights the number of calls

of the at least one function and the nested level of the
loop to calculate the access frequency.

k k k k k

