Office de la Propriete Canadian CA 2467727 A1 2003/05/30

Intellectuell Intellectual P
du Canada Office P oy 2 467 727
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2002/11/15 (51) Cl.Int.//Int.Cl.” GOBF 17/30

(87) Date publication PCT/PCT Publication Date: 2003/05/30| (71) Demandeur/Applicant:

(85) Entree phase nationale/National Entry: 2004/05/20 ENTERASYS NETWORKS, INC., US
86) N° demande PCT/PCT Application No.: US 2002/036886| (72 Inventeurs/inventors:

(Go) N” demande PRAGRSIL NS CHORAFAKIS DOMINIC, CA;

(87) N publication PCT/PCT Publication No.: 2003/044699 LEE. VIVIAN, CA:

(30) Priorité/Priority: 2001/11/21 (60/332,100) US SULTANIZADEH, BEHROUZ, CA;
LAU, GABRIEL, CA:

KANELLAKIS, KELLY, CA
(74) Agent: MCCARTHY TETRAULT LLP

(54) Titre : TRADUCTION DE FICHIERS DE CONFIGURATION PARMI DES DISPOSITIFS DE RESEAU
(54) Title: TRANSLATING CONFIGURATION FILES AMONG NETWORK DEVICES

Source CLI Script

Output script
0 P P
Translator
Data dictionaries LA
|4

"

—’

(57) Abrége/Abstract:

A system and method to facilitate the translation of Command Line Interface (20) configuration scripts associated with a device
Into the corresponding equivalent CLI (20) configuration scripts of another device. The system includes a translator (14) and one
or more data dictionaries (12). The translator (14) includes a user interface module, a translator logic module to enable the
translation, and a current data dictionary (12) module for retaining a selected data dictionary. Each of the data dictionaries
Includes common syntax generated for a variety of CLI (20) script types. A particular data dictionary Is referenced based upon
Initial input from a network administrator. The translator (14) then generates the automated translation of corresponding scripts
from those scripts associated with an original device into a device having differing script requirements.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191




WO 03/044699 Al

(19) World Intellectual Property Organization

(51)
(21)

(22)

(25)
(26)

(30)

(71)

(72)

CA 02467727 2004-05-20

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

30 May 2003 (30.05.2003) PCT

International Patent Classification’: GO6F 17/30 (74)

International Application Number: PCT/US02/36886

International Filing Date: (81)
15 November 2002 (15.11.2002)

Filing Language: English

Publication Language: English

Priority Data:

60/332,100 21 November 2001 (21.11.2001) US

Applicant: ENTERASYS NETWORKS, INC. [US/US];
50 Minuteman Road, Andover, MA 01810 (US).

Inventors: CHORAFAKIS, Dominic; 325 Webb Drive,
Apt. BE2102, Mississauga, Ontario L5B 379 (CA). LEE,
Vivian; 62 Calora Street, Scarborough, Ontario M1W 279
(CA). SULTANIZADEH, Behrouz; 699 Twain Avenue,
Mississauga, Ontario L5SW 1K7 (CA). LAU, Gabriel; Suite
603, Pemberton Avenue, North York, Ontario M4M 41.9
(CA). KANELLAKIS, Kelly; 190 Glenwood Crescent,
Toronto, Ontario M4B 1K4 (CA).

(84)

(10) International Publication Number

WO 03/044699 Al

Agent: DEVINE, MILLIMET & BRANCH, P A.; CAR-
ROLL, Kevin J., REMUS, Paul C., SULLIVAN, Todd A.,
111 Ambherst Street, Box 719 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ.,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL., IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL., PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, 1], TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

[Continued on next page]

(54) Title: TRANSLATING CONFIGURATION FILES AMONG NETWORK DEVICES

Source CLI Script

Data dictionaries

iy

&Ofl
\ Translator

Output script

—

L

|

14

A0

(57) Abstract: A system and method to facilitate the translation of Command Line Interface (20) configuration scripts associated
with a device into the corresponding equivalent CLI (20) configuration scripts of another device. The system includes a translator
(14) and one or more data dictionaries (12). The translator (14) includes a user interface module, a translator logic module to enable
the translation, and a current data dictionary (12) module for retaining a selected data dictionary. Each of the data dictionaries
includes common syntax generated for a variety of CLI (20) script types. A particular data dictionary is referenced based upon initial
input from a network administrator. The translator (14) then generates the automated translation of corresponding scripts from those
scripts associated with an original device into a device having differing script requirements.



CA 02467727 2004-05-20

wO 03/044699 A1 NGO ARFR 100 O AL AR A A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

TRANSLATING CONFIGURATION FILES AMONG NETWORK DEVICES

RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. provisional application Serial No.
60/332,100 filed on November 21, 2001, which 1s fully incorporated herein by reference.

TECHNICAL FIELD

[0002] The present invention relates to devices and systems to enable computer networking.
More particularly, the present invention relates to the management or more specifically, the
configuration, of such devices and systems. Specifically, the present invention relates to
systems and methods to translate automatically the configuration commands of one type of

device or system into the configuration commands of a different type of device or system.

BACKGROUND INFORMATION
[0003] Computing systems are useful tools for the exchange of information among
individuals. The information may include, but 1s not limited to, data, voice, graphics, and
video. The exchange is established through interconnections linking the computing systems
together 1n a way that permits the transfer of electronic signals that represent the
information. The interconnections may be either wired or wireless. Wired connections
include metal and optical fiber elements. Wireless connections include infrared and radio
wave transmissions.
[0004] A plurality of interconnected computing systems having some sort of commonality
represents a network. For example, individuals associated with a college campus may each
have a computing device. In addition, there may be shared printers and remotely located
application servers sprinkled throughout the campus. There 1s commonality among the
individuals in that they all are associated with the college in some way. The same can be
said for individuals and their computing arrangements in other environments including, for
example, healthcare facilities, manufacturing sites and Internet access users. In most cases,
1t 1s desirable to permit communication or signal exchange among the various computing

systems of the common group in some selectable way. The interconnection of those



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

computing systems, as well as the devices that regulate and facilitate the exchange among
the systems, represent a network. Further, networks may be interconnected together to
establish internetworks.

