wo 2012/037557 A1 I IO OO0 O 0O OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1ML A0 01000 000 0 O
ernational Bureau V,& ‘) |
. . . ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
22 March 2012 (22.03.2012) WO 2012/037557 Al

(51) International Patent Classification: (US). CHOL, Yunhee; 537 Acorn Park Dr., Acton, MA

GO6F 9/44 (2006.01) 01720 (US). ZHANG, Xiaomei; 930 Maddux Drive, Palo

(21) International Application Number: Alto, CA 94303 (US).
PCT/US2011/052158 (74) Agent: CAMPBELL III, Samuel G.; Campbell Stephen-

. e) son LLP, 11401 Century Oaks Terrace, Building 4, Suite
(22) International Filing Date: 250, Austin, TX 78758 (US).
19 September 2011 (19.09.2011)

(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available). AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
. CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
61/384,086 17 September 2010 (17.09.2010) Us HN. HR, HU, ID, IL, IN, IS, JP, KE, KG. KM. KN, KP.
13/236,022 19 September 2011 (19.09.2011) Us KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(71) Applicant (for all designated States except US): ORA- ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
CLE INTERNATIONAL CORPORATION [US/US]; NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,

500 Oracle Parkway, MS 5op7, Redwood Shores, CA RW, SC, SD, SE, 8G, SK, SL, SM, ST, SV, 8Y, TH, TJ,
94065 (US). TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

M, ZW.

(72) Inventors: YASEEN, Rahim, Mohamed; 3046 Whisper- . o
wave Circle, Redwood City, CA 94065 (US). LIANG, (84) Designated States (unless otherwise indicated, for every

John; 1635 Wakefield Terrace, Los Altos, CA 94024 kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

[Continued on next page]

(54) Title: PATTERN-BASED CONSTRUCTION AND EXTENSION OF ENTERPRISE APPLICATIONS IN A CLOUD
COMPUTING ENVIRONMENT

(57) Abstract: Methods, software programs and systems for extending and

moditying software functionality, and, more particularly, for using one or
310 more patterns for an enterprise software object to express desired function-

ality and configuration, and to generate the enterprise software object us-

Select Enterprise Domain for
Enterprise Software Object Generation

¢ 20 ing the patterns, in an enterprise environment are disclosed. A method ac-
| cording to certain of these embodiments includes selecting one or more
|Se|ect Pattemn from Plurality of Pattemsl
patterns from a number of patterns, where the one or more patterns are for
330 340 an enterprise software object. The enterprise software object can then be

generated. The enterprise software object is generated using the one or
more patterns. Fach of the patterns is configured to describe a solution
l within a corresponding one of a number of problem domains.

N
Selected Pattern
Compatible? Reject Selected Pattern

Yes

350

Another Pattern?

360
Provide Values for Parameters Defined
by the Selected Patterns

Parameter
Value&s) Consistent
with Rules?

380

No Reject Parameter
Value(s)

390

Generate an Enterprise Software
Object Using the Selected Patterns

¢ 395

Execute/Utilize Enterprise Software
Object

End

Fig. 3

WO 2012/037557 A1 I 0000 Y0 00N A

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Published:

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2012/037557 PCT/US2011/052158

PATTERN-BASED CONSTRUCTION AND EXTENSION OF ENTERPRISE
APPLICATIONS IN A CLOUD COMPUTING ENVIRONMENT

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit under 35 U.S.C. § 119 (e) of U. S. Provisional

Application No. 61/384,086, filed September 17, 2010, entitled “Pattern-Based Construction

and Extension of Enterprise Applications in a Cloud Computing Environment,” and naming
Rahim Mohamed Yaseen, John Liang, Yunhee Choi and Xiaomei Zhang as inventors. The
above-referenced application is hereby incorporated by reference herein, in its entirety and

for all purposes.

FIELD OF THE INVENTION
[0002] The present invention relates to extending and modifying software functionality,

and, more particularly, to using one or more patterns for an enterprise software object to
express desired functionality and configuration, and to generate the enterprise software object

using the patterns, in an enterprise environment.

BACKGROUND

[0003] Reductions in the cost of computing coupled with virtualization and large-scale
utility computing have resulted in ubiquitous computing resources and network connectivity,
which has, in turn, resulted in new computing paradigms (e.g., cloud computing). Such
Internet-scale computing resources can reduce the cost of operations for many applications.
Cloud computing further provides a foundation for collaborative applications and a target for
mobile platforms. Cloud computing is based on a scalable server platform suitable for
handling computing loads of highly interactive collaborative applications, such as social

applications and cloud-based office applications.

[0004] As Internet-scale computing infrastructure becomes increasingly affordable to

mass-paid services, cloud computing users will seek matching affordability in software

-1-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

resources. Cloud computing resources can provide platform-as-a-service (PaaS) products,
including software and product development tools hosted within the cloud infrastructure.
Alternatively, software-as-a-service (SaaS) cloud models include software products
interacting with users through a front-end portal. In such environments, users will desire
software functionality in an affordable price range. Such users may be, for example, business
users with limited training and/or experience in software programming, if any at all.
Notwithstanding, the need remains for enterprise customers of cloud resources to be able to

configure software in a manner appropriate to their needs.

[0005] Historically, creation of software has been approached from the perspective of the
computer. Most software is expressed through use of general purpose programming
language. Thus, programs are focused on what is required of the computer (e.g., execution
details), rather than the problems that the software is developed to address. Addressing
changes to the problem or desired solution is thus effected by modifying the program’s code.
But the general purpose programming languages used to write software are just that — general
— and so were not created to clearly express a specific problem to be solved. This makes
writing such software, as well as making subsequent modifications (e.g., to reflect changes in

the problem addressed thereby), a difficult task.

[0006] The people most familiar with the problem to be solved are those who use the
software in their particular problem domain. Domain experts are familiar with the issues,
concepts, and definitions that need to be satisfied in the problem domain. On the other hand,
software programmers have expertise in software creation and, with the domain experts,
traditionally work to generate software. This division of labor and expertise inevitably leads
to frustration in one or both parties, as changes in program specifications and the complexity
of the problem domain are understood by the domain expert, but cause numerous rewrites
and revisions on the part of the programmer. Similarly, misunderstandings on the part of the
programmer regarding the description provided by the domain expert can lead to frustration

on the part of the domain expert.

[0007] Fig. 1A is a simplified block diagram illustrating a traditional software
development workflow. A domain expert 105 communicates a problem statement to a
programmer 110. This is typically done using forms that cannot be automatically
transformed into code, such as specifications, use cases, stories, notes, sketches and the like.

Programmer 110 then uses the intentions thus described, together with the programmer’s

2-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

knowledge and expertise in software engineering, to create source code 115, which can then
be executed by a computer. Changes to software for purposes of either maintenance or
correctness must be defined in the problem statement provided by domain expert 105, and
then be separately implemented by programmer 110. In order to extend or otherwise
maintain a program, programmer 110 must disassemble the implementation, reason about the
part in question, solve the problem and then reassemble the implementation, in order to
achieve the desired result. This process of “taking apart” software and then putting the

software back together can introduce programming errors and increase costs of the software.

[0008] In order to have software mirror the domain expert’s intentions for the software, it
is preferable to express the problem in domain terms. This necessarily requires a second step
that takes the problem description made in domain terms and transforms that description to a
software that a computer can execute, that is, program generation. While a programmer can
write code in a fashion that uses terminology familiar to the domain problems addressed by
the software, such programming can prove difficult in large systems, with a domain having a

complex vocabulary, and in other such circumstances.

[0009] Inlight of the foregoing, and to accommodate user’s need for enterprise-class
cloud programming facilities, it is therefore desirable to provide such users with application
development environments that are (1) simple enough to be used by users lacking extensive
programming training and/or experience, and (2) sufficiently easy to customize, both to
match the skills of such users and allow for efficient customization. Further, such application
development environments should allow application customization to be performed in a
manner that does not interfere with other users’ access to the cloud resources involved (e.g.,

the application(s) being customized).

3

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

SUMMARY

[0010] In various embodiments of the present invention, disclosed are methods, software
programs and systems for extending and modifying software functionality, and, more
particularly, for using one or more patterns for an enterprise software object to express
desired functionality and configuration, and to generate the enterprise software object using
the patterns, in an enterprise environment. A method according to certain of these
embodiments includes selecting one or more patterns from a number of patterns, where the
one or more patterns are for an enterprise software object. The enterprise software object can
then be generated. The enterprise software object is generated using the one or more
patterns. Each of the patterns is configured to describe a solution within a corresponding one

of a number of problem domains.

[0011] The foregoing is a summary and thus contains, by necessity, simplifications,
generalizations and omission of detail; consequently those skilled in the art will appreciate
that the summary is illustrative only and is not intended to be in any way limiting. Other
aspects, inventive features, and advantages of the present invention, as defined solely by the

claims, will become apparent in the non-limiting detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present invention may be better understood, and its numerous objects, features

and advantages made apparent to those skilled in the art by referencing the accompanying

drawings.

[0013] Fig. 1A is a simplified block diagram illustrating a traditional software

development workflow.

[0014] Fig. 1B is a simplified block diagram illustrating an example of a generative

programming workflow.
[0015] Fig. 2A is a simplified block diagram illustrating a concept of cloud computing.

[0016] Fig. 2B is a simplified block diagram illustrating an example of problem solution

flow incorporating patterns, in accord with embodiments of the present invention.

4-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[0017] Fig. 3 is a simplified flow diagram illustrating an example of enterprise software

object generation using patterns, in accord with embodiments of the present invention.

[0018] Fig. 4 is a simplified flow diagram illustrating an example of operations performed

in creating a pattern, in accord with embodiments of the present invention.

[0019] Fig. 5 is a simplified block diagram illustrating an example of relationships
between patterns, sub-patterns, pattern kinds and various rules/aspects/templates, in accord

with embodiments of the present invention.

[0020] Fig. 6 is a simplified block diagram illustrating an enterprise server architecture

usable in conjunction with embodiments of the present invention.

[0021] Fig. 7 is a block diagram illustrating various elements of an extensibility

framework architecture according to embodiments of the present invention.

[0022] Fig. 8 is a simplified block diagram illustrating a data model according to

embodiments of the present invention.

[0023] Fig. 9is a block diagram illustrating a metadata management architecture

according to embodiments of the present invention.

[0024] Fig. 10 is a flow diagram illustrating an example of operations performed by an

extensibility framework architecture according to embodiments of the present invention.

[0025] Fig. 11 is a flow diagram illustrating an example of operations specified by a plan

according to embodiments of the present invention.

[0026] Fig. 12 is a flow diagram illustrating an example of the operations that can be

specified by a plan according to embodiments of the present invention.

[0027] Fig. 13 is a block diagram illustrating an implementation of an extensibility
framework architecture and the generation of customized software components according to

embodiments of the present invention.

[0028] Fig. 14A is a block diagram illustrating an example architecture that includes an

extensibility framework according to embodiments of the present invention.

-5-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[0029] Fig. 14B is a block diagram illustrating an example of a view object according to
embodiments of the present invention, and its relationships to other elements of an

extensibility framework according to embodiments of the present invention.

[0030] Fig. 14C is a block diagram illustrating an example of the interactions and
relationships between the elements of an entity object and a view object, according to

embodiments of the present invention.

[0031] Fig. 15 is a block diagram illustrating various features of an extensibility

framework database architecture according to embodiments of the present invention.

[0032] Fig. 16 is a block diagram illustrating a web service extensibility architecture

according to embodiments of the present invention.

[0033] Fig. 17 is a block diagram illustrating an extensible analytics architecture

according to embodiments of the present invention.

[0034] Fig. 18 is a block diagram depicting a computer system suitable for implementing

aspects of the present invention.

[0035] Fig. 19 is a block diagram depicting a network architecture suitable for

implementing aspects of the present invention.

DETAILED DESCRIPTION

[0036] Embodiments of the present invention provide a method, apparatus and system to
construct application patterns using a generalized mechanism and to use those patterns to
generate new or modified software objects. Such systems employ fundamental primitives
and related operations to assemble simple patterns into semantic-rich patterns. Instantiated
patterns (e.g., objects) can then be added to existing applications, thereby modifying those
applications for purposes specific to an enterprise, for example. Embodiments of the present
invention can further allow untrained users to extend applications (e.g., SaaS applications)
using the pre-assembled patterns. Embodiments of the present invention also provide
configuration tools for adding new software components to existing applications by accessing
a repository of such patterns. Such configuration tools permit a user to select one or more

patterns for an enterprise software object from the repository, provide parameter values

-6-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

appropriate for a particular instantiation of the patterns, and then, using those instantiated

patterns, generate the enterprise software object.

Intentional Programming

[0037] Fig. 1B is a simplified block diagram illustrating an example of a generative
programming workflow. In a generative programming environment, programmer 110 now
focuses their efforts on designing and implementing the software needed to create a generator
program 120 (also referred to herein as a pattern engine) that receives domain code 125 as an
input, and outputs executable code 115. Domain code 125 can be expressed in a domain-
specific language that includes terminology and concepts appropriate for the problem
domain. The programmer’s responsibility changes from directly writing a program and is
instead focused on creation and maintenance of generator program 120. Program
organization and data structures continue to be designed, defined, and written, but executable
code 115 is parameterized by domain code 125. Changes desired in executable code 115 are
affected by changes in domain code 125, which can be re-input to generator program 120 for
those changes. The computer performs what would historically be the programmer’s tasks,
that is distributing domain code changes according to correspondence between the domain

code language and the source code language.

[0038] Different applications of generative techniques can differ as to how a domain-
specific language for domain code 125 is defined, how the domain code is created, and how
generator program 120 uses the domain code. Use of generator program 120 separates
concerns of domain experts from those of a programmer. In a generative software
environment, a domain expert 105 is responsible for maintaining domain code 125.
Generator program 120 is created and maintained by programmer 110 and defines how the
domain code input should be processed to get an intended implementation (e.g., executable
code 115). Generator program 120 represents implementation knowledge such as

engineering design, algorithm choices, platforms and code patterns.

[0039] Previous implementations of generative programming environments suffer from
practical application issues, such as defining the language of domain code 125, who defines
and supports the domain-specific language and documentation, issues related to problems
spanning more than one domain, and access of generator program 120 to domain code 125

through an application programming interface and the like. Further, previous solutions for

-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

domain-specific languages do not solve problems related to having users with minimal
programming knowledge creating and modifying software components in an enterprise in a
straightforward and efficient manner. These previous solutions continue to require learning
of the domain-specific language and its syntax by a user. For example, one domain-specific
language implementation requires the use of an “intentional tree,” which is primarily
theoretical and does not provide any sort of useful or practical solution for an enterprise.
Other such solutions require knowledge of how to assemble different functional blocks in

order to ensure proper interaction and functionality.

Enterprise Programming in the Cloud

[0040] Today’s enterprise/cloud computing environments have removed users from direct
control of the hardware on which software is executing, as well as control over the software
itself. In the 1970’s, technological breakthroughs significantly lowered cost of computing.
Hardware innovations brought large scale computation into smaller footprints, such as a
central processing unit implemented as a single integrated circuit inside a computer. The
improvements in cost of computing also increased accessibility and availability of computing
resources. Computer usage was no longer time-shared among a selected few. Widely
available personal computing made mass adoption of computers a reality. While hardware
became widely available, applications continued to be built by highly skilled programmers
who were required to intimately understand the underlying platforms. During this period,
cost of development for software was high compared with hardware cost. Applications were
typically specialized, and so, targeted at trained professionals, focusing mostly on data

management and process/office automation.

[0041] In the early 1990’s, Internet access and web browsers obviated the need, in at least
come scenarios, for a user to install software on the user’s individual personal computer. A
wide range of customer-facing applications became available to end users simply by clicking
on a URL. Further, languages such as Java lowered the cost of software development by
eliminating tasks such as automatic memory management and software portability. Web
applications brought other software advances such as commoditization of user interfaces

(UIs) and application frameworks.
[0042] Among other advantages, features and functionalities, today’s application

frameworks typically offer two major components: metadata (describing a problem in a

-8-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

language dictated by the framework), and a runtime engine (which performs actual runtime
execution based on the given metadata provided by the application developer). These web-
based applications have further separated problem description and execution. Software,
therefore, no longer needed to be fashioned to serve as a single, specialized execution unit.
Acts of changing the problem description involves only a change to the metadata, with no

impact on runtime execution code.

[0043] In this second wave of mass adoption of computing resources, software advances
in browsers, Java and frameworks lower the cost of software relative to hardware.
Nonetheless, application developers were still required to have a high level of expertise in
order to leverage the full range of options and controls typically available in an application
development environment (also referred to herein as an application development framework

(ADF)).

[0044] A third wave of mass adoption of computing resources has started with
breakthroughs in reductions to cost of computation. Coupled with technological innovations
such as virtualization and continued experience in large-scale utility computing, cloud
computing makes an abundance of computing resources and network connectivity affordable
at Internet scales. This availability of computing resources reduces costs of operations for
web applications. Such availability also provides a foundation for continued development of
collaborative applications and mobile applications. These Internet-scale infrastructures have
become affordable to masses of users as paid services. These users are also looking for
matching affordability in software. This also applies to other types of on-demand services
such as video-on-demand. Content, in the realm of cloud computing, is simply the program

or application executed on utility resources.

[0045] Fig. 2A is a simplified block diagram illustrating a concept of cloud computing.
An Internet or wide area network 210 is coupled to intranets or local area networks 220(1)-
(n). Each intranet or local area network has one or more client computers 225(1)-(m).
Through network connections between the intranet clients and Internet resources, client
computers are able to access, for example, web servers 230(1)-(p) (also referred to as website
servers, or more simply, as servers). In addition, one or more resources available through
Internet 210 can provide hosted services in the form of cloud resources 240. Cloud
computing is a general term for anything that involves delivering hosted services over a wide

area network such as the Internet. Such services are generally broadly divided into three

9.

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

categories: infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS) and software-as-
a-service (SaaS). Cloud services are typically sold on-demand (e.g., by the minute or by the
hour), they are elastic in that a user can have as much or as little of a service as they want at
any given time, and the cloud services are fully managed by the provider of the cloud

services.

[0046] A cloud can be private or public. Public clouds sell services to anyone that can
access them, while private clouds are proprietary networks or data centers that supply hosted
services to a limited number of users. Cloud service providers can use public cloud resources
to create private clouds, resulting in virtual private clouds. In each case, the goal of cloud
computing is to provide scalable access to computing resources and information technology

services.

[0047] IaaS provides virtual server instances with unique network addresses and on-
demand blocks of storage. An application programming interface (API) is provided for
starting, stopping and accessing virtual service servers and storage. In an enterprise, IaaS
cloud computing allows a company to pay for only as much capacity that is needed and to

bring more capacity online as that capacity is needed.

[0048] PaaS in the cloud, an example of which is illustrated in Fig. 2A as a PaaS 250,
provides a hosted set of software and product development tools. Developers can create
applications on the provider’s platform over the Internet. PaaS providers can deliver access
to such services using, for example, APIs, website portals, gateway software installed on a

customer’s computer or the like.

