(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization

International Bureau

(43) International Publication Date 21 November 2019 (21.11.2019) WIPO | PCT

- (51) International Patent Classification: *G01N 33/50* (2006.01) *C12Q 1/6869* (2018.01) *A61P 35/00* (2006.01) *C12N 15/07* (2006.01)
- (21) International Application Number:
- PCT/US2019/032914
 (22) International Filing Date: 17 May 2019 (17.05.2019)
 (25) Filing Language: English
 (26) Publication Language: English
 (30) Priority Data:
 - 62/673,51618 May 2018 (18.05.2018)US62/795,90023 January 2019 (23.01.2019)US
- (71) Applicant: THE JOHNS HOPKINS UNIVERSITY [US/US]; 3400 N. Charles Street, Baltimore, MD 21218 (US).
- (72) Inventors: VELCULESCU, Victor E.; 14064 Big Branch Drive, Dayton, Maryland 21036 (US). CRISTIANO, Stephen; 3400 North Charles Street, Baltimore, Maryland 21218 (US). LEAL, Alessandro; 3400 North Charles Street, Baltimore, Maryland 21218 (US). PHALLEN, Jillian A.; 2123 Moyer St., Baltimore, Maryland 21231 (US). FIKSEL, Jacob; 3400 North Charles Street, Baltimore, Maryland 21218 (US). ADLEFF, Vilmos; 3400 North Charles Street, Baltimore, Maryland 21218 (US). SCHARPF, Robert B.; 3400 North Charles Street, Baltimore, Maryland 21218 (US).
- (74) Agent: WILLIS, Margaret S. et al.; Fish & Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(54) Title: CELL-FREE DNA FOR ASSESSING AND/OR TREATING CANCER

(57) Abstract: This document relates to methods and materials for assessed, monitored, and/or treated mammals (e.g., humans) having cancer. For example, methods and materials for identifying a mammal as having cancer (e.g., a localized cancer) are provided. For example, methods and materials for assessing, monitoring, and/or treating a mammal having cancer are provided.

(10) International Publication Number WO 2019/222657 A1

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

CELL-FREE DNA FOR ASSESSING AND/OR TREATING CANCER

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Patent Application Serial No. 62/673,516, filed on May 18, 2018, and claims the benefit of U.S. Patent Application Serial No.

62/795,900, filed on January 23, 2019. The disclosure of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.

STATEMENT REGARDING FEDERAL FUNDING

This invention was made with U.S. government support under grant No. CA121113 from the National Institutes of Health. The U.S. government has certain rights in the invention.

BACKGROUND

1. Technical Field

10

15

This document relates to methods and materials for assessing and/or treating mammals (e.g., humans) having cancer. For example, this document provides methods and materials for identifying a mammal as having cancer (e.g., a localized cancer). For example, this document provides methods and materials for monitoring and/or treating a mammal having cancer.

2. Background Information

Much of the morbidity and mortality of human cancers world-wide is a result of the
late diagnosis of these diseases, where treatments are less effective (Torre et al., 2015 CA Cancer J Clin 65:87; and World Health Organization, 2017 Guide to Cancer Early Diagnosis). Unfortunately, clinically proven biomarkers that can be used to broadly diagnose and treat patients are not widely available (Mazzucchelli, 2000 Advances in clinical pathology 4:111; Ruibal Morell, 1992 The International journal of biological markers 7:160;

25 Galli et al., 2013 *Clinical chemistry and laboratory medicine* 51:1369; Sikaris, 2011 *Heart, lung & circulation* 20:634; Lin et al., 2016 in *Screening for Colorectal Cancer: A Systematic*

Review for the U.S. Preventive Services Task Force. (Rockville, MD); Wanebo et al., 1978 N Engl J Med 299:448; and Zauber, 2015 *Dig Dis Sci* 60:681).

SUMMARY

- Recent analyses of cell-free DNA suggests that such approaches may provide new
 avenues for early diagnosis (Phallen et al., 2017 *Sci Transl Med* 9; Cohen et al., 2018 *Science* 359:926; Alix-Panabieres et al., 2016 *Cancer discovery* 6:479; Siravegna et al., 2017 *Nature reviews*. *Clinical oncology* 14:531; Haber et al., 2014 *Cancer discovery* 4:650; Husain et al., 2017 *JAMA* 318:1272; and Wan et al., 2017 *Nat Rev Cancer* 17:223).
- This document provides methods and materials for determining a cell free DNA
 (cfDNA) fragmentation profile in a mammal (e.g., in a sample obtained from a mammal). In some cases, determining a cfDNA fragmentation profile in a mammal can be used for identifying a mammal as having cancer. For example, cfDNA fragments obtained from a mammal (e.g., from a sample obtained from a mammal) can be subjected to low coverage whole-genome sequencing, and the sequenced fragments can be mapped to the genome (e.g.,
- 15 in non-overlapping windows) and assessed to determine a cfDNA fragmentation profile. This document also provides methods and materials for assessing and/or treating mammals (e.g., humans) having, or suspected of having, cancer. In some cases, this document provides methods and materials for identifying a mammal as having cancer. For example, a sample (e.g., a blood sample) obtained from a mammal can be assessed to determine if the mammal
- 20 has cancer based, at least in part, on the cfDNA fragmentation profile. In some cases, this document provides methods and materials for monitoring and/or treating a mammal having cancer. For example, one or more cancer treatments can be administered to a mammal identified as having cancer (e.g., based, at least in part, on a cfDNA fragmentation profile) to treat the mammal.
- Described herein is a non-invasive method for the early detection and localization of cancer. cfDNA in the blood can provide a non-invasive diagnostic avenue for patients with cancer. As demonstrated herein, DNA Evaluation of Fragments for early Interception (DELFI) was developed and used to evaluate genome-wide fragmentation patterns of cfDNA of 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric, or bile duct cancers
 as well as 245 healthy individuals. These analyses revealed that cfDNA profiles of healthy

individuals reflected nucleosomal fragmentation patterns of white blood cells, while patients with cancer had altered fragmentation profiles. DELFI had sensitivities of detection ranging from 57% to >99% among the seven cancer types at 98% specificity and identified the tissue of origin of the cancers to a limited number of sites in 75% of cases. Assessing cfDNA (e.g., using DELFI) can provide a screening approach for early detection of cancer, which can increase the chance for successful treatment of a patient having cancer. Assessing cfDNA (e.g., using DELFI) can also provide an approach for monitoring cancer, which can increase

the chance for successful treatment and improved outcome of a patient having cancer. In addition, a cfDNA fragmentation profile can be obtained from limited amounts of cfDNA and
using inexpensive reagents and/or instruments.

In general, one aspect of this document features methods for determining a cfDNA fragmentation profile of a mammal. The methods can include, or consist essentially of, processing cfDNA fragments obtained from a sample obtained from the mammal into sequencing libraries, subjecting the sequencing libraries to whole genome sequencing (e.g., low-coverage whole genome sequencing) to obtain sequenced fragments, mapping the sequenced fragments to a genome to obtain windows of mapped sequences, and analyzing the windows of mapped sequences to determine cfDNA fragment lengths. The mapped sequences can include tens to thousands of windows. The windows of mapped sequences can be non-overlapping windows. The windows of mapped sequences can each include about 5 million base pairs. The cfDNA fragmentation profile can be determined within each

window. The cfDNA fragmentation profile can include a median fragment size. The cfDNA fragmentation profile can include a fragment size distribution. The cfDNA fragmentation profile can include a ratio of small cfDNA fragments to large cfDNA fragments in the windows of mapped sequences. The cfDNA fragmentation profile can be over the whole
genome. The cfDNA fragmentation profile can be over a subgenomic interval (e.g., an interval in a portion of a chromosome).

In another aspect, this document features methods for identifying a mammal as having cancer. The methods can include, or consist essentially of, determining a cfDNA fragmentation profile in a sample obtained from a mammal, comparing the cfDNA

fragmentation profile to a reference cfDNA fragmentation profile, and identifying the mammal as having cancer when the cfDNA fragmentation profile in the sample obtained

from the mammal is different from the reference cfDNA fragmentation profile. The reference cfDNA fragmentation profile can be a cfDNA fragmentation profile of a healthy mammal. The reference cfDNA fragmentation profile can be generated by determining a cfDNA fragmentation profile in a sample obtained from the healthy mammal. The reference

- 5 DNA fragmentation pattern can be a reference nucleosome cfDNA fragmentation profile. The cfDNA fragmentation profiles can include a median fragment size, and a median fragment size of the cfDNA fragmentation profile can be shorter than a median fragment size of the reference cfDNA fragmentation profile. The cfDNA fragmentation profiles can include a fragment size distribution, and a fragment size distribution of the cfDNA
- 10 fragmentation profile can differ by at least 10 nucleotides as compared to a fragment size distribution of the reference cfDNA fragmentation profile. The cfDNA fragmentation profiles can include position dependent differences in fragmentation patterns, including a ratio of small cfDNA fragments to large cfDNA fragments, where a small cfDNA fragment can be 100 base pairs (bp) to 150 bp in length and a large cfDNA fragments can be 151 bp to
- 15 220 bp in length, and where a correlation of fragment ratios in the cfDNA fragmentation profile can be lower than a correlation of fragment ratios of the reference cfDNA fragmentation profile. The cfDNA fragmentation profiles can include sequence coverage of small cfDNA fragments, large cfDNA fragments, or of both small and large cfDNA fragments, across the genome. The cancer can be colorectal cancer, lung cancer, breast
- 20 cancer, bile duct cancer, pancreatic cancer, gastric cancer, or ovarian cancer. The step of comparing can include comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile in windows across the whole genome. The step of comparing can include comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over a subgenomic interval (e.g., an interval in a portion of a chromosome). The
- 25 mammal can have been previously administered a cancer treatment to treat the cancer. The cancer treatment can be surgery, adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy, targeted therapy, or any combinations thereof. The method also can include administering to the mammal a cancer treatment (e.g., surgery, adjuvant chemotherapy,
- neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy,
 immunotherapy, adoptive T cell therapy, targeted therapy, or any combinations thereof). The

mammal can be monitored for the presence of cancer after administration of the cancer treatment.

In another aspect, this document features methods for treating a mammal having cancer. The methods can include, or consist essentially of, identifying the mammal as having cancer, where the identifying includes determining a cfDNA fragmentation profile in a sample obtained from the mammal, comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile, and identifying the mammal as having cancer when the cfDNA fragmentation profile obtained from the mammal is different from the reference cfDNA fragmentation profile; and administering a cancer treatment to the mammal. The mammal can be a human. The cancer can be colorectal cancer, lung cancer, breast cancer, gastric cancers, pancreatic cancers, bile duct cancers, or ovarian cancer. The cancer treatment can be surgery, adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy, targeted therapy, or combinations thereof. The reference cfDNA fragmentation profile can be

- 15 a cfDNA fragmentation profile of a healthy mammal. The reference cfDNA fragmentation profile can be generated by determining a cfDNA fragmentation profile in a sample obtained from a healthy mammal. The reference DNA fragmentation pattern can be a reference nucleosome cfDNA fragmentation profile. The cfDNA fragmentation profile can include a median fragment size, where a median fragment size of the cfDNA fragmentation profile is
- 20 shorter than a median fragment size of the reference cfDNA fragmentation profile. The cfDNA fragmentation profile can include a fragment size distribution, where a fragment size distribution of the cfDNA fragmentation profile differs by at least 10 nucleotides as compared to a fragment size distribution of the reference cfDNA fragmentation profile. The cfDNA fragmentation profile can include a ratio of small cfDNA fragments to large cfDNA
- 25 fragments in the windows of mapped sequences, where a small cfDNA fragment is 100 bp to 150 bp in length, where a large cfDNA fragments is 151 bp to 220 bp in length, and where a correlation of fragment ratios in the cfDNA fragmentation profile is lower than a correlation of fragment ratios of the reference cfDNA fragmentation profile. The cfDNA fragmentation profile can include the sequence coverage of small cfDNA fragments in windows across the

30 genome. The cfDNA fragmentation profile can include the sequence coverage of large cfDNA fragments in windows across the genome. The cfDNA fragmentation profile can

include the sequence coverage of small and large cfDNA fragments in windows across the genome. The step of comparing can include comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over the whole genome. The step of comparing can include comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation

profile over a subgenomic interval. The mammal can have previously been administered a 5 cancer treatment to treat the cancer. The cancer treatment can be surgery, adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy, targeted therapy, or combinations thereof. The method also can include monitoring the mammal for the presence of cancer after administration of the cancer treatment.

10

15

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification,

including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages 20 of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF THE DRAWINGS

Figure 1. Schematic of an exemplary DELFI approach. Blood is collected from a cohort of healthy individuals and patients with cancer. Nucleosome protected cfDNA is extracted from the plasma fraction, processed into sequencing libraries, examined through whole genome sequencing, mapped to the genome, and analyzed to determine cfDNA fragment profiles in different windows across the genome. Machine learning approaches are used to categorize individuals as healthy or as having cancer and to identify the tumor tissue of origin using genome-wide cfDNA fragmentation patterns.

25

Figure 2. Simulations of non-invasive cancer detection based on number of alterations analyzed and tumor-derived cfDNA fragment distributions. Monte Carlo simulations were performed using different numbers of tumor-specific alterations to evaluate the probability of detecting cancer alterations in cfDNA at the indicated fraction of tumor-

- derived molecules. The simulations were performed assuming an average of 2000 genome equivalents of cfDNA and the requirement of five or more observations of any alteration. These analyses indicate that increasing the number of tumor-specific alterations improves the sensitivity of detection of circulating tumor DNA.
- Figure 3. Tumor-derived cfDNA fragment distributions. Cumulative density
 functions of cfDNA fragment lengths of 42 loci containing tumor-specific alterations from 30 patients with breast, colorectal, lung, or ovarian cancer are shown with 95% confidence bands (blue). Lengths of mutant cfDNA fragments were significantly different in size compared to wild-type cfDNA fragments (red) at these loci.

Figures 4A and 4B. Tumor-derived cfDNA GC content and fragment length. A, GC
content was similar for mutated and non-mutated fragments. B, GC content was not correlated to fragment length.

Figure 5. Germline cfDNA fragment distributions. Cumulative density functions of fragment lengths of 44 loci containing germline alterations (non-tumor derived) from 38 patients with breast, colorectal, lung, or ovarian cancer are shown with 95% confidence bands. Fragments with germline mutations (blue) were comparable in length to wild-type

20

25

30

cfDNA fragment lengths (red).

Figure 6. Hematopoietic cfDNA fragment distributions. Cumulative density functions of fragment lengths of 41 loci containing hematopoietic alterations (non-tumor derived) from 28 patients with breast, colorectal, lung, or ovarian cancer are shown with 95% confidence bands. After correction for multiple testing, there were no significant differences (α =0.05) in the size distributions of mutated hematopoietic cfDNA fragments (blue) and wild-type cfDNA fragments (red).

Figures 7A – 7F. cfDNA fragmentation profiles in healthy individuals and patients with cancer. A, Genome-wide cfDNA fragmentation profiles (defined as the ratio of short to long fragments) from ~9x whole genome sequencing are shown in 5 Mb bins for 30 healthy individuals (top) and 8 lung cancer patients (bottom). B, An analysis of healthy cfDNA

(top), lung cancer cfDNA (middle), and healthy lymphocyte (bottom) fragmentation profiles and lymphocyte profiles from chromosome 1 at 1 Mb resolution. The healthy lymphocyte profiles were scaled with a standard deviation equal to that of the median healthy cfDNA profiles. Healthy cfDNA patterns closely mirrored those in healthy lymphocytes while lung

- 5 cancer cfDNA profiles were more varied and differed from both healthy and lymphocyte profiles. C, Smoothed median distances between adjacent nucleosome centered at zero using 100 kb bins from healthy cfDNA (top) and nuclease-digested healthy lymphocytes (middle) are depicted together with the first eigenvector for the genome contact matrix obtained through previously reported Hi-C analyses of lymphoblastoid cells (bottom). Healthy
- 10 cfDNA nucleosome distances closely mirrored those in nuclease-digested lymphocytes as well as those from lymphoblastoid Hi-C analyses. cfDNA fragmentation profiles from healthy individuals (n=30) had high correlations while patients with lung cancer had lower correlations to median fragmentation profiles of lymphocytes (D), healthy cfDNA (E), and lymphocyte nucleosome (F) distances.
- 15

Figure 8. Density of cfDNA fragment lengths in healthy individuals and patients with lung cancer. cfDNA fragments lengths are shown for healthy individuals (n=30, gray) and patients with lung cancer (n=8, blue).

Figures 9A and 9B. Subsampling of whole genome sequence data for analysis of
cfDNA fragmentation profiles. A, High coverage (9x) whole-genome sequencing data were
subsampled to 2x, 1x, 0.5x, 0.2x, and 0.1x fold coverage. Mean centered genome-wide
fragmentation profiles in 5 Mb bins for 30 healthy individuals and 8 patients with lung
cancer are depicted for each subsampled fold coverage with median profiles shown in blue.
B, Pearson correlation of subsampled profiles to initial profile at 9x coverage for healthy
individuals and patients with lung cancer.

25

20

Figure 10. cfDNA fragmentation profiles and sequence alterations during therapy. Detection and monitoring of cancer in serial blood draws from NSCLC patients (n=19) undergoing treatment with targeted tyrosine kinase inhibitors (black arrows) was performed using targeted sequencing (top) and genome-wide fragmentation profiles (bottom). For each case, the vertical axis of the lower panel displays -1 times the correlation of each sample to

30 the median healthy cfDNA fragmentation profile. Error bars depict confidence intervals from binomial tests for mutant allele fractions and confidence intervals calculated using

Fisher transformation for genome-wide fragmentation profiles. Although the approaches analyze different aspects of cfDNA (whole genome compared to specific alterations) the targeted sequencing and fragmentation profiles were similar for patients responding to therapy as well as those with stable or progressive disease. As fragmentation profiles reflect

5

both genomic and epigenomic alterations, while mutant allele fractions only reflect individual mutations, mutant allele fractions alone may not reflect the absolute level of correlation of fragmentation profiles to healthy individuals.

Figures 11A – 11C. cfDNA fragmentation profiles in healthy individuals and patients with cancer. A, Fragmentation profiles (bottom) in the context of tumor copy number
changes (top) in a colorectal cancer patient where parallel analyses of tumor tissue were performed. The distribution of segment means and integer copy numbers are shown at top right in the indicated colors. Altered fragmentation profiles were present in regions of the genome that were copy neutral and were further affected in regions with copy number changes. B, GC adjusted fragmentation profiles from 1-2x whole genome sequencing for healthy individuals and patients with cancer are depicted per cancer type using 5 Mb windows. The median healthy profile is indicated in black and the 98% confidence band is

shown in gray. For patients with cancer, individual profiles are colored based on their correlation to the healthy median. C, Windows are indicated in orange if more than 10% of the cancer samples had a fragment ratio more than three standard deviations from the median
healthy fragment ratio. These analyses highlight the multitude of position dependent alterations across the genome in cfDNA of individuals with cancer.

Figures 12A and 12B. Profiles of cfDNA fragment lengths in copy neutral regions in healthy individuals and one patient with colorectal cancer. A, The fragmentation profile in 211 copy neutral windows in chromosomes 1-6 for 25 randomly selected healthy individuals

25 (gray). For a patient with colorectal cancer (CGCRC291) with an estimated mutant allele fraction of 20%, the cancer fragment length profile was diluted to an approximate 10% tumor contribution (blue). A and B, While the marginal densities of the fragment profiles for the healthy samples and cancer patient show substantial overlap (A, right), the fragmentation profiles are different as can be seen visualization of the fragmentation profiles (A, left) and

30 by the separation of the colorectal cancer patient from the healthy samples in a principal component analysis (B).

Figures 13A and 13B. Genome-wide GC correction of cfDNA fragments. To estimate and control for the effects of GC content on sequencing coverage, coverage in nonoverlapping 100kb genomic windows was calculated across the autosomes. For each window, the average GC of the aligned fragments was calculated. A, Loess smoothing of

5 raw coverage (top row) for two randomly selected healthy subjects (CGPLH189 and CGPLH380) and two cancer patients (CGPLLU161 and CGPLBR24) with undetectable aneuploidy (PA score < 2.35). After subtracting the average coverage predicted by the loess model, the residuals were rescaled to the median autosomal coverage (bottom row). As fragment length may also result in coverage biases, this GC correction procedure was

performed separately for short (≤ 150 bp) and long (≥ 151 bp) fragments. While the 100 kb bins on chromosome 19 (blue points) consistently have less coverage than predicted by the loess model, we did not implement a chromosome-specific correction as such an approach would remove the effects of chromosomal copy number on coverage. B, Overall, a limited correlation was found between short or long fragment coverage and GC content after
 correction among healthy subjects and cancer patients with a PA score <3.

Figure 14. Schematic of machine learning model. Gradient tree boosting machine learning was used to examine whether cfDNA can be categorized as having characteristics of a cancer patient or healthy individual. The machine learning model included fragmentation size and coverage characteristics in windows throughout the genome, as well as

- 20 chromosomal arm and mitochondrial DNA copy numbers. A 10-fold cross validation approach was employed in which each sample is randomly assigned to a fold and 9 of the folds (90% of the data) are used for training and one fold (10% of the data) is used for testing. The prediction accuracy from a single cross validation is an average over the 10 possible combinations of test and training sets. As this prediction accuracy can reflect bias
- 25 from the initial randomization of patients, the entire procedure was repeat, including the randomization of patients to folds, 10 times. For all cases, feature selection and model estimation were performed on training data and were validated on test data and the test data were never used for feature selection. Ultimately, a DELFI score was obtained that could be used to classify individuals as likely healthy or having cancer.

Figure 15. Distribution of AUCs across the repeated 10-fold cross-validation. The 25th, 50th, and 75th percentiles of the 100 AUCs for the cohort of 215 healthy individuals and 208 patients with cancer are indicated by dashed lines.

Figures 16A and 16B. Whole-genome analyses of chromosomal arm copy number changes and mitochondrial genome representation. A, Z scores for each autosome arm are 5 depicted for healthy individuals (n=215) and patients with cancer (n=208). The vertical axis depicts normal copy at zero with positive and negative values indicating arm gains and losses, respectively. Z scores greater than 50 or less than -50 are thresholded at the indicated values. B, The fraction of reads mapping to the mitochondrial genome is depicted for healthy individuals and patients with cancer. 10

15

25

Figures 17A and 17B. Detection of cancer using DELFI. A, Receiver operator characteristics for detection of cancer using cfDNA fragmentation profiles and other genome-wide features in a machine learning approach are depicted for a cohort of 215 healthy individuals and 208 patients with cancer (DELFI, AUC = 0.94), with $\ge 95\%$ specificity shaded in blue. Machine learning analyses of chromosomal arm copy number (Chr copy number (ML)), and mitochondrial genome copy number (mtDNA), are shown in the indicated colors. B, Analyses of individual cancers types using the DELFI-combined approach had AUCs ranging from 0.86 to >0.99.

Figure 18. DELFI detection of cancer by stage. Receiver operator characteristics for detection of cancer using cfDNA fragmentation profiles and other genome-wide features in a 20 machine learning approach are depicted for a cohort of 215 healthy individuals and each stage of 208 patients with cancer with $\ge 95\%$ specificity shaded in blue.

Figure 19. DELFI tissue of origin prediction. Receiver operator characteristics for DELFI tissue prediction of bile duct, breast, colorectal, gastric, lung, ovarian, and pancreatic cancers are depicted. In order to increase sample sizes within cancer type classes, cases detected with a 90% specificity were included, and the lung cancer cohort was supplemented with the addition of baseline cfDNA data from 18 lung cancer patients with prior treatment (see, e.g., Shen et al., 2018 Nature, 563:579-583).

Figure 20. Detection of cancer using DELFI and mutation-based cfDNA approaches. DELFI (green) and targeted sequencing for mutation identification (blue) were performed 30 independently in a cohort of 126 patients with breast, bile duct, colorectal, gastric, lung, or

ovarian cancers. The number of individuals detected by each approach and in combination are indicated for DELFI detection with a specificity of 98%, targeted sequencing specificity at >99%, and a combined specificity of 98%. ND indicates not detected.

DETAILED DESCRIPTION

- 5 This document provides methods and materials for determining a cfDNA fragmentation profile in a mammal (e.g., in a sample obtained from a mammal). As used herein, the terms "fragmentation profile," "position dependent differences in fragmentation patterns," and "differences in fragment size and coverage in a position dependent manner across the genome" are equivalent and can be used interchangeably. In some cases,
- 10 determining a cfDNA fragmentation profile in a mammal can be used for identifying a mammal as having cancer. For example, cfDNA fragments obtained from a mammal (e.g., from a sample obtained from a mammal) can be subjected to low coverage whole-genome sequencing, and the sequenced fragments can be mapped to the genome (e.g., in nonoverlapping windows) and assessed to determine a cfDNA fragmentation profile. As
- 15 described herein, a cfDNA fragmentation profile of a mammal having cancer is more heterogeneous (e.g., in fragment lengths) than a cfDNA fragmentation profile of a healthy mammal (e.g., a mammal not having cancer). As such, this document also provides methods and materials for assessing, monitoring, and/or treating mammals (e.g., humans) having, or suspected of having, cancer. In some cases, this document provides methods and materials
- for identifying a mammal as having cancer. For example, a sample (e.g., a blood sample) obtained from a mammal can be assessed to determine the presence and, optionally, the tissue of origin of the cancer in the mammal based, at least in part, on the cfDNA fragmentation profile of the mammal. In some cases, this document provides methods and materials for monitoring a mammal as having cancer. For example, a sample (e.g., a blood sample)
- obtained from a mammal can be assessed to determine the presence of the cancer in the mammal based, at least in part, on the cfDNA fragmentation profile of the mammal. In some cases, this document provides methods and materials for identifying a mammal as having cancer, and administering one or more cancer treatments to the mammal to treat the mammal. For example, a sample (e.g., a blood sample) obtained from a mammal can be assessed to

30 determine if the mammal has cancer based, at least in part, on the cfDNA fragmentation

profile of the mammal, and one or more cancer treatments can be administered to the mammal.

A cfDNA fragmentation profile can include one or more cfDNA fragmentation
patterns. A cfDNA fragmentation pattern can include any appropriate cfDNA fragmentation
pattern. Examples of cfDNA fragmentation patterns include, without limitation, median
fragment size, fragment size distribution, ratio of small cfDNA fragments to large cfDNA
fragments, and the coverage of cfDNA fragments. In some cases, a cfDNA fragmentation
pattern includes two or more (e.g., two, three, or four) of median fragment size, fragment size

- 10 cfDNA fragments. In some cases, cfDNA fragmentation profile can be a genome-wide cfDNA profile (e.g., a genome-wide cfDNA profile in windows across the genome). In some cases, cfDNA fragmentation profile can be a targeted region profile. A targeted region can be any appropriate portion of the genome (e.g., a chromosomal region). Examples of chromosomal regions for which a cfDNA fragmentation profile can be determined as
- described herein include, without limitation, a portion of a chromosome (e.g., a portion of 2q, 4p, 5p, 6q, 7p, 8q, 9q, 10q, 11q, 12q, and/or 14q) and a chromosomal arm (e.g., a chromosomal arm of 8q,13q, 11q, and/or 3p). In some cases, a cfDNA fragmentation profile can include two or more targeted region profiles.
- In some cases, a cfDNA fragmentation profile can be used to identify changes (e.g., alterations) in cfDNA fragment lengths. An alteration can be a genome-wide alteration or an alteration in one or more targeted regions/loci. A target region can be any region containing one or more cancer-specific alterations. Examples of cancer-specific alterations, and their chromosomal locations, include, without limitation, those shown in Table 3 (Appendix C) and those shown in Table 6 (Appendix F). In some cases, a cfDNA fragmentation profile can
- 25 be used to identify (e.g., simultaneously identify) from about 10 alterations to about 500 alterations (e.g., from about 25 to about 500, from about 50 to about 500, from about 100 to about 500, from about 200 to about 500, from about 300 to about 500, from about 10 to about 400, from about 10 to about 300, from about 10 to about 200, from about 10 to about 100, from about 10 to about 50, from about 20 to about 20 to about 400, from about 30 to about 300, from about 20 to about 300, from about 30 to about 300, from about 30, from about 30 to about 300, from about 400, from about 10 to about 50, from about 20 to about 400, from about 30 to about 300, from about 10 to about 50, from about 20 to about 400, from about 30 to about 300, from about 400, from about 30 to about 300, from about 400, from about 30 to about 300, from about 400, from about 30 to about 300, from about 400, from about 30 to about 300, from about 400, from about 30 to about 300, from about 30 to about 300, from about 400, from about 30 to about 300, from about 400, from about 30 to about 300, from about 30 to about 300, from about 400, from about 30 to about 300, from about 30 to about 30 to about 300, from about 30 to about 30 to about 300, from about 30 to about
- about 40 to about 200, from about 50 to about 100, from about 20 to about 100, from about 25 to about 75, from about 50 to about 250, or from about 100 to about 200, alterations).

In some cases, a cfDNA fragmentation profile can be used to detect tumor-derived DNA. For example, a cfDNA fragmentation profile can be used to detect tumor-derived DNA by comparing a cfDNA fragmentation profile of a mammal having, or suspected of having, cancer to a reference cfDNA fragmentation profile (e.g., a cfDNA fragmentation

- 5 profile of a healthy mammal and/or a nucleosomal DNA fragmentation profile of healthy cells from the mammal having, or suspected of having, cancer). In some cases, a reference cfDNA fragmentation profile is a previously generated profile from a healthy mammal. For example, methods provided herein can be used to determine a reference cfDNA fragmentation profile in a healthy mammal, and that reference cfDNA fragmentation profile
- can be stored (e.g., in a computer or other electronic storage medium) for future comparison to a test cfDNA fragmentation profile in mammal having, or suspected of having, cancer. In some cases, a reference cfDNA fragmentation profile (e.g., a stored cfDNA fragmentation profile) of a healthy mammal is determined over the whole genome. In some cases, a reference cfDNA fragmentation profile (e.g., a stored cfDNA fragmentation profile) of a healthy mammal is determined over the whole genome. In some cases, a reference cfDNA fragmentation profile (e.g., a stored cfDNA fragmentation profile) of a healthy mammal is determined over a subgenomic interval.

In some cases, a cfDNA fragmentation profile can be used to identify a mammal (e.g., a human) as having cancer (e.g., a colorectal cancer, a lung cancer, a breast cancer, a gastric cancer, a pancreatic cancer, a bile duct cancer, and/or an ovarian cancer).

- A cfDNA fragmentation profile can include a cfDNA fragment size pattern. cfDNA fragments can be any appropriate size. For example, cfDNA fragment can be from about 50 base pairs (bp) to about 400 bp in length. As described herein, a mammal having cancer can have a cfDNA fragment size pattern that contains a shorter median cfDNA fragment size than the median cfDNA fragment size in a healthy mammal. A healthy mammal (e.g., a mammal not having cancer) can have cfDNA fragment sizes having a median cfDNA fragment size
- 25 from about 166.6 bp to about 167.2 bp (e.g., about 166.9 bp). In some cases, a mammal having cancer can have cfDNA fragment sizes that are, on average, about 1.28 bp to about 2.49 bp (e.g., about 1.88 bp) shorter than cfDNA fragment sizes in a healthy mammal. For example, a mammal having cancer can have cfDNA fragment sizes having a median cfDNA fragment size of about 164.11 bp to about 165.92 bp (e.g., about 165.02 bp).