[0005] The devices that are designed to effect computer system interconnection include, but
are not limited to, routers, gateways, switches, bridges, hubs, and repeaters. There are a
variety of suppliers of such devices. While the means of signal exchange has been
substantially well defined through accepted standards and protocols, there remain variations
in certain important aspects of individual supplier devices, such as the Command Line
Interface (CLI). The CLI is the means by which a network administrator configures the
particular operating attributes of one or more of the signal exchange devices associated with
a network. Although the basic functioning of particular devices offered by different
suppliers may be the same, the configuration commands or scripts associated with
equivalent functionality often vary. For that reason, it can be difticult for a network
administrator to acquire and implement network equipment from different suppliers without
undertaking significant effort to ensure that the commands suitable for one device equate to .
the commands for a similar device from a difterent vendor.

[0006] Presently, the network administrator must manually translate the CLI commands
associated with one supplier’s device(s) to those associated with a different supplier’s
device(s), if configuration compatibility is desired. Alternatively, the administrator is left
with the choice of using network devices from a sole source with common CLI
configuration scripts. Such a choice may be undesirable if that sole source 1s not the most
cost effective one.

[0007] Accordingly, there 1s a need for an improved system and related method to translate
easily, and preferably substantially automatically, the configuration function of one system

type to the configuration function of a different system type.

SUMMARY
[0008] It is an object of the present invention to provide a system and related method to
translate configuration scripts from one format to another format in a substantially
automated way. This and other objects are achieved 1n the present invention through the
introduction and use of a script translator that is associated with one or more data

dictionaries as described herein.



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

[0009] In accordance with one aspect of the present invention, a configuration file
translation system translates at least one source configuration script for a source device to at
least one destination configuration script for a destination device. The system comprises at
least one data dictionary comprising a plurality of dictionary entries. Each of the dictionary
entries comprising at least one source command and at least one destination command
corresponding to each source command. The system also comprises a translator for reading
source commands in the source configuration script, finding corresponding destination
commands in the data dictionary, and translating the source commands in the source
configuration script to the corresponding destination commands to create the destination
configuration script.

[0010] In accordance with another aspect of the present invention, a method is provided for
translating at least one source configuration script for a source device to at least one
destination configuration script for a destination device. The method comprises providing a
user interface for prompting a user for input and for displaying information to the user and
selecting a data dictionary based on the source device and the destination device. The data
dictionary describes source commands for the source device and corresponding destination
commands for the destination device. A data dictionary internal representation of the data
dictionary selected 1s created. A source configuration script including source commands for
the source device is processed and the data dictionary internal representation for destination
commands corresponding to the source commands in the source configuration script is
accessed. A destination configuration script including the destination commands
corresponding to the source commands 1n the source configuration script 1s generated.
[0011] In accordance with another aspect of the present invention, a configuration file
translator comprises a user interface module for prompting a user for input during a
translation process and for displaying information to the user during the translation process.
A current data dictionary module creates an internal representation of information in a
current data dictionary selected by the user based on a source device and a destination
device. A translator logic module processes a source configuration script corresponding to
the source device and accesses the current data dictionary to produce a corresponding
destination configuration script for the destination device.

[0012] According to a further aspect of the present invention, a method is provided for

creating a configuration file translation data dictionary for a source device and destination

3



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

device. The method comprises identifying source commands used to configure the source
device and identifying corresponding destination commands used to configure the
destination device. Data dictionary entries are created including a text description of each
of the source commands and the corresponding destination commands, wherein the data
dictionary entries follow predefined syntax rules.

[0013] According to yet another aspect of the present invention, a data structure provides an
internal representation of a data dictionary used 1n translating configuration files. The data
structure comprises dictionary entry objects containing source commands and destination
commands in a data dictionary and source command objects containing source commands
in a source configuration script. Destination command objects include pointers to the
dictionary entry objects containing the destination commands, wherein each of the
destination command objects corresponds to a dictionary entry object containing a source
command. Dictionary entry container objects contain the dictionary entry objects
containing the source commands and the corresponding destination command objects. A

dictionary object contains a sorted list of dictionary entry container objects.

BRIEF DESCRIPTION OF THE DRAWINGS
[0014] These and other features and advantages of the present invention will be better
understood by reading the following detailed description, taken together with the drawings
wherein:
[0015] FIG. 1 1s a simplified representation of the primary components of the translator
system of the present invention.
[0016] FIG. 2 1s a simplified representation of the primary components of the translator
used in the translator system, according to one embodiment of the present invention.
[0017] FIG. 3 1s a simplified representation of an exemplar data dictionary module of the
translator system of the present invention.
[0018] FIG. 4 1s a simplified representation of the functional arrangement of an exemplar
data dictionary internal representation created using the translator system of the present
invention.
[0019] FIG. 5 is a flow chart illustrating one method of translating a source configuration

script into a destination configuration script, according to the present invention.