[0049] In a SaaS architecture, the provider supplies a hardware infrastructure, software
products and interacts with a user through a front-end portal. Provided services can include,
for example, web-based email, inventory control, and database processing. Since the service
provider hosts both the application and the data, an end user is free to use the service from

anywhere.

[0050] As can be seen from the above descriptions of cloud computing, a cloud’s
resources (i.e., cloud resources) can be viewed as an abstraction of the physical computer
resources. An end user typically has no control over either the hardware or the software,

particularly in SaaS and PaaS environments. Since different enterprises using the same cloud

-10-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

resources can have different requirements for satisfying the needs of their particular
enterprise, a mechanism is needed for users to modify the software they use in a manner
appropriate to the enterprise in question. The generative software concepts discussed
previously recognize this issue, but fail to provide a practical solution to providing tools
capable of creating and modifying software resources such as those provided in a cloud
computing environment. Further, because cloud resources are accessed by many users (who
may well be associated with different enterprises), any tools used to modify software in a
cloud computing environment cannot disrupt the provision of cloud resources to other users.
Therefore, certain guarantees need to be provided to ensure functionality of the changes made
to the software. That is, tools that enable users to modify software resources should be

validated for use in the given cloud computing environment.

Patterns for the Description of User Intentions

[0051] In an enterprise, a domain expert may, for example, want to modify or create
original or additional objects (e.g., business objects, data objects, user interface objects or the
like). Frequently, performing such tasks includes performing at least some of the same (or
similar) operations. Further, achieving the intended outcome (e.g., the existence of a new
data object via its creation) may necessitate the creation of (or changes to) other
objects/categories (e.g., a new field in a user interface display). Sets of such commonly-
recurring operations, performed to achieve the desired objective(s), are referred to herein as
patterns. In one embodiment, such patterns include a pattern declaration (e.g., which, for
configuration operations, expose essential configuration options) and a pattern definition
(e.g., which encapsulates the details of software component generation (accessed, e.g., via a
middleware API)). The use of patterns provides both simplicity (e.g., by hiding the
complexities of programming from users) and adaptability (e.g., by encapsulating changes to

applications, middleware and so on).

[0052] In embodiments of the present invention, a pattern describes a commonly occurring
solution within a given problem domain. In addition, the pattern can specify the manner in
which an instance (a concrete or tangible representation) of that solution (an abstract concept)
can be created, and so described (e.g., the manner in which the recurring solution can be
instantiated on a particular target platform). As will be appreciated in light of the present
disclosure, the instantiation of such solutions (abstractions) comprehends the creation of a

real instance or particular realization of the solution (e.g., as a template, such as a class of

-11-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

objects or a computer process). Such instantiation operations create instances of the
corresponding solution(s) by, for example, defining a particular variation of an object within
a class (representing the solution), giving the object a name, and storing the object in some
physical place (e.g., storing the object in a computer-readable medium, such as a computer
memory). As such, patterns can also provide a generalized mechanism for a domain expert to

form (and express) an intent for desired modifications to such software.

[0053] Fig. 2B is a simplified block diagram illustrating an example of problem solution
flow incorporating patterns, in accord with embodiments of the present invention. As with
Fig. 1B, programmer 110 is primarily concerned with creating a generator program 120 that
can produce the desired executable code 115 as its output. As with Fig. 1B, domain code 125

is provided as input to generator program 120.

[0054] Unlike Fig. 1B, one or more patterns are made available to domain expert 105
(depicted in Fig. 2B as patterns 260, for example), in order to allow domain expert 105 to
express their intent as to the generation of the desired domain code that will serve as the input
to generator program 120 (e.g., domain code such as domain code 125 of Fig. 1B). Patterns
260 can be made available to domain expert 105 in the form of a repository of patterns (not
depicted in Fig. 2B; however, as will be appreciated, patterns 260 of Fig. 2B could be stored
in and selected from such a pattern repository, for example). Such a repository of patterns
can be created for a particular domain or multiple domains, for example, by a pattern
programmer 270. Pattern programmer 270 is typically an expert programmer who prepares
patterns that are not solutions for a specific instance of a problem, but instead reflect a more
general approach for solving a given class of problems. A pattern programmer such as
pattern programmer 270 should understand sophisticated nuances of the solution that is to be
captured in the pattern. The patterns should be well-formulated, including the requisite
variances for the desired objects (e.g., differing user interface elements and differing looks of

those elements).

[0055] Domain expert 105 selects one or more patterns from the repository containing
patterns 260, and then makes the desired/necessary modifications to (“edits”) elements of the
pattern using, for example, a configurator 280. For example, various parameters may need to
be defined to instantiate a pattern, and thus domain expert 105 will provide values for those
various parameters. Alternatively, a pattern can have sub-patterns that can be selected, which

can, in turn, have defined parameters. A set of rules associated with a pattern and sub-

-12-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

patterns can restrict pattern and parameter values selection. Through the existence of patterns
and sub-patterns, a system such as that described herein is able to create increasingly
complicated and capable patterns by using other (typically simpler) patterns as building
blocks. In fact, it is very often the case that the patterns employed are of the more complex
variety, and in addition to their greater functionality, their use provides a certain amount of
abstraction that hides the complexity of the underlying patterns, thereby simplifying the use

of these more complex patterns.

[0056] Configurator 280 then generates domain code 125 used as input to generator
program 120. Embodiments of the present invention are not restricted to the configuration of
blocks shown in Fig. 2B. For example, functionality of configurator 280 and generator
program 120 can be combined, resulting in a functional element having selected patterns and

modifications by domain expert 105 as its inputs, and executable code 115 as its output.

[0057] The design of such patterns should also provide for their evolution over time, for
example, taking into consideration the fact that the enterprise objects to which such patterns
are to be applied may also change over time. In order to provide for such evolution, the
generation of such patterns can employ one or more of the following pattern evolution
techniques: aspect orientation, variantization, composition, interaction, and constraints, as

discussed immediately below, and subsequently in greater detail

[0058] Each pattern can have different aspects that evolve or are implemented separately.
For example, for a user interface pattern, there can be different aspects such as display,
security, style and localization. Each aspect is independently translated or evolved. Further,
variantization allows a pattern to be altered based on the situation. For example, a user
interface pattern can look slightly different from one application to another. Alternatively,
when a text field is added to a form, the text can be rendered as a text entry. But if the same
text field is added to a read-only table, the text field is rendered as a simple string. One
mechanism for implementing variantization is to have the pattern be metadata driven. That
is, a pattern generates metadata for a target platform, but that pattern is also described by
metadata (e.g., meta-metadata). The meta-metadata is variantized based on the specific

situation.
[0059] A composition model for patterns allows a complex pattern to be assembled from a

set of simpler patterns. Composition rules contain structural requirements in terms of

-13-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

assembling patterns. Interaction rules specify behavioral dependency of components within a
pattern. Interaction is focused on describing interdependency of components that affect the
runtime system. For example, a user interface component can cause a partial refresh of other
components within a page. Finally, constraint rules specify restrictions or guidelines that are
enforced during metadata generation. Constraints can be governed based on restriction of the
target platform or preferred best practices, and can adhere the composition and interaction
rules to the restrictions and guidelines. For example, a user interface best practice may

require that a table does not contain any text area component.

[0060] A cloud programming model according to embodiments of the present invention
thus implements a programming paradigm and principles that allow “self-service
programmers’” to create and modify software using intentional programming techniques. The
need for such programming paradigm is evident from the fact that, while such users may be
experts in their area of expertise, they have minimal or no training in computer programming.
For example, such a user could be a salesperson, who is also a part-time system
administrator. As noted earlier, existing paradigms fail to address the problem of simplifying
the programming experience. In fact, the myriad technologies available heretofore have only
made the work of computer programming even more challenging. As software has become
more complex, the programming code written for actual business logic has remained
proportionally small, in comparison with the effort required to learn an application

framework.

[0061] An advantage of a cloud programming model according to embodiments of the
present invention is the simplification of the programming experience for new programmers.
This includes various precepts that are directed to addressing the needs of such programmers
in a cloud-based computing environment. Fundamentally, such a programming environment
needs to be able to address intention instead of translation. The programming environment
should focus on allowing for the description of the desired outcome, rather than the manner in
which the problem’s solution is or will be implemented in a particular
framework/environment. Preferably, the user should be able to specify (describe) the given
intention through a business-centric user interface (UI), rather than an integrated design
environment or the like. Such a business-centric Ul is structured to assist the user with

describing the problem, instead of managing programming tasks. In other words, such a user

-14-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

does not write a program in a classical sense (although the result of capturing the user’s

intentions still constitutes a “program,” in a logical sense).

[0062] Further, the vocabulary and notation used for describing the intention(s) should be
closely aligned with the problem domain. In a classical sense, the vocabulary and notation
often constitute the syntax. The syntax, in this sense, should be adapted to the problem
domain, rather than relying on a programmer to translate intention into a program with a
fixed syntax (e.g., a general programming language). Such a vocabulary and notation should
be adaptable (e.g., for use in addressing new requirements). Since a focus of a programming
environment according to embodiments of the present invention is to capture user intention,
the capability of the program (syntax) should support evolution to address new and changing

requirements.

[0063] Preferable also is the ability of the programming environment to be executed on
existing software and hardware infrastructure (e.g., middleware runtime, database
infrastructure, servers, and so on), without modification thereof (e.g., without the need for a
new dedicated runtime engine). In other words, the use and implementation of a cloud
programming model according to embodiments of the present invention provides the
advantage of marked simplification of the programming model, in comparison to classical
approaches. For example, in terms of a middleware platform, such an approach is not
intended as simply a re-invention of that middleware platform, but is instead directed to the
seamless, automatic translation of user intention into a target metadata/language that can then

be executed by the middleware platform.

[0064] Thus, a programming environment according to embodiments of the present
invention should provide for the direct and simple correlation between the intention and the
“effect” of the intention’s translation. In the preceding example, the “effect” of a translation
is therefore not the middleware artifacts being generated, but instead the (desired) observable
behavior in an application created or modified by the user. For example, if the user intention
is to create a new page for a custom entity, the effect of the translation is a new page in the
application, where the page is rendered with a certain look-and-feel and layout. In providing
such an environment, the user should be exposed to as little of the system’s internal
implementation details as possible (preferably, in fact, the user should be completely isolated
from such details). In the preceding example, this means that the user would have no

knowledge of the middleware metadata or runtime (nor need for any such knowledge), for

-15-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

example. The middleware would thus be able to evolve over time, changing from release-to-

release, without any resulting alterations being observable by the user.

Design of a Cloud Programming Model Using Intentional Programming

[0065] The following passages describe an example of an implementation of a cloud
programming model supporting “self-service” programming, according to embodiments of
the present invention, which embodies the aforementioned principles. Moreover, in
providing such functionality, a programming environment, such as that described herein, is
also able to achieve goals related to extensibility, particularly with regard to the
aforementioned self-service programming concepts. For example, such an extensible cloud
programming environment provides a generalized mechanism by which such self-service
programmers can construct and/or modify software components, in order to build the desired
software application(s) (e.g., a customer relationship management (CRM) application). Thus,
such a programming environment allows the development of the fundamental primitives and
operations that are needed to assemble simple components into semantic-rich components
(referred to herein as component composition). A simple example of component composition
is the assembling of a set of user interface elements (e.g., for text input) into a form, based on
a set of specific layout restrictions and requirements. An extensible cloud programming
environment, such as that described herein, also allows the adoption of a component
composition technology for on-demand software applications (e.g., a CRM SaaS application),
in order to allow untrained users (self-service programmers) to extend the application (e.g.,

CRM SaasS application) using pre-configured components.

[0066] The example design presented below can be broken down into four major pieces.
The first comprehends a language that captures intention of the programmer (referred to
herein as the aforementioned “self-service programmer”). Next is a forward-translation
implementation, which converts intent into an executable (e.g., a middleware executable).
Another part of such a programming environment is a reverse-translation implementation,
which is designed to convert an executable into an intent (e.g., the conversion of a
middleware executable into an intent). The last of these four pieces is a configuration user
interface (e.g., in a CRM environment, a business-centric configuration UI) that is designed
to guide the programmer in specifying their intent without the need for, nor knowledge of,

any programming details.

-16-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

Intent Specification

[0067] The purpose of intent specification in a programming environment according to
embodiments of the present invention is to allow a self-service programmer to focus on the
desired outcome, rather than the manner in which the step-by-step process of carrying out
instructions is to proceed within the given computer system(s). Furthermore, such a language
can be adapted and modified with relative ease. Such an approach allows the specification of
each intention as a command. Each command identifies an action or actions that the
programmer intends to have the computer system(s) carry out. A command also can carry a

set of user properties that further provides specifics regarding the action to be performed.

[0068] Such a command differs from a traditional programming instruction in several
respects. Among these differences is the fact that such a command operates at a higher level
of abstraction, and addresses the programmer’s intention and requirements, while lacking the
ability to definitely direct the given computer system(s) to perform a specific instruction in
the instruction set(s) of the computer system(s). By marked contrast, a traditional
programming instruction (e.g., an instruction in a computer system’s instruction set, such as
a single machine instruction) exists at the other end of the spectrum, and as such, is tailored

to the requirements of the computing device.

Forward-translation

[0069] Forward-translation gives effect to the self-service programmer’s intent by
providing the system for which the programming is intended (e.g., the aforementioned
middleware platform) with direction as to the operations to be performed, based on the
commands received from the self-service programmer, which embody that intent. In
embodiments of the present invention, a unit of translation is encapsulated within a
conceptual (i.e., logical) construct referred to herein as a pattern, which describes a
(predefined) solution within a particular problem domain. In addition, such a pattern can be
designed to carry a specification of the manner in which a recurring solution for a particular
target platform is to be “materialized” (e.g., instantiated). When a command is invoked, one
or more patterns are thus materialized. During materialization in the example middleware
system, for example, the translation generates the requisite metadata for the given target
platform to implement the desired solution. It will be appreciated that, in light of the present
disclosure, the patterns described herein can be re-used any number of times (with or without

being reconfigured in any given iteration).

-17-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[0070]

In supporting forward-translation, it is desirable to provide support for the earlier-

mentioned concept of pattern evolution. Such functionality ensures that the patterns thus

materialized can be easily and efficiently evolved, in response to changes in requirements.

Several techniques are described herein that provide the requisite functionality, and include:

1)

2)

3)

4)

Aspect Orientation. Each pattern may have different aspects (i.e., various
characteristics or features that reflect various considerations, concerns and the
like, which are addressed/captured by their corresponding constructs) that need to
evolve separately (e.g., be implemented separately, allowing them to change
independently over time, for example). For example, different aspects for a Ul
pattern might include aspects such as display, security, style and localization.
Each aspect can be independently translated or evolved, in order to allow such
aspects to be separately tailored to the given situation, and so best meet that

situation’s needs.

Variantization. As noted, a pattern may vary from situation-to-situation. For
example, a Ul pattern may look slightly different from one vertical application to
another. Variantization results in the pattern itself being metadata-driven. In
another words, the pattern generates metadata for target middleware platform, but
a pattern is itself also described by metadata (and so can be described as meta-
metadata). Such meta-metadata, therefore, can be variantized based on specific

situation.

Composition rules. A complex pattern can be assembled from a set of simpler
patterns. The structural requirements, in terms of assembling patterns from one

another, can be contained in composition rules, for example.

Interaction rules. In contrast to composition rules, which specify rules for the

assembly of patterns, interaction rules specify the behavioral dependency of the
components within a pattern. The main focus of interaction rules is to describe
interdependencies between the components that affect the runtime system. For

example, a Ul component can cause a partial refresh of other components within a

page.

-18-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

5) Constraint rules. A constraint rule specifies the restrictions or guidelines that are
enforced during the generation of various constructs (e.g., metadata generation).
Constraint rules can, for example, specify a constraint based on the restriction of
the target platform or preferred best practices. In such a scenario, for example, a

UT best practice may require that a table not contain any text area component.

Reverse-translation

[0071] In reverse-translation (also referred to herein as “reflection”), a programming
environment according to embodiments of the present invention recognizes one or more
patterns from existing constructs (e.g., existing middleware metadata). Reverse-translation
thus provides for the revision and migration of such constructs through the abstraction
provided by patterns (i.e., pattern abstraction). In the example of middleware metadata, such
pattern abstraction means that middleware metadata can be generated in a manner that
facilitates its revision and migration. (It should be understood that, as used herein, the term
“facilitate” is intended to convey that the functionality or structure discussed is helpful in
assisting the given system or process in accomplishing the stated result, and not that the
functionality or structure in question is required to accomplish that result, or mandatory in
any way.) In a programming environment according to embodiments of the present
invention, such reverse-translation can be achieved, for example, through the use of a rules-

based pattern recognizer.

Application-Centric Configuration User Interface

[0072] An application-centric configuration user interface according to embodiments of
the present invention acts a front-end application (e.g., web application) that enables the self-
service programmer to describe their intent as a configuration task, without the need for any
actual programming. As the programmer navigates through this user interface, their intent is
captured. Commands can then be issued to initiate the materialization of the pattern. The
result of such pattern materialization is the generation of programmatic constructs (e.g., the
generation of generated middleware metadata). In the example, immediate feedback
regarding the generated middleware metadata can be presented to the programmer through
the Ul by way of reverse-translation. Unlike a conventional middleware integrated design
environment, a Ul according to embodiments of the present invention can be used to trigger

the translation of a simple user intent into complicated programmatic constructs. A

-19-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

conventional middleware integrated design environment, by contrast, fails to provide such

functionality, and therefore, presents itself as a mere programming tool.

Enterprise Software Object Generation

[0073] Fig. 3 is a simplified flow diagram illustrating an example of enterprise software
object generation using patterns, in accord with embodiments of the present invention. As
illustrated, the process of Fig. 3 begins with the selection of an enterprise domain for
enterprise software object generation (step 310). Since one embodiment of the present
invention is envisioned as functioning within a cloud computing environment in which
multiple enterprises are sharing resources along with a variety of domains in those enterprises
(e.g., customer relationship management (CRM) and human resource management (HRM)), a
selection of an appropriate domain is made in order to determine subsets of patterns from
which to operate. Selection of the domain can be an automatic process based upon user
identification or group identification of a particular user, or this can be an entered selection

by a user, for example.

[0074] From a plurality of patterns made available to the selected domain, a pattern is
selected by a user (step 320). Selection of an appropriate pattern is made based upon the
nature of the object desired to be created or modified and the nature of the problem to be
solved. If the selected pattern is not compatible with previously selected patterns (step 330),
then the selected pattern can be rejected (step 340). A compatibility determination can be
made, for example, by consulting one or more rules associated with previously selected
patterns. As described above, compositional rules and interaction rules affect relationships
between patterns. These rules can be associated with the patterns when they are generated, or
subsequently added as new patterns are placed within the pattern repository and conflicts
between patterns are discovered. If the selected pattern has been rejected, a user is given the
opportunity to select a different pattern (step 320). If the selected pattern is not rejected, a

user is then given the opportunity to select additional patterns (step 350).

