
(19) United States
(12) Patent Application Publication

Rajaram

US 20050O26603A9

(10) Pub. No.: US 2005/0026603 A9
(48) Pub. Date: Feb. 3, 2005

CORRECTED PUBLICATION

(54) SYSTEM AND METHOD FOR THE
MANAGEMENT OF WIRELESS
COMMUNICATIONS DEVICE SYSTEM
SOFTWARE DOWNLOADS IN THE FIELD

(76) Inventor: Gowri Rajaram, San Diego, CA (US)
Correspondence Address:
Kyocera Wireless Corp.,
Attn: Patent Department
PO Box 92.8289
San Diego, CA 92192-8289 (US)

(21)

(22)

Appl. No.: 09/969,305

Filed: Oct. 2, 2001

Prior Publication Data

(15) Correction of US 2003/0064717 A1 Apr. 3, 2003
See Related U.S. Application Data.

(65) US 2003/0064717 A1 Apr. 3, 2003

r
le--- u

ra l A. e

...i.

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/927,131,
filed on Aug. 10, 2001.
Continuation-in-part of application No. 09/916,900,
filed on Jul. 26, 2001.
Continuation-in-part of application No. 09/916,460,
filed on Jul. 26, 2001.

Publication Classification

(51) Int. Cl." ... H04B 5/00
(52) U.S. Cl. ... 455/419; 455/41.1
(57) ABSTRACT
A System and method are provided for managing System
Software download operations in a wireleSS communications
device. The method comprises: executing System Software;
launching a run-time engine; processing dynamic instruction
Sets, and, in response to processing the dynamic instruction
Sets, managing the downloading of System Software updates
received via an airlink interface using management func
tions Selected from the group including recovery status
monitoring, back up, compacting, and update ordering.

. 2... ke .8 3.9-lity de -3.32.--

US 2005/0026603 A9 Feb. 3, 2005 Sheet 1 of 27 Patent Application Publication

|- 'exose-wissyayassassissixtwis333

-------- exe-wors

L "Are Pre-issuers stille-eat...,

US 2005/0026603 A9 Feb. 3, 2005 Sheet 2 of 27 Patent Application Publication

************ ------- ----- ….….. .

* º ********************®£§žº,z,..- .-.. -- … …

„…….….… … - , :. ~~~~<!-- * --~~~~ **~~~ ~~~~*~ • ** ** ** **·? **************~~~~); vººr: No.ssae.…–…….……… …,x,-,*, * * *

- "... -

!!!!!!--***** „…………*********×*3 „, „………*********
axy

2.

l

81

as liki'

ess

-
ES;

s
(a-

us" are T

v-sur-Yarx.

t tissur

real-''urla-sen

Patent Application Publication Feb. 3, 2005 Sheet 4 of 27 US 2005/0026603 A9

ear-cooteroix"""silver"terraces assesses si;x&t sists, w8sis;x&t

Systern data case. Section “72.
s

...-awaiirawrewoiter---racia
sarsaw." -

: ls Pri,211 a 6. See tary $f "if

er rei awarva

-

n s o i. i E - a . a . S. f. i. i* (EA-8, See: y 2 P4 a.k.a fetch to as a “s |

& r f i t r
carrxty-staxar's visix-x&tx water

2 taxmas.a.s.

i
.

i / Cately, frees. 432 f" coal-e- i
Sect ar, 3 &

swrwattstures

- f a. ----------------, writerari's "r"rritosis-strieves 'c' stars................. ...------

US 2005/0026603 A9 Feb. 3, 2005 Sheet 6 of 27 Patent Application Publication

f

* vsk-r Yilitari

{- - - - ;.………--~~~~ ~~~~*~
-Wiwa's sw

==--~~~~ ~~ ~~~~****** ? …..…....

Patent Application Publication Feb. 3, 2005 Sheet 7 of 27 US 2005/0026603 A9

---...-------ee-assir-ravior-voto refriar ---Y''

symbol O (oclé Sachior, C.
Wrrara'''''"

--rw---Mr

X f ^ S.
J one-rrn vivoreorisarris aware-laur-wavy userscrewvilleryenner
--site

|
3.

? i i y C S - go Sw

i t i ... ---for-termo-era ... is att was
earnenes''" ar s S

s s r .
s S 8 w8 &W kiss

ity --------erecor---old ity sery risatia-- Wes s
reser”" w8w al-" s: "g gavis's y & & so

(S.-- - was a

- a varr - **** {-versa: --rw-stax: ---...-aw "r" Wit-- as -
ySkwn

asseriest railtravi ski with

Patent Application Publication Feb. 3, 2005 Sheet 8 of 27 US 2005/0026603 A9

... wronwo-leavius -a-row---as v- ' ' ' ' tri-ja (c. 1.-- as seats r hers 4
r

n is a strue to r B a2 47 wrest

Arwalacagawa

2 v 3 r gfruction a 2. 1
romanian-seat sail-existictorianistle'ss-like RissaExass. fiasstyrx 4:25-seats: issists

f f

|------. Terrieve-nort-extelessesses. f i s ***satesterses

) i? Sfuellor go
...-a, -y 8 “rarers. sessiest

a's “raises ** as w

awar Yx

8. o e
u-L- Srr w Y v. w 8. ar s y

list a k-cote is a

s - is:

seagentioxirie-Frtir's pitchestries assists carrierretscartergerinarieties r - gies 3.5" Soo f
size-gwateria's "*" in saxopy