10

15

20

235

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0020] The main components of a configuration file translation system 10, according to the
present invention, are shown in FIG. 1. The system 10 generally includes one or more data
dictionaries 12 and a translator 14, as will be described in greater detail below. The system
10 interfaces between a source device having one or more existing source configuration
scripts 20 and a destination device requiring the translation of the source configuration
script(s) 20. The system 10 translates source commands in the source configuration
script(s) 20 into destination commands in one or more output or destination configuration
scripts 22.
[0021] The system 10 can include any number of the data dictionaries 12. Each of the data
dictionaries 12 preferably contains the information needed by the translator 14 to convert
the source script 20 for one specific source device to the destination script 22 for one
specific destination device. For example, if there is a product X that has 2 versions, and
there 1s a desire to translate scripts from both X.1 and X.2 to be usable for a product Y,
there would be 2 data dictionaries: X.1->Y and X.2->Y. There is no limit on the number of
data dictionaries (and therefore devices) the translator 14 can support, provided there is a
meaningful way for a user to select the correct dictionary to use for a particular script
translation. In the describing the translation of a script from a device X for use on a device
Y, the device X is referred to herein as the “source device” and device Y 1s referred to
herein as the “destination device.”
[0022] The data dictionaries 12 are preferably used in combination with the translator 14
but may also be used independently to facilitate manual translation, if desired. Moreover,
the data dictionaries 12 may be plain text or encrypted text. In addition, the data
dictionaries 12 may be supplied by the supplier of the translator 14 or they may alternatively
be generated by the user and then compiled with the translator 14. The translator 14 can be
a standalone application or a sub-module of a broader network management application.
[0023] The data dictionaries 12 preferably describe source commands and corresponding
destination commands according to predefined assumptions and syntax rules. Each
command preferably includes a series of keywords and parameters, and some command
definitions include optional keywords and/or parameters. In some cases, one source

command for the source device may translate into two or more destination commands for

3



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

the destination device to implement the same functionality. In some cases, one or more
source commands for the source device may not have any corresponding destination
command(s) for the destination device (e.g. if a feature is not supported on the destination
device). Based on these assumptions, a data dictionary syntax can be defined and used to
describe the translation of any source script to any destination script.
[0024] In the exemplary embodiment, the configuration scripts are command line interface
(CLI) configuration scripts having CLI commands, although other types or forms of
commands are within the scope of the present invention. A CLI command basically
includes a number of keywords and some parameters, where sections of the command may
be recursive. For example, a CLI command to configure a T1/E1 channel group i1s
described as follows:

channel-group number timeslots range [speed {56 | 64}/
The keywords in this command are shown in bold, while the parameters are shown 1n
italics. The description of this command specifies that the range paranieter can recur
several times. For example, a valid command would be:

channel-group 2 timeslots 1-3,5-7,9-11,13,16,18 speed 64
[0025] The exemplary data dictionary syntax rules and the manner in which the translator
14 interprets the data dictionary script language will now be described in greater detail
followed by illustrative examples. Hypothetical CLI commands are used in the examples
but should not be construed as actual CLI commands or as a limitation on the present
Invention.
[0026] Each of the data dictionaries 12 includes dictionary entries describing source
commands (i.e., a source command block) used by the source device and the corresponding
destination commands (i.e., a destination command block) used by the destination device.
Information in the data dictionary is case insensitive. For any CLI command being
described, the keywords are listed as is in the dictionary. Any parameters are indicated
using a “%” symbol, followed by a character indicating the parameter type. The defined
types include %s for strings, %a for IP addresses & masks; %x for a hexadecimal number;
%d for a decimal number; and %m for mapping parameters (See Example 10). To uniquely
identify a parameter within a command, a number 1s appended to the type character
described above. For example, a command containing two hexadecimal numbers would use

%x1 to describe the first parameter and %x2 to describe the second parameter. If a

6



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

enclosed in “<” and ‘“>” after the parameter name (see Example 2).

[0027] A parameter name that is used both in the source command and in one or more of
the destination commands means that the parameter value is to be copied into the
destination command (See Example 1). A parameter name in a destination command (e.g.
%s2) that has no counterpart in the source command results in a failure to translate. The
type description of a parameter is used to resolve possible ambiguous commands. For
example, if there is a command that has a different meaning depending on the parameter,
the indicated type can be used to determine the correct command at translation time. There
is preferably no further processing of the type field beyond resolving ambiguous commands.
This implies that if the dictionary maps command-x %dI to command-y %d1 and the script
contains command-x somenumber, the translator output will be command-y somenumber.
[0028] Any portion of a CLI command that can occur more than once (such as the range

CCAY?

parameter in the channel-group command example above) is enclosed within a *“**” symbol
to define a recursive block. A recursive block of a CLI command can be separated by either
a comma or 2 space (See Examplés 4 and 5). This is indicated by adding a comma in the
block specification. For example, “port %d1” indicates that the specified block can occur
many times as port I port 2 port3 etc. If the entry was specified as “port %d1,”, the final
comma indicates that the command syntax is port 1, port 2, port 3 etc. Recursive command
blocks cannot be nested.

[0029] If a command contains optional parameters, they are enclosed in square brackets.
CLI commands with optional parameters are internally expanded into all the possible
combinations of optional parameters (See Example 7). If an argument is optional in the
source command, it is also optional in the destination command. Only those combinations

in which all required destination command arguments are found in the source command are -

taken into account. In one example, commands can only contain up to 32 optional

~ parameters, and nested optional blocks are allowed (See Examples 8 and 9).

[0030] It is possible that a parameter in the source command needs to be manipulated
before being put in a destination command. For example, if one command takes a port
number as an argument (port %d1), and the port numbering scheme is different for the

destination device in that all port numbers are offset by 1000, this can be specified by

including a mathematical expression in the destination command (See Example 3). All such

7



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

expressions enclosed in “&” are preferably only found in destination commands and contain
parameters of type %d or %x only. Such expression blocks cannot contain optional or
recursive arguments. If at least one of the arguments in the expression are of type hex
(%x1), the result will also be in hexadecimal.

