US 20050026603A9

19 United States
(2) Patent Application Publication

Rajaram

(10) Pub. No.: US 2005/0026603 A9

@s) Pub. Date: Feb. 3, 2005
CORRECTED PUBLICATION

(54

(76)

@D
(22

(15)

(65)

e,
|
!
§
1
<
4

SYSTEM AND METHOD FOR THE
MANAGEMENT OF WIRELESS
COMMUNICATIONS DEVICE SYSTEM
SOFTWARE DOWNLOADS IN THE FIELD

Inventor: Gowri Rajaram, San Diego, CA (US)
Correspondence Address:

Kyocera Wireless Corp.,

Attn: Patent Department

PO Box 928289

San Diego, CA 92192-8289 (US)

Appl. No.: 09/969,305
Filed: Oct. 2, 2001
Prior Publication Data

Correction of US 2003/0064717 Al Apr. 3, 2003
See Related U.S. Application Data.

US 2003/0064717 Al Apr. 3, 2003

[o+ PMRLETT 4z

Y

|

eed by

e AT

e

A 1‘J
;EUT‘\/DK&L T E

’,,-fu%\,ma:a%) mé«i Geao

i RS

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/927,131,
filed on Aug. 10, 2001.
Continuation-in-part of application No. 09/916,900,
filed on Jul. 26, 2001.
Continuation-in-part of application No. 09/916,460,
filed on Jul. 26, 2001.

Publication Classification
(51) Int. CL7 o H04B 5/00

(52) US.CL oo 455/419; 455/41.1
(7) ABSTRACT

A system and method are provided for managing system
software download operations in a wireless communications
device. The method comprises: executing system software;
launching a run-time engine; processing dynamic instruction
sets; and, in response to processing the dynamic instruction
sets, managing the downloading of system software updates
received via an airlink interface using management func-
tions selected from the group including recovery status
monitoring, back up, compacting, and update ordering.

=y

fo0

o deyice

]

; SN 4%»{ (ﬁ&s" A B,
5 ‘«;j:
-

33

dapn 0
e

an Ef

NEZ,%{ i

- [N A iy

Yonr ’hmﬁ- ixbr’m’}f{ 1
|

{¥ha gty I*%f

Vo ta S (0
YR ot ¢

{
Ry %ﬁm%% E'
o,

US 2005/0026603 A9

Feb. 3, 2005 Sheet 1 of 27

Patent Application Publication

e

i sibbi

vy

Afﬁ:{%ﬁ.ﬂ@@ﬁi]
Mmmﬁgs Wiy TUod |

|

Gg? |

ry o A
el

R

a&%
s5 A FT Y

Hays el
2% CEH |3 @w mw

H
g ¢
¥
F§

1onwathS

WAy

ﬂ
R AR e R
i i

PR
s

RIS e
29/
sk SIS

e e
AT

-

1 t\hmw.mm
GG

- h
B o s e Ewhl%%ﬁ&.ﬁfmi% 3 .w w ﬁw

kw%éwm?v 2 147y opuaLh

WIS g
et T

S,
"

s

b

%
o

y LIRS,
(UL - Thgs o w

>4 |
g .

0% | b=

¢ H
. J :
= e ST . Mﬁ - .uw \xW

ool A - e R
Ll - — - | M

US 2005/0026603 A9

Feb. 3, 2005 Sheet 2 of 27

Patent Application Publication

e i

R e e

e et fns s

PR

)

s W UV S

R] VDB A i Vel Y T
ot
" o LT W.%@N
o s 4 e g 4
ABYVTEYIE R
:

)

i i - O
e oA

femoncncmos e e

amiéwwnwh\\"ﬂﬁ

mg«.(‘muamﬂmﬂu'n.w
R

fo ARV B 2§D uO

el

oL
i ..e;&.é:?f@iuszxﬁﬁvglbﬁk%w o
P ;.ﬁ!d.nhgv\.s - 4»
TS g 57 s, HETE
H
{
» ——
§ oo A S R e i et 3
p—__ . - _-——— H
M FTT O w STES i
N.‘ co. sy]
£ [N Sl X - £+ 4
3 R A A LA LS W
3 3
X
T‘eﬁvﬁw&%&a»ﬁ%o\%oiﬁik.

!
i\
}

s gt et SV 21

- n‘m

]

g

PR

it A

v
ey

i i i

1 s s PR S

AR Lt eomsc L ek s, el 14

|

Patent Application Publication

Feb. 3, 2005 Sheet 3 of 27

US 2005/0026603 A9

e, s By e e st s vt e et
A I3
N
\3&3 1::7 e -
/ !
& ¢
38 ,, b
=7 : ~ %.
Vg ' '
’?’j ' N [t 9 Oj\
’;S \M; T, \ { Foed [i
i / r N “\ﬁ . Vo 38 im. g ?’ ! { SQC,,T?QV,;:
%’92»&?{' R < Yo f
| 210 Ty
§ e A Mused E
320m 5] e
([" E i Coda
S N AR Qgr/ {1 i ~ \5@“\‘1 5’«2‘:’3‘ 5 ,9‘ ¢ ;
LLhk ary % | Section
: ; e R AR MLRZR A / -
i e i o i . ;ﬁ
§ i o -~ :—‘\' 5?{ ‘3’9 i
f Ld€ 7 L £%
i) s B !
i ([owuses|
£ -
7
] }
! :
{ ¢
§ # }!
ey g ;
3 MF\EL e ;
j fepd @
4
f? Seetre B
?

LBy s

e

Py

£
— SR "'lw..bff(‘
/”}m ol /’; ™
feeoay” ;gm,h i? / Godeh
®
g&n»ff&z‘ e g A0E
;;Q_«z’,y“{& éib h @ \3{25

E:é’f%’

!
i

Patent Application Publication Feb. 3, 2005 Sheet 4 of 27 US 2005/0026603 A9

é:ij:jwu&mw’%%’“ﬂ M\\
rg

¢

e

Y7
P,

ol Seetian

gpaIAT AN - I
st Pl | Cfode Section
b > {70

Sy &rte e Aata.

{

[yg0 Pinemi
: et e ' : .’
; PGL'{}“‘QA’\ ! g PgE P f’\q_gf“’ ?
~ i
P E— ;
i
/
§
#
!

b st
r; apd adr-&d
oo 02 QQ £ SR L@y N

R L

P g PH
'&Zf"“\w
o

gy ;
{ Y et | }J
/ /
f{

\ST .JVEM\}—\::‘Q{ o8
J ’ 4
C:::n(:}nzw g&? & ‘;\"“.:}n

gty
bleck
Y00 —7 [—— oo et T
A mi@ P - dog gy 1 -) 5
,Z#\é! %{ tC: 4 @4_ @ R {8 - i ; p
pneits’ Loz
plock L7 S ot B
4 o e s e s W g
i v Jade Lmclieh Sk .
A < B, /
RV P S = 7
L S) J |
P
e s e m_.‘ng 5
4
3

S
%“‘NM‘_'

o,

i

e
(08
| L g;:,."::“ ey
f?

s N T, B

AR
S ¥l
plocl i

< f...f";;g/q
edn g Nk oot .
Lo S

(T o b pam g
AR S SN T Y
[—

Lh
imemﬂcr |
T
X O
wib
fc | Y

Patent Application Publication Feb. 3, 2005 Sheet 5 of 27 US 2005/0026603 A9

5 £
. ; ,
-~ ; - Yale o ow I S A
et Sso L Table
..... .
i’*”i: é" ”0‘?? B & Q gb:

:'%';;z ‘éw&m o g o
4 {::“ -,,.)"u....’&;»

B

Denbidiers
: { o 8 s nd g
| < | (Stard pddvesg
= -3 - .
3 o=
i Laan | oo
;

T g
s s e

i
f
MWMWM - s S P vt e o a— o s [
oy 5%
I w2 P it i &“ 2 4% 0o
;', S 3 g‘fﬁ ,.M e Fe R § A Y
o - ¥
i g r"} iJ e
— H - S e
e J ; AT Lo
{ i - s, Q A

i B ot e ST 1 it Feres Y

' b4
i
;
AT SN B «-rgmm;e mnwrwmw"b‘m-‘vw“' ey K
— .
| I e
é‘ ;:n, s . ot } o u w"‘” §¢€2«
.,
< < f L
v R % 4y .
. —_ ¥ P o0 7 0&3\'
— 1 - ; S
e L, f s e ey
th .
nan, [« :J___ 3 .',‘1' 5, -)
i | Stoet od Srege
|
¥ 3

¢ &&} f‘“}@@

S
ﬁ%%mm &w
g
*Wm% oo
- .“\“L&‘»\u‘ Ve

p ey
Ja PN o,
S

o 1y
%ga’% o

2

US 2005/0026603 A9

Feb. 3, 2005 Sheet 6 of 27

Patent Application Publication

e
B e
R e T O |
_w i i
: ! Frrmm——
R ; o
n N ; e Ll.tj
7 : 4..
_ : .iﬂu[uv.lgu.ﬂnx\w\bﬂla
w { s N ®
... TSRS meanie oy,
| 2 N
i £ s, e
; s gt ; 1 E \
. B
3 : w
k2 H ¢ M
v S i : | -
3 : : ” :
| m ; s Yol
& : v.
| u ST ;
H ! i .
T | { ;
i T e :
w. | Aanet
P i
-1
- Aj

n-. N
SR —— o

oo \
AN
3

§

1w
e B
P

N
&y

"

!

t
i
{
I A et

3 e e T e,

¢ B) H It -

B T N il
7 %
C% E

4
By
. l;»—-v...mmmwu,.;,\, » Sowatrs s

L™ T, : iy
o P § I £
: S N ,W E—

{ P &
WS C e apy ° 4
W N 45 e v i c
s R | E
o) i i H 3 w
S 3 - F
N i # § e i i
i : : { ™ &
{ i X L
S { ; "
i T et i e et e ajxaecﬂm. H *
msa : m w 5
t H S
: S o
| m { i
. : i .
[REI S i : :
——— —ta §
£ 1 f :
o ; H :
i i g . :
B i 7 T
M | ”
R . 1 : H .
R T |
R it i
B S
@ i e]
ity w”uwu_

(0 } obd cet

US 2005/0026603 A9
!
‘[
f
K
W
4
/
f

oy .
£ Mm...w\«..nﬁnw
—]

W

f

7
O S

ode

|

(D

S
{/g\mi |

!
i

e
]

4

Patent Application Publication Feb. 3, 2005 Sheet 7 of 27
orel
3 ;

T
Y-

AT SO RS
RN ST

st

AN A

EX

ot SIS PRIRE YT B

4
TR

st T

JpRE
8 AR 2

S SRS
e

e e L | T TS e i
g 7 :
: §
% H X
H /
: : M
: H i
3 ;
|
- I .
P
e ! 5]
mz&m ! . ¢
L : er W '
! |
3 3
3 2 ..:.rw.#s.iv;rta)
3 : i :
2 m w. _.
3 : § }
: i :
: : v
! { :
TR : } _
R
% : :
w\W { s i :
S IV, B AN W
: i
i 3 3 {
H X B H
! 3 !
¢ Toan |
M N LT H .,
St S T |
.8 T P . ;
Pog G - _w
j w 3 s A
MMV 2 @ 5 L3 H
w 5 S :
i i i
H ¥ §
] W U M
LM\! e paian e e st et e B

Patent Application Publication Feb. 3, 2005 Sheet 8 of 27 US 2005/0026603 A9

bndanch IR G SR (MGONTT o BOMIOTET $5 £ (600 s A T AR 31 afh P

— : | .
, st pstruetion S \

som e

(o struetion é?ﬁié?i:

Fl
1ww1«
| —]
3 Q i St ye o ,%\?éz;w%é']
— RS ——] sl

D i s MMAis o e e i, PR AT AR A 5P SR 1 530 4 TATNG AT P 1 s 5 1, N
sty

(engtn — 55" |
L j
L VRN i% Yy wwmﬁuwm,%mm_@ f

m:? . %ﬁﬁ TR Soo
M“@r S - Lol 3% g}(ﬁjwm fgwg f

§]

- PO NN

et raw&*‘F

SR

;

1 E i ﬁ% 0 ,»5

‘ S

3 V) i AN ? :
% ﬁ ﬁ" WMMA R — ‘”‘“‘""“"“‘M""’N—Mj %
3 Ry e AN A T AT T ey T i L PE—— wg

%

US 2005/0026603 A9

Patent Application Publication Feb. 3, 2005 Sheet 9 of 27

mﬁi}!i&?&zﬂxﬂf
P

>

e s
e
QM{W m e M T e Eaﬂf.eﬂw}\sfd\li o e

i
H
AN PR i,
¥

Fl n
corhal N L
1 3 H
| H FANE W :
j] M w !
N SN o
Wéﬁﬁ#f%wﬁm@w r ,«ﬁ&« .) : T

A5

e a et aeaEe L & uinfn‘.r%«#:f\ﬁﬁm‘mﬂ\iw.& N T E T »

St e 2T

d

{ A MRS N TR s - NE.%\\\\
o

US 2005/0026603 A9

Patent Application Publication Feb. 3, 2005 Sheet 10 of 27

* e
<
s, T T
ot o
N

St b e |

T e N - 2 itz bk _“_

H

i

K

A et v e O)

AWz S,
Mot mﬁw%% 13 RO
a1 -ON /A B

o A,

]
|

M " uwPes | | M&ﬁ@ i @%ﬁ@ G0 wﬂ.\ ¢®

M T TP !