is/ y

yy s' -----& 3. f g
e g s x -

US 2005/0026603 A9 Patent Application Publication Feb. 3, 2005 Sheet 9 of 27

s

f

US 2005/0026603 A9

od),

Patent Application Publication Feb. 3, 2005 Sheet 10 of 27

Wixss was it war w r s wrw -

~~~ …………………— • •*****~~~~~ ~~~~*** – º? 

24. ^) 

rtr-, rrrrrror 



US 2005/0026603 A9 

?--~~~~~3×og, 

O O6 

Patent Application Publication Feb. 3, 2005 Sheet 11 of 27 

i. 
S. 
s 

s 

É 

s 
t 
i 
s 

s 

  



Patent Application Publication Feb. 3, 2005 Sheet 12 of 27 US 2005/0026603 A9 

- ra-Maram-Tamrara-----rw-wow-car-wraws---wort-rana Yn 

| 'e co sign y Sia 
| ------arraviaror-tax^*-acrewortre'r ree-rava: 

| entiti e 
1----------------re-referreror-to-erotorware 

. 

- its. 
| Me S- r, 

  



US 2005/0026603 A9 

„aer ºººººººº 

six **"...less is 

(Y 
Sy 
(S 

i 

Patent Application Publication Feb. 3, 2005 Sheet 13 of 27 

  



US 2005/0026.603 A9 Patent Application Publication Feb. 3, 2005 Sheet 14 of 27 

**********~~~~…„…„.., . 

--va-vovivil salaw.. exism--area ware.s.l. is a series alwa Mr series 

&x&8&3ºux’«************************************ 
…„…s, zººººººº 

  



US 2005/0026603 A9 Feb. 3, 2005 Sheet 15 of 27 Patent Application Publication 

Y. 

resses. Y^w-Me xwcaseswax 

A 

li 

\ 



Patent Application Publication Feb. 3, 2005 Sheet 16 of 27 US 2005/0026603 A9 

1. --- ( ca. (crat-e- )-- (5 Od secutorosaris-as-s-s-sa Yasuzaxswax-ext i 

- Y --------- t risis t Systery Sett hate rate tly be ( , 
& 8taS T or won xira - is is W. r t 

fatala is strease t trates as wawa&- 
wif 

l s voir, ? A. zo de S ée tools at" 
www.ki:::?tariw it, r-S&sriraw:www.ca r • -- - -za- - -a < *Y ke's:--ra-i-yar, vs. 

...e. arrerocer-mars: r-re. --revor-wroser sig. t 
e- t is 3 & xr 

rosate varia (S A. h-r is a t- 5 e. l---- ---, -- 
r- -- is S. w s 

wry's 

"-i- 
| ?ynas a 3..., $32, SC) frt- f 

r: i l- starts --or-shair arrari. --we caroristorian-at- 52 
six-le- www.ra Mwayhty 

|executana sate at ... --------------a-sir-ri restry rurus co-steers ess re-ters rerors. at 3 
---...Y ... --2- launch in a v N-time en ane 

--&Yarts --ory. -- - 

teceu in cy (\a?mic try struction sets 

** "rrors, six view 

------- 
f 

sé . . l t'oze SS ins cy Aaronic fYg ( - <-tiery set 
sess w-r- ww. ic f : - - K-xx x^k warr'r's??Y'''''A "*rix eggars --- 

ress ceration ceae - 1596 as 
--- 

f is 5 (d. c 2 i i is | locatina Syria is 
s' visix:4'w.cr. --- 

    

  



Patent Application Publication Feb. 3, 2005 Sheet 17 of 27 US 2005/0026603 A9 

votes w \5 s 
N/ y 50%b 

s i E 8ww. i. 8&s Yixes - ktasie was' t ass 

R 2 v-Co vices ''A S26. U2 ace cott & & rete Ms sess "k" statisix:- sey-sists, -13 --> -\* * W exy s:... c.34 tactics--ariesisreiterritztaccess s 3 ex- sy's w r 

50 bi Y re-assessex sistela'-i -'s asstie' W (w&rs 

legs ar - f 2. tracts date. |- (50-ki executing Stoba is ---., -e- in re-or-in-rescorer 

--- listéo, 
Co- skii inte, (enata a's R fCr"; - 
ov. - - - - - - - 

4tre. Avna of a val tales I-6 & 
t---------- 150 fe. 

back ----- re------...----------...- 

us es data teless in feed overfrnina 

a-risp 4-rri 

  



Patent Application Publication Feb. 3, 2005 Sheet 18 of 27 US 2005/0026603 A9 

s | b s...reso "“” * 
t site, 2-, -s boo *** **ur six-warpsweissport 

... ass a -tax riter " """ -- ---. - a-- a . 

r it's ---------. s |av native, Yekat A braries to code sco '. ... --- wer.-- * **** "t tw' ' ' ' 'W' sixt v. -i is r, wanwasi. . . was a sys w.xni wirera. 

s S. 
f yiel e 8 **{s i P'o class a dynarrate ent is on sets. 'Kwww. rat-trissessess-re 

-- "*"Swissertarie-.... -------wn -e-...... 
-e- ...waw"''''skMrswanwix-six-w- wasausale was six-a-six-rxRyserstarreirax"awwass. 

d y f w gi s |Azzeccing systered at . Feet (60%- 
2...www.ww * * * r *rst-r've sixes assass 

wraw-Yarmrx-wamy ww.-N4- iboof 
serra *S-8 was tw. y 

: 2s they S. NS f (f's as also f fb. koa. 

I era. An easte (sic terra -- a - - - - 18 g ta wve- rock-Keselaereretails-we-are-s-s-s 
ress. ...------x-xxx-xx-exWYaax-aw&stars:x:starr?' as Y'''''x -- or 

e2 of- n : sc t a a an. cy Yywf 
| i 

S o-6,waka. d'k- ...-a - - - - - re- it. '1" was,s issils ... was 7 s YMS Yarr & : - -- traww.rry wresar- } f . f i. 

----------r- i. 
---- s r erg i... -- r" c -----. f cort is in 6, 5-Xaelutory ov. Sytz w (sif a., 

* * 'starx: 

  



Patent Application Publication Feb. 3, 2005 Sheet 19 of 27 US 2005/0026603 A9 

(te riversy 
--------- 

i 
reacKiXrroir warris 

ya "*"twiswavvis. **38warrass 8 

face v the dynamic in 
i- error''' 

irror--re. 17 - struction set. A '' 
' ' - a . “t-?orror -. f 76 fe 

“"“rs' serverwoes re........ 'cross 

Po2 cStay Yarac instruste ge & - --- . 

... . . . .svir-irrors" - xi. . g 
------or-leviser-es-, or - rever 

f Y giv s ar, | CC-e SS a Systein cave, as CC S 
i.e. re."a , ...si: , or a - 

2 &.2 fit i “. . f 7a. é f 
x-skii''' ' 

Cre-act tea up. 
* is . . . . . . . . . . . . . 

--------------- 
traw -- ---.S. 

(O2 rait ta sy S Sca. {{, et alta \ 3. y& te ffy, 7 5 cc-aa 
. &: Yss ... . E.---..... . . . . . . --- rt wsaw8M Yr Y ris F. - X r crew n-a-assy. . ww. --- 

  

    

  

    

  

  



Patent Application Publication Feb. 3, 2005 Sheet 20 of 27 US 2005/0026603 A9 

cafe Ced. .........s....-----------r-onw"- ''--sa gale 

Kasree e.g. S (-, -ase int- violate es |S. st've a le) 2. & actices y C, ?o Jolate frégi of Y ? 
t- s w w xk 8 y was x-rWY agrera n as - 'wir" was r-M-- at - WinteraXriss-swers 

NZ ------ --------...-------owners, aerosawa-writ""" 'iwxtanne r^ E v. streWorWr. i. ( s. fe oaliya aartJr. & dat if it 
-v wt tvw ex-y &Y-1's " " El 

: 

s g {{fy g ge -y f 

". 

so 2, (3.a) { 
...g. “ 

N 2. ea cut rq 

(So 2 
----. ------- ural --- - f 8) { A2 cent dynamic As stucker sets rt-a--wana--" "six-swin 

'rews&r-x. --- m r 

sw" ------ war--- firs' r 

re c2csta dynatra. . . . 13%2. 
-- "r-ra-e-Y.----------------. ... ?---- 

vius a s ; rwin -- e - (i.e.css tra as 2 trife cake in Jakart termoeroty t 
5- -o- ........... a sigr. v ar tes" fr" S. s r. Larss- wife's ""tri- 'u've ri re-o-o-o-rate an enterer"roots rivers: 

* w. - ri 

éna st 2, to tea - to ii. data- 180éb ité c. 
...-ar-ro-'go-------- 

Ma a-9-cu ite. data 
i-role. sy . .------------- is ps 8-N-8-rw-six in WY - w w - sm i. 

nasaas'ssms-a-viller vacawari -Y- -S - was usale ress -------ax^ essee s is task x3 cre v- ex-aeswarassrox. exam is -r-Viarrass'''f'' a' ' Sr. 
aw-le 

ap's r r - f', . is &Oe aire, v. S. Ysta , |alia Sycare, 

75 via ta e vector Cof Vid the exécus." 
saw waiiaviuww. ... wirrawsuit's X*weisl's Wavert ax sarass 

w 
& 3.. a. 8 13 &Y. 

(*, St sizra Sa Aase 
... .....Yasir re-wr "r - " " " 

        

  

  



Patent Application Publication Feb. 3, 2005 Sheet 21 of 27 US 2005/0026603 A9 

- ple $ 
&W trainster-as 

f wa “-or-., -i-...-------------, -r car--co. 
. i. --- & 

sists &ysterer, sigs Saraba t it a S. ... . . . . . . . . - - - -r " " " " " “"“rs ------. | swice 

-----ram-w. --- rew -- a-- - - - - - --- or--- --- ... We ww.m-ramw 

k b is 's f s gas is , a 0. s Yerate \ oth - e.g. Cas 3.x k g : - ; ; 
- - - - - , , , -, - . . . . . . . .' ' ' ' * 

...s w St v. 8, 'wire w. r is V 

i--------------Y----------- ru-2. 

s 

g '' . s - it. 8 : *: setts. IPsec ecs. As a Site nee. At left of , e. 
s re- 3r Swxax. wo-stratews.rs:-- Yu W * . . Farr-, or - x^s is tiers w w w ''''''v. 

ar. 
frts (a.areer 

foe is 

... 3 th ', . & , vis' ... 3.- ::::::: say: ;-exists: rs333;" 

...- ... as to N. -----, - 1768 --mor" a lf 
33 set yar's ( 2/O 

tw. ..., w" s&c." s satists?iewer 3 
assassess'':28.xisterski: ; sixty-sis-- sity's s 838&S 

s 

soci, wi Settlare a t Syca St W Va a 
W J 

..., xx is ... six -88. 's at was says: res 

  

  

  

  



Patent Application Publication Feb. 3, 2005 Sheet 22 of 27 US 2005/0026603 A9 

reserview.xtra-vs 

)- 30 do 
-- librarieg 

... 2026 
- is axis. 

20.6 i. " ... 'reactatorixiangyo-e ss. 
W rel; SY f, g, ot it te voivoy 
----------- 

, -r-, 2 or 2. . 

\ sh as A - it ?m 
rest wraverwax-------------e. 

6. 

Proeleccrew 2. 
is . ww. r;" 

23 
6 tai-ia, & Syste. {{, date 2-yd 

s '. ; : 

  

  

  

  

  

  

    

  

  

  



Patent Application Publication Feb. 3, 2005 Sheet 23 of 27 US 2005/0026603 A9 

Yi-aroes 1 - Tys 2 to a 
C s rtu 2 

-- r - - - -...--- 

s sksssssssexes lists m 's W - - - ... . sale - grosses stirr's", ** - - - - - - - - - - - - s's - - ) * * * * * * * * best- ... . . . . . . v. 'k', t 

- S. six xxxx. 8s 33 .348. -2- asure-resis' -r-srors. sorror rever?"“” &lzYY-w- " 
riskits' & rf. | 6 vers in gyo, b \ \star of into celle Sections 

s -- s 

brease Sett as a wais arrate bragg 

x AY. As 

s sorryoverwess: ...care." is: is "S, 3 staye. 

---, " . . . e. e. re - IAA heir t \, it gas fire Ste. 
easus--" 

six-sissil: * 
-or" 

A. Y. 2--" s O receivil , e Y\{ 
vege: waxxxxss-xxx-xxxxist:ws ws::ct.cxxxxxxxv-xxxx xxxist&sixx xxsw8. -2.re 

a cle Sct the ey a Y. g. in structto Sets | 
sets" arr-ex"... . . . . . . . . . w s. 2. & S &ra -- & -s. ...----, 

l 2 t if 
frno-ed a ra dou) noa na - Systerra s 

g s 

, Sa-i Jare te six& Ry-s: ". . . . . . 'eyr ar: - 
i.e.-------------" " 2- to 

r 

dates 
...sossertsaka's strassical Assi?siestars arra rests...as 

re-r" s *** Vexissists 

ex e cut ea \ . dates S.YC te rer (e ture. 
- waxx." y 

Y & sessia:Essert* i. is s sesser Wrks wis 
ex: xxviii. 

: his 2 

  



Patent Application Publication Feb. 3, 2005 Sheet 24 of 27 US 2005/0026603 A9 

from Stee 2 (tis, 2) 
2 2. 

--- 

* 

*''''"re-se *rst-r- 

| Piecess tra - Yiya frac in frvchen set 
I n &t's*''' '8ws. ix. . . . . . sy. x * x-cy as ::f-sers- reas sawsrer sis: we rst-stars"si" – 'tasie.sa.sa. 

**istinate. 

*rms. 2. W W- **Tras-s-s w 2. 
8 Imantojana recovery stats telete i.e. ... re-- *s, *i----'s rar rat-yar is x assess e- s:stres xxus--8xxsswiss:we:- www8 visis& 88&lt&rsss'3stitvak-exissa 

& sw's - N. Tg 2. 
* Y-Mrror-ruras. -at-warm-sur-stra Kawassacre--awaraxess 

/ Yeo is a reco Q-y Stat vs. to ?e 
tre r re-rvers or...s.l... 

h arrel-wu. i 2. 2. c 2 a. """seeinwsors **ter skis&asswww.rsssssssss | 3. sk - 

| cle to tria, as Mtg. - 

*** -si-"rs" wrosses. s - N - 2p24 
i. s --- |male to oth seate Patak is a or retch is stay 

l/ 220 2f 
-------------ee-axes"r"****-tt-or-breasis so-cassassiss.... - 

Lysins fears etch is brary 
22.04 

as six-swai x-sw 

six w8&x &keskikaisixties assessssssssss-exississischarred "Iseorieslasiawei, sex-stress 
fe S. i. : 

S- re, re. i. s i.e. S. & ; : g", 
... " " ' " - Zver . . . . . . cration... -- re-er-revious newsar stion 22s 

Up stina 'e Coigny a's le ls 
“rs. ... . N/ 

  



Patent Application Publication Feb. 3, 2005 Sheet 25 of 27 US 2005/0026603 A9 

“ero Stop 2 to (fia, 2 ) 
"Mx. “terrage was reveries--six-wevisio. 

i. s. 

Riocessie dy worn c. (Structeer Sets 2 (2 
"--su. ---...s.l., retirr r * * *-rr.......... 

wwwraw wasaan-dra-S1 's-m was 226 0 

| Se et 25 & re, tes u- fit, (i. frants 
sy: ...recor-o- 

Yu. 1Yeasass ------- ------ e QYa cuttic, it a C { cos e. \- 22d 2c 
rxy-8'sassi: 3888'ss&assass 

r Secessarrestrasox' ---r r ru-no-- 

reco - the Re (w to - 2. So 2 If S essass: 
2ns Part M & Ngc kg s 2. c 2. 

es. - ...is selessness was rew-sex-ser:'s tre 8. ser-is is a ex' - - re-e: * * * r ts { 
-r -- " - re's were car---, --, -ss-- c. reg 

| Section | - nar - () ea attorna ( - 
essexxsm-- 

-f i; S - t f 2. f f ( r y 2 



Patent Application Publication Feb. 3, 2005 Sheet 26 of 27 US 2005/0026603 A9 

V . re--- | Keo ca, c s ?a c't (a free in St rvetten ge 
g 

... ----------- rs is re-er" ---------------...s.o. - 
2 yet 

to-orror-raterwesortressary cross-ass. rew.six 

exces s referreros 

S. 8. fees - , , , T - a Oce St. n co (wea. citie? sia - S 
sa-i- six& ** s-as-assissis-a-craw-sisi"" ******* 

- seasnacr:rfracter-eares sixaxis-Xavis 

| a -a - i. f e grg v. ''', f : fa, r S (s 3. 
-ry 2 (ek 

... sassy re-r-so-sovorous r 
is: 

27004 

|-taka S. a set P e ea utt ovns ...state-eva-ee-exislater "-is-a-wateries. 
rearraw: 

-vsk w 

sale "" Rio 2. 
sai-xxcrets--ae''''' e-escorestri-savi wri'? 5 

a.a. w - : 

nest zina code. S e. tons 



Patent Application Publication Feb. 3, 2005 Sheet 27 of 27 US 2005/0026603 A9 

". as is, 2 2 J for fee tie (F) 
wa T. . . . . ft - ca." s f", ge r ( t w citiate Sefe Suroc ecce, a snaire C. Street f: s- Sexskas?' rts-swer is vis-ser:' ' '. ''{-, -Y.:x - 

wes -- 

... ."r" 
r" " ' 

sectivisis. 

-erisesir's www.cxxiv.&s ex8c:I-8&six --- 

S 
s . i. 

-. 

le et a treates is ( / 25. s: & w or r - in two-vis acre... 
s Es?'fowl, sists . . . . . . sort'ss -- " - 3&as 

. . .38 . . . . . ss as: 8 - - - 

g 



US 2005/0026603 A9 

SYSTEMAND METHOD FOR THE 
MANAGEMENT OF WIRELESS 

COMMUNICATIONS DEVICE SYSTEM 
SOFTWARE DOWNLOADS IN THE FIELD 

0001. This application claims priority to U.S. patent 
application Ser. No. 09/927,131, filed on Aug. 10, 2001, and 
entitled “System and Method for Executing Wireless Com 
munications Device Dynamic Instruction Sets;” and is 
related to U.S. patent application Ser. No. 09/916,900, filed 
on Jul. 26, 2001 and entitled “System and Method for Field 
Downloading a Wireless Communications Device Software 
Code Section,” and Ser. No. 09/9169,460, filed on Jul. 26, 
2001, and entitled “System and Method for Compacting 
Field Upgradeable Wireless Communication Device Soft 
ware Code Sections,” all of which are incorporated herein by 
reference. 

BACKGROUND OF THE INVENTION 

0002) 1. Field of the Invention 
0003. This invention generally relates to wireless com 
munications devices and, more particularly, to a System and 
method for using dynamic instructions Sets to manage a 
variety of System Software field download management 
functions, Such as recovery status monitoring, back up, 
compaction, and update ordering. 
0004 2. Description of the Related Art 
0005. It is not uncommon to release software updates for 
phones that are already in the field. These updates may relate 
to problems found in the Software once the phones have been 
manufactured and distributed to the public. Some updates 
may involve the use of new features on the phone, or 
services provided by the service provider. Yet other updates 
may involve regional problems, or problems associated with 
certain carriers. For example, in certain regions the network 
layout of carriers may impose airlink interface conditions on 
the handset that cause the handset to demonstrate unex 
pected behavior Such as improper channel Searching, 
improper call termination, improper audio, or the like. 
0006 The traditional approach to such updates has been 
to recall the wireleSS communications device, also referred 
to herein as a wireleSS device, phone, telephone, or handset, 
to the nearest carrier retail/Service outlet, or to the manu 
facturer to process the changes. The costs involved in Such 
updates are extensive and eat into the bottom line. Further, 
the customer is inconvenienced and likely to be irritated. 
Often times, the practical Solution is to issue the customer 
new phones. 
0007. The wireless devices are used in a number of 
environments, with different Subscriber Services, for a num 
ber of different customer applications. Therefore, even if the 
Software of a wireleSS device can be upgraded to improve 
Service, it is unlikely that the upgrade will provide a uniform 
improvement for all users. 
0008. It would be advantageous if wireless communica 
tions device Software could be upgraded cheaply, and with 
out inconvenience to the customer. 

0009. It would be advantageous if wireless communica 
tions device Software could be upgraded without the cus 
tomer losing the use of their phones for a significant period 
of time. 

Feb. 3, 2005 

0010. It would be advantageous if wireless communica 
tions device software could be updated with a minimum of 
technician Service time, or without the need to Send the 
device into a Service facility. 
0011. It would be advantageous if the wireless device 