A cfDNA fragmentation profile can include a cfDNA fragment size distribution. As described herein, a mammal having cancer can have a cfDNA size distribution that is more

variable than a cfDNA fragment size distribution in a healthy mammal. In some case, a size distribution can be within a targeted region. A healthy mammal (e.g., a mammal not having cancer) can have a targeted region cfDNA fragment size distribution of about 1 or less than about 1. In some cases, a mammal having cancer can have a targeted region cfDNA

- 5 fragment size distribution that is longer (e.g., 10, 15, 20, 25, 30, 35, 40, 45, 50 or more bp longer, or any number of base pairs between these numbers) than a targeted region cfDNA fragment size distribution in a healthy mammal. In some cases, a mammal having cancer can have a targeted region cfDNA fragment size distribution that is shorter (e.g., 10, 15, 20, 25, 30, 35, 40, 45, 50 or more bp shorter, or any number of base pairs between these numbers)
- 10 than a targeted region cfDNA fragment size distribution in a healthy mammal. In some cases, a mammal having cancer can have a targeted region cfDNA fragment size distribution that is about 47 bp smaller to about 30 bp longer than a targeted region cfDNA fragment size distribution in a healthy mammal. In some cases, a mammal having cancer can have a targeted region cfDNA fragment size distribution of, on average, a 10, 11, 12, 13, 14, 15, 15,
- 15 17, 18, 19, 20 or more bp difference in lengths of cfDNA fragments. For example, a mammal having cancer can have a targeted region cfDNA fragment size distribution of, on average, about a 13 bp difference in lengths of cfDNA fragments. In some case, a size distribution can be a genome-wide size distribution. A healthy mammal (e.g., a mammal not having cancer) can have very similar distributions of short and long cfDNA fragments
- 20 genome-wide. In some cases, a mammal having cancer can have, genome-wide, one or more alterations (e.g., increases and decreases) in cfDNA fragment sizes. The one or more alterations can be any appropriate chromosomal region of the genome. For example, an alteration can be in a portion of a chromosome. Examples of portions of chromosomes that can contain one or more alterations in cfDNA fragment sizes include, without limitation,
- 25

portions of 2q, 4p, 5p, 6q, 7p, 8q, 9q, 10q, 11q, 12q, and 14q. For example, an alteration can be across a chromosome arm (e.g., an entire chromosome arm).

A cfDNA fragmentation profile can include a ratio of small cfDNA fragments to large cfDNA fragments and a correlation of fragment ratios to reference fragment ratios. As used herein, with respect to ratios of small cfDNA fragments to large cfDNA fragments, a small cfDNA fragment can be from about 100 bp in length to about 150 bp in length. As used

herein, with respect to ratios of small cfDNA fragments to large cfDNA fragments, a large

30

cfDNA fragment can be from about 151 bp in length to 220 bp in length. As described herein, a mammal having cancer can have a correlation of fragment ratios (e.g., a correlation of cfDNA fragment ratios to reference DNA fragment ratios such as DNA fragment ratios from one or more healthy mammals) that is lower (e.g., 2-fold lower, 3-fold lower, 4-fold

lower, 5-fold lower, 6-fold lower, 7-fold lower, 8-fold lower, 9-fold lower, 10-fold lower, or 5 more) than in a healthy mammal. A healthy mammal (e.g., a mammal not having cancer) can have a correlation of fragment ratios (e.g., a correlation of cfDNA fragment ratios to reference DNA fragment ratios such as DNA fragment ratios from one or more healthy mammals) of about 1 (e.g., about 0.96). In some cases, a mammal having cancer can have a correlation of fragment ratios (e.g., a correlation of cfDNA fragment ratios to reference DNA 10 fragment ratios such as DNA fragment ratios from one or more healthy mammals) that is, on average, about 0.19 to about 0.30 (e.g., about 0.25) lower than a correlation of fragment ratios (e.g., a correlation of cfDNA fragment ratios to reference DNA fragment ratios such as DNA fragment ratios from one or more healthy mammals) in a healthy mammal.

15

A cfDNA fragmentation profile can include coverage of all fragments. Coverage of all fragments can include windows (e.g., non-overlapping windows) of coverage. In some cases, coverage of all fragments can include windows of small fragments (e.g., fragments from about 100 bp to about 150 bp in length). In some cases, coverage of all fragments can include windows of large fragments (e.g., fragments from about 151 bp to about 220 bp in length).

20

In some cases, a cfDNA fragmentation profile can be used to identify the tissue of origin of a cancer (e.g., a colorectal cancer, a lung cancer, a breast cancer, a gastric cancer, a pancreatic cancer, a bile duct cancer, or an ovarian cancer). For example, a cfDNA fragmentation profile can be used to identify a localized cancer. When a cfDNA

fragmentation profile includes a targeted region profile, one or more alterations described 25 herein (e.g., in Table 3 (Appendix C) and/or in Table 6 (Appendix F)) can be used to identify the tissue of origin of a cancer. In some cases, one or more alterations in chromosomal regions can be used to identify the tissue of origin of a cancer.

A cfDNA fragmentation profile can be obtained using any appropriate method. In some cases, cfDNA from a mammal (e.g., a mammal having, or suspected of having, cancer) 30 can be processed into sequencing libraries which can be subjected to whole genome

sequencing (e.g., low-coverage whole genome sequencing), mapped to the genome, and analyzed to determine cfDNA fragment lengths. Mapped sequences can be analyzed in nonoverlapping windows covering the genome. Windows can be any appropriate size. For example, windows can be from thousands to millions of bases in length. As one non-limiting

example, a window can be about 5 megabases (Mb) long. Any appropriate number of windows can be mapped. For example, tens to thousands of windows can be mapped in the genome. For example, hundreds to thousands of windows can be mapped in the genome. A cfDNA fragmentation profile can be determined within each window. In some cases, a cfDNA fragmentation profile can be obtained as described in Example 1. In some cases, a
cfDNA fragmentation profile can be obtained as shown in Figure 1.

In some cases, methods and materials described herein also can include machine learning. For example, machine learning can be used for identifying an altered fragmentation profile (e.g., using coverage of cfDNA fragments, fragment size of cfDNA fragments, coverage of chromosomes, and mtDNA).

15

In some cases, methods and materials described herein can be the sole method used to identify a mammal (e.g., a human) as having cancer (e.g., a colorectal cancer, a lung cancer, a breast cancer, a gastric cancer, a pancreatic cancer, a bile duct cancer, and/or an ovarian cancer). For example, determining a cfDNA fragmentation profile can be the sole method used to identify a mammal as having cancer.

20

In some cases, methods and materials described herein can be used together with one or more additional methods used to identify a mammal (e.g., a human) as having cancer (e.g., a colorectal cancer, a lung cancer, a breast cancer, a gastric cancer, a pancreatic cancer, a bile duct cancer, and/or an ovarian cancer). Examples of methods used to identify a mammal as having cancer include, without limitation, identifying one or more cancer-specific sequence alterations, identifying one or more chromosomal alterations (e.g., aneuploidies and

alterations, identifying one or more chromosomal alterations (e.g., aneuploidies and rearrangements), and identifying other cfDNA alterations. For example, determining a cfDNA fragmentation profile can be used together with identifying one or more cancerspecific mutations in a mammal's genome to identify a mammal as having cancer. For example, determining a cfDNA fragmentation profile can be used together with identifying
one or more aneuploidies in a mammal's genome to identify a mammal as having cancer.

10

30

PCT/US2019/032914

In some aspects, this document also provides methods and materials for assessing, monitoring, and/or treating mammals (e.g., humans) having, or suspected of having, cancer. In some cases, this document provides methods and materials for identifying a mammal as having cancer. For example, a sample (e.g., a blood sample) obtained from a mammal can be assessed to determine if the mammal has cancer based, at least in part, on the cfDNA fragmentation profile of the mammal. In some cases, this document provides methods and materials for identifying the location (e.g., the anatomic site or tissue of origin) of a cancer in a mammal. For example, a sample (e.g., a blood sample) obtained from a mammal can be assessed to determine the tissue of origin of the cancer in the mammal based, at least in part, on the cfDNA fragmentation profile of the mammal. In some cases, this document provides methods and materials for identifying a mammal as having cancer, and administering one or more cancer treatments to the mammal to treat the mammal. For example, a sample (e.g., a blood sample) obtained from a mammal has cancer based, at least in part, on the cfDNA fragmentation profile of the mammal. And

administering one or more cancer treatments to the mammal. In some cases, this document provides methods and materials for treating a mammal having cancer. For example, one or more cancer treatments can be administered to a mammal identified as having cancer (e.g., based, at least in part, on the cfDNA fragmentation profile of the mammal) to treat the mammal. In some cases, during or after the course of a cancer treatment (e.g., any of the cancer treatments described herein), a mammal can undergo monitoring (or be selected for

increased monitoring) and/or further diagnostic testing. In some cases, monitoring can include assessing mammals having, or suspected of having, cancer by, for example, assessing a sample (e.g., a blood sample) obtained from the mammal to determine the cfDNA fragmentation profile of the mammal as described herein, and changes in the cfDNA

fragmentation profiles over time can be used to identify response to treatment and/or identify the mammal as having cancer (e.g., a residual cancer).

Any appropriate mammal can be assessed, monitored, and/or treated as described herein. A mammal can be a mammal having cancer. A mammal can be a mammal suspected of having cancer. Examples of mammals that can be assessed, monitored, and/or treated as described herein include, without limitation, humans, primates such as monkeys, dogs, cats, horses, cows, pigs, sheep, mice, and rats. For example, a human having, or suspected of

10

15

25

30

PCT/US2019/032914

having, cancer can be assessed to determine a cfDNA fragmentation profiled as described herein and, optionally, can be treated with one or more cancer treatments as described herein.

Any appropriate sample from a mammal can be assessed as described herein (e.g., assessed for a DNA fragmentation pattern). In some cases, a sample can include DNA (e.g., genomic DNA). In some cases, a sample can include cfDNA (e.g., circulating tumor DNA (ctDNA)). In some cases, a sample can be fluid sample (e.g., a liquid biopsy). Examples of samples that can contain DNA and/or polypeptides include, without limitation, blood (e.g., whole blood, serum, or plasma), amnion, tissue, urine, cerebrospinal fluid, saliva, sputum, broncho-alveolar lavage, bile, lymphatic fluid, cyst fluid, stool, ascites, pap smears, breast milk, and exhaled breath condensate. For example, a plasma sample can be assessed to determine a cfDNA fragmentation profiled as described herein.

A sample from a mammal to be assessed as described herein (e.g., assessed for a DNA fragmentation pattern) can include any appropriate amount of cfDNA. In some cases, a sample can include a limited amount of DNA. For example, a cfDNA fragmentation profile can be obtained from a sample that includes less DNA than is typically required for other cfDNA analysis methods, such as those described in, for example, Phallen et al., 2017 *Sci Transl Med* 9; Cohen et al., 2018 *Science* 359:926; Newman et al., 2014 *Nat Med* 20:548; and Newman et al., 2016 *Nat Biotechnol* 34:547).

In some cases, a sample can be processed (e.g., to isolate and/or purify DNA and/or polypeptides from the sample). For example, DNA isolation and/or purification can include cell lysis (e.g., using detergents and/or surfactants), protein removal (e.g., using a protease), and/or RNA removal (e.g., using an RNase). As another example, polypeptide isolation and/or purification can include cell lysis (e.g., using detergents and/or surfactants), DNA removal (e.g., using a DNase), and/or RNA removal (e.g., using an RNase).

A mammal having, or suspected of having, any appropriate type of cancer can be assessed (e.g., to determine a cfDNA fragmentation profile) and/or treated (e.g., by administering one or more cancer treatments to the mammal) using the methods and materials described herein. A cancer can be any stage cancer. In some cases, a cancer can be an early stage cancer. In some cases, a cancer can be an asymptomatic cancer. In some cases, a cancer can be a residual disease and/or a recurrence (e.g., after surgical resection

and/or after cancer therapy). A cancer can be any type of cancer. Examples of types of

PCT/US2019/032914

cancers that can be assessed, monitored, and/or treated as described herein include, without limitation, colorectal cancers, lung cancers, breast cancers, gastric cancers, pancreatic cancers, bile duct cancers, and ovarian cancers.

When treating a mammal having, or suspected of having, cancer as described herein,
the mammal can be administered one or more cancer treatments. A cancer treatment can be any appropriate cancer treatment. One or more cancer treatments described herein can be administered to a mammal at any appropriate frequency (e.g., once or multiple times over a period of time ranging from days to weeks). Examples of cancer treatments include, without limitation adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone

- therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy (e.g., chimeric antigen receptors and/or T cells having wild-type or modified T cell receptors), targeted therapy such as administration of kinase inhibitors (e.g., kinase inhibitors that target a particular genetic lesion, such as a translocation or mutation), (e.g. a kinase inhibitor, an antibody, a bispecific antibody), signal transduction inhibitors, bispecific antibodies or antibody fragments (e.g.,
- 15 BiTEs), monoclonal antibodies, immune checkpoint inhibitors, surgery (e.g., surgical resection), or any combination of the above. In some cases, a cancer treatment can reduce the severity of the cancer, reduce a symptom of the cancer, and/or to reduce the number of cancer cells present within the mammal.
- In some cases, a cancer treatment can include an immune checkpoint inhibitor. Nonlimiting examples of immune checkpoint inhibitors include nivolumab (Opdivo), pembrolizumab (Keytruda), atezolizumab (tecentriq), avelumab (bavencio), durvalumab (imfinzi), ipilimumab (yervoy). See, e.g., Pardoll (2012) Nat. Rev Cancer 12: 252-264; Sun et al. (2017) Eur Rev Med Pharmacol Sci 21(6): 1198-1205; Hamanishi et al. (2015) J. Clin. Oncol. 33(34): 4015-22; Brahmer et al. (2012) N Engl J Med 366(26): 2455-65; Ricciuti et
- al. (2017) J. Thorac Oncol. 12(5): e51-e55; Ellis et al. (2017) Clin Lung Cancer pii: S1525-7304(17)30043-8; Zou and Awad (2017) Ann Oncol 28(4): 685-687; Sorscher (2017) N Engl J Med 376(10: 996-7; Hui et al. (2017) Ann Oncol 28(4): 874-881; Vansteenkiste et al. (2017) Expert Opin Biol Ther 17(6): 781-789; Hellmann et al. (2017) Lancet Oncol. 18(1): 31-41; Chen (2017) J. Chin Med Assoc 80(1): 7-14.

In some cases, a cancer treatment can be an adoptive T cell therapy (e.g., chimeric antigen receptors and/or T cells having wild-type or modified T cell receptors). See, e.g.,

Rosenberg and Restifo (2015) Science 348(6230): 62-68; Chang and Chen (2017) Trends Mol Med 23(5): 430-450; Yee and Lizee (2016) Cancer J. 23(2): 144-148; Chen et al. (2016) Oncoimmunology 6(2): e1273302; US 2016/0194404; US 2014/0050788; US 2014/0271635; US 9,233,125; incorporated by reference in their entirety herein.

- In some cases, a cancer treatment can be a chemotherapeutic agent. Non-limiting examples of chemotherapeutic agents include: amsacrine, azacitidine, axathioprine, bevacizumab (or an antigen-binding fragment thereof), bleomycin, busulfan, carboplatin, capecitabine, chlorambucil, cisplatin, cyclophosphamide, cytarabine, dacarbazine, daunorubicin, docetaxel, doxifluridine, doxorubicin, epirubicin, erlotinib hydrochlorides,
- 10 etoposide, fiudarabine, floxuridine, fludarabine, fluorouracil, gemcitabine, hydroxyurea, idarubicin, ifosfamide, irinotecan, lomustine, mechlorethamine, melphalan, mercaptopurine, methotrxate, mitomycin, mitoxantrone, oxaliplatin, paclitaxel, pemetrexed, procarbazine, all-trans retinoic acid, streptozocin, tafluposide, temozolomide, teniposide, tioguanine, topotecan, uramustine, valrubicin, vinblastine, vincristine, vindesine, vinorelbine, and
- 15 combinations thereof. Additional examples of anti-cancer therapies are known in the art; see, e.g. the guidelines for therapy from the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), or National Comprehensive Cancer Network (NCCN).
- When monitoring a mammal having, or suspected of having, cancer as described
 herein (e.g., based, at least in part, on the cfDNA fragmentation profile of the mammal), the monitoring can be before, during, and/or after the course of a cancer treatment. Methods of monitoring provided herein can be used to determine the efficacy of one or more cancer treatments and/or to select a mammal for increased monitoring. In some cases, the monitoring can include identifying a cfDNA fragmentation profile as described herein. For
- 25 example, a cfDNA fragmentation profile can be obtained before administering one or more cancer treatments to a mammal having, or suspected or having, cancer, one or more cancer treatments can be administered to the mammal, and one or more cfDNA fragmentation profiles can be obtained during the course of the cancer treatment. In some cases, a cfDNA fragmentation profile can change during the course of cancer treatment (e.g., any of the
- 30 cancer treatments described herein). For example, a cfDNA fragmentation profile indicative that the mammal has cancer can change to a cfDNA fragmentation profile indicative that the

10

PCT/US2019/032914

mammal does not have cancer. Such a cfDNA fragmentation profile change can indicate that the cancer treatment is working. Conversely, a cfDNA fragmentation profile can remain static (e.g., the same or approximately the same) during the course of cancer treatment (e.g., any of the cancer treatments described herein). Such a static cfDNA fragmentation profile can indicate that the cancer treatment is not working. In some cases, the monitoring can include conventional techniques capable of monitoring one or more cancer treatments (e.g., the efficacy of one or more cancer treatments). In some cases, a mammal selected for increased monitoring can be administered a diagnostic test (e.g., any of the diagnostic tests disclosed herein) at an increased frequency compared to a mammal that has not been selected for increased monitoring. For example, a mammal selected for increased monitoring can be administered a diagnostic test at a frequency of twice daily, daily, bi-weekly, weekly, bimonthly, monthly, quarterly, semi-annually, annually, or any at frequency therein. In some cases, a mammal selected for increased monitoring can be administered a one or more additional diagnostic tests compared to a mammal that has not been selected for increased

- monitoring. For example, a mammal selected for increased monitoring can be administered two diagnostic tests, whereas a mammal that has not been selected for increased monitoring is administered only a single diagnostic test (or no diagnostic tests). In some cases, a mammal that has been selected for increased monitoring can also be selected for further diagnostic testing. Once the presence of a tumor or a cancer (e.g., a cancer cell) has been identified (e.g., by any of the variety of methods disclosed herein), it may be beneficial for the mammal to undergo both increased monitoring (e.g., to assess the progression of the tumor or cancer in the mammal and/or to assess the development of one or more cancer
 - biomarkers such as mutations), and further diagnostic testing (e.g., to determine the size and/or exact location (e.g., tissue of origin) of the tumor or the cancer). In some cases, one
- or more cancer treatments can be administered to the mammal that is selected for increased monitoring after a cancer biomarker is detected and/or after the cfDNA fragmentation profile of the mammal has not improved or deteriorated. Any of the cancer treatments disclosed herein or known in the art can be administered. For example, a mammal that has been selected for increased monitoring can be further monitored, and a cancer treatment can be
- 30 administered if the presence of the cancer cell is maintained throughout the increased monitoring period. Additionally or alternatively, a mammal that has been selected for

increased monitoring can be administered a cancer treatment, and further monitored as the cancer treatment progresses. In some cases, after a mammal that has been selected for increased monitoring has been administered a cancer treatment, the increased monitoring will reveal one or more cancer biomarkers (e.g., mutations). In some cases, such one or more cancer biomarkers will provide cause to administer a different cancer treatment (e.g., a resistance mutation may arise in a cancer cell during the cancer treatment, which cancer cell

harboring the resistance mutation is resistant to the original cancer treatment).

5

When a mammal is identified as having cancer as described herein (e.g., based, at least in part, on the cfDNA fragmentation profile of the mammal), the identifying can be before and/or during the course of a cancer treatment. Methods of identifying a mammal as 10 having cancer provided herein can be used as a first diagnosis to identify the mammal (e.g., as having cancer before any course of treatment) and/or to select the mammal for further diagnostic testing. In some cases, once a mammal has been determined to have cancer, the mammal may be administered further tests and/or selected for further diagnostic testing. In some cases, methods provided herein can be used to select a mammal for further diagnostic 15 testing at a time period prior to the time period when conventional techniques are capable of diagnosing the mammal with an early-stage cancer. For example, methods provided herein for selecting a mammal for further diagnostic testing can be used when a mammal has not been diagnosed with cancer by conventional methods and/or when a mammal is not known to harbor a cancer. In some cases, a mammal selected for further diagnostic testing can be 20 administered a diagnostic test (e.g., any of the diagnostic tests disclosed herein) at an increased frequency compared to a mammal that has not been selected for further diagnostic testing. For example, a mammal selected for further diagnostic testing can be administered a diagnostic test at a frequency of twice daily, daily, bi-weekly, weekly, bi-monthly, monthly,

- quarterly, semi-annually, annually, or any at frequency therein. In some cases, a mammal 25 selected for further diagnostic testing can be administered a one or more additional diagnostic tests compared to a mammal that has not been selected for further diagnostic testing. For example, a mammal selected for further diagnostic testing can be administered two diagnostic tests, whereas a mammal that has not been selected for further diagnostic
- testing is administered only a single diagnostic test (or no diagnostic tests). In some cases, 30 the diagnostic testing method can determine the presence of the same type of cancer (e.g.,

having the same tissue or origin) as the cancer that was originally detected (e.g., based, at least in part, on the cfDNA fragmentation profile of the mammal). Additionally or alternatively, the diagnostic testing method can determine the presence of a different type of cancer as the cancer that was original detected. In some cases, the diagnostic testing method

- 5 is a scan. In some cases, the scan is a computed tomography (CT), a CT angiography (CTA), a esophagram (a Barium swallom), a Barium enema, a magnetic resonance imaging (MRI), a PET scan, an ultrasound (e.g., an endobronchial ultrasound, an endoscopic ultrasound), an X-ray, a DEXA scan. In some cases, the diagnostic testing method is a physical examination, such as an anoscopy, a bronchoscopy (e.g., an autofluorescence bronchoscopy, a white-light
- bronchoscopy, a navigational bronchoscopy), a colonoscopy, a digital breast tomosynthesis, an endoscopic retrograde cholangiopancreatography (ERCP), an ensophagogastroduodenoscopy, a mammography, a Pap smear, a pelvic exam, a positron emission tomography and computed tomography (PET-CT) scan. In some cases, a mammal that has been selected for further diagnostic testing can also be selected for increased
- monitoring. Once the presence of a tumor or a cancer (e.g., a cancer cell) has been identified (e.g., by any of the variety of methods disclosed herein), it may be beneficial for the mammal to undergo both increased monitoring (e.g., to assess the progression of the tumor or cancer in the mammal and/or to assess the development of one or more cancer biomarkers such as mutations), and further diagnostic testing (e.g., to determine the size and/or exact location of the tumor or the cancer). In some cases, a cancer treatment is administered to the mammal
- that is selected for further diagnostic testing after a cancer biomarker is detected and/or after the cfDNA fragmentation profile of the mammal has not improved or deteriorated. Any of the cancer treatments disclosed herein or known in the art can be administered. For example, a mammal that has been selected for further diagnostic testing can be administered a further
- 25 diagnostic test, and a cancer treatment can be administered if the presence of the tumor or the cancer is confirmed. Additionally or alternatively, a mammal that has been selected for further diagnostic testing can be administered a cancer treatment, and can be further monitored as the cancer treatment progresses. In some cases, after a mammal that has been selected for further diagnostic testing has been administered a cancer treatment, the
- 30 additional testing will reveal one or more cancer biomarkers (e.g., mutations). In some cases, such one or more cancer biomarkers (e.g., mutations) will provide cause to administer a

different cancer treatment (e.g., a resistance mutation may arise in a cancer cell during the cancer treatment, which cancer cell harboring the resistance mutation is resistant to the original cancer treatment).

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES

Example 1: Cell-free DNA fragmentation in patients with cancer

Analyses of cell free DNA have largely focused on targeted sequencing of specific genes. Such studies permit detection of a small number of tumor-specific alterations in patients with cancer and not all patients, especially those with early stage disease, have detectable changes. Whole genome sequencing of cell-free DNA can identify chromosomal abnormalities and rearrangements in cancer patients but detection of such alterations has been challenging in part due to the difficulty in distinguishing a small number of abnormal from normal chromosomal changes (Leary et al., 2010 *Sci Transl Med* 2:20ra14; and Leary et

al., 2012 *Sci Transl Med* 4:162ra154). Other efforts have suggested nucleosome patterns and chromatin structure may be different between cancer and normal tissues, and that cfDNA in patients with cancer may result in abnormal cfDNA fragment size as well as position (Snyder et al., 2016 *Cell* 164:57; Jahr et al., 2001 *Cancer Res* 61:1659; Ivanov et al., 2015 *BMC Genomics* 16(Suppl 13):S1). However, the amount of sequencing needed for nucleosome
footprint analyses of cfDNA is impractical for routine analyses.

The sensitivity of any cell-free DNA approach depends on the number of potential alterations examined as well as the technical and biological limitations of detecting such changes. As a typical blood sample contains ~2000 genome equivalents of cfDNA per milliliter of plasma (Phallen et al., 2017 *Sci Transl Med* 9), the theoretical limit of detection

of a single alteration can be no better than one in a few thousand mutant to wild-type molecules. An approach that detects a larger number of alterations in the same number of genome equivalents would be more sensitive for detecting cancer in the circulation. Monte Carlo simulations show that increasing the number of potential abnormalities detected from only a few to tens or hundreds can potentially improve the limit of detection by orders of

magnitude, similar to recent probability analyses of multiple methylation changes in cfDNA (Figure 2).

This study presents a novel method called DELFI for detection of cancer and further identification of tissue of origin using whole genome sequencing (Figure 1). The approach uses cfDNA fragmentation profiles and machine learning to distinguish patterns of healthy 5 blood cell DNA from tumor-derived DNA and to identify the primary tumor tissue. DELFI was used for a retrospective analysis of cfDNA from 245 healthy individuals and 236 patients with breast, colorectal, lung, ovarian, pancreatic, gastric, or bile duct cancers, with most patients exhibiting localized disease. Assuming this approach had sensitivity ≥ 0.80 for discriminating cancer patients from healthy individuals while maintaining a specificity of 10 0.95, a study of at least 200 cancer patients would enable estimation of the true sensitivity with a margin of error of 0.06 at the desired specificity of 0.95 or greater.

Materials and Methods

20

Patient and sample characteristics

Plasma samples from healthy individuals and plasma and tissue samples from patients 15 with breast, lung, ovarian, colorectal, bile duct, or gastric cancer were obtained from ILSBio/Bioreclamation, Aarhus University, Herlev Hospital of the University of Copenhagen, Hvidovre Hospital, the University Medical Center of the University of Utrecht, the Academic Medical Center of the University of Amsterdam, the Netherlands Cancer Institute, and the University of California, San Diego. All samples were obtained under Institutional Review Board approved protocols with informed consent for research use at participating institutions. Plasma samples from healthy individuals were obtained at the time of routine screening, including for colonoscopies or Pap smears. Individuals were considered healthy if they had no previous history of cancer and negative screening results.

Plasma samples from individuals with breast, colorectal, gastric, lung, ovarian, 25 pancreatic, and bile duct cancer were obtained at the time of diagnosis, prior to tumor resection or therapy. Nineteen lung cancer patients analyzed for change in cfDNA fragmentation profiles across multiple time points were undergoing treatment with anti-EGFR or anti-ERBB2 therapy (see, e.g., Phallen et al., 2019 Cancer Research 15, 1204-

1213). Clinical data for all patients included in this study are listed in Table 1 (Appendix A). 30

Gender was confirmed through genomic analyses of X and Y chromosome representation. Pathologic staging of gastric cancer patients was performed after neoadjuvant therapy. Samples where the tumor stage was unknown were indicated as stage X or unknown.

Nucleosomal DNA purification

Viably frozen lymphocytes were elutriated from leukocytes obtained from a healthy male (C0618) and female (D0808-L) (Advanced Biotechnologies Inc., Eldersburg, MD). Aliquots of 1 x 10⁶ cells were used for nucleosomal DNA purification using EZ Nucleosomal DNA Prep Kit (Zymo Research, Irvine, CA). Cells were initially treated with 100 µl of Nuclei Prep Buffer and incubated on ice for 5 minutes. After centrifugation at 200g for 5
 minutes, supernatant was discarded and pelleted nuclei were treated twice with 100µl of Atlantis Digestion Buffer or with 100 µl of micrococcal nuclease (MN) Digestion Buffer. Finally, cellular nucleic DNA was fragmented with 0.5U of Atlantis dsDNase at 42°C for 20 minutes or 1.5U of MNase at 37°C for 20 minutes. Reactions were stopped using 5X MN Stop Buffer and DNA was purified using Zymo-Spin™ IIC Columns. Concentration and quality of eluted cellular nucleic DNA were analyzed using the Bioanalyzer 2100 (Agilent

Technologies, Santa Clara, CA).

Sample preparation and sequencing of cfDNA

Whole blood was collected in EDTA tubes and processed immediately or within one day after storage at 4°C, or was collected in Streck tubes and processed within two days of collection for three cancer patients who were part of the monitoring analysis. Plasma and cellular components were separated by centrifugation at 800g for 10 min at 4°C. Plasma was centrifuged a second time at 18,000g at room temperature to remove any remaining cellular debris and stored at -80° C until the time of DNA extraction. DNA was isolated from plasma using the Qiagen Circulating Nucleic Acids Kit (Qiagen GmbH) and eluted in LoBind tubes (Eppendorf AG). Concentration and quality of cfDNA were assessed using the Bioanalyzer 2100 (Agilent Technologies).

NGS cfDNA libraries were prepared for whole genome sequencing and targeted sequencing using 5 to 250 ng of cfDNA as described elsewhere (see, e.g., Phallen *et al.*, 2017 *Sci Transl Med* 9:eaan2415). Briefly, genomic libraries were prepared using the NEBNext DNA Library Prep Kit for Illumina [New England Biolabs (NEB)] with four main

30

20

25

modifications to the manufacturer's guidelines: (i) The library purification steps used the onbead AMPure XP approach to minimize sample loss during elution and tube transfer steps (see, e.g., Fisher *et al.*, 2011 *Genome Biol* 12:R1); (ii) NEBNext End Repair, A-tailing, and adapter ligation enzyme and buffer volumes were adjusted as appropriate to accommodate

28

5

the on-bead AMPure XP purification strategy; (iii) a pool of eight unique Illumina dual index adapters with 8–base pair (bp) barcodes was used in the ligation reaction instead of the standard Illumina single or dual index adapters with 6- or 8-bp barcodes, respectively; and (iv) cfDNA libraries were amplified with Phusion Hot Start Polymerase.

Whole genome libraries were sequenced directly. For targeted libraries, capture was
performed using Agilent SureSelect reagents and a custom set of hybridization probes
targeting 58 genes (see, e.g., Phallen *et al.*, 2017 *Sci Transl Med* 9:eaan2415) per the
manufacturer's guidelines. The captured library was amplified with Phusion Hot Start
Polymerase (NEB). Concentration and quality of captured cfDNA libraries were assessed on
the Bioanalyzer 2100 using theDNA1000 Kit (Agilent Technologies). Targeted libraries
were sequenced using 100-bp paired-end runs on the Illumina HiSeq 2000/2500 (Illumina).

