
(19) United States
US 2001.00024.83A1

(12) Patent Application Publication (10) Pub. No.: US 2001/0002483 A1
ROBERTS (43) Pub. Date: May 31, 2001

(54) SYSTEM FOR CONFIGURING TO REDUCE
VARANCE IN THE LENGTH OF WARIABLE
LENGTH INSTRUCTIONS BY
COMPRESSING MULTIPLE PREFX BYTES
INTO SINGLE COMPRESSED PREFX BYTE

(75) Inventor: JAMES R. ROBERTS, AUSTIN, TX
(US)

Correspondence Address:
DAN R CHRISTEN
CONLEY, ROSE, & TAYON
PO BOX 398
AUSTIN, TX 78767-0398 (US)

(73) Assignee: ADVANCED-LENGTH
INSTRUCTION PREFX BYTES

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/158,440

(22) Filed: Sep. 21, 1998

Publication Classification

(51) Int. Cl." ... G06F 9/30
(52) U.S. Cl. .. 712/210; 712/213

(57) ABSTRACT

A microprocessor configured to reduce variance in the
length of variable length instructions by compressing mul
tiple prefix bytes into a single byte is disclosed. The micro
processor is configured with a predecode unit and an instruc
tion cache. The predecode unit is configured to receive
variable length instructions, each having a variable number
of prefix bytes. The predecode unit is configured to detect
the prefix bytes and compress them into one compressed
prefix byte for each instruction. The instruction cache is
coupled to the predecode unit and is configured to receive
and Store the instructions and compressed prefix bytes from
the predecode unit. The instruction cache may be configured
to output one of the instructions and any corresponding
compressed prefix bytes in response to receiving a fetch
address. A computer System, method, and Software program
configured to compress prefix bytes are also disclosed.

Sheet 1 of 12 US 2001/0002483 A1 May 31, 2001 Patent Application Publication

\/ LVCI_LNEVNE OV/Tc|SIC] | 8 - | - S | W/>H CROWN | ECJOOdOSE LÅ8 XI-HERHd

E LÅ8 | -0 E LÅ8 | -0 SE LAG z-ySE LW8 #7°0 (Ieuo?do) (Ieuo?do)(?euo?do)

Sheet 2 of 12 US 2001/0002483 A1 May 31, 2001 Patent Application Publication

9zI O LOTTOTILL TILL TILL TOTO »SVW CIITVA vz! O || 0 || 0 || I || 0 || 0 || 0 || 0 || 0 || I || 0 || SLIE CINE zzy C | 0 || I || 0 || 0 || 0 || 0 || 0 || I || 0 || 0 || SLIB LHVIS

6+NN LI8

Sheet 3 of 12 US 2001/0002483 A1 May 31, 2001

9]

Patent Application Publication

?) <r. er) © <+

Ss.· =—) —| || ()
=00 00 00 10 000096 II || 00 0090 || 00 00 00 00 00 3 00 00 000000000000 || 00| 00 vv || .000000:00

300 00 00 IZ 00000000 || OOL00 CIO | 00 00 00 00 00
00 00 00 ZO00000000 || 0000 #79 || 00 00 00 00 00 ©00 00 66 #7100000000 || 0000 VO || 00 00 00 00 00 ‘=00 00 00 £9.00000000|:0000 171 || 00 00 00 00 00Z9

!00 00 00 0800000000 || 000098 |_0000 00 00 00 Ë00 00 #7?7 0000000000 || (00)0088 || 00 00 00 00 00

C/D00 00 00 00 |||-00000000 || … 00._0088 |_0000000000 ?)––––|— ?V LVCIINGIWGOVIISICI | A-I-s GIGIOO?O ? SEIL? ?I XI HERICH #†70||y^Z0},/*
>> ? >

I0'[II96] YILI SILK? AOWI096 I 19090

Sheet 5 of 12 US 2001/0002483 A1 May 31, 2001 Patent Application Publication

| 00 0000 I0|' 000096 II || (00)
| 00 000000 || .00000000)|:00)
| 00 0000 iz || .00000000: || 00 || | 00 0000 ZO || 00 000000: || 00 ||

I -

0‘II 196] YILI ZIL?Q AOWNI096 I 1909O

Z9

Patent Application Publication May 31, 2001 Sheet 6 of 12 US 2001/0002483 A1

? is
cr)

8 . < > H H

n 5
v

It is
(a 9 |
u C

9. ? -
w n

(f)
s

CO > H & OO
L in CO N

- I - /
? th > an ADDRESS SIZE

> S so (1 BIT)
> v - OPERAND SIZE

n \ (1 BIT)
a 3 S LOCK
were s (1 BIT)

H S
CO w Ha

? X
8 / & REPEAT
5 (2-BITS)

1.
f

SEGMENT
OVERRIDE
(3-BITS)

Patent Application Publication May 31, 2001 Sheet 7 of 12 US 2001/0002483 A1

CO

H
>
n
w

H
Z.

ar n
> S. V O

|| | 2
O2 START BIT
? (1 BIT)

- a ?
CY)

L s w LOCK/REPEAT

(2 BITS)
O

w D

> TWO-BYTE INSTR.
R S (1 BIT)
H an < 3 X & < ADDRESS SIZE
CN 5 v (1 BIT)

> OPERAND SIZE
? (1 BIT)

>
< SEGMENT

o OVERRIDE
(3-BITS)

Sheet 8 of 12 US 2001/0002483 A1 May 31, 2001 Patent Application Publication

00 00 00 00 00 00 00 00 00 7O 00 99 0 || 00 00 00 ?Z 00 00 00 00 00 00 00 CIO 00 00 0000 Z0 00 00 00 00 00 00 00 V8 00 00 00 66 7], 00 00 00 00 00 90 00 V70 00 00 00 00 £9 00 00 00 00 00 00 00 7/ 00 00 00 00 08 00 00 00 00 00 ZO 00 9–| 00 00 00 00 77 00 00 00 00 00 00 00 98 00
00 00 00 00 00 00 00 00 00 9C] 00 £8 00 || 10

Sheet 9 of 12 US 2001/0002483 A1 May 31, 2001 Patent Application Publication

SEHO LE-I SEHO LE HONV/>|8 }+O+
8],

O TOOOOOOOOOOOO g5 ?oo?g0059505
00 00 00 00 00 00 00 00 00 70 00 88 0| 00 00 00 LZ 00 00 00 00 00 00 00 CIO 00 00 00 00 Z0 00 00 00 00 00 00 00 79 00 00 00 66 7 || 00 00 00 00 00 90 00 V/O 00 00 00 00 99 00 00 00 00 00 00 00 #7/ 00 00 00 00 08 00 00 00 00 00 ZO 00 9-| 00 00 00 #77 00 00 00 00 00 00 00 00 98 00 00 00 00 00 00 00 00 00 00 8C] 00 88 00

9

US 2001/0002483 A1 Patent Application Publication

US 2001/0002483 A1

SYSTEM FOR CONFIGURING TO REDUCE
VARANCE IN THE LENGTH OF WARIABLE
LENGTH INSTRUCTIONS BY COMPRESSING
MULTIPLE PREFX BYTES INTO SINGLE