System Software could be differentiated into code Sections, 
So that only Specific code Sections of System Software would 
need to be replaced, to update the System Software. It would 
be advantageous if these code Sections could be communi 
cated to the wireleSS device via the airlink. 

0012. It would be advantageous if the wireless device 
could be operated with dynamically loaded instruction Sets 
that would aid in the field updating of System Software. 
0013. It would be advantageous if these dynamic instruc 
tion Sets could protect the wireleSS device from update errors 
by monitoring the update Status, backing up key code 
Sections, performing memory compaction, and ordering the 
update Storage process. 

SUMMARY OF THE INVENTION 

0014 Wireless communications device software updates 
give customers the best possible product and user experi 
ence. An expensive component of the busineSS involves the 
recall of handsets to update the Software. These updates may 
be necessary to offer the user additional Services or to 
address problems discovered in the use of the phone after it 
has been manufactured. The present invention makes it 
possible to practically upgrade handset Software in the field, 
via the airlink interface. More Specifically, the present 
invention permits the wireleSS communication device to 
execute dynamic instruction Sets. These dynamic instruction 
Sets permit the wireleSS device to “intelligently, or condi 
tionally upgrade the System Software and System data. 
Further, the dynamic instruction Sets permit the wireleSS 
device to determine if the updating process has been Suc 
cessfully completed. The dynamic instruction Sets permit 
key code Sections to be Stored in case the upgrade Section are 
found to be non-operational. The dynamic instruction Sets 
also perform memory compaction and Storage ordering. 
0015 Accordingly, a method is provided for managing 
System Software download operations in a wireleSS commu 
nications device. The method comprises: executing System 
Software; launching a run-time engine; processing dynamic 
instruction Sets, and, in response to processing the dynamic 
instruction Sets, managing the downloading of System Soft 
ware updates received via an airlink interface using man 
agement functions Selected from the group including recov 
ery status monitoring, back up, compacting, and update 
ordering. 

0016 Details of the above-described recovery status 
monitoring, back up, compacting, and update ordering man 
agement functions, and a System for managing System 
Software download operations in a wireleSS communications 
device are provided below. 

BRIEF DESCRIPTION OF THE DRAWING 

0017 FIG. 1 is a schematic block diagram of the overall 
wireleSS device Software maintenance System. 
0018 FIG. 2 is a schematic block diagram of the soft 
ware maintenance System, highlighting the installation of 
instruction Sets via the airlink interface. 



US 2005/0026603 A9 

0.019 FIG. 3 is a schematic block diagram illustrating the 
present invention System for executing dynamic instruction 
Sets in a wireleSS communications device. 

0020 FIG. 4 is a schematic block diagram of the wireless 
device memory. 

0021 FIG. 5 is a table representing the code section 
address table of FIG. 3. 

0022 FIG. 6 is a detailed depiction of symbol library one 
of FIG. 3, with symbols. 
0023 FIG. 7 is a table representing the symbol offset 
address table of FIG. 3. 

0024 FIGS. 8a and 8b are depictions of the operation 
code (op-code) being accessed by the run-time engine. 
0.025 FIG. 9 is a schematic block diagram including 
features of FIGS. 1-8b presented for the purpose of illus 
trating the present invention System for managing System 
Software download operations in a wireleSS communications 
device. 

0026 FIG. 10 is the schematic block diagram of the 
system of FIG. 9 featuring the dynamic instruction set 
recovery Status monitoring manager aspect of the dynamic 
instruction Sets. 

0.027 FIG. 11 is a representation depicting an exemplary 
recovery status table of FIG. 9. 

0028 FIG. 12 is the schematic block diagram of the 
system of FIG. 9 featuring the dynamic instruction set back 
up manager aspect of the dynamic instruction Sets. 

0029 FIG. 13 is the schematic block diagram of the 
system of FIG. 9 featuring the dynamic instruction com 
paction manager aspect of the dynamic instruction Sets. 

0030 FIG. 14 is the schematic block diagram of the 
system of FIG. 9 featuring the dynamic instruction set 
update ordering manager aspect of the dynamic instruction 
SetS. 

0031 FIGS. 15a and 15b are flowcharts illustrating the 
present invention method for executing dynamic instruction 
Sets in a wireleSS communications device. 

0.032 FIG. 16 is a flowchart illustrating an exemplary 
dynamic instruction Set operation. 

0033 FIG. 17 is a flowchart illustrating another exem 
plary dynamic instruction Set operation. 

0034 FIG. 18 is a flowchart illustrating a third exem 
plary dynamic instruction Set operation. 

0035 FIG. 19 is a flowchart illustrating a fourth exem 
plary dynamic instruction Set operation. 

0036 FIG.20 is a flowchart illustrating a fifth exemplary 
dynamic instruction Set operation. 

0037 FIG. 21 is a flowchart illustrating the present 
invention method for managing System Software download 
operations in a wireleSS communications device. 

0.038 FIG.22 is a flowchart illustrating additional details 
of FIG. 21 that highlight the recovery status monitoring 
aspect of the invention. 

Feb. 3, 2005 

0039 FIG.23 is a flowchart illustrating additional details 
of FIG. 21 that highlight the back up aspect of the invention. 
0040 FIG.24 is a flowchart illustrating additional details 
of FIG. 21 that highlight the compaction aspect of the 
invention. 

0041 FIG.25 is a flowchart illustrating additional details 
of FIG. 21 that highlight the update ordering aspect of the 
invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

0042 Some portions of the detailed descriptions that 
follow are presented in terms of procedures, Steps, logic 
blocks, codes, processing, and other symbolic representa 
tions of operations on data bits within a wireleSS device 
microprocessor or memory. These descriptions and repre 
Sentations are the means used by those skilled in the data 
processing arts to most effectively convey the Substance of 
their work to otherS Skilled in the art. A procedure, micro 
processor executed Step, application, logic block, process, 
etc., is here, and generally, conceived to be a Self-consistent 
Sequence of Steps or instructions leading to a desired result. 
The Steps are those requiring physical manipulations of 
physical quantities. Usually, though not necessarily, these 
quantities take the form of electrical or magnetic signals 
capable of being Stored, transferred, combined, compared, 
and otherwise manipulated in a microprocessor based wire 
less device. It has proven convenient at times, principally for 
reasons of common usage, to refer to these signals as bits, 
values, elements, Symbols, characters, terms, numbers, or 
the like. Where physical devices, Such as a memory are 
mentioned, they are connected to other physical devices 
through a bus or other electrical connection. These physical 
devices can be considered to interact with logical processes 
or applications and, therefore, are “connected to logical 
operations. For example, a memory can Store or acceSS code 
to further a logical operation, or an application can call a 
code Section from memory for execution. 
0043. It should be borne in mind, however, that all of 
these and Similar terms are to be associated with the appro 
priate physical quantities and are merely convenient labels 
applied to these quantities. Unless Specifically Stated other 
wise as apparent from the following discussions, it is appre 
ciated that throughout the present invention, discussions 
utilizing terms Such as “processing” or “connecting” or 
“translating” or “displaying or “prompting” or “determin 
ing” or “displaying or “recognizing” or the like, refer to the 
action and processes of in a wireleSS device microprocessor 
System that manipulates and transforms data represented as 
physical (electronic) quantities within the computer Sys 
tem's registers and memories into other data Similarly 
represented as physical quantities within the wireleSS device 
memories or registers or other Such information Storage, 
transmission or display devices. 
0044 FIG. 1 is a schematic block diagram of the overall 
wireless device software maintenance system 100. The 
present invention System Software organization is presented 
in detail below, following a general overview of the software 
maintenance system 100. The general system 100 describes 
a process of delivering System Software updates and instruc 
tion sets (programs), and installing the delivered Software in 
a wireleSS device. System Software updates and patch man 



US 2005/0026603 A9 

ager run time instructions (PMRTI), that are more generally 
known as instruction Sets or dynamic instruction Sets, are 
created by the manufacturer of the handsets. The system 
Software is organized into symbol libraries. The symbol 
libraries are arranged into code Sections. When Symbol 
libraries are to be updated, the Software update 102 is 
transported as one or more code Sections. The Software 
update is broadcast to wireless devices in the field, of which 
wireleSS communications device 104 is representative, or 
transmitted in Separate communications from a base Station 
106 using well known, conventional air, data or message 
transport protocols. The invention is not limited to any 
particular transportation format, as the wireleSS communi 
cations device can be easily modified to proceSS any avail 
able over-the-air transport protocol for the purpose of 
receiving system software and PMRTI updates. 
004.5 The system software can be viewed as a collection 
of different Subsystems. Code objects can be tightly coupled 
into one of these abstract Subsystems and the resulting 
collection can be labeled as a symbol library. This provides 
a logical breakdown of the code base and Software patches 
and fixes can be associated with one of these Symbol 
libraries. In most cases, a single update is associated with 
one, or at most, two symbol libraries. The rest of the code 
base, the other Symbol libraries, remains unchanged. 
0046) The notion of symbol libraries provides a mecha 
nism to deal with code and constants. The read-write (RW) 
data, on the other hand, fits into a unique individual RW 
library that contains RAM based data for all libraries. 
0047 Once received by the wireless device 104, the 
transported code Section must be processed. This wireleSS 
device over-writes a specific code Section of nonvolatile 
memory 108. The nonvolatile memory 108 includes a file 
system section (FSS) 110 and a code storage section 112. 
The code Section is typically compressed before transport in 
order to minimize occupancy in the FSS 110. Often the 
updated code section will be accompanied by its RW data, 
which is another kind of symbol library that contains all the 
RW data for each symbol library. Although loaded in ran 
dom access volatile read-write memory 114 when the system 
Software is executing, the RW data always needs to be stored 
in the nonvolatile memory 108, so it can be loaded into 
random access Volatile read-write memory 114 each time the 
wireless device is reset. This includes the first time RW data 
is loaded into random acceSS Volatile read-write memory. AS 
explained in more detail below, the RW data is typically 
arranged with a patch manager code Section. 
0048. The system 100 includes the concept of virtual 
tables. Using Such tables, Symbol libraries in one code 
Section can be patched (replaced), without breaking (replac 
ing) other parts of the System Software (other code Sections). 
Virtual tables execute from random acceSS Volatile read 
write memory 114 for efficiency purposes. A code Section 
address table and symbol offset address table are virtual 
tables. 

0049. The updated code sections are received by the 
wireless device 104 and stored in the FSS 110. A wireless 
device user interface (UI) will typically notify the user that 
new Software is available. In response to UI prompts the user 
acknowledges the notification and Signals the patching or 
updating operation. Alternately, the updating operation is 
performed automatically. The wireleSS device may be unable 

Feb. 3, 2005 

to perform Standard communication tasks as the updating 
process is performed. The patch manager code Section 
includes a non-volatile read-write driver symbol library that 
is also loaded into random access Volatile read-write 
memory 114. The non-volatile read-write driver symbol 
library causes code Sections to be overwritten with updated 
code Sections. The patch manager code Section includes the 
read-write data, code Section address table, and Symbol 
offset address table, as well a symbol accessor code and the 
symbol accessor code address (discussed below). Portions of 
this data are invalid when updated code Sections are intro 
duced, and an updated patch manager code Sections includes 
read-write data, a code Section address table, and a symbol 
offset address table valid for the updated code sections. Once 
the updated code Sections are loaded into the code Storage 
section 112, the wireless device is reset. Following the reset 
operation, the wireleSS device can execute the updated 
system software. It should also be understood that the patch 
manager code Section may include other Symbol libraries 
that have not been discussed above. These other symbol 
libraries need not be loaded into read-write volatile memory 
114. 

0050 FIG. 2 is a schematic block diagram of the soft 
ware maintenance System 100, highlighting the installation 
of instruction Sets via the airlink interface. In addition to 
updating System Software code Sections, the maintenance 
system 100 can download and install dynamic instructions 
sets, programs, or patch manager instruction sets (PMIS), 
referred to herein as patch manager run time instructions 
(PMRTI). The PMRTI code section 200 is transported to the 
wireless device 104 in the same manner as the above 
described system software code sections. PMRTI code sec 
tions are initially stored in the FSS 110. A PMRTI code 
Section is typically a binary file that may be visualized as 
compiled instructions to the handset. A PMRTI code section 
is comprehensive enough to provide for the performance of 
basic mathematical operations and the performance of con 
ditionally executed operations. For example, an RF calibra 
tion PMRTI could perform the following operations: 

0051) IF RF CAL ITEM IS LESS THAN X 
0052 EXECUTE INSTRUCTION 
0053 ELSE 
0054 EXECUTE INSTRUCTION 

0055 APMRTI can support basic mathematical opera 
tions, Such as: addition, Subtraction, multiplication, and 
division. AS with the System Software code Sections, the 
PMRTI code section may be loaded in response to UI 
prompts, and the wireleSS device must be reset after the 
PMRTI is loaded into code storage section 112. Then the 
PMRTI Section can be executed. If the PMRTI code Section 
is associated with any virtual tables or read-write data, an 
updated patch manager code Section will be transported with 
the PMRTI for installation in the code storage section 112. 
Alternately, the PMRTI can be kept and processed from the 
FSS 110. After the handset 104 has executed all the instruc 
tions in the PMRTI section, the PMRTI section can be 
deleted from the FSS 110. Alternately, the PMRTI is main 
tained for future operations. For example, the PMRTI may 
be executed every time the WireleSS device is energized. 
0056 PMRTI is a very powerful runtime instruction 
engine. The handset can execute any instruction delivered to 



US 2005/0026603 A9 

