00 0O U 0

WO 01/37470 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A 000000 0O

(10) International Publication Number

25 May 2001 (25.05.2001) PCT WO 01/37470 Al
(51) International Patent Classification’: HO04J 3/24 (74) Agents: RITCHIE, David, B. et al.; D’Alessandro &
Ritchie, P.O. Box 640640, San Jose, CA 95164-0640 (US).
(21) International Application Number: PCT/US00/42058

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
10 November 2000 (10.11.2000) DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
(25) Filing Language: English LS,LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TI, TM,

(26) Publication Language: English TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(30) Priority Data:

09/441,224 15 November 1999 (15.11.1999) US
(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901
San Antonio Road, M/S PAL01-521, Palo Alto, CA 94303-

4900 (US).

(72) Inventor: CHEN, Joe, J.; 1720 Parkview Green Circle,
San Jose, CA 95131 (US).

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FL, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
With international search report.

[Continued on next page]

(54) Title: MOVING SET DATA COMMUNICATIONS

l 150
A
e APDUT”/

& 155
Féwx«m to Shact of APDO W/L/
e

(57) Abstract: A method for data communication
includes receiving a data packet that includes at least
one contiguous data items, defining a window that
initially includes the beginning of the data items
(150), determining whether the window includes
a part of a split data item (160) and processing the
contiguous data items when there are no split data
items. The method also includes processing all data
items occurring before a split data item when a split
data item is found, storing the first part of a split data

(65

l

Pracess D,A'q Ur

item (170), moving the window to include both parts
of the split data item (175), appending the stored first
part to the second part to create an appended packet
(180) and processing the appended packet.

I s
[fo spiT ,
{'IO\y L——-r

Soe N Byfes Lt

on C,Qfé
175

Mob@. M,M 4o T"(}o <
gest o} split Doba

wO 01/37470 A1 I IWINQ A0 00000 O A

— Before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations" appearing at the begin-
amendments. ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 01/37470 PCT/US00/42058

TITLE OF INVENTION

MOVING SET DATA COMMUNICATIONS

Cross Reference to Related Applications

This application is related to the following:

U.S. Patent Application filed February 2, 1999, Susser and Schwabe, entitled
OBJECT-ORIENTED INSTRUCTION SET FOR RESOURCE-CONSTRAINED
DEVICES.

U.S. Patent Application filed April 15, 1997, Levy and Schwabe, entitled VIRTUAL
MACHINE WITH SECURELY DISTRIBUTED BYTECODE VERIFICATION.

1. Field Of the Invention
The present invention relates to computer systems. More particularly, the present

invention relates to moving set data communications.

2. Background of the Invention

A virtual machine is an abstract computing machine generated by a software
application or sequence of instructions that is executed by a processor. The term
“architecture-neutral” refers to programs, such as those written in the Java™ programming
language, which can be executed by a virtual machine on a variety of computer platforms
having a variety of different computer architectures. Thus, for example, a virtual machine
being executed on a Windows™-based personal computer system will use the same set of
instructions as a virtual machine being executed on a UNIX™.-based computer system. The
result of the platform-independent coding of a virtual machine’s sequence of instructions is
a stream of one or more bytecodes, each of which is, for example, a one-byte-long

numerical code.

The Java™ Virtual Machine is one example of a virtual machine. Compiled code to
be executed by the Java™ Virtual Machine is represented using a hardware- and operating

system-independent binary format, typically stored in a file, known as the class file format.

10

15

20

25

30

WO 01/37470 PCT/US00/42058

The class file is designed to handle object oriented structures that can represent programs
written in the Java™ programming language, but may also support several other
programming languages. The class file format precisely defines the representation of a class
or interface, including details such as byte ordering that might be taken for granted in a
platform-specific object file format. For the sake of security, the Java™ Virtual Machine
imposes strong format and structural constraints on the instructions in a class file. Any
language with functionality that can be expressed in terms of a valid class file can be hosted
by the Java™ Virtual Machine. The class file is designed to handle object oriented
structures that can represent programs written in the Java™ programming language, but
may also support several other programming languages. The Java™ Virtual Machine is
described in detail in Lindholm, et al., “The Java™ Virtual Machine Specification”, April

1999, Addison-Wesley Longman, Inc., Second Edition.