COMPRESSED PREFIX BYTE

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention relates to microprocessors and,
more particularly, to decoding variable length instructions
within a microprocessor.
0003 2. Description of the Relevant Art
0004. The number of software applications written for the
x86 instruction Set is quite large. As a result, despite the
introduction of newer and more advanced instruction Sets,
microprocessor designers have continued to design micro
processors capable of executing the x86 instruction Set.
0005 The x86 instruction set is relatively complex and is
characterized by a plurality of variable-length instructions. A
generic format illustrative of the x86 instruction set is shown
in FIG. 1. As illustrated in the figure, an x86 instruction
consists of from one to five optional prefix bytes 102,
followed by an operation code (opcode) field 104, an
optional addressing mode (Mod R/M) byte 106, an optional
scale-index-base (SIB) byte 108, an optional displacement
field 110, and an optional immediate data field 112.
0006 The opcode field 104 defines the basic operation
for a particular instruction. The default operation of a
particular opcode may be modified by one or more prefix
bytes 102. For example, one of prefix bytes 102 may be used
to change the address or operand size for an instruction, to
override the default Segment used in memory addressing, or
to instruct the processor to repeat a String operation a
number of times. The opcode field 104 follows prefix bytes
102, if present, and may be one or two bytes in length. The
addressing mode (Mod RIM) byte 106 specifies the registers
used as well as memory addressing modes. The Scale-index
base (SIB) byte 108 is used only in 32-bit base-relative
addressing using Scale and indeX factors. A base field within
SIB byte 108 specifies which register contains the base value
for the address calculation, and an index field within SIB
byte 108 specifies which register contains the index value. A
scale field within SIB byte 108 specifies the power of two by
which the index value will be multiplied before being added,
along with any displacement, to the base value. The next
instruction field is a displacement field 110, which is
optional and may be from one to four bytes in length.
Displacement field 110 contains a constant used in address
calculations. The optional immediate field 112, which may
also be from one to four bytes in length, contains a constant
used as an instruction operand. The Shortest x86 instructions
are only one byte long, and comprise a single opcode byte.
The 80286 sets a maximum length for an instruction at 10
bytes, while the 80386 and 80486 both allow instruction
lengths of up to 15 bytes.
0007. The complexity of the x86 instruction set poses
many difficulties in implementing high performance X86
compatible microprocessors. In particular, the variable
length of x86 instructions makes decoding instructions dif
ficult. Decoding instructions typically involves determining
the boundaries of an instruction and then identifying each

May 31, 2001

field within the instruction, e.g., the opcode and operand
fields. Decoding typically takes place once the instruction is
fetched from the instruction cache before execution.

0008 One method for determining the boundaries of
instructions involves generating a number of predecode bits
for each instruction byte read from main memory. The
predecode bits provide information about the instruction
byte they are associated with. For example, an asserted
predecode Start bit indicates that the associated instruction
byte is the first byte of an instruction. Similarly, an asserted
predecode end bit indicates that the associated instruction
byte is the last byte of an instruction. Once the predecode
bits for a particular instruction byte are calculated, they are
Stored together with the instruction byte in an instruction
cache. When a “fetch” is performed, i.e., a number of
instruction bytes are read from the instruction cache, the
asSociated Start and end bits are also read. The Start and end
bits may then be used to generate valid masks for the
individual instructions with the fetch. A valid mask is a
Series of bits in which each bit corresponds to a particular
instruction byte. Valid mask bits associated with the first
byte of an instruction, the last byte of the instruction, and all
bytes in between the first and last bytes of the instruction are
asserted. All other valid mask bits are not asserted. Turning
now to FIG. 2, an exemplary valid mask is shown. The
figure illustrates a portion of a fetch 120 and its associated
start and end bits 122 and 124. Assuming a valid mask 126
for instruction B 128 is to be generated, start and end bits
122 and 124 would be used to generate the mask. Valid mask
126 could then be used to mask off all bytes within fetch 120
that are not part of instruction B 128.
0009. Once the boundaries of an instruction have been
determined, the fields within the instruction, e.g., the opcode
and operand fields, may be identified. Once again, the
variable length of x86 instructions complicates the identifi
cation process. In particular, the optional prefix bytes within
an x86 instruction create further complications. For
example, in Some instructions the opcode will begin with the
first byte of the instruction, while others may begin with the
second, third, or fourth byte.
0010) To perform the difficult task of decoding x86
instructions, a number of cascaded levels of logic are
typically used. Thus, decoding may require a number of
clock cycles and may create a significant delay before any
instructions are available to the functional Stages of the
microprocessor's pipeline. AS microprocessors increase the
number of instructions they are able to execute per clock
cycle, instruction decoding may become a performance
limiting factor. Therefore, a mechanism for Simplifying the
complexity and time required for instruction decoding is
needed.

SUMMARY

0011. The problems outlined above are reduced in large
part by a microprocessor capable of predecoding variable
length instructions in a manner that reduces length variations
in the instructions Set. By compressing each instruction's
prefix bytes into a Single compressed prefix byte, potential
variation in instruction length is reduced. Advantageously,
this may serve to decrease the time needed for decoding
instructions.

0012. In one embodiment, a microprocessor configured
to compress prefix bytes may comprise a predecode unit and

US 2001/0002483 A1

an instruction cache. The predecode unit may be configured
to receive variable length instructions from a memory Sub
System. A Subset of the instructions may have no prefix
bytes, while others may have one or more prefix bytes. The
predecode unit is configured to detect the prefix bytes
asSociated with each instruction and compress them into a
Single compressed prefix byte. The predecode unit may also
perform other decoding functions and or instruction pad
ding. The instruction cache is coupled to the predecode unit
and is configured to receive and Store the partially decoded
instructions and their associated compressed prefix bytes.
The instruction cache is configured to output the instructions
and their compressed prefix bytes in response to receiving
corresponding fetch addresses. A computer System employ
ing one or more microprocessors as described above in
conjunction with other peripheral devices (e.g., a commu
nications modem) is also contemplated.
0013 Amethod for executing variable length instructions
is also contemplated. In one embodiment, the method com
priseS reading a plurality of instruction bytes from a memory
Subsystem, and then predecoding the instruction bytes. Pre
decoding involves detecting Starting, ending, and prefix
bytes for each instruction. The prefix bytes are compressed
into a Single compressed prefix byte; and then Stored with
the instructions in an instruction cache. In one embodiment,
the prefix bytes are compressed by encoding operand size
prefix bytes address Size prefix bytes into a single operand
Size bit, address size prefix bytes into a Single address size
bit, and Segment override prefix bytes into a three-bit field,
all within the single compressed prefix byte.
0.014) A software program embodied on computer-read
able media is also contemplated. In one embodiment, the
program is an optimizing compiler comprising three groups
of instructions. The first group of instructions is configured
to detect the boundaries of variable-length instructions. The
Second group of instructions is configured to detect prefix
bytes associated with each variable-length instruction. The
third group of instructions is configured to compress the
prefix bytes into Single compressed prefix bytes. In another
embodiment, the Software program may be a dynamically
linked library configured to receive Said variable-length
instructions as input and generate optimized instructions and
compressed prefix bytes as output.