it through the PMRTI environment. This mechanism may be 
used to support RF calibrations. More generally, PMRTI can 
be used to remote debug wireleSS device Software when 
Software problems are recognized by the manufacturer or 
Service provider, typically as the result of user complaints. 
PMRTI can also record data needed to diagnose software 
problems. PMRTI can launch newly downloaded system 
applications for data analysis, debugging, and fixes. PMRTI 
can provide RW databased updates for analysis and possible 
Short term fix to a problem in lieu of an updated System 
Software code section. PMRTI can provide memory com 
paction algorithms for use by the wireleSS device. 
0057. In some aspects of the invention, the organization 
of the System Software into Symbol libraries may impact the 
size of the volatile memory 114 and nonvolatile memory 108 
required for execution. This is due to the fact that the code 
Sections are typically larger than the Symbol libraries 
arranged in the code Sections. These larger code Sections 
exist to accommodate updated code Sections. Organizing the 
System Software as a collection of libraries impacts the 
nonvolatile memory size requirement. For the Same code 
size, the amount of nonvolatile memory used will be higher 
due to the fact that code Sections can be sized to be larger 
than the Symbol libraries arranged within. 
0.058. Once software updates have been delivered to the 
wireless device, the Software maintenance system 100 Sup 
ports memory compaction. Memory compaction is similar to 
disk de-fragmentation applications in desktop computers. 
The compaction mechanism ensures that memory is opti 
mally used and is well balanced for future code Section 
updates, where the size of the updated code Sections are 
unpredictable. The system 100 analyzes the code storage 
section as it is being patched (updated). The system 100 
attempts to fit updated code Sections into the memory Space 
occupied by the code Section being replaced. If the updated 
code Section is larger than the code Section being replaced, 
the system 100 compacts the code sections in memory 112. 
Alternately, the compaction can be calculated by the manu 
facturer or Service provider, and compaction instructions can 
be transported to the wireless device 104. 
0059 Compaction can be a time consuming process 
owing to the complexity of the algorithm and also the vast 
Volume of data movement. The compaction algorithm pre 
dicts feasibility before it begins any processing. UI prompts 
can be used to apply for permission from the user before the 
compaction is attempted. 

0060. In some aspects of the invention, all the system 
Software code Sections can be updated Simultaneously. A 
complete System Software upgrade, however, would require 
a larger FSS 110. 
0061 FIG. 3 is a schematic block diagram illustrating the 
present invention dynamic instruction Set execution in a 
wireless communications device. The system 300 comprises 
a code Storage Section 112 in memory 108 including execut 
able wireless device system software differentiated into a 
plurality of current code sections. Code section one (302), 
code section two (304), code section n (306), and a patch 
manager code section 308 are shown. However, the inven 
tion is not limited to any particular number of code Sections. 
Further, the system 300 further comprises a first plurality of 
Symbol libraries arranged into the Second plurality of code 
sections. Shown are symbol library one (310) arranged in 

Feb. 3, 2005 

code section one (302), symbol libraries two (312) and three 
(314) arranged in code section two (304), and symbol library 
m (316) arranged in code section n (306). Each library 
comprises Symbols having related functionality. For 
example, symbol library one (310) may be involved in the 
operation of the wireleSS device liquid crystal display 
(LCD). Then, the symbols would be associated with display 
functions. AS explained in detail below, additional Symbol 
libraries are arranged in the patch manger code Section 308. 

0062 FIG. 4 is a schematic block diagram of the wireless 
device memory. AS shown, the memory is the code Storage 
section 112 of FIG.1. The memory is a writeable, nonvola 
tile memory, such as Flash memory. It should be understood 
that the code Sections need not necessarily be Stored in the 
same memory as the FSS 110. It should also be understood 
that the present invention System Software structure could be 
enabled with code Sections Stored in a plurality of cooper 
ating memories. The code Storage Section 112 includes a 
Second plurality of contiguously addressed memory blocks, 
where each memory block Stores a corresponding code 
Section from the Second plurality of code Sections. Thus, 
code section one (302) is stored in a first memory block 400, 
code section two (304) in the second memory block 402, 
code section n (306) in the nth memory block 404, and the 
patch manager code section (308) in the pth memory block 
406. 

0063 Contrasting FIGS. 3 and 4, the start of each code 
Section is Stored at corresponding Start addresses in memory, 
and Symbol libraries are arranged to Start at the Start of code 
Sections. That is, each Symbol library begins at a first address 
and runs through a range of addresses in Sequence from the 
first address. For example, code section one (302) starts at 
the first start address 408 (marked with “S”) in code storage 
section memory 112. In FIG. 3, symbol library one (310) 
starts at the start 318 of the first code section. Likewise code 
section two (304) starts at a second start address 410 (FIG. 
4), and symbol library two starts at the start 320 of code 
section two (FIG. 3). Code section n (306) starts at a third 
start address 412 in code storage section memory 112 (FIG. 
4), and symbol library m (316) starts at the start of code 
section in 322 (FIG. 3). The patch manager code section 
Starts at pth start address 414 in code Storage Section 
memory 112, and the first symbol library in the patch 
manager code section 308 starts at the start 324 of the patch 
manager code section. Thus, symbol library one (310) is 
ultimately stored in the first memory block 400. If a code 
Section includes a plurality of Symbol libraries, Such as code 
section two (304), the plurality of symbol libraries are stored 
in the corresponding memory block, in this case the Second 
memory block 402. 

0064. In FIG.3, the system 300 further comprises a code 
section address table 326 as a type of symbol included in a 
Symbol library arranged in the patch manager code Section 
308. The code section address table cross-references code 
Section identifiers with corresponding code Section Start 
addresses in memory. 

0065 FIG. 5 is a table representing the code section 
address table 326 of FIG. 3. The code section address table 
326 is consulted to find the code section start address for a 
symbol library. For example, the system 300 seeks code 
Section one when a Symbol in Symbol library one is required 
for execution. To find the Start address of code Section one, 



US 2005/0026603 A9 

and therefore locate the symbol in symbol library one, the 
code Section address table 326 is consulted. The arrange 
ment of Symbol libraries in code Sections, and the tracking 
of code Sections with a table permits the code Sections to be 
moved or expanded. The expansion or movement operations 
may be needed to install upgraded code sections (with 
upgraded Symbol libraries). 
0.066 Returning to FIG. 3, it should be noted that not 
every symbol library necessarily Starts at the Start of a code 
Section. As shown, Symbol library three (314) is arranged in 
code section two (304), but does not start of the code section 
start address 320. Thus, if a symbol in symbol library three 
(314) is required for execution, the system 300 consults the 
code section address table 326 for the start address of code 
section two (304). As explained below, a symbol offset 
address table permits the symbols in symbol library three 
(314) to be located. It does not matter that the symbols are 
Spread acroSS multiple libraries, as long as they are retained 
with the same code Section. 

0067. As noted above, each symbol library includes 
functionally related Symbols. A Symbol is a programmer 
defined name for locating and using a routine body, variable, 
or data Structure. Thus, a Symbol can be an address or a 
value. Symbols can be internal or external. Internal symbols 
are not visible beyond the Scope of the current code Section. 
More Specifically, they are not Sought by other Symbol 
libraries, in other code Sections. External Symbols are used 
and invoked acroSS code Sections and are Sought by libraries 
in different code sections. The symbol offset address table 
typically includes a list of all external Symbols. 
0068 For example, symbol library one (310) may gen 
erate characters on a wireleSS device display. Symbols in this 
library would, in turn, generate telephone numbers, names, 
the time, or other display features. Each feature is generated 
with routines, referred to herein as a Symbol. For example, 
one symbol in symbol library one (310) generates telephone 
numbers on the display. This symbol is represented by an 
“X”, and is external. When the wireless device receives a 
phone call and the caller ID Service is activated, the System 
must execute the “X” symbol to generate the number on the 
display. Therefore, the system must locate the “X” symbol. 
0069 FIG. 6 is a detailed depiction of symbol library one 
(310) of FIG. 3, with symbols. Symbols are arranged to be 
offset from respective code Section Start addresses. In many 
circumstances, the Start of the Symbol library is the Start of 
a code Section, but this is not true if a code Section includes 
more than one symbol library. Symbol library one (310) 
starts at the start of code section one (see FIG.3). As shown 
in FIG. 6, the “X” symbol is located at an offset of (03) from 
the start of the symbol library and the “Y” symbol is located 
at an offset of (15). The symbol offset addresses are stored 
in a symbol offset address table 328 in the patch manager 
code section (see FIG. 3). 
0070 FIG. 7 is a table representing the symbol offset 
address table 328 of FIG.3. The symbol offset address table 
328 cross-references symbol identifiers with corresponding 
offset addresses, and with corresponding code Section iden 
tifiers in memory. Thus, when the System seeks to execute 
the “X” symbol in symbol library one, the symbol offset 
address table 328 is consulted to locate the exact address of 
the Symbol, with respect to the code Section in which it is 
arranged. 

Feb. 3, 2005 

0071 Returning to FIG. 3, the first plurality of symbol 
libraries typically all include read-write data that must be 
consulted or Set in the execution of these Symbol libraries. 
For example, a Symbol library may include an operation 
dependent upon a conditional Statement. The read-write data 
Section is consulted to determine the Status required to 
complete the conditional Statement. The present invention 
groups the read-write data from all the Symbol libraries into 
a shared read-write Section. In Some aspects of the invention, 
the read-write data 330 is arranged in the patch manager 
code section 308. Alternately (not shown), the read-write 
data can be arranged in a different code Section, code Section 
n (306), for example. 
0072 The first plurality of symbol libraries also includes 
Symbol accessor code arranged in a code Section to calculate 
the address of a Sought symbol. The Symbol accessor code 
can be arranged and Stored at an address in a separate code 
section, code section two (304), for example. However, as 
shown, the Symbol accessor code 332 is arranged and Stored 
at an address in the patch manager code section 308. The 
system 300 further comprises a first location for storage of 
the Symbol accessor code address. The first location can be 
a code Section in the code Storage Section 112, or in a 
Separate memory Section of the wireless device (not shown). 
The first location can also be arranged in the Same code 
Section as the read-write data. AS shown, the first location 
334 is stored in the patch manager code section 308 with the 
read-write data 330, the symbol offset address table 328, the 
code section address table 326, and the symbol accessor 
code 332, and the patch library (patch symbol library) 336. 

0073. The symbol accessor code accesses the code sec 
tion address table and symbol offset address tables to cal 
culate, or find the address of a Sought Symbol in memory. 
That is, the Symbol accessor code calculates the address of 
the Sought Symbol using a corresponding Symbol identifier 
and a corresponding code Section identifier. For example, if 
the “X” symbol in symbol library one is sought, the symbol 
accessor is invoked to seek the symbol identifier (symbol 
ID) “N 1", corresponding to the “X” symbol (see FIG. 7). 
The symbol accessor code consults the symbol offset 
address table to determine that the “X 1” symbol identifier 
has an offset of (03) from the start of code section one (see 
FIG. 6). The symbol accessor code is invoked to seek the 
code Section identifier “CS 1’, corresponding to code Sec 
tion one. The Symbol accessor code consults the code 
Section address table to determine the Start address associ 
ated with code section identifier (code section ID) “CS 1”. 
In this manner, the Symbol accessor code determines that the 
symbol identifier “X 1” is offset (03) from the address of 
(00100), or is located at address (00103). 
0074 The symbol “X” is a reserved name since it is a part 
of the actual code. In other words, it has an absolute data 
asSociated with it. The data may be an address or a value. 
The symbol identifier is an alias created to track the symbol. 
The symbol offset address table and the code section address 
table both work with identifiers to avoid confusion with 
reserved symbol and code Section names. It is also possible 
that the same Symbol name is used acroSS many Symbol 
libraries. The use of identifiers prevents confusion between 
these symbols. 

0075) Returning to FIG. 1, the system 300 further com 
prises a read-write volatile memory 114, typically random 



US 2005/0026603 A9 

access memory (RAM). The read-write data 330, code 
section address table 326, the symbol offset address table 
328, the symbol accessor code 332, and the symbol accessor 
code address 334 are loaded into the read-write volatile 
memory 114 from the patch manager code Section for acceSS 
during execution of the System Software. AS is well known, 
the access times for code Stored in RAM is significantly leSS 
than the access to a nonvolatile memory Such as Flash. 
0076 Returning to FIG.3, it can be noted that the symbol 
libraries need not necessarily fill the code Sections into 
which they are arranged, although the memory blocks are 
sized to exactly accommodate the corresponding code Sec 
tions Stored within. Alternately Stated, each of the Second 
plurality of code Sections has a Size in bytes that accommo 
dates the arranged symbol libraries, and each of the con 
tiguously addressed memory blocks have a size in bytes that 
accommodates corresponding code Sections. For example, 
code section one (302) may be a 100 byte section to 
accommodate a symbol library having a length of 100 bytes. 
The first memory block would be 100 bytes to match the 
byte size of code section one. However, the symbol library 
loaded into code section 1 may be smaller than 100 bytes. As 
shown in FIG. 3, code section one (302) has an unused 
section 340, as symbol library one (310) is less than 100 
bytes. Thus, each of the Second plurality of code Sections 
may have a size larger than the size needed to accommodate 
the arranged symbol libraries. By “oversizing” the code 
Sections, larger updated Symbol libraries can be accommo 