Analyses of targeted sequencing data from cfDNA

Analyses of targeted NGS data for cfDNA samples was performed as described elsewhere (see, e.g., Phallen *et al.*, 2017 *Sci Transl Med* 9:eaan2415). Briefly, primary processing was completed using Illumina CASAVA (Consensus Assessment of Sequence and Variation) software (version 1.8), including demultiplexing and masking of dual-index

- adapter sequences. Sequence reads were aligned against the human reference genome (version hg18 or hg19) using NovoAlign with additional realignment of select regions using the Needleman-Wunsch method (see, e.g., Jones *et al.*, 2015 *Sci Transl Med* 7:283ra53). The positions of the sequence alterations have not been affected by the different genome builds.
- 25 Candidate mutations, consisting of point mutations, small insertions, and deletions, were identified using VariantDx (see, e.g., Jones *et al.*, 2015 *Sci Transl Med* 7:283ra53) (Personal Genome Diagnostics, Baltimore, MD) across the targeted regions of interest.

To analyze the fragment lengths of cfDNA molecules, each read pair from a cfDNA molecule was required to have a Phred quality score \geq 30. All duplicate ctDNA fragments, defined as having the same start, end, and index barcode were removed. For each mutation,

only fragments for which one or both of the read pairs contained the mutated (or wild-type) base at the given position were included. This analysis was done using the R packages Rsamtools and GenomicAlignments.

For each genomic locus where a somatic mutation was identified, the lengths of
fragments containing the mutant allele were compared to the lengths of fragments of the wild-type allele. If more than 100 mutant fragments were identified, Welch's two-sample t-test was used to compare the mean fragment lengths. For loci with fewer than 100 mutant fragments, a bootstrap procedure was implemented. Specifically, replacement N fragments containing the wild-type allele, where N denotes the number of fragments with the mutation,
were sampled. For each bootstrap replicate of wild type fragments their median length was computed. The p-value was estimated as the fraction of bootstrap replicates with a median wild-type fragment length as or more extreme than the observed median mutant fragment length.

Analyses of whole genome sequencing data from cfDNA

15

Primary processing of whole genome NGS data for cfDNA samples was performed using Illumina CASAVA (Consensus Assessment of Sequence and Variation) software (version 1.8.2), including demultiplexing and masking of dual-index adapter sequences. Sequence reads were aligned against the human reference genome (version hg19) using ELAND.

- 20 Read pairs with a MAPQ score below 30 for either read and PCR duplicates were removed. hg19 autosomes were tiled into 26,236 adjacent, non-overlapping 100 kb bins. Regions of low mappability, indicated by the 10% of bins with the lowest coverage, were removed (see, e.g., Fortin *et al.*, 2015 *Genome Biol* 16:180), as were reads falling in the Duke blacklisted regions (see, e.g.,
- 25 hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/). Using this approach, 361 Mb (13%) of the hg19 reference genome was excluded, including centromeric and telomeric regions. Short fragments were defined as having a length between 100 and 150 bp and long fragments were defined has having a length between 151 and 220 bp.

To account for biases in coverage attributable to GC content of the genome, the locally weighted smoother loess with span ³/₄ was applied to the scatterplot of average

fragment GC versus coverage calculated for each 100kb bin. This loess regression was performed separately for short and long fragments to account for possible differences in GC effects on coverage in plasma by fragment length (see, e.g., Benjamini *et al.*, 2012 *Nucleic Acids Res* 40:e72). The predictions for short and long coverage explained by GC from the

5 loess model were subtracted, obtaining residuals for short and long that were uncorrelated with GC. The residuals were returned to the original scale by adding back the genome-wide median short and long estimates of coverage. This procedure was repeated for each sample to account for possible differences in GC effects on coverage between samples. To further reduce the feature space and noise, the total GC-adjusted coverage in 5 Mb bins was

10 calculated.

To compare the variability of fragment lengths from healthy subjects to fragments in patients with cancer, the standard deviation of the short to long fragmentation profiles for each individual was calculated. The standard deviations in the two groups were compared by a Wilcoxon rank sum test.

15 Analyses of chromosome arm copy number changes

To develop arm-level statistics for copy number changes, an approach for an euploidy detection in plasma as described elsewhere (see, e.g., Leary *et al.*, 2012 *Sci Transl Med* 4:162ra154) was adopted. This approach divides the genome into non-overlapping 50KB bins for which GC-corrected log2 read depth was obtained after correction by loess with span

3/4. This loess-based correction is comparable to the approach outlined above, but is evaluated on a log2 scale to increase robustness to outliers in the smaller bins and does not stratify by fragment length. To obtain an arm-specific Z-score for copy number changes, the mean GC-adjusted read depth for each arm (GR) was centered and scaled by the average and standard deviation, respectively, of GR scores obtained from an independent set of 50

25 healthy samples.

30

Analyses of mitochondrial-aligned reads from cfDNA

Whole genome sequence reads that initially mapped to the mitochondrial genome were extracted from bam files and realigned to the hg19 reference genome in end-to-end mode with Bowtie2 as described elsewhere (see, e.g., Langmead *et al.*, 2012 *Nat Methods* 9:357-359). The resulting aligned reads were filtered such that both mates aligned to the

mitochondrial genome with MAPQ ≥ 30 . The number of fragments mapping to the mitochondrial genome was counted and converted to a percentage of the total number of fragments in the original bam files.

Prediction model for cancer classification

5

10

To distinguish healthy from cancer patients using fragmentation profiles, a stochastic gradient boosting model was used (gbm; see, e.g., Friedman *et al.*, 2001 *Ann Stat* 29:1189-1232; and Friedman *et al.*, 2002 *Comput Stat Data An* 38:367-378). GC-corrected total and short fragment coverage for all 504 bins were centered and scaled for each sample to have mean 0 and unit standard deviation. Additional features included Z-scores for each of the 39 autosomal arms and mitochondrial representation (log10-transformed proportion of reads mapped to the mitochondria). To estimate the prediction error of this approach, 10-fold cross-validation was used as described elsewhere (see, e.g., Efron et al., 1997 J Am Stat Assoc 92, 548-560). Feature selection, performed only on the training data in each cross-validation run, removed bins that were highly correlated (correlation > 0.9) or had near zero

variance. Stochastic gradient boosted machine learning was implemented using the R package gbm package with parameters n.trees=150, interaction.depth=3, shrinkage=0.1, and n.minobsinside=10. To average over the prediction error from the randomization of patients to folds, the 10-fold cross validation procedure was repeated 10 times. Confidence intervals for sensitivity fixed at 98% and 95% specificity were obtained from 2000 bootstrap

20 replicates.

Prediction model for tumor tissue of origin classification

For samples correctly classified as cancer patients at 90% specificity (n = 174), a separate stochastic gradient boosting model was trained to classify the tissue of origin. To account for the small number of lung samples used for prediction, 18 cfDNA baseline

25

samples from late stage lung cancer patients were included from the monitoring analyses. Performance characteristics of the model were evaluated by 10-fold cross-validation repeated 10 times. This gbm model was trained using the same features as in the cancer classification model. As previously described, features that displayed correlation above 0.9 to each other or had near zero variance were removed within each training dataset during cross-validation.

The tissue class probabilities were averaged across the 10 replicates for each patient and the class with the highest probability was taken as the predicted tissue.

Analyses of nucleosomal DNA from human lymphocytes and cfDNA

- From the nuclease treated lymphocytes, fragment sizes were analyzed in 5 Mb bins as
 described for whole genome cfDNA analyses. A genome-wide map of nucleosome positions was constructed from the nuclease treated lymphocyte cell-lines. This approach identified local biases in the coverage of circulating fragments, indicating a region protected from degradation. A "Window positioning score" (WPS) was used to score each base pair in the genome (see, e.g., Snyder et al., 2016 *Cell* 164:57). Using a sliding window of 60bp
- 10 centered around each base, the WPS was calculated as the number of fragments completely spanning the window minus the number of fragments with only one end in the window. Since fragments arising from nucleosomes have a median length of 167 bp, a high WPS indicated a possible nucleosomic position. WPS scores were centered at zero using a running median and smoothed using a Kolmogorov-Zurbenko filter (see, e.g., Zurbenko, *The spectral*
- 15 analysis of time series. North-Holland series in statistics and probability; Elsevier, New York, NY, 1986). For spans of positive WPS between 50 and 450 bp, a nucleosome peak was defined as the set of base pairs with a WPS above the median in that window. The calculation of nucleosome positions for cfDNA from 30 healthy individuals with sequence coverage of 9x was determined in the same manner as for lymphocyte DNA. To ensure that
- 20 nucleosomes in healthy cfDNA were representative, a consensus track of nucleosomes was defined consisting only of nucleosomes identified in two or more individuals. Median distances between adjacent nucleosomes were calculated from the consensus track.

Monte Carlo simulation of detection sensitivity

A Monte Carlo simulation was used to estimate the probability of detecting a
molecule with a tumor-derived alteration. Briefly, 1 million molecules were generated from a multinomial distribution. For a simulation with *m* alterations, wild-type molecules were simulated with probability *p* and each of the *m* tumor alterations were simulated with probability (1-*p*)/*m*. Next, *g* * *m* molecules were sampled randomly with replacement, where *g* denotes the number of genome equivalents in 1 ml of plasma. If a tumor alteration was sampled *s* or more times, the sample was classified as cancer-derived. The simulation was

repeated 1000 times, estimating the probability that the *in silico* sample would be correctly classified as cancer by the mean of the cancer indicator. Setting g = 2000 and s = 5, the number of tumor alterations was varied by powers of 2 from 1 to 256 and the fraction of tumor-derived molecules from 0.0001% to 1%.

5 *Statistical analyses*

All statistical analyses were performed using R version 3.4.3. The R packages caret (version 6.0-79) and gbm (version 2.1-4) were used to implement the classification of healthy versus cancer and tissue of origin. Confidence intervals from the model output were obtained with the pROC (version 1.13) R package (see, e.g., Robin *et al.*, 2011 *BMC*

10 bioinformatics 12:77). Assuming the prevalence of undiagnosed cancer cases in this population is high (1 or 2 cases per 100 healthy), a genomic assay with a specificity of 0.95 and sensitivity of 0.8 would have useful operating characteristics (positive predictive value of 0.25 and negative predictive value near 1). Power calculations suggest that an analysis of more than 200 cancer patients and an approximately equal number of healthy controls, enable

an estimation of the sensitivity with a margin of error of 0.06 at the desired specificity of0.95 or greater.

Data and Code Availability

Sequence data utilized in this study have been deposited at the European Genomephenome Archive under study accession nos. EGAS00001003611 and EGAS00001002577. Code for analyses is available at github.com/Cancer-Genomics/delfi_scripts.

Results

20

25

DELFI allows simultaneous analysis of a large number of abnormalities in cfDNA through genome-wide analysis of fragmentation patterns. The method is based on low coverage whole genome sequencing and analysis of isolated cfDNA. Mapped sequences are analyzed in non-overlapping windows covering the genome. Conceptually, windows may range in size from thousands to millions of bases, resulting in hundreds to thousands of windows in the genome. 5 Mb windows were used for evaluating cfDNA fragmentation patterns as these would provide over 20,000 reads per window even at a limited amount of 1-2x genome coverage. Within each window, the coverage and size distribution of cfDNA

PCT/US2019/032914

fragments was examined. This approach was used to evaluate the variation of genome-wide fragmentation profiles in healthy and cancer populations (Table 1; Appendix A). The genome-wide pattern from an individual can be compared to reference populations to determine if the pattern is likely healthy or cancer-derived. As genome-wide profiles reveal positional differences associated with specific tissues that may be missed in overall fragment size distributions, these patterns may also indicate the tissue source of cfDNA.

The fragmentation size of cfDNA was focused on as it was found that cancer-derived cfDNA molecules may be more variable in size than cfDNA derived from non-cancer cells. cfDNA fragments from targeted regions that were captured and sequenced at high coverage

(43,706 total coverage, 8,044 distinct coverage) from patients with breast, colorectal, lung or ovarian cancer (Table 1 (Appendix A), Table 2 (Appendix B), and Table 3 (Appendix C)) were initially examined. Analyses of loci containing 165 tumor-specific alterations from 81 patients (range of 1-7 alterations per patient) revealed an average absolute difference of 6.5 bp (95% CI, 5.4-7.6 bp) between lengths of median mutant and wild-type cfDNA fragments

- (Fig. 3, Table 3 (Appendix C)). The median size of mutant cfDNA fragments ranged from 30 bases smaller at chromosome 3 position 41,266,124 to 47 bases larger at chromosome 11 position 108,117,753 than the wild-type sequences at these regions (Table 3; Appendix C). GC content was similar for mutated and non-mutated fragments (Fig. 4a), and there was no correlation between GC content and fragment length (Fig. 4b). Similar analyses of 44
- 20 germline alterations from 38 patients identified median cfDNA size differences of less than 1 bp between fragment lengths of different alleles (Fig. 5, Table 3 (Appendix C)). Additionally, 41 alterations related to clonal hematopoiesis were identified through a previous sequence comparison of DNA from plasma, buffy coat, and tumors of the same individuals. Unlike tumor-derived fragments, there were no significant differences between
- 25 fragments with hematopoietic alterations and wild type fragments (Fig. 6, Table 3 (Appendix C)). Overall, cancer-derived cfDNA fragment lengths were significantly more variable compared to non-cancer cfDNA fragments at certain genomic regions (p<0.001, variance ratio test). It was hypothesized that these differences may be due to changes in higher-order chromatin structure as well as other genomic and epigenomic abnormalities in cancer and</p>
- 30 that cfDNA fragmentation in a position-specific mannercould therefore serve as a unique biomarker for cancer detection.

As targeted sequencing only analyzes a limited number of loci, larger-scale genomewide analyses to detect additional abnormalities in cfDNA fragmentation were investigated. cfDNA was isolated from ~4 ml of plasma from 8 lung cancer patients with stage I-III disease , as well as from 30 healthy individuals (Table 1 (Appendix A), Table 4 (Appendix

D), and Table 5 (Appendix E)). A high efficiency approach was used to convert cfDNA to next generation sequencing libraries and performed whole genome sequencing at ~9x coverage (Table 4; Appendix D). Overall cfDNA fragment lengths of healthy individuals were larger, with a median fragment size of 167.3 bp, while patients with cancer had median fragment sizes of 163.8 (p<0.01, Welch's t-test) (Table 5; Appendix E). To examine

differences in fragment size and coverage in a position dependent manner across the genome, sequenced fragments were mapped to their genomic origin and fragment lengths were evaluated in 504 windows that were 5 Mb in size, covering ~2.6 Gb of the genome. For each window, the fraction of small cfDNA fragments (100 to 150 bp in length) to larger cfDNA fragments (151 to 220 bp) as well as overall coverage were determined and used to obtain
 genome-wide fragmentation profiles for each sample.

Healthy individuals had very similar fragmentation profiles throughout the genome (Fig. 7 and Fig. 8). To examine the origins of fragmentation patterns normally observed in cfDNA, nuclei were isolated from elutriated lymphocytes of two healthy individuals and treated with DNA nucleases to obtain nucleosomal DNA fragments. Analyses of cfDNA patterns in observed healthy individuals revealed a high correlation to lymphocyte

20 patterns in observed healthy individuals revealed a high correlation to lymphocyte nucleosomal DNA fragmentation profiles (Fig. 7b and 7d) and nucleosome distances (Fig. 7c and 7f). Median distances between nucleosomes in lymphocytes were correlated to open (A) and closed (B) compartments of lymphoblastoid cells as revealed using the Hi-C method (see, e.g., Lieberman-Aiden *et al.*, 2009 *Science* 326:289-293; and Fortin *et al.*, 2015

Genome Biol 16:180) for examining the three-dimensional architecture of genomes (Fig. 7c).
 These analyses suggest that the fragmentation patterns of normal cfDNA are the result of nucleosomal DNA patterns that largely reflect the chromatin structure of normal blood cells.

In contrast to healthy cfDNA, patients with cancer had multiple distinct genomic differences with increases and decreases in fragment sizes at different regions (Fig. 7a and

30 7b). Similar to our observations from targeted analyses, there was also greater variation in fragment lengths genome-wide for patients with cancer compared to healthy individuals.
To determine whether cfDNA fragment length patterns could be used to distinguish patients with cancer from healthy individuals, genome-wide correlation analyses were performed of the fraction of short to long cfDNA fragments for each sample compared to the median fragment length profile calculated from healthy individuals (Fig. 7a, 7b, and 7e).

5 While the profiles of cfDNA fragments were remarkably consistent among healthy individuals (median correlation of 0.99), the median correlation of genome-wide fragment ratios among cancer patients was 0.84 (0.15 lower, 95% CI 0.07-0.50, p<0.001, Wilcoxon rank sum test; Table 5 (Appendix E)). Similar differences were observed when comparing fragmentation profiles of cancer patients to fragmentation profiles or nucleosome distances in</p>

10 healthy lymphocytes (Fig. 7c, 7d, and 7f). To account for potential biases in the fragmentation profiles attributable to GC content, a locally weighted smoother was applied independently to each sample and found that differences in fragmentation profiles between healthy individuals and cancer patients remained after this adjustment (median correlation of cancer patients to healthy = 0.83) (Table 5; Appendix E).

15

20

Subsampling analyses of whole genome sequence data was performed at 9x coverage from cfDNA of patients with cancer at $\sim 2x$, $\sim 1x$, $\sim 0.5x$, $\sim 0.2x$, and $\sim 0.1x$ genome coverage, and it was determined that altered fragmentation profiles were readily identified even at 0.5x genome coverage (Fig. 9). Based on these observations, whole genome sequencing was performed with coverage of 1-2x to evaluate whether fragmentation profiles may change during the course of targeted therapy in a manner similar to monitoring of sequence

- alterations. cfDNA from 19 non-small cell lung cancer patients including 5 with partial radiographic response, 8 with stable disease, 4 with progressive disease, and 2 with unmeasurable disease, during the course of anti-EGFR or anti-ERBB2 therapy was evaluated (Table 6; Appendix F). As shown in Fig. 10, the degree of abnormality in the fragmentation
- 25 profiles during therapy closely matched levels of EGFR or ERBB2 mutant allele fractions as determined using targeted sequencing (Spearman correlation of mutant allele fractions to fragmentation profiles = 0.74). This correlation is remarkable as genome-wide and mutation-based methods are orthogonal and examine different cfDNA alterations that may be suppressed in these patients due to prior therapy. Notably all cases that had progression free
- ³⁰ survival of six or more months displayed a drop of or had extremely low levels of ctDNA after initiation of therapy as determined by fragmentation profiles, while cases with poor

clinical outcome had increases in ctDNA. These results demonstrate the feasibility of fragmentation analyses for detecting the presence of tumor-derived cfDNA, and suggests that such analyses may also be useful for quantitative monitoring of cancer patients during treatment.

10

5

The fragmentation profiles were examined in the context of known copy number changes in a patient where parallel analyses of tumor tissue were obtained. These analyses demonstrated that altered fragmentation profiles were present in regions of the genome that were copy neutral and that these may be further affected in regions with copy number changes (Fig. 11a and Fig. 12a). Position dependent differences in fragmentation patterns could be used to distinguish cancer-derived cfDNA from healthy cfDNA in these regions (Fig. 12a, b), while overall cfDNA fragment size measurements would have missed such differences (Fig. 12a).

These analyses were extended to an independent cohort of cancer patients and healthy individuals. Whole genome sequencing of cfDNA at 1-2x coverage from a total of 208
patients with cancer, including breast (n=54), colorectal (n=27), lung (n=12), ovarian (n=28), pancreatic (n=34), gastric (n=27), or bile duct cancers (n=26), as well as 215 individuals without cancer was performed (Table 1 (Appendix A) and Table 4 (Appendix D)). All cancer patients were treatment naïve and the majority had resectable disease (n=183). After GC adjustment of short and long cfDNA fragment coverage (Fig. 13a), coverage and size
characteristics of fragments in windows throughout the genome were examined (Fig. 11b, Table 4 (Appendix D) and Table 7 (Appendix G)). Genome-wide correlations of coverage to GC content were limited and no differences in these correlations between cancer patients and healthy individuals were observed (Fig. 13b). Healthy individuals had highly concordant

25 correlation to the median healthy profile (Table 7; Appendix G). An analysis of the most commonly altered fragmentation windows in the genome among cancer patients revealed a median of 60 affected windows across the cancer types analyzed, highlighting the multitude of position dependent alterations in fragmentation of cfDNA in individuals with cancer (Fig. 11c).

fragmentation profiles, while patients with cancer had high variability with decreased

30

To determine if position dependent fragmentation changes can be used to detect individuals with cancer, a gradient tree boosting machine learning model was implemented to

examine whether cfDNA can be categorized as having characteristics of a cancer patient or healthy individual and estimated performance characteristics of this approach by ten-fold cross validation repeated ten times (Figs. 14 and 15). The machine learning model included GC-adjusted short and long fragment coverage characteristics in windows throughout the

- 5 genome. A machine learning classifier for copy number changes from chromosomal arm dependent features rather than a single score was also developed (Fig. 16a and Table 8 (Appendix H)) and mitochondrial copy number changes were also included (Fig. 16b) as these could also help distinguish cancer from healthy individuals. Using this implementation of DELFI, a score was obtained that could be used to classify patients as healthy or having
- 10 cancer. 152 of the 208 cancer patients were detected (73% sensitivity, 95% CI 67%-79%) while four of the 215 healthy individuals were misclassified (98% specificity) (Table 9). At a threshold of 95% specificity, 80% of patients with cancer were detected (95% CI, 74%-85%), including 79% of resectable (stage I III) patients (145 of 183) and 82% of metastatic (stage IV) patients (18 out of 22) (Table 9). Receiver operator characteristic analyses for
- detection of patients with cancer had an AUC of 0.94 (95% CI 0.92 0.96), ranged among cancer types from 0.86 for pancreatic cancer to ≥0.99 for lung and ovarian cancers (Figs. 17a and 17b), and had AUCs ≥0.92 across all stages (Fig. 18). The DELFI classifier score did not differ with age among either cancer patients or healthy individuals (Table 1; Appendix A).

20

		Individuala	9!	5% specificit	Y	98	8% specificity	/
		analyzed	Individuals detected	Sensitivity	95% CI	Individuals detected	Sensitivity	95% Cl
Н	ealthy	215	10	-	-	4	-	-
С	ancer	208	166	80%	74%-85%	152	73%	67%-79%
	Breast	54	38	70%	56%-82%	31	57%	43%-71%
	Bile duct	26	23	88%	70%-98%	21	81%	61%-93%
a 1	Colorectal	27	22	81%	62%-94%	19	70%	50%-86%
, Vp(Gastric	27	22	81%	62%-94%	22	81%	62%-94%
Г	Lung	12	12	100%	74%-100%	12	100%	74%-100%
	Ovarian	28	25	89%	72%-98%	25	89%	72%-98%
	Pancreatic	34	24	71%	53%-85%	22	65%	46%-80%
	1	41	30	73%	53%-86%	28	68%	52%-82%
e	II	109	85	78%	69%-85%	78	7 2 %	62%-80%
tag	III	33	30	91%	76%-98%	26	79%	61%-91%
S	IV	22	18	82%	60%-95%	17	77%	55%- 92 %
	0, X	3	3	100%	29%-100%	3	100%	29%-100%

Table 9. DELFI performance for cancer detection.

To assess the contribution of fragment size and coverage, chromosome arm copy
number, or mitochondrial mapping to the predictive accuracy of the model, the repeated 10fold cross-validation procedure was implemented to assess performance characteristics of these features in isolation. It was observed that fragment coverage features alone (AUC = 0.94) were nearly identical to the classifier that combined all features (AUC = 0.94) (Fig. 17a). In contrast, analyses of chromosomal copy number changes had lower performance
(AUC = 0.88) but were still more predictive than copy number changes based on individual scores (AUC=0.78) or mitochondrial mapping (AUC = 0.72) (Fig. 17a). These results suggest that fragment coverage is the major contributor to our classifier. Including all features in the prediction model may contribute in a complementary fashion for detection of patients with cancer as they can be obtained from the same genome sequence data.

15

As fragmentation profiles reveal regional differences in fragmentation that may differ between tissues, a similar machine learning approach was used to examine whether cfDNA patterns could identify the tissue of origin of these tumors. It was found that this approach had a 61% accuracy (95% CI 53%-67%), including 76% for breast, 44% for bile duct, 71% for colorectal, 67% for gastric, 53% for lung, 48% for ovarian, and 50% for pancreatic cancers (Fig. 19, Table 10). The accuracy increased to 75% (95% CI 69%-81%) when considering assigning patients with abnormal cfDNA to one of two sites of origin (Table 10). For all tumor types, the classification of the tissue of origin by DELFI was significantly higher than determined by random assignment (p<0.01, binomial test, Table 10).

5

Cancer	Patients	То	o Predic	tion	Top T	wo Prec	lictions	Random A	ssignment
Type	Detected*	Patients	Accura	cy (95% CI)	Patients	Accura	icy (95% CI)	Patients	Accuracy
Breast	42	32	76%	(61%-88%)	38	91%	(%-61%)	6	22%
Bile Duct	23	10	44%	(23%-66%)	15	65%	(43%-84%)	S	12%
Colorectal	24	17	71%	(49%-87%)	19	%62	(28%-93%)	с	12%
Gastric	24	16	67%	(45%-84%)	19	26%	(28%-93%)	ŝ	12%
Lung	30	16	53%	(34%-72%)	23	77%	(%06-%85)	2	6%
Ovarian	27	13	48%	(29%-68%)	16	29%	(38%-78%)	4	14%
Pancreatic	24	12	50%	(29%-71%)	16	67%	(45%-84%)	3	12%
Total	194	116	61%	(53%-67%)	146	75%	(69%-81%)	26	13%

Table 10. DELFI tissue of origin prediction

*Patients detected are based on DELFI detection at 90% specificity. Lung cohort includes additional lung cancer patients with prior therapy.

As cancer-specific sequence alterations can be used to identify patients with cancer, it was evaluated whether combining DELFI with this approach could increase the sensitivity of cancer detection (Fig. 20). An analysis of cfDNA from a subset of the treatment naïve cancer patients using both DELFI and targeted sequencing revealed that 82% (103 of 126) of patients had fragmentation profile alterations, while 66% (83 of 126) had sequence alterations. Over 89% of cases with mutant allele fractions >1% were detected by DELFI

while for cases with mutant allele fractions <1% the fraction detected by DELFI was 80%, including for cases that were undetectable using targeted sequencing (Table 7; Appendix G).
10 When these approaches were used together, the combined sensitivity of detection increased to 91% (115 of 126 patients) with a specificity of 98% (Fig. 20).

Overall, genome-wide cfDNA fragmentation profiles are different between cancer patients and healthy individuals. The variability in fragment lengths and coverage in a position dependent manner throughout the genome may explain the apparently contradictory
observations of previous analyses of cfDNA at specific loci or of overall fragment sizes. In patients with cancer, heterogeneous fragmentation patterns in cfDNA appear to be a result of mixtures of nucleosomal DNA from both blood and neoplastic cells. These studies provide a method for simultaneous analysis of tens to potentially hundreds of tumor-specific abnormalities from minute amounts of cfDNA, overcoming a limitation that has precluded
the possibility of more sensitive analyses of cfDNA analysis methods that have focused on sequence or overall fragmentation sizes (see, e.g., Phallen *et al.*, 2017 *Sci Transl Med* 9:eaan2415; Cohen *et al.*, 2018 *Science* 359:926; Newman *et al.*, 2014 *Nat Med* 20:548; Bettegowda *et al.*, 2014 *Sci Transl Med* 6:224ra24; Newman *et al.*, 2016 *Nat Biotechnol*

25 34:547). As demonstrated in this Example, combining DELFI with analyses of other cfDNA alterations may further increase the sensitivity of detection. As fragmentation profiles appear related to nucleosomal DNA patterns, DELFI may be used for determining the primary source of tumor-derived cfDNA. The identification of the source of circulating tumor DNA in over half of patients analyzed may be further improved by including clinical

30 characteristics, other biomarkers, including methylation changes, and additional diagnostic approaches (Ruibal Morell, 1992 *The International journal of biological markers* 7:160;

Galli et al., 2013 *Clinical chemistry and laboratory medicine* 51:1369; Sikaris, 2011 *Heart, lung & circulation* 20:634; Cohen *et al.*, 2018 *Science* 359:926). Finally, this approach requires only a small amount of whole genome sequencing, without the need for deep sequencing typical of approaches that focus on specific alterations. The performance characteristics and limited amount of sequencing needed for DELFI suggests that our approach could be broadly applied for screening and management of patients with cancer.

5

10

These results demonstrate that genome-wide cfDNA fragmentation profiles are different between cancer patients and healthy individuals. As such, cfDNA fragmentation profiles can have important implications for future research and applications of non-invasive approaches for detection of human cancer.