[0075] Once a user has selected all the patterns that are desired for creation or
modification of an enterprise object, the user is prompted to provide values for parameters
defined by the one or more selected patterns (e.g., variable values, field definitions, and the
like) (step 360). This process of pattern selection, rule confirmation, and parameter

specification can be performed within, for example, a configurator such as configurator 280

-20-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

of Fig. 2B. As parameter values are provided, a determination is made as to whether the
parameter values are consistent with the rules associated with the pattern and other patterns
being instantiated (step 370). If a parameter value is outside a range or specific value
specified by a rule, for example, the parameter value is rejected (step 380), and the user is

given another opportunity to provide values acceptable, in light of the given rules.

[0076] Once parameter values, appropriate to the problem to be solved, have been entered
for parameters associated with the selected patterns, an enterprise software object is
generated by a generator program (e.g., generator program 120 of Fig. 2B), using the selected
patterns (step 390). For example, in the embodiment illustrated in Fig. 2B, configurator 280
assembles the pattern specifications along with the specific values of the parameters to
generate a domain code file along with appropriate metadata that serves as an input to
generator program 120. Generator program 120 then generates executable “code”
(instructions) for the desired platform (e.g., executable code in the Java programming
language, for a specific platform (e.g., the original Java 2 Platform, Enterprise Edition
(J2EE), or the more recent Java Platform, Enterprise Edition 6 (Java EE 6)). Alternatively,
where functionality of the configurator and the generator are combined, patterns, parameter
values, and additional metadata can be used to directly generate executable code. Once the
desired enterprise object has been generated, that object is then available to be executed on

the appropriate platform (step 395).

[0077] Generator program 120 can employ any one of a number of approaches to generate
the requisite executable code. As will be appreciated in light of the present disclosure, and as
previously observed, embodiments of the present invention employ a generative approach, as
opposed to a component-based approach. In constructing software systems using either
approach, there is a distinction between the language employed and intention(s) captured
thereby, and the executables (software) generated for the given implementation. As will also
be appreciated, there is a clear distinction between these stages of software development. In
a component-based approach, the language and resulting executable are closely interwoven
with one another. Thus, using a component-based approach, a single intention (using a single
language to express that intention through the hand-coding of the desired software) maps to a
single implementation (as reflected in the single executable that results). By contrast, using a
generative approach such as that described herein, a single language/intention can yield a

number of different executables/implementations, depending on a variety of factors. This

21-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

decoupling of language/intention and resulting executable/implementation, provided by
approaches according to embodiments of the present invention, results in such approaches
being able to provide great flexibility in the generation of such executables/implementations.
This is particularly true when the ability of such approaches to dynamically map intentions to
executables is considered. For example, as the result of a process according to embodiments
of the present invention, a single intention (e.g., to create a web page capable of displaying an
object detail) may map to any one of a number of different implementations, based on the

given country, industry, and so on.

[0078] Using the aforementioned example of generating executable code in the Java
programming language, generator program 120 receives a number of patterns as input. Each
of these patterns includes different aspects. Each such aspect will have a corresponding
content provider. A content provider is responsible for generating and injecting the requisite
metadata into the given object (e.g., a specific middleware component). Each content
provider, in essence, behaves like a dedicated compiler, specific to the given aspect. As an
example, when a component of a user interface is generated, one or more aspects may be
involved. For example, two aspects that are typically so involved are a view aspect (e.g., for
generating the presentation (the actual layout and so on)) and a security aspect (e.g., for
generating the security policy for that user interface). In such a scenario, there are two
corresponding content providers. The view content provider generates metadata for the page
that conforms to the Java Server Faces (JSF) specification. The security content provider
creates and injects security policy into the appropriate server. Such a security content
provider can include, for example, a Lightweight Directory Access Protocol (LDAP) server,
configured to authenticate and authorize access to an organized set of records (e.g., a
database, repository, store or other such construct (any and all of which may, in fact, be one
and the same)) by one or more network entities (e.g., one or more of clients 225 or servers
230), as well as facilitating access to and maintenance of the distributed directory information

services involved in providing such access, among other such supporting functions.

[0079] Patterns, in the manner noted, are an abstraction of commonly recurring
implementations for a specific application. As noted above, these implementations can
include look and feel, guidelines, standards, and the like. Patterns are configured to expose

essential configuration options for enterprise objects, favoring convention over the

22

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

configuration of the enterprise object. Due to their generalized nature, patterns are typically

more enduring than the instances of the enterprise objects generated from a pattern.

[0080] Fig. 4 is a simplified flow diagram illustrating an example of operations performed
in creating a pattern, in accord with embodiments of the present invention. The process of
generating a pattern, as illustrated in Fig. 4, begins with the identification of the pattern to be
created (step 410). As noted earlier, a pattern according to embodiments of the present
invention describes a solution to a problem in a given problem domain. As also noted earlier,
identification of patterns for a particular domain typically relies, at least to some degree, on
familiarity with common problems and solutions within that domain. Typically, the solution
described is a commonly occurring one, and, more specifically, can be represented by an
abstraction of commonly recurring implementations of such solutions in specific applications.
Identification of these recurring solutions, or recurring steps leading to solutions, will
typically be performed by a programmer operating in the domain space, (e.g., pattern
programmer 270). In so doing, pattern programmer 270 can create patterns embodying such
solutions, with the intention of such patterns being used “as is.” Alternatively, pattern
programmer 270 can create such patterns for the purpose of providing the patterns to others
(e.g., self-service programmers) for customization, in order to allow those parties to
customize the given pattern(s) to their specific needs. Further still, pattern programmer 270
can create a pattern such that the pattern simply defines a “universe” within the solution
space of the problem domain, and within which a user such as a self-service programmers can
give effect to their intent by, in effect, creating a situation-specific pattern. By creating a
pattern that defines such a universe a pattern programmer such as pattern programmer 270 is
able to provide “boundaries” for the self-service programmer, and so guide the self-service
programmer through the various possible solutions that exist within the solution space at
hand, while allowing the self-service programmer a certain amount of latitude in defining the

manner in which that solution is reached.

[0081] Once a pattern has been identified, the pattern can be associated with a “Pattern
Kind,” either new or old (step 420). The main purpose of a Pattern Kind is to enforce
uniformity among patterns of the same “kind.” A Pattern Kind can serve to specify common
specifications and resources sharable among patterns of the same kind. Further, a Pattern
Kind can specify an externalized contract for the pattern, including, for example, a list of

aspects the pattern can have, common specifications and resources among patterns in the

23-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

kind, a collection of properties for patterns in the kind, a collection of aspects for one or more
sub-patterns, and lists of literals with their values for patterns in the kind. Patterns can belong
to more than one Pattern Kind, if appropriate. When associating a pattern with a Pattern
Kind, the pattern will adopt characteristics specified by the Pattern Kind, unless overwritten
by values within the pattern, for parameters such as, for example, properties, aspects,

variables, and the like.

[0082] Aspects for the pattern are also identified in creating the pattern (step 430). As
stated above, an aspect specifies requirements for instantiating a pattern. Aspects can include
physical representations of a pattern in the target domain. For example, a user interface
pattern may have one or more of the following aspects: view aspect, security aspect, display
aspect, and binding aspect, among others. Typically, the first two aspects are mandatory,
while the latter are typically optional. A display aspect specifies look and feel of the pattern.
A binding aspect specifies how the pattern interacts with the underlying model. A display
aspect and a binding aspect have their own physical representations (e.g., extensible markup

language (XML) schemas).

[0083] For each aspect of a pattern, a content provider for the aspect is identified (step
440). A content provider specifies how to generate the content for the particular
representation. In one embodiment, a content provider is a Java class that controls how the
content is being fabricated for a certain aspect. Content providers can generate the content
using templates, which, in one embodiment, are XML documents containing partial
implementations of the content. A template content provider can contain switching logic to
determine which template to use depending on a situation. For example, if an input text
pattern is being created and the target container is a table, the content provider can choose a

template that wraps the input text user interface control under a column element.

[0084] In one embodiment of the present invention, the output of a content provider is a
content object, which is a self-descriptive object that contains the generated content and
additional information about the content such as implementation type, identifying
implementations used for the content and an aspect in which the content is being generated
for. Templates specify a pattern’s content for a specific aspect. The content of a pattern
represented in a template can include, for example, language-specific literals including
textual fragments that are specific to the target representation, variables whose values can be

substituted when the template is instantiated, sub-patterns included within a pattern,

24-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

conditionals based on input properties and template parameters, and sub-templates embedded
within the template. Once the content provider for an aspect is identified, a determination is
made as to whether the last aspect has been identified (step 450). If other aspects remain,
such additional aspects are identified (step 430), as the process loops through the remaining
aspects of the pattern. If the last aspect has been identified, a generation context for the
pattern is then identified (step 460). A generation context is a set of resources available when
the pattern is instantiated. These resources are accessible in the template as variables. The
pattern and its associated metadata are then stored (e.g., in a pattern repository, accessible to

privileged users) (step 470).

[0085] Fig. 5 is a simplified block diagram illustrating an example of relationships
between patterns, sub-patterns, pattern kinds and various rules/aspects/templates. A Pattern
Kind (depicted in Fig. 5 as a pattern kind 510), which specifies common specifications and
resources sharable among patterns and external contracts used for patterns, can include one or
more patterns (depicted in Fig. 5 as patterns 520) that adopt those specifications, resources
and external contract. A pattern can include one or more sub-patterns 530, which can provide
more basic elements to the pattern. For example, a sub-pattern can relate to a date picker
element included in a user interface window that is being described by a pattern. Pattern 520
can be constrained by a set of rules, aspects, and templates 540. Similarly, each sub-pattern
530 can be associated with a set of rules, aspects, templates 550, and likewise a second sub-
pattern 535 can be associated with a second set of rules, aspects, and templates 555. As
discussed above, the constraining rules, aspects and templates provide various parameters
that are associated with each of the patterns, and which constrain various combinations of
values and combinations of sub-patterns that can permissibly interact within the pattern.
Further, Pattern Kind 510 can be associated with a pattern kind set of rules, aspects and
templates 560. The relationship between the pattern kind and patterns and sub-patterns can
be thought of as a hierarchical relationship. Patterns within a Pattern Kind adopt
characteristics specified by the Pattern Kind, unless overwritten by values within the pattern.
Further, sub-patterns can adopt (e.g., inherit) characteristics of the pattern within which they
are included, unless overwritten by the sub-pattern. Parameter values for sub-patterns can be

crafted in a manner by which they are passed to the sub-pattern from the parent pattern.

[0086] A pattern can also be included in more than one Pattern Kind. Such a pattern

adopts the defined characteristics of each Pattern Kind for which it is a member to the extent

25-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

that those characteristics do not conflict with one another. In the event that a characteristic
from each Pattern Kind is in conflict, the pattern can adopt just one of those characteristics.
In one embodiment of the present invention, a pattern will adopt the characteristic of the last

associated Pattern Kind.

[0087] Plan 570 provides steps that are to be fulfilled before, during, and after generation
of intentions from patterns. The plan provides a set of directions for how inputs for
parameters and the like are combined with the pattern. Thus, the plan provides directions to a
generator program for the way parameters and patterns are linked together given the inputs

provided to the configurator.

[0088] In one embodiment of the present invention, a repository of patterns is developed
for use by enterprises accessing computer resources in a cloud environment. Patterns within
the repository are vetted in a manner that guarantees that software generated from the patterns
will not be disruptive to users of the cloud environment. Further, the pattern in the repository
can be approved for use for specific problem domains, and be made accessible only to
approved users of those problem domains. Thus, security can be in place so that only
“domain experts” having approval to generate new software within the domain can have
access to patterns associated with that domain. Further, a domain expert of one domain may
not have access to patterns associated with a different problem domain for which that use
does not have privilege. Through the use of such a system, approved users can express
intentions for desired software using patterns designed to facilitate expression of those
intentions, and then provide those generated intentions to a software generator that outputs

desired enterprise class objects, such as business objects, data objects, and user interfaces.

An Example Enterprise Server Architecture

[0089] Fig. 6 is a simplified block diagram illustrating an enterprise server architecture
usable in conjunction with embodiments of the present invention, including the software
constructs described in connection with the simplified block diagram of Fig. 5. The
illustrated enterprise server architecture includes an enterprise server 610 that is a logical
grouping of one or more servers 620 that support a group of clients (e.g., clients 660 and 665)
accessing a common database 630. An enterprise server can be configured, managed and
monitored as a single logical group, allowing an administrator to start, stop, monitor or set

parameters for servers 620 within enterprise server 610. In such a configuration, parameters

-26-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

for the enterprise system are set at the enterprise server level, and these parameters apply to
every server operating within the enterprise server. In addition, other parameters can be
adjusted at a server (e.g., a server 620) level to support fine tuning of those parameters. In
this hierarchical parameter context, if a parameter is set at a server level, then the server-
specific value for the parameter can override an enterprise server-level setting for the
parameter. Further, parameter setting at a component level (process executed on servers 620)

will override those set at the server level.

[0090] Servers 620 can be configured to support back-end and interactive processes for
each client accessing the server. These processes are illustrated as one or more components
625 within each server. Servers such as servers 620 can support, for example, multi-process
and multi-threaded components, and can execute components in background, batch, and
interactive modes. A server component can also be executed on multiple ones of servers 620
simultaneously, in order to support an increased number of users and/or larger batched
workloads. Examples of component processes include, for example, mobile web client
synchronization, operation of business logic for web clients, connectivity and access to
database and file systems for clients, integration with legacy or third-party data (e.g., data not
native to the enterprise system), automatic assignment of new accounts, opportunities, service
requests, and other records, and work flow management. Embodiments of the search
processes of the present invention can also be implemented to execute on one or more of

servers 620 as components.

[0091] Servers 620 are coupled to a gateway server 650, illustrated as part of enterprise
server 610. Gateway server 650 coordinates the operations of enterprise server 610 and
servers 620. Such a gateway server can provide persistent storage of enterprise server
configuration information, including, for example, definitions and assignments of component
groups and components, operational parameters, and connectivity information. A gateway
server can also serve as a registry for server and component availability information. For
example, a server within enterprise server 610 (e.g., one of servers 620) can notify gateway
server 650 of availability. Connectivity information such as network addresses can be stored
in a storage accessed by gateway server 650. If one of servers 620 shuts down or otherwise
becomes unavailable, connectivity information related to that server can be cleared from

gateway server 650.

27-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[0092] Through their relationship in enterprise server 610, servers 620 and their
components 625 are able to access one or more data sources (e.g., databases 630 and file
systems 640). Database 630 can store, for example, RDBMS client software and tables,
indexes, and data related to all operations impacted by the enterprise system. Such database
information can include, for example, customer information, market data, historical pricing
information, current pricing information, contact information, and the like. Similarly, file
system 640 can store data and physical files used by clients 660 and 665 and enterprise server
610. File system 640 can be a shared directory, or set of directories on different devices,
which is network-accessible to all servers 620 in enterprise server 610. In order for a client to
gain access to files in file system 640, a client can connect to an appropriate one of servers
620 to request file uploads or downloads. The server is then able to access file system 640

using, for example, a file system management component.

[0093] As stated above, embodiments of the processes of the present invention can be
implemented to execute as components on one or more of servers 620. These servers can
form or be part of a private or public cloud computing environment. An alternative

embodiment provides a separate server accessible by the same or different web server.

[0094] Clients 660 and 665 provide access to enterprise server 610 for agents using the
enterprise system. Clients communicate to enterprise server 610 through gateway server 650
either directly (e.g., client 660) or via a web server 670 (e.g., clients 665). A web server 670
provides a mechanism by which enterprise server 610 can respond to web-based requests
(e.g., HTML, XML, and the like). Web clients 665 can include clients coupled to web server
670 via a local area network, metro area network, or wide area network and propagated over
a variety of communications media, as discusses above. Further, web clients 665 can include
mobile clients accessing web server 670 through wireless communications means. Users of
clients 660 and web clients 665 can include, for example, sales agents, service agents,
customer representatives, managers of the business entity, and the like. Users have access to
all information accessible to enterprise server 610 in database 630, as controlled by a user’s

secured access rights.

[0095] Clients 660 and web clients 665 can be distributed throughout an enterprise and
can include hundreds or thousands of such clients. Each such client can perform tasks related
to either creating new records to be stored in, for example, database 630, modifying records

in database 630, or searching for information stored in database 630.

28-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

An Example Implementation of an Intentional Prosramming Model in an

Extensible Cloud Programming Environment

[0096] Fig. 7 is a block diagram illustrating the various elements of an extensibility
framework architecture according to embodiments of the present invention (depicted in Fig. 7
as an extensibility framework architecture 700). Central to the operation of extensibility
framework architecture 700 is a plan 705. Plan 705 specifies (or, in certain embodiments,
facilitates the identification of) operations that are to be performed and/or directed by the

architecture’s plan processing module (depicted in Fig. 7 as a plan processing module 710).

[0097] Plan 705 is typically determined, at least in part, based on a command 712 received
by plan processing module 710, and which, for example, is received from a configurator 714.
Configurator 714 is a configuration tool tailored to the needs of untrained users (e.g., self-
service programmers), and allows such users to add new software components to an existing

application, or modify the software components existing therein.

[0098] A plan (e.g., plan 705) specifies one or more operations, typically in a sequence of
some sort, to be performed in giving effect to the given command. In certain embodiments,

each operation specified by a plan is carried out through an executor class.

[0099] For example, a command “CreateAttribute” might have a plan that specified the

following operations:

1. Allocate an available attribute.

2. Identify the target metadata and artifact into which the pattern is to be injected.
3. Compose a pattern for the new attribute.

4. Inject the new pattern into the target metadata.

[00100] A further example of the operations, as well as the functionalities facilitated by a
plan according to embodiments of the present invention is discussed in greater detail in

connection with Fig. 12.

[00101] Upon receipt of command 712, plan processing module 710 refers to mapping
information (e.g., a command registry (not shown)), which includes information mapping

command 712 to plan 705 (and vice versa). It will be appreciated that a command can map to

-29.

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

more than one plan, and conversely, more than one command can map to a given plan. Thus,
relationships between commands and plans can be 1:N, 1:1, or N:1, as well as combinations
thereof. Once plan 705 has been identified, the operations outlined by the plan are identified

and, if possible and appropriate, carried out.

[00102] As will be appreciated in light of the present disclosure, a command such as
command 712 is implemented as an XML fragment that contains configuration options that
can be used in creating and injecting a pattern, in certain embodiments. Further, a set of such
commands can be maintained in a command configuration file, for example. The foregoing
command paradigm serves as the self-service programmer’s primary interface to extensibility
framework architecture 700. Preferably, a command according to embodiments of the
present invention should be a generic and lightweight mechanism, in order to enable a caller
(e.g., a configurator such as configurator 714, or the like) to generate and inject new patterns

easily and efficiently.