BRIEF DESCRIPTION OF THE DRAWINGS

0.015. Other objects and advantages of the invention will
become apparent upon reading the following detailed
description and upon reference to the accompanying draw
ings in which:
0016 FIG. 1 is a block diagram of a generic x86 instruc
tion format.

0017 FIG. 2 is a block diagram illustrating one embodi
ment of a valid mask.

0.018 FIG. 3 is a block diagram of one embodiment of a
microprocessor.

0019 FIG. 4 is table illustrating one embodiment of a
method for decoding variable-length instructions into fixed
length instructions.
0020 FIG. 5 is a table illustrating another embodiment
of a method for decoding variable-length instructions into
fixed-length instructions.

May 31, 2001

0021 FIG. 6A is a diagram illustrating one embodiment
of a method for compressing prefix bytes.
0022 FIG. 6B is a diagram illustrating another method
for compressing prefix bytes.
0023 FIG. 7 is a diagram illustrating one possible
embodiment of the instruction cache from FIG. 3.

0024 FIG. 8 is a diagram illustrating another embodi
ment of the instruction cache from the microprocessor
depicted in FIG. 3.
0025 FIG. 9 is a diagram illustrating another method for
decoding variable-length instructions into fixed-length
instructions.

0026 FIG. 10 is a diagram illustrating another embodi
ment of the instruction cache from the microprocessor
depicted in FIG. 3.
0027 FIG. 11 is a diagram showing one embodiment of
a computer System utilizing the microprocessor of FIG. 3.
0028. While the invention is susceptible to various modi
fications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and
will be described in detail herein. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
Spirit and Scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF SEVERAL
EMBODIMENTS

0029 Turning now to FIG. 3, a block diagram of one
embodiment of a microprocessor 10 is shown. Micropro
ceSSor 10 includes a prefetch/predecode unit 12, a branch
prediction unit 14, an instruction cache 16, an instruction
alignment unit 18, a plurality of decode units 20A-20C, a
plurality of reservation Stations 22A-22C, a plurality of
functional units 24A-24C, a load/store unit 26, a data cache
28, a register file 30, a reorder buffer 32, and MROM unit
34. Elements referred to herein with a particular reference
number followed by a letter may be collectively referred to
by the reference number alone. For example, reservation
stations 22A-22C may be collectively referred to as reser
Vation Stations 22.

0030 Prefetch/predecode unit 12 is coupled to receive
instructions from a main memory Subsystem (not shown),
and is further coupled to instruction cache 16 and branch
prediction unit 14. Similarly, branch prediction unit 14 is
coupled to instruction cache 16. Still further, branch predic
tion unit 14 is coupled to instruction alignment unit 18 and
functional units 24. Instruction cache 16 is further coupled
to MROM unit 34 and instruction alignment unit 18. Instruc
tion alignment unit 18 is in turn coupled to load/store unit 26
and to respective decode units 20A-20C. Respective decode
units 20A-20C are coupled to reservation stations 22A-22C,
which are further coupled to respective functional units
24A-24C. Additionally, instruction alignment unit 18 and
reservation Stations 22 are coupled to register file 30 and
reorder buffer 32. Functional units 24 are coupled to load/
store unit 26, register file 30, and reorder buffer 32 as well.
Data cache 28 is coupled to load/store unit 26 and to the

US 2001/0002483 A1

main memory subsystem. Finally, MROM unit 34 is coupled
to instruction alignment unit 18.
0031. Instructions are prefetched from main memory by
prefetch/predecode unit 12. Prefetch/predecode unit 12 pre
decodes the variable-length instructions. This may entail
generating predecode bits and or padding instructions to one
of a predetermined number of fixed lengths instructions.
Predecoding may also include compressing prefix bytes as
explained in greater detail below. The predecoded instruc
tions are then Stored in instruction cache 16. Instructions
may be prefetched and predecoded before they are actually
requested by using a prefetch Scheme. A variety of prefetch
Schemes may be employed by prefetch/predecode unit 12.
Before proceeding with a more detailed description of
predecode unit 12, general aspects regarding the embodi
ment of exemplary microprocessor 10 shown in the figure
will be described.

0.032 Microprocessor 10 may employ branch prediction
in order to speculatively fetch instructions Subsequent to
conditional branch instructions. Branch prediction unit 14 is
included to perform branch prediction operations. In one
embodiment, up to two branch target addresses are Stored for
each 16-byte portion of each cache line in instruction cache
16. Prefetch/predecode unit 12 determines initial branch
targets when a particular line is predecoded. Subsequent
updates to the branch targets corresponding to a cache line
may occur due to the execution of instructions within the
cache line. Instruction cache 16 provides an indication of the
instruction address being fetched to branch prediction unit
14. This allows branch prediction unit 14 to determine which
branch target addresses to Select when forming a branch
prediction. Instruction alignment unit 18 and functional
units 24 provide update information to branch prediction
unit 14. Because branch prediction unit 14 Stores two targets
per 16-byte portion of the cache line, predictions for Some
branch instructions within the line may not be stored in
branch prediction unit 14. Instruction alignment unit 18 may
be configured to detect branch instructions which were not
predicted by branch prediction unit 14. Functional units 24
execute the branch instructions and determine if the pre
dicted branch direction was mispredicted. The branch direc
tion may be “taken”, in which Subsequent instructions are
fetched from the target address of the branch instruction.
Conversely, the branch direction may be “not taken”, in
which Subsequent instructions are fetched from memory
locations consecutive to the branch instruction. When a
mispredicted branch instruction is detected, instructions
Subsequent to the mispredicted branch are discarded from
the various units of microprocessor 10. A variety of suitable
branch prediction algorithms may be employed by branch
prediction unit 14.
0.033 Instruction cache 16 is a high speed cache memory
provided to Store instructions received from prefetch/prede
code unit 12. Stored instructions are then fetched from
instruction cache 16 and forwarded to instruction alignment
unit 18. In one embodiment, instruction cache 16 may be
configured as a Set-associative Structure. Instruction cache
16 may additionally employ a way prediction Scheme in
order to Speed access times. For example, instead of acceSS
ing tags identifying each line of instructions and comparing
the tags to the fetch address to Select a way, instruction cache
16 may predict the way that is accessed. In this manner, the
way is speculatively Selected prior to accessing the array.

May 31, 2001

Using way prediction, the access time of instruction cache
16 may be Similar to a direct-mapped cache. After the
instruction bytes have been read, a tag comparison is per
formed for verification. If the way prediction is incorrect, the
correct instruction bytes are fetched and the incorrect
instruction bytes (which are further down the processing
pipeline) are discarded. It is noted that instruction cache 16
may be implemented in fully associative, Set associative, or
direct mapped configurations.

0034) MROM unit 34 is a read-only memory that is
configured to Store Sequences of “fast-path instructions.”
Fast path instructions are instructions that may be decoded
and executed by decoders 20A-C and functional units 24A
C. In contrast, “MROM instructions' are instructions which
are too complex for direct decoding or execution by decod
ers 20A-C and functional units 24A-C. When instruction
cache 16 outputs an MROM instruction, MROM unit 34
responds by outputting a Sequence of fast path instructions.
More specifically, MROM unit 34 parses and translates the
MROM instruction into a subset of defined fast path instruc
tions to effectuate the desired operation. MROM unit 34
dispatches the Subset of fast path instructions to decode units
20A-C.