Other Embodiments

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

APPEMDIX A: Table 1. Summary of patients and samples analyzed

argeteci lutation taivsis	× ->	~ >	- >-	• >-	¥	> >	~ >	· >-	~	~ >	- >	• >-	~	7	~	> :	~ >	- >	- >	- >-	~	~	~ :	~ :	~ >	- >	• >-	~	~	~ :	> :	~	≻ :	> :	× :	≻ :	≻ :	- >	- >	->	->	- >	- 2	: 2	z	Z	z	z	z	z	z	2 2	2 2	z	:>	Y	≻ :	z	zz	~	~	z	zı	z >	z	7	~	z	≻ :	~ 3	z >	- >	- >	- >	- >	- >-	- >-	·z	: >-	~	z	>
Targeteri T agment Profile R Analvsis A	> >	> >	- >-	· >-	>-	>- :	- >	· >-	۲	* >	- >	- >-		>	<i>></i> -	≻ :	z>	- >	- >	- >-	~	N	2	2 :	2 2	2 2	z	z	N	z	Z	z	z	z	z :	z	z	z :	2 2	2 2	2 2	2 2	: 2	: 2	Z	N	N	z	z	z	z	z :	2 2	2	:>-	>-	z	z	22	~	N	z	z	2 >	Z	Z	N	N	z		2 2	< >	- >	- >	- >	- ;-	- >-	·z	z	7	z	3
Mhole Genome ragment Profile Fr Analvsis	> >	× ×	- >	~ >-	7	>:	- >	~ >-	7	× >	- >	- >-	· >-	>-	~	> :	* >	- >	- >	- >-	>	۲	>	> ?	2	- >	- >-	~	¥	≻:	> :	7	> :	>- :	>- ;	>- ;	≻ ;	->	- >	->	- >	- >	- >	- >	~	Y	Y	~	>-	>-	>- :	×	- >	~ >	· >-	>-	>-:	×->	- >	~	7	7	×- >	- >	· >-	۲	7	Y	> :	~ >	>	- >	- >	- >	- >	- >-	- >-	- >-	· >-	7	7	
cfDNA input F (ng/mi)	7.80	5/10	0.6.5 18.87	31.24	10.15	10.48	50 13	30.19	9.10	24.55	46.97	3.91	79'6	52.16	16.03	18.24	20.04 20.04	10.00	119 88	211.74	109.75	156.62	56.09	2.38	2.11	101 27.9	25.00	15.64	9.22	5.32	11.28	10.09	6.70	8.42	6.35	6.28	20.0	0.00	07/4 10/4	0070 CF	10.01	10.20	4.21	07.02	20.09	34.72	12.85	30.49	23.94	28.41	11.00	23.61	97.77 17.70	926	5.77	15.69	11.58	20.05	12.69	1.07	5.74	27.78	8.85	467	22.15	4.02	8.24	11.09	13.25	6.19 46 3.4		4.07	1194	7.64	50 P	14.89	8.71	50.00	23.39	100.17	16.95	
ofDNA Extracted (no/ml)	7.80	57.5 2.83	18.87	31.24	10.18	10.48	10.0	60.00	9.10	24,31	46.87	5.91	78.6	52.16	16.08	18.24	00.04 9 0 97	10,20	4.20 113.88	211.74	109.76	156.62	56.09	2.38	2.52	1010 878	12	15.53	9.22	531	11.28	10.09	6.89	8.41	6.30 3 20	6.28	2.82	0000	07.4	20.70 73 ct	10.01	10.80	1.6 %	05 UF	20.09	56.33	12.86	59.73	23.94	71.23	11.00	23.61	22.00 17 73	606	5.77	15.69	11.53	2028	15.29	2012	5.74	45.58	5.53	457	22.16	4.02	8.24	11.09	13.25	n 2 1	10.41	2017	11 34	7.54	100	14.59	8.71	19	25.39	100.17	16.95	
Volume of Plasma (ml)	7.9	87	8.4	40	8.8	स्र	4.1 A.9	4	8.6	27 10 10	0 P	122	8.6	4.9	8.8	9.6	4.2	in e e	0 C F	44	23	4.6	3.9	5.0	0.0	0.0	13	5.0	5.0	5.0	92	5.0	5.0	50	010	03	3.0	0	1.4 1	9.6	0.0	0.0	13	- 4	4.7	3.6	4.2	4.1	3.4	4.4	4.4	4.4	14	4	4.0	4.6	4.5	4 c 0 u	45	3.9	4.0	4.5	्र च	2 0) 7 7	45	4.3	4.1	4.5	1	्र च	000	44	t n	5.5	- 0	100	40	25	4.8	3.7	3.6	
Location of Metastases at Diagnosis	Synchronous Liver	Synchronous Liver, cung Synchronous Liver	synomotions Liver None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	1 Norte	LIVEL	Liver	Liver	Liver	Butri I	6un 1	Lund Lund	Pleura. Liver. Pentoneum	Pleura, Liver, Pentoneum	Pleura, Liver, Pentoneum	Pleura, Liver, Pertoneum	Brain	Brain	Erain	Erain	None	and	None	0UON	hione	None	None	Meno	NA	AN AN	None	None	None	None	None	None	None	None	None	None	None	None	None	None	Nnne	None	None	None	None	Nnne	None	None	None	None	None	None	Mone	Nnne	None	hinne	None	None	None	None	None	None	NA	
L'egree of Differentiation	Moderate	Moderate	Monterate	Poor	Mocienate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	NIDUCI AILS	AN N	NA.	ΝA	NA	7001	7007 7000	200	NA.	NA.	ΝA	NA	NA	MA	NA	NA	Moderate	Moderate	Moderate	COLORISTIC COLORISTICS	Macinette	Moderate	Moderate	Moderate Moderate	NA	NA.	NA	MA	NA	NA	AA	Ň	NA.	NA.	AN	NA	Mocienate	Poor	Moderate	d v	- MA	Poor	Posr	NA	¥N.	Poor Poor	NA	NA	Moterate	NA	Mocerate	Moderate	- AN	Morterate	Modelate	Print	Well	Mocienate	Well	NA	Moderate	Moderate	MA	
Histopathologicai Diagnosis	Acenocarcinoma	Acenocarcinoma Acimumatic	Adenorationum	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Actionaminerna Actionerminerna	Acenocarcinoma	Adenoual dinuma	AdenoicaroInnina Adenoicano	Auerocaturati Adenoraminoma	Adenoeaninoma	Acenocaminorna	Adenocarcinoma	Acenocarcinoma	Acencical chinema	A der sonsingen of	A derectoral and the	Austroualuitorna	Adenorationa	Acenocarcinoma	Acenocarcinoma	Adenoual cinoma	Adeno, Squamous, Smail Cell Candinoma	Adeno, Squamous, Smail Cell Carcinoma Adom Scremon Cond Cell Compone	Adeno, Syuamorus, Smail Oell Carrinoma Adeno, Shuamorus, Smail Oell Carrinoma	Adenoration of a second s	Acenocarcinoma	Acenocarcinoma	Adencical cinicitia	Adentarginisma	Adenocarcinoma	Adenocaminoma	Adenocarcinoma	Adenocaminorna	Acenocarcinoma	Acenocarcinoma	ADDRACKIGITUSTIS	ennederg oostel oordenaard Inflection i obulee Oordenaard	Interang Lobuar Caronoma Militakan Prani Pranipama	imiliating putotal Cardinorna fabilitatina Curdal Cardinorna	enne avreg avander van de norres Indiheering i obvijev franciseven	Fundal Carcinema institu with Microleviseion	Inditration I obvious managements	Infiltrating Ductal Caroinuma	Infiltrating Exectal Caroinoms	Infiltrating Ductal Carcinoms	Infiltrating Ductal Carcinoms	Infiltrating Ductal Carcinoms	Infiltrating Ductel Carcinoma	Infiltrating Lobular Carcinoma	Infiltrating Lobular Cardinoma	luuudal ootustotta Instru Yaur Midromasi oo Infilikating Diretal Carolinema	Infiltrating Ductal Carcinoms	Infiltrating Ductal Carcinoms	Infiltrating Duotal Caroinome	Infiltrating Ductal Caroinoma	Infiltrating Uuctal Caroinoma	ammaang process contraine Milikating Durdal Carchevina	Infiltrating Ductal Carcinoma	Infiltrating Ductal Carcinoms	Infiltrating Ductal Carcinoms	Infiltrating Ductal Carcinome	ammaten igi suucei vanamunte Infiltration Durdal Caminem a	infiltrating Ductal Carolnoma	Infiltrating Ductal Carcinoma	Infiltrating Ductal Carcinoms	Infiltrating Ductal Carcinoms	Infiltrating Ductal Carcinoms	Infiltrating Uucial Caroinoma	aminitzatug sudati varantunte Infiltration Ductai Caminema	ammanug puccar cananuanse Infiltration Ductal Carcinoma	smini adrigi procetti cettori toti ce Infilitzativo Dređaj Carcinevas	terretoring o docar contention Infiltration Duratal Carolinema	tenerating Octobel Contenents Infiltrative Durchal Carcinows	Infiltration Durcial Carcinoma	Infiltration Duckal Carcinome	Infiltrating Ductal Carolinoma	Infiltrating Lobular Carcinoms	Infiltrating Ductal Carcinoma	Infiltrating Ductal Carolinuma	
Site of Primary Tumor	Coepum	Sigmoid Colon Rechim	Sipmoid Colon	Coequit	Fectum	Rectum	Transverse Crina	Restum	Transverse Colon	Ascending Colon Ascending Colon	Ascending Colon Ascending Colon	Sigmoid Colon	Sigmoid Colon	Transverse Colon	Descending Octor	COBULT	Gescenting Color:	Asumany union	Precium Coloni Produce	Colon/Rectury	ColoryRectum	Colon/Rectum	Colon/Reutum	Left Upper Lobe of Lung	Left Upper Lobe of Lung Loft Lease' she of Lung	Lett upper cuice of Line.	Right taper Lots of Lunc	Right Lipper Lobs of Lung	Right Upper Lobe of Lung	Right Upper Lobe of Lung	Right Upper Lobe of Lung	Right Upper Labe of Lung	Right Upper Lobe of Lunc	Right Upper Letter of Lunic	Night Upper Lobie of Lunic	Night Upper Lobe of Lung	Night upper Lobe of Lung	Night upper Lope of Lung	Let Disset	Left of easi	1 of Qracet	Light Bread	Breast	Hrant	Breast	Breast	Breast	Breast	Breast	Breast	Breast	Breast	Breast	Breast	Left Breast	Left Breast	Left Breast	Breast	Bread	Leff Breast	Left Breast	Breast	51 25 83	Right Bread	Breast	Loti Breasi	Leff Breast	Left Breast	Left Breast	Left Breast	Little Director	Breast	Di valot Bronet	55555	Breast	Breast	Fight Breast	Breast	Right Breast	Right Breast	Breast	
TNM Staging	T3N2M1 T0N2M1	TRACIMI	TSN0MD	T4N0M0	T INOMO	12N0MD	TRADAD	TSNOMO	TSN0MD	14N0N0 T0210N0	TZN2M0	T2N0M0	TBN1MD	TBN2MD	T3N2M0	TZNOMD	TONING TONIC	T-NUMB	NA NA	NA	NA	NA	٧N	TON2MD	DNZMD	TRNDMD	TNUM	TZN2M1	T2N2M1	T2N2M1	T2N×M1	T2NxM1	T2NXM1	T2NAM1	13N1MD	T3N1MD	DMINCI	15N FRIU	TONHM	TOWNER	T2N1M0	TOMORIO	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA N	NN NN	NA	TINOMO	T2N2M0	TSN1M0	NA NA	- MA	T2N1MD	T2N1M0	NA	NA	TRAVAMO	NA	T2N2M0	TINOMO	NA	T2N1M0	0MLV21	TANTAAD	T2N0MD	TOWING	TPHONG	TPN/040	TDN1M0	T2N0MD	NA	T1N0M0	TZNIMO	NA	
Stage	N	2 2	2 -5					. 00	w	u a	a 🗄		=	H	=	- 1	-		- 2	2	2	N	N	≥ 3	≥ 2	2 2	2	N	N	N	2	2	2	23	22	2 2	2 :	2 5	5 -			, ,	; =		σ.	~	=	7.7	~	20	. 00					8	= :	~ =	-	u.	~		~ 3			=	-	-			• =	i u			. 10	1 <i>1</i> 2			·		=	
Gender	ш.	2 2	g u.	. 14.	W	2	- 3	: UL	u.		L 14		X	M	W	N v		- 3	ž u	. 2	L	u	×.	u. 1	- L	L 14	. u	L	u.	u. 1	u. 1	L.	L. 1	u. 1	L 1	LL I		L L	. 13	L. L.	L 14	. 4	. u	. u	u.	ц.	12.	ц.	u	a. I	ιι	u. u	L U	. 12.	. 11.	ш	u	. L	. u.	ч.	ц.,	ш.:	L (LU	. u.	u.	ч.	14	LL 1	L (ւս	. u	Lu	. u	. 12	- 14	. 11	. u	. ш	u.	u.	
Age at Diagnosis	59 52	<u>ب</u> ۲	86	76	71	18 1	e r	98	8	68 f	5 f	1 69	74	80	74	81	86	2 0	20	M	NA	NA	N.	8 8	00 12	88	3 89	65	85	8 8	43	48	48	48	8	8	8	S :	4	음 다	48	9 8 9 8	88	AN AN	8	8	56	61	54	MA	47	8 2	2 S	29	12	99	ا م	2	5 2	47	37	51	88	3 2	28	3	42	61	67	20 c	98	5 9	26	86	3 6	; 0	3 13	3 25	20	ន	Ň	
Timepoint	Preoperative treatment naive	Precipiciative treatment naive Preciverative treatment naive	Prequerative treatment naive Precessative treatment naive	Freeperative treatment naive	Preoperative treatment naive	Preoperative freatment raive	Presentive treatment rative Presentive treatment native	Preciperative treatment naive	Preopsrative treatment naive	Preoperative treatment naive	Presperative treatment naive Pressentive treatment naive	Preperative freatment raive	Preoperative freatment nerve	Preoperative freatment naive	Preoperative treatment naïve	Prequerative treatment naive	Frequenting to demonstration	Presentite footment outo	Properative treatment ratio	Preparative freatment raive	Preoperative treatment naive	Preoperative treatment naive	Preoperative treatment naive	Pre-freatment, Day -53	Pre-treatment, Day -4	Prostructment Day to Destructment Day 87	Prestreatment, Day -21	Fre-treatment, Day 0	Post-treatment, Day 0.1875	Post-Incatmont, Day 59	Pre-treatment, Day -2	Post-freatment, Day 12	Post-Ireatment, Day 58	Post-Ireatment, Day 110	Pre-freatment, Lizy - 2	Fost-treatment, Day 0.125	Post-freatment, Day /	Prost-Insamph, Uay 4/	Frietgostative treatment rative Errossonative treatment value	Presperative treatment name	Dronorstiup freshment raile	Frequentity institution, raive Presentities freatment rative	Prencerative treatment native	Precreative treatment pains	Precipitative treatment native	Preoperative treatment naive	Preoperative treatment naive	Preoperative treatment naive	Preoperative freatment naive	Preoperative freatment naive	Preoperative freatment naive	Preoperative treatment naive	Precipitative treatment failve	Preoperative treatment naive	Preperative treatment naive	Preoperative freatment naive	Preoperative freatment naive	Preoperative freatment naive	Presentative treatment raive	Preciperative treatment naive	Preoperative treatment naive	Preoperative treatment naive	Properative freatment naive	Prepretative treatment rative	Preperative treatment naive	Preoperative treatment nailve	Preoperative treatment naive	Preoperative treatment naive	Preoperative treatment naive	Properativo freatmont saivo	Prepretative freatment rative Prepretative freatment rative	Prenerative treatment raive	ni superiotive treatment retive Prennerstive treatment native	Provisedive treatment raise	Prenerative treatment adive	Preperative freatment naive	Properative freatment raive	Preoperative freatment raive	Preoperative treatment naive	Precperative treatment naive	Precipitative treatment naive	
Sample Type	ofDNA	CIUNA	ANDE	SIDNA	SIDNA	SIDNA	ofDMA AfDMA	cfDNA	CEDNA	ADIA A	ADNA	ofDNA	ofDNA	ofDNA	cfDNA	cfDNA	STURA ATDIA	AUNA ATDACA	NUM	ofDNA	cfDNA	SIDNA	SIDNA	ADIA A	SIDNA	ADNA A	ofDNA	cfDNA	SIDNA	SIDNA	STDRA	SIDNA	SIDNA	SIDNA	CUUNA	ctDNA	CIUNA	STUNA	AND A	SILINA	SIDINA	ATTAKA ATTAKA	STINA	of DNA	cfDNA	ADIA	SIDNA	SIDNA	ofDNA	CIDNA	ofDNA	ciDNA	of DNA	SIDNA	SIDNA	ofDNA	SIDNA	CIUNA	of DNA	ADIA	SPIDIA	SIDNA	CIDNA	SIDNA	SIDNA	cfDNA	cfDNA	SIDNA	SIDNA	GIUNA	STINA	STINA	-fhvA	-fDWA	efDMA	SIDNA	SIDNA	ofDNA	ofDNA	cfDNA	cfDNA	
Patient Type	Colorectal Cancer	Colonestal Cancer Colonestal Cancer	Colorectal Cancer Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer Colorectal Cancer	Colorestal Cancer	Colonsolal Cancer	Colonadel Cancer Polonadol Cancer	Colorectal Cancer Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorestal Cancer	Colorectal Cancer	Coloreotal Cancer Coloreotal Cancer	Colorectal Cancer Polorodal Cancer	Colorectal Carical Colorectal Carros	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Lung Cancer	Lung Cancer	Lung center Lung Center	Luno Cancer	Lung Canser	Lung Canser	Lung Canser	Lung Canoer	Lung Cancer	Lung Cancer	Lung Concer	Lung Cancer	Lung Canser	: ung cancer	Cung Canos	Breass contact Broad Conner	Breast Cancer	Breast Cancer	Brock Control Brock Contact	Bress Caner	Pressi Carear	Breast Cancer	Breast Cancer	Breast Cancer	Breast Canser	Breast Canser	Breast Cancer	Bresst Cancer	Breast Cancer	Breast Caroor Breast Caroor	Breast Cancer	Breast Canser	Breast Canser	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Canser	Breast Canser	Breast Canon	Breast Cancer	Breast Cansor	Breast Uanual Breast Canar	Breast Cancer	Breast Canner Breast Canner	Report Concer	Ripad Cancer	Breast Cancer	Breast Canger	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer					
Patient	0GCR0291	014010282	OGCR0294	CGCRC296	CGCR0299	CCCRC300	OGCRC801	OGORC304	OGCRC305	CGCRCSBB TreePool	CGCRC306	CGCRC311	CGCRC315	OGCRC316	OGORC317	0.0000018	CGCHC018	12008000	COUNCE	OGCRCSSB	OCCRC338	OGORC341	OGCR0342	061.0216	CGLUCIS	COLUCIO	COLUMA	CGLU344	CGLU244	CGLUB44	0.01 U369	CGL U069	CGLU365	CGLU369	CGI.U3/3	CGLU3/3	CIGLUZ/3	00100/3			OGPLBK:UZ	COLLENIUS COLLENIUS	CHER REC	CGPI PIPAR	CGPLBR23	CGPI.BR24	CGPLBR28	CGPLBR30	CGPLBR31	CGPL BR32	CGPLBF33	CGPLBR34		CGPLBR37	COPLBR38	CGPLBR40	0.651 BR41	CGPLBF46	CORPERENT CORPERENT	CGPLBR48	CGPLBR49	CGFLBR50	CGPLBH51		CGPLBR56	CGPLBR57	CGPL BRG	CGPLBR00	CGPLBR61	CGPLBK65						CGPI BR73	CGPLBR76	CGPLBR81	CGPL BR82	CGPLBR83	CGPL BR84	

Targeter Mutation An size is	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Targetert Fragment Profile Ansitale	**>************************************
Whale Gename Fragment Profile Andreie	***************************************
cfDMA input (ng/m)	2423 2423 2423 2423 2529 2529 2529 2529 2529 2529 2529 25
cf0NA Extracted	2,42, 2,42,42 2,42,42 15,444 15,444 15,444 15,444 15,444 15,444 15,44415,444 15,444 15,44415,444 15,444 15,44415,444 15,444 15,44415,444 15,444 15,44415,444 15,44415,444 15,444 15,44415,444 15,44415,444 15,44415,444 15,44415,444 15,444415,4444 15,444415,4444 15,444415,4444 15,444415,444415,
at Volume of Plasma (ml)	88858888888888888888888888888888888888
Location of Metastases Diagnosis	Rone & Constant of
Degree of Differentiation	105 105 105 105 105 105 105 105 105 105
Histopathulogical Diagnosis	Infiltencing character controls and filtencing character controls and filtencing character control character controls character controls character controls character
Sits of Prinary Tumor	1919 1998 1998 1998 1998 1998 1998 1998
TWM Staging	17 15 17 15 17 15 17 15 18 16 18 17 18 18 19 18
Stage	
Gender	1. 1. 1. 1. 2. 2. 2. 1. 1. 2. 2. 1. 1. 2. 2. 1. 1. 2. 2. 2. 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 1. 2. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
Age at Diagnosis	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Timepaint	 respective restriction destination destinatin destination destination destination destina
Sample Type	settion and a settion and a settion and a settion a sett
Patient Type	 Break Carcar Break
Patient	Contractions Contr

Targetert Mutation A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Targetet Fragment Profile	
Whale Gename Fragment Profile	***************************************
(ungin) supput	14.73 14.73
cfONA Extracted	 4.4.2 5.4.3 5.4.3 5.4.3 5.4.4 5.5.5
at Volume of Plasma (ml)	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
scation of Metastases Diagnosis	***************************************
Degree of Lo Differentiation	***************************************
Histopathological Diagnosis	***************************************
Site of Prinzvy Tumor	*****
TNM Staging	***************************************
ştage	
Gender	「下洋派を聞うたいがないがないないないないないないないないないないないないないないないないない
Age at Diagnosis	호 응 응 당 당 용 구 행 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등
Tinepoint	Propersionale restantest nave Propersionale restantest nave
Sample Type	sibulations of DNA and an
Patient Type	Healthy Health
Patient	CGR14X38 CGR

Tangetet Mutation An elusis	и И и у и и и и и и и и и и и и и и и и и
Tangetert Fragment Profile Ansivele	⁴ Ω (⁴ Ω)
Whole Gename Fragment Profile Analysis	*** > > > > > > > > > > > > > > > > > >
cfDMA input (ng/ml)	7.28 7.28 6.87 6.87 6.87 6.87 6.87 6.87 6.87 6.8
ofONA Extracted function	 1.2.2 2.2.2 2.2.3 2.2.4 2.2.4 2.2.4 2.2.4 2.2.5 3.3.5 3.4.5 3.5.5 5.5.5
at Volume of Plasma (m)	±#\$±\$
scation of Metastases Diagnosis	18 19 19 19 19 19 19 19 19 19 19 19 19 19
Degree of Lo Differentiation	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Histopatturiogicai Diagnosis	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Sits of Prinzary Tumor	Red Red Red Red Red Red Red Red Red Red
TNM Staging	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Stage	≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈
Gender	「浙大なたがないたかないないないないないないないないないないないないないないないないないない
Age at Diagnosis	브용용명원원원원원원원원원원원원원원원원원원원원원원원원원원원원원원원원원원원
Timepaint	Presperature treatment whe Prespective treat
Sample Type	after a contract of the contra
Patient Type	Healthy Health
Patient	CGPL MUTS CGPL M

Targeteit Mutation Anaiysis	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Targettett Fragment Profile Anaivsis	***************************************
Whole Gename Fragment Profile Analysis	***************************************
cfDKA input (m)put	10.72 10.72
cfONA Extracted (ng/ml)	0.2.0 0.2.1 0.2.1 0.2.1 0.2.1 0.2.2 0.
Volume of Plasma (ml)	,
Location of Metastases at Diagnosis	Inderections of the second second second second second second second to second the second second to second the second sec
Degree of Differentiation	Mocorente Mocorente Mocorente Mocorente Mocorente Mocorente Procr Rectenterberor
Histopathatogical Diagnocis	Statement Cél (Jacobine Statement Cél (Jacobine Asynonychie) Cél Cacobine Asynonychie Cél Cacobine Asynonychie Cél Cacobine Asynonychie Cél Cacobine Asynonychie Cél Cacobine Asynonychie Cél Cacobine Asynonychie Cél Cacobine Adressationen Ad
Site of Primary Tumor	Lung Lung Right Long Right
TNM Staging	ТБЫОВИО Т250000 71000000 710000000 71000000 710000000 710000000 710000000 7100000000
કાર	*=**********************************
Gender	
Age at Diagnosis	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Timepaint	Frequestive traitments have propositive traitments have propositive traitment have propositive trai
Sample Type	2024 2024 2024 2025 2025 2025 2025 2025
Patient Type	Ling Chenes Ling Chenes
Patient	358PLLU266 058PLLU266

jetet Xian Vsis	~	×	×-	2 \	7	.		× ^	. 7	× .	2 -	7	·,	27	7	2-	27	7	27	7	27	2	2 7	~	27	7	2 -	. 7	Z 7	. 7	7	27	7	27	7	27	7	27		× -	e 5-	~ `	- 7	×	. ~	Z 7		× ۰		2 \		- \-	۶.	2、	2 -	2	× 7	_
Tan, Tie Mut. Anad		-		. /	-		~		-								-											-		-											-		-		~					- ^							-	
Tangetet Fragment Profi Analvais	2	zz	z	zz	z	22	z	22	z	z	22	z	z	zz	z	z	:2	z	2 2	z	zz	2	2 2	2	zz	z	z z	: 2	2 2	zz	z	zz	Z	22	z	zz	z	Z 2	2:	2 2	z	2 2	z	22	: 2	2 2	: 2	Z 2	22	22	: 2: :	zz	z	zz	22	: 2 :	zz	N
Whale Gename Fragment Profile Analvsis	· ۲	×	> >	× ۰	7	×	· >-	> >	• >•	≻:	> >	~ >-	> ;	- >-		> >	- >-	>:	≻-	>:	- >-	>:	- >-	> :	۰. »	~ > :	> >	· >	> >	- >-	>:	> >	(۲	×	>:	≻ <i>≻</i> -	>	> >	~ :	> >	- >-	>- >	- >-	> >	~ >-	> >	- >-	> >	- >-	> >	- >- :	- >-	>:	> >	> >	- >- :	}- }-	Y
cfDMA input (ng/ml)	2.29	97.69 37.69	21.12	5.21 79.07	20.60	5.91 27 47	4.34	32.05	422	20.23	5.75 14 RG	1.30	26.60	44.64 1.92	25.72	7.54	34.72	13.08	ž ž	16.62	6.97	18.13	3.36	21.83	5.2% 11.73	4.78	3.41	6.01	NA 0.66	14.48	6.87	9.72	1.72	39.07 4.95	23.19	41.57	5.34	41.67 29.65	VN	8.03	5.00	10.35	4.28	10.64 40.89	9.76	0.83 F KK	5.86	4.22	5.71	NA 20.69	7.83	4.55	67.8	15.82 19.61	23.01	8.56	37.32 NA	NA
cfONA Extracted (nc/mb	2.29	5.93 66.54	29.24	80.56	20.60	5.91 27.07	4.34	68.95 Fix.08	4.22	20.23	5.75	130	29.34	0000 1,92	25.72	7.54	139.12	13.08	a a	18.62	6.97	16.13	3.36 3.36	21.83	677) 11 73	4.78	341	6.01	NA 96.9	14,48	6.87	NA 9.72	1.72	/0.95	23.19	11.02	5.34	95.28 29.86	¥.	69 12	5.00	10.35	4.28	10.84 40.80	5.78	0.83 5 38	5.86	4.22	573	NA 20.80	7.83	4.35	8.79	15.82 19.81	23.01	8.56 8.70	37.32 NA	NA
Volume of Plasma (ml)	3.4	38	4.6	4.2	3.0	3.9 A.6	4.0	3.5	3.9	-4	4.0	4.0	1-	4.0	4.0	9 6 6	3.6	4.0	NA NA	4.0	4.0	4.0	9.6 9.6	4.0	ी में में	9	4.0	0.4	NA 2 E	3.0	3.0	32 82	2.0	5 52	2.5	36 25	2.0	30	M.	4.1 26	3.8	44	40	4.4	4.5	4.0 2.5	4.0	3.0	3.5	4.0 3 F	35	8 9	4.5	9.6 9.6	3.0	5 KG 1	3.5 NA	NA
ion of Metastases at Diagnosis	None	None	None	None	NA	None	None	None	NA	None	A NA	None	None	Lymph Note	NA	Lymph Nece	NA NA	Lymph Node	None	-ymph Noste	Lymph Node Lymph Node	Lymph Noole	Lymph Nade Lymph Nade	Lymph Node	None Lymph Niste	Lymph Node	Liymph Noae Liymph Noae	L ymph Node	None	Lymph Note	None	Lymph Node Lymph Node	None	L ymph Node L ymph Node	None	Lymph Noze	Lymph Node	None Livrinoh Monie	L ymph Node	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None None	None	None	Nome NA	NA
Degree of Local Differentiation	NA	NA NA	moderate	NA NA	NA	NA NA	lisw.	NA NA	NA	NA.	NA NA	Poor	Poor	Well	ΝA	Poor	NA	Well	NA NA	Moderate	Weil	Wol	Wei	NA	Moderate	Weil	Moderate Prov	Well	Well	Poor	AN .	Wei	Well	Well Moderate	Poor	Moderate	ΝA	Poor NA	Weil	Moderate	Moderate	P00'	Poor	1004 1004	Well	Mocienate Poor	P00'	Poor	Moderate	NA	Poor	Moderate	Poor	Post Post	Monterate	Poor Poor	Poor NA	NA
Histopathological Diagnosis	MA	intra-Ampulary Bile Duct Intra-Panuzoati: Bilo Duct	Intra-Ampuliary Bile Duct	Intra-Pancreaso Bile Duct Intra-Pancreaso Bile Duct	Exte-Pancreatic Bits Duct	Indra-Pancreatic Bile Dund Indra-Pancreatic Aile Durt	intra-Ampuliary Bile Duct	Intra-Panuzeato Bile Duct Intra Panuseato Bile Duct	Intra-Pancreatic Bile Duct	Intra-Pancreatic Bile Duct	NA NA	Ductal Adenocar cinoma	Intra-Pancreatic Bile Duct	intra-Parciesee die Luici Duizie: Actenocarcinorna	NA	Ductal Adenocarcinoma	rust and each big book with recents y reaction Extra Panceatic Bie Duct	Ductal Adenocarcinoma	Intra-Fancreato Bile Duct Intra-Pantroato Bile Duct	Dupter Adenocarcinoma	Ducia: Acenora unuma Ductai Acenocarcinoma	Ductal Adenoca cinoma	ouuxa Auenoua ultuma Duutai Ademotarainoma	Ductal Adenocarcinoma	Dustel Austroderuinerna Dustel Arteraterrainerna	Ductai Acenocar cincma	Ducta: Agenocarothoma Durosi Adenorae dinoma	Ductal Adenocar cinoma	Duotal Adenocarcinema Puniol Adenocarcinema	Dupter Automoterutine Dupter Automoterutinena	Duptel Adenocarcinoma	Ductal Adenocarcinoma on Adenoma Ductal Adenocarcinoma	Ductal Adenocar cinoma	Ductai Adenocar anoma Ductai Adenocar anoma	Ductal Adenocarcinoma	сиция: Адэлосагалогиа Diuda: Адэносагалогиа	Ductai Adenocarcinoma	Ductai Adenocar dinoma Di utai Adenocar dinoma	Ductal Aderpoter citroma	Tubular Adanocarcinoma Mivasi Paminoma	Tubular Adenorarcinoma	Tubular Adenocarcinoma Strend Ding Call Parcinome	Signet ring cell carcinome	Signet Ring Cell Caroinante Tutvutar Adamonantizariaa	Mucinous Adenocarcinoma	Papillary Adenocarcinoma Simust initi real marrinome	Urdifferentiated Carcinoma	Signet Ring Cell Carcinome Tutwiter Adeoncercinome	Tuttuler Adenocarcinome	Mucinous adencioana Simer Ring Cert Carcinoms	Signation of Carcinome	signer Fang ver Caronome Tubular Adenorarcinoma	Tubular Adenocarcinoma	NA Signet Ring Cell Caroinante	Tubyter actenocaminorna	Nucinous Adenocardiname Mucinous Adenocardiname	Signet Ring Oel Carcinome NA	NA NA
Site of Prinzey Tumor	Intra Pancreats Bile Duct	Bile Duct Bile Duct	Bile Duct	Bile Duct	Bile Duct	Bite Duct Bite Duct	Bile Duct	Bile Durd	Bile Duct	Bile Duct	Bite Duct Bite Duct	Pancreas	Extra Hapatic Bile Duct	extra mepano isos ouca Panoreas	NA	Pancreas Pate Prod	Bile Duct	Pancreas	Bile Duct	Pancreas	Pancreas	Pancreas	Pancreas	Pancreas	Partici 2008 Partici 2008	Pancreas	Pancreas Pancreas	Pancreas	Pancreas	Partici teas	Pancreas	Pancreas Pancreas	Pancreas	Pancreas Pancreas	Pancreas	Panut teas Panut teas	Pancreas	Pancreas Pancreas	Pancreas	Stomach	Stomach	Stornach	Stomach	Stomach Stomach	Stomach	Stomach	Stornach	Stomach	Storrach	Stomach	Stomach	Stornach	Stomach	Storrach	Stornach	Stomach	Stomach NA	NA
TNM Staging	MA	NA N	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	¥	A A A	ΝA	NA NA	ž	MA	NA N	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NN	NA	M	AN.	NA	NA	N N	NA	NA	NA	NA	Ň	TSNOMD	T4ANBaldo	T4AN1M0 T1AN0M0	T2N3aM0	T3N2M0 T44N3aM0	TONOMO	T2N1 (m)M0 T2A2M41	TXNXMX	TSN2M0 TSN1M0	TZNOMD	TONOMO TXXXXM	TXXXMI	T1AN0M0	TXNXM1	TENOMO T4AN3bM0	T1BN0M0	TSN3aM0	T2N0MB NA	NA
Stage	nn -	70		~ ~	W	u 10		<i>70</i> x	;		∞ ≥	- 74		• **	~	œ -		7 77 (0 <i>1</i> 0	 .			n na	727 -	• ~	. 00					æ :	~ =		0 . M		o .o				m 2	2 2	= =	- =	= =		m 2	×	≡ •		6 Z	:2:	v	2 .	° ≣	- 2	2 🖩 -	- V	NA
Gender	×	1. IL	u I	s x	u.	ž L	. 14-	× 2	εu	ц.	X X	E ZE	¥.	L UL	u	u. 3	12	2	. u.	u 1	- 2	u. 1	L 22	ц.	ຣູແ	×	Σu		L 3	e 25	ւս	- 2	W	Σu	N.	- 2	M	Σu	. ш. I	u. 3	82	≫ u	. 2	u. 3	2		2	u 2	s N	u. 3	{ LL 1	. u	W	z z	z :	e 28 ×	u 2	1
Age at agnosis	MA	8 G	33 8	80 69	71	19 19	82	71	26	68	NA NA	96	25	80 20	NA	73	¥ 68	55	0/ 2/	28	6 5 5	62	10	29	8 23	5	2 g	67	72	4 8	74	88	70	7 6	69	27 98	72	48 23	3	92 QR	4	85 7.2	2 82	89 F	56	39 1	5 18	54	91	11	96	41 74	52	26 26	59 14	56	84 NA	MA
Timepaint 0	reoperative treatment naive	reoperative treatment naive reoperative freatment naive	reoperative freatment naive	reoperative treatment naive reoperative treatment naive	reoperative treatment naive	reciperative treatment naive remerative treatment naive	reoperative treatment nailve	rooperativo treatmont naivo reconstrativo treatment naivo	reoperative treatment naive	reoperative treatment naive	receptionalive treatment naive	reoperative treatment naive	reoperative treatment naive	reoperative treatment naive reoperative freatment naive	reoperative treatment naive	reoperative treatment naive	requerative treatment naive	reoperative treatment naive	reoperative treatment naive reoperative freatment naive	reoperative freatment naive	reoperative treatment naive reoperative treatment naive	reciperative treatment naive	responsive treatment naive	reoperative treatment naive	rooperative treatment native reonerative freatment native	reoperative freatment naive	reoperative treatment naive	reception treatment raive	reoperative treatment naive	rooperative freatment raive	repperative freatment naive	reoperative treatment naive recoerative treatment naive	reoperative treatment naive	recensitive treatment naive recensitive treatment naive	reoperative treatment naive	reoperative treatment naive reoperative freatment naive	reoperative treatment naive	reoperative treatment nailve versesative treatment nailve	reoperative treatment naive	reoperative treatment naive	resperative freatment naive	reoperative freatment naive	reoperative treatment naive	recperative treatment naive Provestive treatment anive	reoperative treatment naive	reoperative freatment naive	reoperative freatment naive	reoperative treatment naive recensitive treatment paive	requerative treatment naive	Techerative treatment naive remerative treatment naive	reoperative treatment naive	reoperative treatment naive reoperative freatment naive	reoperative treatment naive	reoperative treatment naive receptrative treatment naive	reciperative treatment naive	reoperative treatment haive	rooperativo treatmont rixivo NA,	NA.
Sample Type	SIDNA	ofDNA P	ofDNA F	ofDNA P	ofDNA F	atDNA F	SIDNA	e(DNA F	c(DNA F	ofDNA F	dDNA F	siDNA F	siDNA 1	ofDNA P	ofDNA F	afDNA F	albwa	stDNA F	- ADNA	ofDNA F	ofDNA P	ofDua F	- ADNA	SIDNA F	ofDNA F	cfDNA	dDNA F	alow F	SIDNA F	ofDNA F	ofDNA F	ofDNA F	sfDNA F	atowa Appear	SIDNA F	ofDNA F	ofDNA	ofDNA ofDNA P	SIDNA	SIDNA F	ofDNA F	ofDNA F	ofDNA F	cfDNA F	adDNA F	SIDNA P	ofDNA F	cfDNA F	ofDNA F	afDNA F	- Line	otova ofova P	c(DNA F	ofDNA CDNA	efDivA F	- UNA	ofDNA + • adult elutriated lymphox	raduit elutriated lymphon
Patient Type	Bile Duct Cancer	Bile Duct Canper Bile Duct Canpor	Bile Duct Canper	Bile Duct Cancer Bile Duct Cancer	Bile Dudi Centan	Bile Dud Cancer Rile Dud Cancer	Bile Duct Cancer	Bile Duct Canoor Bile Duct Canoor	Bile Duct Cancer	Bile Duct Cancer	Bile Dugi Cancer Bile Dugi Cancer	Pancreatic Cancer	Bile Duct Cancer	Panoreafic Canter	Bile Duct Cancer	Pancreatic Cancer	Bile Duct Cancer	Pancreatic Cancer	Bile Duct Canoor Bile Duct Canoor	Panoreafic Cancer	Panareatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Panorealic Cancer Panorealic Cancer	Pancreatic Cancer	Fancreatic Cancer Panmoatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Panoreatic Cancer	Panorealic Cancer	Pancreatic Cancer Fancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer Pancreatic Cancer	Pancreatic Cancer	Panorealio Camer Panorealio Camer	Pancreatic Cancer	Pancreatic Cancer Pancreatic Cancer	Pancreatic Cancer	Gastric cancer Gestric rencer	Gastric cancer	Gastric cancer Gastric cancer	Gastric cancer	Gastric cancer Gastric rander	Gastric cancer	Gastric cancer Gestric concer	Gastric cancer	Gastric cancer Gastric rancer	Gostrio cancer	Gastric cancer Gastric cancer	Gastric cancer	Gastric cancer Gastric cancer	Gastric cancer	Gastric cancer Gastric cancer	Gastric cancer	Gastric cancer	Gastric cancer Healthy nan	Healthy nan
Patient	CGPLPA:157	CGPLPA118 CGPLPA122	CGPLPA 124	CGPLPA125 CGPLPA126	CGPLPA:27	CGFLPA128 DGPLPA128	CGPLPA (30	CGPLPA131 CGPLPA131	CGPLPA 135	CGPLPA136	CGPLPA 137 DGPLPA 137	CGPLPA14	06PLPA (40	CGPLPA15	CGPLPA155	CGPLPA 156	CGPLPA188	CGPLPA17	CGPLPA 184	CGPL PA28	CGPLPA25	CGPLPA28	CGPLPA34	CSPLPA37	CGPLPA98 CGP PASS	CGPLPAND	CGPLPA42 CCP PA46	CGPLPA47	CGPLPA48 Com PAEN	CGPLPASS	CGPL PASS	CGPLPAS9 CGPLPAS7	CGPLPASS	CGPLPA74 CGPLPA74	CGPLPA76	CGPLPA80 CGPLPA86	CGPL PA32	CGPLPA3G CGPLPA3G	CGPI PA95	CGST102	CGST110	CGST114	CGST121	CGST141 CrissT18	CGST 18	0GST21	CGST28	0GST30 POST30	CGST35	CGST38 CGST39	CGST41	068147 068147	CGST48	CGSTER CGSTER	CGST67	CGST80	CGS181 CGH14	CGH15