dated. 

0.077 Contiguously addressed memory blocks refers to 
partitioning the physical memory Space into logical blockS 
of variable size. Code Sections and memory blocks are terms 
that are essentially interchangeable when the code Section is 
Stored in memory. The concept of a code Section is used to 
identify a Section of code that is perhaps larger than the 
symbol library, or the collection of symbol libraries in the 
code Section as it is moved and manipulated. 

0078. As seen in FIG. 3, the system 300 includes a patch 
symbol library, which will be referred to herein as patch 
library 336, to arrange new code Sections in the code Storage 
Section with the current code Sections. The arrangement of 
new code Sections with current code Sections in the code 
Storage Section forms updated executable System Software. 
The patch manager 336 not only arranges new code Sections 
in with the current code Sections, it also replaces code 
Sections with updated code Sections. 
0079 Returning to FIG. 4, the file system section 110 of 
memory 108 receives new code Sections, Such as new code 
section 450 and updated patch manager code section 452. 
The file System Section also receives a first patch manager 
run time instruction (PMRTI) 454 including instructions for 
arranging the new code Sections with the current code 
Sections. As seen in FIG. 1, an airlink interface 150 receives 
new, or updated code sections, as well as the first PMRTI. 
Although the airlink interface 150 is being represented by an 
antenna, it should be understood that the airlink interface 
would also include an RF transceiver, baseband circuitry, 
and demodulation circuitry (not shown). The file system 
Section 110 stores the new code sections received via the 
airlink interface 150. The patch library 336, executing from 
read-write Volatile memory 114, replaces a first code Section 
in the code storage Section, code Section n (306) for 

Feb. 3, 2005 

example, with the new, or updated code section 450, in 
response to the first PMRTI 454. Typically, the patch man 
ager code section 308 is replaced with the updated patch 
manager code Section 452. When code Sections are being 
replaced, the patch library 336 over-writes the first code 
Section, code Section n (306) for example, in the code 
Storage Section 112 with the updated code Sections, code 
section 450 for example, in the file system section 110. In the 
extreme case, all the code Sections in code Storage Section 
112 are replaced with updated code sections. That is, the FSS 
110 receives a second plurality of updated code Sections (not 
shown), and the patch library 336 replaces the second 
plurality of code Sections in the code Storage Section 112 
with the second plurality of updated code sections. Of 
course, the FSS 110 must be large enough to accommodate 
the Second plurality of updated code Sections received via 
the airlink interface. 

0080. As noted above, the updated code sections being 
received may include read-write data code Sections, code 
Section address table code Sections, Symbol libraries, Symbol 
offset address table code Sections, Symbol accessor code 
Sections, or a code Section with a new patch library. All these 
code Sections, with their associated Symbol libraries and 
Symbols, may be Stored as distinct and independent code 
Sections. Then each of these code Sections would be replaced 
with a unique updated code Section. That is, an updated 
read-write code section would be received and would 
replace the read-write code Section in the code Storage 
Section. An updated code Section address table code section 
would be received and would replace the code Section 
address table code Section in the code Storage Section. An 
updated symbol offset address table code section would be 
received and would replace the symbol offset address table 
code Section in the code Storage Section. An updated Symbol 
accessor code Section would be received and would replace 
the Symbol accessor code Section in the code Storage Section. 
Likewise, an updated patch manager code Section (with a 
patch library) would be received and would replace the 
patch manager code Section in the code Storage Section. 
0081. However, the above-mentioned code sections are 
typically bundled together in the patch manager code Sec 
tion. Thus, the read-write code Section in the code Storage 
Section is replaced with the updated read-write code Section 
from the file system section 110 when the patch manager 
code section 308 is replaced with the updated patch manger 
code section 450. Likewise, the code section address table, 
the symbol offset address table, the symbol accessor code 
Sections, as well as the patch library are replaced when the 
updated patch manager code section 450 is installed. The 
arrangement of the new read-write data, the new code 
Section address table, the new symbol offset address table, 
the new Symbol accessor code, and the new patch library as 
the updated patch manager code Section 450, together with 
the current code Sections in the code Storage Section, forms 
updated executable System Software. 
0082) When the file system section 110 receives an 
updated Symbol accessor code address, the patch manager 
replaces the Symbol accessor code address in the first 
location in memory with updated Symbol accessor code 
address. As noted above, the first location in memory 334 is 
typically in the patch manager code Section (see FIG. 3). 
0083. As seen in FIG. 3, the patch library 308 is also 
includes a compactor, or a compactor Symbol library 342. 



US 2005/0026603 A9 

The compactor 342 can also be enabled as a distinct and 
independent code Section, however as noted above, it is 
useful and efficient to bundle the functions associated with 
System Software upgrades into a single patch manager code 
Section. Generally, the compactor 342 can be said to resize 
code Sections, So that new Sections can be arranged with 
current code Sections in the code Storage Section 112. 
0084. With the organization, downloading, and compac 
tion aspects of the invention now established, the following 
discussion will center on the wireleSS communications 
device dynamic instruction set execution system 300. The 
system 300 comprises executable system software and sys 
tem data differentiated into code Sections, as discussed in 
great detail, above. Further, the system 300 comprises 
dynamic instruction Sets for operating on the System data 
and the System Software, and controlling the execution of the 
System Software. AS Seen in FIG. 4, a dynamic instruction 
set 470 is organized into the first PMRTI 454. As seen in 
FIG. 3, the System also comprises a run-time engine for 
processing the dynamic instruction Sets, enabled as run-time 
library 370. As with the compactor library 342 and patch 
library 336 mentioned above, the run-time library 370 is 
typically located in the patch manager code Section 308. 
However, the run-time library 370 could alternately be 
located in another code Section, for example the first code 
Section 304. 

0085. The dynamic instruction sets are a single, or mul 
tiple sets of instructions that include conditional operation 
code, and generally include data items. The run-time engine 
reads the operation code and determines what operations 
need to be performed. Operation code can be conditional, 
mathematical, procedural, or logical. The run-time engine, 
or run-time library 370 processes the dynamic instruction 
Sets to perform operations Such as mathematical or logical 
operations. That is, the run-time engine reads the dynamic 
instruction Set 470 and performs a Sequence of operations in 
response to the operation code. Although the dynamic 
instruction Sets are not limited to any particular language, 
the operation code is typically a form of machine code, as 
the wireleSS device memory is limited and execution Speed 
is important. The operation code is considered conditional in 
that it analyzes a data item and makes a decision as a result 
of the analysis. The run-time engine may also determine that 
an operation be performed on data before it is analyzed. 

0.086 For example, the operation code may specify that 
a data item from a wireleSS device memory be compared to 
a predetermined value. If the data item is less than the 
predetermined value, the data item is left alone, and if the 
data item is greater than the predetermined value, it is 
replaced with the predetermined value. Alternately, the 
operation code may add a Second predetermined value to a 
data item from the wireless device memory, before the 
above-mentioned comparison operation is performed. 

0.087 As mentioned above, the file system section non 
volatile memory 110 receives the dynamic instruction sets 
through an interface such as the airlink 150. As shown in 
FIG. 1, the interface can also be radio frequency (RF) 
hardline 160. Then, the PMRTI can be received by the FSS 
110 without the System Software being operational, Such as 
in a factory calibration environment. The PMRTI can also be 
received via a logic port interface 162 or an installable 
memory module 164. The memory module 164 can be 

Feb. 3, 2005 

installed in the wireless device 104 at initial calibration, 
installed in the field, or installed during factory recalibration. 
Although not specially shown, the PMRTI can be received 
via an infrared or Bluetooth interfaces. 

0088 FIGS. 8a and 8b are depictions of instructions 
being accessed by the run-time engine 370. Shown in FIG. 
8a is a first instruction 800, a second instruction 802, and a 
jth instruction 804, however, the dynamic instruction set is 
not limited to any particular number of instructions. The 
length of the operation code in each instruction is fixed. The 
run-time engine 370 captures the length of the instruction, as 
a measure of bytes or bits, determine if the instruction 
includes data items. The remaining length of the instruction, 
after the operation code is Subtracted, includes the data 
items. The run-time engine extracts the data items from the 
instruction. As shown, the length 806 of the first instruction 
800 is measured and data items 808 are extracted. Note that 
not all instructions necessary include data items to be 
extracted. The run-time engine 370 uses the extracted data 
808 in performing the Sequence of operations responsive to 
the operation code 810 in instruction 800. 

0089 FIG. 8b is a more detailed depiction of the first 
instruction 800 of FIG.8a. Using the first instruction 800 as 
an example, the instruction includes operation code 810 and 
data 808. The instruction, and more specifically, the data 
item section 808 includes symbol identifiers, which act as a 
link to Symbols in the wireleSS device code Sections. AS 
explained in detail above, the symbol identifiers are used 
with the code section address table 326 (see FIG. 5) and the 
symbol offset address table 328 (see FIG. 7) to locate the 
Symbol corresponding to the Symbol identifier. AS Shown, a 
symbol identifier “X 1” is shown in the first instruction 
800. The symbol offset address table 328 locates the corre 
sponding symbol in a code section with the “CS 1” iden 
tifier and an offset of "3”. The code section address table 326 
gives the start address of code section one (302). In this 
manner, the symbol “X” is found (see FIG. 6). 
0090. After the run-time engine locates symbols corre 
sponding to the received symbol identifiers using the code 
section address table and symbol offset address table, it 
extracts data when the located Symbols are data items. For 
example, if the symbol “X” is a data item in symbol library 
one (310), the run-time engine extracts it. Alternately, the 
“X” symbol can be operation code, and the run-time engine 
executes the symbol “X” when it is located. 

0091 PMRTI can be used to update system data, or 
System data items. In Some aspects of the invention System 
data is Stored in a code Section in the file System Section 110, 
code section 472 for example, see FIG. 4. The run-time 
engine accesses System data from code Section 472 and 
analyzes the System data. The run-time engine processes the 
operation code of the dynamic instruction Sets to perform 
mathematical or logical operation on data items, as 
described above. After the operation, the run-time engine 
processes the instructions to create updated System data. 
Note that the updated System data may include unchanged 
data items in Some circumstances. The System data in the 
Second code Section 472 is replaced with the updated System 
data in response to the operation code. Thus, by the pro 
cessing of instruction by the run-time engine, the System 
Software is controlled to execute using the updated System 
data in code Section 472. In this manner, Specifically targeted 



US 2005/0026603 A9 

Symbols in the System Software can be updated, without 
replacing entire code Sections. By the same process, the 
System data can be replaced in a code Section in the code 
Storage Section 112. For example, the System data can be 
Stored in the third code Section 344, and the run-time engine 
can replace the System data in the third code Section with 
updated System data in response to the operation code. 

0092 PMRTI can also be used to update data items in 
Volatile memory 114. As an example, the Volatile memory 
114 accept read-write data 330, see FIG. 1. The read-write 
data can be from one, or from a plurality of code Sections in 
the code storage section 112 and/or the FSS 110. The 
run-time engine accesses the read-write data, analyzes the 
read-write data 330, creates updated read-write data, and 
replaces the read-write data 330 in the volatile memory 114 
with the updated read-write data in response to the operation 
code. Then, the System Software is controlled to execute 
using the updated read-write data in Volatile memory 114. 

0093. In some aspects of the invention, the run-time 
engine monitors the execution of the System Software. 
Performance monitoring is broadly defined to include a great 
number of wireleSS device activities. For example, data Such 
as channel parameters, channel characteristics, System Stack, 
error conditions, or a record of data items in RAM through 
a Sequence of operations leading to a specific failure con 
dition or reduced performance condition can be collected. It 
is also possible to use dynamic instructions Sets to analyze 
collected performance data, provide updated data Variants, 
and recapture data to study possible Solutions to the prob 
lem. Temporary fixes can also be provisioned using PMRTI 
proceSSeS. 

0094) More specifically, the run-time engine collects per 
formance data, and Stores the performance data in the file 
System Section in response to the operation code. Then, the 
System Software is controlled to execute by collecting the 
performance data for evaluation of the System Software. 
Evaluation can occur as a form of analysis performed by 
dynamic instruction Set operation code, or it can be per 
formed outside the wireleSS device. In Some aspects of the 
invention, the run-time engine accesses the performance 
data that has been collected from the file System Section and 
transmits the performance data via an airlink interface in 
response to the operation code. Collecting performance data 
from wireleSS devices in the field permits a manufacturer to 
thoroughly analyze problems, either locally or globally, 
without recalling the devices. 

0.095. In some aspects of the invention, file system sec 
tion 110 receives a patch manager run time instruction 
including a new code Section. For example, a new code 
section 474 is shown in FIG. 4. Alternately, the new code 
section can be independent of the PMRTI, such as new code 
section n (450). For example, the new code section n (450) 
may have been received in earlier airlink communications, 
or have been installed during factory calibration. The run 