Resource-constrained devices are generally considered to be those that are relatively
restricted in memory and/or computing power or speed, as compared to typical desktop
computers and the like. By way of example, other resource-constrained devices include
cellular telephones, boundary scan devices, field programmable devices, personal digital

assistants (PDAs) and pagers and other miniature or small footprint devices.

Smart cards, also known as intelligent portable data-carrying cards, are a type of
resource-constrained device. Smart cards are made of plastic or metal and have an
electronic chip that includes an embedded microprocessor or microcontroller to execute
programs and memory to store programs and data. Such devices, which can be about the
size of a credit card, have computer chips with 8-bit or 16-bit architectures. Additionally,
these devices typically have limited memory capacity. For example, some smart cards have
less than one kilo-byte (1K) of random access memory (RAM) as well as limited read only
memory (ROM), and/or non-volatile memory such as electrically erasable programmable

read only memory (EEPROM).

A Java™ virtual machine executes virtual machine code written in the Java™
programming language and is designed for use with a 32-bit architecture. It would be

desirable to write programs that use the full implementation of the Java™ Virtual Machine

10

15

20

25

30

WO 01/37470 PCT/US00/42058

for execution on resource-constrained devices such as smart cards. However, due to the
limited architecture and memory of resource-constrained devices such as smart cards, the
full Java™ Virtual Machine platform cannot be implemented on such devices.
Accordingly, a separate Java Card™ (the smart card that supports the Java™ programming
language) technology supports a subset of the Java™ programming language for resource-

constrained devices.

Turning now to Fig. 1, a typical apparatus for installing applications on a Java
Card™ technology enabled device 120 is presented. In Java Card™ technology, a Java
Card™ converter 100 takes regular class files 105 as input and converts them to a CAP
(converted applet) file 110. The CAP format supports a subset of the class file information.
Each CAP file 110 contains all of the classes and interfaces defined in one Java™ package.
After conversion, the CAP file 110 is copied to a card terminal, such as a desktop computer
with a card reader peripheral. Then an installation tool 115 on the terminal loads the CAP
file 110 and transmits it to the Java Card™ technology enabled device 120. An installation
application 125 on the Java Card™ technology enabled device 120 receives and processes
the data from the terminal to install the application on the Java Card™ technology enabled

device 120.

Due to resource-constrained nature of a typical Java Card™ technology enabled
device 120, only a relatively small amount of memory is available for data communication.
Thus, the communication between the terminal and the Java Card™ technology enabled
device 120 typically consists of multiple application data units (APDUs) 135 sent from the
terminal to the Java Card™ technology enabled device 120. An APDU 135 is data packet
having a data portion that ranges in size from 32 bytes to 256 bytes. Data that is sent from
the terminal is encapsulated in one or more APDUs 135 before being sent to the Java

Card™ technology enabled device 120.

Since the size of the multiple data values encapsulated varies, the data values are
frequently split between multiple APDUs 135. Table 1 illustrates the data portion of an
APDU 135. Table 2 shows data to be encapsulated in an APDU 135.

5

10

15

20

25

WO 01/37470 PCT/US00/42058

32 bytes APDU Data

Table 1

17 bytes 8 two-byte integers

Table 2

If the data shown in Table 2 were encapsulated in an APDU 135 represented by
Table 1 while preserving the relative order of the data, there would be insufficient room for
the second sixteen-bit integer, resulting in a “data split” problem. This data split problem is
typically handled by processing the data on the terminal side to guarantee the data will not
be split. This processing on the terminal side may include by way of example, changing the
size of the APDU 135 to prevent a data split, or reordering the data within APDUs before
sending them to a Java Card™ technology enabled device 120. Each of these solutions has

disadvantages.

Changing the size of the APDU 135 and reordering the data within the APDU 135
requires complex negotiation between the terminal and the card. The terminal must
transform the data and provide the card with enough information to reconstruct the data.
The card must receive the information from the terminal, reconstruct the data and provide a
response to the terminal. Making the terminal and card applications data-dependent as such
increases processing overhead. This data dependency also increases memory overhead,

both in terms of program size and the amount of RAM required to store buffered data.