\ m p P , @iéém . i !
{ RS N 7 E— W

#

!
: O 10
W 39¢. mwwﬁ\,\ ;
i m Broorcnsmarcamons = et
s J o an s

W
w
i i . M
“ eé &Il 54 .”
: LER e o445V Eﬁ@%mmﬁm |
~ :\w«mm ! VBl1eS 2pe ™M3ih siN\%
:%%&mw e @.MM Bite L M
10 gpdi)s Mah 02 |
{ {]
w &Nw% ﬂm .ﬁw W W n\@vmé}ﬂﬁwn&%aﬁﬂ%
H — ek !
M{é&hﬁl&y\uﬁ &

QQ@

N

US 2005/0026603 A9

Patent Application Publication Feb. 3, 2005 Sheet 11 of 27

7
004

apos 4RI WY
| e
Mm o |
BRSNS R ¥
I N EOUE el
- TS S 2
R~ o
Miuktsvuvv&»?fhﬁrv,%@{?knrg» W %A

oS
& i e B "

I @« VR TRLY

M ! %w,wn/mwu@hﬁw&% W
el Tonesiogy Setars A 5e61 | m
I ——r
Ligwd 7 i 2o9/ AN
e |
\ o REA feepo) Moavd BT

H
3

;.w 5 P

Patent Application Publication Feb. 3,2005 Sheet 12 of 27 US 2005/0026603 A9

‘%’mwm.

§ e ca Gery Statug
oo !

% éﬁfsw“ﬁ*'{;»@@"

;’—"MM e i
CONCS

/

e

/

¢

]

f |

|

|
;ﬂw S
[Neg_n UMY

US 2005/0026603 A9

Patent Application Publication Feb. 3, 2005 Sheet 13 of 27

%&gew . e ixgs..\ﬁn.%q.svz_d\.is.ﬁr:ﬁv&;(f‘fo P e sy &m?ﬂh..mfx?ﬁx\&M

N 2! Ve Y]

i) A 3 mm
T w‘w : s;w zf v o B0 WY {w\u.wd& m

S M w

- o5 AN
| = vorjz2s 7
= pcrz | / !

e
o TS |
g A T |
m i
H

T . ..ﬁ Wmvatk w
{ 506 T3 B
13

qncrarmimee,
e . n“(%%%%% : W

:
{

mwﬂmﬁwmq i E&W;@ﬁ&ﬁt gn auﬁ&nu
%isﬁz:&a&lﬁc%@\i ~
I) o W .
28T yeymes 2poz THINO (7
Zoz) VOIS ppe> T2

@ C
g
b
%;M
gy AEGEO Rand P
ot
{
B
, /“‘\/\Q/ \%
- = N»i.‘w%w‘ﬁwwm.ﬁ
£
H
T UL T on e PRSIV TG e
{
/

et
R oSSR, e T Y ST
e e

T g

g g

706 82

§
;

D
N
NN

US 2005/0026603 A9

ﬂ:.’:}
O

(s,
&,

{

Patent Application Publication Feb. 3, 2005 Sheet 14 of 27

e e e _— e i e R AT

m. xﬁlﬁmm .N m“&%i »Q@f%

PNELLRE w.@%%w RS £ ém
P A R 4
PEEL L0 At e m.w) i
4 g §

..m

— M

TN G m%;uww e lm!,m%
P v%ai»s%n&@&‘l«..

OS2

PO ppp—— i o, T BT AT
v ”
xi%..uh'\ﬁf?«x% it

GoS/ nvwenl oy P W ED

R

| l S
| w,w&mm g wess apor g3 papPdn |

T

PSS

I L i

7

oo e R e e

US 2005/0026603 A9

Feb. 3, 2005 Sheet 15 of 27

Patent Application Publication

4
k3

e S

| | V!\‘&-. .x.v\ﬂ.iw)x\‘ A Lﬁ@ M
/ sQJM & . { W
| L b) o
M - P e ,
| et m
W
1 .
.__ﬁ % \ W o w
m i 3 5 7 ,.\.\\\..i\ﬂ&.\%ﬂx\..:z et W
@i e —— pove

e T
o s

27 73 S e e o~

m T & wwxu..nnﬂnﬂié% C i PAC ﬁﬁ%w

w M\.«w m/k xawWMMHuMHMsz%,,} zﬂ.w o ~gi S IAP T e
Lot tp oG h] A8 \.\..xsiﬁ.iskz\\wf w

| 4 e d o K

- . %ﬁﬁa%..u?i og O o B k\a_sL/
| I L S PPV L
b ROR e ypuz =
w % e T % " T ey
T I ~) s “t\\\&.vs T ,m
o AOR] e M
mmwwu Py |
4v¥x\ w .%
| i
- | w
\ W)Anl.\\\"..m
w = e
w myw - - iv.i,.i;\‘»lv}ﬁ-!\.li.\\.!.\\n\\\
M 0b T

Patent Application Publication Feb. 3,2005 Sheet 16 of 27 US 2005/0026603 A9

- e .
%:“3 15a. {:ﬁ: .gwi; ;3_,,“%” (5 o0 .
e N s

g
s v N S
4 pen 5 AL et
ijﬂu W‘“ﬂz,{ S\g’ ‘w {"ﬁm &;@é i n@\,?m Mwﬁ ua;;w ﬁi“ g“ﬁﬂgﬁx $@‘§g&ﬁ@§
£
§-—» e s v i spin v JRp—— - % et
i}?‘?‘ # ﬁqﬁaﬁ &‘ﬂc\@ S"fﬁ"\“’*&i}:gai »tgf‘;ﬁ\,ﬁh&% M,q"f&ﬁ:% "::g‘_f}f @f‘ g‘@’ L_@ mgﬂkg g
¥ N e }
p— S S—— WWWWL@ Pk
gf“*@‘f na c0de Sectons ﬂﬁi & W‘waé”"’“ﬁ* &?Q“Mﬁg@zc E
S — »33" o
j M@um“’%@ B, ,,“q (At foms (5ol |5ete
= i
o T @gg‘“‘w‘i o150 le
e . A P

;N"W ﬂ S, wﬁ«%

| S@:D At §"’"

H " %{'

_ , ’a%“’ Y
595@(@”,{%@ }ﬁ;\mmm e&"&v%"é“ww,ﬁ& f »
T {’"ﬁr e 5. "‘“ﬁ DT TR K G A . 08 ROV w\rww»\unﬂ /,i?

T T Y

éﬂ ﬁmugci‘mw Tiine a”ﬁmc Loy

7

A AP0 et §
T NS St AR S

e i

/
fVece\uuns ok\N\.cm‘{\tc tnsﬁ‘VumonS”GS]
v say

. 06
e e i T s S et
iy .. ,__,wg
gf \K’Y!@d‘ﬁ' ﬁgiﬂ& oR- gul\. SPINE \,’\,(: ”&JE}Q_’“@“@{\ «S‘Z ;:
B -y S s o «31‘;’. PP _WI

{
/ L ﬁw“’”"ém SW‘M bols P

P s

US 2005/0026603 A9

Patent Application Publication Feb. 3, 2005 Sheet 17 of 27

' el
j J?‘?C)fw\ Eﬂ.\\‘ & @ O,
e

N
cmvi} mzﬁt‘}ﬁ&m&m@f\ﬁ

A i oo 51 . sttt S
e ¥

TS
%W’%‘*W:ﬁ& ﬁd} UEace aF €

&f Boshl -
I ‘;«f@au‘ﬂ“w SYMM@Q,@

TS SRS S ey
z s T e
éj’ J(r*; Wﬁ & (%m% o /506 L4 ;
AR Wil utus e e .
N
. LE06ble
e

t;
3

#~
_gm.-wf
g

E@g@ s &
7 _ et
TR G @%ﬁagﬁ i

05\04\:&1(6}» ﬁ‘%%& t‘{;‘\@&{: s V\
j 150¢ ble

N f%%’;ﬁwﬁ VU fiv
%_-‘;';g& mﬁ 69\; Q_:%’Z;\ {‘%Nﬁw P, % e " %) o) - ”g{f;)gﬁ ﬂwﬂ ﬁf@ @;4 E

\ O akong
1
N f

Voraseris aoor sorsmgrne o
e R Sk S s e creg

d “‘*% #&M‘% e

rg‘ 4

Y
on y\g&@{\m

&%m% -

FSRT—— L el R S
S8 teren]

(,QW\ o L zgxs::t) {lgvf‘@{,u% ta @Q‘
f
BTSN g 143 e —_— _‘_wj]

I J
—— ﬁw

D A2 IS i

WP

uf‘r&‘é”{zm%

it 4

Patent Application Publication Feb. 3,2005 Sheet 18 of 27 US 2005/0026603 A9

s g
i
o

Fue, (b CCtaRer e o

M s
o T | 49l
{\j Sm’g%»mm _wio J;ﬁ‘%’ﬁ%@ &%}iﬁﬁ«sgi

orTenife ghg”@\@ww

\{/ T
\ {D?’m*zw&, M e.:Ze i@g Semerkeg

?Ei‘ﬁ‘&%mm < *g W?A@ L

o Wwwﬂ,

WW “’%“?‘@‘ Cyitasn cod
[executna £y >

{aunc‘m(\g Yun-firme. g iIne

H

(o rarnenh 7 .
v

?fmg‘“ géd ‘?i A
é\’ecewm Jymum;c. mxf HWechon seﬂ*s] /1800
— S
EY/OQ”""W*% AN namnte o Talron ﬁﬁ"‘ﬁ?" ?
Ew»ﬂ”"“”’““ " «ﬁ 1 VN ———— n,g - w:mu.«.g
f&i’«fiﬂg«mq S Ylte e O*Qﬂ\“m . rSe T(% o

S ; 2 s N STV DA

e e s s s
L [

N N b0t b

-3

¥

'zawcr“

Jrasaenns ¥
F&(%W%‘\ ﬁ‘“;@%{:} &\(g L o Vo g;‘?i\ AR \«a fé&;b{f

]
ST
et el

[—
P @ﬁg““‘ Q& §\1 < ‘f@ s\mx aﬂﬁm e&f

jf é!"ﬁ»@ﬁwm

r@@ﬂ &%}“{m;&x {Xw(“"?m og\«ef\ gme g*f‘f‘@ﬂ”‘f\/

g g Q-G,‘q ¥ T
L 0N twade, 555@
S ——— ey

ORI p— \J s e i S i, i

B st Tt ’,,\
j oonTTrs gs{ (e Q«‘g{”(j s U“hﬁ@ ﬁ CT‘{» AN ;’f%? vy g& ‘g “”m{}%

gﬁ‘ Y
e . v e e ket e “ "7“’#

R —

]

Patent Application Publication Feb. 3,2005 Sheet 19 of 27 US 2005/0026603 A9

A i?g{
{

(m/ %, ??”mﬁ

Sl ni, Sl ,%:@m& e

5\‘(\%{”{? M'wf« hY ﬂg,ﬁ%’ff’,}‘i”” =

R |

e o e 1. 08 AL S TS A !"?efgé&

T e 3
[. e %\Lm%{, %:QHQ Mg‘{-ﬂf%‘%ﬁ

fﬁfww& ﬁ@t%} @

e e v s Bl i

—

e v [7 &2

1

gQ reluy \mﬁ\; ug“‘?w:v,sf\m i géx@jﬁ i

L N, . - i)
-) : £
[loaunching Yon-time @ngine -~

s

=
m}%

T

g
B \EE‘*{ A, - [§ ok
- SO 2{ e b d Kis] *mi(

F(‘?ZC?-W“’\& %\{Ml’m{q !ﬂﬁr’udhc?ﬁ gu— [

,M vonpart, ST AN 4 S
N e v
S——

{3 ygﬁ*{gﬁw AW\{MW@ a?“ﬁ“f{ﬁﬁ;mﬁ %4"@

e\ ﬁ T T m—— T

|
I T T 0%

" ”’*(‘ f
W R L G sl {,,
- ;

2

o FUPEIRIE SRS —

g A, Lty ‘ﬁeg ei\wiw@\f?? ﬂ\ m%

ol ¥
P v&\ ,{

s .
| *iw Vs Susteen

o i

¢
f o W

e it c\.u»-z
Y

(’ M’L

W

&:..1,5.. e]

AR E S

wza Lj@ @Q&“% o,

E,p,uw " e 2 2
i lo MT tatlin 4 ! !
|]

p i

Patent Application Publication Feb. 3,2005 Sheet 20 of 27 US 2005/0026603 A9

e Eiaf&m

. _,%W gﬁ \W e “r\“% Qx\e’fm‘ba A l f:hf“’mw,.g; E
v o]gslb

| Dibtios code gm’ﬁmfﬁ,{}
LR e e e - e

s g e "“‘""wxmm?‘?

a_,mgﬁa Qeek LS, ‘\f'\ Uy tf\\\ofa.\iu(» M&“V‘@ f’mﬁwi / f

frg ‘QT\‘{{\@\ DRIy

e s et e \% P ~ St s
P Ly pw{, o y; J;\ f@? FONE fead)) i“af’«?
B \./
SQ‘F"("«Nm fo2. (g;
¢¥,

st
: L—P (fo 3

r'&\)nc.,\mn'\ Pun-Titme 2 0Gin&
oy i&}%’

/ ﬁ&ﬁ\@ \ng o?\\{mlyr\gwf; w&;&k ’&A\&“‘ Be:;_,y%mﬂ M? AR
T — .fm"'“%

S,

r i" ocag Wf’vﬁ Ci{ Fhatut f‘r\ Ui aed (S9

f f gg‘é@;

ff e %‘?‘ﬁ’a 4%:4;%“&‘” ¢ c&{% M\ \g@fmﬂ e WW*‘@W f

enenns e e

i T

7 e [&06 b
Fine g 2106 Vaadl- wiriin At e (806¢
, b

i .