Distinct Coverage	10359	8603	0020	5,875	10180	5870	9617	10338	5756	6618	13799	8372	10208	8589	7372	9000	11509	107.39	2011 i	00 14	4026 6506	0000 6664	8666	14289	10944	11571	10502	10198	6499	32 4 3	5030 5014	6151	7551	8092	5831	3808	3014	11957	9592 5665	2300	(9/3 EE01	2000	5762	4652	5205	4502	4666	4858	3425	4259 Eroc
Total Coverage	44345	36448	71100 20038	400.10	33912	43545	71196	48098	46364	43024	51006	29365	34462	43516	41507	40/93	95724	00/04	04/10 100000	38655	33821	30414	44034	64693	43538	39077	47327	40888	43065	44580	49/01	48308	51390	45083	49380	48397	43805	43106	40328	36823	26233	26,400	41908	45678	43162	39587	43379	28256	36127	35813 370.00
Percent Mapped to Target Regions	50%	46%	20/CH	94.0C	21%	49%	49%	53%	46%	49%	51%	48%	51%	52%	50%	40% %	49%	40.0%	27.70	84.00 702V	%0¥	%b7	50%	52%	52%	48%	53%	49%	20%	52%	40% 51%	51%	50%	51%	52%	52%	51%	42%	40%	40%	29% 50%	2002 1914	21% 21%	52%	50%	42%	49%	30%	51%	50%
Bases Mapped to Target Regions	3771359756	3096886973	2010/34200	3479050753	2898549356	3717222432	6096393764	4121569690	3962285136	3695480348	4349420574	2505714343	2942170530	3726953480	3552441899	549219195555	3895908986 3024070844	1102/01722	40/00/24400/04	3216710187	2896148722	3382767.492	3775556051	5533857153	3669434216	3326357413	3982677483	3450548135	3633396892	3758323705	419312002/ 30A4578780	4064901201	4333410573	3800666199	4179383804	4095555110	3706643098	3668208527	3425540889	3096232737	23831/3431	3323030344	3533145275	3848923016	3636910409	3336939252	3642919375	2379068977	3046754994	3022035300
Bases Mapped to Genome	7501485600	6736035200 52603 54660	0006470000	27 ADREN70D	5718556500	7550826100	12501036400	7812602900	8648090300	7538758100	8573658300	5224046400	5762112600	7213384100	7075579700	001/202/0/	19457 JCUUU 0407425000	040/400000 0003550500	9000000000 5676467700	7683204300	5874099200	0014022200 6883148500	7497252500	10684720400	7086877600	6880041100	7485342900	7058703200	7203625900	7202969100	5/5/144/00 7771869100	7972524600	8597346400	7399611700	8029493700	7938963600	7214889500	8803159200	8478811500	5942157800 545555555	518285820U	1 44021 23UU 50047 44600	5943451600	7434818400	7306546400	7864655000	7501674800	7938270200	6013175900	6013454600
Bases in Target Region	80930	00300	00030	00000	06030	00000	06608	0609	80930	00030	80930	80930	80930	06608	80930	309.3U 222.22	00930 90030	00000	00000	00000	00000	80930	80930	80930	00030	80930	80930	80930	06608	00000	00930 80030	00000	00000	80930	00030	00608	80930	00030	80930	05605	80930	00000	80930	00000	80930	0609	80930	80930	06608	80930
Read Length	100	100	001	001	001	100	100	100	100	100	100	100	100	100	100	001	001	001	001	100	100	801	100	100	100	100	100	100	100	100	001	100	100	100	100	100	100	100	100	100	001	100	001	100	100	100	100	100	100	100
Mutation Analysis	Y	>>	- >	- 2	: >	Z	z	×	Y	¥	~	¥	≻ :	> :	≻ >	≻ :	≻ >	- >	- >	- 14	z	zz	: >	~	≻	~	¥	~	~ :	z>	×N	z	: >-	Z	¥	Z	z	> :	> ;	≻ >	× >	- >	- >	· >-	¥	~	~	¥	≻	¥
Fragment Profile Analysis	Y	>>	- >	- >	- >-	~ >-	Y	Y	×	Y	~	7	≻ :	> :	> >	≻ ;	~ >	- >	- >	- >	- >	- >	- >-	~ >-	×	~	z	> :	> 1	> >	≻ >	- >-	~ >-	~	Y	~	×	z . :	z	2.2	27	2. 2	2 2	: 2:	Z	z	z	z	z	z
Timepoint	Preoperative, Treatment naive	Preoperative, Treatment naive	Preoperative, rreament naive	Production Treatment naive	Preoperative. Treatment naïve	Preoperative. Treatment naive	Preoperative, Treatment naïve	Preoperative, Treatment naive	Preoperative, Treatment naive	Preoperative, Treatment naive	Freoperative, Treatment naive	Preoperative, reament naive	Preoperative, resultent naive	Preoperative Treatment noi o	Fischelstve, Treatment naive Dronnarsfivie Treatment naive	Preoperative Treatment naive	Preoperative Treatment naive	Preoperative. Treatment naïve	Preoperative, Treatment naive	rteoperauve, i rearment naive Dreomershive Treatment naive	Preoperative. Treatment naïve	Preoperative. Treatment naïve	Preoperative Treatment naive	Preoperative, Treatment naive	Preoperative, Treatment naïve	Preoperative, Treatment naïve	Preoperative, Treatment naïve	Preoperative, Treatment naive	Preoperative, ireatment naive	Preoperative, Treatment naive	Propositive Tractment naive	Preoperative Treatment naive	Preoperative. Treatment naïve	Preoperative, Treatment naïve	Preoperative, Treatment naive	Preoperative, Treatment naïve	Preoperative, Treatment naïve	Preoperative, Treatment naïve	Preoperative, Treatment naïve											
Patient Type	Colorectal Cancer	Colorectal Cancer	Culorectal Carloer	Coloractal Carloal Coloractal Cancar	Colorectal Cancer	Colorectal Cancer	Colorectal Caliber	Colorectal Carloer	Colorantal Canuar Colorantal Cannar	Colorectal Cancer Colorectal Cancer	Colorectal Cancer Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer Colorectal Cancer	Coloractal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Carloer	Colorental Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer											
Patient	CGCRC291	CGCRC292	00000000	10000000	CGCRC296	CGCRC297	CGCRC298	CGCRC299	CGCRC300	CGCRC301	0GCRC302	CGCRC303	CGCRC304	CGCRC305	CGCRC305	UGUKU30/	CGURU308	00000000		09000011	CGCRC313	CGCRC314	CGCRC315	CGCRC316	CGCRC317	CGCRC318	CGCRC319	0GCRC320	CGCRC321	CGCRC332	CGCRC334	CGCRC335	CGCRC336	0GCRC337	CGCRC338	060R0339	CGCRC340	CGCRC341	CGCRC342	CGCRC344	CGCKC345	00020040 70000347	CGCRC349	CGCRC350	CGCRC351	CGCRC352	CGCRC353	CGCRC354	0GCR0356	CGCRC357

Patient	Patient Type	Timepoint	Fragment Profile Analysis	Mutation Anaivsis	Read Length	Bases in Target Region	Bases Mapped to Genome	Bases Mapped to Target Regions	Percent Mapped to Target Regions	Total Coverage	Distinct Coverage
CGCRC359	Colorental Cannar	Dronerative Treatment naïve		<u> </u>	100	RNGRN	7848587700	425340301	70%	ROAD	9585 2585
CGCRC367	Colorectal Cancer	Preonerative Treatment naïve	: 2	- >-	001	80930	6582043200	3363063597	51%	39844	5839
CGCRC368	Colorectal Cancer	Precretative Treatment naive	: 2	• >	100	80930	8042242400	4101646000	51%	48636	11471
CGCRC370	Colorectal Cancer	Preoperative Treatment naïve	: 2	· >-	100	00608	6940330100	3198954121	46%	38153	4826
CGCRC373	Colorectal Cancer	Preoperative. Treatment naïve	z	~ >-	100	80930	6587201700	3120088035	47%	37234	5190
0GCRC376	Colorectal Cancer	Preoperative, Treatment naive	z	¥	100	80930	6727983100	3162416807	47%	37735	3445
CGCRC377	Colorectal Cancer	Preoperative, Treatment naïve	Z	Y	100	80930	6716339200	3131415570	47%	37160	4524
CGCRC378	Colorectal Cancer	Preoperative, Treatment naïve	z	~	100	80930	6523969900	2411096720	37%	28728	3239
CGCRC379	Colorectal Cancer	Preoperative, Treatment naïve	z	¥	100	80930	6996252100	3371081103	48%	39999	2891
CGCRC380	Colorectal Cancer	Preoperative, Treatment naïve	z	> :	100	00608	7097496300	2710244446	36%	32020	3261
CGCRC381	Colorectal Cancer	Preoperative, Treatment naive	z	>- :	100	00000	6961936100	3287050581	47%	38749	9357
CGCRC382	Colorectal Cancer	Preoperative, Treatment naive	z ;	> >	100	00030	6959048700	2552325859	37%	30040	5148
CGCRC384	Colorectal Cancer	Preoperative, Treatment naive	2 :	>- ;	100	80930	7012798900	3293884583	47%	39158	3653
CGCRC385	Colorectal Cancer	Preoperative, Treatment naive	z :	>- ;	100	80930	7542017900	3356570505	45%	39884	3685
CGCRC386	Colorectal Cancer	Preoperative, Treatment naive	z z :	>- ;	100	80930	6876059600	3064412286	45%	36431	2787
CGCRC38/	Colorectal Cancer	Preoperative, I reatment naive	z		100	80930	/399564/00	304/254560	41%	36141	56/5 5414
00050000	Colorectal Cancer	Preoperative, Treatment naive	z :	≻ >	00L	00000	0062602600	313/284885	40%	37.280	5114
000000000000000000000000000000000000000	Colorectal Cancer	Preoperative, ireatment naive	Z 7	~ >	100	056000	00201200300	3102100941	41.%	307 04 400 40	0123 4006
00020001	Colorectal Cancer	Preoperative, Treatment naive	22 2	≻ >	001 907	80830	7 2505554550	33/5557551 20000272604	4/ %	40048	4.300
06050391	Colorectal Cancer	Preoperative, Treament naive	<i>z</i> >	7	001	009-30 20030	566352450U 7963446400	52025//301	41 % CEA	3/3/8	20.29 25.55
0.61.0310	Lung vancer	Pre-ueament, Day -00	- >	2 2	001	00800	7507504000	1/11001661	2027	10007	0000 2000
06LU310	Lung Cancer	Pre-rearment, Lay -53	~ >	Z 2	001	00930 00030	/ 30/2331600	3/3U90339U 24070E0470	%/NG	2028P	3950 3520
CGLU3 ID	Lung vancer	Pre-usament, Day -00	≻ >	2 2	001	00200	0302313940	0 10/ 0004/ 0 4 0 47630070	40% 2004	3/013 22004	000A
0.01.03.10	Lung Cancer	Pre-ireament, Day -03	≻ >	2. 2	001	00000	006/ 281600 2464670500	13410303/3	30%a AFEN	23034	4438 0000
0.011044	Lung Cancer	Die tractmant, Day 241	- >	2 2	100	006000	01010201010	21 40202000	0/.0 1	02402 10505	0000
	Lung Cancer	Pro-troctmont, Day -21 Dro-troctmont, Day -21	- >	2.2	001	00000	100010100010001	92011001/0 2201108025	2006	72067	4000
0011044	Lung Calicat	Dio traditiont Day 21	- >	2 2	201	05500	7685080700	2201110020	20.00V	21 UU1 ARDAK	2471
CGI 11369	Lung Cancer Lung Cancer	Pre-treatment Day -2	- >-	2 2	100	02008	7080745300	3122214-023 1271457982	40 % 18%	15109	2364
CGLU302	Lung cancer Lung Cancer	Pra-freedman, Day -2 Pra-freetmant Day -3	- >	2 2	100	80930	7078434900	1482448715	21%	17583	4275
CGI (1369	Lung Cancer	Pre-treatment, Dav -2	- >-	z	001	80930	6904701700	2124660124	31%	25230	5278
CGLU369	Lund Cancer	Pre-treatment. Day -2	~ >-	: Z	100	80930	7003452200	3162195578	45%	37509	6062
CGLU373	Lung Cancer	Pre-treatment, Dav -2	~	z	001	00808	6346267200	3053520676	48%	36137	6251
CGLU373	Lung Cancer	Pre-treatment, Day -2	¥	z	100	06608	6517189900	3192984468	49%	38056	8040
CGLU373	Lung Cancer	Pre-treatment, Day -2	¥	Z	100	80930	7767146300	3572598842	46%	42378	5306
CGLU373	Lung Cancer	Pre-treatment, Day -2	≻	z	100	80930	7 190999 100	3273648804	46%	387.84	4454
CGPLBR100	Breast Cancer	Preoperative, Treatment naïve	Z	~	100	80930	7299964400	3750278051	51%	44794	3249
CGPLBR101	Breast Cancer	Preoperative, Treatment naïve	z	~	100	80930	7420822800	3810365416	51%	45565	9784
CGPLBR102	Breast Cancer	Preoperative, Treatment naive	z	~ >	100	05909	5679304900	3269688319	49%	38679	7613
CGPLBR103	Breast Cancer Breast Cancer	Preoperative, Treatment naive Dreoperative, Treatment naive	<i>z</i> z	~ >	100	000300 80030	7188380200	3493342406 3716006781	307% 2017	417 00 AA316	0/40 0///8
	Breact Cancer	Dronnershive Treatment naive	: >	- >	100	05008	7810203000	ADE7576306	02 M	18008	8980
CGPI BR39	Breast Cancer	Preoperative Treatment naïve	- 2	- >-	100	80930	7745701500	3805623239	49%	450.84	11065
CGPLBR40	Breast Cancer	Preoperative. Treatment naive	~	~	100	80930	7558990500	3652442341	48%	43333	12948
CGPLBR41	Breast Cancer	Preoperative, Treatment naïve	z	¥	100	80930	7900994600	3836600101	49%	45535	10847
CGPLBR44	Breast Cancer	Preoperative, Treatment naïve	Y	z	100	80930	7017744200	3269110569	47%	38672	8344
OGPLBR48	Breast Cancer	Preoperative, Treatment naïve	≻	~	100	80930	5629044200	2611554623	46%	30860	8652
CGPLBR49	Breast Cancer	Preoperative, Treatment naïve	z	٢	100	80930	5784711600	2673457893	46%	31274	10429
CGPLBR55	Breast Cancer	Preoperative, Treatment naïve	~	~	100	60930	8309154900	4306956261	52%	51143	8328
CGPLBR57	Breast Cancer	Preoperative, Treatment naïve	z	> >	100	80930	8636181000 5755 157755	4391502618	51%	52108	5857
CGPLEK09	Breast Cancer	Preoperative, Treatment naive	2 7	≻ :	001	00800	8/ 9945/ /UU	4152326355	4/4	49281	5700 2720
CGPLBK61	Breast Cancer	Preoperative, Ireatment naive	z>	~ >	100	80930 20030	8163/06/00 7000623400	3952010528	48%	46/39	8522
	Direct Carloti	Proposition Tradmont name	- >	- 2	001	00800	001000000000000000000000000000000000000	2026002026	20.00 76.39	41830	7760
	Dieasi Calicel Brosef Canoor	Precipierative, i realment naive Description Trostment solvio	- 2	2 >	001	00200	0204000390U 7620247300	3000U93020 40720E0EA7	40.76 5202	01 004	2017
CGPLBR69	Breast Cancer	Preoperative, Treatment naive	a >-	- >-	100	80930	7571501500	3857354512	51%	45322	7047

WO 2019/222657

Patient	Patient Type	Tinepoint	Fragment Profile Analysis	Mutation Analvsis	Read Length	Bases in Taraet Region	Bases Mapped to Genome	Bases Mapped to Target Regions	Percent Mapped to Target Regions	Total Coverage	Distinct Coverace
3PI BRZO	Breast Cancer	Prennerative Treatment naïve	,	<u> </u>	100	80930	7251760700	3641333708	50%	43203	8884
PL RR71	Breast Cancer	Preonerative Treatment naive	- >-	- >	100	80930	8515402600	4496696391	53%	53340	6805
PI BR72	Breast Cancer	Preoperative. Treatment naive	- >-	- >-	100	00930	8556946900	4389761697	51%	52081	5632
PI BR73	Breast Cancer	Preoperative Treatment naïve	• >-	• ≻	100	00608	7959392300	4006933338	50%	47555	8791
PLBR74	Breast Cancer	Preoperative. Treatment naive	~ >-	Z	100	00808	8524536400	4063900599	48%	48252	7013
PLBR75	Breast Cancer	Preoperative, Treatment naive	~	Y	100	80930	8260379100	3960599885	48%	46955	6319
PLBR76	Breast Cancer	Preoperative, Treatment naïve	Y	¥	100	80930	7774235200	3893622420	20%	46192	9628
PLBR77	Breast Cancer	Preoperative, Treatment naïve	≻	Z	100	00608	7572797600	3255963429	43%	38568	8263
PLBR80	Breast Cancer	Preoperative, Treatment naïve	Y	z	100	00608	6845325800	3147476693	46%	37201	5595
PLBR82	Breast Cancer	Preoperative, Treatment naïve	z	~	100	00608	8236705200	4170465005	51%	49361	12319
PLBR83	Breast Cancer	Preoperative, Treatment naïve	7	Y	100	80930	7434568100	3676855019	49%	43628	5458
7LBR86	Breast Cancer	Preoperative, Treatment naïve	Y	≻	100	80930	7616282500	3644791327	48%	43490	7048
9LBR87	Breast Cancer	Preoperative, Treatment naïve	~	7	100	80930	6194021300	3004882010	49%	35755	5306
7LBR88	Breast Cancer	Preoperative, Treatment naïve	Y	≻	100	80930	6071567200	2847926237	47%	339.45	10319
PLBR91	Breast Cancer	Preoperative, Treatment naïve	z	≻	100	80930	7192457700	3480203404	48%	41570	9912
JLBR92	Breast Cancer	Preoperative, Treatment naïve	Y	Y	100	80930	7678981800	3600279233	47%	42975	13580
LBR93	Breast Cancer	Preoperative, Treatment naïve	z	~	100	00608	7605717800	3998713397	53%	47866	10329
PLBR96	Breast Cancer	Preoperative, Treatment naive	> :	z	100	00608	6297446700	2463064737	39%	29341	7937
LER97	Breast Cancer	Preoperative, Treatment naive	> :	Z	100	80930	7114921600	3557069027	50%	42488	10712
PLH35 Di Lise	Healthy	Preoperative, Treatment naive	z 2	~ >	100	80930	6919126300 2020022400	2312/58/64	33% 33%	255/0	1989
DI L37	Leathy	rteoperative Treatment neive Dreansrafive Treatment neive	2 2	- >	001	00000	5557777770	1035301020	26.97	24673	0.41
	Healthy	Precherative Treatment naive	2 2	- >	001	80930	5792045400	2388036940	A1%	77197	2512
DI H43	Healthy	Prennerative Treatment naive	: 2	- >-	100	00000	5558321700	200000020	36%	23228	1650
-LH45	Healthy	Preoperative. Treatment naïve	z	• ≻	100	00000	8485593200	2770176078	33%	32829	3114
2LH46	Healthy	Preoperative, Treatment naïve	z	≻	100	00608	5083171100	1899395790	37%	21821	1678
PLH47	Healthy	Preoperative, Treatment naïve	z	Y	100	80930	6016388500	2062392156	34%	23459	1431
2LH48	Healthy	Preoperative, Treatment naive	z	≻:	100	60930	4958945900	1809825992	36%	20702	1698
4.H49	Healthy	Preoperative, Treatment naive	z	~ >	100	05908	/953812200	2511365904	32%	2/006	1440
-LH5U	Healthy	Preoperative, ireament naive	z 2	≻ >	001	05505	59694075000	20012861100	51%	//162	1962
DI HK3	Lookov	Freeperative Treatment native Dreeperative Treatment native	zz	- >	100	00030	10020112200	7307070500	07.70 SKM	00.020	7501
	Healthy	Precherative Treatment naive	: 2	- >	100	80930	10611934700	2290823134	%00	27175	3306
PLH55	Healthy	Preoperative. Treatment naïve	: 2	- >-	100	00000	9912569200	2521962244	25%	27082	3161
PLH56	Healthy	Preoperative, Treatment naïve	z	~ >-	100	80930	5777591900	2023874863	35%	22916	1301
PLH57	Healthy	Preoperative, Treatment naïve	z	Y	100	80930	9234904800	1493926244	16%	15843	1655
°LH59	Healthy	Preoperative, Treatment naïve	Z	≻	100	80930	9726052100	2987875484	31%	35427	2143
9LH63	Healthy	Preoperative, Treatment naïve	z	7	100	80930	8696405000	2521574759	29%	26689	1851
9LH64	Healthy	Preoperative, Treatment naïve	z	7	100	00030	5438852600	996198502	18%	11477	1443
7LH75	Healthy	Preoperative, Treatment naive	>- :	Z)	100	00808	3445444000	1505/18480	44%	1/805	3015
LH/6	Healthy	Preoperative, Ireatment naive	z	> :	001	80930	/459115400	3080/62/20	49%	43682	4643
1.H//	Healthy	Preoperative, I reatment naive	>- :	z>	100	00808	6512408400 764064000	253/359345	39%	30280	3131
ol LT/0	Lealury	Presperative, it teament naive	2 2	~ >	001	00600	7785475700	3340003000 2010620227	20.70	40.510	0000 6748
01 H80	Healthy	Precherative Treatment naive	c 2	- >-	001	02502	7918361500	3558236955	00 M	42171	5062
0LH81	Healthy	Preoperative. Treatment naïve	: >	· Z	100	00000	6646268900	3112369850	47%	37119	3678
7LH82	Healthy	Preoperative, Treatment naïve	z	×	100	00608	7744065000	3941700596	51%	46820	5723
9LH83	Healthy	Preoperative, Treatment naïve	Y	Z	100	80930	6957686000	1447503106	21%	17280	2875
ol.H84	Healthy	Preoperative, Treatment naïve	Y	Z	100	00608	8326493200	3969908122	48%	47464	3647
PLH86	Healthy	Preoperative, Treatment naïve	z	٢	100	80930	8664194700	4470145091	52%	53398	5094
0F70	Healthy	Preoperative, Treatment naïve	z	≻ :	100	80930	7516078300	3841504088	51%	45907	4414
LU13	Lung Cancer	Pre-treatment, Day -2	>- >	z	100	80930	5659546100	1721618955	30%	20587	6025 254 5
1113	Lung Cancer	Pre-treatment, Day -2	- >	z	001	05808	5199049700 F50400550	2063609840	41%	30/28	5514 2010
1013	Lung Cancer	Pre-treatment, Day -2	>- :	z	001	05908	5654395500	119423/002	%07	14351	395Z
7LU13	Lung Cancer	Fre-reatment, Uay -2	× 7	z >	001	00830	007/610800	13/3000000	56.17. 96.17	16460	5369 24 40
-'LLU14	Lung Cancer	Pre-treatment, Uay -36	z	ł	100	00200	00/0000000	3300/31003	% 0#	40070	5140

WO 2019/222657

t Regions Total
50%
38 20 48% 84 50%
4105092/38 3405754720 3289504484 3464238558
2/10#3600 41050 149809200 34057 556332200 32895 410378300 34642
82/104 80930 82/104 80930 714960 80930 741030 80930 741030 80930 741030
00 808 808 808 808 808 808 808 808 808
90 00 00 00 00 00 00 00
~ ~ ~ ~ > > >
z z z
int, Day -16 ent, Day -3
Pre-treatment Pre-treatmen