Putting intelligence on the terminal side also raises security concerns. Knowing
whether a data split problem exists requires that the terminal know the size of each data item
being sent. This size information is related to the data type. This information is not
available if the data is encrypted. Thus, the terminal must decrypt encrypted data before it
interprets the data to determine the size of each data unit. Once the data is decrypted, the
terminal has access to private information. In some applications, only the card is meant to

interpret the data, not the terminal.

10

15

20

WO 01/37470 PCT/US00/42058

Accordingly, a need exists in the prior art for a method and apparatus for data
communications between a terminal device and a smart card that requires relatively little
processing and memory overhead on terminal and smart card applications. A further need

exists for such a method and apparatus that is relatively secure.

SUMMARY OF THE INVENTION

A method for data communication includes receiving a data packet that includes at
least one contiguous data item, defining a window that initially includes the beginning of
the data items, determining whether the window includes a part of a split data item and
processing the contiguous data items when there are no split data items. The method also
includes processing all data items occurring before a split data item when a split data item is
found, storing the first part of a split data item, moving the window to include both parts of
the split data item, appending the stored first part to the second part to create an appended
packet and processing the appended packet. An apparatus for data communication includes
at least one memory having program instructions and at least one processor configured to
use the program instructions to receive a data packet that includes at least one contiguous
data item, define a window that initially includes the beginning of the data items, determine
whether the window includes a part of a split data item and process the contiguous data
items when there are no split data items. The processor is also configured to process all data
items occurring before a split data item when a split data item is found, store the first part of
a split data item, move the window to include both parts of the split data item, append the

stored first part to the second part and process the result.

10

15

20

25

30

WO 01/37470 PCT/US00/42058

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram that illustrates typical apparatus for installing applications

on a Java Card™ technology enabled device.

Fig. 2 is a flow diagram that illustrates a method for data communications in

accordance with one embodiment of the present invention.

Fig. 3 is a flow diagram that illustrates a method for appending split data values in

accordance with one embodiment of the present invention.

Fig. 4 is a flow diagram that illustrates a method for moving a window in accordance

with one embodiment of the present invention.

Fig. 5 is a block diagram that illustrates applying the invention to a 32-byte data

packet and a four-byte window.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Those of ordinary skill in the art will realize that the following description of the
present invention is illustrative only. Other embodiments of the invention will readily

suggest themselves to such skilled persons having the benefit of this disclosure.

This invention relates to computer systems. More particularly, the present invention
relates to moving set data communications. The invention further relates to machine
readable media on which are stored (1) the layout parameters of the present invention and/or
(2) program instructions for using the present invention in performing operations on a
computer. Such media includes by way of example magnetic tape, magnetic disks, optically
readable media such as CD ROMs and semiconductor memory such as PCMCIA cards.

The medium may also take the form of a portable item such as a small disk, diskette or
cassette. The medium may also take the form of a larger or immobile item such as a hard

disk drive or a computer RAM.

10

15

20

25

30

WO 01/37470 PCT/US00/42058

Resource-constrained devices are generally considered to be those that are relatively
restricted in memory and/or computing power or speed, as compared to typical desktop
computers and the like. Although the particular implementation discussed below is
described in reference to a smart card, the invention can be used with other resource-
constrained devices including, but not limited to, cellular telephones, boundary scan
devices, field programmable devices, personal digital assistants (PDAs) and pagers, as well
as other miniature or small footprint devices. The invention can also be used on non-

resource-constrained devices.

For the purpose of this disclosure, the term “processor” may be used to refer to a
physical computer or a virtual machine. Also, data processing refers to that processing
required to install an application on a resource-constrained device such as a Java Card™

technology enabled device 120.

According to the present invention, physically segmented data is treated
conceptually as a contiguous data stream. Data is processed within a conceptual sliding
window, also called a moving set. If there are no data splits, data processing occurs as
usual. If a data split is detected, the window is moved towards the source of the conceptual
data stream to see the rest of the data, including the other part of the split data. This process

continues until all the data is consumed.