2

E"‘““"“‘Wﬂ ; ;?- ey «»"éf s - ;
) ‘ge g\“g“g] %} é;'» M?,.}E? ﬁ:@ f"‘/ <2 o~ @ o »d h 5& y Q_ 5\@:%&% ! '
-~ . T % e I g
e e T ¢
ey

C’)@ﬁ s“gmi;;;wmw \;\5{‘5 w C,&&&”

:Lw.m;.w

N

¥ T A # w-; ﬂﬂﬂﬂﬂ 'a. "q.v o yg‘” i
I cm\?\m %«g%ﬁ vaaﬁu@w«w b ?ﬁ? o, SoXtevare
S M - -

Lt i

Patent Application Publication Feb. 3,2005 Sheet 21 of 27 US 2005/0026603 A9

Fw;& q@

o e e

140 io.
e %W%Mg “’@m“ 5—;{

é ’ﬂ“mﬁ*ﬁ\ t ﬁ“x ?g gfi‘“ﬁ?ﬁm,

e e e b
e -
R e NP

s O T 2 "
T T i P SR Y
;@ ﬁﬁ‘%&_\ﬁ@ ﬂg”-(u CY\{“‘?}H& \ {Diﬁ.ﬁtﬁ’"r f‘h é?i‘ fkﬁ‘ (%&}ﬂ‘: '%ﬁfk» féﬁi%ﬁ“}%& 5
é . ,:j Y L e o ﬂi/ e e e 2t e AR

@KW u“’%%“ £,

(’w-'mm._«w s T N

e Vo . ey g7 f?‘{?
\“écewm& QJ\\N\&(‘M{L U\gfruc,ﬁcn Saﬁg_

P, - . »§I- — %
oz w '(*
. PN

%é j‘fj }{ﬂ@'f%‘ gjff \’.’j!»\ ﬁ\é\g\'\\l” Y &E‘:‘—:’,’é@kgig}%i %{: :

A Mg Tw&m‘:m B AN Ny oot et 3 At 16742 53 s A5)
S 9
;

/ Mam%@%‘”mﬁ C—?V\@aufw% ot Syﬁ@m Ssfhpre. |

{
i

; A
"*W Fheaa \f*x LA o&wﬁ:‘ @vf i ff e

P A SR i

%‘ﬁ}f\,}pﬁ&gﬁs M‘;ﬂwm@%xﬂ @ ? &%Wﬁ:{k ﬁl » “\M
T, s 50 i b B

o w Q‘QV%W% 2 oM
é :)(H@g\f" {«:’w\% i i%é’i& % i
Db S -}

"""" “"“““”“WMWW e Y 5
%‘;L aﬁ\‘w\g B ;Q{f"‘\r@ pon :a% ““*‘”"JK m.f?x@ L 1 9/C

PR
s, o WA A‘E

;ﬂ?ﬁwgf\”ﬁqs@‘\w{ma Q\é’ﬁ?g‘g“‘&(g«:)\;‘"» a{‘ Q\’Wff\w &S@%@@m Ve 5

D

O

US 2005/0026603 A9

Patent Application Publication Feb. 3, 2005 Sheet 22 of 27

T Crpr } 2001
2@@@&

- e T e, ot »E‘

%I'éiﬁ]

bl
ity eV
ot <ot RN TN R N

F{ A 4
g ~— T
"

E%Qr’wwzéa imﬁéw‘w S Bk
z | 4 Iy -
oo | @,N{j;%c?“}emq \s’\ fa fm%q:; Sm:,mfﬁ |
L 2oue
'é‘i"e EQ W\iﬁ(\‘ff@}'};i
§

“"t'/ .

G pg O
LAY e,

Rt '
% ﬁ*ﬁ?‘**%ﬁ&{&

P

}
‘*«-ww e TP,
Se m‘f‘m i %‘3’\
a0 & 2.

/i*@wﬂm@ doé‘u@
st o A A w . e < — .i\.u.v. Q/ - e
e) B
’?\“ "%& ’qi&?’ o, {“ & "{;{i E"ﬁ 5@“,, «bd
- - 203

Y

réh‘?\é? {; w
e e e o E” P

.
Clavy (\"J(\Hf\i MM tme
AL

{ T"ec ewing o\‘m«mw;:tvxﬂ:;:{ OX — g Q+£/ﬁ
! 208 =

2. .40 "P,{') m‘*f ﬂm wi‘;’ é
200k

e

¥

?z §§

@\SLHQ

“—’-h»‘_-.w»w!

v -
Tﬁ?i}“«{fﬂ% g@:”""J

AP S

FPTJ@&@’fgf"“k@k ai*f(f‘m foate INE

P

,‘?“:’:"'“’”""“"W
i
|
{
H
i
¢
§
et
éﬂ;
ol
“‘“’5
‘:9
S

[Revbi
é QWMM S —
IR SRR S i i e o
& K f%{‘_g WP Py

3
w-m*""‘*"“w ~ rh
mmm@m;a ecutien

g {f"‘w‘-‘ Eraid
s

i o (ot @«%gw@w ., .

Patent Application Publication Feb. 3,2005 Sheet 23 of 27 US 2005/0026603 A9

w“ﬂ . 2loo
%1 ”*@Wij”f 21072

M
Saestinms,

i RS AN i PR Bt —
oG TR TR S T v e s

mm’ﬁmm\j &5@?{% WL \W%@ w?ﬂw&é:mé Emmweg %

g T T N Lt e e st - .
a0 15 3 N TR T g - 4.5
. - ?

SR BT M s

?’@NM@@‘WU‘W gymwK \%mﬁw mjf@ w«f@ S‘emfaﬂJ

wgmmwﬂm..m« s

rpeuFie CYCR ST Ware

j Executine ST
s e T o st TR ST o R BT Q,{ 9 ?
U Nl od g an o TR %‘L% T &
g é{:‘\.\} ﬁgw}ﬁ Fﬁﬁéak £ 3“ : j‘ :;ifﬁ“i i* £ m*“ me:g:} Wg

— NITs)
3 ey -
EN@UE%%%@ g‘mglﬁg %
E e e kT ﬁnmmwmm-.w
| - | 21z

g Vo)

fﬁgm@i‘fam ai\ggg&m\%s; mﬁé“‘»zf‘g“ém% gﬁ‘f*ﬁ

e 22 oatd e o o ey s
\%(

Tz

m@@@u@‘mg Je@miwﬂmﬁ s&%?%“ 5\;%@%

[goftware Updates oo)
o ‘é{ - 2116
s S

ré}c%ww UMMQ S\fﬁwm Coftuare

-~ . - aaiing P e T

+

‘W\ﬁm L"

s

s
AT
o PRSI

a3 g 1 TR A B RO

e A S, 0

4

Frg PR

Patent Application Publication Feb. 3,2005 Sheet 24 of 27 US 2005/0026603 A9

RN

;}: 2112
——— ,mem

Pr%@a_{:mﬁ)\\/g"gaﬁ‘m“; y\‘g'{i"v&«wﬂ &‘e“"f“g

'%Tg*‘g}m Qﬁ@é} 249 g%%%@ Z%;;}

2.‘, S (;3,\ 200
m\«;gq\%ﬁw lecoye *W E‘if‘* ?ff *&Sﬁjﬁj
s 2 do 2
i RoR R RN LT e o ?
/ Vﬁaimm\ {"Q f‘&}a\;@\f“wf S""”f”af\‘i“%@ #MQ}{

N

u.‘-......,_w S———

. 4 2 2024

0{@?&” S et A éf“”a (\/i& 5(" jmf

S v 22024
, mgﬁmg &&*@ef\\f @E?’% ﬁfﬁ“&wiwmfg

Batrm st g AR T S O A TrTm— WMM
N 2302
imzﬁ;\é\ 6. Mmg S&»&@ P&Tax s m é‘w}/

\y 22024

EA g
s e o o] @0 &

\7? ;@g”gm Ve co i ’i‘gdg é@f &, | éfﬁ

ﬁ% o “Tv g‘ﬁ:«”i{fﬁ 20 H C‘Eg

Patent Application Publication Feb. 3,2005 Sheet 25 of 27 US 2005/0026603 A9

i,£§y{w §+Q 2o (’Fw\ 2&}

B -~ B

S e o e o yarn
st g

g T I A D,

?mce’g m% akw@mmes_ M\m&%‘f’mé Sete E 21z

e AW\L& e
2Z%p 0

Omﬁi\z ? £d ¢ gi%’ ﬁgyﬁ“{ﬁfﬁ ,g{";“““mw% Mmt_}}

qum o O o
mxwm% ra u%aﬁfﬁ g o ode

/Se %gaﬂ G@ﬁwa%m‘ u}‘”?mm W;”:m"“f?mﬂfgl

N e AR S

e R

A v ooy 530 e NSO 356 B 5

e o £ e S (s bt A@ B
/) Q‘\?(\Q akf(’%ﬂ{ i!w«% *E%?‘g{ ‘ iﬁﬁ@g %}; ‘\Em;: Xﬁﬁ@@\
” N
j”%m*@%w& e ful ‘ff"t‘“ {f 2202k

\é&m@@fa@m N@mﬁaﬁ%“ﬁ”g ég?ﬁ@?g

(wwi—?;’:fw e L et RN i i L {
o o et

wiend

s

b o) Vo8 0 i 4 0N T T T

zg‘ﬁﬂmﬁ

s) = T e el 7 o

e et e —

\)
s@@%ﬁ;a@ﬁaf@ %@Q Q%Q?;Q:Q iéﬁw ﬁﬁ@g% j
|

t
jﬁ@m‘%‘%@f R &gﬁ@?*m"‘g“amﬁ%é B

DA

SF 2t i e 10T R

¥
%«M
%, N

¢

Mgg iﬂ%ﬁm%s 20 1f (ﬁé’x b

%‘?“»P;x,w

W
%@" 2 A ’:’:} "’FM?
Fie, 272

Patent Application Publication Feb. 3,2005 Sheet 26 of 27 US 2005/0026603 A9

_ v
J %ﬁm g%% 210 (ﬁ% 2)

S e b s

H"“%ﬁ 9&‘?@&\%‘%‘6@4‘,‘: I fwws‘% g;;@jf’f;fq

oy 2

f*«?**

e 5 1 i T 1 Y N AT T RS o i

. 2900
ﬂﬁé@g%’f\ﬁ" e Wwﬁ%%%‘mﬂ E%%)ﬁﬁéﬁ’zy

™ 7. 29004
! L.
@X;":é\“ﬁ‘?"%w”%“em QV'E,QC{; Mj%»g&
ST 24k

;
A S — S pohas s
v

\M\wﬂ

F}‘ng;é A § ﬁ&‘ﬁ%‘ﬁw“’gw B Pre ﬁ&uaﬁfﬁwg@ﬂ gi
s T | 2 L{ﬁ Zé%

A TR oI

I
TS

'&“’é; s 57 :
Ewéﬁ { ’“% w%@i% dwé?fQ@f Ce e Jémcgwj

.

Patent Application Publication Feb. 3,2005 Sheet 27 of 27 US 2005/0026603 A9

2112 \t ’ﬁ‘ﬁ%i“ﬂ j”f"ﬁgﬁ 2010 5%‘”’; 5 m%

£

 S— ?
- o 5
T @ﬁ@'gﬁ;“m c;g‘“fﬁa,wff “W\@\?“ vetlon 2@@ i

e N VAR e oo

= -\g,f a

hﬁi ff»f‘!ffé’i Tponin A6 vicle / 28O R

| y‘%

G St 02
P A
@%‘g&%@%‘”sﬁ LR gf@ﬁ%@ﬁﬁg@ Lo Yick i
g . o v\v —a»«eg‘ e S £ fa N 00T e pemr 3

US 2005/0026603 A9

SYSTEM AND METHOD FOR THE
MANAGEMENT OF WIRELESS
COMMUNICATIONS DEVICE SYSTEM
SOFTWARE DOWNLOADS IN THE FIELD

[0001] This application claims priority to U.S. patent
application Ser. No. 09/927,131, filed on Aug. 10, 2001, and
entitled “System and Method for Executing Wireless Com-
munications Device Dynamic Instruction Sets;” and is
related to U.S. patent application Ser. No. 09/916,900, filed
on Jul. 26, 2001 and entitled “System and Method for Field
Downloading a Wireless Communications Device Software
Code Section,” and Ser. No. 09/9169,460, filed on Jul. 26,
2001, and entitled “System and Method for Compacting
Field Upgradeable Wireless Communication Device Soft-
ware Code Sections,” all of which are incorporated herein by
reference.

BACKGROUND OF THE INVENTION
[0002] 1. Field of the Invention

[0003] This invention generally relates to wireless com-
munications devices and, more particularly, to a system and
method for using dynamic instructions sets to manage a
variety of system software field download management
functions, such as recovery status monitoring, back up,
compaction, and update ordering.

[0004] 2. Description of the Related Art

[0005] 1t is not uncommon to release software updates for
phones that are already in the field. These updates may relate
to problems found in the software once the phones have been
manufactured and distributed to the public. Some updates
may involve the use of new features on the phone, or
services provided by the service provider. Yet other updates
may involve regional problems, or problems associated with
certain carriers. For example, in certain regions the network
layout of carriers may impose airlink interface conditions on
the handset that cause the handset to demonstrate unex-
pected behavior such as improper channel searching,
improper call termination, improper audio, or the like.

[0006] The traditional approach to such updates has been
to recall the wireless communications device, also referred
to herein as a wireless device, phone, telephone, or handset,
to the nearest carrier retail/service outlet, or to the manu-
facturer to process the changes. The costs involved in such
updates are extensive and eat into the bottom line. Further,
the customer is inconvenienced and likely to be irritated.
Often times, the practical solution is to issue the customer
new phones.

[0007] The wireless devices are used in a number of
environments, with different subscriber services, for a num-
ber of different customer applications. Therefore, even if the
software of a wireless device can be upgraded to improve
service, it is unlikely that the upgrade will provide a uniform
improvement for all users.

[0008] 1t would be advantageous if wireless communica-
tions device software could be upgraded cheaply, and with-
out inconvenience to the customer.

[0009] 1t would be advantageous if wireless communica-
tions device software could be upgraded without the cus-
tomer losing the use of their phones for a significant period
of time.

Feb. 3, 2005

[0010] It would be advantageous if wireless communica-
tions device software could be updated with a minimum of
technician service time, or without the need to send the
device into a service facility.

[0011] Tt would be advantageous if the wireless device
system software could be differentiated into code sections,
so that only specific code sections of system software would
need to be replaced, to update the system software. It would
be advantageous if these code sections could be communi-
cated to the wireless device via the airlink.

[0012] 1t would be advantageous if the wireless device
could be operated with dynamically loaded instruction sets
that would aid in the field updating of system software.

[0013] 1t would be advantageous if these dynamic instruc-
tion sets could protect the wireless device from update errors
by monitoring the update status, backing up key code
sections, performing memory compaction, and ordering the
update storage process.