0035. Once instruction bytes are fetched from instruction
cache 16, they are conveyed to instruction alignment unit 18.
Instruction alignment unit 18 routes the instructions to one
of decode unit 20A-C. Register operand information is also
detected and routed to register file 30 and reorder buffer 32.
Additionally, if the instructions require one or more memory
operations to be performed, instruction alignment unit 18
dispatches the memory operations to load/Store unit 26.
Each decoded instruction is dispatched to reservation Sta
tions 22 along with operand address information and dis
placement or immediate data which may be included with
the instruction.

0036 Microprocessor 10 supports out-of-order execu
tion, and thus employs reorder buffer 32 to keep track of the
original program Sequence for register read and write opera
tions, to implement register renaming, to allow for Specu
lative instruction execution and branch misprediction recov
ery, and to facilitate precise exceptions. A temporary Storage
location within reorder buffer 32 is reserved upon decode of
an instruction that involves the update of a register. The
temporary Storage location Stores the Speculative register
State that results from the Speculative eXecution of an
instruction. If a branch prediction is incorrect, the results
from the Speculatively-executed instructions along the
mispredicted path can be invalidated in the reorder buffer 32
before they are written to register file 30. Similarly, if a
particular instruction causes an exception, instructions Sub
Sequent to the exception-causing instruction may be dis
carded. In this manner, exceptions are “precise” (i.e.,
instructions Subsequent to the exception-causing instruction
are not completed prior to the exception). It is noted that a
particular instruction is speculatively executed if it is
executed prior to instructions which precede the particular
instruction in program order. Preceding instructions may be
a branch instruction or an exception-causing instruction, in
which case the Speculative results may be discarded by
reorder buffer 32.

0037. The decoded instructions and immediate or dis
placement data provided at the outputs of instruction align

US 2001/0002483 A1

ment unit 18 are routed directly to respective reservation
Stations 22. In one embodiment, each reservation Station 22
is capable of holding instruction information (i.e., decoded
instructions as well as operand values, operand tags and/or
immediate data) for up to three pending instructions await
ing issue to the corresponding functional unit. It is noted that
for the embodiment shown in the figure, each reservation
Station 22 is associated with a dedicated functional unit 24.
Accordingly, three dedicated "issue positions are formed
by reservation stations 22 and functional units 24. In other
words, issue position 0 is formed by reservation station 22A
and functional unit 24A. Instructions aligned and dispatched
to reservation Station 22A are executed by functional unit
24A. Similarly, issue position I is formed by reservation
station 22B and functional unit 24B; and issue position 2 is
formed by reservation station 22C and functional unit 24C.
0.038. Upon decode of a particular instruction, if a
required operand is a register location, register address
information is routed to reorder buffer 32 and register file 30
Simultaneously. Those of Skill in the art will appreciate that
the x86 register file includes eight 32-bit real registers (i.e.,
typically referred to as EAX, EBX, ECX, EDX, EBP, ESI,
EDI and ESP). In embodiments of microprocessor 10 which
employ the x86 microprocessor architecture, register file 30
comprises Storage locations for each of the 32-bit real
registers. Additional Storage locations may be included
within register file 30 for use by MROM unit 34. Reorder
buffer 32 contains temporary Storage locations for results
which change the contents of these registers to thereby allow
out of order execution. A temporary Storage location of
reorder buffer 32 is reserved for each instruction which,
upon decode, is determined to modify the contents of one of
the real registers. Therefore, at various points during execu
tion of a particular program, reorder buffer 32 may have one
or more locations which contain the Speculatively executed
contents of a given register.
0039. If following decode of a given instruction it is
determined that reorder buffer 32 has a previous location or
locations assigned to a register used as an operand in the
given instruction, reorder buffer 32 forwards to the corre
sponding reservation Station either: 1) the value in the most
recently assigned location, or 2) a tag for the most recently
assigned location if the value has not yet been produced by
the functional unit that will eventually execute the previous
instruction. If reorder buffer 32 has a location reserved for a
given register, the operand value (or reorder buffer tag) is
provided from reorder buffer 32 rather than from register file
30. If there is no location reserved for a required register in
reorder buffer 32, the value is taken directly from register file
30. If the operand corresponds to a memory location, the
operand value is provided to the reservation Station through
load/store unit 26.

0040. In one particular embodiment, reorder buffer 32 is
configured to Store and manipulate concurrently decoded
instructions as a unit. This configuration will be referred to
herein as “line-oriented”. By manipulating Several instruc
tions together, the hardware employed within reorder buffer
32 may be simplified. For example, a line-oriented reorder
buffer included in the present embodiment allocates Storage
Sufficient for instruction information pertaining to three
instructions whenever one or more instructions are dis
patched by instruction alignment unit 18. By contrast, a
variable amount of Storage is allocated in conventional

May 31, 2001

reorder buffers, dependent upon the number of instructions
actually dispatched. A comparatively larger number of logic
gates may be required to allocate the variable amount of
Storage. When each of the concurrently decoded instructions
has executed, the instruction results are Stored into register
file 30 simultaneously. The storage is then free for allocation
to another Set of concurrently decoded instructions. Addi
tionally, the amount of control logic circuitry employed per
instruction is reduced because the control logic is amortized
over Several concurrently decoded instructions. A reorder
buffer tag identifying a particular instruction may be divided
into two fields: a line tag and an offset tag. The line tag
identifies the Set of concurrently decoded instructions
including the particular instruction, and the offset tag iden
tifies which instruction within the set corresponds to the
particular instruction. It is noted that Storing instruction
results into register file 30 and freeing the corresponding
Storage is referred to as "retiring the instructions. It is
further noted that any reorder buffer configuration may be
employed in various embodiments of microprocessor 10.

0041 As noted earlier, reservation stations 22 store
instructions until the instructions are executed by the cor
responding functional unit 24. An instruction is Selected for
execution if: (i) the operands of the instruction have been
provided; and (ii) the operands have not yet been provided
for instructions which are within the Same reservation Sta
tion 22A-22C and which are prior to the instruction in
program order. It is noted that when an instruction is
executed by one of the functional units 24, the result of that
instruction is passed directly to any reservation Stations 22
that are waiting for that result at the same time the result is
passed to update reorder buffer 32 (this technique is com
monly referred to as “result forwarding”). An instruction
may be Selected for execution and passed to a functional unit
24A-24C during the clock cycle that the associated result is
forwarded. Reservation stations 22 route the forwarded
result to the functional unit 24 in this case.

0042. In one embodiment, each functional units 24A-C is
configured to perform integer arithmetic operations of addi
tion and Subtraction, as well as shifts, rotates, logical opera
tions, and branch operations. It is noted that a floating point
unit (not shown) may also be employed to accommodate
floating point operations. The floating point unit may be
operated as a coprocessor, receiving instructions from
MROM unit 34 and subsequently communicating with reor
der buffer 32 to complete the instructions. Additionally,
functional units 24 may be configured to perform address
generation for load and Store memory operations performed
by load/store unit 26.