Patient	Patient Type	Timepoint	Fragment Profile Analysis	Mutation Analysis	Read Length	Bases in Target Region	Bases Mapped to Genome	Bases Mapped to Target Regions	Percent Mapped to Target Regions	Total Coverage	Distinct Coverage
LU267	Lung Cancer	Pre-treatment, Day -1	Y	N	100	80930	6610761200	2576886619	39%	31095	4485
LU267	Lung Cancer	Pre-treatment, Day -1	Y	z	100	80930	6156102000	2586081726	42%	30714	5309
LU267	Lung Cancer	Pre-treatment, Day -1	Y	Z	100	80930	6180799700	2013434756	33%	23902	3885
LU269	Lung Cancer	Pre-treatment, Day 0	¥	z	100	80930	6221168600	1499602843	24%	17799	6098
_U269	Lung Cancer	Pre-treatment, Day 0	Y	Z	100	80930	5353961600	1698331125	32%	20094	5252
-U269	Lung Cancer	Pre-treatment, Day 0	>- :	z	100	80930	5831612800	1521114956	26%	18067	6210
1/20-	Lung Cancer Lung Cancer	Post-treatment, Day 209 Doct freatment, Day 260	~ >	zz	100	00900	5424704000 5424365400	1461406974	24%5	1/0/0	4033 7034
1271	Lung Cancer	Post-treatment, Day 259	- >	2 2	100	80930	0-04000400 6491884900	1622578435	25%	19433	5792
1271	Lung Cancer Lung Cancer	Post-treatment, Day 259	- >-	zz	100	80930	5742881200	2349421128	41%	28171	5723
-0271	Lung Cancer	Post-treatment, Day 259	- >-	z	100	00000	5503999300	1695782705	31%	20320	5907
LU43	Lung Cancer	Pre-treatment, Day -1	7	Z	100	0609	6575907000	3002048491	46%	35997	5445
LU43	Lung Cancer	Pre-treatment, Day -1	7	z	100	80930	6204350900	3016077187	49%	36162	5704
LU43	Lung Cancer	Pre-treatment, Day -1	¥	Z	100	80930	5997724300	2989608757	50%	35873	6228
LU43	Lung Cancer	Pre-treatment, Day -1	~	Z	100	80930	6026261500	2881177658	48%	34568	7221
LU86	Lung Cancer	Pre-treatment, Day 0	z	7	100	00030	8222093400	3523035056	43%	41165	3614
LU86	Lung Cancer	Post-treatment, Day 0.5	z :	> >	001	00608	8305719500	4271264008	51%	49508	6631
LU36	Lung Cancer	Post-treatment, Day 7	Z 7	~ >	100	05608	6787785300 5243330400	3443658418 3420000000	51%	40192	3643 2560
11188	Lung Cancer Lung Cancer	Prosencedurient, Day 17 Pro-transfrment, Day 0	c >	- 2	001	008008	7952433000	312U323920 3691678746	307% 50%	004 I.O 427 10	2000 8500
1 (188	Lung Cancer Lung Cancer	Pre-freatment Day 0	- >-	zz	100	80930	7679995800	4004738253	52%	46951	6387
LU88	Lung Cancer	Pre-freatment, Day 0	~ >-	z	100	80930	6509178000	3316053733	51%	39274	2661
LU89	Lung Cancer	Pre-treatment, Day 0	Z	Y	100	80930	7662496600	3781536306	49%	44097	7909
LU89	Lung Cancer	Post-treatment, Day 7	z	~	100	00030	7005699500	3339612564	48%	38977	5034
LU89	Lung Cancer	Post-treatment, Day 22	z	×	100	06608	8325998600	3094796789	37%	36061	2822
01/0	Ovarian Cancer	Preoperative, Treatment naïve	> :	≻:	100	80930	7073534200	3402308123	48%	39820	4059
DV11	Ovarian Cancer	Preoperative, Treatment naive	≻ 2	~ >	100	80930	6924062200 655666466	3324593050	48%	38796	7185
2170	Ovanan Cancer	Preoperative, Ireatment naive	z: >	≻ >	100	05609	6552030100	3181854993	49%	3/340	6114 7004
51.VC	Ovarian Cancer	Preoperative, Treatment native	≻ >	~ >	100	00930 80030	0/30/3030U 7956573000	3.402.4050.064 3.402.405065	0/.0 1	3034U 20007	12210
JV 14 JV 15	Ovarian Cancer Ovarian Cancer	Preoperative Treatment naive	- >	- >	001 001	008008	7239201500	3322285607	40% A6%	38953	21.12
OV16	Ovarian Cancer	Preoperative. Treatment naive	- 2	- >	100	80930	8570755900	4344288233	51%	51009	11947
2110	Ovarian Cancer	Preoperative, Treatment naive	: >-	Z	100	00000	6910310400	2805243492	41%	32828	4307
DV18	Ovarian Cancer	Preoperative, Treatment naïve	Y	z	100	06608	8173037600	4064432407	50%	47714	5182
0V19	Ovarian Cancer	Preoperative, Treatment naïve	¥	¥	100	80930	7732198900	3672564399	47%	43020	11127
DV/20	Ovarian Cancer	Preoperative, Treatment naïve	×	Y	100	80930	7559602000	3678700179	49%	43230	4672
0V21	Ovarian Cancer	Preoperative, Treatment naïve	> :	≻ :	100	80930	8949032900	4616255499	52%	54012	12777
0V22	Ovarian Cancer	Preoperative, Treatment naive	>- :	> :	100	80930	8680136500	4049934586	47%	46912	9715
5V23	Ovarian Cancer	Preoperative, Ireatment naive	z 2	~ >	100	05505	6660696600 6634267200	3422631774	51%	40810 50735	946U eeon
7V/25	Ovarian Cancer Ovarian Cancer	Preoperative Treatment naive	zz	- >	100	06908	9034201200 6978295000	3390206388	%07 70%	001.00 40188	0003 5856
M/26	Ovarian Cancer	Prennerative Treatment païve	: 2	- >-	100	80930	7041038300	3728879661	23%	44341	8950
JV26	Ovarian Cancer	Preoperative. Treatment naïve	: 2	• >-	100	00000	7429236900	3753051715	51%	45430	4155
DV31	Ovarian Cancer	Preoperative, Treatment naïve	z	~	100	00030	8961384000	4621838729	51%	55429	5458
2V32	Ovarian Cancer	Preoperative, Treatment naïve	z	×	100	80930	9344536800	4737698323	51%	57234	6165
DV37	Ovarian Cancer	Preoperative, Treatment naïve	z	×	100	80930	8158083200	4184432898	51%	50648	6934
DV38	Ovarian Cancer	Preoperative, Treatment naïve	z	~	100	00608	8654435400	4492987085	52%	53789	6124
DV40	Ovarian Cancer	Preoperative, Treatment naïve	z	7	100	00030	9868640700	4934400809	50%	59049	7721
0/41	Ovarian Cancer	Preoperative, Treatment naive	22 :	> :	100	02608	7689013600	3861448829	50%	46292	4469
DV42	Ovarian Cancer	Preoperative, Treatment naive	z	> >	100	80930	9836516300 575557460	4864154366	49%	58302	7632
JV43	Ovanan Cancer	Preoperative, ireatment naive	z: :	≻ >	100	06930	8/5650/100 7770340000	45154/9918	%79	54661	4310
7V44	Ovarian Cancer	Preoperative, Treatment native Decreasion, Treatment active	2 2	~ >	100	009-30 20030	75/9319600 6346036300	4120333222 5637230246	24.4C	48303 81364	4505 2007
2440	Ovalian Cancer	Previouslius, Transforment voivo	2 2	- >	001	00800	5040000000 1000000000	000/ 020040 E 404 257 270	24.50 2013	60710	1260
7447 20140	Ovarian Cancer Ovarian Cancer	Preoperative, Treatment native Decembries Treatment solitio	2 2	~ >	100	00300	10000202000	3491,307,020 3236,001,227	20.00 70.00	00303 AN222	0080
01/49 01/49	Ovarian Cancer	Preoperative Treatment naive	: 2	- >-	100	80930	10076208000	5519656698	%999 19	67117	5097
2											

WO 2019/222657

tients	
0	
cancer	
.5	
Vses	
18	
F	
-	
20	
- E	
frag	
≤	
ž	
튭	
70	
- 22	
8	
5	
5	
ŝ	
<u>_</u>	
Tab	
\ddot{o}	
×	
Q	

APPENDIX C:	Table 3. Targete	d cfDNA fra	igment analyses	in cancer	patients			******			********			Wiid-tvæe	Fragments
Patient	Patient Type	Stage at Diagnosis	Atteration Type	Gene	Amino Acid (Protein)	Nucleotide	Mutation Type	Hotspot Alteration	Alteration Detected in	Mutant Allele " Fraction	Distinct	Minimum of DNA Fragment Size	25th Percentile ofDNA Fragment	Mode of DNA Fragment Size	Median cfDNA Fracment Size
							- 17.		Tissue		Coverage	(pa)	Size (bp)	(dq)	(bb)
COCRC291	Colorectal Cancer	≥ 2	Turnor-derived	STK11	39R>C	chr19_1207027-1207027_C_T	Substitution	No V	on 4	0.14%	11688	100	151	167	169
CGCRC291	Coloractal Cancer	2 2	Tumor-derived	TP53	167Q>X	chr17 7578431-7578431 G A	Substitution	Yes	Ves Yes	22.85%	11026	201	156.0	166	69
CGCRC291	Colorectal Cancer	N	Tumor-derived	KRAS	12G>A	chr12_25398284-25398284_C_G	Substitution	Yes	Yes	14.65%	7632	26	152	169	167
060RC291	Colorectal Cancer	23	Tumor-derived	APC	1260Q>X	chr5_112175069-112175069_C_T	Substitution	No.	Yes	11.23%	7218	101	155	167	169
060K0291	Colorectal Cancer	22	Tumor-derived	APC		CR15_112175639-112175639_U_	Substitution	Yes	%8× >>	11.05%	70/01 5425	36	154	166	16/ 187
6608090	Coloractal Carcer	2 2	Tumor-derived	KRAS	146A>V	Chv12 25378561-25378561 G	Substitution	Kes Yes	S V	1 41%	0420 6120	102	151	167	180
CGCRC292	Colorectal Cancer	:≥	Tumor-derived	CTNNB1	41T>A	chr3 41266124-41266124 A G	Substitution	Yes	7.05	0.13%	10693	100	155	169	168
CGCRC292	Colorectal Cancer	2	Germline	EGFR	2284-4C>G	chr7_55248982-55248982_C_G	Substitution	NA	Yes	31.99%	7587	67	158	166	171
CGCRC293	Colorectal Cancer	≥ =	Tumor derived	1P53	1760>5	chr17_7578404-7578404_A_T	Substitution	No	No	0.35%	7672	83	35 15	168	170
060R0294 000D0394	Colorectal Cancer		Tumor derived	APC APC	Z13K2X	0///2112/11/0/2/2/112/12/2002/00/10	Substitution	Yes Vor	765 201	0.14%	1339 10054	945 08	170	106	16/
06080295	Colonedal Cancer Colonedal Cancer	= ≥	Tumor-derived	PUGERA	T<001	URD_112170000-112170000_0_1	Substitution	SAL NO	89 - F	0.13%	5602	10.1	157	164	170
CGCRC295	Colorectal Cancer	:≥	Hematopoletic	HO	104G>V	chr2_209113196-209113196_C_A	Substitution	No.	Yes	0.34%	8330	100	157	166	169
CGCRC296	Colorectal Cancer		Germline	EGFR	922E>K	chr7_55266472-55266472_G_A	Substitution	MA	Yes	30.48%	8375	68	161	166	172
CGCRC297	Colonectal Cancer	=	Germline	KIT	18L>F	chr4_55524233-55524233_C_T	Substitution	NA	Yes	41.39%	3580	102	159	164	170
CCCRC298	Colorectal Cancer		Hernatopoletic	DNMT3A	882R>H	chr2_25457242-25457242_C_T	Substitution	Yes	Yes	0.08%	13032	100	159	168	171
OGCRC298	Colorectal Cancer		Hematopoletic	DNMT3A	7145>C	chr2_25463541-25463541_G_C	Substitution	Ő.	0N -	0.11%	13475 Fode	86 ⁶⁶	158	169	0/1
09080289	Colorectal Cancer Oniorectal Cancer	=	Hematonoietic	PINJUA DNMT3A	7357>0	0113_110321410-110321410_5_1 04v2_25463289_25463289_7_0	Substitution Substitution	o c	un Rex	%020% 930%	0100 11995	160	001 154	164	104
0GORC289	Colorectal Cancer		Hematopoletic	DNMT3A	7100-8	ohi2 25463553-25463553 C G	Substitution	on No	88 ×	0.12%	15363	96	<u>5</u> 5	166	201 181
060RC300	Colorectal Cancer		Hematopoletic	DNMT3A	720R>G	chi2 25463524-25463524 G C	Substitution	No	N N	0.15%	7487	100	162	170	173
CGCRC301	Colorectal Cancer		Tumor-derived	ATM	2397Q>X	chr11_108199847-108199847_C_T	Substitution	No	No	0.21%	5881	100	156	169	169
CGCRC302	Colorectal Cancer		Tumor-derived	TP53	141C>Y	chir17_7578508-7578508_C_T	Substitution	Yes	Yes	0.05%	24784	84	153	165	164
CGCRC302	Colorectal Cancer	==: 3	Tumor-derived	BRAF	600V>E	chr7_140453136-140453136_A_T	Substitution	Yes	59	0.12%	11763	95 51	154	165	185
CGCRC303	Colorectal Cancer	= =	Lamot-derived	DAMATOA	1/3V>L 2007-20	chirt/_/5/3413-/5/8413_C_A	Sucstitution	Yes	765 212	0.08%	13967	83	156	169	1/1
000000000000000000000000000000000000000	Colorectal Cancer	8 8	Hernatopolelic	DNMT3A DNMT3A	730F730 2473±4025A	0112 Z0400229-20400229 // 0	Substitution	on No	ON ON	0.17.6	1010/	81 100	160	160	271
CGCRC304	Colorectal Cancer	5 ==	Tumor-derived	FGFR	21134T>S	Chr7 55273068-55273068 A T	Sunstitution	No.	on on	% // 'n	16168	30	-00 153	167	164
CGCRC304	Colonectal Cancer	: 100	Tumor-derived	ATM	3077+1G>A	chr11_108142134-108142134_G_A	Substitution	No.	No	0.27%	10502	100	152	165	163
CGCRC304	Colorectal Cancer		Hematopoletic	ATM	3008R>C	chr11_108236086-108236086_C_T	Substitution	No	Yes	0.43%	12987	101	154	165	165
CGCRC305	Colorectal Cancer		Tumor-derived	GNA11	213R>Q	chr19_3118954-3118954_G_A	Substitution	No	Yes	0.11%	12507	100	159	169	171
OGCRC305	Colorectal Cancer		Tumor-derived	TP53	273R>H	chr17_7577120-7577120_C_T	Substitution	Yes	No	0.19%	10301	100	156	168	168
OGCKC306	Colorectal Cancer		Tumor-derived	1953	196R>X	Chr1/_/5/8203-/5/8203 G_A	Substitution	Yes	0N >>	0.12% o 00%	8594 0427	101	15/	165 167	169
CGCRC306	Colorectal Cancer		Tumor-derived	KRAS	610>K	one_cientos-cientos-cientos_co_A ohr12_25380277-25380277_G_T	Substitution	Yes		7 30%	6090	100	159	(5) 163	1.1
0G0R0306	Colorectal Cancer	: ::::	Gernline	PDGFRA	2007>S	chr4 55130065-55130065 C G	Substitution	NA	Yes	34.76%	4585	103	158	167	170
0G0RC306	Colorectal Cancer		Tumor-derived	EGFR	618H>R	chr7_55233103-55233103_A_G	Substitution	No	Yes	6.32%	7395	81	160	166	171
CGCRC306	Colorectal Cancer		Tumor-derived	PIK3CA	545E>A	chr3_178936092-178936092_A_C	Substitution	Yes	No	0.96%	4885	100	152	170	167
OGORC306	Colorectal Cancer		Germine	ER5B4	1155R>X	chr2_212251596-212251596_G_A	Substitution	AN N	Yes	38.70% 5.50%	3700	100	156	168	171
1050B0500	Colorectal Cancer Colorectal Cancer		Turnor derived	SMARCR1	601-245G		Substitution	o v	0N 90 >	2,00%	10085	92 92	150	168	1/1
CGCRC307	Colorectal Cancer		Tumor-derived	GNAS	201R>C	ohr20 57484420-57484420 C T	Substitution	Yes	Yes#	0.24%	7520	102	155	167	168
CGCRC307	Colorectal Cancer		Tumor-derived	BRAF	600V>E	chr7_140453136-140453136_A_T	Substitution	Yes	Yes	0.38%	8623	76	157	169	168
CGCRC307	Colorectal Cancer		Tumor-derived	FBXW7	465R>C	chr4_153249385-153249385_G_A	Substitution	Yes	Yes	0.31%	10606	100	155	167	168
CGCRC307	Colorectal Cancer	= 3	Turnor-derived	ER884	17A>V	chr2_213403205-213403205_G_A	Substitution	No	No	0.15%	13189	88	158	168	171
CGCRC308	Colonectal Cancer	8 8	Germline	FGFR	1002F00	US 2, 20407, 242-20407, 242, 0, 1 Dhr7 55259485, 55259485, 0, T	Substitution	NA	Ves	07.69%	10701	90 100	961 160	164	170
CCCRC308	Colonectal Cancer		Tumor-derived	APC	1480Q>X	chr5 112175729-112175729 C T	Substitution	°N N	Yes	0.11%	14067	92	157	170	169
CGCRC309	Colorectal Cancer	H	Tumor-derived	AKT1	17E>K	chr14_105246551-105246551_C_T	Substitution	Yes	Yes	2.70%	13036	85	157	170	169
0GCRC309	Colorectal Cancer	= :	Tumor-derived	BRAF	600V>E	chr7_140453136-140453136_A_T	Substitution	Yes	Yes	3.00%	9084	101	157	166	168
OGORC310	Colorectal Cancer		Tumor-derived	KRAS	12G>V 464965V	chr12_25338284-25398284_0_A	Substitution	Yes	89 ×	0.13%	1393	100	153 451	165 166	164
CGCRC310	Colorectal Cancer		Tumor-derived	APC	1516>X	chia_112175852-112175852_G T	Substitution	on No	Yes Yes	0.15%	1002	100	152	166	164
CGCRC311	Colorectal Cancer		Hematopoletic	DNMT3A	882R>H	chr2_25457242-25457242_0_T	Substitution	Yes	No	0.86%	8456	94	160	171	172
CGCRC312	Colorectal Cancer	=	Tumor-derived	APC	X <s096< td=""><td>dhr5_112174170-112174170_C_G</td><td>Substitution</td><td>No</td><td>Yes</td><td>0.59%</td><td>4719</td><td>100</td><td>160</td><td>165</td><td>173</td></s096<>	dhr5_112174170-112174170_C_G	Substitution	No	Yes	0.59%	4719	100	160	165	173
060R0312	Colorectal Cancer	= =	Tumor-derived	NRAS	61Q>K	chr1_115256530-115256530_G_T	Substitution Substitution	Yes	× √	0.47%	3391 5042	101	157 153	172	170
CGCRC313	Colorectal Cancer		Tumor derived	APC	876R>X	U U U U U U U U U U U U U U U U U U U	Substitution	ser Yes	8 8 - >	0.17%	8150 8150	- 201 62	161	171	174
CGCRC314	Colorectal Cancer	:	Tumor-derived	KRAS	126>0	chr12_25398284-25398284_0_T	Substitution	Yes	, , ,	0.30%	4684	100	158	165	169
CGCRC314	Colorectal Cancer		Hematopoletic	DNMT3A	738L>Q	chr2_25463280-25463280_A_T	Substitution	No.	Yes	2.50%	6902	æ :	159	165	170
CGCRC314	Colorectal Cancer	Ξ	Tumor-denved Tumor dominod	APC	1379E>X	chr5_112175426-112175426_G_T	Substitution	Yes	Yes Vos	0.38%	7229 6720	102	158 158	167 127	170
CGCRC315	Colonectal Cancer	= ==	Turnor-derived	FBXW7	505R>C	chr4_153247289-153247289_6_A	Substitution	Kes Yes	5 ∑	0.25%	9623	4 E	158	166	170

ragments Median ofDMA	Fragment Size	163	168	162	166	163	164	155 251	103	175	174	174	170	172	176	171	169	169	1/5	1/4	2.11	52	167	171	177	163	186	169	7/1	10/	175	171	15.5	173	173	171	171	6/1	150	167	166	176	168	166	10/ 17//	168	168	169	1/3	170	174	169	174	179	177	169	170	177	175 175	2
Wiid-type F Mode of DNA	Fragment Size	126	164	165	166	166	166	164	160	170	174	167	171	172	170	165	165	169	1/0	104	167	171	166	165	169	170	164	168	165	0/1	171	021	104 166	168	171	169	168	170	1/4	166	166	170	168	167	100	169	166	171	169	160	173	168	175	171	168	166	100 16 4	170	173 168	222
25th Percentile	cfDNA Fragment	3126 (DD) 1 C //	55	149	153	150	152	152	149	001	<u>5</u> 6	161	159	159	164	159	153	153	150	104	100	2 <u>2</u>	150	161	153	147	<u>6</u> i	158	158	401 104	101	102	150	162	162	159	159	164	10/	<u>8</u>	5 5 5	165	157	5	8 1	154	157	158	160	157	161	157	163 183	185	165	158	100	165	164 160	
Minimum of DNA	Fragment Size	(DD) 400	38	100	85	100	84	100	1.31. 80	30 160	100	88	94	100	104	68	102	102	105	100	50 00	ee Put	102	162	72	100	105	106	101	100	101	101	<u>8</u> £	28	66	100	100	160	161	19	- C	67	87	100	100	101	101	100	10/	001- 011-	36	102	101	104	100	100	510 10,6	103	100 98	22
	Distinct Coverage	1900	7479	13682	16716	17060	14587	10483	549/ 16/36	6524 8524	11633	5918 5918	6226	5545	605	1265	3338	3008	97/1 97/1	2011	0611	757	1080	391	5497	1686	1408	1258	1639	1143 1501	9001 876	20/0	061	10277	10715	10837	12640	5631	12407	5011 5011	3973	3405	10259	5163	0700 7558	3938	2387	6916	3580	9389 2389	11348	3422	3784	4342	11785	6161	5405 2479	3496	1748 4241	
Mutant Allele	Fraction	2 Enez	5.74%	5.47%	0.11%	0.13%	0.36%	0.23%	0.29%	2027 VE	0.12%	0.20%	0.08%	41.86%	19.98%	43.03%	22.26%	1.00%	13.44%	30.25% 2.05%	2000 C	75 26%	42.87%	81.61%	0.12%	46.26%	27.03%	1.94%	2.35%	3.14%	16 3696	00.2076 00.078/	0.53%	28.99%	1.82%	0.41%	0.13%	34.61%	0.13%	0.68%	0.42%	34.82%	0.11%	0.68%	0.70% 0.70%	41.74%	41.66%	0.36%	40.28%	U.10% 44.03%	0.27%	35.58%	36.23%	36.57%	0.12%	2.29%	0.54% A9 68%	0.28%	44.91% 42.32%	70.016.14
Alteration	Detected in Tissue		8 - >	Yes	No	Yes	Yes	Yes	0N 200 2		No.	No.	2	Yes	Yes	Yes	Yes	No	Yes	Y es	00i Vec	e se y	Yes	Yes	No	Yes	Yes	Yes	Yes	7 es <	59 × 20	145 V	S I I	Yes	Yes	Yes	Yes	Yes	02 2	8	Yes	Yes	Yes	Yes	ON ON	Yes	Yes	oN ;	Yes	Y es Y es	No.	Yes	Yes	- 193 198	, Yes	Yes	N0 Vaq	No	Yes Yes	2
Hotspot	Alteration		e ov	Yes	No	No	Yes	°N ;	Yes	N N	c qu	on N	Yes	AA	No	No	Yes	No.	Yes	NA NA	Nu Vois	700	Yes	No	No	AA	Yes	Yes	Yes	No Vo	202 202	Vec Vec	SP V	AN	Yes	No	No	AN :	o si	Yes	Yes	NA	Yes	Yes	o v	NA	NA	ON .	AN	res NA	No	NA	NA V	Sel NA	Yes	No No	NN NN	No	NA NA	1.01.1
Mutation	Type	Citratic Ron	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Subsitution	Substitution	Superfiction	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution Substitution	Substitution	Substitution	Substitution	Subsitution	Substitution	Substitution Substitution	
	Nucleotide	Child 7577540 7577540 C T	chr9 21974825-21974825 A C	chr3 41266113-41266113 C G	chr7_55266407-55266407_C_T	chr11_108236087-108236087_G_C	chr17_7578190-7578190_7_C	chr11_105142132-108142132_1_C	CDTD_112120143-112120143_C_1	6462_20400000-2040000_0_1 Abyd 66694090 66604092 /^ 1	0.67 212989479-20289479 G A	chr9 21974792-21974792 G A	chr2 25457242-25457242 C T	chr7_55229225-55229225_C_A	chr17_7579313-7579313_G_C	chr17_7577610.7577610_T_C	chr7_140453136-140453136_A_T	chr2_212495194-212495194_1_G	Chr1/_/5//548-/5//548_C	UR (_33238800-3323890_C_1	01101110010024-110010024-0-0 0122 140450406 440450408 A T	0181_1444400100-1444400100_A_1	chr12 25398284-25398284 C A	chr5 112175147-112175147 G T	chr19_1220718-1220718_T_A	chr5_112162851-112162851_G_A	chr12_25398284-25398284_C_T	chr12_25398281-25398281_C_T	Chrb_1121/391/-1121/391/_C	0.01/2 / 20/2 /	URO_1/0302U00-1/0302U00_A_1 Abr47 7578063 7578083 C A	A_0.0000101-0000101-0010101010101010101010	GRATT 7577560-7577560 A G	chrX 66766163-66766163 C G	chr2_25457242-25457242_C_T	chr2_25463568-25463568_A_G	chr4_55153609-55153609_G_A	chr2_29436901-29436901_C_T	0111_00240/02-00240/02_0_A	Chr20 57484421-57484421 G A	chr3 178921553-178921553 T A	chr4_1806188-1806188_A_G	chr2_25457242-25457242_C_T	chr3_178936091-178936091_G_A	0112_2122000U2-2122000U2_1_0 chyo=95463479_95483479_T_A	chr3 41266092-41266092 A C	chr2 209108158-209108158_A_T	chr11_103216546-108216546_G_A	chrb_1121/6022-1121/6022_A_C	ahtir_rarrizo-rarrizo_o_1 aht5_112175886-112175886_A_G	chr2_29474053-29474053_A_G	chr2_212652833-212652833_G_T	ChrX_66788865-66788865_G_T	chyd 55946310-55946310 C T	chr3_178952085-178952085_A_G	chr10_89711891-89711891_G_T	Ch19_219/4/92-219/4/92_6_A	chr11_108117753-108117753_G_A	chr2_212543783-212543783_T_G chr19_1223125-1223125_C_G	URL IN THE INTER THEFT IN A THEFT IN A
Amino Acid	(Protein)	94E0160	1M>R	37S>C	2702-3C>T	3008R>P	220Y>C	1026W>K	2716H2X	181 55	78R>W	128>L	882R>H	511S>Y	125T>R	673-2A>G	600V>E	691E>A	245(5>5	MA 1000	2007/20	175,B>H	12G>V	1286E>X	734+2T>A	485M>I	12G>D	13G>D	B/6K>X	40/02	104/11/L		241S>P	392P>R	682R>H	705ÞT	859V>M	1231R>Q		201R>H	345N>K	403K>E	882R>H	545E>K	TZAESV	30Y>S	231Y>N	2832R>H	15//E>U	2/ 35/75 1532/15G	708S>P	158A>E	20+1G>T	1290S>N	1047H>R	1703>1	728N5D	322E>K	539Y>S 354F>L	1,100
	Gene	7053	CDKN2A	CTNNB1	EGFR	ATM	TP53	AIM	APC	TLX TLX	FRARA	CDKN2A	DNMT3A	EGFR	TP53	TP53	BRAF	ER8B4	1253 1010	DIVECA DIVECA		1053	KRAS	APC	STK11	APC	KRAS	KRAS	APC SW00	PIKACA	TOGA		APV TP53	AR	DNMT3A	DNMT3A.	PDGFRA	ALK	DNIMT3A	GNAS	PIK3CA	FGFR3	DNMT3A	PIK3CA	EKEB4 FMMT3A	CTNNB1	Ha	ATM	APC	APC	ALK	ERBB4	AR DiverA	KDR	PIK3CA	PTEN	CUKNZA AD	ATM	ER8B4 STK11	
	Alteration Type	Tumor domand	Tumor-derived	Tumor-derived	Turnor-derived	Hematopoletic	Tumor-derived	i umor-denved	Hamateoniolia	Cemine	Tumor-darived	Tumor-derived	Hernatopoletic	Germine	Tumor-derived	Tumor derived	Tumor-derived	Tumor-derived	umor-denved	Turson dominad	Turnor derived	Tumor-derived	Tumor-derived	Tumor-derived	Tumor-derived	Gernline	Tumor-derived	Tumor-derived	I UIMOF GERIVED	Trumor derived	Tumor dorived	Tumor domad	Turnor-derived	Germline	Hematopoletic	Hematopoletic	Tumor-derived	Germline	Humor-genveg Hemetoorietio	Tumor-derived	Tumor-derived	Germine	Hernatopoletic	Tumor derived	i umor-genveg Hemetonolatic	Germline	Germline	Turnor-derived	Germine	i umor-aenvea Gemine	Tumor-derived	Germline	Germline Traver doubled	Germine	Tumor-derived	Tumor-derived	l umor-derived Cermine	Tumor-derived	Germine Germine	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Stade af	Diagnosis		5 55		Ξ	=	=	= 1	= -						N	N	N	≥ :	22	2 2	2 2	2 2	: 2	S	N	N	≥ :	23	≥ 2	2 2	2 2	2	≧	=	Ξ		Ħ		= 3	8 729	: 155		=	= =	= =						: ::::					=			== ==	-
	Patient Type	Colocotel Concer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colonectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Coloradat Calica Coloradat Cancer	Coloractal Carcar	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colomotal Calification	Colorantal Cannor	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colorectal Cancer	Colonotal Caliber	Colorectal Carloer	Cotofectal Cancer Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	breast Cancer Rreast Cancer	Breast Cancer	Breast Cancer Breast Cancer	
	Patient	0000048	CGCRC316	CGCRC316	OGORC316	CCCRC316	CGCRC317	OGORC31/	CGURU31/		06080320	0G0R0321	OGORC321	OGCRC321	0G0R0332	CGCRC333	CGCRC333	CGCRC333	CGCRC334	OGURU334	50000000000000000000000000000000000000	00000338	0G0RC336	0G0RC336	0G0RC337	060RC337	CGCRC338	0G0R0339	00000000	0.90100388	200010000 018000000	0400K0900	CGUNCO40 CGPI RR38	CGPLBR40	CGPLBR44	CGPLBR44	CGPLBR44	CGPLBR48	0.05PLBK48 0.001 RD55	OGPI BR55	OGPLBR55	CGPLBR63	CGPLBR67	CGPLER67	CGPLERO/	CGPL BR69	CGPLBR69	CGPLBR70	CGPLBH/0	CGPI RR77	CGPLBR73	OGPLBR73	0.GPLBR74	CGPI BR76	CGPLBR76	CGPLBR77	CGPLEKØU	CGPLBR83	CGPLBR83 CGPLBR86	

