7728 A1 OO0 00 0O O 0

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 August 2006 (24.08.2006)

(10) International Publication Number

WO 2006/087728 A1l

(51) International Patent Classification:
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/IN2005/000046

(22) International Filing Date:
15 February 2005 (15.02.2005)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): CODITO
TECHNOLOGIES [IN/IN]; 242 Chandrashekhar, Shani-
war Peth, Pune 411 030 (IN).

(72) Inventor; and

(75) Inventor/Applicant (for US only): KANADE, Udayan
[IN/IN]; Codito Technologies, 242, Chandrashekhar,
Shaniwar Peth, Pune 411 030 (IN).

(74) Agent: DESHPANDE, Ram, Vinayak; Evalueserve.com
Pvt. Ltd., Fourth Floor, IMD Regent Square, DLF Phase
II, Gurgaon 122 002, Haryana (IN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, 7M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM FOR CREATING PARALLEL APPLICATIONS

100
/
104 Data processing system 106
/ 114 /
ol Code
102 110
/ 118
p Code Machine
rogrammer Reverser Readable
108 Code
/ $ 112
Human
» l(—:;c?'(tjoer » Readable Compiler
! Code

(57) Abstract: A computer program product, a system, and a computer-implemented method for graphically designing, modeling,
@0 developing and debugging parallel applications are disclosed. The computer program comprises a program code for graphically
& modeling interactions between constituents of a parallel application, and generating a human-readable code for the interaction be-
B tween the constituents. Interactions comprise semaphores. Changes can be made to the models of the parallel applications as well
&= as the generated human-readable code. Complex parallel applications can be modeled by using the computer program product and
& data-processing system of the present invention. Further, the current state of the constituents can also be displayed on the models of
O he parallel applications and the generated human-readable code, to identify errors in the parallel application.



10

15

20

25

WO 2006/087728 PCT/IN2005/000046
SYSTEM FOR CREATING PARALLEL APPLICATIONS

RELATED APPLICATIONS

This application is related to the following application which is hereby

incorporated by reference as if set forth in full in this specification:

Co-pending US Patent Application Serial No. 10/667549, titled ‘Method and
System for Multithreaded Processing Using Errands’, filed on September 22, 2003.

Co-pending US Patent Application Serial No. 10/667756, titled ‘Method and
System for Minimizing Thread Switching Overheads and Memory Usage in
Multithreaded Processing’ filed on September 22, 2003.

Co-pending US Patent Application Serial No. 10/667757, titled ‘Method and
System for Allocation of Special-purpose Compute Resources in a Multiprocessor
Systen’, filed on September 22, 2003.

TECHNICAL FIELD

The present invention relates to the field of computer programming, and more

specifically, to the field of visual programming languages.
BACKGROUND ART

A programming language is a notation for creating computer programs or
applications. Many programming languages have been developed since the ‘origination
of computers. Each programming language has a syntax, which comprises a set of rules
and conventions, according to which the programs are created. Programming languages
may be classified on the basis of the type of programs théy are used to create. Some

languages are specifiqally designed for the purpose of creating mathematical or

“analytical programs. Examples of mathematical programming languages include A

Mathematical Programming Language (AMPL) and MATLAB. Some programming
languages are designed to create business or data-processing applications. eXtensible
Markup Language (XML) and Structured Query Language (SQL) are examples of



10

15

20

25

WO 2006/087728 PCT/IN2005/000046

business or and data-processing programming languages. Some programming

languages are general purpose, for example, Java and C++.

Programming languages may also be classified as textual programming and
visual programming languages. Textual programming languages have a syntax
comprising strings of text. Rules are defined with common language words such as ‘if
‘then’, ‘while’, ‘print’, and the like. Java and C++ are examples of textual programming
languages. On the other hand, the syntax of visual programming languages comprises
figures and/or icons. These figures represent elements of the program and are
connected or linked to represent the flow of data or control. Examples of visual

programming languages include Visual Basic, Visual C++ and Prograph.

Though textual programming languages are widely used, they have some
inherent disadvantages. The code for programs created using textual programming
languages is a one-dimensional textual string, which does not show the connections
between the constituents of a program. Further, errors in the text are difficult to isolate
and correct. Visual programming languages represent the program and its constituents
in two or even three dimensions. The interaction and flow of data between the
constituents is shown graphically. Hence, visual programming languages visually depict
the connections between the constituents of the program. The advantages of visual

programming languages make them suitable for developing parallel applications.

Parallel applications use threads of execution, hereinafter referred to as threads,
which are processes running or executing in parallel within the applications. In
multiprocessor data-processing systems, threads run in parallel on different processors.
The programmer creates threads for processes in the application that can run in parallel.
For example, consider an application that needs to process data it receives from a
network. The application can use a thread, to suspend execution until the data from the

network is received, and simultaneously continue to process the received data.

There are several visual programming languages and systems for developing
programs. One such system is described in WIPO Patent Application No. 03107180,
titled ‘Providing Dynamic Model-Code Associativity’, filed on July 12, 2003, and assigned



10

15

20

25

WO 2006/087728 PCT/IN2005/000046

to I-Logix Inc. This patent application relates to a system for dynamic model-code
association between a model and a code for an application. This system allows
programmers to create a model for the application, associate the elements of the model
with a code, and then modify the model or the code. Changes made to the model are

translated to changes in the code, and vice versa.

US Patent No. 6,684,385, titled ‘Program Object for Use in Generating
Application Programs’, issued on January 27, 2004, and assigned to SoftWIRE
Technologies LLC, relates to a program development system that allows visual and
textual development. Symbolic representations of control boxes (such as scroll bars and
text boxes) are used to model an application. The symbols are linked together to
represent the logical flow of data or control information passed between the symbols.
The program development system then generates a code for the application.