0043. Each of the functional units 24 also provides infor
mation regarding the execution of conditional branch
instructions to the branch prediction unit 14. If a branch
prediction was incorrect, branch prediction unit 14 flushes
instructions Subsequent to the mispredicted branch that have
entered the instruction processing pipeline, and causes a
fetch of the required instructions from instruction cache 16
or main memory. It is noted that in Such situations, results of
instructions in the original program Sequence which occur
after the mispredicted branch instruction are discarded,
including those which were speculatively executed and
temporarily stored in load/store unit 26 and reorder buffer
32.

US 2001/0002483 A1

0044) Results produced by functional units 24 are sent to
reorder buffer 32 if a register value is being updated, and to
load/Store unit 26 if the contents of a memory location are
changed. If the result is to be Stored in a register, reorder
buffer 32 stores the result in the location reserved for the
value of the register when the instruction was decoded. A
plurality of result buses 38 are included for forwarding of
results from functional units 24 and load/store unit 26.
Result buses 38 convey the result generated, as well as the
reorder buffer tag identifying the instruction being executed.

0.045 Load/store unit 26 provides an interface between
functional units 24 and data cache 28. In one embodiment,
load/store unit 26 is configured with a load/store buffer
having eight Storage locations for data and address infor
mation for pending loads or stores. When the buffer is full,
instruction alignment unit 18 waits until load/store unit 26
has room for the pending load or Store request information.
Load/store unit 26 also performs dependency checking for
load memory operations against pending Store memory
operations to ensure that data coherency is maintained. A
memory operation is a transfer of data between micropro
ceSSor 10 and the main memory Subsystem. Memory opera
tions may be the result of an instruction which utilizes an
operand Stored in memory, or may be the result of a
load/Store instruction which causes the data transfer but no
other operation. Additionally, load/store unit 26 may include
a special register Storage for Special registerS Such as the
Segment registers and other registers related to the address
translation mechanism defined by the x86 microprocessor
architecture.

0046. In one embodiment, load/store unit 26 is config
ured to perform load memory operations Speculatively. Store
memory operations may be performed in program order, but
may be speculatively Stored into the predicted way. If the
predicted way is incorrect, the data prior to the Store memory
operation is Subsequently restored to the predicted way and
the Store memory operation is performed to the correct way.
In another embodiment, Stores may be executed Specula
tively as well. Speculatively executed Stores are placed into
a Store buffer, along with a copy of the cache line prior to the
update. If the Speculatively executed Store is later discarded
due to branch misprediction or exception, the cache line may
be restored to the value stored in the buffer. It is noted that
load/Store unit 26 may be configured to perform any amount
of Speculative eXecution, including no speculative eXecu
tion.

0047 Data cache 28 is a high speed cache memory
provided to temporarily Store data being transferred between
load/Store unit 26 and the main memory Subsystem. In one
embodiment, data cache 28 has a capacity of Storing up to
Sixteen kilobytes of data in an eight-way Set-associative
Structure. Similar to instruction cache 16, data cache 28 may
employ a way prediction mechanism. It is understood that
data cache 28 may be implemented in a variety of Specific
memory configurations, including Set-associative and direct
mapped configurations.

0.048. In one particular embodiment of microprocessor 10
employing the x86 microprocessor architecture, instruction
cache 16 and data cache 28 are linearly addressed. The linear
address is formed from the offset specified by the instruction
and the base address Specified by the Segment portion of the
x86 address translation mechanism. Linear addresses may

May 31, 2001

optionally be translated to physical addresses for accessing
a main memory. The linear to physical translation is speci
fied by the paging portion of the x86 address translation
mechanism. It is noted that a linear addressed cache Stores
linear address tags. A set of physical tags (not shown) may
be employed for mapping the linear addresses to physical
addresses and for detecting translation aliases. Additionally,
the physical tag block may perform linear to physical
address translation.

Prefetch/Predecode Unit and Instruction Cache
Configuration

0049 Turning now to FIG. 4, one method for predecod
ing variable-length instructions into fixed length instructions
is shown. Sample code 60 represents a plurality of variable
length instructions, in this case x86 instructions. While this
method may be used with a number of different types of
variable-length instructions (e.g., 68000 instructions), x86
instructions are chosen for illustration purposes. In this
embodiment, predecode unit 12 is configured to receive each
variable-length instruction and then pad each field within the
variable-length instruction to a predetermined maximum
field width. While any predetermined constant may be used,
e.g., 90s, the examples herein use 00 as the padding
COnStant.

0050. The prefix bytes are expanded to five bytes. The
first byte may be reserved for Segment override information
and may comprise one of the following: 00 representing no
Segment override, 26 representing the ES Segment, 2Es
representing the CS Segment, 36 representing the SS
Segment, 3E representing the DS Segment, 64 represent
ing the FS Segment, or 65 representing the GS Segment.
The second byte may be reserved for repeat information and
may comprise one of the following: 00 representing no
repeat information, F2 representing the REPNE/REPNZ
operation, or F3 representing the REP/REPE/REPZ opera
tion. The third byte may be reserved for hardware lock
information for memory operations in multiprocessor envi
ronments and may comprise one of the following: 00
representing no lock information, or FO representing an
asserted hardware lock. The fourth byte may be reserved for
operand Size information and may comprise one of the
following: 00 representing no change in operand size, or
66 for toggling the word size. Similarly, the fifth byte may
be reserved for address size information and may comprise
one of the following: 00 representing no change in address
size, or 67 for toggling between 16 and 32-bit addressing.
Note the above nomenclature matches the existing x86
nomenclature, but other constants for each function may be
Selected in other embodiments.

0051 AS previously noted, one major difficulty in decod
ing variable-length instructions is determining where each
instruction begins and ends. By predecoding instructions to
a fixed-length, each instruction is automatically aligned
when it is read from instruction cache 16. Advantageously,
instruction alignment unit 18 and decoders 20A-C may be
Simplified. In Some embodiments, one or more decode units
20A-20C may be optimized to receive fixed-length instruc
tions, thereby further improving decode Speed. In other
embodiments, one or more decoder units 20A-20C may be
bypassed completely for fixed-length instructions.
0052 A second difficulty in decoding variable-length
instructions is determining which instruction and operand

US 2001/0002483 A1

fields are present and where those instruction fields begin
and end. By predecoding instructions to the format illus
trated, determining which fields are present in each instruc
tion and which, if any, operands are required, may be
Simplified.

0053 Turning now to FIG. 5, another embodiment of this
method is illustrated. In this embodiment, the five prefix
bytes 102 from the previous embodiment's fixed-length
instruction format 60 are compressed into a Single prefix
byte 130. This results in a fixed length of thirteen bytes for
each fixed-length instruction. Advantageously, using this
format the benefits of a fixed-length format may be pre
Served while reducing the amount of Storage required for
each fixed-length instruction.