[00103] In order to perform the operations necessary to creating and injecting a pattern (and
so support the extensibility of the software components in question), extensibility framework
architecture 700 provides a pattern manager 715, an artifact manager 720 and an injection
resolver 725. In response to a pattern request 730, pattern manager 715 accesses a pattern
repository 732. In certain embodiments, pattern repository 732 (also referred to herein as a
component repository) is a collection of pre-built components available for application
building. In addition, if necessary, one or more pattern composition operations can be
performed. As noted elsewhere herein, pattern composition refers to the process of
composing semantic-rich patterns from other (typically more basic) patterns. As described
elsewhere herein, this ability to create more complex patterns by aggregating simpler patterns
further enhances the extensible nature of extensibility framework architecture 700, and is

discussed in greater detail in connection with Fig. 8.

[00104] Having identified (and/or composed, as the case may be) one or more patterns that
satisfy pattern request 730, pattern manager 715 returns the pattern(s) thus identified or
composed (depicted in Fig. 7 as a pattern 734). In the example depicted in Fig. 7, a sample
user interface pattern 736 is presented as an example of such a pattern. Sample user interface
pattern 736 includes display information 737 and binding information 738. Display
information 737 can be implemented as a display template, and can include information

specifying the look-and-feel of sample user interface pattern 736, for example. Binding

-30-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

information 738, similarly, can also employ a display template, and can include information
specifying the manner in which sample user interface pattern 736 interacts with the given
data model, for example. Examples of elements comparable to display information 737 and

binding information 738 are provided in connection with Fig. 8.

[00105] Pattern manager 715, as part of providing pattern 734, may need to perform pattern
composition. Pattern composition refers to the process of composing a more complex,
semantic-rich pattern from more basic patterns. In the manner previously described, a pattern
is a reusable building block that adheres to a specific semantics and use-cases. A pattern is
similar to a component, but with at least one distinction: Typically, a component is built for a
wide range of uses, while a pattern is typically built for a few specific use-cases. As such, a
component typically provides a rich set of configurable options in adopting such usage
scenarios. By distinction, a pattern has an inherent semantic that reduces its complexity in
terms of configurability. The inherent semantic in a pattern can be signified through its
structure, as well as its predefined behaviors, whereas these structures and behaviors are
typically configurable in a component. It will be appreciated, however, as used herein, the
term pattern is intended to convey the possibility of the use of a component (as is intuitively
the case, given that a pattern is, for purposes of this disclosure, simply a component having

an inherent semantic that simplifies its use, at the expense of reduced configurability).

[00106] As will be described further in connection with Fig. 8, a pattern can belong to one
or more PatternKinds. Each PatternKind contributes to the externalized contract in using the
given pattern. The externalized contract includes a set of properties that signify the
configuration option(s) for the pattern. A pattern can have one or more aspects, with such
each aspect satisfying a certain requirement in materializing the pattern. The pattern’s
PatternKind specifies the aspects that a pattern of that PatternKind can have. Each aspect, in
turn, includes a content provider that provides the actual content for that aspect. A content
provider can employ one or more templates in assembling the actual content. Such templates
may specify a property, which is a configuration option used by the template. Typically, a
property name is an alphanumeric string (preferably not case sensitive), and a default value
can be specified with a property (e.g., a literal string). Another possible characteristic of a
pattern is the annotation. An annotation gives semantic meaning to a pattern. For example, if

the pattern is used for generating a detail table, then this information can be captured in the

-31-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

annotation. The annotation can be used later in generating artifacts for this pattern (e.g., as

the pattern is created).

[00107] Another feature of extensibility framework architecture 700 depicted in Fig. 7 is
artifact manager 720. Artifact manager 720, among other elements, includes a number of
adapters (depicted in Fig. 7 as adapters 740(1)-(N)). As depicted in Fig. 7, adapters 740(1)-
(N) allow artifact manager 720 to access various sources of programmatic constructs, such as
metadata, artifacts and the like (examples of which are depicted in Fig. 7 as construct sources
741(1)-(M)). As described in further detail subsequently, an artifact is an abstraction that
imbues a piece of a runtime metadata with a meaning. Among other characteristics and
capabilities, an artifact can provide the requisite abstraction to allow retrieval of properties

from runtime metadata.

[00108] Alternatively, artifact manager 720 can be designed to access construct sources
directly (thus making the aforementioned adapters optional). Artifact manager 720 can also
be designed to access other information directly, such as various registries (an example of
which is depicted in Fig. 7 as an artifact registry 742). However, as depicted in Fig. 7 (and
noted above), adapters 740(1)-(N) interface artifact manager 720 not only to construct
sources 741(1)-(M), but also to an example of such construct sources, a metadata repository
744. As depicted therein, artifact manager 720 accesses metadata repository 744 via adapter
740(1), and construct sources 741(1)-(M) via adapters 740(2)-(N). It will be appreciated that,
while depicted as having 1:1 relationships, the adapters and construct sources employed may,
in fact, also have one-to-many, many-to-one, or many-to-many relationships, and/or some
combination thereof, in a given implementation. In the scenario depicted in Fig. 7, however,
it will be appreciated that each of adapters 740(1)-(N) interfaces artifact manager 720 to a

given construct source (i.e., metadata repository 744 or one of construct sources 741(1)-(M)).

[00109] As will be appreciated in light of the present disclosure, artifact registry 742
maintains artifacts, as well as information associated therewith, available for use in
extensibility framework architecture 700. As will be further appreciated in light of the
present disclosure, the artifacts in artifact registry 742 will be configurable (i.e.,
customizable), in at least some regard, and so facilitate the injection process thereby.
Similarly, metadata repository 744 maintains metadata associated with the artifacts (e.g.,
target metadata 748). It will be understood that metadata repository 744 is merely an

example of the various artifact repositories that can be made available to artifact manager

-32-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

720, and further, that such artifact repositories support the functionalities made available to
self-service programmers via an application development framework such as that described

in connection with Fig. 13.

[00110] When artifact manager 720 receives an artifact request from plan processing
module 710 (depicted in Fig. 7 as an artifact request 746), artifact manager 720 accesses the
data sources that are made available via the adapters (e.g., artifact registry 742 and metadata
repository 744), in order to identify, access and provide the requested information in response
to artifact request 746 from plan processing module 710 (that being information including the
requested artifact and associated metadata (depicted in Fig. 7 as target metadata 748)).
Among other constructs included (or potentially included) in the various artifact registries
available to artifact manager 720 in a given configuration are aggregations of artifacts.
Certain aggregations of artifacts are referred to herein as partitions. A partition is a collection
of the configuration artifacts (such as patterns and plans) that are specific to an application
domain. In certain embodiments, a partition is identified by a filename and filesystem
directory. Configuration files placed in a partition’s filesystem directory will belong to that
partition. The operation of artifact manager 720, as well as further associated elements and

additional features thereof, is discussed in greater detail in connection with Fig. 9.

[00111] With the requested pattern (pattern 734) and requisite metadata (target metadata
748) now available, plan processing module 710 is able to proceed with the operations
identified by plan 705, and provide the requested pattern and metadata to injection resolver
725. An injection resolver (also referred to herein as a pattern resolver), such as injection
resolver 725, determines the pattern(s) to be generated, which, in turn, depend(s) on the
inputs received thereby (e.g., pattern 734 and target metadata 748). For example, based on
the given command, one or more attribute types and the target artifact, a specific one of a

number of patterns can be selected for injection.

[00112] More specifically, pattern injection refers to the process of injecting a pattern into
existing artifacts (thereby allowing a self-service programmer to customize an artifact, for
example), as well as creating new artifacts from the materialized pattern (thereby allowing a
self-service programmer to create artifacts within the universe defined by the pattern’s pattern
programmer, for example). Thus, a pattern (e.g., pattern 705) is injected into an artifact’s
runtime metadata (e.g., target metadata 748). As noted elsewhere herein, runtime metadata

refers to the metadata used in the software components of the runtime system. For example,

-33-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

in one implementation, the runtime metadata and resulting software components are a
collection of software files (e.g., application development framework files) created for the
application in question. In such an implementation, each piece of runtime metadata is
referenced by a unique name. Thus, the content of the runtime metadata can be retrieved
from a metadata repository (e.g., metadata repository 744), using that runtime metadata’s

unique name.

[00113] As noted earlier, an artifact is an abstraction that imbues a piece of a runtime
metadata with a meaning. In one implementation, an example of an artifact is a Frame. A
Frame is a user interface artifact that corresponds to an area within a user interface page. A
MasterRegion is a Frame that can be mapped to a FormLayout element within a page. A

FormLayout element is a container for the fields to be displayed for the master object.

[00114] In such a scenario, an artifact would then carry the following information:

1. Name The name of the artifact.

2. Kind This describes what kind of artifact it is (e.g., Frame).

3. Purpose This describes what this artifact means (e.g., MasterRegion).

4. ApplyTo This describes the context in which this artifact applies.

5. Descriptors Each descriptor is a name-value pair that describes a property of that

artifact (e.g., label, validator, or the like).

[00115] As noted above, the ApplyTo information indicates the context in which an artifact
applies. For example, a Frame artifact is used for displaying the fields for an Entity (e.g.,

Opportunity). The context (Opportunity) gives additional meaning to this Frame artifact.

-34-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00116] Further, an artifact can have multiple aspects, in a manner comparable, at least in
concept, to that of a pattern. Each aspect captures the mapping between an artifact and the
corresponding runtime metadata. An artifact aspect can include the following information,

for example:

1. Runtime Metadata Name - This is used for retrieving the content of the runtime
metadata from the metadata repository.

2. Locator - The locator describes how to locate this artifact within the runtime
metadata. In the case of XML-based metadata, for example, the locator can be an

xpath expression.

[00117] When injecting a pattern into an artifact’s metadata, information regarding the
point in the artifact’s metadata at which the pattern is to be injected is typically needed, and is
referred to herein as a pointcut. A pointcut specifies the insertion point of a pattern being
injected into an artifact. It is noted here, however, that such need not be the case, as the
automatic identification and location of pointcuts is within the scope of the present
disclosure. Such automatic identification and location can be achieve though techniques such
as the recognition of pattern in the runtime metadata, use of historical information as to where

such patterns have been injected in the past, and other such automated techniques.

[00118] In one implementation, a pointcut can include, for example, the following

information:

1. Name - a unique name to identify the pointcut.

2. Operator - a pointcut operator that specifies how to insert the pattern into the artifact.

3. Injector - an injector that is an implementation class for executing the insertion. This
class can be identified in the pointcut information, or can actually be included in the

information itself.

[00119] With regard to the Operator pointcut information, examples of pointcut operators
thus identified include “Insert,” “After,” “Before” and “InsertSort.” “InsertSort” instructs
injection resolver 725 to insert the pattern in a relative position among existing elements in
the runtime metadata. Each pointcut operator can be associated with a specific aspect. For
example, for the aspect DisplayAspect, the “InsertSort” pointcut operator could be used,

while for the aspect BindingAspect, the “Insert” pointcut operator might be employed.

-35-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00120] In extensibility framework architecture 700, for a pattern to be injected into an

artifact by injection resolver 725, the following pieces of information are needed:

1. The artifact in which the pattern is to be inserted.
2. The pattern to be injected.

3. The pointcut for determining how the insertion is to be performed.

[00121] In the implementation presented as extensibility framework architecture 700, the

following operations are performed during injection:

1. Select an aspect in the pattern.

2. Retrieve the generated content from the pattern for the selected aspect.

3. Retrieve the runtime metadata from the artifact for the selected aspect. The runtime
metadata can be retrieved using the locator for the selected aspect.

4. Retrieve the pointcut operator for the selected aspect.

5. Invoke the injector to insert the generated content into the runtime metadata.

[00122] As noted earlier, artifacts can also be generated in extensibility framework
architecture 700. To perform artifact generation with a given pattern, a special pointcut is
used to create the new artifact. In such a scenario, the given pattern needs to be properly

annotated, such that the new artifact can be generated from the pattern’s annotation.

[00123] Injection resolver 725 includes, among other elements thereof, a number of
handlers (depicted in Fig. 7 as handlers 750(1)-(N)). Handlers 750(1)-(N) facilitate
interactions between injection resolver 725 and various other system elements of extensibility
framework architecture 700, and thereby provide the functionality needed to modify the
software constructs being customized. For example, handler 750(1) allows injection resolver
725 to interact with a services session 752. Similarly, handler 750(N) allows injection
resolver 725 to interact with the various software components 754 being modified. In
supporting such functionality, handlers 750(1)-(N) allow injection resolver 725, after having
received target metadata 748 and pattern 734, to inject pattern 734 into target metadata 748
and provide the customized metadata to one or more of software components 754. In
performing the foregoing operations and making the customized constructs available, plan
processing module 710 communicates with a metadata service 760, for example, by

providing notifications and other information to metadata service 760 (an example of which

-36-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

is depicted in Fig. 7 as a notification 765). It will also be appreciated, however, that metadata
service 760 can support the functions associated with plan processing module 710 directly,

and so encompass the processing of plan 705.

[00124] Fig. 8 is a simplified block diagram of a pattern data model 800, depicting a data
model according to embodiments of the present invention. As will be appreciated in light of
the present disclosure, pattern data model 800 is, in at least certain features and
functionalities, comparable to the software constructs described in connection with the
simplified block diagram of Fig. 5, as well as the patterns described elsewhere herein.

Pattern data model 800 includes a pattern kind 810, a pattern 820, an aspect 830, a content
provider 840, and a template 850. As will be appreciated from the structure illustrated in Fig.
8, in fact pattern kind 810 and pattern 820 have a many-to-many relationship, meaning that a
pattern kind such as pattern kind 810 can comprehend a number of patterns, among then
pattern 820. Similarly, a pattern such as pattern 820 can comprehend (i.e., be a member of)
one or more pattern kinds (e.g., pattern kind 810). In a similar fashion, as depicted in Fig. §,
pattern 820 may have one or more aspects (e.g., aspect 830). However, an aspect such as
aspect 830 has a one-to-one relationship with its content provider (e.g., content provider 840).
A current provider such as content provider 840, however, can have a one-to-many

relationship with its template(s) (e.g., template 850).

[00125] The primary function of a pattern kind (also referred to by its class name of
PatternKind), such as pattern kind 810, is to enforce uniformity among patterns of the same

“kind.” In that regard, a PatternKind serves two purposes:

1. Specifying the common specifications and resources sharable among the patterns; and

2. Specifying the external contract in using the patterns (as s set of Properties).

37-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00126] Examples of PatternKind are UIPatternKind and DataPatternKind. A PatternKind
can be derived from a parent ParentKind. For example, a TextUIPatternKind can be derived
from UlPatternKind. A child PatternKind can inherit the resources of the parent PatternKind.

In one implementation, the following characteristics can be specified in a PatternKind:

1. Property Set. A property set is a collection of properties, along with the default
values for these properties. A pattern will automatically inherit these properties from
its PatternKind. The pattern can override the default values for the property set.

2. Enumeration. An enumeration contains a list of string literals. A property can refer
to an enumeration for specifying its set of possible values.

3. Aspect Set. An aspect set is a collection of aspects that a pattern can have.

[00127] A pattern can belong one or more PatternKind. If a pattern has more than one
PatternKind, then these PatternKinds are specified in a list, and the following rules apply in

resolving conflicts between the PatternKinds:

1. If two PatternKinds form a hierarchy, then the resources of the child PatternKind
takes precedence.
2. If two PatternKinds do not form a hierarchy, then the resources of the latter

PatternKind in the list takes precedence.

[00128] An aspect specifies a certain requirement in materializing the given pattern. One
such requirement can be the physical representations of a pattern in the target domain. A user
interface pattern (e.g., sample user interface pattern 736) may have two aspects, a Display
Aspect (e.g., display information 737) and a Binding Aspect (e.g., binding information 738).
The Display Aspect specifies the look-and-feel of the pattern. The Binding Aspect specifies
the manner in which this pattern interacts with pattern data model 800. The Display Aspect
and Binding Aspect each have their own physical representation (e.g., XML schema). Each
aspect has its corresponding content provider to specify how to generate the content for the

particular representation.

[00129] In certain implementations, a content provider such as content provider 840 is a
Java class that controls the manner in which content is fabricated for a certain aspect.
Typically, content provider 840 generates the requisite content using one or more templates.

In such implementations, a template can be, for example, an XML document that contains the

-38-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

partial implementation of the content in question. Alternatively, content provider 840 can

also generate the content programmatically.

[00130] A more specific example of a template is a template content provider. A template
content provider is a content provider that generates content based on a template. A template
content provider can contain switching logic, capable of determining which template to use,
depending on the situation. For example, if an InputText pattern is being created and the
target container is a table, the content provider can choose whether or not to use a template

that wraps the InputText user interface control under a column element.

[00131] In certain embodiments, the output of a content provider is a content object. Such
content objects are self-descriptive objects that contain not only the generated content, but
also additional information about the content. As an example, a content object can contain

the following information:

1. The generated content;
2. The implementation type; and

3. The aspect for which the content is being generated.

[00132] The implementation type identifies the implementations used for this content. For
example, an implementation type can be “DOM” (indicating the document object model
convention) for XML content. In such an implementation, the implementation type, if

missing, is defaulted to the class name of the actual content.

-390-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00133] A template is a specification of a pattern’s content for a specific aspect. For
example, a template can be used to specify XML-based content. Examples of the forms in

which the content of a pattern can be represented in a template include:

1. Language Specific Literals. Such literals are, essentially, the textual fragments that
are specific to the target representation. For example, considering the case of an
ADF-based pattern, the literals would be ADF constructs embedded in the template.

2. Variables. Variables are symbols whose values can be substituted when the template
is materialized. Variables are generally reference to the pattern’s input properties or
template parameters.

3. Sub-Patterns. A template itself can embed other sub-patterns.

4. Conditionals. Conditionals are switching conditions within the template. Such
conditions can be based on the input properties and template parameters, for example.

5. Sub-Templates. A template itself can embed a sub-template. Such a sub-template

will belong to the same aspect in the same pattern.

[00134] Each template is essentially an extension of the constructs of the underlying target
representation. In the case of an ADF, a user interface template (e.g., such as that which
would be used with sample user interface pattern 736) would contain specific layout and

visual requirements for the application in question (e.g., a CRM application).

[00135] A template may also declare one or more parameters. Such parameters can be used
as variables in the template’s text. The template parameters are typically used when the
template can be embedded in another template of the same aspect. The template parameters

enhance the reusability of the template.

-40-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00136] An example of a template with a variable and a condition appears below:

InputTextDisplayTemplate

<af:inputText ...
rendered="true”
maximumLength="$$maximumLength$$”

#if test=""$$required$$”
required="true”
#else
required="$$pBindings$$”.$$attributeName$$.required”

[00137] An example of a template with a sub-template appears below:

ColumnInputTextDisplayTemplate

<af:column ...
#expand template="InputTextDisplayTemplate” pBinding="row.bindings”

[00138] As a pattern is materialized, its sub-patterns are expanded into concrete contents.
As will be appreciated, in light of the present disclosure, several approaches can be used to

include a sub-patterns in a parent pattern, including, for example:

1. Simple inclusion. In this approach, the sub-pattern is directly specified in the parent
template. This is similar to template inclusion, except the target is a pattern instead of
a template.