[0031] If a destination command block contains a sentence that starts with the word
“$prompt”, this indicates that the user will be prompted to enter the necessary CLI
command (See Example 11). If a destination command block contains a sentence that starts
with the word “$password”, the user will be prompted to enter a username/password (see
Example 12). Any destination commands that start with the word “$ignore” will be
ignored. This can be useful for commands with optional parameters as will be illustrated
later. Any comments that are found in the original script are preferably copied to the
translated version as is. Any commands that could not be translated are preferably copied
into the destination script as a comment, with an additional line above it indicating the error,
or reason the translation was not done.

[0032] The above syntax rules can be used to describe essentially any CLI command and
provide a mapping to the corresponding destination command using the same syntax. .
However, it is possible that there will not always be a one-to-one mapping between
commands. It may happen that a single CLI command for device X could translate into a
series of corresponding CLI commands for device Y. In order to accommodate this .
possibility, a destination command block containing a sequence of destination commands .
can be defined using block delimiters. After the description of a CLI source command in
the dictionary, for example, the symbols “begin;* and “end;” can be used to denote the
beginning and end of a destination command block, containing the sequence of destination
CLI commands. These block delimiter symbols are preferably on a line by themselves.

[0033] Based on these syntax rules, below is an example of a dictionary entry for a fictional

_ channel group command.

channel-group %dl timeslots "“%s1” [speed %d2<56,64>]
begin,

define channel-group %od1

assign timeslots ~%s1” to channel-group %dl [with speed %d2]
end,

(01059\63675\M0391595.1} 8



10

15

20

235

30

CA 02467727 2004-05-20
WO 03/044699 PCT/US02/36886

translated into a series of CLI commands each taking a single instance of that parameter.
The example below describes this case, again using fictional CLI commands for illustration
purposes.

Original command:

create-users tom tomspasswd, bob bobspasswd, marie mariespasswd

Desired translation:

Create user tom

Create user bob

Create user marie

Assign password tomspasswd to user tom

Assign password bobspasswd to user bob

Assign password mariespasswd to user marie
[0035] Such a rule is described in the dictionary by leaving out the recursive symbol )
from the destination command as follows: '

Create-users ~%os1 Y052

Begin,

create user %081
assign password %s2 to user 2os1

end;
[0036] By leaving out the “~” symbol in the destination command(s), the translator will
repeat the destination command once for each occurrence of the block enclosed in the “/”
symbols.
[0037] This section contains examples of dictionary entries and explains how the translator

treats them internally. All of the CLI commands illustrated in these example are for

illustration purposes only and are not intended to limit the invention in any way.

- [0038] Example 1: Parameter matching

Set interface %dl speed %od2
Begin,

Interface %dl has speed %od2
End;

[0039] The above block shows how a source command is translated into the corresponding

destination command. The values of the arguments %d1 and %d2 are copied from the

9



10

15

20

25

30

35

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

2 speed 5, the resulting output will be interface 2 has speed 5.

[0040] Example 2: Parameter ranges

Set interface %d1<1..5,10..15,17,19,21> speed %od?2
Begin,

Interface %dl1 has speed %odZ2
End:

[0041] The above example is identical to the first one, with the exception that the argument
%d]1 can only take on the values indicated in the range indicated. As shown, values can
include ranges, or single values separated by a comma. In this case, if the line being
translated is set interface 2 speed 5, the resulting output will be interface 2 has speed 3. If
the command being translated is set interface 6 speed S, the translation will result in an
error since interface number 6 is not in the range of valid values.

[0042] Example 3: Mathematical expressions

Set interface %dl1 speed %od2

Begin,

. Interface &%dI1+1000& has speed %od2
End;

[0043] The above example has the same results as the previous cases, except that in the
destination command, the value of argument %d1 is offset by 1000. Any valid
mathematical expression could be used including addition, subtraction, multiplication and
division.

[0044] Example 4: Recursive arguments

Set interface "%dI1” speed %od2
Begin,

Interface “%dI" has speed %d2
End;

[0045] The above example uses the recursive block syntax (*) to specify that an argument

can be found more that once in the command. For example, a valid command could be set

~ interface 123456 7 speed 5000. In this case the destination command would be

interface 12345 6 7 has speed 5000.
[0046] Example S: Comma delimited recursive arguments

Set interface "%dl1" speed %od2
Begin,

Interface "%dl ,” has speed %od2
End;

10



10

15

20

25

30

35

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

contains an extra comma at the end. This is an indication to the translator that when
copying the argument values to the destination command, they must be comma separated.
In this case, the command set interface 123 4 S 6 7 speed 5000 would translate into
interface 1,2,3,4,5,6,7 has speed 5000.

[0048] Example 6: Expanding recursive arguments

Set interface "%dI1” speed %d2
Begin,

Interface %dl has speed %od2
End;

[0049] In the above example, the argument %d1 is enclosed in a recursive block 1in the
source command, but not in the destination command. This indicates that the destination
command must be repeated several times, once for each instance of the argument. For
example, the command set interface 12 3 4 5 6 7 speed 5000, would result in the following
output:

interface 1 has speed 5000
interface 2 has speed 5000
interface 3 has speed 5000
interface 4 has speed 5000
interface S has speed 5000
interface 6 has speed 5000
interface 7 has speed 5000

[0050] Example 7: Optional arguments

Set interface "%d1” speed %d?2 [encapsulation %os1]
Begin,

Interface %dl1 has speed %d?2 [with encapsulation %6s1 |
End;

[0051] In the above command, the parameter encapsulation %s1 is indicated to be optional.
In this case, the translator expands this to contain both forms of the command, so the above

entry is equivalent to having the following:

Set interface "%d1" speed %od2
Begin,
Interface %dl has speed %d?2
End:;
Set interface "%d1" speed %od2 encapsulation %os1
Begin,
Interface %dl1 has speed %d2 with encapsulation %s 1
End:

11



CA 02467727 2004-05-20
WO 03/044699 PCT/US02/36886

has speed 5000 based on the first rule. The command set interface 1 speed 5000
encapsulation ppp will be translated into interface 1 has speed 5000 with encapsulation
ppp based on the second rule.