0.054 Turning now to FIG. 6A, details of one embodi
ment of prefix compression are shown. In this embodiment,
prefix byte 122 comprises a 3-bit segment override field 140,
a 2-bit repeat field 142, a Single lock bit 144, a Single
operand size bit 146, and a single address size bit 148.
Segment override information may be encoded into three
bits of prefix byte 122 as follows. A prefix byte of 26,
which indicates that the contents of the ES register are to be
used to define the Segment, may be replaced by the bit
Sequence 0012. Similarly, a prefix byte of 2Es (ES register)
may be replaced by the bit sequence 010. A prefix byte of
36 (ES register) may be replaced by 011. A prefix byte of
3Es (DS register) may be replaced by 100. A prefix byte of
64 (FS register) may be replaced by 101. A prefix byte of
65 (GS register) may be replaced by 110. If there is no
Segment override, 000 may be used in Segment override
field 140.

0.055 The prefix repeat information may be encoded into
a 2-bit repeat field 142 of prefix byte 122 as follows. A prefix
byte of F2 (REPNE/REPNZ) may be replaced with the bit
sequence 01. Similarly, a prefix byte of F3 (REP/REPE/
REPZ) may be replaced by the bit sequence 10. If there is
no repeat information, 00, may be used in repeat field 142.
If a lock instruction FO is present, this information may be
encoded into a Single lock bit 144. Similarly, if a toggle
operand size byte 66 is present, this information may be
encoded into a single bit 146. The presence of a toggle
address size byte 67 may be encoded into bit 148. Thus, all
five bytes of prefix information may be compressed into a
Single prefix byte 122. Advantageously, using this method
Saves Space within instruction cache 16 while Still providing
clearly defined fields that do not vary from one instruction
to the next.

0056 Turning to FIG. 6B, another embodiment of prefix
compression is illustrated. In this embodiment, Segment
override field 140, operand size field 146, and address size
field 148 may be encoded as described above. Two byte
instruction field 160 is a single bit that indicates whether the
corresponding instruction has a two-byte opcode (e.g., an
x86 opcode beginning with OF). Lock/repeat field 162 is two
bits wide and combines the functionality of fields 142 and
144 from the previous embodiment. Lock/repeat field 162
may be encoded as follows: 00 indicating no lock or repeat
prefix present, 01 indicating a lock prefix is present, 10
indicating a REP, REPE, or REPZ (F3H) prefix is present,
and 11 indicating that a REPNE/REPNZ (F2H) prefix is
present. This embodiment may advantageously reduced both
prefix length variation and opcode length variation.

May 31, 2001

0057 Turning now to FIG. 7, details of one embodiment
of instruction cache 16 are shown. In this embodiment,
instruction cache 16 comprises a lookup table 90 and an
instruction storage array 92. Lookup table 90 comprises a
plurality of Storage locations configured to Store pointers to
Storage locations within instruction Storage array 92.
Instruction Storage array 92 comprises a plurality of instruc
tion Storage locations each configured to Store a fixed-length
instruction received from prefetch/predecode unit 12.
0058 Upon receiving a predecoded fixed-length instruc
tion for predecode unit 12, instruction cache 16 Stores the
instruction in a particular Storage location within instruction
Storage array 92. Instruction cache 16 Stores a pointer to that
particular Storage location in pointer array 90. Pointer array
90 may be configured similarly to standard instruction
caches, except Smaller. For example, pointer array 90 may
be configured as a Set-associative cache with way prediction
as previously disclosed. Instruction Storage array 92 may be
configured as direct mapped, or may also be configured in a
Set-associative Structure.

0059 An example of the operation of this embodiment of
instruction cache 16 is now illustrated. When an instruction
is received from predecode unit 12 (e.g., 008B 00 D8 0000
0000 00 00 00 0000), instruction cache 16 is configured to
Store this instruction into the next available Storage location
within instruction Storage array 92. Using the example
configured from the figure, the instruction is Stored into an
instruction Storage location having an indeX 07. Thus,
instruction cache 16 Stores the index value 07 into pointer
array 90. The particular Storage location within pointer array
90 is Selected just as a cache line Storage location would be
Selected in a Standard instruction cache. For example,
assuming the first byte of instruction 8BD8 was located at
logical address OA8D:01.00, the pointer 07 may be stored
in the location within pointer array 90 that corresponds to
logical address OA8D:0100. As previously noted, in other
embodiments pointer array 90 may be linearly addressed.

0060. Upon receiving a request for the instruction resid
ing as logical address OA8D: 0100, instruction cache 16 may
access pointer array 90 and read the pointer that corresponds
to the requested address, i.e., 07. This pointer is then used
access a Storage location within instruction Storage array 92.
The instruction stored therein (i.e., 008B 00 D8 00 00 0000
00000000) is then read and output to instruction alignment
unit 18.

0061 Turning now to FIG. 8, another embodiment of
instruction cache 16 is shown. In this embodiment, instruc
tion cache 16 is configured to store both variable and
fixed-length versions of instructions. Instruction cache 16
comprises pointer array 90, fixed-length instruction Storage
array 92, and a variable-length instruction storage array 150.
Storage array 150 is configured to store variable-length
instructions for use when receiving a requested address
generated by a branch instruction that is taken. In contrast,
fixed-length instruction Storage array 92 Stores fixed-length
instructions which are accessed by requested addresses from
non-branch instructions and branch instructions that are not
taken. Because predecoding involves padding fields within
each variable length instruction, branch targets may become
skewed as a result of the padding. By Storing both variable
and fixed-length formats, this configuration may advanta
geously allow fast decoding of fixed-length instruction,

US 2001/0002483 A1

while effectively compensating for the expansion of and
shifting of instructions due to padding. This configuration
may be particularly useful if the program contains branch or
jump instructions that have a destination in the middle of an
instruction. This is because Such instructions may be
detected and properly executed from variable-length instruc
tion Storage array 90. Instruction cache may further com
prise a multiplexer (not shown) to Select between the output
from fixed-length instruction Storage array 92 and variable
length instruction Storage array 150.

0.062. In this embodiment, microprocessor 10 may be
configured with two sets of decoders 20A-C, one set for
decoding variable-length instructions and one Set for decod
ing fixed-length instructions. Alternatively, a single Set of
decoders 20A-C may be used, wherein the decoders are
allowed more clock cycles to perform variable-length
decoding. In another embodiment, one or more decoders
may be optimized to handle fixed-length instructions, while
the remaining decoderS may be optimized to handle Vari
able-length instructions.

0.063 As the figure illustrates, each instruction may be
stored in two different forms. Non-branch instructions are
requested Serially and therefore the shifting caused by
predecoding and padding the instructions is not a problem.
However, after a branch instruction, instruction cache 16
will receive a requested address that may have no correlation
to the address at which the branch instruction was Stored.
Thus, variable-length instruction storage array 150 provides
a mechanism for fetching the proper instruction after Such
instructions.

0.064 Turning now to FIG. 9, another method for pre
decoding variable length instructions into fixed-length
instruction is shown. In this embodiment, predecode unit 12
expands variable length instructions to one of three lengths:
5 bytes, 6 bytes, or 13 bytes. Predecode unit 12 may assign
an instruction to a particular group based upon whether a
particular field is present within the instruction. For
example, if an instruction being predecoded does not have
displacement or immediate data information, then the
instruction is padded to a fixed length of five bytes and is
stored as part of group 160. If the instruction has data bytes
but does not have displacement information, then the
instruction is padded to a fixed length of nine bytes and is
Stored in group 142. If the instruction has both displacement
bytes and data bytes, then the instruction is padded to the full
thirteen bytes and is Stored in group 144. AS in previous
embodiments, the prefix bytes may be compressed into a
Single byte. Advantageously, this method speeds decode
while reducing the resources necessary to Store fixed-length
instructions within instruction cache 16.