2. Dynamic inclusion. In this approach, a collection of objects is specified in the parent
template. For each object in the collection, based on its class, a Pattern Resolver can
be invoked to determine the actual sub-pattern to use for that object. In addition,
given the object, a Context Factory can be invoked to generate a generation context
can be used in pattern binding. Following sections will discuss generation context
further more.

3. Metadata inclusion. This approach acts as a special case of dynamic inclusion, in
which the object is a metadata object. In this case, a special syntax is provided to

support metadata inclusion.

41-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00139] When embedding a pattern within a template, the content provider checks to ensure
that the implementation type of the embedded content is compatible with the containing
template. When materializing a pattern, the context in which such operations are performed
is typically needed. Such a context is referred to herein as a generation context. The
generation context is the set of resources available when the pattern is materialized. These

available resources are accessible in the template as variables.
[00140] A generation such as that just described can include, for example:

1. The values of the pattern properties;
2. The payload of the event; and
3. An identifier generator, which can also be used to generate the customization

identifier in the template.

[00141] When materializing a pattern, it may also be desirable to provide for context
binding. For example, when including a pattern inside a template, the parent’s generation
context can be bound to the sub-pattern. The property values of a sub-pattern can be bound

from the parent, for example, in the following order:

1. Pattern Kind. The default property values from the pattern kinds are applied to the
sub-template.

2. Implicit. The sub-pattern will automatically inherit the parent’s generation context.
For example, if the pattern requires a property called “ReadOnly” and the parent’s
generation context contains such a property, the value of “ReadOnly” in the parent’s
generation context will be bound to the sub-pattern. Note that the property
“ReadOnly” should be an input property of the sub-pattern in order for this property
to be used as a variable in the template.

3. Explicit. When binding to a sub-pattern, the parent template can explicitly specify the
values of the input property of the sub-pattern. The explicit value can be a literal or
an expression, for example. If explicit value is an expression, the expression may
reference the property in the parent’s generation context. The explicit binding is
considered to be stronger because explicit binding is part of the behavioral

specification of the pattern.

42-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

4. Pass-thru. If the parent’s generation context contains a property that is not an input
property of the sub-pattern, then this property is marked as pass-through. This means
that this property cannot be referenced in the template, but it is available when this

property is bound to any embedded pattern within the sub-pattern (“sub-sub-pattern™).

[00142] When using polymorphic inclusion, a template context can be created for each
object in the polymorphic collection. These object-level template contexts are bound after
simple binding is done. Also, as will be appreciated, it is important that any cycles in the
parent/child relationships that may exist in more complex patterns when expanding those
patterns be detected (e.g., in order to avoid a sub-pattern including its parent). Further,
extensibility framework architecture 700 supports the use of a common namespace, which
can be implemented, for example, as a common namespace file. Such a common namespace
file can be specified such that a template can import the file, in order to specify the

namespace (and namespace prefix) of the element(s) in the template.

[00143] Fig. 9is a block diagram illustrating a metadata management architecture 900,
according to embodiments of the present invention, which is an example of an architecture
capable of providing the functionality represented by artifact manager 720 and its associated
elements in Fig. 7. In an extensibility framework according to embodiments of the present
invention, metadata management addresses two primary uses of the runtime metadata
managed thereby. The first of these is the use of the runtime metadata as the content into
which a new pattern is injected, an operation performed primarily in the injection phase. The
second of these is the use of the properties associated with the runtime metadata to reflect the
configuration choices for the artifact in question (i.e., a specific artifact). Examples of such
properties are labels, required flags, and validators. Typically, the extensibility framework
(i.e., extensibility framework architecture 700) does not duplicate properties that already exist
in the runtime metadata. Moreover, the extensibility framework can also store additional
metadata, if that additional metadata is not available in the runtime metadata. This
functionality enables the same infrastructure to be used in customizing an existing artifact, as

well as creating a new artifact.

[00144] Among other functionalities provided by metadata management architecture 900 is
metadata reflection (in the manner of the reverse-translation mentioned earlier herein). As

noted earlier, an artifact is an abstraction that imbues a piece of a runtime metadata with a

-43-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

meaning, and can also provide information that allows properties to be retrieved from runtime
metadata. Fig. 9 depicts various elements within extensibility framework architecture 700

that support metadata reflection.

[00145] Central to metadata management architecture 900 is an artifact manager 905,
which is comparable, in at least certain of its features and functionalities, to artifact manager
720 of Fig. 7. Artifact manager 905 is designed to access both artifact information and
metadata via facilities provides by metadata management architecture 900. Artifact manager
720 acts as the entry point from which other components within extensibility framework
architecture 700 can retrieve information regarding a given artifact, such as an artifact
description (described below). With respect to such artifacts, artifact manager 905 accesses
an artifact registry 910, which, in turn, provides access to artifact registry storage 915 via an

artifact registry adapter 920.

[00146] In response to this request, artifact registry storage 915 provides one or more
artifact descriptions, depicted in Fig. 9 as artifact descriptions 925(1)-(N), to artifact registry
910 via artifact registry adapter 920. Artifact descriptions 925(1)-(N) can be implemented,
for example, as a class that represents the information about an artifact. In fact, a list of
artifacts can be obtained from artifact registry 910. Artifact registry 910, typically, maintains
artifacts for only the runtime metadata that is extensible. Artifact registry 910 uses artifact
registry adapter 920 to retrieve the requisite information (e.g., a list of artifacts) from its
physical storage (i.e., artifact registry storage 915). As will be appreciated, artifact registry
910, artifact registry adapter 920 and artifact registry storage 915 are comparable, in at least
certain respects of their functionality, to artifact registry 742 of Fig. 7. The output of artifact
registry 910 is a list of artifact descriptions (artifact descriptions 925(1)-(N)). In certain
embodiments, artifact descriptions 925(1)-(N) contain only basic information about the

artifacts (e.g., artifact name(s), artifact kind(s), artifact purpose(s) and the like).

[00147] Once artifact descriptions 925(1)-(N) have been retrieved, artifact manager 905
proceeds with retrieving the requisite metadata for the injection process. Each artifact kind in
artifact descriptions 925(1)-(N) maps to a resource access profile (an example of which
depicted in Fig. 9 as a resource access profile 930). For each artifact description returned
from artifact registry 910, then, the given artifact description’s resource access profile (e.g.,
resource access profile 930) is identified and used by a resource manager 935 in accessing the

appropriate runtime metadata storage. It will be appreciated that, in light of the present

-44-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

disclosure, an artifact may be mapped to multiple resources, with each resource designed to
manage a subset of the artifact’s properties (e.g., label(s), validator(s) or other such

properties).

[00148] For each resource, metadata management architecture 900 typically includes a
corresponding resource adapter that is responsible for retrieving the properties from the
resource’s runtime storage (an example of which depicted in Fig. 9 as a resource adapter
940), though other arrangements are within the scope of this disclosure (e.g., a resource
adapter that supports multiple runtime metadata stores). A resource adapter such as resource
adapter 940 returns an artifact’s properties in the form of a resource description, on a per-
artifact basis (an example of which is depicted in Fig. 9 as an artifact description 945). In a
manner comparable to that described with the other artifact descriptions of extensibility
framework architecture 700, artifact description 945 can be implemented, for example, as a
class that represents the information about an artifact. Resource adapter 940 accesses runtime
metadata storage 950 to retrieve the desired runtime metadata (depicted in Fig. 9 as runtime
metadata 955). As will be appreciated, resource manager 935, resource adapter 940 and
runtime metadata storage 950 are comparable, in at least certain respects of their

functionality, to adapter 740(1) and metadata repository 744 of Fig. 7.

[00149] Artifact manager 905 then merges the resource descriptions received from the
artifact registry (e.g., artifact descriptions 925(1)-(N)) and resource manager 935 (e.g.,
artifact description 945) . The merged resource descriptions are now ready to be returned to
the module of extensibility framework architecture 700 that invoked artifact manager 905
(e.g., plan processing module 710, metadata service 760, or other module of extensibility
framework architecture 700 tasked with interfacing with artifact manager 905). In the case in
which a new artifact has been created, artifact manager 905 is also responsible for saving this

artifact into artifact registry 910.

[00150] Resource manager 935 can also be employed to remove one or more artifacts from
the runtime metadata (e.g., the runtime metadata in runtime metadata storage 950). In certain
embodiments, for example, an artifact stores a set of locators for each of its aspects. Each of
these locators identifies where the artifact resides in the runtime metadata. For each such
locator, the artifact kind is identified. Based on the artifact kind, a resource access file is
obtained. As noted earlier, a resource adapter can be identified for each resource identified

by the resource access file. This facilitates the identification of the resource adapter for the

-45-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

given resource. Once the resource adapter in questions has been identified thusly, a “delete”
operation can be invoked in the resource adapter using the corresponding locator. The
resource adapter then executes the “delete” operation on the underlying metadata storage
(i.e., runtime metadata storage 950). For example, using the metadata services example

presented in Fig. 7, the resource adapter simply deletes the artifact in question.

[00151] In certain embodiments, a command log (not shown) may be maintained as part of
metadata management architecture 900, or elsewhere within extensibility framework
architecture 700. Such a command log maintains information regarding the creation,
modification, and so on, performed for each artifact created, modified, etc., in extensibility
framework architecture 700. In so doing, a history of these operations is kept, allowing a
determination to be made as to the manner in which the affected artifacts are extended or
otherwise altered. In the case of a system upgrade, such a command log allows an artifact to

be regenerated based on the commands kept in the command log.

[00152] Fig. 10is a flow diagram illustrating an example of the operations which can be
performed by an extensibility framework architecture such as extensibility framework
architecture 700, according to embodiments of the present invention. The process begins
with the plan processing module of the extensibility framework architecture awaiting a
command from the configurator (step 1000). Once a command has been received from the
configurator (step 1000), a plan (e.g., plan 705 of Fig. 7) is identified, based on the command
received (step 1010). As noted earlier, the given plan(s) can be determined using a command
registry, in which a plan is determined based on the command received, for example. Once
the plan(s) to be implemented is (are) thus identified, the operations specified thereby are
performed, as necessary and appropriate (step 1020). The process of performing the
operations specified in the identified plan is detailed further in connection with the

description of Fig. 11, below.

[00153] Fig. 11 is a flow diagram illustrating an example of a process of performing
operations specified by a plan such as plan 705. The process begins with the identification of
an operation to be performed, as specified by the plan (step 1100). Once a given operation is
identified, a determination is made as to whether the identified operation should be performed
(step 1110). If the identified operation should be performed (step 1120), the elements of the
extensibility framework architecture that are involved with the operation, perform the

identified operation (step 1130). Conversely, if a determination is made that the given

-46-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

operation identified by the plan should not be performed (steps 1110 and 1120), the current
operation is skipped. In either case, the plan processing module of the extensibility
framework architecture then determines whether any operations in the plan are yet to be
completed (step 1140). If such further operations remain, the process loops back to the
identification of the given operation (step 1100), and continues through the process just

outlined. If no further operations remain (step 1140), the process concludes.

[00154] Fig. 12 is a flow diagram illustrating an example of the types of operations that can
be specified by a plan according to embodiments of the present invention. As will be
appreciated, in light of the present disclosure and in connection with Figs. 10, 11 and 12, the
operations depicted in the flowchart of Fig. 12 are organized in a sequential fashion, for the
sake of simplicity (and so do not follow in the iterative flow of Fig. 11). The operations of
the plan depicted in the flow diagram of Fig. 12 begin with the identification of an artifact
and its target metadata (step 1200). As noted earlier, the target metadata thus identified is
that metadata into which the pattern is to be injected. Next, the artifact and target metadata
are retrieved from the artifact manager by the plan processing module (step 1210). In the
manner noted earlier, a request (e.g., pattern request 730) is sent by the plan processing
module to the pattern manager (step 1220). The pattern manager, in turn, composes the
requested pattern (e.g., sample user interface pattern 736) (step 1230). The pattern manager
then provides the requested pattern to the plan processing module, which receives the pattern
from the pattern manager (step 1240). Having now received the artifact and target metadata,
as well as the pattern to be injected therein, the plan processing module provides the artifact’s
target metadata and the pattern to the injection revolver (step 1250). Upon receipt of this
information, the injection revolver performs the requisite operations to inject the pattern into
the artifact and target metadata (step 1260). Having performed these operations, the plan
processing module then coordinates the injection operation with the metadata service (step

1270).

[00155] The extensibility provided by an extensibility framework architecture such as
extensibility framework architecture 700, in terms of runtime extensibility, provides several
benefits, in the manner noted earlier herein. For example, a self-service programmer can
extend and configure applications without having to write computer code. In certain
implementations, such a programmer can make changes using a browser-based interface,

which can, in turn, provide support to such users through the provision of wizards and flows.

47-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

Further, the desired changes can be applied to the application without the need for restarting
or re-deploying the application. Further still, such extensibility can be “additive and
optional,” being implemented only if doing so will enhance and augment the self-service

programmer’s use of the application.

[00156] Fig. 13 is a block diagram illustrating an implementation of an extensibility
framework architecture (e.g., extensibility framework architecture 700) and associated
elements, for the generation of customized software components at runtime (depicted in Fig.
13 as an extensibility framework implementation 1300). Extensibility framework
implementation 1300 includes a generation layer 1310, which, in turn, includes a pattern
1315. Pattern 1315, which is comparable, in at least certain of its features and functionalities,
to pattern 734 of Fig. 7, for example. Pattern 1315, as part of generation layer 1310, is
available for use in guiding the operations of a variety of adapters, in order to provide for the
runtime generation of customized software components. Among the possible adapters with
which pattern 1315 might interact, pattern 1315 is depicted in Fig. 13 as being available to an
application development framework adapter 1320, a service-oriented architecture adapter
1322, a web adapter 1324, a repository definition adapter 1326, and a services adapter 1328.
It will be further appreciated in view of the present disclosure that embodiments such as those
described herein can, in generating the desired executables, employ a decision tree at runtime,
to guide the self-service programmer in effecting the desired modifications and/or creating

the desired functionality.

[00157] In turn, these adapters provide an interface between pattern 1315 (and so
generation layer 1310) and a number of application programming interfaces (API). As will
be appreciated in light of the present disclosure, the adapters of generation layer 1310 can
provide access to a wide array of possible APIs. Among the possible APIs to which the
adapters of generation layer 1310 can provide access are those shown in extensibility
framework implementation 1300, which include an application development framework
(ADF) API 1330, a service-oriented architecture (SOA) API 1332, a web AP1 1334, a
repository definition web service API 1336 and a service policy API 1338. In certain
embodiments, ADF API 1330 is used to support extensibility of user interfaces, data models,
schema definitions (e.g., XML schema definitions), and other components of the given
extensibility framework. Service policy API 1338 also supports extensibility by facilitating

functional grants.

-48-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00158] Application development framework API 1330, service-oriented architecture API
1332 and web API 1334 interface their corresponding adapters in generation layer 1310 to a
metadata services artifact repository 1340. Metadata services artifact repository 1340 stores a
variety of artifacts, among them ADF artifacts, SOA artifacts, web artifacts, and the like.
Metadata services artifact repository 1340 is, for purposes of the present discussion,
comparable to metadata repository 744 depicted in Fig. 7. It therefore follows that
application development framework adapter 1320, service-oriented architecture adapter 1322,
and web adapter 1324 are comparable to various ones of adapters 740(1)-(N) of Fig. 7.
Pattern 1315, via repository definition adapter 1326 and repository definition web service
API 1336, interfaces to a repository definition store 1345. Repository definition store 1345,
in turn, provides repository definitions for metadata services artifact repository 1340. In
certain implementations, repository definition store 1345 includes repository definitions that
define fact tables and dimension tables (described subsequently, e.g., in connection with Fig.
17). Similarly, pattern 1315 is provided with access, via service policy API 1338, to a policy
store 1350 via services adapter 1328 and service policy API 1338. In certain
implementations, policy store 1350 can be accessed via service policy API 1338 using the
Lightweight Directory Access Protocol mentioned earlier, in order to facilitate the

management of access to the policy records therein.

[00159] Fig. 14A is a block diagram illustrating an example architecture of an
implementation that includes an extensibility framework such as extensibility framework
architecture 700 of Fig. 7, according to embodiments of the present invention (depicted in
Fig. 14A as an extensibility framework architecture implementation 1400). Extensibility
framework architecture implementation 1400 includes an extensibility framework 1410 (e.g.,
in the manner of extensibility framework architecture 700). In addition to including elements
such as those depicted in Fig. 7 as being included in extensibility framework architecture 700,
extensibility framework 1410 is depicted as also including a metadata adapter 1412, a content
construction module 1414, and a content persistence module 1416. Metadata adapter 1412
facilitates access to the metadata artifacts of extensibility framework architecture
implementation 1400 via the various APIs and services thereof. Content construction module
1414 facilitates the dynamic creation of content types by, for example, by supporting the
extension of various database schemas within extensibility framework architecture
implementation 1400, thereby facilitating various aspects of the customizations described

herein. Among other features of and information within extensibility framework 1410,

-49-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

content persistence module 1416 facilitates the persistence of changes to extensibility
framework 1410 by a self-service programmer (e.g., customizations created using
extensibility framework 1410, as well modifications thereto), and thus, facilitates, for
example, the persistence of such customizations, their attributes and other aspects thereof. In
such a scenario, for example, such changes can be persisted for the duration of a self-service
programmer’s session. Alternatively, such changes can be persisted across sessions, in which
case content persistence module 1416 causes the changes to be persisted to a metadata
repository (e.g., such as metadata repository 744, metadata services artifact repository 1340,
or the like, or that described subsequently in connection with extensibility framework

architecture implementation 1400).

[00160] In the manner depicted in Fig. 7, extensibility framework 1410 interfaces with a
configuration interface 1420, which allows a self-service programmer (e.g., an administrator
or other user) to customize software components using extensibility framework 1410. Ina
manner comparable to that described earlier, extensibility framework 1410 receives one or
more commands from configuration interface 1420 and, in turn, interacts with one of several
interfaces in performing the operations specified by one or more plans identified in the
command(s) received. To this end, extensibility framework 1410 interfaces with an
application development framework API 1430, metadata services 1432 and/or a flex field
API 1434. Flex field API 1434 facilitates the use of constructs such as extension columns
and extension tables in implementations constructed in the manner of extensibility framework
architecture implementation 1400. Extensibility framework architecture implementation
1400 provides access to metadata artifacts via a composer interface 1440. Composer
interface 1440 provides an easy-to-use, declarative and programmable extensibility
mechanism for customizing runtime editing to address, for example, end-user application
requirements. Composer interface 1440, which can be implemented as a browser-based
platform, provides such functionality by providing access to metadata services 1432 via a
composer framework 1445 and flex field API 1434, while bypassing extensibility framework
1410 and its components. Composer framework 1445, in turn, provides a framework on

which to build such customizable application pages.