Turning now to Fig. 2, a flow diagram that illustrates moving data set
communications in accordance with one embodiment of the present invention is presented.
At reference numeral 150, a data packet is received. At reference numeral 155, the start of
the window is set to the start of the data packet. At reference numeral 160, a determination
is made regarding whether a data value is split. If a data value has not been split, the data is
processed as usual at reference numeral 165. At reference numeral 170, the window is

moved a number of bytes equivalent to the window size.

If a data value has been split, the data up to the split data value is processed as usual

at reference numeral 165. At reference numeral 170, the portion of the split data value that

10

15

20

25

30

WO 01/37470 PCT/US00/42058

is present is saved. At reference numeral 175, the window is moved to include the rest of
the split data. At reference numeral 180, the saved portion of the split data is appended to
the rest of the split data from the newly positioned window. At reference numeral 165, the

appended data is processed as usual.

Turning now to Fig. 3, a flow diagram that illustrates appending data in accordance
with one embodiment of the present invention is presented. At reference numeral 200, the
stored data is retrieved. At reference numeral 205, the stored data is concatenated with the
new data obtained when the window was moved to include the rest of the split data at
reference numeral 175 of Fig. 2. At reference numeral 210, the concatenated data is

processed. At reference numeral 215, the window is moved past the concatenated data.

Turning now to Fig. 4, a flow diagram that illustrates moving a window in
accordance with one embodiment of the present invention is presented. At reference
numeral 230, a determination 1s made regarding whether the window is large enough to
accommodate the move without discarding unprocessed data. If the window is not large
enough, the window size is increased at reference numeral 235. If the window is large
enough, a determination is made regarding whether the end of the input stream has been
reached at reference numeral 240. If the end of the input stream has been reached, at least
one data packet is read at reference numeral 245. If the end of the input stream has not been

reached, the window is positioned at reference numeral 250.

To aid in an understanding of the present invention, the invention will be applied to
a specific example illustrated in Figure 5. Figure 5 illustrates the invention using a 32-byte
data packet buffer 270 and a four-byte window 275. All except two data items in the data
packet are two-byte integers. A byte is represented by reference numeral 280 and the first
two bytes of a four-byte integer are represented by reference numeral 285. At reference
numeral 150 of Fig. 2, the first data packet is received. At reference numeral 155, the
window 275 is set to the start of the data packet 270. At reference numeral 160, a
determination is made regarding whether a data value in the window 275 is split. Since the
end if the window 275 coincides with the end of a two-byte integer 290, there is no data

split. At reference numeral 165, data values 290 and 295 are processed as usual.

10

15

20

25

30

WO 01/37470 PCT/US00/42058

At reference numeral 170, the window 275 is moved. At reference numeral 230 of
Fig. 4, the window is determined to be large enough to move four bytes because the window
can hold that number of bytes. At reference numeral 240, a check is made to determine
whether the end of the input stream has been reached. Since only four bytes of the 32-byte
data packet have been processed thus far, the end of the data stream has not been reached.
At reference numeral 250, the window is moved four bytes towards the source of the input
stream. The repositioned window is indicated by reference numeral 300. Window 300
includes one byte 305, one two-byte integer 310 and one byte of another two-byte integer

315.

At reference numeral 160 of Fig. 2, a determination is made regarding whether a
data value has been split. Since the window includes only one byte of a two-byte integer
315, a data value has been split. At reference numeral 165, the data values occurring before
the split are processed. Thus, byte 305 and two-byte integer 310 are processed. At
reference numeral 170, the one byte of two-byte integer 315 is saved. At reference numeral
175, the window is moved to include the rest of the split data. The repositioned window is
represented by reference numeral 330. Window 330 contains both bytes of the split two-
byte integer 315.

Windows 335 through 355 each contain two two-byte integers and are processed in
the same manner as window 275. Window 360 includes only one half of a four-byte integer
365. The two bytes 365 are stored at reference numeral 170 of Fig. 2. At reference numeral
175, the window is moved to include the rest of the data. Since the end of the input stream
has been reached, another data packet is read at reference numeral 245 of Fig. 4. Since the
window size is less than the size of the 32-byte data packet data in this example, only one
data packet is read. At reference numeral 200 of Fig. 3, the stored data is retrieved. At
reference numeral 205, the stored data is concatenated with the other data in the window
360 that was just read from a new data packet. At reference numeral 210, the concatenated
data i1s processed. At reference numeral 215, the window is moved past the concatenated

data.