0065. Note that other group configurations and sizes
based upon other fields are possible and contemplated. For
example, an instruction that does not have any prefix,
displacement, or data bytes may be padded to a length of
four bytes. In another configuration, predecode unit 12 may
be configured to pad and group instructions in two or four
byte increments, resulting in four or eight groups of instruc
tions. Further note that other methods may be used to pad
instructions to a predetermined length. For example, in one
embodiment predecoder 12 may be configured to pad con
stants after the final byte of the variable-length instruction.
While this method may not identify each field within the

May 31, 2001

instruction, it may allow for faster predecoding while Still
reducing decoding (particularly alignment) times.
0.066 Turning now to FIG. 10, an embodiment of
instruction cache 16 that is configured to pad and Store
instructions into groups is shown. In this embodiment,
pointer array 90 is configured to store pointers which point
to Storage locations within fixed-length instruction Storage
arrayS 92A-C. Each fixed-length instruction Storage array
92A-C (also referred to as sub-arrays) is configured to store
one particular length of fixed-length instructions. Sub-array
92C may be configured to store fixed-length instructions that
are 13 bytes in length (e.g., instructions having displacement
data). Sub-array 92B may be configured to store fixed-length
instructions that are 9 bytes in length (e.g., instruction
without displacement data). Similarly, sub-array 92A may be
configured to Store fixed-length instructions that are only
five bytes in length (e.g., instructions having no displace
ment bytes or data bytes). Pointer array 90 may be config
ured as in previous embodiments, with each Storage location
Storing a pointer that points to one Storage location within
either sub-array 92A, sub-array 92B, or sub-array 92C.

0067. Other embodiments are also contemplated. For
example, in one embodiment variable-length instruction
storage array 150, pointer array 90, and fixed-length instruc
tion Storage arrayS 92A-C may all be incorporated into
instruction cache 16. In another embodiment, there may be
more than one Storage array having the same length of
instructions. For example, the embodiment illustrated above
may comprise two fixed-length instruction Storage arrayS
Storing 9-byte long instructions. The first array may be
configured to Store instructions not having displacement
data, whereas the Second array may be configured to Store
instructions not having immediate data.
0068 A Software compiler configured to compile vari
able length instructions into fixed-length instructions is also
contemplated. The variable-length to fixed length conver
Sion may take place as part of the compiling of high-level
language instructions to object code (e.g., x86 instructions),
or the conversion may be performed as an optimization Step
during or after object code has been generated. The same
methods illustrated above may be used. However, the com
piler may optionally be configured to expand only certain
Speed-critical portions of code. Advantageously, this may
improve the Speed of decode for Speed-critical Sections of
code while reducing the amount of code expansion that takes
place. The compiler may be configured to indicate the Start
and end of fixed-length instruction Sections by inserting
Special opcodes or Special Status bits. The compiler may also
be configured to pad the variable-length instructions using
Selected constants, e.g., no operation instruction codes
(NOPs).

Exemplary Computer System

0069 Turning now to FIG. 11, a block diagram of one
embodiment of a computer system 200 utilizing micropro
cessor 10 is shown. Other embodiments are possible and
contemplated. In the depicted System, a main memory 204
is coupled to bus bridge 202 through a memory bus 206, and
a graphics controller 208 is coupled to bus bridge 202
through an AGP bus 210. Finally, a plurality of PCI devices
212A-212B are coupled to bus bridge 202 through a PCI bus
214. A secondary bus bridge 216 may further be provided to

US 2001/0002483 A1

accommodate an electrical interface to one or more EISA or
ISA devices 218 through an EISA/ISA bus 220. Micropro
cessor 10 is coupled to bus bridge 202 through a CPU bus
224.

0070 Bus bridge 202 provides an interface between
microprocessor 10, main memory 204, graphics controller
208, and devices attached to PCI bus 214. When an opera
tion is received from one of the devices connected to bus
bridge 202, bus bridge 202 identifies the target of the
operation (e.g. a particular device or, in the case of PCI bus
214, that the target is on PCI bus 214). Busbridge 202 routes
the operation to the targeted device. BuS bridge 202 gener
ally translates an operation from the protocol used by the
Source device or bus to the protocol used by the target device
or bus.

0071. In addition to providing an interface to an ISA/
EISA bus for PCI bus 214, secondary bus bridge 216 may
further incorporate additional functionality, as desired. For
example, in one embodiment, Secondary bus bridge 216
includes a master PCI arbiter (not shown) for arbitrating
ownership of PCI bus 214. An input/output controller (not
shown), either external from or integrated with Secondary
bus bridge 216, may also be included within computer
system 200 to provide operational Support for a keyboard
and mouse 222 and for various Serial and parallel ports, as
desired. An external cache unit (not shown) may further be
coupled to CPU bus 224 between microprocessor 10 and bus
bridge 202 in other embodiments. Alternatively, the external
cache may be coupled to buS bridge 202 and cache control
logic for the external cache may be integrated into bus
bridge 202.
0.072 Main memory 204 is a memory in which applica
tion programs are Stored and from which microprocessor 10
primarily executes. A Suitable main memory 204 comprises
DRAM (Dynamic Random Access Memory), and preferably
a plurality of banks of SDRAM (Synchronous DRAM).
0073 PCI devices 212A-212B are illustrative of a variety
of peripheral devices Such as, for example, network interface
cards, Video accelerators, audio cards, hard or floppy disk
drives or drive controllers, SCSI (Small Computer Systems
Interface) adapters and telephony cards. Similarly, ISA
device 218 is illustrative of various types of peripheral
devices, Such as a modem, a Sound card, and a variety of data
acquisition cards such as GPIB or field bus interface cards.
0074 Graphics controller 208 is provided to control the
rendering of text and images on a display 226. Graphics
controller 208 may embody a typical graphics accelerator
generally known in the art to render three-dimensional data
structures which can be effectively shifted into and from
main memory 204. Graphics controller 208 may therefore be
a master of AGP bus 210 in that it can request and receive
access to a target interface within bus bridge 202 to thereby
obtain access to main memory 204. A dedicated graphics bus
accommodates rapid retrieval of data from main memory
204. For certain operations, graphics controller 208 may
further be configured to generate PCI protocol transactions
on AGP bus 210. The AGP interface of bus bridge 202 may
thus include functionality to support both AGP protocol
transactions as well as PCI protocol target and initiator
transactions. Display 226 is any electronic display upon
which an image or text can be presented. A Suitable display
226 includes a cathode ray tube (“CRT), a liquid crystal
display (“LCD”), etc.

May 31, 2001

0075). It is noted that, while the AGP, PCI, and ISA or
EISA buses have been used as examples in the above
description, any bus architectures may be Substituted as
desired. It is further noted that computer system 200 may be
a multiprocessing computer System including additional
microprocessors.