5 [0053] Example 8: Nested optional arguments

Set interface ~%dI1" speed %d2 [encapsulation sl [state %653 ][]
Begin,

Interface %dl has speed %d2 [with encapsulation %s1 [state %6s3]]
End;

10  [0054] The above source command has nested optional parameters. In this case the

command is again expanded into all its possible forms as illustrated below:
Set interface "%d 1" speed Yod2

Begin,
Interface %dl has speed %d?2
15 End:;
Set interface "%d1" speed %d2 encapsulation %s 1
Begin,
Interface %dl1 has speed %d2 with encapsulation %os1
End,;
20 Set interface ~%d1” speed %d2 encapsulation %s1 state %6s3
Begin, .
Interface %dl1 has speed %d2 with encapsulation %s1 state %653
End:;
[0055] Example 9: Nested optional arguments expansion
25 Set interface NN speed %d2 [encapsulation %s1 [state %653 ][]
Begin;
Interface %d1 has speed %d2 [with encapsulation %s1 state %6s3]
End;

[0056] The above example is identical to the previous one, except that in this case the
30 argument start %s3 is optional in the source command but not in the destination command.

In this case, the possible combinations are:

Set interface “%d 1" speed %od?2
Begin,
Interface %dl has speed %d?2
35 End;
Set interface "%d1” speed %od2 encapsulation %os1 state 7os3
Begin,
Interface %dl1 has speed %d2 with encapsulation %6s1 state 7653
End;

12



10

15

20

235

30

35

40

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

source command must always match the arguments in the destination command(s).
[0058] Example 10: Mapping

interface Y%oml set encapsulation %s1
begin;
begmap;,
Yoml
FastEthernet0 | FastEthernet0/0/0
FastEthernetl | FastEthernet0/0/1

serial 1 | Serial0/0/0
other %dl | myOther &%dl + 100&
endmap;

interface Yoml encapsulate s 1
end;

[0059] This command uses the concept of mapping. In the source command, there is a
portion of the command that needs to be mapped to something different for the destination
command. This is accomplished by using the mapped type (Yom1), and then specifying the
mapping within the command block. For each of the mapped parameters found in the
source command, there is preferably a map description block located within the command
description. A map description block has the following syntax:

begmap;,
mapname (e.g. Yoml or Yom2 etc)
source string | destination string
endmap,

[0060] The translator will then expand the command into as many versions as there are
mappings, in this case:

Interface FastEthernet( set encapsulation %os 1
Begin,

Interface FastEthernet0/0/0 encapsulate %s 1
End;
Interface FastEthernetl set encapsulation %s1
Begin,

Interface FastEthernet0/0/1 encapsulate %os 1
End;
Interface serial 1 set encapsulation %os1
Begin,

Interface serial0/0/0 encapsulate %6s1
End;
Interface other %dl set encapsulation %6s1
Begin,

13



CA 02467727 2004-05-20
WO 03/044699 PCT/US02/36886

End;
[0061] Once the command has been expanded, the usual translation rules are then applied.

[0062] Example 11: Prompting for user input

S Command xyz
Begin;
Sprompt !Please enter the commands to implement Command xyz
End:;

[0063] In the above example, when the translator encounters the given command in the CLI
10  source file, the user will be prompted with whatever string follows the “$prompt” keyword,
and given the option to enter one or more CLI commands.

[0064] Example 12: Passwords

Create user %sl1 with password %6s2
Begin,
15 Spassword
Signore %s1 %s2
End;

[0065] User / password commands are an example of a command that cannot automatically
be translated, éince the passwords stored in CLI configuration files are typicafly énérypiéd.

20  Using the “$password” keyword, the translator is informed that it must provide the user
with a way to enter a username/password. Note that the $ignore keyword 1s used here to
ensure that the translator does not mind that the parameters %s1 and %s2 that are a part of
the source command are not used anywhere in the destination command(s). -
[0066] With reference to FIG. 2, one embodiment of the translator 14 of the present

25  invention includes three major components: a user interface module 30, a current data
dictionary module 32, and a translator logic module 34. The user interface module 30
contains code that is related to the translator user interface such as functions for prompting
the user for input and providing feedback relating to the translation process. The current
data dictionary module 32 creates the internal representation of the information contained in

30 - the data dictionary that was selected by the user based on the source device from which the
script was obtained, and the destination device for which it is being translated. The
translator logic module 34 contains code that processes the source configuration script and
accesses the information stored in the current data dictionary to produce the translated

version or destination configuration script.

{01059\63675\M0391595.1} 14



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

user-interface-related functionality can be found in one central location, allowing the
translator to be easily ported to different platforms. One embodiment of the user interface
module 30 includes a single user interface class (TranslatorUI). This class provides
methods required to prompt the user for any input required during the translation process.
In addition, it provides the necessary functions that can be used by the translator logic
module 34 to display information regarding the status of the translation process.

[0068] With reference to FIG. 3, a class diagram of the current data dictionary module 32
is shown. According to one embodiment of the current data dictionary module 32, the
functionality is implemented using the classes described in greater detail below.

[0069] As described above, each CLI command 1s considered.to be composed of a set of
keywords, arguments, regular expressions, and other elements. A class 1s used to represent
each of the elements comprising a CLI command such that each command is converted into
command tokens (i.e., tokenized) in the internal representation of the current data
dictionary. The base class for all of the elements or command tokens is the command token
.class (CmdToken) 40. It contains some virtual functions to determine the token type and
contents.