Another graphical programming system is CODE, described in the paper titled
‘The CODE 2.0 Graphical Parallel Programming Language’ by James Newton and
James C. Browne, and published in the proceedings of the ACM International
Conference on Supercomputing in July 1992. CODE uses class hierarchies as a means

of mapping logical program representations to executable program representations.

. CODE applications are modeled by using graphs, which are then automatically

translated into code.

The programming languages and environments described above provide
substantial advantages over textual programming languages. However, these languages
and environments do not provide a complete solution for designing, modeling,

debugging and reverse engineering of a parallel application.

From the above discussion, it is evident that there is a need for a system that
enables a programmer to design, model, debug and reverse engineer parallel
applications. The system should be able to convert the model for the paraliel application
to a code. Further, the system should be able to convert the code for a parallel
application to a model. The system should also allow debugging of the parallel

application.



10

15

20

25

WO 2006/087728 PCT/IN2005/000046
DISCLOSURE OF THE INVENTION
SUMMARY

The present disclosure is directed at a computer program product and a system

that enables a programmer to create a parallel application.

An aspect of the disclosure is to provide a system to design, diagram, develop

and debug a parallel application.

Another aspect of the disclosure is to enable a programmer to model interactions

between the constituents of a parallel application.

Yet another aspect of the disclosure is to provide a system that generates a
model from a computer-readable code and allows a programmer to alter this generated

model.

In one embodiment the computer program product of the present invention
comprises a computer-readable code for modeling the interaction between the
constituents of the parallel application. The constituents of the parallel application
comprise threads. Further, the computer program product generates a computer-
readable code for the interaction between the constituents of the parallel application.
The system of the present invention comprises a modeler for modeling the interaction
between the constituents of the parallel application, and a code generator for generating
a computer-readable code for the interaction between the constituents of the parallel

application.

The invention described above offers many advantages. It can be used for
developing complex multithreaded applications. Developing multithreaded applications is
made simpler by means of the present invention, as compared to coding the
multithreaded applications in textual prograrhming languages. Further, the invention is
flexible enough to model a large set of interactions. Representations of the new
constituents of parallel applications can be added. The code generator can be modified

so that code for the new constituents can also be generated.



WO 2006/087728 PCT/IN2005/000046

The present invention is based on the standard thread-semaphore paradigm and

can therefore be easily learned and used by programmers.

The interactions between the threads can be visualized. Further, the purpose of
each thread can be understood, as the thread line is a diagrammatic representation of
5 the code for the thread. The interaction between the thread and other threads can also

be understood.

In the interaction between the threads, bugs can be identified with the help of a
debugger. The current state of the parallel application is represented visually by using
labels, colors or icons. A programmer can identify the bugs by viewing the current state

10  of the parallel application, and remove the bugs from the parallel application.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiments of the invention will hereinafter be described.in
conjunction with the appended drawings provided to illustrate and not to limit the

invention, wherein like designations denote like elements, and in which:

15 FIG. 1 is a block diagram illustrating a data-processing system, in accordance

with an embodiment of the present invention;

FIG. 2 is a block diagram illustrating a modeler, in accordance with an

embodiment of the present invention;
FIG. 3 is a block diagram illustrating a representation of a thread,;
20 FIG. 4A is a block diagram illustrating a representation of a thread with a loop;

FIG. 4B is a block diagram illustrating a representation of a thread with a

condition;

FIG. 4C is a block diagram illustrating a representation of a thread with multiple

conditions;

25 FIG. 4D is a block diagram illustrating a representation of a thread array;



10

15

20

25

WO 2006/087728 PCT/IN2005/000046

FIG. 5 is a block diagram illustrating an interaction between two threads by using

semaphores;
FIG. 6 is a flowchart illustrating the working of a code generator;

FIG. 7 is a block diagram illustrating a representation of a thread that is posting

and waiting for semaphores;

FIG. 8 is a block diagram illustrating a multiprocessor data-processing system on

which a parallel application, created with the help of the present invention, executes;

FIG. 9 is a block diagram illustrating a data-processing system for identifying

bugs in a parallel application; and

FIG. 10 is a block diagram illustrating a label that displays information about a
thread.

DESCRIPTION OF EMBODIMENTS

The present disclosure relates to a visual programming language for creating
parallel applications. Constituents of parallel applications are shown as representations,
and the representations and interactions between the constituents are graphically

modeled. A human-readable code for the interactions is then automatically generated.

FIG.1 shows a data-processing system 100, in accordance with an embodiment
of the present invention. A programmer 102 uses software running on data-processing
system 100, to create parallel applications. A parallel application comprises threads of
execution, hereinafter referred to as threads. Threads are processes that are running or
executing concurrently within the parallel application. In multiprocessor data-processing
systems, threads run in parallel on different processors. Programmer 102 identifies
which processes of the parallel application may execute in parallel, and creates threads
corresponding to these processes. The threads execute concurrently on the processors
of multiprocessor data-processing systems. Multiprocessor data-processing systems are

explained later in conjunction with FIG. 8.



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

Data-processing system 100 comprises a modeler 104, a code generator 106, a
code editor 108, a code reverser 110, and a compiler 112. It will be apparent to those
skilled in the art that modeler 104, code generator 106, code editor 108, code reverser
110 and compiler 112 are software modules running on data-processing system 102.
Modeler 104 is used to create a model 114 or a diagram for the parailel application.
Modeler 104 is explained later in conjunction with FIG. 2. Code generator 106 generates
a human-readable code 116 for the modeled parallel application. Code editor 108 is
used to modify human-readable code 116 generated by code generator 106. Code
reverser 110 changes model 114 so that any changes made in human-readable code
116 are shown in model 114. Compiler 112 compiles human-readable code 116 to
machine-readable code 118. Model 114, human-readable code 116, and machine-
readable code 118 are represented as rounded rectangles, to differentiate them from

software modules in data-processing system 100.