agments Median cfDMA	-ragment Size	474	175	175	175	172	223	1/3	102	173	175	170	171	170	10/	165	169	166	166	168	601 171	0/1	168	170	1/1	1/3	174	173	166	173	170	169	601 1	167	169	691	1/1	167	166	166	168 185	174	172	172	1/3	170	168	168	158	175	175	171	171	1/2	170	171 173
Wiid-type Fr Mode cfDNA	Fragment Size		168	164	167	166	200	1/2	164	167	169	168	165	169	001 791	168	166	170	164	164	001 185	166	166	166	167	1/4	164	174	167	165	166	161	170	165	168	168	C/I	167	166	165	165	165	167	167	168 180	166	168	165	69 99	168	174	169	168	169	1/0	169 171
25th Percentile	cfDNA Fragment		162	163	160	160	185	162	150	<u>8</u>	162	160	161	158 158	8 Ų	158	159	153	156	155	5 85	160	157	155	156	150	191 191	160	153	159	158	138 13	15.0	155	157	157	159	<u>8</u> 151	154	152	156 157	162	162	162	163	160	157	157	128	164	164	160	160	160	159	161 162
Minimum of DNA	Fragment Size	(00) 00	8 5	101	36	106	68	5	100	8	85	66	100	97 100	100	100	101	100	101	100	100 101	-103	100	100	100	100	82 82	18	100	85	83	58	701- 701-	100	100	100	103	8	102	67	100 20	3 8	100	101	100	100	100	100	100	161	100	88	100	75	-01 101	103 108
	Distinct Coverage	3006	3680 3680	6160	7746	2266	17537	5616	05050	8620	8036	14856	5329	7010	1/6/1	1407	4956	6540	7648	5920	0000 7844	4183	6778	4807	5282	2825	6640	13855	11251	10805	20185	0/9D	4001 8002	9241	10806	10919	5451Z	7448	5822	15985	11070	5881	3696	4941	7527	10214	9739	9509 9740	27.1U 6565	6513	5962 70.44	6350	11233	10966	7235	8350 2609
Mutant Allele	Fraction	45 200/	43.20% 0.35%	0.31%	0.40%	42.94%	0.13%	31.19%	0.20%	581%	0.60%	0.11%	34.12%	0.13%	1.33%	0.10%	0.22%	2.94%	0.18%	0.25%	0.84%	0.87%	0.20%	0.15%	0.55%	0.94% A3 A7%	0.22%	0.22%	0.14%	0.21%	0.15%	1.23%	90.20.76 0.20076	0.10%	1.78%	1.86%	0.99%. 0.99%	36.62%	0.16%	0.06%	0.39%	0.33%	0.40%	0.16%	0.29%	8.03%	0.21%	0.15%	40.04% 3.64%	0.92%	0.21%	1.53%	0.29%	0.13%	0.47%	0.38% 39.91%
Alteration	Detected in Tissue	Ver	SP ON	No	No	Yes	No	Y 08	N N	Yes	No	Yes	Yes		20 × 402	se X	No	Yes	No	No	Yes Aes	Yes	No	No	Yes	Yer Yer	No	Yes	No	No	Yes	768 V	Se u	2 Q	Yes	Yes	Y es	Yes	Yes	Yes	No 202	8 8 - >-	Yes	Yes	Yes Ves	8 X	oN	Yes	Yes Yes	Yes	7es 28 20	59 - <	No	8 2	No No	Yes Yes
Hotspot	Alteration	A N A	No.	Yes	No	NA	No	NA NA	N0 Yes	o N	No No	Yes	VN.	Yes	Yes	SP UN	No	Yes	oN.	Yes	o o	No.	No	Yes	NO 1	NA NA	oN N	Yes	No	No	°N :	NO	en on	Yes	No	ÿ:	on on	NA N	Yes	Yes	No Vor	8 Q	No	Yes	No No	Yes	No	No	VN No	No	92 ×	89 Q	Yes	on No	No No	No NA
Mutation	Type	Citraticity	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Sucsituation	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution	Substitution Substitution	Substitution	Substitution Substitution
:	Nucleotide	04400 04450406 04450408 A C	0.822_24133120-24133120_A_G 0429_5054591-5054591_0_T	chr2 25457242-25457242 C T	chir18 48604664-48604664 C T	chrX_66931310-66931310_G_A	chr7_92462487-92462487_0_T	chrb_1121/4665-1121/4665_1_C	GMT/_/0//011-/0//011_A_G chr17 fa/528212-7578212_G_A	ctrr2 25467484-25467484 T C	chrX_66765026-66765026_G_A	ctr2_25457242-25457242_0_T	chr4_55136880-55136880_C_A	chr20_57484421-57484421_G_A		Child_2000200-2000200_0_A	chr11_108115727-108115727_C_T	chr3_178936091-178936091_G_A	chr2_212568841-212568841_0_T	chr9_5073770-5073770_G_T	64077_107709983.05463083_6_10 6402_25463083.05463083_6_1	chr13_48937095-48937095_T_C	chr11_108122699-108122699_A_T	chr17_7577538-7577538_C_T	chr17_/5/8247-75/8247_A_T	chrz_29416343-29416343_C_ obuź_55130065_55130065_C_G	chr9 21974792-21974792 G A	chr7 55259515-55259515 T G	chr7_140494187-140494187_C_T	chr9_21974792-21974792_G_A	chr2_25467494-25467494_A_C	Christon 1/220629-1220629_C_A	URING 34180103-1223123 URING	chr17_7577106-7577106_G_A	chr17_7578449-7578449_C_A	chrl7_7578450-7578450_C_A	0112_2122460/1-2122465/1_G_A cho_010587043_010587043_7_0	chr19 1223125-1223125 0 G	chr20_57484421-57484421_G_A	chr17.fa;7578524-7578524_G_A	chr2_25463287-25463287_G_T	chr19 1220505-1220505 G T	chr9_5050695-5050695_G_T	chr12_25398285-25398285_0_A	Chr2_25457216-25457216_G_A	chriz_za4cacar-za4cacar_co_c chriz_7578394-7578394_T_C	chr2_25457290-25457290_C_T	chr2_25463230-25463230_A_G	chr2 212288925-212288925 G A	chr2_25463245-25463245_G_A	chr2_25463289-25463289_T_C	chr 12_23399204-23399204_0_A chr2 25457197-25457197 A C	chr2_25457243-25457243_G_A	Chr2_25463508-25463508_C_T	chr3_178947145-178947145_0_T	chr2_25457252-25457252_1_0 chr5_112179123-112179123_0_1
Amino Acid	(Protein)	705-0450	215R>X	882R>H	496R>C	651S>N	51E>K	1125V>A	25/L2F 213R>X	5310>6	13R>Q	882R>H	401A>D	201R>H	10010	373P>S	292P>L	545E>K	426R>K	617V>F	7371 >H	861+2T>C	581L>F	248R>Q	201L>X	153/G>E 2007-55	12S>L	858L>R	354R>Q	12S>L	528Y>D	2165>Y	606-305T	278P>S	161A>S	180M>I	1299F2L	354F>L	201R>H	136Q>X	736R>S	597+1G>T	160D>Y	12G>C	891R>W	179H>R	2598-1G>A	756F>L	941Q>X	750P>S	735Y>C	92/26	882R>C	2173#16>A	861Q>X	879N>D 2611T>I
,	Gene	CAACIO 1	1 dunnand 1 JAK2	DNMT3A	SMAD4	AR	ODK6	APC	1530 152	DNMT3A	AR	DNMT3A	PDGFRA	GNAS	1733 VDAG	50FR	ATM	PIK3CA	ERBB4	JAK2	DNMT3A	78-1 1-87	ATM	1P53	1P53	ALK PDGFRA	CDKN2A	EGFR	BRAF	CDKN2A	DNMT3A	51K11 0 TV44	CNA11	TP53	1P53	TP53	EK084 EDRRA	STK11	GNAS	TP53	DNMT3A	STK11	JAK2	KRAS	DNMT3A DAMT3A	TP53	DNMT3A	DNMTAA	AIM ERBB4	DNMT3A	DNMT3A VDAC	DNMT3A	DNMT3A	DNMT3A	PIK3CA	DNMT3A APC
	Alteration Type	Construction of the second sec	Tumor-derived	Hematopoietic	Tumor-derived	Germline	Turnor-derived	Germine Trans dation	Tumor-derived	Hematonoietic	Tumor-derived	Hematopoietic	Germine	Tumor-derived	Tumor derived	Tumor-derived	Tumor-derived	Tumor-derived	Tumor-derived	Hematopoletic	i urnor-uerivea Hematonorietia	Tumor-derived	Tumor-derived	Tumor-derived	Tumor-derived	lumor-denved Garmline	Tumor-derived	Tumor derived	Tumor derived	Tumor-derived	Hernatopoletic	l umor-denved	Turnor-derived	Tumor-derived	Tumor-derived	Tumor-derived	Tumor-derived	Germine	Tumor-derived	Tumor-derived	Hernatopoletic	Tumor derived	Tumor-derived	Tumor-derived	Hematopoletic	Tumor-derived	Hematopoletic	Hematopoletic	Tumor-derived	Hematopoletic	Hematopoletic	Hernatopoletic	Hernatopoietic	Hematopoletic	Tumor-derived	Hematopoletic Germline
Stade at	Diagnosis					===				: :::					= =							: 199		=	= :	= =	E ==		-	==			= =	: :::				: :::													=			==:		
	Patient Type	Bunnt Panar	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lund Cancer	Lund Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cantel Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lung Cancer	Lung Cancer	Lund Cancer	Lung Cancer	Lung Cancer	Lung Cancer Lung Cancer	Lung Cancer Lung Cancer
	Patient		CGPI BR87	CGPLBR87	CGPLBR87	CGPLBR87	CGPLBR88	CGPLBH88	CGPLBR96	OGPLBR96	CGPLBR96	CGPLBR97	CGPLBR97	CGPLBR97	DGPLEU144	0.6P110144	CGPLU144	CGPLLU144	CGPLLU144	CGPLLU146	0.GP111146	CGPLLU146	CGPLLU146	CGPLLU147	CGPLLU147	CGPLLU147 CGPLLU147	CGPLLU162	CGPLLU162	CGPLLU162	0GPLLU163	CGPLLU163	CGPLLU164	CGP111164	CGPLLU164	CGPLLU164	CGPLLU164	CGPLLU164	CGPLLU165	CGPLLU165	CGPLLU168	CGPLLU168	CGPLLU174	0GPLLU174	0GPLLU174	0GPLLU174	CGPLLU175	CGPLLU175	CGPLLU175	CGPLLU175	CGPLLU176	CGPLLU176	CGPLLU177	CGPLLU177	0GPLLU1/7	CGPLLU178 CGPLLU178	0GPLLU179 0GPLLU179

WO 2019/222657

PCT/US2019/032914

tian of NA	ament Size	(pa)	170	169	158	0.21	00 CZ+	172	-168	172	166	167	168	166	165	164	164	170	170	158	170	171	171	-169	168	170	171	130	7/1	174	196	169	171	171	-169 1	1/1	-0/1	169	172	169	171	170	170	169	202	169	167
FUA No.	it Size Fra	-	10	**	N. 1		D. (1			~		~	10	101	101	0.1	~ 6	0.0	2.10		+	0	10	()	~	1	2	~ -	0.7	<i>+ (</i>			10							10		0		0.0	0.10		
14 12 12 12 12 12 12 12 12 12 12 12 12 12 1	Fragmen	(dq)	165	164	167	501. 191	186	166	165	173	165	168	165	165	165	165	10/	201	181	166	164	170	165	166	163	169	167	167	Col	101 101	1651	166	165	167	164	10/	32	164	167	165	171	170	165	166	185	166	100
25th Parcentila	fDNA Fragment	Size (bp)	158	158	158	160	101	161	157	160	151	150	157	156	154	148	14/	201	151	155	159	160	158	153	155	157	158	155	101	151	221	159	161	154	157	150 150	202	159	158	158	161	156	156	158	- 100 170	160	1.1.7
inimit of NA	radment Size c	(ba)	91	92	35	101	201	100	67	100	06	51	100	96	100	55	100	100	10	101	100	100	-100	96	94	92	97	100	171	140 07	58	103	100	92	102	101	110		36	100	66	102	94	102	101	68	001
53	Distinct	overage	6085	8680	7790	50.20 1070	40/ S 7196	7147	9322	8303	14197	9279	7185	10739	12065	6746	07711	4020	4300 13216	9211 9211	5253	10233	11421	11695	12771	16557	13057	8521	12942	1981	12072	4107	8427	11418	7689	/10/	2884	2945	9727	4387	2775	3616	5404	3744	51023 1806	10801	1.4 1.4
ttant Alleje	Fraction	U	2.43%	2.07%	1.94%	u.Ud%	0.16%	0.38%	0.87%	0.52%	0.05%	0.13%	0.26%	0.70%	3.47%	26.13%	0.21%	07.20.70 24.50%	04.00 % 0.00%	133%	39.34%	0.86%	0.17%	26.84%	9.97%	9.13%	9.82%	30.41%	G. 14%	0.01% 27 77%	0.12%	37.98%	0.35%	0.14%	3.54%	0.19%	0.34 N 44 10%	40.81%	23.80%	36.83%	65.29%	46.35%	0.21%	44.05%	%00.7 %00.0	14.36%	
Alteration Mi	etected in	lissue	Yes	Yes	Yes	NO S	SP .	0 N	Yes	Yes	Yes	No	No	Yes	Yes	Yes	NO	261 201	on of the second	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	201	res Ver	- 00 Yes	Yes	Yes	No	Yes	on >	Yes	Yes	Yes	Yes	Yes	Yes	Yes :	Yes		9N	
iofsnot /	teration D		No	No	ç No	res Mic	Vae Vae	No.	°2	Yes	Yes	No	No	°2	No	Yes	No	1 US	Yes	Yes	NA	Yes	No	NA	No	Yes	CN CN	NA	Y 85 V 25	NA	No.	NA	No	No.	Yes	N0 Voc	<u>8</u> 8	NA	NA	Yes	NA	Yes	Yes	VN VN		No	
Wirtation F	Type A	;	ubstitution	ubstitution	ubstitution	uosatuaon	uosatuaun uhetitrition	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	uostitution	nosamaon	uosatuagn	uusattaatun Iiitteetitaitaan	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	upsitution	uosatuaon	uosatuaon uhetitation	unstitution	ubstitution	ubstitution	uostitution	ubstitution	upsatuaon	ubstitution	ubstitution	upstitution	ubstitution	ubstitution	ubstitution	ubstitution	ubstitution	uosatuaun metinaion	ubstitution	
đ	2		T St	A St	න්ද ප	ກີ ບໍ ຊຸເ	5 a 2 ⊲	್ ನ 	ເອ _⊢	୍ଷ	5	ന് പ	_A St	_∧ _	ര് ≺_:	ಹ ⊢,	ನ ನ ರ್ಷ	ನ ರ - , ೪	5 æ	j S V	ې د د	න හ ප	0_T St	න ල	A St	A St	ਲ ≺_	ದ ರ ರೃತ	ಸೆ ರ ⊄,⊦	- v	රග ද⊲	3 3 3	A St	GA SI	ಸ ನ ನ	ಸಂ ರ್,⊢	ೆ ನ _ <	ິ . ບ	න ග	T St	_A S∟	0_T 0_T 0_L	ස් ප් ප්	ത് ത്ര	ದ <i>ದ</i> ೨.೯	38 00	
	leotide		31-1220691_G	50-7577060_C	33-7577093_C	0,0198767-UU	- 054572A3 G	2-25457252 7	45-7578445 A	5-55259515_T	71-55249071_0	4-55259544_G	9-55604659_G	7-25463287_G	6-25463596_G	/6./5/81/6_C	38.//5//8538_	0-10/000101-00	71-55949071 C	82-7577532 G	1-55220281 G	5-55259515_T	5-128750755_(25-1223125_C	39-7579389_G	6-21971096_0	2-55155052_G	3-55231493_A	J3-7574005_G 00.7577506 ∩	20-1311330_0	8-29551298 C	0-55136880_C	6-55564516_G	34-121431484	06-7577106_G	5-00220445_C	0-55161380 G	5-112174665	8-1806188 A	20-7577120_0	6-66765518_C	3-112175423_(55-7578265_A	4-55221714_A	20-1223120_0	4-212530114_0	
	Nuc		chr19_12206	chr17_757706	chr17_757709	CTT1/JA/DOCCC	Chr9 9545794	chr2 2545725	chr17 75784	chr7_5525951	chr7.fa:552490	chr7_5525954	chr4_5560465	chr2 2546328	chr2_2546359	chr17_75/81	Cala, 1110	CULT/_/2/020	chr7 fai550490	chr17 75775	chr7 5522028	chr7_5525951	chr8_12875075	chr19_122312	chr17_757938	chr9_2197109	chr4_5515505	chr7_5523149	CUL1/_/5/40	chr17_757040	chr2 2955129	chr4_5513688	chr4_5556451	chr12_12143146	chr17_757710	CDF1_5522544	ohr4 5516138	chr5 11217466	chr4 180618	chr17_75771	chrX_6676551	chi5_11217542	chr17_757826	chr7_5522171	COLIS_122312	chr2_21253011	
Amino Acid	(Protein)		237D>Y	293G>V	282R>P	1/1/2/C	SRIE>C	0 <n228< td=""><td>1621>N</td><td>858L>R</td><td>M<t067< td=""><td>868E>X</td><td>956R>Q</td><td>736R>C</td><td>X<0969</td><td>672+1G>A</td><td>131N25</td><td>3/ 0-1/5/A</td><td>418F-4L 790T>M</td><td>250P>I</td><td>224R>H</td><td>858L>R</td><td>98R>W</td><td>354F>L</td><td>100Q>X</td><td>88E>X</td><td>921A>T</td><td>567M>V</td><td>342K>X</td><td>248K24</td><td>444W>C</td><td>401A>D</td><td>135R>H</td><td>230E>K</td><td>278P>S</td><td>433H2U 248D2O</td><td>1071D>N</td><td>1125V>A</td><td>403K>E</td><td>273R>H</td><td>176S>R</td><td>1378Q>X</td><td>1951>T</td><td>253K>R</td><td>2750-5V</td><td>602S>T</td><td></td></t067<></td></n228<>	1621>N	858L>R	M <t067< td=""><td>868E>X</td><td>956R>Q</td><td>736R>C</td><td>X<0969</td><td>672+1G>A</td><td>131N25</td><td>3/ 0-1/5/A</td><td>418F-4L 790T>M</td><td>250P>I</td><td>224R>H</td><td>858L>R</td><td>98R>W</td><td>354F>L</td><td>100Q>X</td><td>88E>X</td><td>921A>T</td><td>567M>V</td><td>342K>X</td><td>248K24</td><td>444W>C</td><td>401A>D</td><td>135R>H</td><td>230E>K</td><td>278P>S</td><td>433H2U 248D2O</td><td>1071D>N</td><td>1125V>A</td><td>403K>E</td><td>273R>H</td><td>176S>R</td><td>1378Q>X</td><td>1951>T</td><td>253K>R</td><td>2750-5V</td><td>602S>T</td><td></td></t067<>	868E>X	956R>Q	736R>C	X<0969	672+1G>A	131N25	3/ 0-1/5/A	418F-4L 790T>M	250P>I	224R>H	858L>R	98R>W	354F>L	100Q>X	88E>X	921A>T	567M>V	342K>X	248K24	444W>C	401A>D	135R>H	230E>K	278P>S	433H2U 248D2O	1071D>N	1125V>A	403K>E	273R>H	176S>R	1378Q>X	1951>T	253K>R	2750-5V	602S>T	
	Gene		STK11	TP53	TP53	567 -	TAB I DNRAT3A	DNMT3A	TP53	EGFR	EGFR	EGFR	КIТ	DNMT3A	DNMT3A	1P53	504 I	00. N	FOED	TP53	EGFR	EGFR	MYC	STK11	1953	CDKN2A	PDGFRA	EGFR	1030	1001 1063	A K	PDGFRA	KIT	HNF1A	1953 1055	TGTK TDE3	PDGFRA	APC	FGFR3	1P53	AR	APC	TP53	EGFR	TPG3	ER8B4	
	Itteration Type		Tumor-derived	Tumor-derived	Tumor-derived	l umor-denved	i unitoi -uerivett Hermetonoriatio	Hematopoletic	Tumor-derived	Tumor-derived	Tumor-derived	Tumor-derived	Tumor-derived	Hernatopoletic	Hernatopoletic	Tumor derived	nmor derived	i umor-denved	Turner-darived	Turnor-derived	Germine	Turnor-derived	Tumor-derived	Germline	Tumor-derived	Tumor-derived	Tumor-derived	Germine	Lumor-derived	i umor-denved Cermine	Tumor derived	Germine	Tumor-derived	Tumor-derived	lumor-derived	l umor-denved Turnor denved	Gemline	Germline	Germline	Tumor-derived	Gernline	Tumor-derived	Tumor-derived	Germine	Cettraine Fumor derived	Tumor-derived	
Stane at	Diagnosis k	,															==												. / 8	2 2	2	: ≥	N	:		= -								= 2	≥ ≥	: ≥	
	atient Type		Lung Cancer	Lung Cancer	Lung Cancer	cung Cancer	curig Carical Ling Cancer	und Cancer	ung Cancer	.ung Cancer	ung Cancer	ung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	und Cancer und Cancer	uno Cancer	ung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	Lung Cancer	ung Cancer	vanan Cancer	varian Cancer varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer	varian Cancer	variari Cancer variari Cancer	varian Cancer	•
	tient f		TR180 F	TU180 L	LU180 L	110180	111107	TD197	TU198 L	LU198 L	TU202 1	TLU202 1	LU204 L	LLU205	TLU205	LLU206 1		1 1000 1	111207	11208	TU208 L	TU208 L	LU208 L	TU209 L	TU209 [TU209 1	LU209	LLU209 1			LOVIA O	LOV13 ON	LOV13 01	1.0V14 0				LOV18 O	LOV19 O	LOV19 0:	10/19 0	10/19 0	LOV20 0		10/21 0	LOV21 0	
	Pat		CGPL	06PL	06PL			CGPL CGPL	CGPL	0GPL	CGPL	1490	06PL	0GPL	0.6PL	CGPL	1900			0.0PL	1490	1490	CGPL	CGPL	1490	, GPL	CGP C	1490 000	190	ていて	1000	069	CGPL	ы ССР	CGPI CGPI	1000 1000	1 SOCPL	1490	190	1900 1900	06Pl	06Pl	06Pl	0091	てていて	CGPL	1.00

					V	V) :	20	19	/2	22	65	57																_													P	C	Γ/Ι	US	20	19,	/03	829	14				
I	'nt																											6	0																									
Adinsted D Vistue of	Difference between Muta and Wild-type cfDNA	Fragment Sizes	0.475	0.250	0.000	0.874	0.009	0.025	0.368	0.000	0.002	0.571	0.475	0.052	0.001	0.020	0.114	0.507	0.430	0.166 0.669	0.630	0.453	0.368	0.000	0.036	0.05/ 0.465	0.154	0.445	0.482	0.064	0.297	0.234	0.000	0.052	0.770 0.000	0.572	0.564	0.598	0.094	0.013	0.062	0.155	0.166	0.469	0.000	0.000	0.384	0.354 0.571	0.000	0.054	0.587	0.461	0.131	0.018
	Difference between Mean Mutant and Wild-type cfDNA	Fragment Sizes (bp)	1.54	8.33	5.89	-0.25	5.37	3.80	5.31	-12.79	3.13	-11.46	1.22	04 c	0.43 Fi 78	-1.27	-2.62	-11.00	-4.34	6 .9	-2.15	32.43	33.84	-5.12	8.3/ 0.01	40'0- 50'0'5	4.06	0.46	-0.91	-6.74	-0.80 A E4	-0.19	-9.76	-5.57	0.37	-0.00	0.95	4.83	22.34	-8.94	7.22	5.3Z -13.04	1.08	-14.62	23.47	-1.73	4.83	2.54 883	-22.39	4.67	19.22	-5.62 7.97	-16.03	-1.78 0.74
****************************	 Difference between Median Nutant and Wild-type cfDNA 	Fragment Sizes (bp)	-4.0	7.0	0.0	-1.0	10	3.5	3.0	-29.5	2.0	0.5	4.0	-11.0	0.0- 0.0	0.0	0.0	3.0	-3.0	-6.0	0.0	-3.0	5.0	-12.0	0.9 0.0	3.0	0.00	2.0	-1.0	3.0	5.0 8.6	2.0	-1.0	0.7-	0.0	9.1- 0.1-	0.5	1.0	14.0	-11.0	9.0	-12.0	1.0	-3.0	20.0	-20.0	-3.0	-3.0	-19.0	-11.0	011-	3.0 9.0	0.2	-17.0
	Maximum of DNA Fragment Size	(ad)	305	309	399	383	398	386	330	345	400	335	290	368	309 338	400	399	261	364	336	325	387	372	268	32/	350	338	309	377	302	333 242	305	380	382	398 380	321 321	400	353	355 355	298	319	38/ 219	400	316	340 326	323	299	342 379	320	367	372	265 304	262	327 319
	75th Percentile cfDNA Fragment	Size (bp)	230	198	191	183	191	18/	190	155	189	192	176	1/5	101	187	185	193	180	1/6	168	301	219	178	201	100	191	175	168	174	205	10/ 229	192	176	185 195	180	187	183	160 284	166	212	204 180	185	176	166	171	190	1/1	172	190	261	185	178	212
	Mean of DNA Fragment Size	(dd)	180	191	186	177	189	185	182	164	186	177	177	1/6	201	184	185	173	6/1	1/2	166	221	210	164	1/4	201	189	168	166	164	189	188	182	168	181	172	182	176	20.8	167	187	188 168	177	167	158	163	175	173 196	167	183	213	174	170	190 183
	Median of DNA Fragment Size	(BD)	165	176	169	166	170	168	172	139	173	170	5	159	160	171	170	174	167	163 165	164	170	174	152	30	175	180	166	162	162	166	176	170	159	170	166	172	169	182	157	171	159 163	171	166	149	144	161	161 173	154	159	101	166	163	152
0 \$40 \$1.1M	Mode of DNA Fragment Size	(00)	233	182	167	166	167	166	167	130	168	171	176	155	- 1 <u>1</u>	166	168	127	166	1/6	185	326	174	268	501 001	191	180	169	197	162	145	921	189	168	166	142	168	144	701 306	154	144	180	170	137	60 60 000	132	159	101	154	132	173	186 187	183	175
	25th Percentile cfDNA Fragment	Size (bp)	142	166	152	148	155	153	162	130	160	154	147	145	14 C	160	158	137	163	14/ 160	153	155	170	143	147	101	158	155	143	147	148 165	53	149	140	158 140	143	159	148	146	146	143	140	160	146	135 135	137	138	147 165	144	143	163	159	155	144 157
	Minimum of DNA Fragment Size	(ba)	100	132	92	100	108	100	123	101	100	11	138	115	101 RC1	101	102	66	137	118	130	149	156	108	212	0 15	124	121	124	126	131	-126 126	101	102	100	111	102	11 11	111	117	111	128	101	3 5	100	131	107	122 115	124	105	144	132	138	137 131
	Distinct	Coverage	19	21	5411	1903	1344	2108	1921	28	6863	34	თ.;	28	00 XX	8167	3562	5	26	R 7	22	17	18	5	50	9 5) KI	88	45	108	S S	25	377	525	4010 605	37	3184	47	26	32	43	8 0	7515	31	428 350	55	25	24	27	24	17	15 722	27	88
*************	Maximum cfDNA Fragment Size	(bp)	400	400	400	400	400	400	396	400	399	400	396	400 207	702	400	400	366	400	787 100	400	399	400	397	397	400	400	394	397	398	400	366 366	400	391	399 200	398 398	396	399	39/ 400	400	399	400 399	398	399	395 207	397	398	400 400	400	399 300	395 400	394 300	398	399 399
*****	75th Percentile cfDNA Fragment	Size (bp)	188	185	183	182	185	182	183	162	188	186	179	185 185	103	186	188	187	185	182	174	187	163	175	1/3	186	187	175	173	175	169	187	5 56	179	185 187	179	186	183	164	180	184	187	184	182	182 180	172	173	1/3	169	184	192	183 195	186	195 184
*************	Mean of DNA Fraument Size	(ad)	179	182	180	177	184	52	176	177	183	188	175	184	170	991 1991	187	184	183	181	169	189	176	169	105	185	185	167	167	170	190	189	192	173	10 10 10 10	175	181	180	185 185	176	180	021 071	176	182	181	165	170	1/1	189	676	194	180 182	196	192 182