[0070] A token container class (TokenContainer) 50 is used as a base class to any other
classes that can contain lists of command tokens or any of its derived classes.

[0071] A command keyword class (Cdeeyword) 42 is used to represent any keywords
that are found in a CLI command. It inherits from CmdToken and provides the same basic
functionality.

[0072] A command mapped class (CmdMapped) 44 is used to represent a mapped type as
described in Example 10 above. It inherits from CmdToken and additionally contains a
table describing the mappings described 1n the dictionary.

[0073] A command argument class (CmdArgument) 46 is used to represent arguments

~ found in CLI commands. It inherits from CmdToken and additionally contains parameter

range information.
[0074] A command regular expression class (CmdRegExp) 48 is used to represent regular
(mathematical) expressions found in the data dictionary. It inherits from CmdToken and

provides additional functions to evaluate a regular expression.

15



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

portion of a CLI command description. It inherits from CmdToken. Since a recursive block
can contain a number of tokens, this class also inherits from TokenContainer. In addition to
inherited functionality, it contains a list of tokens that can be found in the recursive block
and the recursive block delimiter (comma or space).

[0076] A command optional class (CmdOptional) 52 is used to represent a part of a CLI
command description that is enclosed in square brackets, meaning that it 1s an optional
parameter. It inherits from CmdToken. Since an optional block in a CLI command
description can contain a number of tokens, this class also inherits from TokenContainer. In
addition to inherited functionality, this class contains a list of tokens found in the optional
command block.

[0077] A dictionary entry class (DictionaryEntry) 56 is used to represent a single CLI
command description found in the current data dictionary. Note that this class is used to
describe both source and destination CLI commands. It contains a method through which a
CLI command description can be passed. The DictionaryEntryclass converts the provided
command 1nto a'series of tokens as described above, and stores the information
hierarchically in a list.

[0078] A destination command class (DstCommand) 58 is used to represent a series of CLI -
commands. A single source CLI command may map to a number of destination CLI
commands. This “group” of destination commands is contained in a single DstCommand
instance. This object contains methods to allow a new CLI command description to be
added to the group. It also provides a function to test whether a given source command can
be mapped to the contained group of destination commands by verifying that all required
parameters exist. It further provides a translate method which produces the result given an
existing CLI source command.

[0079] A source command class (SrcCommand) 60 is used to represent a CLI command

~ that is read from the source CLI script. It can take a CLI command string and convert 1t into

a series of tokens for internal representation. It also provides some methods to check for
necessary arguments and to check whether it maps to a given source script command line.
[0080] A dictionary entry container class (DictEntryContainer) 62 1s used to represent a

complete entry described in the data dictionary. It links an instance of DictionaryEntry

16



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

corresponding set of destination command descriptions.

[0081] A dictionary class (Dictionary) 64 1s used to contain the internal representation of all
the information contained in the data dictionary script file. It contains a list of
DictEntryContainer objects. It provides functions to add entries, to sort the dictionary
alphabetically by source command string, to load a data dictionary from a file descriptor,
and to locate an entry (using binary search) that maps to a specific source command string.
When loading a data dictionary, all entries that contain mapped arguments or optional
components are automatically expanded into a number of entries.

[0082] The above classes are used to represent the information contained in the current data
dictionary. The data structures forming the internal representation 68 of the data dictionary
are shown in FIG. 4. A dictionary object 70 is created for the current data dictionary. Each
command described in the current data dictionary 1s expanded into one or more
DictEntryContainer objects 72. Each such DictEntryContainer object 72 contains a pointer
to a DictionaryEntry object 74 representing the source command and a pointer to a
DstCommand object 76, which contains a list of Dictionarthtry'objects 78 repres‘entiﬁg the
group of corresponding destination commands. In the exemplary embodiment, the
Dictionary object 70 is a singleton and only one data dictionary can be loaded into memory
at any given moment. After all the commands described in the data dictionary have been
represented in memory using the above objects, the Dictionary is ordered alphabetically by
source command string. This allows a binary search algorithm to be used when searching
through the dictionary for entries matching a given command.

[0083] The translator logic module 34 (FIG. 2) contains the functionality needed to
implement the translation logic. Based on user input, it loads the appropriate data
dictionary files and makes the necessary calls to build the internal data structures. When a

CLI script is selected for translation, it makes the necessary calls to load each command,

. search through the dictionary to find the matching entry, and generate the appropriate output

based on the source CLI command and the destination dictionary entries. One embodiment
of the translator logic module 34 includes a single class (Translator) that provides the
functions described in detail below.

[0084] In one example, the translator software is created using an object oriented

programming language, such as C++. Other software implementations of the translator

17



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

also within the scope of the present invention. In one example, the translator software is run
offline on a host PC, although other implementations are contemplated.

[0085] Referring to FIG. 5, one method of translating a configuration script into a
destination script is described in greater detail below. The first step in a translation 1s to
select the dictionary that must be used, step 110. The specific dictionary selected is based
on the type of device for which the existing CLI script was created and the type of device
for which it is being translated. Once the appropriate dictionary is selected by the user, the
Translator class reads the text file and builds the internal representation 68 of the current
data dictionary (FIG. 4), step 112. When a dictionary entry is read from the data dictionary
file, the source CLI command is first converted into a sequence of tokens which are put 1nto
a DictionaryEntry object 74. Any ranges that are encountered in the source command string
are encapsulated in a CmdArgument object that is created to represent the given argument.
Once the DictionaryEntry object describing the source CLI command has been created, it 1s
inserted into a DictEntryContainer object 72.