FIG. 2 is a schematic representation of modeler 104. Modeler 104 comprises a
modeling area 202 and a representation toolkit 204. Representation toolkit 204 further
comprises a plurality of representations or buttons representing constituents of parallel
applications, for example, a representation 206 is used to create a thread. In one
embodiment of the present invention, parallel applications are created by using a drag-
and-drop interface. Therefore, to model a thread, a representation 206 is dragged into
work area 202, using a mouse pointer. It will be apparent to those skilled in the art that a
click and place interface can also be used to model parallel applications. In a click and
place interface, a representation is clicked and then is placed into modeling area 202 by

clicking on an appropriate position.

FIG. 3 is a block diagram of a representation for a thread, in accordance with an
embodiment of the present invention. A thread 302 is represented as a box 304 with a
thread line 306 going through box 304. Box 304 represents an infinite loop within thread
302. Thread line 306 represents the flow of control or the sequence of execution within
thread 302. The flow of control is from the top of thread line 306 towards the bottom.
Thread 302 comprises three portions, 308, 310 and 312. Portion 308 comprises
operations performed before thread 302 enters the infinite loop. Portion 310 comprises



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

operations performed during the infinite loop. Operations performed after the infinite loop
are included in portion 312. The portions of a thread are described later in conjunction
with FIG. 6.

FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D are block diagrams of representations of
different types of threads that can be modeled in modeler 104. FIG. 4A shows a
representation 402 for a thread that comprises a loop, which is represented by a
rounded rectangle. This means that the part of the thread that is inside the rounded
rectangle executes repeatedly for a specified number of times, or until a predefined
condition is met. FIG. 4B shows a representation 404 for a thread that comprises a
condition, which is represented by a hexagon. This means that the part of the thread that
is inside the hexagon executes only if a predefined condition is met. FIG. 4C shows a
representation 406 for a thread that comprises multiple conditions, which are
represented by a hexagon with more than one line cutting the thread line representing
the flow of control of representation 406. FIG. 4D shows a representation 408 for a
thread array, which is represented by another box behind the box representing the
infinite loop of representation 408. A plurality of threads that perform a similar function
can be represented by using a thread array, for example, if a set of threads is
responsible for obtaining data from a plurality of ;lata sources such as databases, they

can be represented as a thread array.

Threads created by utilizing the present invention can be optimized by using
itinerary or floating thread methodologies. In the itinerary thread methodology, a thread
is broken up into a series of small tasks, referred to as errands. The errands execute
with the help of an operating system. A series of errands execute in ah order defined by
an itinerary, which minimizes thread switching overheads and reduces memory usage.
The itinerary thread methodology is described in detail in co-pending US patent
application No. 10/667549, titled ‘Method and System for Multithreaded Processing
Using Errands filed on September 22, 2003 which is hereby incorporated herein by
reference. In the floating thread methodology, threads are compiled in such a way that
they require less memory in the multiprocessor data-processing system on which the
threads execute. The floating thread methodology is described in co-pending US Patent



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

application No. 10/667756, titled ‘Method and System for Minimizing Thread Switching
Overheads and Memory Usage in Multithreaded Processing’, filed on September 22,
2003, which is hereby incorporated herein by reference.

Interactions between the constituents of the parallel application are also modeled
in modeler 104. FIG. 5 is a schematic representation of the interaction between two
threads, thread 502 and thread 504. The interaction between thréads 502 and 504
comprises two semaphores, semaphore 506 and semaphore 508. Semaphores are
used to signal the completion of a thread and to control access to a shared resource that
can support access only from a limited number of threads. Examples of a shared
resource include a thread and a data source. A semaphore maintains a counter that
indicates the number of threads accessing the shared resource. Each time a thread tries
to access the shared resource, the value of the counter of a semaphore reduces by one.
The request to access a shared resource is referred to as a 'wait'. When a thread
completes accessing a shared resource, also referred to as a 'post', the counter
increases by one. When the value of the counter is zero, the shared resource cannot be

accessed by any other thread.

In an embodiment of the present invention, semaphores are represented as
arrows, as shown in FIG. 5. The arrowhead of semaphore 506 represents a semaphore
wait, and the tail of the arrow represents a semaphore post. FIG.5 shows a model 500
for a solution to a producer-consumer problem created in modeling area 202. In a
producer-consumer relation, a producer waits for a consumer to ask for a product, and
then produces it. The consumer accepts the product and consumes it. After consuming
it, the consumer asks the producer to produce another product, and waits for the
producer to produce it, thereby setting up a loop. The producer-consumer problem may
be used to model a parallel application. A first thread processes data and sends the
output of the processing to a second thread. The second thread processes the output
and signals the end of processing to the first thread. Hence, the first thread can be
called a producer thread and the second thread a consumer thread. In the model, as
shown in FIG. 5, thread 502 is the producer thread and thread 504 is the consumer
thread. Semaphore 506 indicates that thread 502 waits for thread 504. When thread 504



10

15

20

25

WO 2006/087728 PCT/IN2005/000046

completes execution, it signals this by posting semaphore 506. Similarly, semaphore
508 indicates that thread 504 is also waiting for thread 502.