time engine adds the new code section 474 (450) to the code 
Storage Section in response to the operation code. In Some 
aspects of the invention, the new code Section is added to an 
unused block in the code Storage Section 112. Alternately, a 
compaction operation is required. Then, the System Software 
is controlled to execute using the new code Section 474 
(450). In other aspects of the invention, the PMRTI 454 
includes an updated code Section 474. Alternately, the new 

Feb. 3, 2005 

code Section 450 is an updated code Section independent of 
the PMRTI. The run-time engine replaces a code section in 
the code Storage Section, code Section two (304) for an 
example, with the updated code section 474 (450) in 
response to the operation code. The System Software is 
controlled to execute using the updated code Section 474 
(450). In Some aspects of the invention a compaction opera 
tion is required to accommodate the updated code Section. 
Alternately, the updated code Section is added to an unused 
or vacant Section of the code Storage Section. 
0096 AS explained above, the addition of a new code 
Section or the updating of a code Section typically requires 
the generation of a new code Section address table, as these 
operation involve either new and/or changed code Section 
Start addresses. Further, a compaction operation also 
requires a new code Section address table. The compaction 
operations may be a result of the operation of the compactor 
342, explained above, or the result of PMRTI instructions 
that Supply details as to how the compaction is to occur. 
When the PMRTI includes downloading and compaction 
instructions, the PMRTI typically also includes a new code 
Section address table that becomes valid after the download 
ing and compaction operations have been completed. 
0097 FIG. 9 is a schematic block diagram including 
features of FIGS. 1-8b presented for the purpose of illus 
trating the present invention System for managing System 
Software download operations in a wireleSS communications 
device. The system 900 comprises an airlink interface 902, 
equivalent the airlink interface 150 of FIG. 1, and execut 
able System Software and System data differentiated into 
code Sections Stored in nonvolatile memory permanent Stor 
age 904, equivalent to memory 108 of FIG. 1. The non 
volatile permanent storage 904 includes a file system section 
906 and code storage section 908. 
0098. Dynamic instruction sets 910 for managing the 
downloading of System Software updates are received via the 
airlink interface 902. The dynamic instruction sets 910, as 
well as new code Sections 912, are part of patch manager run 
time instructions 914. Typically, the dynamic instruction sets 
910 are stored in the file system section 906. A run-time 
engine, or run-time library 916 processes the dynamic 
instruction sets 910. AS mentioned above, the run-time 
library 916 is typically part of the patch manager code 
section 918. The executable system software and system 
data (code Sections in permanent memory 904) are updated 
in response to processing the dynamic instruction Sets 910. 
The dynamic instruction sets 910 include functional man 
agerS Selected from the group including recovery Status 
monitoring, back up, compacting, and update ordering. 
0099] The system 900 further comprises a recovery status 
table 920 cross-referencing new code section identifiers with 
their update status. The recovery status table 920 is shown 
as a separate code section in the file system section 906. In 
Some aspects of the invention the recovery status table 920 
is loaded into volatile memory 922 when the system 900 is 
turned on. The table 920 is updated in volatile memory 922 
and restored in permanent memory 904 when the system is 
turned off. 

0100 FIG. 10 is the schematic block diagram of the 
system 900 of FIG. 9 featuring the dynamic instruction set 
recovery status monitoring manager 1000 aspect of the 
dynamic instruction Sets. The dynamic instruction Set recov 



US 2005/0026603 A9 

ery Status monitoring manager, hereafter referred to as the 
recovery status monitoring manager 1000, reads the recov 
ery status table 920 (see dotted arrow “1”) in response to 
rebooting the wireleSS communications device, to determine 
if new code Sections have been Stored in permanent Storage. 
0101 FIG. 11 is a representation depicting an exemplary 
recovery status table 920 of FIG. 9. The table 920 shows 
that the code sections identified as CS 1 and CS 2 have 
been successfully moved from the file system section 906 to 
the code storage section 908. However, the table indicates 
that it is unknown whether the code Section identified as 
CS n has been Successfully stored. For example, the user 
may have turned off the wireless device before the storage 
operation was completed, or the wireleSS device battery 
died. 

0102 Returning to FIG. 10, recovery status monitoring 
manager 1000 stores the new code section in permanent 
Storage if the new code Sections have not been Stored and 
updates the recovery status table when the new code Sections 
have been Stored. For example, the recovery Status moni 
toring manager 1000 stores CS n (1002) in code storage 
section 908 (see dotted arrow "2"), and then updates the 
recovery status table So that the CS in Status is changed to 
“loaded” (not shown). Note, that the patch manger functions 
mentioned above are typically used in the moving of code 
sections from the file system section 906 to the code storage 
Section 908. 

0103) In some aspects of the invention, the recovery 
status monitoring manager 1000 further determines the risk 
asSociated with Storing each new code Section and, if the risk 
of Storing new code Sections is high, takes Safety precau 
tions. For example, the recovery Status monitoring manager 
1000 takes safety precautions such as checking the battery 
for Sufficient power to complete the new code Storing 
process, warning the user of high-risk code Storing opera 
tions, using prompts to Verify user-initiated power downs, 
and preventing user-initiated power downs. Returning 
briefly to FIG. 11, the risk factor is represented as a column 
in the recovery status table. 
0104. The storage of some code sections involves the 
replacement of key code Section in the System Software with 
updated code Sections. For example, the file System Section 
906 may receive new code sections such as a boot code 
Section, a patch manager code Section, a code Section 
address table, a Symbol offset address table, read-write data, 
and Symbol accessor code addresses (not shown). The 
incomplete Storage of any of these code Sections may result 
the wireleSS device being completely non-operational upon 
turn-on. That is, the wireless device would likely have to be 
returned for reprogramming at a Service center. Therefore, 
the recovery status monitoring manager 1000 determines the 
risk associated with Storing each of these new code Sections 
in the file System Section, and takes Safety precautions 
accordingly. 

0105 The file system section can potentially receive 
patch manager run time instructions including a new patch 
manager code Section, CS n (1002) for example. AS 
described above, the patch manger code Section includes a 
patch library for moving code Sections in the file System 
Section 906 into permanent Storage, typically the code 
storage section 908. In some aspects of the invention, the 
recovery Status monitoring manager 1000 maintains a Spare 

Feb. 3, 2005 

patch library 1004 in the file system section 906. The 
recovery status monitoring manager 1000 reads the recovery 
status table 920 to determine if the new patch manager code 
Section has been Successfully Stored in the code Storage 
Section in response to rebooting the wireleSS communica 
tions device. If the new patch manager code section 1002 
has not been Successfully Stored in the code Storage Section, 
the spare patch library 1004 is used to move the new patch 
manager code section 1002 from the file system section 906 
to code storage section 908. Then, the new patch manager 
code section 1002 can be used for system software opera 
tions. Without the spare patch library 1004, the wireless 
device would be unable to recover from the incomplete 
Storage of a new patch manager code Section. 

0106 FIG. 12 is the schematic block diagram of the 
system 900 of FIG. 9 featuring the dynamic instruction set 
back up manager 1200 aspect of the dynamic instruction 
Sets. The dynamic instruction Set back up manger is here 
after referred to as the back up manger 1200. As the title 
Suggests, the back up manger provides a System for recov 
ering code Sections or System data that has been replaced 
with code Sections that are non-operational with the System 
Software. For example, the file system section 906 receives 
an updated first code Section 1202 to replace a first code 
section 1204 in the code storage section 908. The back up 
manager 1200 moves the first code section 1204 from the 
code storage section 908 to the file system section 906 (see 
dotted line “1”), typically using libraries from the patch 
manger code section 1206. Using libraries from the patch 
manager code section 1206, the updated code section 1202 
is moved from the file system section 906 to the code storage 
section 908 (see dotted line “2”). The back up manager 1200 
determines if the updated first code section 1202 in the code 
storage section 908 operates with the system software within 
predetermined constraints. The back up manager 1200 
replaces the updated first code section 1202 in the code 
storage section 908 with the first code section 1204 from the 
file system section 906, if the updated first code section 1202 
is determined to not operate with the System Software within 
the predetermined constraints. 

0107. In some aspects of the invention, the file system 
section 906 receives a test code section 1208 with prede 
termined constraints. The back up manager 1200 determines 
if the updated first code section 1202 in the code storage 
section 908 operates with the system software within pre 
determined constraints by executing the test code Section 
with the updated code Section. The back up manager records 
the results of executing the test code section 1208, and 
compares the recorded results with the predetermined con 
Straints. In other aspects of the invention the file System 
section 906 receives an updated code section 1202 with a 
test code library. Then, the back up manager 1200 executes 
the test code library from the updated code Section. That is, 
a separate test code Section is not required as part of the 
patch manager run time instruction. 

0108). The file system section 906 can receive the test 
code Section from a variety of Sources Such as an airlink 
interface (902, see FIG. 9), a user operated keyboard 
interface (not shown), a test port interface Such as a logic 
port, Serial port, or RF port, and even a memory module. 

0109 FIG. 13 is the schematic block diagram of the 
system 900 of FIG. 9 featuring the dynamic instruction 



US 2005/0026603 A9 

compaction manager 1300 aspect of the dynamic instruction 
Sets. AS explained above, the compaction manager is respon 
Sible for manipulating code Sections in the code Storage 
Section to fit new code Sections, or to accommodate updated 
code Sections that are larger than the code Sections to be 
replaced. For example, the file system section 906 receives 
an updated first code Section 1302, having an updated code 
Section size, to replace a first code Section 1304 having a first 
Size Smaller than the updated first code Section size. The 
compaction manager 1300 accesses a compaction library 
1306 in a patch manager code section 1308 and resizes code 
sections in the code storage section 908 to accommodate the 
updated first code section 1302. 
0110. As with the recovery status monitoring manager, 
the compaction manager 1300 determines the risk associated 
with compacting code Sections in the code Storage Section 
and, if the risk of compacting code Sections is high, takes 
Safety precautions. For example, compacting the patch man 
ger code Section, or other critical parts of the System 
Software is risky, as the wireleSS device may not be able to 
recover from an improper or uncompleted compaction 
operation. The compaction manager 1300 takes Safety pre 
cautions Such as checking the battery for Sufficient power to 
complete the new code Storing process, warning the user of 
high-risk code Storing operations, using prompts to Verify 
user-initiated power downs, and preventing user-initiated 
power downs. 

0111 FIG. 14 is the schematic block diagram of the 
system 900 of FIG. 9 featuring the dynamic instruction set 
update ordering manager 1400 aspect of the dynamic 
instruction Sets. When multiple new or updated code Sec 
tions are to be stored, the update ordering manger 1400 
determines the order of Storage. For example, the file System 
section 906 receives the update ordering dynamic instruction 
sets or update ordering manager 1400 with a plurality of new 
code Sections, Such as first new code Section 1402, Second 
new code section 1404, and third new code section 1406. 
The update ordering manager 1400 moves the new code 
sections 1402-1406 from the file system storage 906 to the 
code storage section 908 in an order dictated by the ordering 
instruction 1400. 

0112 As shown, the second new code section 1404 is 
moved first (dotted line “1”), the first new code section 1402 
is moved second (dotted line “2), and the third new code 
section 1406 is moved third (dotted line “3”). The move and 
Store operations are accomplished with the help of libraries 
form the patch manger code Section 1408. In Some aspects 
of the invention, the ordering manager 1400 determines the 
risk associated with Storing each new code Section 1402 
1406 and orders the high risk code sections to be moved 
after lower risk Storage Sections. In this example, the update 
ordering manager 1400 has determined that the third new 
code section 1406 is the most risky to store. 
0113 FIGS. 15a and 15b are flowcharts illustrating the 
present invention method for executing dynamic instruction 
Sets in a wireleSS communications device. Although depicted 
as a Sequence of numbered Steps for clarity, no order should 
be inferred from the numbering (and the numbering in the 
methods presented below) unless explicitly stated. The 
method starts at Step 1500. Step 1501 a forms the system 
Software into symbol libraries, each symbol library com 
prising symbols having related functionality. Step 1501b 

Feb. 3, 2005 

arranges the symbol libraries into code sections. Step 1502 
executes system software. Step 1503 launches a run-time 
engine. Typically, launching a run-time engine includes 
invoking a run-time library from a first code Section. The 
run-time engine can be launched from either volatile or 
nonvolatile memory. Step 1504, following Step 1503, 
receives the dynamic instruction Sets. Receiving the 
dynamic instruction sets in Step 1504 includes receiving the 
dynamic instruction Sets through an interface Selected from 
the group including airlink, radio frequency (RF) hardline, 
installable memory module, infrared, and logic port inter 
faces. In Some aspects of the invention, receiving the 
dynamic instruction set in Step 1504 includes receiving a 
patch manager run time instruction (PMRTI) in a file system 
Section nonvolatile memory. 
0114 Step 1506 processes dynamic instruction sets. Pro 
cessing dynamic instruction Sets includes processing 
instructions in response to mathematical and logical opera 
tions. In some aspects of the invention, Step 1507 (not 
shown), following the processing of the dynamic instruction 
sets, deletes dynamic instruction sets. Step 1508 operates on 
system data and system software. Step 1510, in response to 