0076. It is still further noted that the present discussion
may refer to the assertion of various Signals. AS used herein,
a signal is “asserted” if it conveys a value indicative of a
particular condition. Conversely, a Signal is “deasserted” or
“not asserted” if it conveys a value indicative of a lack of a
particular condition. A signal may be defined to be asserted
when it conveys a logical Zero value or, conversely, when it
conveys a logical one value. Additionally, various values
have been described as being discarded in the above dis
cussion. A value may be discarded in a number of manners,
but generally involves modifying the value Such that it is
ignored by logic circuitry which receives the value. For
example, if the value comprises a bit, the logic State of the
value may be inverted to discard the value. If the value is an
n-bit value, one of the n-bit encodings may indicate that the
value is invalid. Setting the value to the invalid encoding
causes the value to be discarded. Additionally, an n-bit value
may include a valid bit indicative, when set, that the n-bit
value is valid. Resetting the valid bit may comprise discard
ing the value. Other methods of discarding a value may be
used as well.

0077. Numerous variations and modifications will
become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the fol
lowing claims be interpreted to embrace all Such variations
and modifications.

What is claimed is:
1. A microprocessor comprising:
a predecode unit configured to receive variable length

instructions, wherein a Subset of Said variable length
instructions comprise a plurality of prefix bytes,
wherein Said predecode unit is configured to detect Said
prefix bytes and compress Said prefix bytes into a Single
compressed prefix byte for each instruction;

an instruction cache coupled to Said predecode unit,
wherein Said instruction cache is configured to receive
Said instructions and Said compressed prefix bytes from
Said predecode unit, wherein Said instruction cache is
configured to Store Said instructions and Said com
pressed prefix bytes, and wherein Said instruction cache
is configured to output a one of Said instructions and
one of Said corresponding compressed prefix bytes in
response to receiving a fetch address.

2. The microprocessor as recited in claim 1, wherein Said
variable length instructions are X86 instructions, and
wherein Said compressed predecode byte comprises:

three bits indicative of Said corresponding instructions
Segment prefix,

a single bit indicative of an operand size override,

a single bit indicative of an address override,
two bits indicative of a repeat prefix, and

one bit indicative of a lock prefix.

US 2001/0002483 A1

3. The microprocessor as recited in claim 1, wherein Said
variable length instructions are X86 instructions, and
wherein Said compressed predecode byte comprises:

three bits indicative of Said corresponding instruction's
Segment prefix,

a single bit indicative of an operand size override,

a single bit indicative of an address override,
two bits indicative of repeat and lock prefixes, and
one bit indicative of a two byte long opcode.
4. The microprocessor as recited in claim 3, wherein Said

predecode unit is configured to generate one or more pre
decode bits for each instruction byte, wherein Said prede
code unit is configured to incorporate Said predecode bits
into Said compressed prefix byte.

5. The microprocessor as recited in claim 4, wherein Said
compressed predecode byte further comprises a Single bit
indicative of the Starting byte of the instruction.

6. A method for executing variable length instructions
comprising:

reading a plurality of instruction bytes from a memory
Subsystem;

predecoding the instruction bytes by:
detecting a starting byte for an instruction,
detecting an ending bytes for the instruction,
detecting any prefix bytes corresponding to the instruc

tion, and
compressing the prefix bytes into a Single compressed

prefix byte; and
Storing the instruction and the Single compressed prefix

byte into an instruction cache.
7. The method as recited in claim 6, wherein said com

pressing comprises:

encoding operand size prefix bytes into a single operand
Size bit within the Single compressed prefix byte;

encoding address Size prefix bytes into a single address
Size bit within the Single compressed prefix byte; and

encoding Segment override prefix bytes into a three-bit
field within the Single compressed prefix byte.

8. The method as recited in claim 7, wherein said com
pressing further comprises:

encoding repeat and lock prefix bytes into a two-bit field
within the Single compressed prefix byte.

9. The method as recited in claim 7, wherein said com
pressing further comprises:

encoding repeat prefix bytes into a two-bit field within the
Single compressed prefix byte, and

encoding lock information into a Single lock bit within the
Single compressed prefix byte.

10. A Software program embodied on computer-readable
media comprising:

a first plurality of instructions configured to detect the
boundaries of variable-length instructions,

May 31, 2001

a Second plurality of instructions configured to detect
prefix bytes associated with each variable-length
instruction; and

a third plurality of instructions configured to compress
Said prefix bytes into Single compressed prefix bytes.

11. The Software program as recited in claim 10, wherein
Said Software program is an optimizing compiler configured
to output Said variable-length instructions and Said com
pressed prefix bytes.

12. The Software program as recited in claim 10, wherein
Said Software program is a dynamically linked library con
figured to receive Said variable-length instructions as input
and generate optimized instructions and compressed prefix
bytes for output.

13. The Software program as recited in claim 12, wherein
Said Single compressed prefix bytes each comprise:

three bits indicative of Said corresponding instructions
Segment prefix,

a single bit indicative of an operand size override,
a single bit indicative of an address override,
two bits indicative of a repeat prefix, and
one bit indicative of a lock prefix.
14. The Software program as recited in claim 12, wherein

Said Single compressed prefix bytes each comprise:

three bits indicative of Said corresponding instructions
Segment prefix,

a single bit indicative of an operand size override,
a single bit indicative of an address override,
two bits indicative of repeat and lock prefixes, and
one bit indicative of a two byte long opcode.
15. The software program as recited in claim 14, wherein

Said Software program comprises a fourth plurality of
instructions configured to pad Said variable-length instruc
tions to one of a predetermined number of lengths with
predetermined constants.

16. The Software program as recited in claim 14, wherein
Said Software program comprises a fourth plurality of
instructions configured to pad Said variable-length instruc
tions to a predetermined length with predetermined con
StantS.

17. The software program as recited in claim 16, wherein
Said Software program comprises a fifth plurality of instruc
tions configured to remap branch target and destination
maps to reflect the address adjustment created by prefix byte
compression and instruction padding.

18. A computer System comprising:
a first microprocessor coupled to a CPU bus, wherein said

first microprocessor comprises:
a predecode unit configured to receive variable length

instructions, wherein a Subset of Said variable length
instructions comprise a plurality of prefix bytes,
wherein Said predecode unit is configured to detect Said
prefix bytes and compress Said prefix bytes into a Single
compressed prefix byte for each instruction;

an instruction cache coupled to Said predecode unit,
wherein Said instruction cache is configured to receive
Said instructions and Said compressed prefix bytes from

US 2001/0002483 A1 May 31, 2001
10

Said predecode unit, wherein Said instruction cache is a single bit indicative of an operand size override,
configured to Store Said instructions and Said com
pressed prefix bytes, and wherein Said instruction cache
is configured to output a one of Said instructions and two bits indicative of repeat and lock prefixes, and
one of Said corresponding compressed prefix bytes in
response to receiving a fetch address, and

a single bit indicative of an address override,

one bit indicative of a two byte long opcode.
20. The computer system as recited in claim 19, further

a modem coupled to said CPU bus via a bus bridge. comprising:
19. The computer system as recited in claim 18, wherein - 0 a Second microprocessor coupled to Said first micropro Said Single compressed prefix byte comprises: cessor via said CPU bus.
three bits indicative of Said corresponding instruction's

Segment prefix, k