A semaphore may also be posted by other constituents of the parallel application.
Other constituents of parallel applications include device drivers. For example, a device
driver may post a semaphore to a thread. Further, a thread may also post a semaphore
to a device driver. A semaphore array can be posted by one thread to a plurality of
constituents. For example, one thread may require data from a plurality of databases.
The thread then posts a semaphore array, comprising a plurality of semaphores, to the
plurality of databases. Appropriate representations of device drivers, semaphore arrays,

and the like, can be included in representation toolkit 204.

Modeler 104 can also be used to model other parallel application constituents, for
example, if the parallel application accesses a device such as a network interface or a
modem, or a sdurce of data on a different computer such as a database. In that event, a
device driver that is used to access the database is modeled by using representations.
Therefore, a device driver representation is provided in representation toolkit 204. A
device driver is a component of an operating system that defines the interaction between
the computer on which the operating system executes and an external device such as a
modem, a printer, or another computer. Buffers may also be modeled in modeler 104 by
using representations. Buffers are portions of memory of a computer system, used to
communicate data between threads. The execution of certain threads may be optimal on
special-purpose processors. Therefore, it is advantageous to ensure that the threads
execute on these special-purpose processors only. This is referred to as special purpose
processor allocation. Representations of special purpose processor allocation can also
be modeled by using modeler 104. A method for special purpose processor allocation is
described in co-pending US Patent application No. 10/667757, titled ‘Method and
System for Allocation of Special-purpose Compute Resources in a Multiprocessor
System’, filed on September 22, 2003, which is hereby incorporated herein by reference.

10



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

BEST MODE FOR CARRYING OUT THE INVENTION

In an embodiment of the present invention, code generator 106 creates a
computer-readable code on the basis of the diagram created in work area 202. Code
generator 106 can create a computer-readable code in any imperative programming
language. Exemplary imperative languages include Java, C, C++, Pascal and assembly
language. For example, the human-readable code for representation 402 (as shown in
FIG. 4A) is:

Thread 402()
{
for(;;)
{
for(number of loops)
{ ,
// operations to be performed within the loop
}

In the above code, text following two slashes (//) represents comments that are
ignored while the parallel application is compiled by compiler 112. Operations can be
defined in the loop represented in representation 402.

The human-readable code for representation 404 in FIG. 4B is:

Thread 402()
{
for(;;)
{
if(condition)
{
// operations to be performed if condition is met
}

11



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

Similarly, the human-readable code for the interaction between threads 502 and
504 is:

Thread 502 ()

{
for(;;) //starting of infinite loop
{
wait(semaphore 506);
post(semaphore 508);
} /lend of infinite loop
}
Thread 504 ()
{
for(;;) //starting of infinite loop
{
wait(semaphore 508);
post(semaphore 506);
} /lend of infinite loop
}

It will be apparent to those skilled in the art that the function names generated in
the code given above correspond to function names in programming languages such as
C++ and Java. However, other function names are generated when codes are
generated in other languages. Here, function 'Thread 502 ()' includes the computer-
readable code for thread 502, and function 'Thread 404 ()' includes the computer-
readable code for thread 504. It will be apparent to those skilled in the art that code
generator 106 may generate a computer-readable code for other interactions between
the threads. Further, code generator 106 can automatically provide names for the
interactions. These names can then be changed by programmer 102, while viewing
human-readable code 116, or by defining the properties of the interactions within

modeling area 202.

12



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

An example of a representation of a thread posting and waiting for semaphores is
shown in FIG. 6. A thread 602 comprises three portions, 604, 606 and 608. In portion
604, i.e., before entering the infinite loop, thread 602 posts semaphore 610. Portion 606,
i.e., the infinite loop, comprises loop 612, which is represented by a rounded rectangle.
Loop 612 further comprises a condition 614, which is represented by a hexagon. If
execution enters condition 614, thread 602 waits for semaphore 616. In portion 608, i.e.,
after exiting the infinite loop, thread 602 posts a semaphore 618. The human-readable
code for thread 602 is:

Thread 602 ()
{ //start of portion 604
post(semaphore 610);
/lend of portion 604
for(;;) //start of portion 608, i.e., infinite loop

{

for (number of iterations) //starting of loop 612

{
if(condition) //starting of condition 614

{

wait(semaphore 616);

}
} /lend of portion 606

[Istart of portion 608
post(semaphore 618);
/lend of portion 608

FIG. 7 is a flowchart illustrating the working of code generator 106, in accordance
with an embodiment of the present invention. Modeler 104 provides the diagram to code
generator 106. Code generator parses the diagram at step 702. In an embodiment of the
present invention, code generator 106 parses the diagram by identifying the

representations of the components of the parallel application in the diagram, and

13



10

15

20

25

WO 2006/087728 PCT/IN2005/000046

creating a textual representation of the diagram. For example, an exemplary textual

representation of representation 402 as shown in FIG. 4A, is as follows:

Start thread line

Start thread rectangle

Start loop rounded rectangle
End loop rectangle

End thread rectangle

End thread line

It will be apparent to those skilled in the art that this textual representation
is created by traversing the representation vertically along the thread line. After creating
the textual representation, code generator 106 creates a human-readable code for the
parallel application at step 704. The human-readable code is based on the textual

representation and is in a programming language as desired by programmer 102.