SUMMARY OF THE INVENTION

[0014] Wireless communications device software updates
give customers the best possible product and user experi-
ence. An expensive component of the business involves the
recall of handsets to update the software. These updates may
be necessary to offer the user additional services or to
address problems discovered in the use of the phone after it
has been manufactured. The present invention makes it
possible to practically upgrade handset software in the field,
via the airlink interface. More specifically, the present
invention permits the wireless communication device to
execute dynamic instruction sets. These dynamic instruction
sets permit the wireless device to “intelligently”, or condi-
tionally upgrade the system software and system data.
Further, the dynamic instruction sets permit the wireless
device to determine if the updating process has been suc-
cessfully completed. The dynamic instruction sets permit
key code sections to be stored in case the upgrade section are
found to be non-operational. The dynamic instruction sets
also perform memory compaction and storage ordering.

[0015] Accordingly, a method is provided for managing
system software download operations in a wireless commu-
nications device. The method comprises: executing system
software; launching a run-time engine; processing dynamic
instruction sets; and, in response to processing the dynamic
instruction sets, managing the downloading of system soft-
ware updates received via an airlink interface using man-
agement functions selected from the group including recov-
ery status monitoring, back up, compacting, and update
ordering.

[0016] Details of the above-described recovery status
monitoring, back up, compacting, and update ordering man-
agement functions, and a system for managing system
software download operations in a wireless communications
device are provided below.

BRIEF DESCRIPTION OF THE DRAWING

[0017] FIG. 1 is a schematic block diagram of the overall
wireless device software maintenance system.

[0018] FIG. 2 is a schematic block diagram of the soft-
ware maintenance system, highlighting the installation of
instruction sets via the airlink interface.

US 2005/0026603 A9

[0019] FIG. 3 is a schematic block diagram illustrating the
present invention system for executing dynamic instruction
sets in a wireless communications device.

[0020] FIG. 4 is a schematic block diagram of the wireless
device memory.
[0021] FIG. 5 is a table representing the code section

address table of FIG. 3.

[0022] FIG. 6 is a detailed depiction of symbol library one
of FIG. 3, with symbols.

[0023] FIG. 7 is a table representing the symbol offset
address table of FIG. 3.

[0024] FIGS. 8a and 8b are depictions of the operation
code (op-code) being accessed by the run-time engine.

[0025] FIG. 9 is a schematic block diagram including
features of FIGS. 1-8b presented for the purpose of illus-
trating the present invention system for managing system
software download operations in a wireless communications
device.

[0026] FIG. 10 is the schematic block diagram of the
system of FIG. 9 featuring the dynamic instruction set
recovery status monitoring manager aspect of the dynamic
instruction sets.

[0027] FIG. 11 is a representation depicting an exemplary
recovery status table of FIG. 9.

[0028] FIG. 12 is the schematic block diagram of the
system of FIG. 9 featuring the dynamic instruction set back
up manager aspect of the dynamic instruction sets.

[0029] FIG. 13 is the schematic block diagram of the
system of FIG. 9 featuring the dynamic instruction com-
paction manager aspect of the dynamic instruction sets.

[0030] FIG. 14 is the schematic block diagram of the
system of FIG. 9 featuring the dynamic instruction set
update ordering manager aspect of the dynamic instruction
sets.

[0031] FIGS. 154 and 15b are flowcharts illustrating the
present invention method for executing dynamic instruction
sets in a wireless communications device.

[0032] FIG. 16 is a flowchart illustrating an exemplary
dynamic instruction set operation.

[0033] FIG. 17 is a flowchart illustrating another exem-
plary dynamic instruction set operation.

[0034] FIG. 18 is a flowchart illustrating a third exem-
plary dynamic instruction set operation.

[0035] FIG. 19 is a flowchart illustrating a fourth exem-
plary dynamic instruction set operation.

[0036] FIG. 20 is a flowchart illustrating a fifth exemplary
dynamic instruction set operation.

[0037] FIG. 21 is a flowchart illustrating the present
invention method for managing system software download
operations in a wireless communications device.

[0038] FIG. 22 is a flowchart illustrating additional details
of FIG. 21 that highlight the recovery status monitoring
aspect of the invention.

Feb. 3, 2005

[0039] FIG. 23 is a flowchart illustrating additional details
of FIG. 21 that highlight the back up aspect of the invention.

[0040] FIG. 24 is a flowchart illustrating additional details
of FIG. 21 that highlight the compaction aspect of the
invention.

[0041] FIG. 25 is a flowchart illustrating additional details
of FIG. 21 that highlight the update ordering aspect of the
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0042] Some portions of the detailed descriptions that
follow are presented in terms of procedures, steps, logic
blocks, codes, processing, and other symbolic representa-
tions of operations on data bits within a wireless device
microprocessor or memory. These descriptions and repre-
sentations are the means used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. A procedure, micro-
processor executed step, application, logic block, process,
etc., is here, and generally, conceived to be a self-consistent
sequence of steps or instructions leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated in a microprocessor based wire-
less device. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers, or
the like. Where physical devices, such as a memory are
mentioned, they are connected to other physical devices
through a bus or other electrical connection. These physical
devices can be considered to interact with logical processes
or applications and, therefore, are “connected” to logical
operations. For example, a memory can store or access code
to further a logical operation, or an application can call a
code section from memory for execution.

[0043] It should be borne in mind, however, that all of
these and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated other-
wise as apparent from the following discussions, it is appre-
ciated that throughout the present invention, discussions
utilizing terms such as “processing” or “connecting” or
“translating” or “displaying” or “prompting” or “determin-
ing” or “displaying” or “recognizing” or the like, refer to the
action and processes of in a wireless device microprocessor
system that manipulates and transforms data represented as
physical (electronic) quantities within the computer sys-
tem’s registers and memories into other data similarly
represented as physical quantities within the wireless device
memories or registers or other such information storage,
transmission or display devices.

[0044] FIG. 1 is a schematic block diagram of the overall
wireless device software maintenance system 100. The
present invention system software organization is presented
in detail below, following a general overview of the software
maintenance system 100. The general system 100 describes
a process of delivering system software updates and instruc-
tion sets (programs), and installing the delivered software in
a wireless device. System software updates and patch man-

US 2005/0026603 A9

ager run time instructions (PMRTI), that are more generally
known as instruction sets or dynamic instruction sets, are
created by the manufacturer of the handsets. The system
software is organized into symbol libraries. The symbol
libraries are arranged into code sections. When symbol
libraries are to be updated, the software update 102 is
transported as one or more code sections. The software
update is broadcast to wireless devices in the field, of which
wireless communications device 104 is representative, or
transmitted in separate communications from a base station
106 using well known, conventional air, data or message
transport protocols. The invention is not limited to any
particular transportation format, as the wireless communi-
cations device can be easily modified to process any avail-
able over-the-air transport protocol for the purpose of
receiving system software and PMRTI updates.

[0045] The system software can be viewed as a collection
of different subsystems. Code objects can be tightly coupled
into one of these abstract subsystems and the resulting
collection can be labeled as a symbol library. This provides
a logical breakdown of the code base and software patches
and fixes can be associated with one of these symbol
libraries. In most cases, a single update is associated with
one, or at most, two symbol libraries. The rest of the code
base, the other symbol libraries, remains unchanged.

[0046] The notion of symbol libraries provides a mecha-
nism to deal with code and constants. The read-write (RW)
data, on the other hand, fits into a unique individual RW
library that contains RAM based data for all libraries.

[0047] Once received by the wireless device 104, the
transported code section must be processed. This wireless
device over-writes a specific code section of nonvolatile
memory 108. The nonvolatile memory 108 includes a file
system section (FSS) 110 and a code storage section 112.
The code section is typically compressed before transport in
order to minimize occupancy in the FSS 110. Often the
updated code section will be accompanied by its RW data,
which is another kind of symbol library that contains all the
RW data for each symbol library. Although loaded in ran-
dom access volatile read-write memory 114 when the system
software is executing, the RW data always needs to be stored
in the nonvolatile memory 108, so it can be loaded into
random access volatile read-write memory 114 each time the
wireless device is reset. This includes the first time RW data
is loaded into random access volatile read-write memory. As
explained in more detail below, the RW data is typically
arranged with a patch manager code section.

[0048] The system 100 includes the concept of virtual
tables. Using such tables, symbol libraries in one code
section can be patched (replaced), without breaking (replac-
ing) other parts of the system software (other code sections).
Virtual tables execute from random access volatile read-
write memory 114 for efficiency purposes. A code section
address table and symbol offset address table are virtual
tables.

[0049] The updated code sections are received by the
wireless device 104 and stored in the FSS 110. A wireless
device user interface (UT) will typically notify the user that
new software is available. In response to UI prompts the user
acknowledges the notification and signals the patching or
updating operation. Alternately, the updating operation is
performed automatically. The wireless device may be unable

Feb. 3, 2005

to perform standard communication tasks as the updating
process is performed. The patch manager code section
includes a non-volatile read-write driver symbol library that
is also loaded into random access volatile read-write
memory 114. The non-volatile read-write driver symbol
library causes code sections to be overwritten with updated
code sections. The patch manager code section includes the
read-write data, code section address table, and symbol
offset address table, as well a symbol accessor code and the
symbol accessor code address (discussed below). Portions of
this data are invalid when updated code sections are intro-
duced, and an updated patch manager code sections includes
read-write data, a code section address table, and a symbol
offset address table valid for the updated code sections. Once
the updated code sections are loaded into the code storage
section 112, the wireless device is reset. Following the reset
operation, the wireless device can execute the updated
system software. It should also be understood that the patch
manager code section may include other symbol libraries
that have not been discussed above. These other symbol
libraries need not be loaded into read-write volatile memory
114.

[0050] FIG. 2 is a schematic block diagram of the soft-
ware maintenance system 100, highlighting the installation
of instruction sets via the airlink interface. In addition to
updating system software code sections, the maintenance
system 100 can download and install dynamic instructions
sets, programs, or patch manager instruction sets (PMIS),
referred to herein as patch manager run time instructions
(PMRTTI). The PMRTI code section 200 is transported to the
wireless device 104 in the same manner as the above-
described system software code sections. PMRTI code sec-
tions are initially stored in the FSS 110. A PMRTI code
section is typically a binary file that may be visualized as
compiled instructions to the handset. A PMRTI code section
is comprehensive enough to provide for the performance of
basic mathematical operations and the performance of con-
ditionally executed operations. For example, an RF calibra-
tion PMRTT could perform the following operations:

[0051] IF RF CAL ITEM IS LESS THAN X
[0052] EXECUTE INSTRUCTION

[0053] ELSE

[0054] EXECUTE INSTRUCTION

[0055] A PMRTI can support basic mathematical opera-
tions, such as: addition, subtraction, multiplication, and
division. As with the system software code sections, the
PMRTI code section may be loaded in response to Ul
prompts, and the wireless device must be reset after the
PMRTI is loaded into code storage section 112. Then the
PMRTT section can be executed. If the PMRTI code section
is associated with any virtual tables or read-write data, an
updated patch manager code section will be transported with
the PMRTT for installation in the code storage section 112.
Alternately, the PMRTTI can be kept and processed from the
FSS 110. After the handset 104 has executed all the instruc-
tions in the PMRTI section, the PMRTI section can be
deleted from the FSS 110. Alternately, the PMRTI is main-
tained for future operations. For example, the PMRTI may
be executed every time the wireless device is energized.

[0056] PMRTI is a very powerful runtime instruction
engine. The handset can execute any instruction delivered to

US 2005/0026603 A9

it through the PMRTI environment. This mechanism may be
used to support RF calibrations. More generally, PMRTI can
be used to remote debug wireless device software when
software problems are recognized by the manufacturer or
service provider, typically as the result of user complaints.
PMRTI can also record data needed to diagnose software
problems. PMRTI can launch newly downloaded system
applications for data analysis, debugging, and fixes. PMRTI
can provide RW data based updates for analysis and possible
short term fix to a problem in lieu of an updated system
software code section. PMRTI can provide memory com-
paction algorithms for use by the wireless device.

[0057] In some aspects of the invention, the organization
of the system software into symbol libraries may impact the
size of the volatile memory 114 and nonvolatile memory 108
required for execution. This is due to the fact that the code
sections are typically larger than the symbol libraries
arranged in the code sections. These larger code sections
exist to accommodate updated code sections. Organizing the
system software as a collection of libraries impacts the
nonvolatile memory size requirement. For the same code
size, the amount of nonvolatile memory used will be higher
due to the fact that code sections can be sized to be larger
than the symbol libraries arranged within.

[0058] Once software updates have been delivered to the
wireless device, the software maintenance system 100 sup-
ports memory compaction. Memory compaction is similar to
disk de-fragmentation applications in desktop computers.
The compaction mechanism ensures that memory is opti-
mally used and is well balanced for future code section
updates, where the size of the updated code sections are
unpredictable. The system 100 analyzes the code storage
section as it is being patched (updated). The system 100
attempts to fit updated code sections into the memory space
occupied by the code section being replaced. If the updated
code section is larger than the code section being replaced,
the system 100 compacts the code sections in memory 112.
Alternately, the compaction can be calculated by the manu-
facturer or service provider, and compaction instructions can
be transported to the wireless device 104.

[0059] Compaction can be a time consuming process
owing to the complexity of the algorithm and also the vast
volume of data movement. The compaction algorithm pre-
dicts feasibility before it begins any processing. UI prompts
can be used to apply for permission from the user before the
compaction is attempted.

[0060] In some aspects of the invention, all the system
software code sections can be updated simultaneously. A
complete system software upgrade, however, would require
a larger FSS 110.

[0061] FIG. 3 is a schematic block diagram illustrating the
present invention dynamic instruction set execution in a
wireless communications device. The system 300 comprises
a code storage section 112 in memory 108 including execut-
able wireless device system software differentiated into a
plurality of current code sections. Code section one (302),
code section two (304), code section n (306), and a patch
manager code section 308 are shown. However, the inven-
tion is not limited to any particular number of code sections.
Further, the system 300 further comprises a first plurality of
symbol libraries arranged into the second plurality of code
sections. Shown are symbol library one (310) arranged in

Feb. 3, 2005

code section one (302), symbol libraries two (312) and three
(314) arranged in code section two (304), and symbol library
m (316) arranged in code section n (306). Each library
comprises symbols having related functionality. For
example, symbol library one (310) may be involved in the
operation of the wireless device liquid crystal display
(LCD). Then, the symbols would be associated with display
functions. As explained in detail below, additional symbol
libraries are arranged in the patch manger code section 308.