10

15

20

25

30

WO 01/37470 PCT/US00/42058

One of ordinary skill in the art will also recognize that number of data splits
encountered by using the present invention varies inversely with the window size. The
effect of reducing data splits by increasing the window size must be weighed against the

increased memory requirements of a larger window.

According to one embodiment of the present invention, the number of bytes
allocated to store split data values is selected based upon the computer architecture of the
card device. A typical 16-bit processor has a two-byte integer base type. Most 16-bit
processor instructions expect 16-bit operands. Thus, most data values encountered in a data
packet will be two bytes or less. If a two-byte data value is split, one byte will be within the
window, and the other one byte will be outside the window. Accordingly, a one-byte buffer

will be enough for most situations.

Likewise, a typical 32-bit processor has a four-byte integer base type. If a four-byte
integer is split, the amount of data in the window could be from one to three of the four
bytes. Thus, a three-byte buffer will suffice for most situations. More generally then, for an
n-base processor, where n is the number of bits, the number of bytes allocated for a storage

buffer is (n/8) — 1.

According to another embodiment of the present invention, the header portion of a
data packet is used to store split data values. For example, an APDU contains a five-byte
header. An APDU contains either a command or a response. The format for a typical

command APDU is shown in Table 3.

CLA | INS | Pl P2 L, Data

Table 3

In Table 3, CLA is the Instruction class, INS is the instruction, P1 and P2 are the
instruction parameters, L, is the byte length of the data field of the instruction, Data is the
data field of the instruction and L, is the maximum number of bytes expected in the data

field of the response. Each item in the header is one byte in size. Accordingly, the

10

10

15

20

25

WO 01/37470 PCT/US00/42058

maximum data field size is 256 bytes. APDUs are described in detail in ISO Standard
7816-4:1995, Section 5.3.

Typically, the five APDU header bytes CLA, INS, P1, P2 and L, are examined upon
receipt of the APDU to determine how to interpret the data portion of the APDU. Once the
information has been extracted from the header bytes, the memory locations of the header
bytes are not used during subsequent processing of the APDU data portion. According to
this embodiment of the present invention, the APDU header bytes are reused as a storage
location for split data values, thus avoiding the allocation of additional memory.

The illustration of the present invention using a specific window size and a specific
data packet size is not intended to be limiting in any way. Those of ordinary skill in the art
will recognize that the invention is applicable to various data packet formats and window
sizes. Also, although the present invention has been illustrated with respect to Java Card™
technology, those of ordinary skill in the art will recognize that the invention is applicable to
many other platforms. These platforms include by way of example, K virtual machine
(KVM) technology. KVM technology is described in “The K Virtual Machine (KVM) - A
White Paper”, June 8, 1999, Sun Microsystems, Inc.

The present invention may be implemented in software or firmware, as well as in
programmable gate array devices, Application Specific Integrated Circuits (ASICs), and

other hardware.

Thus, a novel method for moving set data communication has been described.
While embodiments and applications of this invention have been shown and described, it
would be apparent to those skilled in the art having the benefit of this disclosure that many
more modifications than mentioned above are possible without departing from the inventive
concepts herein. The invention, therefore, is not to be restricted except in the spirit of the

appended claims.

11

10

15

20

25

30

WO 01/37470 PCT/US00/42058

CLAIMS

What is claimed is:

A method for data communication, comprising:
receiving a data packet, said data packet including at least one contiguous data item;
defining a window that initially includes the beginning of said at least one contiguous
data item;
determining whether said window includes part of a split data item, said split data item
including a first part within said window and a second part not within said window;
processing said at least one contiguous data item when said split data item is absent;
processing all of said at least one contiguous data items occurring before said first part;
storing said first part;
moving said window to include said first part and said second part;
appending said stored first part to said second part to create an appended packet; and

processing said appended packet.