operating on the System data and System Software, controls 
the execution of the System Software. 
0115 Typically, receiving the patch manager run time 
instructions in Step 1504 includes receiving conditional 
operation code and data items. Then, processing dynamic 
instruction sets in Step 1506 includes substeps. Step 1506a1 
uses the run-time engine to read the patch manager run time 
instruction operation code. Step 1506b performs a sequence 
of operations in response to the operation code. 
0116. In Some aspects, arranging the Symbol libraries into 
code sections in Step 1501b includes starting symbol librar 
ies at the Start of code Sections and arranging Symbols to be 
offset from their respective code Section Start addresses. 
Then the method comprises further steps. Step 1501c stores 
the Start of code Sections at corresponding Start addresses. 
Step 1501d maintains a code section address table (CSAT) 
cross-referencing code Section identifiers with correspond 
ing start addresses. Step 1501e maintains a symbol offset 
address table (SOAT) cross-referencing symbol identifiers 
with corresponding offset addresses, and corresponding 
code Section identifiers. 

0117. In some aspects of the invention, receiving the 
patch manager run time instruction in Step 1504 includes 
receiving Symbol identifiers. Then, the method comprises a 
further step. Step 1506a2 locates symbols corresponding to 
the received symbol identifiers by using the code Section 
address table and symbol offset address table. Performing a 
Sequence of operations in response to the operation code in 
Step 1506b includes substeps. Step 1506b1 extracts the data 
when the located symbols are data items. Step 1506b2 
executes the Symbols when the located Symbols are instruc 
tions. 

0118. In some aspects of the invention, processing 
dynamic instruction sets in Step 1506b1 includes additional 
substeps. Step 1506b1a uses the run-time engine to capture 
the length of the patch manager run time instruction. Step 
1506b1b extracts the data items from the patch manager run 
time instruction, in response to the operation code. Step 
1506b1c uses the extracted data in performing the sequence 
of operations responsive to the operation code. 



US 2005/0026603 A9 

0119 FIG. 16 is a flowchart illustrating an exemplary 
dynamic instruction Set operation. Several of the Steps in 
FIG. 16 are the same as in FIG. 15, and are not repeated 
here in the interest of brevity. Processing dynamic instruc 
tion sets in Step 1606 includes substeps. Step 1606a 
accesses System data Stored in a Second code Section in the 
file system section. Step 1606b analyzes the system data. 
Step 1606c creates updated System data. Then, operating on 
system data and system software in Step 1608 includes 
replacing the System data in the Second Section with the 
updated System data, and controlling the execution of the 
system software in Step 1610 includes using the updated 
System data in the execution of the System Software. 

0120 FIG. 17 is a flowchart illustrating another exem 
plary dynamic instruction Set operation. Several of the Steps 
in FIG. 17 are the same as in FIG. 15, and are not repeated 
here in the interest of brevity. Step 1701c stores a plurality 
of code Sections in a code Storage Section nonvolatile 
memory. Processing dynamic instruction sets in Step 1706 
includes substeps. Step 1706a accesses system data stored in 
a third code section in the code storage Section (CSS). Step 
1706b analyzes the system data. Step 1706c creates updated 
System data. Operating on the System data and System 
Software in Step 1708 includes replacing the system data in 
the third code Section with the updated System data. Con 
trolling the execution of the system software in Step 1710 
includes using the updated System data in the execution of 
the System Software. 

0121 FIG. 18 is a flowchart illustrating a third exem 
plary dynamic instruction Set operation. Several of the Steps 
in FIG. 18 are the same as in FIG. 15, and are not repeated 
here in the interest of brevity. Step 1801c stores a plurality 
of code Sections in a code Storage Section nonvolatile 
memory. Step 1801d loads read-write data into volatile 
memory. Processing dynamic instruction sets in Step 1806 
includes substeps. Step 1806a accesses the read-write data 
in volatile memory. Step 1806b analyzes the read-write data. 
Step 1806c creates updated read-write data. Operating on the 
system data and system software in Step 1808 includes 
replacing the read-write data in Volatile memory with the 
updated read-write data. Controlling the execution of the 
system software in Step 1810 includes using the updated 
read-write data in the execution of the System Software. 
0.122 FIG. 19 is a flowchart illustrating a fourth exem 
plary dynamic instruction Set operation. Several of the Steps 
in FIG. 19 are the same as in FIG. 15, and are not repeated 
here in the interest of brevity. Processing dynamic instruc 
tion sets includes substeps. Step 1906a, in response to the 
operation code, monitors the execution of the System Soft 
ware. Step 1906b collects performance data. Step 1906c 
stores the performance data. Step 1906d transmits the stored 
data via an airlink interface. Operating on the System data 
and system software in Step 1908 includes using the per 
formance data in the evaluation of System Software. Step 
1910 controls the execution of the system software. 
0123 FIG.20 is a flowchart illustrating a fifth exemplary 
dynamic instruction Set operation. Several of the Steps in 
FIG. 20 are the same as in FIG. 15, and are not repeated 
here in the interest of brevity. Step 2001c stores a plurality 
of code Sections in a code Storage Section nonvolatile 
memory. Receiving patch manager run time instructions in 
Step 2003 includes receiving a new code section. Operating 

Feb. 3, 2005 

on the system data and system software in Step 2008 
includes adding the new code Section to the code Storage 
Section, and controlling the execution of the System Software 
in Step 2010 includes using the new code section in the 
execution of the System Software. 
0.124. Alternately, receiving a new code Section in Step 
2003 includes receiving an updated code section. Then, 
operating on the System data and System Software in Step 
2008 includes replacing a fourth code section in the code 
Storage Section with the updated code Section. 
0.125 FIG. 21 is a flowchart illustrating the present 
invention method for managing System Software download 
operations in a wireleSS communications device. The 
method starts at Step 2100. Step 2102 forms the system 
Software into symbol libraries, each symbol library com 
prising symbols having related functionality. Step 2104 
arranges the Symbol libraries into code Sections Stored in a 
code storage section of nonvolatile memory. Step 2106 
executes system software. Step 2108 launches a run-time 
engine. Step 2110 receives patch manager run time instruc 
tions (PMRTIs) in a file system section (FSS) nonvolatile 
memory, the patch manger run time instructions including 
dynamic instruction Sets and new code Sections. Step 2112 
processes dynamic instruction Sets. Step 2114, in response to 
processing the dynamic instruction Sets, manages the down 
loading of System Software updates received via an airlink 
interface. Step 2116 executes updated System Software. 
0.126 Managing the downloading of system software 
updates received via an airlink interface in Step 2114 
includes processing dynamic instruction Set management 
functions Selected from the group including recovery status 
monitoring, back up, compacting, and update ordering. 

0127 FIG.22 is a flowchart illustrating additional details 
of FIG. 21 that highlight the recovery status monitoring 
aspect of the invention. Processing recovery Status monitor 
ing dynamic instruction Sets in Step 2112 includes Substeps. 
Step 2200 maintains a recovery status table cross-referenc 
ing new code Section identifiers with their update Status. 
Step 2202, in response to rebooting the wireleSS communi 
cations device, reads the recovery status table to determine 
if new code Sections have been Stored in permanent Storage. 
Step 2204, if the new code sections have not been stored, 
Stores the new code Section in permanent Storage. Step 2206 
updates the recovery Status table when the new code Sections 
have been stored. 

0128. Some aspects of the invention include additional 
StepS. Step 2202a determines the risk associated with Storing 
each new code Section. Step 2202b takes Safety precautions 
if the risk of Storing new code Sections is high. Taking Safety 
precautions in Step 2202b includes taking Safety precautions 
Selected from the group of checking the battery for Sufficient 
power to complete the new code Storing process, warning 
the user of high-risk code Storing operations, using prompts 
to Verify user-initiated power downs, and preventing user 
initiated power downs. 
0.129 Determining the risk associated with storing each 
new code Section in Step 2202a includes determining the 
risk associated with new code Sections Selected from the 
group including a boot code Section, a patch manager code 
Section, a code Section address table, a Symbol offset address 
table, read-write data, and Symbol accessor code addresses. 



US 2005/0026603 A9 

0130. In some aspects of the invention, forming the 
system software into symbol libraries (Step 2102, see FIG. 
21) includes forming a patch manager code Section with a 
patch library for moving code Sections in the file System 
Section into permanent Storage. Receiving the patch man 
ager run time instructions in a file System Section nonvolatile 
memory (Step 2110, se FIG. 21) includes receiving a new 
patch manager code Section. Then, processing recovery 
Status monitoring dynamic instruction Sets includes further 
SubstepS. Step 2202c maintains a spare patch library in the 
file system section. Step 2202 reads the recovery status table 
to determine if the new patch manager code Section has been 
Successfully Stored in the code Storage Section, in response 
to rebooting the wireleSS communications device. Step 
2202d uses the spare patch library to move the new patch 
manager code Section from the file System Section to code 
Storage Section, if the new patch manager code Section has 
not been Successfully Stored in the code Storage Section. 

0131 FIG.23 is a flowchart illustrating additional details 
of FIG. 21 that highlight the back up aspect of the invention. 
Receiving new code sections (in Step 2110, see FIG. 21) 
includes receiving an updated first code Section to replace a 
first code Section in the code Storage Section. Then, proceSS 
ing back up management dynamic instruction Sets in Step 
2112 includes substeps. Step 2300 moves the first code 
Section from the code Storage Section to the file System 
section. Step 2302 determines if the updated first code 
Section in the code Storage Section operates with the System 
Software within predetermined constraints. Step 2304 
replaces the updated first code Section in the code Storage 
section with the first code section from the file system 
Section, if the updated first code Section is determined to not 
operate with the System Software within the predetermined 
constraints. 

0.132. In some aspects of the invention, receiving new 
code sections (Step 2110, FIG. 21) includes receiving a test 
code Section with predetermined constraints. Then, deter 
mining if the updated first code Section in the code Storage 
Section operates with the System Software within predeter 
mined constraints in Step 2302 includes substeps. Step 
2302a executes the test code section with the updated code 
section. Step 2302b records the results of executing the test 
code section. Step 2302c compares the recorded results with 
the predetermined constraints. 

0133. In Some aspects, receiving new code Sections (Step 
2110, FIG. 21) includes receiving an updated code section 
with a test code library. Then, determining if the updated 
first code Section in the code Storage Section operates with 
the System Software within predetermined constraints in 
Step 2302 includes executing the test code library from the 
updated code Section. Receiving new code Sections (Step 
2110, FIG. 21) includes receiving a test code section with 
predetermined constraints from a Source Selected from the 
group including an airlink interface, a user operated key 
board interface, and a test port interface. 
0134 FIG.24 is a flowchart illustrating additional details 
of FIG. 21 that highlight the compaction aspect of the 
invention. Receiving new code sections (Step 2110, FIG. 
21) includes receiving an updated first code Section, having 
an updated code Section size, to replace a first code Section 
having a first size Smaller than the updated first code Section 
size. Processing compaction management dynamic instruc 

Feb. 3, 2005 

tion sets in Step 2112 includes substeps. Step 2400 accesses 
a compaction library in a patch manager code Section. Step 
2402 resizes code Sections in the code Storage Section to 
accommodate the updated first code Section. 
0135) In some aspects of the invention a further step, Step 
2400a determines the risk associated with compacting code 
sections in the code storage section. Step 2400b takes safety 
precautions if the risk of compacting code Sections is high. 
Taking safety precautions in Step 2400b includes taking 
Safety precautions Selected from the group of checking the 
battery for Sufficient power to complete the new code Storing 
process, warning the user of high-risk code Storing opera 
tions, using prompts to Verify user-initiated power downs, 
and preventing user-initiated power downs. 
0.136 FIG.25 is a flowchart illustrating additional details 
of FIG. 21 that highlight the update ordering aspect of the 
invention. Receiving dynamic instruction sets (Step 2110, 
FIG. 21) includes receiving an update ordering instruction, 
and receiving new code Sections includes receiving a plu 
rality of new code Sections. Processing update ordering 
management dynamic instruction Sets in Step 2112 includes 
moving the new code Sections from the file System Storage 
to the code Storage Section in an order dictated by the 
ordering instruction. 
0.137 In Some aspects of the invention, processing update 
ordering dynamic instruction Sets in Step 2112 includes 
substeps. Step 2500 determines the risk associated with 
storing each new code section. Step 2502 orders the high 
risk code Sections to be moved after lower risk Storage 
Sections. 

0.138 A system and method have been provided for 
executing dynamic instruction Sets in a wireleSS communi 
cations device, So as to aid in the process of managing the 
downloading of Software upgrades. The System is easily 
updateable because of the arrangement of symbol libraries in 
code Sections, with tables to access the Start addresses of the 
code Sections in memory and the offset addresses of Symbols 
in the Symbol libraries. The use on dynamic instruction Sets 
permits custom modifications to be performed to each 
wireleSS device, based upon Specific characteristics of that 
device. A few general examples have been given illustrating 
possible uses for the dynamic instructions Sets. However, the 
present invention is not limited to just these examples. Other 
variations and embodiments of the invention will occur to 
those skilled in the art. 

We claim: 
1. In a wireleSS communications device, a method for 

managing System Software download operations, the method 
comprising: 

executing System Software; 

launching a run-time engine; 

processing dynamic instruction Sets, and, 
in response to processing the dynamic instruction Sets, 

managing the downloading of System Software updates 
received via an airlink interface. 

2. The method of claim 1 further comprising: 
executing updated System Software. 