[00161] Whether accessed using configuration interface 1420 or composer interface 1440,
metadata services 1432, in turn, provide access to a set of metadata artifacts (depicted in Fig.

14A as metadata artifacts 1450). Metadata artifacts 1450 include base artifacts 1454, as well

-50-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

as extended artifacts 1458. Base artifacts 1454 can include, for example, constructs such as
view objects, pages, page fragments, task flows, page definitions, and the like. Extended
artifacts 1458 can include, for example, constructs such as composer artifacts, flex extended
metadata, and the like. In addition to configuration interface 1420 (which is intended for use
by self-service programmers) and composer interface 1440 (which is intended for use by
programmers), programmers can also access metadata services 1432 and metadata artifacts

1450 directly using a development interface 1460.

[00162] In order for an extensibility framework implementation to support the generation
of customization according to embodiments of the present invention, as well as runtime
generation, a number of functionalities can be provided. For example, the module or
application to be customized should be compatible with the extensibility framework (e.g.,
with respect to certain of the examples herein, metadata should be used to define content).
Further, it is preferable that content not be coded, but rather generated. Such metadata should
also employ runtime APIs to facilitate extension and/or the addition of content. Also, such
metadata should use and/or integrate with the development framework employed (e.g., ADF)
as the basis for data/objects. Such modules and applications preferably also read metadata at
runtime without the need for server restart, and should define appropriate patterns for

extensibility.

[00163] Further, and as will be appreciated from the present disclosure, various types of
extensibility can be provided through extensibility framework implementation 1300. For
example, types of constructs which can be made customizable, in an extensibility framework
implementation according to embodiments of the present invention, include entities,
attributes and relationships, and user interfaces, for example. Using these constructs as an
example, once one or more extensible entities have been designated, new top-level entities
(e.g., a Lease) and new child entities (e.g., Opportunity Decision Issues) can be added. Once
such entities are added, their attributes and relationships can be extended by adding new
attributes, as well as creating new “Relationships” (which employ foreign key (FK)-based
relationships) and new “Context Links” (which do not employ FK-based relationships). In
light of the foregoing extensions, the associated extensible user interface can be extended by
creating a work area landing page. In one embodiment, one landing page is created for each
(customized) entity, for example. Once a landing page has been created, the new attributes

are exposed in pre-designated user interface elements. For a new “Context Link”

-51-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

relationship, a tree node (a child of entity “Customer™) is created, while for a new
“Relationship,” a new sub-tab is created (though in this case, a parent entity page needs to be

a sub-tab user interface).

[00164] Extensibility framework implementation 1300 also supports other type of
extensibility. Other extensibility types include extensible services, extensible workflow
events, extensible analytics, and extensible import/export. Operations involved in the
extension of services include, for example, the addition of new attributes as elements in an
entity’s payload XML schema definition (XSD) and the creation of new payload XSD for the
(customizable) entity. Extensible analytics provide functionality that includes, for example,
providing custom attributes in existing reports, creating new reports using custom and
standard entities, supporting drill-down and roll-up, and supporting group-by and aggregation
operations. Support for extensible workflow events includes, for example, the creation of
email notification, the updating of dependent fields, the creation of user tasks, and the
sending of outbound services. Support for extensible import/export operations includes, for
example, providing custom attributes in existing import/export operations and supporting

import/export for custom entities.

[00165] Further still, the various extensibility types in an extensibility framework
implementation can be “pre-seeded” (i.e., pre-configured), and so provide pre-configured
metadata artifacts (e.g., pre-configured middleware metadata artifacts). Such pre-
configuration can be accomplished using a development interface such as development
interface 1460, and includes pre-configured artifacts for data extensibility, user interface
extensibility, data security extensibility, functional security extensibility, business event
extensibility, analytics extensibility, and web service extensibility, among other possible pre-

configured artifacts.

[00166] With regard to data extensibility, pre-configured artifacts can include flex columns
in the base table, entity object attributes for flex columns in base entity object, child
extension tables on a per base parent table basis, a child entity object for each child extension
table, providing an association between a parent entity object and a child entity object,
providing a top-level extension table (e.g., on a per logical business area (LBA) basis),
providing a top-level extension entity object for each extension table, and allowing a resource

bundle override on a per application basis. With regard to user interface extensibility, a

-52-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

customizable unbound task flow is provided for adding new work area, as is an application

menu for adding new menu items.

[00167] An entity object according to embodiments of the present invention is an
extensibility framework component that represents a row in the specified data source and
simplifies modifying its associated attributes. Importantly, it facilitates the encapsulation of
domain business logic, which, in turn, helps to ensure that business policies and rules are
validated in a consistent fashion. Entity objects support numerous declarative business logic
features to enforce the validity of data. Such constructs not only provide for declarative
validation, but also provide for additional custom application logic and business rules,
thereby facilitating encapsulation of the requisite domain business logic into each entity

object.

[00168] Entity objects thus support the implementation of a variety of conceptual features
in an extensibility framework according to embodiments of the present invention. For
example, an entity object is defined, at least in part, by specifying the database table, the rows
of which the entity object represents. As such, a self-service programmer can create
associations between such rows, in order to reflect relationships between entity objects (e.g.,
using a view link, as described subsequently). Further, at runtime, an entity object’s database
table row(s) (also referred to herein as entity row(s)) can be managed using an entity
definition object corresponding to the given entity object. Each such entity row can be
identified, for example, by a corresponding row key, for example. Further, such entity rows
are retrieved and modified in the context of an application module (or more simply, an

application) that provides the database transaction.

[00169] With regard to data security extensibility, a parameterized instance set is provided
for top-level extension tables, as well as the granting of certain privileges to pre-defined
roles. With regard to functional security extensibility, privileges can also be granted to pre-
defined roles. Additionally, source code grants in Java authorization data can be provided to
allow access to the service policy API (e.g., service policy API 1338). With regard to
business events extensibility, the architecture can provide for the annotation of attributes in a
given email template, for example. With regard to analytics extensibility, provision can be
made for flex attributes in an entity object for a view object, and similarly, flex columns in
the physical and logical tables of repository definition store 1345 can be provided. In

providing such analytics extensibility, however, the architecture should ensure that a given

-53-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

view object is a superset of the user interface view object attributes (e.g., by ensuring that the
attribute names match). With regard to web service extensibility, extensibility can be
provided in several ways, including, for example, the provision of a polymorphic view object
(e.g., on a per base view object basis), for XSD generation. Web service extensibility can
also be facilitated through the provision of view links, which link a base view object and a
polymorphic view object. A top-level polymorphic view object (e.g., on a per LBA basis)

can also be provided, in order to facilitate web service extensibility.

[00170] A view object, according to embodiments of the present invention, is an
extensibility framework component that provides various features and advantages, including
the encapsulation of one or more database queries (e.g., SQL queries), as well as simplifying
working with the results thereof. Several types of view objects can be implemented in an
extensibility framework according to embodiments of the present invention, including, for
example, read-only view objects, entity-based view objects (to allow data updates to be
performed), static data view objects (e.g., for data defined by the view object itself), and
programmatically-populated view objects, among others. An entity-based view object (i.e., a
view object based on an entity object) can be configured to support updatable rows, and so,
such view objects can map their attributes to the attributes of one or more existing entity
objects. Such a mapped entity object is saved as an entity usage in the view object’s view
object definition. In this way, entity-based view objects can cooperate with entity objects,
and so provide for an updatable data model. The entity-based view object can then query just
the data needed for the client-facing task, and rely on its mapped entity object(s) to validate
and save changes made to its view rows. Like the read-only view object, an entity-based
view object provides for the encapsulation of one or more queries, can be linked into master-

detail hierarchies, and can be used in the data model of applications.

[00171] Various embodiments of the present invention provide read-only view objects
having unique runtime features. For example, in certain embodiments, view objects with no
entity usage definition are read-only by default. Such read-only view objects therefore do not
acquire entity-derived default values, do not reflect pending changes, and do not reflect
updated reference information, among other such characteristics. In contrast to entity-based
view objects, read-only view objects require a user to program a query using the applicable
query language (e.g., SQL query language). Additionally, as an alternative to creating view

objects that specify queries (e.g., a SQL statement) at design time, entity-mapped view

-54-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

objects can be created that dynamically generate queries (e.g., a SQL statements) at runtime.

[00172] Various embodiments of the present invention provide entity-based view objects
having unique runtime features. For example, in certain embodiments, if a view object has
one or more underlying entity usages, new rows can be created, and queried rows, modified
or removed. An entity-based view object according to embodiments of the present invention
coordinates with underlying entity objects to enforce business rules and to save changes to
the database. In addition, entity-based view objects can also provide various capabilities that
do not exist with read-only view objects. For example, changes in cached information
(updates, inserts, deletes and so on) managed by an entity are persisted (i.e., survive) the view
object's execution boundary. Further in this regard, changes made to relevant entity object
attributes through other view objects in the same transaction are immediately reflected
throughout those entity objects in the same transaction affected by such changes, and attribute
values of new rows can be initialized to the values from the underlying entity object
attributes. Further still, changes to foreign key (FK) attribute values result in reference
information being updated. An updatable view object can be defined by referencing
attributes from one or more entity objects, with view links defined based on underlying entity
associations. It will be appreciated that such entity-based view objects are typically used in

the context of the application facilitating the transaction.

[00173] Fig. 14B is a block diagram illustrating an example of a view object according to
embodiments of the present invention, and the functionality provided thereby. Also depicted
in Fig. 14B are examples of the relationships that such a view object can have to other logical
constructs and elements of an extensibility framework such as extensibility framework 1410,
for example. Thus, as will be appreciated from the aforementioned functionality and
relationships, such a view object is able to define one or more queries and produce one or

more rows (e.g., a row set of rows), in the manner discussed previously.

[00174] Fig. 14C is a block diagram illustrating an example of the interactions and
relationships between the elements of an entity object and a view object, according to
embodiments of the present invention. The logical constructs illustrated in Fig. 14C
demonstrate, among other features and advantages, the interactions and relationships that
exist between elements of the aforementioned view objects and entity objects, in certain

implementations, which facilitate the provision of an updatable data model.

-55-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00175] Fig. 15 is a block diagram illustrating various features of an extensibility
framework database architecture 1500 according to embodiments of the present invention,
which provides examples of data model extensibility, user interface extensibility, data
security extensibility, and functional security extensibility. In the example architecture
illustrated in Fig. 15, a number of web applications (depicted in Fig. 15 as web applications
1510(1)-(N), which can be executed, for example, by web servers 230) are designed to access
a corresponding one of application databases (depicted in Fig. 15 as application databases
1520(1)-(N)). As will be appreciated from the present disclosure, while each of web
applications 1501(1)-(N) is illustrated as interfacing with a corresponding one of application
databases 1520(1)-(N), such a 1:1 relationship is neither mandatory, nor necessarily desirable,
and so the architecture illustrated in Fig. 15 should be viewed merely as an example of any
number of possible architectures that might be constructed according to embodiments of the

present invention.

[00176] As is further illustrated in Fig. 15, application database 1520(1) is structured
according to an extensible database schema 1530. Extensible database schema 1530 includes
a base table 1540, which, in turn, includes base columns 1545 and flex columns 1547.
Extensible database schema 1530 also includes a child extension table 1550 for base table
1540. Child extension table 1550, in turn, includes system columns 1555 and flex columns
1557. Further still, extensible database schema 1530 also includes a top-level entity
extension table 1560. Top-level entity extension table 1560, in turn, includes system columns

1565 and flex columns 1567.

[00177] The foregoing description provides an example of the pre-configuration that can be
effected in an extensibility framework database architecture according to embodiments of the
present invention (e.g., via one or more of configuration interface 1420, composer interface
1440 or development interface 1460). In the example depicted in Fig. 15, flex columns 1547
of base table 1540 are depicted as being pre-configured. Also pre-configured are child
extension table 1550 (e.g., one child extension table per base table) and top-level entity

extension table 1560 (e.g., one top-level entity table per LBA).

[00178] In the manner noted throughout the present disclosure (and with regard to the
extensibility types noted earlier), patterns can be employed to provide a variety of extensible
features for each of the aforementioned extensibility types. For example, in the manner noted

earlier with regard to data extensibility, pre-configured artifacts can include a child extension

-56-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

table, a top-level entity extension table, and/or flex columns (e.g., in the base table, the child
extension table, and/or the top-level entity extension table). Patterns that provide such
extensibility are presented in Table 1 as data model extensibility example patterns, which
employ the pre-configured extensibility elements listed therein, and so can be used to
generate a variety of such extensible features. As noted in Table 1, a pattern such as a create
custom attribute pattern uses flex columns in a base table, and generates, for example, an
attribute in view object, a label, flex metadata and/or the like. Table 1 also includes a create
child entity pattern, which uses a child extension table (e.g., on a per base parent table basis)
to generate, for example, a child entity view object, which can, in turn, can have its flex
columns used to create new attributes (in a manner comparable to that just noted). Also
included in Table 1 is a create top-level entity pattern, which uses a top-level extension table
and a top-level extension entity object for the extension table to generate a top-level entity

view object, flex metadata and/or the like.

-57-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557

PCT/US2011/052158

Pattern Name

Pre-configured
Extensibility Elements

Generates

Create custom attribute

Flex columns in a base
table

Entity object attributes for
flex columns

Resource bundle override
per application

Attribute in view object
Label in override resource bundle
Flex metadata

Create custom pick list
attribute

(supports, e.g., an M:1
relationship between
source and target
view objects)

Same as custom attribute

FK attribute in source view object
Accessing target view object in the pick
list
View access in source view object
List binding in source view object
View criteria in target view object
Flex metadata

Create child entity

Child extension table per
base parent table

Child entity object for
child extension table

Association between parent
and child entity objects

Child entity view object
Master-detail relationship
View link between parent and child
view objects
View link usage in application
module
Flex metadata

Create top-level entity

Top-level extension table
per LBA

Top-level extension entity
object for extension
table

Top-level entity view object
View usage in application module
Flex metadata

Top-level extension table
per LBA

Top-level extension entity
object for extension
table

Top-level extension table
per LBA

Top-level extension entity
object for extension
table

Top-level extension table per LBA
Top-level extension entity object for
extension table

Create 1:M relationship None FK attribute in target view object
between source and Reference relationship
target view objects View link between source and target
view objects
View link access in target view object
View link usage in application
module
Generate flex metadata
Create Saved Search None View criteria on the queried view object
Create context link None View criteria on the queried view object

(joined query —
relationship w/o FK)

View usage specific for view criteria

Table 1. Data Model Extensibility Example Patterns.

-58-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557

[00179]

PCT/US2011/052158

With regard to user interface extensibility, a customizable unbound task flow is

provided for adding new work areas, as is an application menu for adding new menu items.

Patterns that provide such extensibility are presented in Table 2 as user interface extensibility

example patterns, which employ the pre-configured extensibility elements listed therein, and

so can be used to generate a variety of such extensible features.

Pattern Name Pre-configured Generates
Extensibility
Element
Create user interface None User interface component in page fragment
component for Attribute or tree binding in page definition
custom attribute
Create sub-tab in None New page fragment for displaying sub-tab

object detail page
for displaying
child entities,
reference entities,
context link
results

(creates one-page task
flow as well as
the corresponding
region to display
the task flow)

content

Empty display table and entry form in page
fragment

Binding and iterator in page definition

Page mapping in binding context file

Attributes to display in new page fragment
User interface component in page fragment
Attribute or tree binding in page definition

Task flow definition to contain the new page
fragment

Region to display sub-tab content in object
detail page
Region in object detail page fragment
Task flow executable in object detail page
definition

-590-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557

PCT/US2011/052158

Create workflow area
for top-level entity

Customizable
unbound task
flow to reference
custom landing

page

Application menu to
reference custom
work list menu per
work area

Include pre-
configured
application menu
into the root menu
of the web
application

One-page task flow for

Overview page
(local search component, object
summary table)

Object detail page

Object create page

Object edit page

Regional search

Landing page
Java server page and page definition
Insert new landing page in unbound task
flow

Update menu structure
Task list menu for launching work area task
flows
Include task list menu in pre-seeded
application menu
Insert menu item in navigator menu for
landing page

Table 2. User Interface Extensibility Example Patterns.

[00180] With regard to data security extensibility, a parameterized instance set is provided

for top-level extension tables, as well as the granting of certain privileges to pre-defined

roles. Patterns that provide such extensibility are presented in Table 3 as data security

extensibility example patterns, which employ the pre-configured extensibility elements listed

therein, and so can be used to generate a variety of such extensible features.

Pattern Name Pre-configured Generates
Extensibility Elements
Create custom attribute None None
- Same security as containing
entity
Create child entity None None
- Same security as parent row
Create top-level entity Parameterized instance set for Data grant by passing in entity
- For standard operations top-level extension table type as instance set
(Query, Update, Delete) Privileges granted to pre- parameter
defined role

Table 3. Data Security Extensibility Example Patterns.

-60-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557

[00181]

PCT/US2011/052158

With regard to functional security extensibility, privileges can also be granted to

pre-defined roles. Patterns that provide such extensibility are presented in Table 4 as

functional security extensibility example patterns, which employ the pre-configured

extensibility elements listed therein, and so can be used to generate a variety of such

extensible features.

Pattern Name

Pre-configured
Extensibility Elements

Generates

Create custom user
interface
component

- same security as
containing page
fragment

None

None

Create child entity
sub-tab

- use parent row
privileges to
control standard
user interface
actions in sub-
tab task flow

None

Expression to evaluate parent row
privileges

Task flow parameters for passing parent
row privileges into sub-tab task flow

Create work area

generate privileges
for user
interface
artifacts

- use entity row
privileges to
control standard
user interface
actions in work
area task flows

Privileges granted to pre-
defined role

Source code grant in Java
authorization data for
accessing service policy
API

Create permission set for generated user
interface artifacts
Region privilege for landing page
Task flow privilege for each task
flow
Permission set to group privileges

Functional grant for permission set

Use entity row privileges for standard
actions
Expression to evaluate entity row
privileges
Task flow parameters for passing
entity row privileges into work
area task flow

Table 4. Functional Security Extensibility Example Patterns.

[00182]

Fig. 16 is a block diagram illustrating a web service extensibility architecture 1600,

according to embodiments of the present invention, which provides examples of web service

extensibility and business event extensibility. Web service extensibility architecture 1600

includes a variety of abstracted layers, including an application development framework layer

-61-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

1610, a web service definition layer 1620 and a web service runtime layer 1630. Application
development framework layer 1610 includes an application (depicted in Fig. 16 as an
application module 1640). In turn, application module 1640 includes a base view object
definition 1642 and a polymorphic view object definition 1644. Information regarding
relationship between base view object definition 1642 and polymorphic view object
definition 1644 is represented by a view link 1645 (which, as shown, links a base view object
and a polymorphic view object). In turn, polymorphic view object definition 1644 includes

elements such as a custom attribute 1646 and a custom view link 1648.