The method of claim 1 wherein said moving said window further comprises:
increasing the size of said window when said window is smaller than the combined size
of said first part and said second part;
receiving another data packet when the end of an input stream is reached; and

moving said window to include said first part and said second part.

The method of claim 1 wherein said appending further comprises:
retrieving said stored first part;
concatenating said stored first part with said second part to create concatenated data;
processing said concatenated data; and

moving said the start of said window to the first byte after said second part.
The method of claim 1 wherein

said data packet comprises an APDU, said APDU including a header; and

said stored first part is stored in said header.

12

10

15

20

25

30

WO 01/37470 PCT/US00/42058

A program storage device readable by a machine, embodying a program of

instructions executable by the machine to perform data communication, comprising:

receiving a data packet, said data packet including at least one contiguous data item;

defining a window that initially includes the beginning of said at least one contiguous
data item,;

determining whether said window includes part of a split data item, said split data item
including a first part within said window and a second part not within said window;

processing said at least one contiguous data item when said split data item is absent;

processing all of said at least one contiguous data items occurring before said first part;

storing said first part;

moving said window to include said first part and said second part;

appending said stored first part to said second part to create an appended packet; and

processing said appended packet.

The program storage device of claim 5 wherein said moving said window further

comprises:

increasing the size of said window when said window is smaller than the combined size
of said first part and said second part;
receiving another data packet when the end of an input stream is reached; and

moving said window to include said first part and said second part.

The program storage device of claim 5 wherein said appending further comprises:
retrieving said stored first part;
concatenating said stored first part with said second part to create concatenated data;
processing said concatenated data; and

moving said the start of said window to the first byte after said second part.
The program storage device of claim 5 wherein

said data packet comprises an APDU, said APDU including a header; and

said stored first part is stored in said header.

13

WO 01/37470 PCT/US00/42058

9. An apparatus for data communication, comprising:
at least one memory having program instructions; and
at least one processor configured to use the program instructions to:
receive a data packet, said data packet including at least one contiguous data item;
define a window that initially includes the beginning of said at least one contiguous data
item;
determine whether said window includes part of a split data item, said split data item

including a first part within said window and a second part not within said window;

15

20

25

30

10.

process said at least one contiguous data item when said split data item is absent;
process all of said at least one contiguous data items occurring before said first part;
store said first part;

move said window to include said first part and said second part;

append said stored first part to said second part to create an appended packet; and

process said appended packet.

The apparatus of claim 9 wherein memory allocation for said stored first part is

based upon the computer architecture of said at least one processor.

11.

12.

13.

14.

The apparatus of claim 9 wherein
said at least one processor comprises an n-bit processor; and

the number of 8-bit bytes allocated for said stored first part is (n/8)-1.

The apparatus of claim 9 wherein
said at least one processor comprises a 32-bit processor; and

three 8-bit bytes are allocated for said stored first part.
The apparatus of claim 9 wherein
said at least one processor comprises a 16-bit processor; and

one 8-bit byte is allocated for said stored first part.

The apparatus of claim 9 wherein

said data packet comprises an APDU, said APDU including a header; and

14

10

15

20

25

30

15.

16.

WO 01/37470 PCT/US00/42058

said stored first part is stored in said header.

An apparatus for data communication, comprising:

means for receiving a data packet, said data packet including at least one contiguous
data item;

means for defining a window that initially includes the beginning of said at least one
contiguous data item;

means for determining whether said window includes part of a split data item, said split
data item including a first part within said window and a second part not within said
window;

means for processing said at least one contiguous data item when said split data item is
absent;

means for processing all of said at least one contiguous data items occurring before said
first part;

means for storing said first part;

means for moving said window to include said first part and said second part;

means for appending said stored first part to said second part to create an appended
packet; and

means for processing said appended packet.

A resource-constrained device, comprising:
memory for storing an application software program comprising a sequence of
instructions to:

receive a data packet, said data packet including at least one contiguous data item;

define a window that initially includes the beginning of said at least one contiguous
data item,;

determine whether said window includes part of a split data item, said split data item
including a first part within said window and a second part not within said
window;

process said at least one contiguous data item when said split data item is absent;

process all of said at least one contiguoué data items occurring before said first part;

store said first part;

15

10

15

20

25

30

WO 01/37470 PCT/US00/42058

move said window to include said first part and said second part;
append said stored first part to said second part to create an appended packet; and
process said appended packet; and
a virtual machine implemented on a microprocessor that is based on an architecture of
less than 32 bits, wherein the virtual machine is capable of executing instructions

included within said data packets.