[0062] FIG. 4 is a schematic block diagram of the wireless
device memory. As shown, the memory is the code storage
section 112 of FIG. 1. The memory is a writeable, nonvola-
tile memory, such as Flash memory. It should be understood
that the code sections need not necessarily be stored in the
same memory as the FSS 110. It should also be understood
that the present invention system software structure could be
enabled with code sections stored in a plurality of cooper-
ating memories. The code storage section 112 includes a
second plurality of contiguously addressed memory blocks,
where each memory block stores a corresponding code
section from the second plurality of code sections. Thus,
code section one (302) is stored in a first memory block 400,
code section two (304) in the second memory block 402,
code section n (306) in the nth memory block 404, and the
patch manager code section (308) in the pth memory block
406.

[0063] Contrasting FIGS. 3 and 4, the start of each code
section is stored at corresponding start addresses in memory,
and symbol libraries are arranged to start at the start of code
sections. That is, each symbol library begins at a first address
and runs through a range of addresses in sequence from the
first address. For example, code section one (302) starts at
the first start address 408 (marked with “S) in code storage
section memory 112. In FIG. 3, symbol library one (310)
starts at the start 318 of the first code section. Likewise code
section two (304) starts at a second start address 410 (FIG.
4), and symbol library two starts at the start 320 of code
section two (FIG. 3). Code section n (306) starts at a third
start address 412 in code storage section memory 112 (FIG.
4), and symbol library m (316) starts at the start of code
section n 322 (FIG. 3). The patch manager code section
starts at pth start address 414 in code storage section
memory 112, and the first symbol library in the patch
manager code section 308 starts at the start 324 of the patch
manager code section. Thus, symbol library one (310) is
ultimately stored in the first memory block 400. If a code
section includes a plurality of symbol libraries, such as code
section two (304), the plurality of symbol libraries are stored
in the corresponding memory block, in this case the second
memory block 402.

[0064] InFIG. 3, the system 300 further comprises a code
section address table 326 as a type of symbol included in a
symbol library arranged in the patch manager code section
308. The code section address table cross-references code
section identifiers with corresponding code section start
addresses in memory.

[0065] FIG. 5 is a table representing the code section
address table 326 of FIG. 3. The code section address table
326 is consulted to find the code section start address for a
symbol library. For example, the system 300 seeks code
section one when a symbol in symbol library one is required
for execution. To find the start address of code section one,

US 2005/0026603 A9

and therefore locate the symbol in symbol library one, the
code section address table 326 is consulted. The arrange-
ment of symbol libraries in code sections, and the tracking
of code sections with a table permits the code sections to be
moved or expanded. The expansion or movement operations
may be needed to install upgraded code sections (with
upgraded symbol libraries).

[0066] Returning to FIG. 3, it should be noted that not
every symbol library necessarily starts at the start of a code
section. As shown, symbol library three (314) is arranged in
code section two (304), but does not start of the code section
start address 320. Thus, if a symbol in symbol library three
(314) is required for execution, the system 300 consults the
code section address table 326 for the start address of code
section two (304). As explained below, a symbol offset
address table permits the symbols in symbol library three
(314) to be located. It does not matter that the symbols are
spread across multiple libraries, as long as they are retained
with the same code section.

[0067] As noted above, each symbol library includes
functionally related symbols. A symbol is a programmer-
defined name for locating and using a routine body, variable,
or data structure. Thus, a symbol can be an address or a
value. Symbols can be internal or external. Internal symbols
are not visible beyond the scope of the current code section.
More specifically, they are not sought by other symbol
libraries, in other code sections. External symbols are used
and invoked across code sections and are sought by libraries
in different code sections. The symbol offset address table
typically includes a list of all external symbols.

[0068] For example, symbol library one (310) may gen-
erate characters on a wireless device display. Symbols in this
library would, in turn, generate telephone numbers, names,
the time, or other display features. Each feature is generated
with routines, referred to herein as a symbol. For example,
one symbol in symbol library one (310) generates telephone
numbers on the display. This symbol is represented by an
“X”, and is external. When the wireless device receives a
phone call and the caller ID service is activated, the system
must execute the “X*” symbol to generate the number on the
display. Therefore, the system must locate the “X” symbol.

[0069] FIG. 6 is a detailed depiction of symbol library one
(310) of FIG. 3, with symbols. Symbols are arranged to be
offset from respective code section start addresses. In many
circumstances, the start of the symbol library is the start of
a code section, but this is not true if a code section includes
more than one symbol library. Symbol library one (310)
starts at the start of code section one (see FIG. 3). As shown
in FIG. 6, the “X” symbol is located at an offset of (03) from
the start of the symbol library and the “Y” symbol is located
at an offset of (15). The symbol offset addresses are stored
in a symbol offset address table 328 in the patch manager
code section (see FIG. 3).

[0070] FIG. 7 is a table representing the symbol offset
address table 328 of FIG. 3. The symbol offset address table
328 cross-references symbol identifiers with corresponding
offset addresses, and with corresponding code section iden-
tifiers in memory. Thus, when the system seeks to execute
the “X” symbol in symbol library one, the symbol offset
address table 328 is consulted to locate the exact address of
the symbol, with respect to the code section in which it is
arranged.

Feb. 3, 2005

[0071] Returning to FIG. 3, the first plurality of symbol
libraries typically all include read-write data that must be
consulted or set in the execution of these symbol libraries.
For example, a symbol library may include an operation
dependent upon a conditional statement. The read-write data
section is consulted to determine the status required to
complete the conditional statement. The present invention
groups the read-write data from all the symbol libraries into
a shared read-write section. In some aspects of the invention,
the read-write data 330 is arranged in the patch manager
code section 308. Alternately (not shown), the read-write
data can be arranged in a different code section, code section
n (306), for example.

[0072] The first plurality of symbol libraries also includes
symbol accessor code arranged in a code section to calculate
the address of a sought symbol. The symbol accessor code
can be arranged and stored at an address in a separate code
section, code section two (304), for example. However, as
shown, the symbol accessor code 332 is arranged and stored
at an address in the patch manager code section 308. The
system 300 further comprises a first location for storage of
the symbol accessor code address. The first location can be
a code section in the code storage section 112, or in a
separate memory section of the wireless device (not shown).
The first location can also be arranged in the same code
section as the read-write data. As shown, the first location
334 is stored in the patch manager code section 308 with the
read-write data 330, the symbol offset address table 328, the
code section address table 326, and the symbol accessor
code 332, and the patch library (patch symbol library) 336.

[0073] The symbol accessor code accesses the code sec-
tion address table and symbol offset address tables to cal-
culate, or find the address of a sought symbol in memory.
That is, the symbol accessor code calculates the address of
the sought symbol using a corresponding symbol identifier
and a corresponding code section identifier. For example, if
the “X* symbol in symbol library one is sought, the symbol
accessor is invoked to seek the symbol identifier (symbol
ID) “N__17, corresponding to the “X” symbol (see FIG. 7).
The symbol accessor code consults the symbol offset
address table to determine that the “X__1” symbol identifier
has an offset of (03) from the start of code section one (see
FIG. 6). The symbol accessor code is invoked to seek the
code section identifier “CS_ 17, corresponding to code sec-
tion one. The symbol accessor code consults the code
section address table to determine the start address associ-
ated with code section identifier (code section ID) “CS__1”.
In this manner, the symbol accessor code determines that the
symbol identifier “X_ 17 is offset (03) from the address of
(00100), or is located at address (00103).

[0074] The symbol “X” is a reserved name since it is a part
of the actual code. In other words, it has an absolute data
associated with it. The data may be an address or a value.
The symbol identifier is an alias created to track the symbol.
The symbol offset address table and the code section address
table both work with identifiers to avoid confusion with
reserved symbol and code section names. It is also possible
that the same symbol name is used across many symbol
libraries. The use of identifiers prevents confusion between
these symbols.

[0075] Returning to FIG. 1, the system 300 further com-
prises a read-write volatile memory 114, typically random

US 2005/0026603 A9

access memory (RAM). The read-write data 330, code
section address table 326, the symbol offset address table
328, the symbol accessor code 332, and the symbol accessor
code address 334 are loaded into the read-write volatile
memory 114 from the patch manager code section for access
during execution of the system software. As is well known,
the access times for code stored in RAM is significantly less
than the access to a nonvolatile memory such as Flash.

[0076] Returning to FIG. 3, it can be noted that the symbol
libraries need not necessarily fill the code sections into
which they are arranged, although the memory blocks are
sized to exactly accommodate the corresponding code sec-
tions stored within. Alternately stated, each of the second
plurality of code sections has a size in bytes that accommo-
dates the arranged symbol libraries, and each of the con-
tiguously addressed memory blocks have a size in bytes that
accommodates corresponding code sections. For example,
code section one (302) may be a 100 byte section to
accommodate a symbol library having a length of 100 bytes.
The first memory block would be 100 bytes to match the
byte size of code section one. However, the symbol library
loaded into code section 1 may be smaller than 100 bytes. As
shown in FIG. 3, code section one (302) has an unused
section 340, as symbol library one (310) is less than 100
bytes. Thus, each of the second plurality of code sections
may have a size larger than the size needed to accommodate
the arranged symbol libraries. By “oversizing” the code
sections, larger updated symbol libraries can be accommo-
dated.

[0077] Contiguously addressed memory blocks refers to
partitioning the physical memory space into logical blocks
of variable size. Code sections and memory blocks are terms
that are essentially interchangeable when the code section is
stored in memory. The concept of a code section is used to
identify a section of code that is perhaps larger than the
symbol library, or the collection of symbol libraries in the
code section as it is moved and manipulated.

[0078] As scen in FIG. 3, the system 300 includes a patch
symbol library, which will be referred to herein as patch
library 336, to arrange new code sections in the code storage
section with the current code sections. The arrangement of
new code sections with current code sections in the code
storage section forms updated executable system software.
The patch manager 336 not only arranges new code sections
in with the current code sections, it also replaces code
sections with updated code sections.

[0079] Returning to FIG. 4, the file system section 110 of
memory 108 receives new code sections, such as new code
section 450 and updated patch manager code section 452.
The file system section also receives a first patch manager
run time instruction (PMRTT) 454 including instructions for
arranging the new code sections with the current code
sections. As seen in FIG. 1, an airlink interface 150 receives
new, or updated code sections, as well as the first PMRTI.
Although the airlink interface 150 is being represented by an
antenna, it should be understood that the airlink interface
would also include an RF transceiver, baseband circuitry,
and demodulation circuitry (not shown). The file system
section 110 stores the new code sections received via the
airlink interface 150. The patch library 336, executing from
read-write volatile memory 114, replaces a first code section
in the code storage section, code section n (306) for

Feb. 3, 2005

example, with the new, or updated code section 450, in
response to the first PMRTI 454. Typically, the patch man-
ager code section 308 is replaced with the updated patch
manager code section 452. When code sections are being
replaced, the patch library 336 over-writes the first code
section, code section n (306) for example, in the code
storage section 112 with the updated code sections, code
section 450 for example, in the file system section 110. In the
extreme case, all the code sections in code storage section
112 are replaced with updated code sections. That is, the FSS
110 receives a second plurality of updated code sections (not
shown), and the patch library 336 replaces the second
plurality of code sections in the code storage section 112
with the second plurality of updated code sections. Of
course, the FSS 110 must be large enough to accommodate
the second plurality of updated code sections received via
the airlink interface.

[0080] As noted above, the updated code sections being
received may include read-write data code sections, code
section address table code sections, symbol libraries, symbol
offset address table code sections, symbol accessor code
sections, or a code section with a new patch library. All these
code sections, with their associated symbol libraries and
symbols, may be stored as distinct and independent code
sections. Then each of these code sections would be replaced
with a unique updated code section. That is, an updated
read-write code section would be received and would
replace the read-write code section in the code storage
section. An updated code section address table code section
would be received and would replace the code section
address table code section in the code storage section. An
updated symbol offset address table code section would be
received and would replace the symbol offset address table
code section in the code storage section. An updated symbol
accessor code section would be received and would replace
the symbol accessor code section in the code storage section.
Likewise, an updated patch manager code section (with a
patch library) would be received and would replace the
patch manager code section in the code storage section.

[0081] However, the above-mentioned code sections are
typically bundled together in the patch manager code sec-
tion. Thus, the read-write code section in the code storage
section is replaced with the updated read-write code section
from the file system section 110 when the patch manager
code section 308 is replaced with the updated patch manger
code section 450. Likewise, the code section address table,
the symbol offset address table, the symbol accessor code
sections, as well as the patch library are replaced when the
updated patch manager code section 450 is installed. The
arrangement of the new read-write data, the new code
section address table, the new symbol offset address table,
the new symbol accessor code, and the new patch library as
the updated patch manager code section 450, together with
the current code sections in the code storage section, forms
updated executable system software.

[0082] When the file system section 110 receives an
updated symbol accessor code address, the patch manager
replaces the symbol accessor code address in the first
location in memory with updated symbol accessor code
address. As noted above, the first location in memory 334 is
typically in the patch manager code section (see FIG. 3).

[0083] As seen in FIG. 3, the patch library 308 is also
includes a compactor, or a compactor symbol library 342.

US 2005/0026603 A9

The compactor 342 can also be enabled as a distinct and
independent code section, however as noted above, it is
useful and efficient to bundle the functions associated with
system software upgrades into a single patch manager code
section. Generally, the compactor 342 can be said to resize
code sections, so that new sections can be arranged with
current code sections in the code storage section 112.

[0084] With the organization, downloading, and compac-
tion aspects of the invention now established, the following
discussion will center on the wireless communications
device dynamic instruction set execution system 300. The
system 300 comprises executable system software and sys-
tem data differentiated into code sections, as discussed in
great detail, above. Further, the system 300 comprises
dynamic instruction sets for operating on the system data
and the system software, and controlling the execution of the
system software. As seen in FIG. 4, a dynamic instruction
set 470 is organized into the first PMRTI 454. As seen in
FIG. 3, the system also comprises a run-time engine for
processing the dynamic instruction sets, enabled as run-time
library 370. As with the compactor library 342 and patch
library 336 mentioned above, the run-time library 370 is
typically located in the patch manager code section 308.
However, the run-time library 370 could alternately be
located in another code section, for example the first code
section 304.