[00183] In ADF layer 1610, application module 1640 includes a variety of definitional
constructs that facilitate the definition of view object schemas in web service definition layer
1620, and employ an object definition language in doing so. These schema definitions (e.g.,
view object schema definitions), in turn, facilitate the generation of runtime constructs in web
service runtime layer 1630. Further, one or more view links (e.g., view link 1645) can be
generated between parent and child view objects, such as the base and polymorphic view
object definitions of Fig. 16 (base view object definition 1642 and polymorphic view object
definition 1644). As noted above, polymorphic view object definition 1644 is shown in Fig.
16 as including custom attribute 1646 and custom view link 1648, which are examples of
custom/customizable features available to a self-service programmer using web service
extensibility architecture 1600. Further still, as will be appreciated in light of the present
disclosure, these (and other) constructs of polymorphic view object definition 1644 facilitate

the polymorphic nature of polymorphic view object definition 1644.

[00184] Web service definition layer 1620 includes information in a web service definition
language 1650, such as a base view object schema definition 1655. In turn, base view object
schema definition 1655 can include elements such as a polymorphic view object schema
definition 1657. As can be seen in Fig. 16, application module 1640 is defined in web service
definition layer 1620 using web service definition language 1650, via the relationships
between base view object definition 1642 and base view object schema definition 1655, as
well as between polymorphic view object 1644 and polymorphic object schema definition

1657.

[00185] In web service definition layer 1620, the view object definitions from ADF layer
1610 serve as the basis for the view object schema definitions defined in web service

definition layer 1620 and implemented in web service definition language 1650 (e.g., base

-62-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

view object schema definition 1655 and polymorphic object schema definition 1657). Base
view object schema definition 1655, including polymorphic object schema definition 1657,
serves as a basis for a service implementation in web service runtime layer 1630. As will be
appreciated in light of the present disclosure, base view object schema definition 1655 and
polymorphic object schema definition 1657 are database schema that provide for extensibility
constructs and functionalities such as those described in connection with extensible database
schema 1530 of Fig. 15. More specifically, such extensibility constructs (and their associated
functionalities) include, for example, flex columns 1547 of base table 1540, child extension
table 1550 (and so flex columns 1557), and top-level entity extension table 1560 (and so flex
columns 1567).

[00186] As noted, base view object schema definition 1655 (and so, polymorphic view
object schema definition 1657) serve as the basis for a service implementation (an example of
which is depicted in Fig. 16 as service implementation 1660), which is an element of web
service runtime layer 1630. In supporting extensibility, service implementation 1660 takes as
input a base view object service data object 1662. Base view object service data object 1662
includes a polymorphic view object service data object 1664. Base view object service data
object 1662 and polymorphic view object service data object 1664 provide extensibility
constructs which define a universe within which a self-service programmer can create,
modify and remove constructs and functionality as necessary, in order to achieve their
intended results. Based on such inputs (e.g., schema definitions, data objects, their
polymorphisms, and other such extensibility constructs and inputs), service implementation
1660 produces, as output, a base view object row 1666, which comprehends (or can
comprehend) a polymorphic view object row 1668. As will be appreciated, extensibility
constructs such as those depicted in Fig. 15 facilitate the extensibility of view object rows

such as base view object row 1666 and polymorphic view object row 1668.

[00187] As noted earlier herein, web service extensibility can be provided in a number of
ways, including, for example, the provision of polymorphic view objects for XSD generation.
Patterns that provide such extensibility are presented in Table 5 as web service extensibility
example patterns, which employ the pre-configured extensibility elements listed therein, and

so can be used to generate a variety of such extensible features.

Pattern Name Pre-configured Generates
Extensibility Elements

-63-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557

PCT/US2011/052158

Create custom attribute

Polymorphic view object for
XSD generation

View link for base view object
to polymorphic view object

View object attribute in
polymorphic view object

XSD for polymorphic view
object

Create child entity

Same as custom attribute

View link in polymorphic view
object

XSD for polymorphic view
object

XSD for the child entity

Create top-level entity

“Proxy” polymorphic view
object for XSD generation

Web services description
language constructs and
service implementation

View link from proxy view
object to custom entity view
object

XSD for the proxy view object

XSD for custom entity view
object

Table 5. Web Service Extensibility Example Patterns.

[00188]

With regard to business events extensibility, the architecture can provide for the

annotation of attributes in a given email template, for example. Patterns that provide such

extensibility are presented in Table 6 as business events extensibility example patterns,

which employ the pre-configured extensibility elements listed therein, and so can be used to

generate a variety of such extensible features.

Pattern Name

Pre-configured
Extensibility Elements

Generates

Event

None

Event definition
Event publication

Action — email notification

Annotate attributes available in
email template

Email notification in process
execution language process
(e.g., one for all apps)

HTML email template

Action — field update

Field update in process
execution language process
(e.g., one for all apps)

None

Action — task creation

Task creation in process
execution language process
(e.g., one for all apps)

None

Action — outbound web
service

Outbound web service in
process execution language
process (e.g., one for all

apps)

None

Table 6. Business Event Extensibility Example Patterns.

-64-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00189] Fig. 17 is a block diagram illustrating an extensible analytics architecture 1700,
which is an implementation according to embodiments of the present invention, which
provides an example of analytics extensibility. Illustrated as an element of extensible
analytics architecture 1700 is an extensible database schema 1710. As can be seen,
extensible database schema 1710 has a structure comparable to that of database schema 1530,
which allows extensible database schema 1710 to support extensibility by allowing the
definition, creation, modification and deletion of various extensible features via its support

for patterns.

[00190] Extensible analytics architecture 1700 also includes an application development
framework 1720, which includes objects based on the structures of extensible database
schema 1710. Thus, extensible database schema 1710 provides a universe in which a self-
service programmer (using application development framework 1720) is able to define,
create, modify and/or delete a wide variety of extensible features using a simple, efficient and
intention-based paradigm. Application development framework 1720, in turn, produces the
structures illustrated in Fig. 17 as a repository definition 1730, based on the objects made
available in application development framework 1720 for use (e.g., extension) through

extensible database schema 1710.

[00191] As just noted, extensible database schema 1710 includes elements comparable to
those of database schema 1530, as noted. Such elements are included, for example, in an
application database structured according to extensible database schema 1710. Extensible
database schema 1710 includes a customer base table 1740, which, in turn, includes base
columns 1745 and flex columns 1747. Extensible database schema 1710 also includes a child
extension table 1750 for customer base table 1740. Child extension table 1750, in turn,
includes system columns 1755 and flex columns 1757. Further still, extensible database
schema 1710 also includes a top-level entity extension table 1760. Top-level entity extension

table 1760, in turn, includes system columns 1765 and flex columns 1767.

[00192] Based on extensible database schema 1710, a self-service programmer is able to
work with a variety of objects in application development framework 1720, in order to
generate a repository definition (e.g., repository definition 1730). Among such objects are,
for example, a customer view object 1770, a loan view object 1772 and a collateral view
object 1774. These objects provide the requisite underpinnings for application development

framework 1720 to generate repository definition 1730.

-65-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00193] In the example illustrated in Fig. 17, repository definition 1730 includes the results
of customizing the aforementioned objects using one or more patterns. In the example
depicted in Fig. 17, the artifacts thus generated include a loan dimension table 1780 having
one or more dimension columns 1785. Repository definition 1730 also includes a new fact
table 1790 having foreign key (FK) columns 1792 and measures columns 1794. As will be
appreciated in light of the present disclosure, a foreign key is typically a primary key of an
entity to which the foreign key is related. As will be further appreciated, in terms of a
database environment (e.g., a relational database), a foreign key is used in conjunction with
the attributes of a weak entity (i.e., an entity that cannot be uniquely identified by its
attributes alone) to create a primary key. FK column 1792 can, in turn, reference other
dimension tables, for example, a data dimension table 1796 and a collateral dimension table

1798 (itself having one or more dimension columns 1799).

[00194] Table 7 presents a variety of analytic extensibility example use cases, which
demonstrate the extension (extensibility operation) performed, the table type involved (e.g.,

in the examples presented in Table 7, a fact table or dimension table).

Extension Table Type Mapping View Object
Add new Fact Table New attributes go into existing New attributes are
attributes fact table as measures or as added to existing
dimension foreign keys view object for the
(date) underlying object
Dimension New attributes added to New attributes are
Table existing dimension and are added to existing
used as display attributes view object for the
underlying object
Add new child Fact Table Support creation of a new fact Create new view object
object table using child as grain for new fact
level
Dimension Create new dimension table for Create new view object
Table child and allow other facts for new dimension.
to join to this (e.g., parent Add view links to
fact table) existing fact view
objects
Add new top- Fact Table Support creation of a new fact Create new view object
level object table using top-level object for new fact
as grain. This object can be
the primary fact for a new
star.
Dimension Create new dimension table for Create new view object
Table top-level object and allow for new dimension.
other facts to join to this Add view links to
(for related objects) existing fact view
-66-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158
objects
Add new Fact Table Support creation of a (new) Create new view object
relationship new fact table using the for new Fact
related objects as grain
level

Table 7. Analytic Extensibility Example Use Cases.

[00195]

including the provision of flex attributes in an entity object, and similarly, flex columns in the

In general terms, analytics extensibility can be provided in a number of ways,

physical and logical tables of the resulting repository definition store. Patterns that provide
such extensibility are presented in Table 8 as analytics extensibility example patterns, which
employ the pre-configured extensibility elements listed therein, and so can be used to

generate a variety of such extensible features.

Pattern Name

Pre-configured
Extensibility Elements

Generates

Add Custom
Attribute to
“Report Type”

Flex attribute in entity object for
view object
Flex columns in repository definition

View object attributes in view
object
Labels as session variables

physical and logical tables

None Fact and dimension view object

Fact and dimension repository
definition physical tables
Physical column and table

Physical key

Create New Report
type using
standard and
custom entities

Dimension repository definition
logical tables
Logical column and table
Default dimension hierarchy

Fact repository definition logical
tables
Logical column and table
Measure definition
Join with dimension table

Table 8. Analytic Extensibility Example Patterns.

-67-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

An Example Computing and Network Environment

[00196] As shown above, the present invention can be implemented using a variety of
computer systems and networks. An example of one such computing and network

environment is described below with reference to Figs. 18 and 19.

[00197] Fig. 18 depicts a block diagram of a computer system 1810 suitable for
implementing aspects of the present invention (e.g., servers 620, gateway server 650, clients
660 and web clients 665). Computer system 1810 includes a bus 1812 which interconnects
major subsystems of computer system 1810, such as a central processor 1814, a system
memory 1817 (typically RAM, but which may also include ROM, flash RAM, or the like), an
input/output controller 1818, an external audio device, such as a speaker system 1820 via an
audio output interface 1822, an external device, such as a display screen 1824 via display
adapter 1826, serial ports 1828 and 1830, a keyboard 1832 (interfaced with a keyboard
controller 1833), a storage interface 1834, a floppy disk drive 1837 operative to receive a
floppy disk 1838, a host bus adapter (HBA) interface card 1835A operative to connect with a
Fibre Channel network 1890, a host bus adapter (HBA) interface card 1835B operative to
connect to a SCSI bus 1839, and an optical disk drive 1840 operative to receive an optical
disk 1842. Also included are a mouse 1846 (or other point-and-click device, coupled to bus
1812 via serial port 1828), a modem 1847 (coupled to bus 1812 via serial port 1830), and a
network interface 1848 (coupled directly to bus 1812).

[00198] Bus 1812 allows data communication between central processor 1814 and system
memory 1817, which may include read-only memory (ROM) or flash memory (neither
shown), and random access memory (RAM) (not shown), as previously noted. The RAM is
generally the main memory into which the operating system and application programs are
loaded. The ROM or flash memory can contain, among other code, the Basic Input-Output
system (BIOS) which controls basic hardware operation such as the interaction with
peripheral components. Applications resident with computer system 1810 are generally
stored on and accessed via a computer-readable medium, such as a hard disk drive (e.g., fixed
disk 1844), an optical drive (e.g., optical drive 1840), a floppy disk unit 1837, or other

storage medium.
[00199] Storage interface 1834, as with the other storage interfaces of computer system

1810, can connect to a standard computer-readable medium for storage and/or retrieval of

-68-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

information, such as a fixed disk drive 1844. Fixed disk drive 1844 may be a part of
computer system 1810 or may be separate and accessed through other interface systems.
Modem 1847 may provide a direct connection to a remote server via a telephone link or to
the Internet via an internet service provider (ISP). Network interface 1848 may provide a
direct connection to a remote server via a direct network link to the Internet via a POP (point
of presence). Network interface 1848 may provide such connection using wireless
techniques, including digital cellular telephone connection, Cellular Digital Packet Data

(CDPD) connection, digital satellite data connection or the like.

[00200] Many other devices or subsystems (not shown) may be connected in a similar
manner (e.g., document scanners, digital cameras and so on). Conversely, all of the devices
shown in Fig. 18 need not be present to practice the present invention. The devices and
subsystems can be interconnected in different ways from that shown in Fig. 18. The
operation of a computer system such as that shown in Fig. 18 is readily known in the art and
is not discussed in detail in this application. Code to implement the present invention can be
stored in computer-readable storage media such as one or more of system memory 1817,
fixed disk 1844, optical disk 1842, or floppy disk 1838. The operating system provided on
computer system 1810 may be MS-DOS®, MS-WINDOWS®, UNIX®, Linux®, or another

known operating system.

[00201] Moreover, regarding the signals described herein, those skilled in the art will
recognize that a signal can be directly transmitted from a first block to a second block, or a
signal can be modified (e.g., amplified, attenuated, delayed, latched, buffered, inverted,
filtered, or otherwise modified) between the blocks. Although the signals of the above
described embodiment are characterized as transmitted from one block to the next, other
embodiments of the present invention may include modified signals in place of such directly
transmitted signals as long as the informational and/or functional aspect of the signal is
transmitted between blocks. To some extent, a signal input at a second block can be
conceptualized as a second signal derived from a first signal output from a first block due to
physical limitations of the circuitry involved (e.g., there will inevitably be some attenuation
and delay). Therefore, as used herein, a second signal derived from a first signal includes the
first signal or any modifications to the first signal, whether due to circuit limitations or due to
passage through other circuit elements which do not change the informational and/or final

functional aspect of the first signal.

-69-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00202] Fig. 19 is a block diagram depicting a network architecture 1900 in which client
systems 1910, 1920 and 1930, as well as storage servers 1940A and 1940B (any of which can
be implemented using computer system 1910), are coupled to a network 1950. Storage server
1940A 1is further depicted as having storage devices 1960A(1)-(N) directly attached, and
storage server 1940B is depicted with storage devices 1960B(1)-(N) directly attached.
Storage servers 1940A and 1940B are also connected to a SAN fabric 1970, although
connection to a storage area network is not required for operation of the invention. SAN
fabric 1970 supports access to storage devices 1980(1)-(N) by storage servers 1940A and
1940B, and so by client systems 1110, 1120 and 1130 via network 1150. Intelligent storage
array 1190 is also shown as an example of a specific storage device accessible via SAN fabric

1970.

[00203] With reference to computer system 1810, modem 1847, network interface 1848 or
some other method can be used to provide connectivity from each of client computer systems
1910, 1920 and 1930 to network 1950. Client systems 1910, 1920 and 1930 are able to
access information on storage server 1940A or 1940B using, for example, a web browser or
other client software (not shown). Such a client allows client systems 1910, 1920 and 1930
to access data hosted by storage server 1940A or 1940B or one of storage devices 1960A(1)-
(N), 1960B(1)-(N), 1980(1)-(N) or intelligent storage array 1990. Fig. 19 depicts the use of a
network such as the Internet for exchanging data, but the present invention is not limited to

the Internet or any particular network-based environment.

Other Embodiments

[00204] The present invention is well adapted to attain the advantages mentioned as well as
others inherent therein. While the present invention has been depicted, described, and is
defined by reference to particular embodiments of the invention, such references do not imply
a limitation on the invention, and no such limitation is to be inferred. The invention is
capable of considerable modification, alteration, and equivalents in form and function, as will
occur to those ordinarily skilled in the pertinent arts. The depicted and described

embodiments are examples only, and are not exhaustive of the scope of the invention.

[00205] The foregoing describes embodiments including components contained within
other components (e.g., the various elements shown as components of computer system

1810). Such architectures are merely examples, and, in fact, many other architectures can be

-70-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

implemented which achieve the same functionality. In an abstract but still definite sense, any
arrangement of components to achieve the same functionality is effectively "associated" such
that the desired functionality is achieved. Hence, any two components herein combined to
achieve a particular functionality can be seen as "associated with" each other such that the
desired functionality is achieved, irrespective of architectures or intermediate components.
Likewise, any two components so associated can also be viewed as being "operably

connected," or "operably coupled,” to each other to achieve the desired functionality.

[00206] The foregoing detailed description has set forth various embodiments of the present
invention via the use of block diagrams, flowcharts, and examples. It will be understood by
those within the art that each block diagram component, flowchart step, operation and/or
component illustrated by the use of examples can be implemented, individually and/or
collectively, by a wide range of hardware, software, firmware, or any combination thereof,

including the specialized system illustrated in Fig. 6.

[00207] The present invention has been described in the context of fully functional
computer systems; however, those skilled in the art will appreciate that the present invention
is capable of being distributed as a program product in a variety of forms, and that the present
invention applies equally regardless of the particular type of computer-readable media used to
actually carry out the distribution. Examples of computer-readable media include computer-
readable storage media, as well as media storage and distribution systems developed in the

future.

[00208] The above-discussed embodiments can be implemented by software modules that
perform one or more tasks associated with the embodiments. The software modules
discussed herein may include script, batch, or other executable files. The software modules
may be stored on a machine-readable or computer-readable storage media such as magnetic
floppy disks, hard disks, semiconductor memory (e.g., RAM, ROM, and flash-type media),
optical discs (e.g., CD-ROMs, CD-Rs, and DVDs), or other types of memory modules. A
storage device used for storing firmware or hardware modules in accordance with an
embodiment of the invention can also include a semiconductor-based memory, which may be
permanently, removably or remotely coupled to a microprocessor/memory system. Thus, the
modules can be stored within a computer system memory to configure the computer system
to perform the functions of the module. Other new and various types of computer-readable

storage media may be used to store the modules discussed herein.

271-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

[00209] The above description is intended to be illustrative of the invention and should not
be taken to be limiting. Other embodiments within the scope of the present invention are
possible. Those skilled in the art will readily implement the steps necessary to provide the
structures and the methods disclosed herein, and will understand that the process parameters
and sequence of steps are given by way of example only and can be varied to achieve the
desired structure as well as modifications that are within the scope of the invention.
Variations and modifications of the embodiments disclosed herein can be made based on the

description set forth herein, without departing from the scope of the invention.