[0086] The Translator class then proceeds to load the destination CLI commands'that are -
found between the “begin,;” and “end;” block delimiters of the dictionary entry. Each
destination CLI command is tokenized in the same way as described above, and the tokens
are used to construct the corresponding DictionaryEntry object 78. Each of the destination
CLI commands is represented by a single DictionaryEntry object 78. The DictionaryEntry
objects 78 that correspond to the destination CLI commands are grouped together by
inserting them into a DstCommand object 76. This DstCommand object 76 is then inserted
into the DictEntryContainer object 72 created in the first step, thus establishing the link
between the source CLI command and the group of destination CLI commands in a
dictionary entry. Each such DictEntryContainer object 72 is inserted into the global
Dictionary object 70, so that after all the entries in the dictionary text file have been

- processed, the data dictionary internal representation data structure is populated.

[0087] Once the complete dictionary has been loaded into memory as described above, the
source configuration script is processed, step 114. The Translator class reads the CLI script
file to be translated line by line and translates each of the CLI commands found. The first
step is to convert the source CLI command into a series of tokens using the SrcCommand

class. Once that is done, the data dictionary internal representation is accessed to find

18



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

of source command tokens, and the dictionary data structure is searched to find an entry that
begins with the same token. Since the dictionary data structure is alphabetically ordered, a
binary search algorithm is applied. It is possible that there are several forms of a command
that begin with the same keyword. For this reason, when the binary search algorithm
terminates, a sequential search is performed to find the first and last dictionary entries that
begin with the desired token.

[0088] This search results in a group of dictionary entries that may potentially be used to
translate the original CLI command. For each of these potential dictionary entries, the
Translator class attempts to match the tokenized source CLI command to the tokens in the
dictionary entry, step 118. If the tokens match, a reference to the dictionary entry 1s kept,
otherwise it is ignored. At the end of this process, if there are no dictionary entries left, the
Translator class calls the appropriate TranslatorUI method that either prompts the user
asking for manual translation or inserts a comment into the output script indicating that the
command could not be translated (depending on application options), step 120. If the
search process yields exactly one dictionary entry, step 122, the commands contained in that
entry’s DstCommand object 76 are used to generate the appropriate .output, step 124. If -
more than one dictionary entry matches the CLI command, the TranslatorUI class is called
which presents the available options and prompts the user to select the dictionary entry to
use for the translation, step 126. The commands contained in the DstCommand object 76 of
the selected entry are then used to produce the output, step 124. This process is repeated for
each command in the source CLI script until all commands have been translated, step 130.
[0089] In summary, the CLI translation system 10 of the present invention provides users
with the ability to translate CLI configuration scripts intended for one specific type of
device, into scripts that provide the same functionality (where possible) but use the CLI

syntax of a different type of device. This makes the process of upgrading network

_ infrastructure much simpler, since it automates what was before a tedious and time

consuming task. The translation system 10 allows a user to take an existing CLI
configuration script, specify the device for which it was created, select the device on which
it is to be loaded, and the translator will generate a new script for the specified destination

device.

19



CA 02467727 2004-05-20
WO 03/044699 PCT/US02/36886

within the scope of the present invention, which is not to be limited except by the following

claims.

20



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

The invention claimed 1s:

1. A configuration file translation system for translating at least one source
configuration script for a source device to at least one destination configuration script for a
destination device, said system comprising:

at least one data dictionary comprising a plurality of dictionary entries, each of said
dictionary entries comprising at least one source command and at least one destination
command corresponding to each said source command; and

a translator for reading source commands in said source configuration script, finding
corresponding destination commands in said data dictionary, and translating said source
commands in said source configuration script to said corresponding destination commands

to create said destination configuration script.

2. The configuration file translation system of claim 1 wherein said source
command includes at least one source command keyword and at least one parameter, and
wherein said destination command corresponding to said source command includes at least

one destination command keyword and said at least one parameter.

3. The configuration file translation system of claim 1 wherein at least one of
said dictionary entries includes a plurality of destination commands corresponding to one
source command, wherein said destination commands are arranged in a destination

command block in said at least one of said dictionary entries.

4, The configuration file translation system of claim 3 wherein said destination

command block includes block delimiters.

5. The configuration file translation system of claim 1 wherein said translator
comprises:
a user interface module for prompting a user for input during a translation process

and for displaying information to said user during said translation process;

21



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

information in a current data dictionary selected from said at least one dictionary based on a
source device and a destination device; and

a translator logic module for processing a source configuration script corresponding
to said source device and for accessing said internal representation of said current data
dictionary to produce a corresponding destination configuration script for said destination

device.

6. The configuration file translation system of claim 5 wherein said current data
dictionary module comprise command classes for representing elements of commands in

said current data dictionary and in said source configuration script being translated.

7. The configuration file translation system of claim 5 wherein said current data
dictionary module comprises a dictionary entry class for representing commands in said
current data dictionary, and a source command class for representing a source command 1n

said configuration script being translated.

8. The configuration file translation system of claim 1 wherein said source

configuration script and said destination configuration script are command line interface

(CLI) scripts.

9. A configuration file translation system comprising:

means for representing source commands and corresponding destination commands;
and

means for translating a source configuration script to a destination configuration

script based on said source commands and said corresponding destination commands.

10. A method for translating at least one source configuration script for a source
device to at least one destination configuration script for a destination device, said method
comprising:

providing a user interface for prompting a user for input and for displaying

information to said user;

22



10

15

20

235

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

said data dictionary describing source commands for said source device and corresponding
destination commands for said destination device;

creating a data dictionary internal representation of said data dictionary selected,;

processing a source configuration script including source commands for said source
device;

accessing said data dictionary internal representation for destination commands
corresponding to said source commands in said source configuration script; and

generating a destination configuration script including said destination commands

corresponding to said source commands in said source configuration script.