[0085] The dynamic instruction sets are a single, or mul-
tiple sets of instructions that include conditional operation
code, and generally include data items. The run-time engine
reads the operation code and determines what operations
need to be performed. Operation code can be conditional,
mathematical, procedural, or logical. The run-time engine,
or run-time library 370 processes the dynamic instruction
sets to perform operations such as mathematical or logical
operations. That is, the run-time engine reads the dynamic
instruction set 470 and performs a sequence of operations in
response to the operation code. Although the dynamic
instruction sets are not limited to any particular language,
the operation code is typically a form of machine code, as
the wireless device memory is limited and execution speed
is important. The operation code is considered conditional in
that it analyzes a data item and makes a decision as a result
of the analysis. The run-time engine may also determine that
an operation be performed on data before it is analyzed.

[0086] For example, the operation code may specify that
a data item from a wireless device memory be compared to
a predetermined value. If the data item is less than the
predetermined value, the data item is left alone, and if the
data item is greater than the predetermined value, it is
replaced with the predetermined value. Alternately, the
operation code may add a second predetermined value to a
data item from the wireless device memory, before the
above-mentioned comparison operation is performed.

[0087] As mentioned above, the file system section non-
volatile memory 110 receives the dynamic instruction sets
through an interface such as the airlink 150. As shown in
FIG. 1, the interface can also be radio frequency (RF)
hardline 160. Then, the PMRTI can be received by the FSS
110 without the system software being operational, such as
in a factory calibration environment. The PMRTI can also be
received via a logic port interface 162 or an installable
memory module 164. The memory module 164 can be

Feb. 3, 2005

installed in the wireless device 104 at initial calibration,
installed in the field, or installed during factory recalibration.
Although not specially shown, the PMRTI can be received
via an infrared or Bluetooth interfaces.

[0088] FIGS. 8a and 8b are depictions of instructions
being accessed by the run-time engine 370. Shown in FIG.
8a is a first instruction 800, a second instruction 802, and a
jth instruction 804, however, the dynamic instruction set is
not limited to any particular number of instructions. The
length of the operation code in each instruction is fixed. The
run-time engine 370 captures the length of the instruction, as
a measure of bytes or bits, determine if the instruction
includes data items. The remaining length of the instruction,
after the operation code is subtracted, includes the data
items. The run-time engine extracts the data items from the
instruction. As shown, the length 806 of the first instruction
800 is measured and data items 808 are extracted. Note that
not all instructions necessary include data items to be
extracted. The run-time engine 370 uses the extracted data
808 in performing the sequence of operations responsive to
the operation code 810 in instruction 800.

[0089] FIG. 8b is a more detailed depiction of the first
instruction 800 of FIG. 8a. Using the first instruction 800 as
an example, the instruction includes operation code 810 and
data 808. The instruction, and more specifically, the data
item section 808 includes symbol identifiers, which act as a
link to symbols in the wireless device code sections. As
explained in detail above, the symbol identifiers are used
with the code section address table 326 (see FIG. 5) and the
symbol offset address table 328 (see FIG. 7) to locate the
symbol corresponding to the symbol identifier. As shown, a
symbol identifier “X_1” is shown in the first instruction
800. The symbol offset address table 328 locates the corre-
sponding symbol in a code section with the “CS__1” iden-
tifier and an offset of “3”. The code section address table 326
gives the start address of code section one (302). In this
manner, the symbol “X” is found (see FIG. 6).

[0090] After the run-time engine locates symbols corre-
sponding to the received symbol identifiers using the code
section address table and symbol offset address table, it
extracts data when the located symbols are data items. For
example, if the symbol “X” is a data item in symbol library
one (310), the run-time engine extracts it. Alternately, the
“X” symbol can be operation code, and the run-time engine
executes the symbol “X” when it is located.

[0091] PMRTI can be used to update system data, or
system data items. In some aspects of the invention system
data is stored in a code section in the file system section 110,
code section 472 for example, see FIG. 4. The run-time
engine accesses system data from code section 472 and
analyzes the system data. The run-time engine processes the
operation code of the dynamic instruction sets to perform
mathematical or logical operation on data items, as
described above. After the operation, the run-time engine
processes the instructions to create updated system data.
Note that the updated system data may include unchanged
data items in some circumstances. The system data in the
second code section 472 is replaced with the updated system
data in response to the operation code. Thus, by the pro-
cessing of instruction by the run-time engine, the system
software is controlled to execute using the updated system
data in code section 472. In this manner, specifically targeted

US 2005/0026603 A9

symbols in the system software can be updated, without
replacing entire code sections. By the same process, the
system data can be replaced in a code section in the code
storage section 112. For example, the system data can be
stored in the third code section 344, and the run-time engine
can replace the system data in the third code section with
updated system data in response to the operation code.

[0092] PMRTI can also be used to update data items in
volatile memory 114. As an example, the volatile memory
114 accept read-write data 330, see FIG. 1. The read-write
data can be from one, or from a plurality of code sections in
the code storage section 112 and/or the FSS 110. The
run-time engine accesses the read-write data, analyzes the
read-write data 330, creates updated read-write data, and
replaces the read-write data 330 in the volatile memory 114
with the updated read-write data in response to the operation
code. Then, the system software is controlled to execute
using the updated read-write data in volatile memory 114.

[0093] In some aspects of the invention, the run-time
engine monitors the execution of the system software.
Performance monitoring is broadly defined to include a great
number of wireless device activities. For example, data such
as channel parameters, channel characteristics, system stack,
error conditions, or a record of data items in RAM through
a sequence of operations leading to a specific failure con-
dition or reduced performance condition can be collected. It
is also possible to use dynamic instructions sets to analyze
collected performance data, provide updated data variants,
and recapture data to study possible solutions to the prob-
lem. Temporary fixes can also be provisioned using PMRTI
processes.

[0094] More specifically, the run-time engine collects per-
formance data, and stores the performance data in the file
system section in response to the operation code. Then, the
system software is controlled to execute by collecting the
performance data for evaluation of the system software.
Evaluation can occur as a form of analysis performed by
dynamic instruction set operation code, or it can be per-
formed outside the wireless device. In some aspects of the
invention, the run-time engine accesses the performance
data that has been collected from the file system section and
transmits the performance data via an airlink interface in
response to the operation code. Collecting performance data
from wireless devices in the field permits a manufacturer to
thoroughly analyze problems, either locally or globally,
without recalling the devices.

[0095] In some aspects of the invention, file system sec-
tion 110 receives a patch manager run time instruction
including a new code section. For example, a new code
section 474 is shown in FIG. 4. Alternately, the new code
section can be independent of the PMRTI, such as new code
section n (450). For example, the new code section n (450)
may have been received in earlier airlink communications,
or have been installed during factory calibration. The run-
time engine adds the new code section 474 (450) to the code
storage section in response to the operation code. In some
aspects of the invention, the new code section is added to an
unused block in the code storage section 112. Alternately, a
compaction operation is required. Then, the system software
is controlled to execute using the new code section 474
(450). In other aspects of the invention, the PMRTI 454
includes an updated code section 474. Alternately, the new

Feb. 3, 2005

code section 450 is an updated code section independent of
the PMRTI. The run-time engine replaces a code section in
the code storage section, code section two (304) for an
example, with the updated code section 474 (450) in
response to the operation code. The system software is
controlled to execute using the updated code section 474
(450). In some aspects of the invention a compaction opera-
tion is required to accommodate the updated code section.
Alternately, the updated code section is added to an unused
or vacant section of the code storage section.

[0096] As explained above, the addition of a new code
section or the updating of a code section typically requires
the generation of a new code section address table, as these
operation involve either new and/or changed code section
start addresses. Further, a compaction operation also
requires a new code section address table. The compaction
operations may be a result of the operation of the compactor
342, explained above, or the result of PMRTI instructions
that supply details as to how the compaction is to occur.
When the PMRTT includes downloading and compaction
instructions, the PMRTI typically also includes a new code
section address table that becomes valid after the download-
ing and compaction operations have been completed.

[0097] FIG. 9 is a schematic block diagram including
features of FIGS. 1-8b presented for the purpose of illus-
trating the present invention system for managing system
software download operations in a wireless communications
device. The system 900 comprises an airlink interface 902,
equivalent the airlink interface 150 of FIG. 1, and execut-
able system software and system data differentiated into
code sections stored in nonvolatile memory permanent stor-
age 904, equivalent to memory 108 of FIG. 1. The non-
volatile permanent storage 904 includes a file system section
906 and code storage section 908.

[0098] Dynamic instruction sets 910 for managing the
downloading of system software updates are received via the
airlink interface 902. The dynamic instruction sets 910, as
well as new code sections 912, are part of patch manager run
time instructions 914. Typically, the dynamic instruction sets
910 are stored in the file system section 906. A run-time
engine, or run-time library 916 processes the dynamic
instruction sets 910. As mentioned above, the run-time
library 916 is typically part of the patch manager code
section 918. The executable system software and system
data (code sections in permanent memory 904) are updated
in response to processing the dynamic instruction sets 910.
The dynamic instruction sets 910 include functional man-
agers selected from the group including recovery status
monitoring, back up, compacting, and update ordering.

[0099] The system 900 further comprises a recovery status
table 920 cross-referencing new code section identifiers with
their update status. The recovery status table 920 is shown
as a separate code section in the file system section 906. In
some aspects of the invention the recovery status table 920
is loaded into volatile memory 922 when the system 900 is
turned on. The table 920 is updated in volatile memory 922
and restored in permanent memory 904 when the system is
turned off.

[0100] FIG. 10 is the schematic block diagram of the
system 900 of FIG. 9 featuring the dynamic instruction set
recovery status monitoring manager 1000 aspect of the
dynamic instruction sets. The dynamic instruction set recov-

US 2005/0026603 A9

ery status monitoring manager, hereafter referred to as the
recovery status monitoring manager 1000, reads the recov-
ery status table 920 (see dotted arrow “1”) in response to
rebooting the wireless communications device, to determine
if new code sections have been stored in permanent storage.

[0101] FIG. 11 is a representation depicting an exemplary
recovery status table 920 of FIG. 9. The table 920 shows
that the code sections identified as CS_1 and CS_2 have
been successfully moved from the file system section 906 to
the code storage section 908. However, the table indicates
that it is unknown whether the code section identified as
CS_n has been successfully stored. For example, the user
may have turned off the wireless device before the storage
operation was completed, or the wireless device battery
died.

[0102] Returning to FIG. 10, recovery status monitoring
manager 1000 stores the new code section in permanent
storage if the new code sections have not been stored and
updates the recovery status table when the new code sections
have been stored. For example, the recovery status moni-
toring manager 1000 stores CS_n (1002) in code storage
section 908 (see dotted arrow “27”), and then updates the
recovery status table so that the CS_n status is changed to
“loaded” (not shown). Note, that the patch manger functions
mentioned above are typically used in the moving of code
sections from the file system section 906 to the code storage
section 908.

[0103] In some aspects of the invention, the recovery
status monitoring manager 1000 further determines the risk
associated with storing each new code section and, if the risk
of storing new code sections is high, takes safety precau-
tions. For example, the recovery status monitoring manager
1000 takes safety precautions such as checking the battery
for sufficient power to complete the new code storing
process, warning the user of high-risk code storing opera-
tions, using prompts to verify user-initiated power downs,
and preventing user-initiated power downs. Returning
briefly to FIG. 11, the risk factor is represented as a column
in the recovery status table.

[0104] The storage of some code sections involves the
replacement of key code section in the system software with
updated code sections. For example, the file system section
906 may receive new code sections such as a boot code
section, a patch manager code section, a code section
address table, a symbol offset address table, read-write data,
and symbol accessor code addresses (not shown). The
incomplete storage of any of these code sections may result
the wireless device being completely non-operational upon
turn-on. That is, the wireless device would likely have to be
returned for reprogramming at a service center. Therefore,
the recovery status monitoring manager 1000 determines the
risk associated with storing each of these new code sections
in the file system section, and takes safety precautions
accordingly.

[0105] The file system section can potentially receive
patch manager run time instructions including a new patch
manager code section, CS_n (1002) for example. As
described above, the patch manger code section includes a
patch library for moving code sections in the file system
section 906 into permanent storage, typically the code
storage section 908. In some aspects of the invention, the
recovery status monitoring manager 1000 maintains a spare

Feb. 3, 2005

patch library 1004 in the file system section 906. The
recovery status monitoring manager 1000 reads the recovery
status table 920 to determine if the new patch manager code
section has been successfully stored in the code storage
section in response to rebooting the wireless communica-
tions device. If the new patch manager code section 1002
has not been successfully stored in the code storage section,
the spare patch library 1004 is used to move the new patch
manager code section 1002 from the file system section 906
to code storage section 908. Then, the new patch manager
code section 1002 can be used for system software opera-
tions. Without the spare patch library 1004, the wireless
device would be unable to recover from the incomplete
storage of a new patch manager code section.

[0106] FIG. 12 is the schematic block diagram of the
system 900 of FIG. 9 featuring the dynamic instruction set
back up manager 1200 aspect of the dynamic instruction
sets. The dynamic instruction set back up manger is here-
after referred to as the back up manger 1200. As the title
suggests, the back up manger provides a system for recov-
ering code sections or system data that has been replaced
with code sections that are non-operational with the system
software. For example, the file system section 906 receives
an updated first code section 1202 to replace a first code
section 1204 in the code storage section 908. The back up
manager 1200 moves the first code section 1204 from the
code storage section 908 to the file system section 906 (see
dotted line “17), typically using libraries from the patch
manger code section 1206. Using libraries from the patch
manager code section 1206, the updated code section 1202
is moved from the file system section 906 to the code storage
section 908 (see dotted line “2”). The back up manager 1200
determines if the updated first code section 1202 in the code
storage section 908 operates with the system software within
predetermined constraints. The back up manager 1200
replaces the updated first code section 1202 in the code
storage section 908 with the first code section 1204 from the
file system section 906, if the updated first code section 1202
is determined to not operate with the system software within
the predetermined constraints.