Code editor 108 is an interface in which programmer 102 can view, modify or add
to human-readable code 116 generated by code generator 106. In an embodiment, code
editor 108 is shown when programmer 102 clicks on a constituent of the parallel
application that is being developed in modeling area 202. For example, to modify or add
to human-readable code 116 for thread 502 (as shown in FIG. 5), programmer 102
clicks on thread 502 in work area 202. Code editor 108 then shows the generated
human-readable code 116 for thread 502. After adding human-readable code for thread

502, the function, Thread 502 (), may appear as:

Thread 502 ()
{
for(;;)
{
wait(semaphore 506);
result = process (input);
store(result);
post(semaphore 508);

14



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

After waiting for semaphore 506, the input to thread 502 is processed and the
results of the processing are stored in a temporary buffer for thread 504 to read. It will be
apparent to those skilled in the art that the results of the processing can also be stored
in a variable called result, for thread 504 to read. Further, the value of the result can also
be stored in a permanent storage such as a hard disk. Semaphore 508 is posted after

the storage.

It will be apparent to those skilled in the art that programmer 102 can also instruct
code editor 108 to display the entire computer-readable code for the parallel application.

In another embodiment of the present invention, programmer 102 provides
human-readable code 116 for a parallel application, and model 114 for the provided
computer-readable code is created by code reverser 110. Consider a case where

programmer 102 provides the following human-readable code:

Thread 502 ()

{
for(;;)
{
wait(semaphore 506);
post(semaphore 508);
}
}
Thread 504 ()
{ .
for(;;)
{
wait(semaphore 508);
post(semaphore 506);
}
}

15



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

Since this is the code for the producer-consumer problem, as discussed above,
the corresponding model created by code reverser 110 is the same as that shown in
FIG. 5. This model appears in modeling area 202. Code reverser 110 creates the model
by parsing human-readable code 116, resulting in a parse tree being generated. The
parse tree, which is a hierarchical representation of the elements of human-readable
code 116, is then converted to the model by using representations. Code reverser 110
ignores whatever cannot be represented in modeler 104, for example, variables. Further,
programmer 102 can add constituents of the parallel application, using modeler 104.
Human-readable code 116 for the added constituents is generated by code generator
106. Programmer 102 can also view and modify human-readable code 116 by using
code editor 108.

After modeling, code generation and editing of the parallel application has been
completed, human-readable code 116 is compiled by compiler 112 into machine-
readable code 118. Machine-readable code 118 is in the form of machine language that
can be executed by a multiprocessor data-processing system. Parallel programs,
created with the help of the present invention, can execute on a multiprocessor data-
processing system.‘FIG. 8 is a block diagram illustrating a multiprocessor data-
processing system 800 on which the parallel application can execute. Multiprocessor
data-processing system 800 comprises a plurality of processors 802, a memory 804,
and a storage 806. In an embodiment of the present invention, storage 806 is a hard
disk. Multiprocessor data-processing system 800 may further comprise a display 808. In
an embodiment of the invention, display 808 is a monitor. Memory 804 contains
machine-readable code 118, which is generated after compilation. Plurality of
processors 802 read the computer-executable code from memory 804 and execute the
computer-executable code. It will be apparent to those skilled in the art, that processors
802a, 802b, etc., may be present on different computers and not on one multi-processor

computer, as described above.

" The threads of the parallel application execute on the different processors of
multiprocessor data-processing system 800 concurrently, for example, in the producer-
consumer problem described with the help of FIG. 5, thread 502 can execute on a

16



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

processor 802a and thread 504 can execute on a processor 802b of multiprocessor
data-processing system 800. The execution of the threads is controlled by an operating
system that also executes on multiprocessor data-processing system 800. Exemplary
operating systems that may execute on multiprocessor data-processing system 800
include UNIX, Linux and Windows NT™, |

Errors or 'bugs' may exist in the parallel application that may cause unexpected
results during execution. Hence, the parallel application is debugged, to identify the
errors. FIG. 9 is a block diagram detailing a data-processing system for identifying bugs
in a parallel application. As shown in FIG. 9, data-processing system 100 is used to
identify bugs in the parallel application. It will be apparent to those skilled in the art that a
separate data-processing system can be used to identify the bugs. Data-processing
system 100 further comprises a debugger 902, an instrumented executer 904, a
program state visualization 906, and a trace visualization 908. Debugger 902 detects the
current state of the parallel application. Instrumented executer 904 is a special operating
system that runs machine-readable code 118 and generates traces for the parallel
application. Program state visualization 906 shows the state of the parallel application to
programmer 102. Trace visualization 908 shows the timeline charts of processor or
thread activities to programmer 102. It will be apparent to those skilled in the art that
debugger 902, instrumented executer 904, program state visualization 906 and trace
visualization 908 are software modules running on data-processing system 100. Inputs
from model 114 to program state visualization 906 and trace visualization 908 are
depicted as thick arrows, to differentiate them from inputs to machine-readable code
118.

Instrumented executer 904 is a special operating system that 'Iogs all pertinent
information about pertinent events such as trace data. Pertinent events pertaining to
parallel applications include the beginning of the execution of a thread on a processor,
postings of semaphores, changes in values of variables, the idle times of processors,
etc. Other information that is necessary for debugger 902 is also logged. Pertinent
information regarding these events include the times of occurrence, the number of times

that an event has occurred, changes in the values of variables, etc. These logs can be

17



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

per event type (i.e., a log for each type of event that occurs), per processor type (i.e., a
log for each processor running the various threads of the parallel application), or per
semaphore type (i.e., a log for every semaphore). It will be apparent to those skilled in

the art that a single log can be generated for the parallel application.

In one embodiment of the present invention, machine-readable code 118 is
executed by instrumented executer 904. Debugger 902 detects the current state of
execution of machine-readable code 118. The current state is shown to programmer 102
with the help of program state visualization 906. The inputs to program state
visualization 906 are the current state of each of the threads in the parallel application,
as detected by debugger 902, model 114, and human-readable code 116. Therefore,
program state visualization 906 shows the state of the parallel application on model 114
and in human-readable code 116. Programmer 102 can see this state and use it to
remove the bugs in the parallel application. This method of debugging is referred to as

live debugging.