11.  The method of claim 10 wherein creating said data dictionary internal
representation comprises reading said data dictionary and creating objects containing said
source commands, objects containing said destination commands, and objects containing

elements of said source commands and said destination commands in said data dictionary.

12.  The method of claim 11 wherein processing said source configuration script
comprises reading said source commands in said source configuration script and creating

objects containing said source commands in said source configuration script.

13.  The method of claim 12 wherein accessing said data dictionary internal
representation comprises searching for said objects containing said source commands 1in
said data dictionary internal representation that match said objects containing said source

commands 1n said source configuration script.

14.  The method of claim 13 wherein said destination script is generated using

~ said destination commands in said data dictionary internal representation associated with

said source commands in said data dictionary internal representation matching said source

commands in said source configuration script.

15.  The method of claim 13 further comprising prompting a user for a manual

translation when no matching commands are found.

23



10

15

20

25

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

16.  The method of claim 13 further comprising inserting a comment into said

destination configuration script when no match commands are found.

17.  The method of claim 13 further comprising prompting a user to select one of

a plurality of matching commands.

18. A configuration file translator comprising:

a user interface module for prompting a user for input during a translation process
and for displaying information to said user during said translation process;

a current data dictionary module for creating an internal representation of
information in a current data dictionary selected by said user based on a source device and a

destination device; and

a translator logic module for processing a source configuration script corresponding
to said source device and for accessing said current data dictionary to produce a

corresponding destination configuration script for said destination device.

19.  The configuration file translator of claim 18 wherein said current data
dictionary module comprise command classes for representing elements of commands in

said current data dictionary and said source configuration script.

20.  The configuration file translator of claim 18 wherein said current data

dictionary module comprises a dictionary entry class for representing commands in said

current data dictionary and a source command class for representing a source command 1n

said configuration script being translate.

21.  The configuration file translator of claim 20 wherein said current data

dictionary module comprises a dictionary entry container class for representing all of said

commands in a dictionary entry.

24



10

15

20

235

30

CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886

dictionary module comprises a dictionary class for representing all of said dictionary entries

In a dictionary.

23. A configuration file translator comprising;:

means for interfacing with a user to prompt said user for input during a translation
process and for displaying information to said user during said translation process;

means for internally representing data from a current data dictionary selected by said
user based on a source device and a destination device; and

means for translating a source configuration script into a destination configuration

script based upon said data from said current data dictionary.

24. A method of creating a configuration file translation data dictionary for a
source device and destination device, said method comprising:

identifying source commands used to configure said source device;

identifying corresponding destination commands used to configure said destination
device; and

creating data dictionary entries including a text description of each of said source
commands and said corresponding destination commands wherein said data dictionary

entries follow predefined syntax rules.

25.  The method of claim 24 wherein each of said source commands includes at
least one source command keyword and at least one parameter, and wherein each of said
destination commands corresponding to one of said source commands includes at least one

destination command keyword and said at least one parameter.

26.  The method of claim 25 wherein at least one of said dictionary entries
includes a plurality of destination commands corresponding to one source command,
wherein said destination commands are arranged in a destination command block in said at

least one of said dictionary entries.

25



10

15

CA 02467727 2004-05-20
WO 03/044699 PCT/US02/36886

block delimiters.

28. A data structure for providing an internal representation of a data dictionary
used in translating configuration files, said data structure comprising:

dictionary entry objects containing source commands and destination commands in a
data dictionary;

source command objects containing source commands in a source configuration
script;

destination command objects including pointers to said dictionary entry objects
containing said destination commands, wherein each of said destination command objects
corresponds to a dictionary entry object containing a source command,;

dictionary entry container objects containing said dictionary entry objects containing
said source commands and corresponding said destination command objects; and

a dictionary object containing a sorted list of dictionary entry container objects.

26



CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886
1/4

Source CLI Script

Data dictionaries

I

FIG. 1

20 Output .script
\ Translator
X

User Interface
30

33

Current Data Dictionary Translator logic

34

\H

FI1G. 2



CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886
2/4

CmdToken H40 TokenContainer 7,

/\ /\
q
CmdKeyword
56
44 -
ictionaryEn
16 63
CmdAr t
reaTgtmer DictEntryContainer TUses
18
CmdRegExp lUses
50 T | ‘Y1
q U
CmdOptional 6 l 53

‘ Do to
3Sd 60

FIG. 3



CA 02467727 2004-05-20

WO 03/044699 PCT/US02/36886
3/4
Dictionary 10 (3
Q9O
Sorted list of DictEntryContainer objects
72 72, 72,
DictEntryContainer DictEntryContainer DictEntryContainer

74

' 19
DictionaryEntry DictionaryEntry Source CLI DictionaryEntry
commands

DstCommand

paNNEEIIES

16

DstCommand
[ITTT---T]
16

4
Set of corresponding DstCommand
destination command |
pointers [[TTT= 1]
16
78 PA:

DictionaryEntry DictionaryEntry

FIG. 4

78
DictionaryEntry




CA 02467727 2004-05-20

WO 03/044699

No

4/4

Select Data
Dictionary

v

Create Data
Dictionary Internal
Representation

110

Process Source
Configuration Script
Including Source
Commands

Access Data
Dictionary Internal
Representation to
Find Corresponding

Destination
Commands

6

\ 13

Yes

No

Prompt User For 1.0
Manual Translation or

Insert Comment

| L4

Generate
Output

W10,

All

Commands
Translated ?

Yes

FIG. S

More than 1
Match ?

P

Yes

PCT/US02/36886

Prompt User

to Select
Command




Source CLI Script

Output script

;lO
Translator
Data dlctlonanes

\1
A0

—’




	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - abstract drawing