[0107] In some aspects of the invention, the file system
section 906 receives a test code section 1208 with prede-
termined constraints. The back up manager 1200 determines
if the updated first code section 1202 in the code storage
section 908 operates with the system software within pre-
determined constraints by executing the test code section
with the updated code section. The back up manager records
the results of executing the test code section 1208, and
compares the recorded results with the predetermined con-
straints. In other aspects of the invention the file system
section 906 receives an updated code section 1202 with a
test code library. Then, the back up manager 1200 executes
the test code library from the updated code section. That is,
a separate test code section is not required as part of the
patch manager run time instruction.

[0108] The file system section 906 can receive the test
code section from a variety of sources such as an airlink
interface (902, see FIG. 9), a user operated keyboard
interface (not shown), a test port interface such as a logic
port, serial port, or RF port, and even a memory module.

[0109] FIG. 13 is the schematic block diagram of the
system 900 of FIG. 9 featuring the dynamic instruction

US 2005/0026603 A9

compaction manager 1300 aspect of the dynamic instruction
sets. As explained above, the compaction manager is respon-
sible for manipulating code sections in the code storage
section to fit new code sections, or to accommodate updated
code sections that are larger than the code sections to be
replaced. For example, the file system section 906 receives
an updated first code section 1302, having an updated code
section size, to replace a first code section 1304 having a first
size smaller than the updated first code section size. The
compaction manager 1300 accesses a compaction library
1306 in a patch manager code section 1308 and resizes code
sections in the code storage section 908 to accommodate the
updated first code section 1302.

[0110] As with the recovery status monitoring manager,
the compaction manager 1300 determines the risk associated
with compacting code sections in the code storage section
and, if the risk of compacting code sections is high, takes
safety precautions. For example, compacting the patch man-
ger code section, or other critical parts of the system
software is risky, as the wireless device may not be able to
recover from an improper or uncompleted compaction
operation. The compaction manager 1300 takes safety pre-
cautions such as checking the battery for sufficient power to
complete the new code storing process, warning the user of
high-risk code storing operations, using prompts to verify
user-initiated power downs, and preventing user-initiated
power downs.

[0111] FIG. 14 is the schematic block diagram of the
system 900 of FIG. 9 featuring the dynamic instruction set
update ordering manager 1400 aspect of the dynamic
instruction sets. When multiple new or updated code sec-
tions are to be stored, the update ordering manger 1400
determines the order of storage. For example, the file system
section 906 receives the update ordering dynamic instruction
sets or update ordering manager 1400 with a plurality of new
code sections, such as first new code section 1402, second
new code section 1404, and third new code section 1406.
The update ordering manager 1400 moves the new code
sections 1402-1406 from the file system storage 906 to the
code storage section 908 in an order dictated by the ordering
instruction 1400.

[0112] As shown, the second new code section 1404 is
moved first (dotted line “17), the first new code section 1402
is moved second (dotted line “2”), and the third new code
section 1406 is moved third (dotted line “3”). The move and
store operations are accomplished with the help of libraries
form the patch manger code section 1408. In some aspects
of the invention, the ordering manager 1400 determines the
risk associated with storing each new code section 1402-
1406 and orders the high risk code sections to be moved
after lower risk storage sections. In this example, the update
ordering manager 1400 has determined that the third new
code section 1406 is the most risky to store.

[0113] FIGS. 15a and 15b are flowcharts illustrating the
present invention method for executing dynamic instruction
sets in a wireless communications device. Although depicted
as a sequence of numbered steps for clarity, no order should
be inferred from the numbering (and the numbering in the
methods presented below) unless explicitly stated. The
method starts at Step 1500. Step 1501a forms the system
software into symbol libraries, each symbol library com-
prising symbols having related functionality. Step 1501b

Feb. 3, 2005

arranges the symbol libraries into code sections. Step 1502
executes system software. Step 1503 launches a run-time
engine. Typically, launching a run-time engine includes
invoking a run-time library from a first code section. The
run-time engine can be launched from either volatile or
nonvolatile memory. Step 1504, following Step 1503,
receives the dynamic instruction sets. Receiving the
dynamic instruction sets in Step 1504 includes receiving the
dynamic instruction sets through an interface selected from
the group including airlink, radio frequency (RF) hardline,
installable memory module, infrared, and logic port inter-
faces. In some aspects of the invention, receiving the
dynamic instruction set in Step 1504 includes receiving a
patch manager run time instruction (PMRTI) in a file system
section nonvolatile memory.

[0114] Step 1506 processes dynamic instruction sets. Pro-
cessing dynamic instruction sets includes processing
instructions in response to mathematical and logical opera-
tions. In some aspects of the invention, Step 1507 (not
shown), following the processing of the dynamic instruction
sets, deletes dynamic instruction sets. Step 1508 operates on
system data and system software. Step 1510, in response to
operating on the system data and system software, controls
the execution of the system software.

[0115] Typically, receiving the patch manager run time
instructions in Step 1504 includes receiving conditional
operation code and data items. Then, processing dynamic
instruction sets in Step 1506 includes substeps. Step 1506al
uses the run-time engine to read the patch manager run time
instruction operation code. Step 1506b performs a sequence
of operations in response to the operation code.

[0116] Insome aspects, arranging the symbol libraries into
code sections in Step 1501b includes starting symbol librar-
ies at the start of code sections and arranging symbols to be
offset from their respective code section start addresses.
Then the method comprises further steps. Step 1501c¢ stores
the start of code sections at corresponding start addresses.
Step 1501d maintains a code section address table (CSAT)
cross-referencing code section identifiers with correspond-
ing start addresses. Step 1501e maintains a symbol offset
address table (SOAT) cross-referencing symbol identifiers
with corresponding offset addresses, and corresponding
code section identifiers.

[0117] In some aspects of the invention, receiving the
patch manager run time instruction in Step 1504 includes
receiving symbol identifiers. Then, the method comprises a
further step. Step 150642 locates symbols corresponding to
the received symbol identifiers by using the code section
address table and symbol offset address table. Performing a
sequence of operations in response to the operation code in
Step 15065 includes substeps. Step 150651 extracts the data
when the located symbols are data items. Step 150652
executes the symbols when the located symbols are instruc-
tions.

[0118] In some aspects of the invention, processing
dynamic instruction sets in Step 150651 includes additional
substeps. Step 1506b1a uses the run-time engine to capture
the length of the patch manager run time instruction. Step
1506b1b extracts the data items from the patch manager run
time instruction, in response to the operation code. Step
1506b1c uses the extracted data in performing the sequence
of operations responsive to the operation code.

US 2005/0026603 A9

[0119] FIG. 16 is a flowchart illustrating an exemplary
dynamic instruction set operation. Several of the Steps in
FIG. 16 are the same as in FIG. 15, and are not repeated
here in the interest of brevity. Processing dynamic instruc-
tion sets in Step 1606 includes substeps. Step 16064
accesses system data stored in a second code section in the
file system section. Step 1606b analyzes the system data.
Step 1606¢ creates updated system data. Then, operating on
system data and system software in Step 1608 includes
replacing the system data in the second section with the
updated system data, and controlling the execution of the
system software in Step 1610 includes using the updated
system data in the execution of the system software.

[0120] FIG. 17 is a flowchart illustrating another exem-
plary dynamic instruction set operation. Several of the Steps
in FIG. 17 are the same as in FIG. 15, and are not repeated
here in the interest of brevity. Step 1701c¢ stores a plurality
of code sections in a code storage section nonvolatile
memory. Processing dynamic instruction sets in Step 1706
includes substeps. Step 1706a accesses system data stored in
a third code section in the code storage section (CSS). Step
17065 analyzes the system data. Step 1706¢ creates updated
system data. Operating on the system data and system
software in Step 1708 includes replacing the system data in
the third code section with the updated system data. Con-
trolling the execution of the system software in Step 1710
includes using the updated system data in the execution of
the system software.

[0121] FIG. 18 is a flowchart illustrating a third exem-
plary dynamic instruction set operation. Several of the Steps
in FIG. 18 are the same as in FIG. 15, and are not repeated
here in the interest of brevity. Step 1801c stores a plurality
of code sections in a code storage section nonvolatile
memory. Step 1801d loads read-write data into volatile
memory. Processing dynamic instruction sets in Step 1806
includes substeps. Step 1806a accesses the read-write data
in volatile memory. Step 1806b analyzes the read-write data.
Step 1806¢ creates updated read-write data. Operating on the
system data and system software in Step 1808 includes
replacing the read-write data in volatile memory with the
updated read-write data. Controlling the execution of the
system software in Step 1810 includes using the updated
read-write data in the execution of the system software.

[0122] FIG. 19 is a flowchart illustrating a fourth exem-
plary dynamic instruction set operation. Several of the Steps
in FIG. 19 are the same as in FIG. 15, and are not repeated
here in the interest of brevity. Processing dynamic instruc-
tion sets includes substeps. Step 19064, in response to the
operation code, monitors the execution of the system soft-
ware. Step 19065 collects performance data. Step 1906¢
stores the performance data. Step 19064 transmits the stored
data via an airlink interface. Operating on the system data
and system software in Step 1908 includes using the per-
formance data in the evaluation of system software. Step
1910 controls the execution of the system software.

[0123] FIG. 20 is a flowchart illustrating a fifth exemplary
dynamic instruction set operation. Several of the Steps in
FIG. 20 are the same as in FIG. 15, and are not repeated
here in the interest of brevity. Step 2001c¢ stores a plurality
of code sections in a code storage section nonvolatile
memory. Receiving patch manager run time instructions in
Step 2003 includes receiving a new code section. Operating

Feb. 3, 2005

on the system data and system software in Step 2008
includes adding the new code section to the code storage
section, and controlling the execution of the system software
in Step 2010 includes using the new code section in the
execution of the system software.

[0124] Alternately, receiving a new code section in Step
2003 includes receiving an updated code section. Then,
operating on the system data and system software in Step
2008 includes replacing a fourth code section in the code
storage section with the updated code section.

[0125] FIG. 21 is a flowchart illustrating the present
invention method for managing system software download
operations in a wireless communications device. The
method starts at Step 2100. Step 2102 forms the system
software into symbol libraries, each symbol library com-
prising symbols having related functionality. Step 2104
arranges the symbol libraries into code sections stored in a
code storage section of nonvolatile memory. Step 2106
executes system software. Step 2108 launches a run-time
engine. Step 2110 receives patch manager run time instruc-
tions (PMRTIs) in a file system section (FSS) nonvolatile
memory, the patch manger run time instructions including
dynamic instruction sets and new code sections. Step 2112
processes dynamic instruction sets. Step 2114, in response to
processing the dynamic instruction sets, manages the down-
loading of system software updates received via an airlink
interface. Step 2116 executes updated system software.

[0126] Managing the downloading of system software
updates received via an airlink interface in Step 2114
includes processing dynamic instruction set management
functions selected from the group including recovery status
monitoring, back up, compacting, and update ordering.

[0127] FIG. 22 is a flowchart illustrating additional details
of FIG. 21 that highlight the recovery status monitoring
aspect of the invention. Processing recovery status monitor-
ing dynamic instruction sets in Step 2112 includes substeps.
Step 2200 maintains a recovery status table cross-referenc-
ing new code section identifiers with their update status.
Step 2202, in response to rebooting the wireless communi-
cations device, reads the recovery status table to determine
if new code sections have been stored in permanent storage.
Step 2204, if the new code sections have not been stored,
stores the new code section in permanent storage. Step 2206
updates the recovery status table when the new code sections
have been stored.

[0128] Some aspects of the invention include additional
steps. Step 2202a determines the risk associated with storing
each new code section. Step 2202b takes safety precautions
if the risk of storing new code sections is high. Taking safety
precautions in Step 22025 includes taking safety precautions
selected from the group of checking the battery for sufficient
power to complete the new code storing process, warning
the user of high-risk code storing operations, using prompts
to verify user-initiated power downs, and preventing user-
initiated power downs.

[0129] Determining the risk associated with storing each
new code section in Step 22024 includes determining the
risk associated with new code sections selected from the
group including a boot code section, a patch manager code
section, a code section address table, a symbol offset address
table, read-write data, and symbol accessor code addresses.

US 2005/0026603 A9

[0130] In some aspects of the invention, forming the
system software into symbol libraries (Step 2102, see FIG.
21) includes forming a patch manager code section with a
patch library for moving code sections in the file system
section into permanent storage. Receiving the patch man-
ager run time instructions in a file system section nonvolatile
memory (Step 2110, se FIG. 21) includes receiving a new
patch manager code section. Then, processing recovery
status monitoring dynamic instruction sets includes further
substeps. Step 2202¢ maintains a spare patch library in the
file system section. Step 2202 reads the recovery status table
to determine if the new patch manager code section has been
successfully stored in the code storage section, in response
to rebooting the wireless communications device. Step
2202d uses the spare patch library to move the new patch
manager code section from the file system section to code
storage section, if the new patch manager code section has
not been successfully stored in the code storage section.

[0131] FIG. 23 is a flowchart illustrating additional details
of FIG. 21 that highlight the back up aspect of the invention.
Receiving new code sections (in Step 2110, see FIG. 21)
includes receiving an updated first code section to replace a
first code section in the code storage section. Then, process-
ing back up management dynamic instruction sets in Step
2112 includes substeps. Step 2300 moves the first code
section from the code storage section to the file system
section. Step 2302 determines if the updated first code
section in the code storage section operates with the system
software within predetermined constraints. Step 2304
replaces the updated first code section in the code storage
section with the first code section from the file system
section, if the updated first code section is determined to not
operate with the system software within the predetermined
constraints.

[0132] In some aspects of the invention, receiving new
code sections (Step 2110, FIG. 21) includes receiving a test
code section with predetermined constraints. Then, deter-
mining if the updated first code section in the code storage
section operates with the system software within predeter-
mined constraints in Step 2302 includes substeps. Step
2302a executes the test code section with the updated code
section. Step 23025 records the results of executing the test
code section. Step 2302¢ compares the recorded results with
the predetermined constraints.