17. A smart card, comprising:
memory for storing an application software program comprising a sequence of
instructions to:
receive a data packet, said data packet including at least one contiguous data item;
define a window that initially includes the beginning of said at least one contiguous
data item;
determine whether said window includes part of a split data item, said split data item
including a first part within said window and a second part not within said
window;
process said at least one contiguous data item when said split data item is absent;
process all of said at least one contiguous data items occurring before said first part;
store said first part;
move said window to include said first part and said second part;
append said stored first part to said second part to create an appended packet; and
process said appended packet; and
a virtual machine implemented on a microprocessor that is based on an architecture of
less than 32 bits, wherein the virtual machine is capable of executing instructions

included within said data packets.

18. The smart card of claim 17 wherein said virtual machine is substantially a Java

Card™ Virtual Machine.

16

WO 01/37470 PCT/US00/42058
1/5

/\/‘30 - 105
| % /00

e
\ C o (F(l
L //10 //
VA "

—5‘?‘?‘-03\(‘) l _ APD\U; J7O n— Q}T.—m
Lastollec | (’L—-"—"‘S'}’q lle

|20

-

Fig- /

WO 01/37470 PCT/US00/42058

2/5

| AQCQNQ APDU (\'/

1SS
Set Window 1Lo S*{a{}' 'Q'F APD O ﬁ\
165
{PMCQSS Dq.{—o\l
(65 | e
“Process D'gg’q Uf B Mol (Window)
> gPlH* 3 6ﬁe£ ,
(19 | L — N
Sone N Byfes L \
on Co\rC\
175\\ .
MOU-Q W, I’\AOVJ "'OD;LLYC}UaQ\
Rest of SPH' a
/%0 L i

Fig.' va

WO 01/37470

3/5

PCT/US00/42058

W,
[Wu% Shred Dﬁjf f\/
I Con@& S"b&é Do:‘\ (/'/Zo5
(With Aoy Doy, .
B \\I : . VAR
{7};@195 Co@%}&() Da(\‘a] }/L/
\L 215

|

Pore Wingo fost
CvY\CoT\er\q—\Qg DO\"\TO\ ‘

P=e

End

WO 01/37470 PCT/US00/42058

4/5

WO 01/37470 PCT/US00/42058

295

5/5
-27°
/7;0\/\/’_——_\
\’“\
AN YA N O O I -9
I, ComsHenn

279 gqF r/\/;oo

T

Lt 1L T 1T T T T T T 1T 7T 1T 717

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/42058

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :HO4J 3/24
USCL :370/474, 912; 709/236

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 370/474, 476; 709/236

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

STN, IEEE, ACM, Science Server.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

col. 8, line 37 - col. 11, line 8.

Y US 5,396,490A (WHITE et al) 07 March 1995, col. 2, line 40-66;

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y YONEDA, S, et al, Concatenated Cell Transfer Method (CCTM): A | 1-9, 14-16
Proposal and Performance Evaluation of a New Data Transfer Mode,
IEEE, November 1998, pp. 2966-2969. see section 2.
Y GUTHERY, S. B. Java Card: Internet Computing on a Smart Card, | 16, 18
----- IEEE, January 1997. pp. (3). see page 2-3. S—
A 10-13

1-9, 14-16

D Further documents are listed in the continuation of Box C.

E] See patent family annex.

. Special categories of cited documents:

"A" " document defining the general state of the art which is not considered
to be of particuiar relevance

"E" earlier document published on or after the international filing date

‘L” document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
special reason (as specified)

"o document referring to an oral discl e, use, exhibiti or other
means
"p* document published prior to the international filing date but later than

the priority date claimed

" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

"y* document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

08 MARCH 2001

Date of mailing of the international search report

04 APR 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer P ! QN\O‘U(

(703) 305-9657

A. OBERLEY

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