US 2005/0026603 A9 

3. The method of claim 1 further comprising: 

forming the System Software into Symbol libraries, each 
Symbol library comprising Symbols having related 
functionality; 

arranging the Symbol libraries into code Sections Stored in 
a code Storage Section of nonvolatile memory; and, 

receiving patch manager run time instructions (PMRTIs) 
in a file system section (FSS) nonvolatile memory, the 
patch manger run time instructions including dynamic 
instruction Sets and new code Sections. 

4. The method of claim 3 wherein managing the down 
loading of System Software updates received via an airlink 
interface includes processing dynamic instruction Set man 
agement functions Selected from the group including recov 
ery status monitoring, back up, compacting, and update 
ordering. 

5. The method of claim 4 wherein processing recovery 
Status monitoring dynamic instruction Sets includes: 

maintaining a recovery Status table cross-referencing new 
code Section identifiers with their update Status, 

in response to rebooting the wireleSS communications 
device, reading the recovery status table to determine if 
new code Sections have been Stored in permanent 
Storage; 

if the new code Sections have not been Stored, Storing the 
new code Section in permanent Storage; and, 

when the new code Sections have been Stored, updating 
the recovery Status table. 

6. The method of claim 5 wherein processing recovery 
Status monitoring dynamic instruction Sets further includes: 

determining the risk associated with Storing each new 
code Section; and, 

if the risk of Storing new code Sections is high, taking 
Safety precautions. 

7. The method of claim 6 wherein taking safety precau 
tions includes taking Safety precautions Selected from the 
group of checking the battery for Sufficient power to com 
plete the new code Storing process, warning the user of 
high-risk code Storing operations, using prompts to Verify 
user-initiated power downs, and preventing user-initiated 
power downs. 

8. The method of claim 7 wherein determining the risk 
asSociated with Storing each new code Section includes 
determining the risk associated with new code Sections 
Selected from the group including a boot code Section, a 
patch manager code Section, a code Section address table, a 
symbol offset address table, read-write data, and symbol 
accessor code addresses. 

9. The method of claim 8 wherein forming the system 
Software into Symbol libraries includes forming a patch 
manager code Section with a patch library for moving code 
Sections in the file System Section into permanent Storage; 

wherein receiving the patch manager run time instructions 
in a file System Section nonvolatile memory includes 
receiving a new patch manager code Section; 

Feb. 3, 2005 

wherein processing recovery Status monitoring dynamic 
instruction Sets further includes: 

maintaining a spare patch library in the file System 
Section; 

in response to rebooting the wireleSS communications 
device, reading the recovery Status table to determine 
if the new patch manager code Section has been 
Successfully Stored in the code Storage Section; and, 

using the Spare patch library to move the new patch 
manager code Section from the file System Section to 
code Storage Section, if the new patch manager code 
Section has not been Successfully Stored in the code 
Storage Section. 

10. The method of claim 4 wherein receiving new code 
Sections includes receiving an updated first code Section to 
replace a first code Section in the code Storage Section; 

wherein processing back up management dynamic 
instruction Sets includes: 

moving the first code Section from the code Storage 
Section to the file System Section; 

determining if the updated first code Section in the code 
Storage Section operates with the System Software 
within predetermined constraints, and, 

replacing the updated first code Section in the code 
Storage Section with the first code Section from the 
file system section, if the updated first code Section 
is determined to not operate with the System Software 
within the predetermined constraints. 

11. The method of claim 10 wherein receiving new code 
Sections includes receiving a test code Section with prede 
termined constraints; 

wherein determining if the updated first code Section in 
the code Storage Section operates with the System 
Software within predetermined constraints includes: 
executing the test code Section with the updated code 

Section; 
recording the results of executing the test code Section; 

and, 
comparing the recorded results with the predetermined 

constraints. 
12. The method of claim 11 wherein receiving new code 

Sections includes receiving an updated code Section with a 
test code library; and, 

wherein determining if the updated first code Section in 
the code Storage Section operates with the System 
Software within predetermined constraints includes 
executing the test code library from the updated code 
Section. 

13. The method of claim 11 wherein receiving new code 
Sections includes receiving a test code Section with prede 
termined constraints from a Source Selected from the group 
including an airlink interface, a user operated keyboard 
interface, and a test port interface. 

14. The method of claim 4 wherein receiving new code 
Sections includes receiving an updated first code Section, 
having an updated code Section size, to replace a first code 
Section having a first Size Smaller than the updated first code 
Section size; 



US 2005/0026603 A9 

wherein processing compaction management dynamic 
instruction Sets includes: 

accessing a compaction library in a patch manager code 
Section; and, 

resizing code Sections in the code Storage Section to 
accommodate the updated first code Section. 

15. The method of claim 14 wherein processing compac 
tion management dynamic instruction Sets further includes: 

determining the risk associated with compacting code 
Sections in the code Storage Section; and, 

if the risk of compacting code Sections is high, taking 
Safety precautions. 

16. The method of claim 15 wherein taking safety pre 
cautions includes taking Safety precautions Selected from the 
group of checking the battery for Sufficient power to com 
plete the new code Storing process, warning the user of 
high-risk code Storing operations, using prompts to Verify 
user-initiated power downs, and preventing user-initiated 
power downs. 

17. The method of claim 4 wherein receiving dynamic 
instruction Sets includes receiving an update ordering 
instruction, and wherein receiving new code Sections 
includes receiving a plurality of new code Sections, and, 

wherein processing update ordering management 
dynamic instruction Sets includes moving the new code 
Sections from the file System Storage to the code Storage 
Section in an order dictated by the ordering instruction. 

18. The method of claim 17 wherein processing update 
ordering dynamic instruction Sets further includes: 

determining the risk associated with Storing each new 
code Section; and, 

ordering the high risk code Sections to be moved after 
lower risk Storage Sections. 

19. In a wireless communications device, a method for 
managing System Software download operations, the method 
comprising: 

executing System Software; 
launching a run-time engine; 
processing dynamic instruction Sets, and, 
in response to processing the dynamic instruction Sets, 
managing the downloading of System Software updates 
received via an airlink interface using management 
functions Selected from the group including recovery 
Status monitoring, back up, compacting, and update 
ordering. 

20. In a wireleSS communications device, a System for 
managing System Software download operations, the System 
comprising: 

an airlink interface; 
executable System Software and System data differentiated 

into code Sections Stored in nonvolatile memory per 
manent Storage; 

dynamic instruction Sets for managing the downloading of 
System Software updates received via the airlink inter 
face; and, 

a run-time engine for processing the dynamic instruction 
SetS. 

Feb. 3, 2005 

21. The system of claim 20 wherein the executable system 
Software and System data are updated in response to pro 
cessing the dynamic instruction Sets. 

22. The system of claim 20 wherein the executable system 
Software is formed into symbol libraries, each symbol 
library comprising Symbols having related functionality, 
arranged into code Sections Stored in a code Storage Section; 
and, 

the System further comprising: 
a file System Section of nonvolatile memory receiving 

patch manager run time instructions (PMRTIs) 
including dynamic instruction Sets and new code 
Sections. 

23. The system of claim 22 wherein the dynamic instruc 
tion Sets include functional managerS Selected from the 
group including recovery Status monitoring, back up, com 
pacting, and update ordering. 

24. The system of claim 23 further comprising: 
a recovery status table cross-referencing new code Section 

identifiers with their update Status, and, 
wherein the dynamic instruction Set recovery Status moni 

toring manager reads the recovery Status table in 
response to rebooting the wireless communications 
device, to determine if new code Sections have been 
Stored in permanent Storage, wherein the dynamic 
instruction Set recovery Status monitoring manager 
Stores the new code Section in permanent Storage if the 
new code Sections have not been Stored and updates the 
recovery Status table when the new code Sections have 
been Stored. 

25. The system of claim 24 wherein the dynamic instruc 
tion Set recovery status monitoring manager further deter 
mines the risk associated with Storing each new code Section 
and, if the risk of Storing new code Sections is high, takes 
Safety precautions. 

26. The system of claim 25 wherein the dynamic instruc 
tion Set recovery Status monitoring manager takes Safety 
precautions Selected from the group of checking the battery 
for Sufficient power to complete the new code Storing 
process, warning the user of high-risk code Storing opera 
tions, using prompts to Verify user-initiated power downs, 
and preventing user-initiated power downs. 

27. The system of claim 26 wherein the file system section 
receives new code Sections Selected from the group includ 
ing a boot code Section, a patch manager code Section, a 
code Section address table, a Symbol offset address table, 
read-write data, and Symbol accessor code addresses; and, 

wherein the dynamic instruction Set recovery Status moni 
toring manager determines the risk associated with 
Storing each of the new code Sections in the file System 
Section. 

28. The system of claim 27 wherein the executable system 
Software includes a patch manager code Section with a patch 
library for moving code Sections in the file System Section 
into permanent Storage; 

wherein the file System Section receives patch manager 
run time instructions including a new patch manager 
code Section; and, 

wherein the dynamic instruction Set recovery Status moni 
toring manager maintains a Spare patch library in the 
file System Section, reads the recovery status table to 



US 2005/0026603 A9 

determine if the new patch manager code Section has 
been Successfully Stored in the code Storage Section in 
response to rebooting the wireleSS communications 
device, and uses the Spare patch library to move the 
new patch manager code Section from the file System 
Section to code Storage Section, if the new patch man 
ager code Section has not been Successfully Stored in 
the code Storage Section. 

29. The system of claim 23 wherein the file system section 
receives an updated first code Section to replace a first code 
Section in the code Storage Section; and, 

wherein the dynamic instruction Set back up manager 
moves the first code Section from the code Storage 
Section to the file System Section, determines if the 
updated first code Section in the code Storage Section 
operates with the System Software within predeter 
mined constraints, and replaces the updated first code 
Section in the code Storage Section with the first code 
Section from the file System Section, if the updated first 
code Section is determined to not operate with the 
System Software within the predetermined constraints. 

30. The system of claim 29 wherein the file system section 
receives a test code Section with predetermined constraints; 
and, 

wherein the dynamic instruction Set back up manager 
determines if the updated first code Section in the code 
Storage Section operates with the System Software 
within predetermined constraints by executing the test 
code Section with the updated code Section, recording 
the results of executing the test code Section, and 
comparing the recorded results with the predetermined 
constraints. 

31. The system of claim 30 wherein the file system section 
receives an updated code Section with a test code library; 
and, 

wherein the dynamic instruction Set back up manager 
executes the test code library from the updated code 
Section. 

32. The system of claim 30 wherein the file system section 
receives the test code Section from a Source Selected from the 
group including the airlink interface, a user operated key 
board interface, and a test port interface. 

33. The system of claim 23 wherein the file system section 
receives an updated first code Section, having an updated 
code Section size, to replace a first code Section having a first 
Size Smaller than the updated first code Section size; and, 

wherein the dynamic instruction Set compaction manager 
accesses a compaction library in a patch manager code 

15 
Feb. 3, 2005 

Section and resizes code Sections in the code Storage 
Section to accommodate the updated first code Section. 

34. The system of claim 33 wherein the dynamic instruc 
tion Set compaction manager determines the risk associated 
with compacting code Sections in the code Storage Section 
and, if the risk of compacting code Sections is high, takes 
Safety precautions. 

35. The system of claim 34 wherein the dynamic instruc 
tion Set compaction manager takes Safety precautions 
Selected from the group of checking the battery for Sufficient 
power to complete the new code Storing process, warning 
the user of high-risk code Storing operations, using prompts 
to Verify user-initiated power downs, and preventing user 
initiated power downs. 

36. The system of claim 23 wherein the file system section 
receives a plurality of new code Sections with the update 
ordering dynamic instruction Sets, and, 

wherein the dynamic instruction Set update ordering man 
ager moves the new code Sections from the file System 
Storage to the code Storage Section in an order dictated 
by the ordering instruction. 

37. The system of claim 36 wherein the dynamic instruc 
tion Set update ordering manager determines the risk asso 
ciated with Storing each new code Section and orders the 
high risk code Sections to be moved after lower risk Storage 
Sections. 

38. In a wireleSS communications device, a System for 
managing System Software download operations, the System 
comprising: 

an airlink interface, 

executable System Software and System data differentiated 
into code Sections Stored in nonvolatile memory per 
manent Storage and updated in response to processing 
the dynamic instruction Sets; 

dynamic instruction Sets for managing the downloading of 
System Software updates received via the airlink inter 
face using functional managerS Selected from the group 
including recovery Status monitoring, back up, com 
pacting, and update ordering; 

a run-time engine for processing the dynamic instruction 
Sets; and, 

a file System Section of nonvolatile memory receiving 
patch manager run time instructions (PMRTIs) includ 
ing dynamic instruction Sets and new code Sections. 