[0133] Insome aspects, receiving new code sections (Step
2110, FIG. 21) includes receiving an updated code section
with a test code library. Then, determining if the updated
first code section in the code storage section operates with
the system software within predetermined constraints in
Step 2302 includes executing the test code library from the
updated code section. Receiving new code sections (Step
2110, FIG. 21) includes receiving a test code section with
predetermined constraints from a source selected from the
group including an airlink interface, a user operated key-
board interface, and a test port interface.

[0134] FIG. 24 is a flowchart illustrating additional details
of FIG. 21 that highlight the compaction aspect of the
invention. Receiving new code sections (Step 2110, FIG.
21) includes receiving an updated first code section, having
an updated code section size, to replace a first code section
having a first size smaller than the updated first code section
size. Processing compaction management dynamic instruc-

Feb. 3, 2005

tion sets in Step 2112 includes substeps. Step 2400 accesses
a compaction library in a patch manager code section. Step
2402 resizes code sections in the code storage section to
accommodate the updated first code section.

[0135] Insome aspects of the invention a further step, Step
2400a determines the risk associated with compacting code
sections in the code storage section. Step 2400b takes safety
precautions if the risk of compacting code sections is high.
Taking safety precautions in Step 24000 includes taking
safety precautions selected from the group of checking the
battery for sufficient power to complete the new code storing
process, warning the user of high-risk code storing opera-
tions, using prompts to verify user-initiated power downs,
and preventing user-initiated power downs.

[0136] FIG. 25 is a flowchart illustrating additional details
of FIG. 21 that highlight the update ordering aspect of the
invention. Receiving dynamic instruction sets (Step 2110,
FIG. 21) includes receiving an update ordering instruction,
and receiving new code sections includes receiving a plu-
rality of new code sections. Processing update ordering
management dynamic instruction sets in Step 2112 includes
moving the new code sections from the file system storage
to the code storage section in an order dictated by the
ordering instruction.

[0137] Insome aspects of the invention, processing update
ordering dynamic instruction sets in Step 2112 includes
substeps. Step 2500 determines the risk associated with
storing each new code section. Step 2502 orders the high
risk code sections to be moved after lower risk storage
sections.

[0138] A system and method have been provided for
executing dynamic instruction sets in a wireless communi-
cations device, so as to aid in the process of managing the
downloading of software upgrades. The system is easily
updateable because of the arrangement of symbol libraries in
code sections, with tables to access the start addresses of the
code sections in memory and the offset addresses of symbols
in the symbol libraries. The use on dynamic instruction sets
permits custom modifications to be performed to each
wireless device, based upon specific characteristics of that
device. A few general examples have been given illustrating
possible uses for the dynamic instructions sets. However, the
present invention is not limited to just these examples. Other
variations and embodiments of the invention will occur to
those skilled in the art.

We claim:

1. In a wireless communications device, a method for
managing system software download operations, the method
comprising:

executing system software;
launching a run-time engine;
processing dynamic instruction sets; and,

in response to processing the dynamic instruction sets,
managing the downloading of system software updates
received via an airlink interface.

2. The method of claim 1 further comprising:

executing updated system software.

US 2005/0026603 A9

3. The method of claim 1 further comprising:

forming the system software into symbol libraries, each
symbol library comprising symbols having related
functionality;

arranging the symbol libraries into code sections stored in
a code storage section of nonvolatile memory; and,

receiving patch manager run time instructions (PMRTIs)
in a file system section (FSS) nonvolatile memory, the
patch manger run time instructions including dynamic
instruction sets and new code sections.

4. The method of claim 3 wherein managing the down-
loading of system software updates received via an airlink
interface includes processing dynamic instruction set man-
agement functions selected from the group including recov-
ery status monitoring, back up, compacting, and update
ordering.

5. The method of claim 4 wherein processing recovery
status monitoring dynamic instruction sets includes:

maintaining a recovery status table cross-referencing new
code section identifiers with their update status;

in response to rebooting the wireless communications
device, reading the recovery status table to determine if
new code sections have been stored in permanent
storage;

if the new code sections have not been stored, storing the
new code section in permanent storage; and,

when the new code sections have been stored, updating
the recovery status table.

6. The method of claim 5 wherein processing recovery
status monitoring dynamic instruction sets further includes:

determining the risk associated with storing each new
code section; and,

if the risk of storing new code sections is high, taking
safety precautions.

7. The method of claim 6 wherein taking safety precau-
tions includes taking safety precautions selected from the
group of checking the battery for sufficient power to com-
plete the new code storing process, warning the user of
high-risk code storing operations, using prompts to verify
user-initiated power downs, and preventing user-initiated
power downs.

8. The method of claim 7 wherein determining the risk
associated with storing each new code section includes
determining the risk associated with new code sections
selected from the group including a boot code section, a
patch manager code section, a code section address table, a
symbol offset address table, read-write data, and symbol
accessor code addresses.

9. The method of claim 8 wherein forming the system
software into symbol libraries includes forming a patch
manager code section with a patch library for moving code
sections in the file system section into permanent storage;

wherein receiving the patch manager run time instructions
in a file system section nonvolatile memory includes
receiving a new patch manager code section;

Feb. 3, 2005

wherein processing recovery status monitoring dynamic
instruction sets further includes:

maintaining a spare patch library in the file system
section;

in response to rebooting the wireless communications
device, reading the recovery status table to determine
if the new patch manager code section has been
successfully stored in the code storage section; and,

using the spare patch library to move the new patch

manager code section from the file system section to

code storage section, if the new patch manager code

section has not been successfully stored in the code

storage section.

10. The method of claim 4 wherein receiving new code

sections includes receiving an updated first code section to
replace a first code section in the code storage section;

wherein processing back up management dynamic
instruction sets includes:

moving the first code section from the code storage
section to the file system section;

determining if the updated first code section in the code
storage section operates with the system software
within predetermined constraints; and,

replacing the updated first code section in the code
storage section with the first code section from the
file system section, if the updated first code section
is determined to not operate with the system software

within the predetermined constraints.
11. The method of claim 10 wherein receiving new code
sections includes receiving a test code section with prede-

termined constraints;

wherein determining if the updated first code section in
the code storage section operates with the system
software within predetermined constraints includes:

executing the test code section with the updated code
section;

recording the results of executing the test code section;
and,

comparing the recorded results with the predetermined
constraints.
12. The method of claim 11 wherein receiving new code
sections includes receiving an updated code section with a
test code library; and,

wherein determining if the updated first code section in
the code storage section operates with the system
software within predetermined constraints includes
executing the test code library from the updated code
section.

13. The method of claim 11 wherein receiving new code
sections includes receiving a test code section with prede-
termined constraints from a source selected from the group
including an airlink interface, a user operated keyboard
interface, and a test port interface.

14. The method of claim 4 wherein receiving new code
sections includes receiving an updated first code section,
having an updated code section size, to replace a first code
section having a first size smaller than the updated first code
section size;

US 2005/0026603 A9

wherein processing compaction management dynamic
instruction sets includes:

accessing a compaction library in a patch manager code
section; and,

resizing code sections in the code storage section to
accommodate the updated first code section.

15. The method of claim 14 wherein processing compac-

tion management dynamic instruction sets further includes:

determining the risk associated with compacting code
sections in the code storage section; and,

if the risk of compacting code sections is high, taking

safety precautions.

16. The method of claim 15 wherein taking safety pre-
cautions includes taking safety precautions selected from the
group of checking the battery for sufficient power to com-
plete the new code storing process, warning the user of
high-risk code storing operations, using prompts to verify
user-initiated power downs, and preventing user-initiated
power downs.

17. The method of claim 4 wherein receiving dynamic
instruction sets includes receiving an update ordering
instruction, and wherein receiving new code sections
includes receiving a plurality of new code sections; and,

wherein processing update ordering management

dynamic instruction sets includes moving the new code

sections from the file system storage to the code storage

section in an order dictated by the ordering instruction.

18. The method of claim 17 wherein processing update
ordering dynamic instruction sets further includes:

determining the risk associated with storing each new
code section; and,

ordering the high risk code sections to be moved after
lower risk storage sections.
19. In a wireless communications device, a method for
managing system software download operations, the method
comprising:

executing system software;
launching a run-time engine;
processing dynamic instruction sets; and,

in response to processing the dynamic instruction sets,
managing the downloading of system software updates
received via an airlink interface using management
functions selected from the group including recovery
status monitoring, back up, compacting, and update
ordering.
20. In a wireless communications device, a system for
managing system software download operations, the system
comprising:

an airlink interface;
executable system software and system data differentiated

into code sections stored in nonvolatile memory per-
manent storage,

dynamic instruction sets for managing the downloading of
system software updates received via the airlink inter-
face; and,

a run-time engine for processing the dynamic instruction
sets.

Feb. 3, 2005

21. The system of claim 20 wherein the executable system
software and system data are updated in response to pro-
cessing the dynamic instruction sets.

22. The system of claim 20 wherein the executable system
software is formed into symbol libraries, each symbol
library comprising symbols having related functionality,
arranged into code sections stored in a code storage section;
and,

the system further comprising:

a file system section of nonvolatile memory receiving
patch manager run time instructions (PMRTIs)
including dynamic instruction sets and new code
sections.

23. The system of claim 22 wherein the dynamic instruc-
tion sets include functional managers selected from the
group including recovery status monitoring, back up, com-
pacting, and update ordering.

24. The system of claim 23 further comprising:

a recovery status table cross-referencing new code section
identifiers with their update status; and,

wherein the dynamic instruction set recovery status moni-
toring manager reads the recovery status table in
response to rebooting the wireless communications
device, to determine if new code sections have been
stored in permanent storage, wherein the dynamic
instruction set recovery status monitoring manager
stores the new code section in permanent storage if the
new code sections have not been stored and updates the
recovery status table when the new code sections have
been stored.

25. The system of claim 24 wherein the dynamic instruc-
tion set recovery status monitoring manager further deter-
mines the risk associated with storing each new code section
and, if the risk of storing new code sections is high, takes
safety precautions.

26. The system of claim 25 wherein the dynamic instruc-
tion set recovery status monitoring manager takes safety
precautions selected from the group of checking the battery
for sufficient power to complete the new code storing
process, warning the user of high-risk code storing opera-
tions, using prompts to verify user-initiated power downs,
and preventing user-initiated power downs.

27. The system of claim 26 wherein the file system section
receives new code sections selected from the group includ-
ing a boot code section, a patch manager code section, a
code section address table, a symbol offset address table,
read-write data, and symbol accessor code addresses; and,

wherein the dynamic instruction set recovery status moni-
toring manager determines the risk associated with
storing each of the new code sections in the file system
section.

28. The system of claim 27 wherein the executable system
software includes a patch manager code section with a patch
library for moving code sections in the file system section
into permanent storage;

wherein the file system section receives patch manager
run time instructions including a new patch manager
code section; and,

wherein the dynamic instruction set recovery status moni-
toring manager maintains a spare patch library in the
file system section, reads the recovery status table to

US 2005/0026603 A9

determine if the new patch manager code section has
been successfully stored in the code storage section in
response to rebooting the wireless communications
device, and uses the spare patch library to move the
new patch manager code section from the file system
section to code storage section, if the new patch man-
ager code section has not been successfully stored in
the code storage section.
29. The system of claim 23 wherein the file system section
receives an updated first code section to replace a first code
section in the code storage section; and,

wherein the dynamic instruction set back up manager
moves the first code section from the code storage
section to the file system section, determines if the
updated first code section in the code storage section
operates with the system software within predeter-
mined constraints, and replaces the updated first code
section in the code storage section with the first code
section from the file system section, if the updated first
code section is determined to not operate with the
system software within the predetermined constraints.
30. The system of claim 29 wherein the file system section
receives a test code section with predetermined constraints;
and,

wherein the dynamic instruction set back up manager
determines if the updated first code section in the code
storage section operates with the system software
within predetermined constraints by executing the test
code section with the updated code section, recording
the results of executing the test code section, and
comparing the recorded results with the predetermined
constraints.
31. The system of claim 30 wherein the file system section
receives an updated code section with a test code library;
and,

wherein the dynamic instruction set back up manager
executes the test code library from the updated code
section.

32. The system of claim 30 wherein the file system section
receives the test code section from a source selected from the
group including the airlink interface, a user operated key-
board interface, and a test port interface.

33. The system of claim 23 wherein the file system section
receives an updated first code section, having an updated
code section size, to replace a first code section having a first
size smaller than the updated first code section size; and,

wherein the dynamic instruction set compaction manager
accesses a compaction library in a patch manager code

15

Feb. 3, 2005

section and resizes code sections in the code storage
section to accommodate the updated first code section.

34. The system of claim 33 wherein the dynamic instruc-
tion set compaction manager determines the risk associated
with compacting code sections in the code storage section
and, if the risk of compacting code sections is high, takes
safety precautions.

35. The system of claim 34 wherein the dynamic instruc-
tion set compaction manager takes safety precautions
selected from the group of checking the battery for sufficient
power to complete the new code storing process, warning
the user of high-risk code storing operations, using prompts
to verify user-initiated power downs, and preventing user-
initiated power downs.

36. The system of claim 23 wherein the file system section
receives a plurality of new code sections with the update
ordering dynamic instruction sets; and,

wherein the dynamic instruction set update ordering man-
ager moves the new code sections from the file system
storage to the code storage section in an order dictated
by the ordering instruction.

37. The system of claim 36 wherein the dynamic instruc-
tion set update ordering manager determines the risk asso-
ciated with storing each new code section and orders the
high risk code sections to be moved after lower risk storage
sections.

38. In a wireless communications device, a system for
managing system software download operations, the system
comprising:

an airlink interface;

executable system software and system data differentiated
into code sections stored in nonvolatile memory per-
manent storage and updated in response to processing
the dynamic instruction sets;

dynamic instruction sets for managing the downloading of
system software updates received via the airlink inter-
face using functional managers selected from the group
including recovery status monitoring, back up, com-
pacting, and update ordering;

a run-time engine for processing the dynamic instruction
sets; and,

a file system section of nonvolatile memory receiving
patch manager run time instructions (PMRTIs) includ-
ing dynamic instruction sets and new code sections.