[00210] Consequently, the invention is intended to be limited only by the scope of the

appended claims, giving full cognizance to equivalents in all respects.

[00211] Although the invention has been described in connection with several
embodiments, the invention is not intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives, modifications, and equivalents as
can be reasonably included within the scope of the invention as defined by the appended

claims.

72-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

WHAT IS CLAIMED IS:

1. A method comprising:
selecting one or more patterns from a plurality of patterns, wherein
each of the patterns is configured to describe a solution within a corresponding
one of a plurality of problem domains, and
the one or more patterns are for an enterprise software object; and
generating the enterprise software object, wherein
the generating uses the one or more patterns to generate the enterprise

software object.

2. The method of claim 1, wherein

the enterprise software object is one or more of
a record object,
a business logic object,
a business process object, or

a user interface object.

3. The method of claim 1, further comprising:
providing values for parameters, wherein

the parameters are defined by the one or more patterns.

4. The method of claim 3, wherein the providing values comprises:

receiving the values from a user interface input field.

5. The method of claim 3, wherein
the values for parameters are configured to define characteristics of the enterprise

software object.

6. The method of claim 3, further comprising:
restricting the selecting according to one or more rules, wherein
the one or more rules are associated with one or more of the one or more

patterns or the enterprise software object.

-73-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

7. The method of claim 6, wherein

a rule of the one or more rules governs permissible combinations of patterns.

8. The method of claim 6, wherein

a rule of the one or more rules is configured to limit the values of the parameters.

0. The method of claim 6, further comprising:
selecting the one or more rules, wherein
the one or more rules are selected based on information regarding an

enterprise for which the enterprise software object is generated.

10. The method of claim 1, further comprising:
generating a pattern of the one or more patterns, wherein
the pattern comprises

configuration options for the enterprise software object.

11. The method of claim 10, wherein the pattern further comprises:

generation details for the enterprise software object.

12. The method of claim 10, wherein the configuration options comprise:
one or more aspects specifying requirements for the pattern instantiated in the

enterprise software object.

13. The method of claim 1, further comprising:
executing the selecting and generating in a cloud computing environment; and

executing the enterprise software object in the cloud computing environment.

-74-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

14. A computer program product comprising:
a plurality of instructions, comprising
a first set of instructions, executable on a computer system, configured to
select one or more patterns from a plurality of patterns, wherein
each of the patterns is configured to describe a solution within a
corresponding one of a plurality of problem domains, and
the one or more patterns are for an enterprise software object, and
a second set of instructions, executable on the computer system, configured to
generate the enterprise software object, wherein
the generating uses the one or more patterns to generate the enterprise
software object; and
a computer-readable storage medium, wherein the instructions are encoded in the

computer-readable storage medium.

15. The computer program product of claim 14, wherein
the enterprise software object is one or more of

a record object,

a business process object, or

a user interface object.

16. The computer program product of claim 14, wherein the instructions further
comprise:
a third set of instructions, executable on the computer system, configured to provide
values for parameters, wherein
the parameters are defined by the one or more patterns,
third set of instructions comprises
a first subset of instructions, executable on the computer system,
configured to receive the values from a user interface input
field, and
the values for parameters are configured to define characteristics of the

enterprise software object.

-75-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

17. The computer program product of claim 14, wherein the instructions further
comprise:
a third set of instructions, executable on the computer system, configured to select one
or more rules, wherein
the one or more rules are selected based on information regarding an
enterprise for which the enterprise software object is generated; and
a fourth set of instructions, executable on the computer system, configured to restrict
the selecting the one or more patterns according to one or more rules, wherein
the one or more rules are associated with one or more of the one or more
patterns or the enterprise software object,
a rule of the one or more rules governs permissible combinations of patterns,
and
another rule of the one or more rules is configured to limit the values of the

parameters.

18. The computer program product of claim 14, wherein the instructions further
comprise:
a third set of instructions, executable on the computer system, configured to generate
a pattern of the one or more patterns, wherein
the pattern comprises one or more of
configuration options for the enterprise software object,
generation details for the enterprise software object, and
one or more aspects specifying requirements for the pattern

instantiated in the enterprise software object.

19. The computer program product of claim 14, wherein the instructions further
comprise:
a third set of instructions, executable on the computer system, configured to execute
the enterprise software object in the cloud computing environment, wherein
the first and second sets of instructions are configured to be executed in the

cloud computing environment.

-76-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158

20. A computer system comprising:
a processor;
a computer-readable medium, coupled to the processor; and
instructions, wherein
the instructions are encoded in said computer-readable medium, and
the instructions are configured to cause said processor to
selecting one or more patterns from a plurality of patterns, wherein
each of the patterns is configured to describe a solution within a
corresponding one of a plurality of problem domains,
and
the one or more patterns are for an enterprise software object,
and
generating the enterprise software object, wherein
the generating uses the one or more patterns to generate the

enterprise software object.

-77-

SUBSTITUTE SHEET (RULE 26)

WO 2012/037557 PCT/US2011/052158
1/22

Executable
Domain Expert d Programmer d Code

105 Explains 110 Edits/Creates 115
Fig. 1A
(Prior Art)
Domain Code Input Generator Output Executable
125 120 Code
— — 115
1 Edits 1 Creates
Domain Expert Programmer
105 110

Fig. 1B

PCT/US2011/052158

WO 2012/037557

2/22

vZ ‘bi4

(u)ozz
Jsuenu|

(dJoce
JOAIBS gapA

(2)ocz
Jauedu|

(2Joce
JOAIBS gapA

ove
$80IN0S8Y PNOID

(T)oge
JOAISS 9B

-
-
-
-
-
e’
e
-
e
e

0LZ NVM
Jisulau]

(¢)ozz (1)ozcz
Jauedu| JoueU|

PCT/US2011/052158

WO 2012/037557

3/22

[<]m)
9p0D
5|qeINosexy

0Ll

Jawwesboid

sejesl) —

—

Indino

0cl
JojeJIausn)

gz "bi4

GOl

04¢

Jawwesbold

ulened

1adx3 ulewoq
SIp3 h LTI — sajesl)

08¢
T_ LonSm_NEoo T

ndu| _ indu

09¢
sulaned

ZT 9poD ulewoq

]
|

WO 2012/037557 PCT/US2011/052158
4/22

310

Select Enterprise Domain for
Enterprise Software Object Generation

¢ 320

Select Pattern from Plurality of Patterns |«

340

Selected Pattern

Compatible? Reject Selected Pattern

350

Another Pattern? Yes
360
Provide Values for Parameters Defined <
by the Selected Patterns
370 380

Parameter
Value&s) Consistent
with Rules?

Reject Parameter
Value(s)

390

Generate an Enterprise Software
Object Using the Selected Patterns

¢ 395

Execute/Utilize Enterprise Software
Object

End

Fig. 3

WO 2012/037557

5/22

410

Identify a Pattern

l 420

Associate the Pattern with a
Pattern Kind

l 430

Identify Aspects of the Pattern |«———

l 440

Identify Content Provider for
Aspect

450

Aspects Yes

PCT/US2011/052158

Remain to be
Processed?

460

Identify Generation Context

I

Store Pattern and Associated
Metadata

End

Fig. 4

WO 2012/037557

6/22

PCT/US2011/052158

Pattern Kind 510

Pattern 520(1)
Sub- Sub-
Pattern | ... | Pattern
530 535

AN
VNN

Sub-
Pattern

Pattern 520(N)

Sub-
Pattern

S

\

AN

\

Rules Rules
Aspects Aspects
Templates Templates
540 550

Rules
Aspects
Templates
555

Plan
570

Pattern Kind Set 560

Fig. 5

WO 2012/037557 PCT/US2011/052158
7/22
Enterprise System
600
Web Client Web Client Client N Client
665 wes 665 660 660
A A
Web Server 670
i A J \ J
Gateway Server 650
Server 620 Server 620
Components amE Components
625 625
Enterprise Server
610

Database
630

I

File System
640

Fig. 6

PCT/US2011/052158

8/22

WO 2012/037557

Lbg (~)
s cmcho «— (NJOSZ co_uwmnoh:_
' O JsjpueH Buipuig
2lem)jos
— < >
. . yi]
. . uonewIolu| Pl WA
Aeldsig (JebBeuepy
473 — ulened
uoissag —— 1)0SL 77 9¢€/ P /
S80IAI8S 19IpUEH Jonjoss tioned —
. :o__uom_ﬂ aoeUB)U| JOSN m_aEmuw\
el
L Alojisoday ulened)
£ m_m%ﬂom o [—> 8v/ elepejo|y 1obie] ¥&Z |\
1S1b9Y JoEilY £/ ulsned uisned 0.
1senbay
ulened
NITVZ < > (NJOVZ —
82IN0g 10NJISU0D Jaydepy V1 eleperoi 1obie > Wi —
° ° °INPON [SOl —p momwww
. ' ——07F 7 1sonbay 108} \y—— Buisseooid uoneounoN BIEDEIS
° ° . ueld JEPEIPN
(3157 < > (@I0vZ /\} ~
80JN0g 1oNJISU0) Jaydepy 7 *
— ([4Y3
) puewwon
— 02z - | - —
1272 MovZ 1eBeuep S0Z 004
Alojisoday ejepeja|y Jaydepy i ueld T aInjosyyoIy
: J03eINBLU0Y y}Jomawel 4 AJjigisusixg

PCT/US2011/052158

WO 2012/037557

9/22

8 "bi4

0S8
ajeldwa |

N

/

078

Japinoid

Jusjuo)

0¢8
joadsy

N

/

0c8
ulened

018
pury uieped

N

N

4/ 008

[SPON EJEQ UISliEd

PCT/US2011/052158

WO 2012/037557

10/22

056
obel0)g
ejepelsiy
swinuny

GG6
elepels)y swnuny

076
Jaidepy 80Inosay

u\./

473
uonduoseq 10ely

GE6
Jabeuely soinosay

/
J

6 ‘614

Gl6
obel0)g

Ansibay

o (1)S26
o uonduoss(1oejy .\l ~
° S~
]
|
[]
(N)GZ6]
uonduosaq joejuy | @ Y
0c6

006
2IN108)Iyaly Juswabeuey elepelsiy

/

0¢6
3[lJ0Jd $S800Y 92IN0SoY

G06

Ja)depy Ansibay 108y

016
Ansibey ey

JaBeuep 0By

WO 2012/037557 PCT/US2011/052158

11/22

< Start)

1000 No

Command
received from
configurator?

Yes

¢ / 1010

Identify plan, based on
command

[~

Perform operations
specified by identified
plan

End

Fig. 10

WO 2012/037557 PCT/US2011/052158

12/22

(Start)

O
1100\ !

Identify operation to
perform

]

Determine if identified
operation should be
performed

1120

Perform
identified
operation?

Yes

1130\ ¢

Perform
identified operation

O

1140

Operations
in plan
completed?

Yes

End

Fig. 11

WO 2012/037557

13/22

PCT/US2011/052158

/ 1200

Identify artifact and target metadata into
which pattern is to be injected

l

/ 1210

Retrieve artifact/target metadata
from artifact manager

l

/ 1220

Request pattern from pattern manager

l

/ 1230

Compose pattern

l

/ 1240

Receive pattern from pattern manager

l

/ 1250

Provide artifact’s target metadata and
pattern to injection resolver

l

/ 1260

Inject pattern into artifact and target
metadata

l

/ 1270

Coordinate injection with metadata service

End

Fig. 12

PCT/US2011/052158

WO 2012/037557

14/22

Gyel
210]S

uoniuyeqg
Aojisoday

gL ‘bi14

oveEl

Alo)isoday 10BlIY S82IAISS BIEpEeISIA

SeaT 0ecl
BEET 9EET vEeT N IV
Idv 82IAIBS gaMA IdY }omawel 4
2Jnjos)IydIy
Aoljod o188 uoniuyag Aloysoday gsm swdojansq
pajusl-82IAI8S
I I uonesi|ddy
A A A
s5eT 9ceEl e ccel 0cel
8ctl Jaydepy veel Jaydepy Jaydepy
Jeydepy Jaydepy
SEOINIBS uonuyaq GoM 2Jnjos)IydIy }omawel 4
' Aojisoday pajuslQ-92IAI8S juswdojaasq uonesiddy

GlLEl uleped

€1 ._m\nml_ uoljelsuso)

oocl

uonejuswsaidw| yomawel4 AJjIgISusIx]

PCT/US2011/052158

WO 2012/037557

15/22

viL ‘Bid4

ﬁ —_
_ i FSHT _

SJoBJILY PopUSIX] sjoeypy eseg _
F , 0S¥1

SjoBJNY ElEPEO
S A
cevl
SB0IAISS BJEpPEIS|\ ¢
el oevlL
IdV plel4 xs|4 |dV Momsuwel{ juswdojeAsq uoneolddy
547"
ylomewel4
Jasodwo)
A >TET 1ond 00vT
ZITT Jeldepy ejepejoly uonejusWa|dW| INOSHYDIY
ylomswel Aljiqisusixg
CTA7) Olvl 52
8|NPON 8oUB)SISIB JUBIUOD Jomaweld 8[NPOJA UOIIPNIISUOYD) JUSIUOD)
Ainqisusix3g
ovvl 09T
oSl Ocvl soeps)u| Juswdojsrsqg

lesodwo) soeBIU| UOlEINBIUOD

WO 2012/037557

16/22

PCT/US2011/052158

Fig. 14B

WO 2012/037557 PCT/US2011/052158

17/22

o

Transactionn
Definit

Fig. 14C

R Y

shines 03

FS

PCT/US2011/052158

WO 2012/037557

18/22

0€sL

ewsyog sseqeleq

a|qIsusIX3

N

19G| GaGl
suwnjon suwnjon
x9|4 Wwo)sAg
| |
/ NV

09S} siqeL uoisus)x3 Alu3 [orsT-doy

GL ‘b4

LGG1 GGGl

suwinjo) xa|4 suwinjo) WajsAg

/

N

N\

0GG| s[gel uolsusix3 piIyo «

LvS1 GrSl

suwinjo) xa|4

suwnjo?) sseg

N\

/ N

N\

0vSGl °lqel ssegd

/

(N)OZGT
asegeleq
uoljeolddy

(2)0csT
asegeleq
uoljeolddy

(1)02ST
asegeleq
uoljeolddy

00G1 aimoaliyoly aseqeleq yJomawel AlljIgIsusixg

(NJOTGT
uopeol|ddy gapp

(2)0151
uopeol|ddy gapp

(1)orst
uopeol|ddy gapp

PCT/US2011/052158

91 ‘bI4

19/22

WO 2012/037557

8991
Moy 108lqO maip alydiowAjod
* 8¥91
_ AU mSIA Woisn)
999| G991
MOy 108lqO maIp ose —
Y 198lq0 M8/ eseq co:_cz_mn_ BWSYdG < _ 99l
1091G0 MSIA QINqLYY WosnD
olydiowAjod r
-/
0991 < v¥9l
uolejuswa|dw| 82IAIBS uonuaq 108lqo maIp
* olydiowAjod
Gl
7991 MUIT MSIA
108[qO e1eq 82IAI8S +
1080 MBIA a59l
aiydiowAjog uoniusq ewsyosg 59T
103090 Maip < uonuleQ 1081G0 MIA
eseg aseq
2991 ¢
108[qO el 82IAIBS 0591 0y9l
108[qO MmaIA Bseyq — abenbue uoniulyeq 82IAISS n_m>>|\ — s|npojy uoneolddy ;
0€91 0291 019l
Jake] swinuny e21AI9S gapp Jake uoliuyaq 82IAI8S gl lakeT ylomswel 4 Juswdojaasq uoneolddy

0097 24njoa)yoly AYlIGISUSIXT 80IAI8S qapA

PCT/US2011/052158

WO 2012/037557

20/22

66/] suwnjo) uolsuswig

86.1 oiqe] uoisuewq [elolel0D

¢6.1 suwnjo) X4

s|ge uoisuswiq aleq

961

6.1 saInsespy ————

/

Gg8/1 suwnjo) uoisusuwig

06/l Si|qel joed meN

F

08/} 9lgeL uoisuawiq ueo

0€.1 uoniuyaq Aloyisodsy

L B4

vIIT
108[qO MaIA
[eJs)e||00

IV
108lgO maIp
ueon

0ZZIT
108lgO maIp
Jswoisngd

0911
alqel
uolsuslxg
Amuz jpasT-doy

1971 Gall
suwnjo) suwnjo)
X34 wolsAg
| |
/ N N\

0ciL
ylomewel4

juswdojaaaq uoneslddy

D0ZT a1mos)iyoly sonkleuy s|qisus)xg

GG/l
1G/1 suwnjo)
suwnjoD _I wayshg
*H \ \
0G.1
m—DmF L X N] L X N]
UOISUB)XT
pPIyo

ov.ll
a|qe | eseg Jawosnd
OLZL
BWSYOS
aseqejeq N\ I /\ I /
9|gisuslX3 YAZAS Gvll
suwneD suwnjoD

x8|4 eseq

PCT/US2011/052158

WO 2012/037557

21/22

3siq Addol4

Zv8l 8L ‘b4
¥si@ eondo
0681 018l
NIOMISN
|[suueyd
3.q14
0¥8l
aAl(YsIq [eond
0z8l Qg ¥sig [eondo
wolsAg A
Joxeads 53T 7PeT Zear 93T Z4])
/ sng |SOS AsIg paxid pieoghay asnop usalog Aeidsiqg
Y
cc8l gdG6e81 VGE8L 7eaT [%TN 8¢8l1 9c¢81
a8delslu| olpny YaH vaH aoelslU| mmm._ou_w Jsjjosuo) U._NOQ\Am! Jod [elleg ._Q_Qm_u(>m_Qw_D
- 0 y a'
- Zl8l
€81 ocar sng
nun ysig Addoj4 Jod [euss
8181 8181l L181 7181
ades)u| JJOMIBN Jajjosuo) O/ Aows waisAg J0SS$8201d [eljua)
L8l
Wapo
8¢8lL

PCT/US2011/052158

WO 2012/037557

22/22

6L ‘bI4

(NJ90967

801A8(Q

(N)0S6T

801A8(Q

0661
Relry

abelo1g
jusbijjeul

0061

2JN108]I1Y2Jy YJoMIaN

(1J0861

o0 o IMASA

(1790961

801A8(Q

061
olige

NVS

(NJV096T

801A8(Q

(1)V0961

40761
NETNETS

oloel
usID

0col
sl

801A8(Q

YOv61
SEYNEIS

0col
usID

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/052158

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Applications",

XP002668202,

ISBN: 0-201-30977-7
pages 503-567,

the whole document

August 2004 (2004-08), Addison-Wesley,

X Chapter 11: "Intentional Programming" 1-20
In: Czarnecki et al.: "Generative
Programming Methods Tools, and

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr:ts, such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

30 January 2012

Date of mailing of the international search report

10/02/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bernardi, Luca

Form PCT/ISA/210 (second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - wo-search-report