In another embodiment of the present invention, debugging is carried out after the
parallel application executes. This method is referred to as replay debugging. Here,
instrumented executer 904 generates and stores trace data during the execution of
machine-readable code 118. This trace data is shown to programmer 102 with the help
of trace visualization 908. The inputs to trace visualization 908 include trace data, model
114, and human-readable code 116. Therefore, trace visualization 908 shows the state
of the parallel application on model 114 and in human-readable code 116. Trace
visualization 908 can present this log as timeline charts and animations. Timeline charts
represent pertinent information pertaining to the constituents of the parallel application
with respect to time, and can also present processor, process, or semaphore activities.
Timeline charts also comprise information on the time of the change of states of threads
(ready, running or blocked). Similarly, animations showing pertinent information on

model 114 can also be presented.

Debugger 902 halts the execution of machine-readable code 118 under specified
conditions. The specified conditions include the line number of human-readable code

116 and the values of specific variables or expressions within machine-readable code

18



10

15

20

25

WO 2006/087728 PCT/IN2005/000046

118. The line numbers or values at which debugger 902 stops execution are sent to
program state visualization 906, which displays them to programmer 102 along with

state of the parallel application on model 114 or human-readable code 116.

Labeling, coloring or icons are used to indicate the information obtained by
program state visualization 906 and trace visualization 908. Labels are boxes shown
next to the constituents of the parallel application in modeler 104 or code editor 108. For
example, a label next to a thread can indicate the processor on which the thread is
executing. A label next to a semaphore can indicate the value of the counter of the
semaphore. If a semaphore is waiting for a thread array, a label can also indicate the
particular thread of the thread array for which the semaphore is waiting. The line number
of human-readable code 116 causing an error can also be indicated in a label next to
the constituent, which corresponds to human-readable code 116. The state of a thread
can also be indicated by using labeling. For example, a thread may be labeled as ready,
blocked or running, based on its state. A thread is ready when it is waiting to begin‘
execution. It is blocked if the counter of the semaphore it is waiting for is zero. Further,
while debugging, a thread can be ‘clicked’ on, to move the debugging to that thread. It
will be apparent to those skilled in the art that colors can also be Lised to indicate the
information obtained from debugger 114. For example, different color representations

can be used to indicate the state of the threads.

FIG. 10 is a block diagram illustrating a label 1002, which displays information
pertaining to thread 1004. Label 1002 shows that the status of thread 1004 is ‘running’,
i.e., thread 1004 is executing on processor 802a. Further, label 1002 also indicates that
thread 1004 is currently executing a function called ‘process’ that is defined in human-
readable code 118. It will be apparent to those skilled in the art that other constituents of
a parallel application such as semaphores can also be labeled in a similar manner.

The data-processing system, as described in the present disclosure, or any of its
components, may be embodied in the form of a computer system. Typical examples of a
computer system include a general-purpose computer, a programmed microprocessor, a

micro-controller, a peripheral integrated circuit element, and other devices or

19



10

15

20

25

30

WO 2006/087728 PCT/IN2005/000046

arrangements of devices that are capable of implementing the steps that constitute the

method of the present invention.

The computer system comprises a computer, an input device, a display unit and
the like. The computer further comprises a microprocessor. The microprocessor is
connected to a communication bus. The computer also includes a memory. The memory
may include Random Access Memory (RAM) and Read Only Memory (ROM). The
computer system further comprises a storage device. The storage device can be a hard
disk drive or a removable storage drive such as a floppy disk drive, optical disk drive,
etc. The storage device can also be other similar means for loading computer programs
or other instructions into the computer system. The computer system also includes a
communication unit. The communication unit allows the computer to connect to other
databases and the Internet through an I/O interface. The communication unit allows the
transfer as well as reception of data from other databases. The communication unit may
include a modem, an Ethernet card, or any similar device, which enables the computer
system to connect to databases and networks such as LAN, MAN, WAN and the
Internet. The computer system facilitates inputs from a user through input device,
accessible to the system through 1/0O interface.

The computer system executes a set of instructions that are stored in one or
more storage elements, in order to process input data. The storage elements may also
hold data or other information as desired. The storage element may be in the form of an

information source or a physical memory element present in the processing machine.

The set of instructions may include various commands that instruct the
processing machine to perform specific tasks such as the steps that constitute the
method of the present invention. The set of instructions may be in the form of a software
program. Further, the software may be in the form of a collection of separate programs,
a program module with a larger program or a portion of a program module, as in the
present invention. The software may also include modular programming in the form of
object-oriented programming. The processing of input data by the processing machine
may be in response to user commands, results of previous processing or a request
made by another processing machine.

20



10

15

20

WO 2006/087728 PCT/IN2005/000046

The invention described above offers many advantages. It can be used to
develop complex multithreaded applications. Developing multithreaded applications is
simpler with the present invention, as compared to coding the multithreaded applications
in textual programming languages. Further, the invention is flexible enough to model a
large set of interactions. Representations of new constituents of parallel applications can

also be added. The code generator can be modified so that a code for the new

- constituents can also be generated.

The present invention is based on the standard thread-semaphore paradigm and

can therefore be easily learnt and used by programmers.

The interactions between the threads can be visualized. Further, the purpose of
each thread can be understood, as the thread line is a diagrammatic representation of
the code for the thread. The interaction between the thread and other threads can also

be understood.

In the interaction between the threads, bugé can be identified with the help of the
debugger. The current state of a thread is represented visually by using labels, colors or
icons. A programmer can identify the bugs and remove them from the parallel

application.

While the preferred embodiments of the invention have been illustrated and
described, it will be clear that the invention is not limited to these embodiments only.
Numerous modifications, changes, variations, substitutions and equivalents will be
apparent to those skilled in the art without departing from the spirit and scope of the

invention as described in the claims.

21



10

15

20

WO 2006/087728 PCT/IN2005/000046

What is claimed is:

1.

A computer program product for use with a computer, the computer program product
comprising a computer usable medium having a computer readable code embodied
therein for creating a parallel application, the parallel application comprising a

plurality of threads, the computer program product performing the steps of:
a. graphically modeling interaction between the plurality of threads; and

b. generating a first human readable code for the interaction between the plurality of

threads.

The computer program product of claim 1 further performing the step of representing

the plurality of threads as at least one representation.

The computer program product of claim 1 wherein the interaction between the

plurality of threads comprises at least one semaphore.

The computer program product of claim 1 further performing the step of \modeling a

second human readable code.

The computer program product of claim 1 further performing the step of editing the

generated first human readable code.

The computer program product of claim 1 further performing the step of compiling the

first human readable code to machine readable code.

The computer program product of claim 1 further performing the steps of executing

the parallel application and generating trace data for the parallel application.

The computer program product of claim 1 further performing the step of debugging
the parallel application. ‘

The computer program product of claim 1 further performing the step of labeling the
interaction between the plurality of threads.

22



WO 2006/087728 PCT/IN2005/000046

10.A computer program product for use with a computer, the computer program product
comprising a computer usable medium having a computer readable code embodied
therein for creating a parallel application, the parallel application comprising a

plurality of threads, the computer program product performing the steps of:

5 a. graphically modeling interaction between the plurality of threads, the interaction
comprising at least one semaphore, wherein the plurality of threads is represented

as at least one representation;

b. generating a first human readable code for the interaction between the plurality of

threads;
10 c. editing the generated first human readable code;
d. compiling the first human readable code in to machine readable code;
e. debugging the parallel application; and
f. labeling the interaction between the plurality of threads.

11.The computer program product of claim 10 further performing the step of modeling a

15 second human readable code.

12.The computer program product of claim 10 further performing the step of generating

trace data for the parallel application.

13.A data processing system for creating a parallel application, the parallel applicatién

comprising a plurality of threads, the system comprising:

20 a. a modeler, the modeler graphically modeling interaction between the plurality of

threads; and

b. a code generator, the code generator generating a first human readable code for

the interaction between the plurality of threads.

23



10

15

20

25

WO 2006/087728 PCT/IN2005/000046

14.The data processing system of claim 13 wherein the plurality of threads is

represented as at least one representation.

15.The data processing system of claim 13 wherein the interaction between the plurality

of threads comprises at least one semaphore.

16.The data processing system of claim 13 further comprising a code editor, the code

editor editing the generated first human readable code.

17.The data processing system of claim 13 further comprising a code reverser, the code
reverser creating a model from a second human readable code.

18.The data processing system of claim 13 further comprising a compiler, the compiler

compiling the first human readable code in o machine readable code.

19.The data processing system of claim 13 further comprising a debugger, the debugger
identifying bugs in the parallel application.

20.The data processing system of claim 13 further comprising an instrumented executer,
the instrumented executer executing the parallel application and generating trace

data.

21.The data processing system of .claim 20 further comprising a trace visualization, the

trace visualization displaying the trace data.

22.The data processing system of claim 13 further comprising a program state
visualization displaying state of the plurality of threads and the interactions between
the threads.

23.The data processing system of claim 13 wherein the interaction between the plurality

of threads is labeled.

24 A computer implemented method for creating parallel applications, the parallel

applications comprising a plurality of threads, the method comprising the steps of:

a. graphically modeling interaction between the plurality of threads; and

24



10

15

WO 2006/087728 PCT/IN2005/000046

b. generating a first human readable code for the interaction between the plurality of

threads.

25.The computer implemented method of claim 24 further comprising the step of

representing the plurality of threads as at least one representation.

26.The computer implemented method of claim 24 wherein the interaction between the

plurality of threads comprises at least one semaphore.

27.The computer implemented method of claim 24 further comprising the step of
modeling a second human readable code.

28.The computer implemented method of claim 24 further comprising the step of editing

the generated first human readable code.

29.The computer implemented method of claim 24 further comprising the step of
compiling the first human readable code to machine readable code.

30.The computer implemented method of claim 24 further performing the steps of

executing the parallel application and generating trace data.

31.The computer implemented method of claim 24 further comprising the step of

debugging the parallel application.

32.The computer implemented method of claim 24 further comprising the step of
labeling the interaction between the plurality of threads.

25



PCT/IN2005/000046

WO 2006/087728

1/10

l Ol

v

Jawuwelbolid

" epoy )
1epdwo) ————»{ oigepesy [  owd g
uewnH oD
N J
A o /
( epony ) 80l
9|gepeay lasianay
[ dulyoen ) |pod
/
8Ll oLl F
lojelausn) ( )
opon < [9PON <+— ISI9PO |
\. /
/
/ 141" /
Q0L wa)sAs Buissasoid ejeq y0l
/
00l

/
20}




PCT/IN2005/000046

WO 2006/087728

2/10

¢ Old

¥0C
/

90¢

[AV4

uonejussaldey

uojjejussaldey

uonejussaidoy eaJe Buljspopy

uoljejussaideay

14|00}
uonjejuasaldey

Isjopopy

¥0l




WO 2006/087728 PCT/IN2005/000046

3/10
(o)}
A
4p)
s O
< m LL
S
. AN ‘ AN )
/Y /Y /Y
@ o N
] P ®



WO 2006/087728 PCT/IN2005/000046

4/10

5

N | 2
AN
s I\ __/| 8§
/N | S
s\ /| B8
| | 3




WO 2006/087728 PCT/IN2005/000046

5/10

500

504
/
FIG. 5

508

506

502
/




WO 2006/087728 PCT/IN2005/000046

6/10

602

616
— 614
618

604 «—>
{ | 6/12
@ﬁ
FIG. 6

610

)\ I\ )

606
608~



PCT/IN2005/000046

WO 2006/087728

7110

1472

A e|gepeal-uewny e sjeain)

L Ol

uonejuasaldal [en)xa)
8y} uo paseq paseq apod

%

¢c0L

uopejuasaldal |enixa) e Wioj O}
01 Jejepows Aq papinoid
weibelp ay} buisied




PCT/IN2005/000046

WO 2006/087728

8/10

8 OlId

Aejdsig abelo)g <D Aowsy
.ﬂ / ﬂ /
% 808 H 908 ¥08
Jossaoold lossaooid lossaooid
/ /
gcos ez08
wa)sAs Buisseooid eyep Josseooidiyniy
/
008




PCT/IN2005/000046

WO 2006/087728

9/10

6 Old

ﬁ I9PON

\
)

v

/
1425 Jojnoexg uonezifensin
» pajusnisu| soel]
apon 4 / /
s|qepesy 06 806
aulyoepy ; %
) v\ ] uonezijensip
L »! 1abbngeQ | sjelrs
———»  weibold
/ /
opoD /H 206 906
dlqepedy
uewny ;
/
oLl we)sAs Buissaoolid ejeq
/
00l

>

Jawwelboid

/
20l




PCT/IN2005/000046

WO 2006/087728

10/10

¥001

0l Ol4

§88001d, uopouny bunnoexgy
Bez0/ 10Ss820id
pujuuny :snejs |

y0¢ peaiylL

/
200l




INTERNATIONAL SEARCH REPORT F
P

ternational application No.

CT/IN 2005/000046

A. CLASSIFICATION OF SUBJECT MATTER
IPC®: GO6F 9/44 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC®: GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name

of data base and, where practicable, search terms used)

WPI, EPODOC, TXTDE, TXTEN, INSPEC, |EEE, ELSEVIER

C. DOCUMENTS CONSIDERED TO BE RELEVANT

the whole document, especially figures

(07.12.1999)

14.

Microprogramming, Elsevier Science Publishers, BV., Amsterdam,
Volume 41, Issue 8, April 1996, Pages 625-643;

abstract, figures 2-5, 6A-B, 7A-B, description of figures, claims 8-

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X Kacsuk, Dézsa, Fadgyas: "Designing parallel programs by the 24-25, 28, 30-
graphical language GRAPNEL" Microprocessing and 31

1-5.

X US 5999 729 A1 (TABLOSKI, JR. ET AL.) 7 December 1999 24-25, 30-31

E Further documents are listed in the continuation of Box C.

See patent family annex.

*  Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than
the priority date claimed

“T” later document published after the international filing date or
priority date and not in conflict with the application but cited
to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with ome or more other such
documents, such combination being obvious to a person
skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

23 March 2006 (23.03.2006)

Date of mailing of the international search report

5 April 2006 (05.04.2006)

Name and mailing address of the ISA/ AT
Austrian Patent Office
Dresdner Strafze 87, A-1200 Vienna

Facsimile No. +43 / 1 / 534 24 / 535

Authorized officer

STOLL J.

Telephone No. +43 / 1/ 534 24 | 550

Form PCT/ISA/210 (second sheet) (January 2004)




INTERNATIONAL SEARCH REPORT

'ntemational application No.

| PCT/IN 2005/000046

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

Schéfers, Scheidler, Kramer-Fuhrmann: "Trapper: A graphical
programming environment for parallel systems" Future
Generations Computer Systems, Elsevier Science Publishers,
BV., Amsterdam, Volume 11, Issue 4, 1 August 1995
(01.08.1995) , Pages 351-361;

the whole document.

EP 1 026 587 A2 (NRC INTERNATIONAL INC.) 9 August 2000
(09.08.2000)
abstract, figure 2, description of figure, claims 1-6, 9.

Loques, Leite, Carrera E.: "P-RIO: A modular parallel-
programming environment" [EEE Concurrency, IEEE Service
Center, Piscataway, NY, US, Volume 6, Issue 1, January 1998,
Pages 47-56;

the whole document, especially figures 1-5.

24-25, 28, 30-31

24-25, 28, 30-31

24

Form PCT/ISA/210 (continuation of second sheet (0)) (January 2004}




INTERNATIONAL SEARCH REPORT Bnternstional application No.
 PCT/IN 2005/000046

Continuation of first sheet

Continuation No. II:
Observations where certain claims were found unsearchable

(Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under
Article 17(2)(a) for the following reasons:

Claims Nos.: 1-23 because they relate to subject matter not required to be searched by this
Authority, namely:

computer programs to the extent that the International Searching Authority is not equipped to

search prior art concerning such programs. The subject matter contained in Claims 1 to 23
relates to a computer program as such.

Form PCT/ISA/210 (continuation of first sheet (0)) (January 2004)



INTERNATIONAL SEARCH REPORT

Inte d aoolication No.
information on patent tamily members PCT7IN 2005/000046
Patent document cited Publication Patent family Publication
in search report date member(s) date
a none
EP A2 1026587 2000-08-09 us Al 2002054051 2002-05-09
US A 59589729 1999-12-07 none

Form PCT/ISA/210 (patent family annex) (July 1998; reprint January 2004)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