						W	0	2	01	9/2	222	26	57																											PC	T/	US	20	19/	03	29:	14				
	tant	.																									6	1																							
Adjusted P Value o	Difference between Mu and Wild-tyne of Nu	Fragment Sizes	0.000	0.054	0.000	0.104	0.000	0.479	0.411	0.166	0.397	0.587	0.013	0.304	0.066	0.064	0.463	0.571	0.479	0.084	0.001	0.061	0.685	0.372	0.416 0.572	0.451	0.539	0.576	0.004	0.479	0.155	0.061 0.560	0.341	0.587 0.670	0.000	0.679	0.015	0.571	0.015	0.314	0.314	0.463	0.564	0.598 0.293	0.598	0.839 0.061	0.839	0.000	0.603	0.714	0.718 0.062
20000000000000000000000000000000000000	Wutant and Wild-type cfDNA	Fragment Sizes (bp)	-3.57	3.80	00.11- 30.96	14.38	-6.66	10.09	-18.98	-1.79	11.02	-13.40	23.48 0.03	60.0 ASA.	5.94	4.37	-10.29	-3.10	3.42	-8.99	8.92 0.30	2000-	-3.82	1.92	2.87	2.28	4.53	-2.59	-17.53	-3.64	1.04	9.95 7.08	14.14	-0.88 2 40	9.25	-2.85	3.83	2.00	3.52	10.77 0.65	1.78	-5.83 0.40	-7.32	1.12 -0.01	-1.73	0.22	-0.32	-18.40 12.55	3.72	0.65 34.97	-0.85 -3.65
20000000000000000000000000000000000000	Nutant and Wild-type cfDNA	Fragment Sizes (bp)	-3.5	1.0	10-1	7.0	0.6	1.5	-7.5	0.0	3.0	1.0	21.0	201	0.0	1.0	3.0	0.6-	-2.0	14.0	0.6 0.6	50	2.0	-1.0	0.0	0.6 0.6	-1.0	0.5	0.21-	1.0	-1.0	3.0 1 0	-4.0	2.0	16.0	0.0	0.0	-1.0	0.0	0.6	0.0	-2.0	-2.0	a 10	00	-110	0.0	-20.0	1.0	0.0	1.0 -2.0
000000000000000000000000000000000000000	Maximum ofDNA Framont Size	(bp)	354	366	090 222	296	324	329	178	995 995	373	312	357 304	357	400	392	372	400 400	393	275	398 400	989 989	350	396	381 361	336	309	326	979 979	346	399	384 371	387	400	311	318 302	398	340	344	360 207	400	338 396	221	399 373	400	389 373	400	325 357	374	66 66	400
	75th Percentile	Size (bp)	170	184	0/1 Voc	180	178	179	168 1er	100	195	186	219 - ac	040	258	202	179	240 194	229	166	211 181	242	231	180	182	851 851	176	210	212	162	186	200	196	203 206	191	176 100	192	184	184	195	180	179	204	186 193	184	186 179	200	173 233	220	194 260	194 202
	Mean ofDNA Fragment Size	(dd)	163	179	154	180	173	182	153	102	195	181	205	100	201	189	175	190	197	163	195	202	199	173	180	192	181	185	185	182	180	201 198	201	201 100	191	179	187	181 184	176	197	178	177	172	189	177	150	197	173 196	215	194 232	192 200
Fragments	Median of DNA Fragmont Size	(dd)	159	169	104	170	155	167	156	175	177	175	191	171	121	170	172	176	171	153	173	176	179	162	166	169	166	174	166	169	172	1/6	167	<u>78</u>	185	167	176	167	176	161 167	168	167 173	166	169 177	169	173 161	179	157 170	186	1/4 224	176 173
Mutant	Node of DNA Fractional Size	(00)	164	169	241	0 1	140	164	170	101	176	175	185 175	169	163	168	164	161	171	143	164	167	164	169	166	166	169	180	144	121	166	160	171	168 164	189	163 200	176	138	180	360 166	164	168	166	162 183	165	178	169	143	197	1/5 248	163 164
	25th Percentile of NAA Fragment	Size (bp)	146	158	140	3 1 2	140	160	137	151	172	168	180	150	153	153	183 183	5 2 2	145	143	155 1,46	158	157	147	151	157	150	153	140	157	161	165	163	166 188	158	156 158	165	153	147	149	157	160 181	146	158 165	157	163 153	166	143 154	9/1	162 182	163 159
*****	Minimum of DNA Fragmant Size	(db)	100	98 5	701 00	07F	36	115	124	96 96	112	149	166	101	104	100	117	601 F31	100	129	19 101	100	122	103	102	117	124	107	102	123	93	104	136	102	138	113	100	138	139	121	66	131	121	103 121	5	101	102	130 125	158	94 123	100 100
	Distinct	Coverage	1616	806	1410	3 9	13	38	ω ř	/U 6586	41	35	20 6338	0000 17A	1350	1257	ន	741	89	12	3559 873	1909	27	1818	546 26	3 8	40	æ 5	256	76	9832	2//	3	5286 102	30	64 27	2943	25	88	35 1600	2390	28 3545	15	2587 86	3339	3193 13	4140	16 209	41	3445 23	1787 4100
000000000000000000000000000000000000000	Maximum cfDNA Framment Size	(ad)	396	400	202	368	400	400	386	400 399	400	399	399	180 180	397	400	396	1996	396	396	387 202	377	400	395	3/4 207	400	397	390	397 397	400	400	400	400	400	397	400 308	398	399 200	399	398 267	385	400	398	400	366	391 308	400	400 400	400	400 400	399 400
000000000000000000000000000000000000000	75th Percentile of DNA Fragment	Size (bp)	172	180	271	173	178	221-	174	103	188	198	184 186	203	195	189	189	194	193	621	188 183	200	259	178	182 18.4	194	179	191	207	184	186	190	189	202 201	182	181 176	192	181	179	184	178	184	180	187 192	184	187 186	201	194 183	230	193 199	195 207
000000000000000000000000000000000000000	Mean cfDNA Fragment Size	(dd)	166	175	021	188	180	172	171	194	184	194	182	2012	195	185	185	188	193	172	186	194	202	171	1/8	195	176	188	502 196	186	179	191	187	202	181	181	191	179	172	186 476	176	182 194	179	188 189	178	179	197	191 183	211	197 197	193 204

						W	0	20	019	9/2	222	26:	57															_												PC	T/	US	20	19/	03	29:	14				
00000	ant																										6	2																							
Adjusted P Value of	Difference between Mut and Wild-type ofDNA	Fragment Sizes	0.251	0.114	0.430	0.000	0.574	0.065	0.190	0.475	0.155	0.571	0.880	0.685	0.880	0.368	0.007	0.252	0.064	0.154	0.270 0.039	0.039	0.610	0.623	0.624	00.07	0.061	0.005	0.169	0.718	0.113	0.407	0.876	0.926 0.234	0.130	0.154	0.179	0.427	0.479	0.252	0.415	0.263	0.054	0.568 0.874	0.000	0.425	0.000	0.706 0.241	0.234	0.416 0.598	0.270
	Uniterence between wean Mutant and Wild-type ofDNA	Fragment Sizes (bp)	-2.45	35.30	-10.38	8.80	5.51	2.87	-5.94	-1.94	-11.54	-9.68	0.15 22 an	-1.35	-0.34	6.52	-19.82	-7.62	14.58	78.7	14.61	11.80	6.05	17.02	6.48 F 17	0.10 9.79	6.78	17.15	3.34 4 60	2.50	2.54	4.07	-0.65	0.36 A 15	86.6	-1.73 14 05	12.47	4.31	-4.24	15.13	20.55	14.62 27 e7	-5.22	5.19	-22.25	-9.89 - 00	-14.58	1.68 3.80	5.86	-15.88 13.13	-11.80
Price and a conservation of the second s	Nutant and Wild-type of DNA	Fragment Sizes (bp)	-1.0	9.0	4 c	45.4	-16.0	1.0	-4.0	-2.0	-5.0	-1.0	0.0	0.6	3.0	3.0	-14.0	-4.D	7.5	5.5	4.0	13.0	-1.0	0.0	0.0	18.0	6.5	6.0	3.5	7.0	01-	0.0	-4.0	-4.0 -4.0	10.0	-1.0	0.8	2.0 5.0	2.5	6.0 A.0	3.0	12.0	7.0	3.0	-18.0	-2.0	-20.0	-2.0	4.5	-2.5	-10
	Maximum ofDNA Framment Size	(be)	397	377	380	400	400	400	302	395 395	400	319	400	361	363	380	224	232	383	347	372 338	369	333	360	385 367	397	166	375	370 376	331	393 220	349 349	393	393 338	376	396 357	352	396 282	298	269 300	365	329 346	325	367 387	288	366 361	348	396 392	377	354 359	295 394
	75th Percentile of NA Franment	Size (bp)	191	338	185	203	324	196	173	187	184	185	183 174	178	175	191	170	177	206	185	203 188	203	173	301	224 187	200	182	186	211	213	187	208 175	186	185 188	180	181 200	186	179	227	215 180	196	192	183	181 178	162	201 100	175	184 188	175	1/3	183 185
	Mean ofDNA Fragment Size	(bb)	194	237	189	203	243	200	166	187	162	174	179 184	178	172	185	162	163	195	176	200	194	198	216	95 198	202	176	192	197 189	194	190	150	181	182 186	187	183 195	189	183 180	196	199 177	206	201 167	174	186 176	152	187 197	164	185 189	184	170 193	173
Fragments	Median ofDNA Framment Size	(bp)	173	184	171	176	207	174	158	171	170	169	171	166	163	172	155 164	162	176	163	1/4	<u>8</u>	169	171	173	192	167	172	181	176	168 77	G/1	165	166 167	179	166 173	158	166	177	178 164	176	185 157	175	168 166	<u>50</u>	173 785	150	169 175	168	0/1	168
Mutant	Mode of DNA Franment Size	(00)	161	178	108	189	194	164	149	166	161	150	168	166	167	175	146	162	154	151	1//	204	169	161	108	192	142	185	181	176	164	165	152	147	179	167	127	173	143	266	168	182	143	146	148	250 165	141	168 175	168	1/3	170
***************	25th Percentile cfDNA Franment	Size (bp)	159	178	100	182	192	163	148 164	162	160	150	10 12	152	151	163	146	152	161	145	163	164	164	155	150	173	147	163	154	155	156	163	150	55 55	172	154 164	127	156	147	173	168	182	151	154 154	140	164 165	138	160 161	161	95 53	154
*****	Minimum ofDMA Fracment Size	(bb)	6/	142	161	191	84	108	18	102	135	128	103	106	106	138	138	130	104	96	102	136	138	128	108	92	06	144	93 104	126	100	139	101	5	144	100	111	121	131	144	159	116	601	146 103	103	115 156	105	123 78	130	81 95 93 95	111
	Distinct	Coverage	3096	23	C2 72	2089	125	5715	109 26	326	35	27	4774	330	536	45	16	23	54	154	44	8	13	50	81 2507	1957 1957	74	37	65 65	101 101	4718	9 2	262	277 65	16	7186 21	18	72	88	20 16	34	5 4072	46.0	30	298	67 19	189	227	20	28	48 2337
	Maximum cfDNA Frannent Size	(ad)	400	400	400	400	400	400	398 200	400	400	400	399 300	395 395	399	400	397	366 366	369	400	399 400	400	400	400	400	400	400	400	400	396	394	995 397	400	400 395	400	399 304	400	400 Ann	399	392 365	399	396 200	400	400 202	399	399 300	395	398 397	395	398 400	394 398
	75th Percentile of DNA Franment	Size (bo)	195	203	203	192	280	194	173	190	195	184	184 185	179	177	183	185 1	177	183	184	18/	184	191	205	193	197	189	178	202 186	190	185	180	182	182 182	182	184 176	180	181 182	199	185 184	187	186	180	181 170	180	194 194	182	185 184	188	18/ 184	185
	Mean of DNA Franment Size	(aa)	196	202	202	261 791	238	197	172	-90 189	194	184	179	120	172	179	182	171	180	184	186 183	182	192	199	191	192	183	175	194	191	188	180	182	182 180	177	185	171	179	200	184 180	186	186 185	179	181 176	174	197 195	178	183 185	190	186 179	185 189

ant																																6.	3																		
Difference between Mutt	Fragment Sizes	0.490	0.735	0.571	0.000	0.137	0.576	0.571	0.005	0.184	0.589	0.636	0.308	0.987	0.999	0.000	0.007	0.286	0 154	0.494	0.314	606.0	0.589	0.479	0.942	0.000	0.007	0.564	0.568	0.463	0.657	0.576	0.027	0.576	0.558	0.114	0.000	0.571	0.637	0.171	0.008	0.240	0.245	0.702	0.027	0.821	0.000	0.823	0.000	0.084	0.293
Difference between Mean Nutant and Wild-type cfDNA	(ก่ก) รลราด ามสมมัติสม	-4.93	-1.72	-3.01	7.08	-2.07	-9.24	-5.86	-11.80	17,11	-10.20	4 57	06 U-	50 U-	00.0	.7.28	22.37	13 70	-172	-2.26	-5.86		-2.77	-9.82	-0.08	-4.59	4.17	1.00	0.54	-5.41	3.05	0.82	-23.47	-0.66	-2.41	3.0U	20.1V 4E 75	92.1	-0.84	-2.30	-2.37	1.72	-1.39	-0.52	29.58	0.32	6.16	0.43	-2.84	15.08	9.11
Difference between Median Mutant and Wild-type cfDNA 1	רופטווטוני אנציא (קט)	-4.0	-6.0	0.7-	43.0	-4.5	-1.0	-1.0	-6.0	4.0	1.0	00	40	00	0.5	0 0	12.0	0 er	00	00	0.9	0.1-	45	3.0	0.0	-3.5	-3.0	0.0	0.0	-13.0	-2.0	1.0	-11.0	0.0	-1.0	0.11	0.0	0.0	0.0	1.0	-1.0	1.0	-1.0	0.0	24.0	2.0	1.0	4.0	-1.0	5.0	3.0
Maximum cfDNA Fragment Size	(pp)	396	365	365	294	372	293	335	311	387	182	322	949	382	385	398	325	6216	393	350	385	400	352	283	399	386	399	398	400	352	331	396	341	999 199	32/	320	200	328	398	389	399	400	397	400	378	398	400	366	399	399	306
75th Percentile cfDNA Fragment	Size (bp)	226	196	179	217	173	174	185	178	207	176	185	190	178	175	174	219	245	181	185	173	184	180	209	190	179	200	190	184	193	180	187	163	181	154	201	202	185	185	182	187	186	185	187	292	185	187	178	178	164	181
Nean cfDNA Fragment Size	(bp)	193	188	181	198	179	181	185	168	198	159	174	175	175	177	172	198	201	179	180	176	179	179	178	190	169	169	163	176	180	185	184	33	1/6	1/5	18/	102	251 251	187	181	182	185	181	185	222	182	185	176	172	199	181
Median of DNA Fragment Size	(ad)	166	163	161	214	164	171	171	162	176	167	167	164	166	166	155	176	167	120	174	162	169	167	168	169	165	167	171	169	159	167	172	158	169	1/0	701	100	163	170	170	171	170	170	170	194	171	170	165	168	172	167
Mode of DNA Fragment Size	(bp)	160	159	157	217	167	173	166	131	175	167	167	190	169	167	157	165	154	021	162	165	167	175	241	164	165	158	162	165	140	159	173	140	168	1/0	107	041	181	169	167	175	165	167	167	148	167	169	155	167	156	177
25th Percentile cfDNA Fragment	Size (bp)	152	151	151	170	152	161	164	149	166	167	167	158	5	i S	851	185	155	8 8 8	162	144	159	155	141	156	147	150	154	155	146	158	160	140	159	751	104	201	3 5	158	158	158	157	159	158	148	-160	158	151	159	156	145
Minimum cfDNA Fragment Size	(bp)	69	123	121	143	122	601	136	<u>8</u> 8	141	<u>8</u>	107	112	130	105	100	121	140	191	131	110	56	101	92	35	101	100	100	100	112	132	101	94	101	131	011	110	201	100	91	100	101	64	101	127	101	100	101	101	116	109
Distinct	roverage	172	215	207	17	52	17	40	127	98	10	2 22	55	100	584	3592	6	8	4754	5	150	5290	140	20	8065	2586	2808	2227	8425	142	104	3462	R	3/89	ۍ ۲	86	700	2 6	2980	2793	7357	5186	15595	6749	23	3901	4633	734	4022	117	65
Maximum cfDNA Fragment Size	(pp)	398	400	400	397	398	366	366	399	400	398	398	301	400	400	398	399	400	400	400	400	400	400	397	400	400	400	400	396	399	399	392	399	399	400	400	2007 1007	397	400	361	365	398	400	400	400	394	400	400	394	400	395
75th Percentile ofDNA Fragment	Size (bp)	200	188	184	189	182	189	-189	181	186	179	181	181	177	176	178	178	186	184	187	183	184	981	190	192	182	188	187	183	188	185	185	183	181	184	191	001	187	189	183	189	184	187	185	190	185	180	179	180	182	176
Mean cfDNA Fragment Size	(bp)	198	190	184	191	181	191	191	180	181	169	170	175	175	172	575	175	187	181	182	101	179	181	187	190	174	185	182	176	186	186	183	182	111	161	101	101	185	88	183	185	184	182	186	193	182	6/1	175	175	184	172

....

APPENDIX - D: Table 4. Summary of whole genome cfDNA analyses

Patient	Timepoint	Analysis type	Patient Type	Read Length	Total Bases	High Quality Bases	Coverage
0000001	Broongrafiyo tradmant nawa	\\\Inc	Coloroatel Capoar	400	5equenced	Analyzeg	1 96
00000000	Presperative treatment naive	WGS	Colorectal Cancer	100	7232123000	4090390000	1.00
00000000	Preperative treatment naive	WGS	Colorectal Cancer	100	0794092000	447 1000400	1.77
CGCRC293	Preoperative treatment naive	WGS	Colorectal Cancer	100	0073099000	0000170000	2.20
00000000	Preoperative treatment naive	WGS	Colorectal Cancer	100	4007000000	63770000000	2.12
UGURU296	Preoperative treatment naive	WGS	Colorectal Cancer	100	10072029200	6770998200	2.69
CGCRC299	Preoperative treatment naive	WGS	Colorectal Cancer	100	10971591600	7632723200	3.03
CGCRC300	Preoperative treatment naive	WGS	Colorectal Cancer	100	9894332600	6699951000	2.65
CGCRC301	Preoperative treatment naïve	WGS	Colorectal Cancer	100	/85/346200	5021002000	1.99
CGCRC302	Preoperative treatment naive	WGS	Colorectal Cancer	100	116/1913000	8335275800	3.31
CGCRC304	Preoperative treatment naïve	WGS	Colorectal Cancer	100	19011739200	1295/614200	5.14
CGCRC305	Preoperative treatment naive	WGS	Colorectal Cancer	100	/1//341400	4809957200	1.91
CGCRC306	Preoperative treatment naïve	WGS	Colorectal Cancer	100	8302233200	5608043600	2.23
CGCRC307	Preoperative treatment naïve	WGS	Colorectal Cancer	100	8034729400	5342620000	2.12
CGCRC308	Preoperative treatment naïve	WGS	Colorectal Cancer	100	8670084800	5934037200	2.35
CGCRC311	Preoperative treatment naïve	WGS	Colorectal Cancer	100	6947634400	4704601800	1.87
CGCRC315	Preoperative treatment naïve	WGS	Colorectal Cancer	100	5205544000	3419565400	1.36
CGCRC316	Preoperative treatment naïve	WGS	Colorectal Cancer	100	6405388600	4447534800	1.76
CGCRC317	Preoperative treatment naïve	WGS	Colorectal Cancer	100	6060390400	4104616600	1.63
CGCRC318	Preoperative treatment naïve	WGS	Colorectal Cancer	100	6848768600	4439404800	1.76
CGCRC319	Preoperative treatment naïve	WGS	Colorectal Cancer	100	10545294400	7355181600	2.92
CGCRC320	Preoperative treatment naïve	WGS	Colorectal Cancer	100	5961999200	3945054000	1.57
CGCRC321	Preoperative treatment naïve	WGS	Colorectal Cancer	100	8248095400	5614355000	2.23
CGCRC333	Preoperative treatment naïve	WGS	Colorectal Cancer	100	10540267600	6915490600	2.74
CGCRC336	Preoperative treatment naïve	WGS	Colorectal Cancer	100	10675581800	7087691800	2.81
CGCRC338	Preoperative treatment naïve	WGS	Colorectal Cancer	100	13788172600	8970308600	3.56
CGCRC341	Preoperative treatment naïve	WGS	Colorectal Cancer	100	10753467600	7311539200	2.90
CGCRC342	Preoperative treatment naïve	WGS	Colorectal Cancer	100	11836966000	7552793200	3.00
CGH14	Human adult elutriated lymphocytes	WGS	Healthy	100	36525427600	24950300200	9.90
CGH15	Human adult elutriated lymphocytes	WGS	Healthy	100	29930855000	23754049400	9.43
CGLU316	Pre-treatment, Day -53	WGS	Lung Cancer	100	10354123200	6896471400	2.74
CGLU316	Pre-treatment, Day -4	WGS	Lung Cancer	100	7870039200	5254938800	2.09
CGLU316	Post-treatment, Day 18	WGS	Lung Cancer	100	8155322000	5416262400	2.15
CGLU316	Post-treatment, Day 87	WGS	Lung Cancer	100	9442310400	6087893400	2.42
CGLU344	Pre-treatment. Day -21	WGS	Lung Cancer	100	8728318600	5769097200	2.29
CGI U344	Pre-treatment Day 0	WGS	Lung Cancer	100	11710249400	7826902600	3 11
CGLU344	Post-treatment Day 0 1875	WGS	Lung Cancer	100	11569683000	7654701600	3.04
CGI U344	Post-treatment, Day 59	WGS	Lung Cancer	100	11042459200	6320138800	2.51
CGLU369	Pre-treatment Day -2	WGS	Lung Cancer	100	8630932800	5779595800	2.29
CGLU369	Post-treatment Day 12	WGS	Lung Cancer	100	9227709600	6136755200	2 44
CGLU369	Post-treatment Day 68	WGS	Lung Cancer	100	7995282600	5239077200	2.08
CGLU369	Post-treatment Day 110	WGS	Lung Cancer	100	8750541000	5626139000	2.00
CGU 1373	Pre-treatment Day -2	WGS	Lung Cancer	100	11746059600	7547485800	3.00
CGLU373	Post-treatment Day 0 125	WGS	Lung Cancer	100	13801136800	9255579400	3.67
CGLU373	Post-treatment Day 7	WGS	Lung Cancer	100	11537896800	7654111200	3.04
CGLU373	Post-treatment Day 47	WGS	Lung Cancer	100	8046326400	5397702400	2 14
CGPLBR100	Precogrative treatment relive	WGS	Breast Cancer	100	8440532400	5729474800	2.14
CGPI BR101	Precografive treatment naïve	WGS	Breast Cancer	100	9786253600	6673495200	2.65
CGPLBR102	Preoperative treatment naïve	WGS	Breast Cancer	100	8664980400	5669781600	2.05
CGPI BR103	Procestive reament naive	WGS	Broast Canoor	100	0004000400	6662883400	2.20
CGPI BR104	Properative treatment naïve	WGS	Broast Cancor	100	9443375400	6/97061000	2.64
COPI RD12	Properative treatment neive	WGS	Broast Cancor	100	7017577800	4823327400	1 01
CGPLBR18	Properative realment neive	WGS	Braget Canoor	100	10300652800	7130386000	2.83
COPI BD33	Properative treatment naïve	WGS	Broast Cancer	100	0034484800	60406056800	2.00
COPI RP14	Properative treatment neive	WGS	Broast Cancor	100	0804454000	6604857400	2.47
COPI RR28	Processive reatment naive	WGS	Broget Concor	100	7007607000	5400803200	2.02
CODI DD20	Proportative treatment naive	WOO	Dreast Cancer	100	9500507000	59950000200	2.14
	Presperative treatment neive	WOO	Breast Cancer	100	4002037200	966400622400	2.04
	Proportive treatment neive	WOO	Breast Cancer	100	9772409200	50001990000 5000004600	0.00
CODI DD33	Properative treatment neive	WOO	Breast Cancer	100	100317430000	0009004000	2.02
COPLERSS	Preoperative treatment neive	WO0	Dreast Cancer	100	10551742000	7.453035900	2.70
	Preservative treatment neive	WGO	Broad Cancer	100	00001000000	1403220600	2.90
CODIDDOC	Properative treatment naive	WID0	Breast Cancer	100	9100193000	0100440200	2.44
COPUDDO7	Presperative treatment naive	6CVV	Breast Cancer	100	3103340400 40307505000	0031017800	2.42 0.75
	rreoperative treatment naive	WGS	Dreast Cancer	100	10307505600	0929030000	2.70
CODI DD 10	Preoperative treatment haive	WGS	Breast Cancer	100	9983824000	0041/20400	2.71
GGPLBR40	Preoperative treatment haive	WGS	Breast Cancer	100	10148823800	7024345400	2.79
COPLER41	Preoperative treatment naive	WGS	Breast Cancer	100	11108792000	7002940600	3.00
UGHLBK45	reoperative treatment haive	WGS	Breast Cancer	100	8793780600	6011109400	2.39
CGPLBR46	Preoperative treatment naïve	WGS	Breast Cancer	100	/22860/600	4706130000	1.87
CGPLBR47	Preoperative treatment naïve	WGS	Breast Cancer	100	/906911400	5341655000	2.12
CGPLBR48	Freoperative treatment naïve	WGS	Breast Cancer	100	6992032000	4428536200	1.76
CGPLBR49	Preoperative treatment naïve	WGS	Breast Cancer	100	/311195000	4559460200	1.81
CGPLBR50	Preoperative treatment naïve	WGS	Breast Cancer	100	1110/960600	7582776600	3.01

Patient	Timepoint	Analysis type	Patient Type	Read Length	Total Bases	High Quality Bases	Coverage
000000000000000000000000000000000000000					Sequenced	Analyzed	
CGPLBR51	Preoperative treatment naïve	WGS	Breast Cancer	100	8393547400	5102069000	2.02
CGPLBR52	Preoperative treatment naïve	WGS	Breast Cancer	100	9491894800	6141729000	2.44
CGPLBR55	Preoperative treatment naïve	WGS	Breast Cancer	100	9380109800	6518855200	2.59
CGPLBR56	Preoperative treatment naïve	WGS	Breast Cancer	100	12191816800	8293011200	3.29
CGPLBR57	Preoperative treatment naïve	WGS	Breast Cancer	100	9847584400	6713638000	2.66
CGPLBR59	Preoperative treatment naïve	WGS	Breast Cancer	100	7476477000	5059878200	2.01
CGPLBR60	Preoperative treatment naïve	WGS	Breast Cancer	100	6531354600	4331253800	1.72
CGPLBR61	Preoperative treatment naïve	WGS	Breast Cancer	100	9311029200	6430920800	2.55
CGPLBR63	Preoperative treatment naïve	WGS	Breast Cancer	100	8971949000	6044009600	2.40
CGPLBR65	Preoperative treatment naïve	WGS	Breast Cancer	100	7197301400	4835015200	1.92
CGPLBR68	Preoperative treatment naïve	WGS	Breast Cancer	100	10003774000	6974918800	2.77
CGPLBR69	Preoperative treatment naïve	WGS	Breast Cancer	100	10080881800	6903459200	2.74
CGPLBR70	Preoperative treatment naïve	WGS	Breast Cancer	100	8824002800	6002533800	2.38
CGPLBR71	Preoperative treatment naïve	WGS	Breast Cancer	100	10164136800	6994668600	2.78
CGPLBR72	Preoperative treatment naïve	WGS	Breast Cancer	100	18416841400	12328783000	4.89
CGPLBR73	Preoperative treatment naïve	WGS	Breast Cancer	100	10281460200	7078613200	2.81
CGPLBR76	Preoperative treatment naïve	WGS	Breast Cancer	100	10105270400	6800705000	2 70
CGPLBR81	Preoperative treatment naïve	WGS	Breast Cancer	100	5087126000	3273367200	1.30
CGPLBR82	Preoperative treatment naive	W/GS	Breast Cancer	100	10576496600	7186662600	2.85
CGPLBR83	Preoperative treatment naïve	WGS	Breast Cancer	100	8977124400	5947525000	2.36
CGPL BR84	Preoperative treatment naive	WGS	Broast Cancor	100	6272538600	4066870600	1.61
CODI RD87	Properative treatment naive	Wide	Broast Cancer	100	8460054800	5375710200	2.12
CODI DD99	Properative treatment naive	WGG	Dreast Cancer	100	9666940400	5400900000	2.10
COPLEROD	Pressentive treatment naive	WGG	Breast Cancer	100	6663460300	4300440400	4.74
COPLERSU COPLERSU	Preoperative treatment naive	WOO	Dreast Cancel	100	10003409200	4592442400	1.74
CGPLBR91	Preoperative treatment naive	WGS	Breast Cancer	100	10933002400	7647842000	3.03
CGPLBR92	Preoperative treatment naive	WGS	Breast Cancer	100	10392674000	6493598000	2.58
CGPLBR93	Preoperative treatment naive	WGS	Breast Cancer	100	5659836000	3931106800	1.56
CGPLH189	Preoperative treatment naïve	WGS	Healthy	100	11400610400	7655568800	3.04
CGPLH190	Preoperative treatment naïve	WGS	Healthy	100	11444671600	7581175200	3.01
CGPLH192	Preoperative treatment naïve	WGS	Healthy	100	12199010800	8126804800	3.22
CGPLH193	Preoperative treatment naïve	WGS	Healthy	100	10201897600	6635285400	2.63
CGPLH194	Preoperative treatment naïve	WGS	Healthy	100	11005087400	7081652600	2.81
CGPLH196	Preoperative treatment naïve	WGS	Healthy	100	12891462800	8646881800	3.43
CGPLH197	Preoperative treatment naïve	WGS	Healthy	100	11961841600	8052855200	3.20
CGPLH198	Preoperative treatment naïve	WGS	Healthy	100	13605489000	8885716000	3.53
CGPLH199	Preoperative treatment naïve	WGS	Healthy	100	1818090200	5615316000	2.23
CGPLH200	Preoperative treatment naïve	WGS	Healthy	100	14400027600	9310342000	3.69
CGPI H201	Preoperative treatment naïve	WGS	Healthy	100	6208766800	417 1848400	1.66
CGPI H202	Preoperative treatment naïve	WGS	Healthy	100	11282922800	7363530600	2.92
CGPI H203	Preoperative treatment naïve	WGS	Healthy	100	13540689600	9068747600	3.60
CGPLH205	Prennerative treatment naïve	WGS	Healthy	100	10343537800	6696988600	2.66
CGPLH208	Preoperative treatment naïve	WGS	Healthy	100	12796300000	8272073400	3.28
CGPLH200	Preoperative treatment naïve	WGS	Healthy	100	13123035/00	8531813600	3 30
CGPLH210	Procestive reatment naive	WGS	Healthy	100	10120000400	6832204600	9.71
CGPLH210	Proporative treatment naive	WGS	Hoalthy	100	14655260200	8887067600	2.53
	Preoperative treatment naïve	MOO	Healthy	100	70600200200	4662264000	4.04
OGPL000	Preservative treatment naive	WGG	rieality	100	7002003400	4000001200	1.01
CGPLH307	Preoperative treatment naive	WGS	Heatiny	100	7239126200	4047/097/200	1.00
UGPLH308	Preoperative treatment naive	WGS	Healthy	100	8012001400	342402000	2.19
CGPLH309	Preoperative treatment haive	WGS	Healthy	100	11664474200	7431836600	2.95
CGPLH310	Preoperative treatment naive	WGS	Healthy	100	11045691000	7451506200	2.96
CGPLH311	Preoperative treatment naive	WGS	Healthy	100	10406803200	6786479600	2.69
CGPLH314	Preoperative treatment naïve	WGS	Healthy	100	10371343800	6925866600	2.75
CGPLH315	Preoperative treatment naïve	WGS	Healthy	100	9508538400	6208744600	2.46
CGPLH316	Preoperative treatment naïve	WGS	Healthy	100	10131063600	6891181000	2.73
CGPLH317	Preoperative treatment naïve	WGS	Healthy	100	8364314400	5302232600	2.10
CGPLH319	Preoperative treatment naïve	WGS	Healthy	100	8780528200	5585897000	2.22
CGPLH320	Preoperative treatment naïve	WGS	Healthy	100	8956232600	5784619200	2.30
CGPLH322	Preoperative treatment naïve	WGS	Healthy	100	9563837800	6445517800	2.56
CGPLH324	Preoperative treatment naïve	WGS	Healthy	100	6765038600	4469201600	1.77
CGPLH325	Preoperative treatment naïve	WGS	Healthy	100	8008213400	5099262800	2.02
CGPLH326	Preoperative treatment naïve	WGS	Healthy	100	9554226200	6112544800	2.43
CGPLH327	Preoperative treatment naïve	WGS	Healthy	100	8239168800	5351280200	2.12
CGPLH328	Preoperative treatment naïve	WGS	Healthy	100	7197086800	4516894800	1.79
CGPLH329	Preoperative treatment naïve	WGS	Healthy	100	8921554800	5493709800	2.18
CGPI H330	Preoperative treatment naïve	WGS	Healthy	100	10693603400	7077793600	2.81
CGPI H331	Preoperative treatment neive	WGS	Healthy	100	8982792000	5538096200	2.20
001 E1001	Proporativo treatment neive	N//20	Hoalthy	100	72560027-92000	5178270200	2.20
COLLU22	Proportative treatment netwo	WGG	Hoalthy	100	0370662400	S170020000 £035730.400	2.00
	Proportivo tractment nellus	WOO	Hoden	100	9010003400	5370334400	2.40
OCDI LIANZ	Properative deatment naive	WOO	nealthy	100	720002498200	0040001400 4054467600	Z.1∠ 4.07
UGHLH33/	Preoperative treatment haive	WGS	Healthy	100	/ 399022000	4904407600	1.97
UGHLH338	reoperative treatment naive	WGS	Healthy	100	891/121600	51/092/200	2.45
CGPLH339	Preoperative treatment naive	WGS	Healthy	100	8591130800	5855411400	2.33
CGPLH340	Preoperative treatment naive	WGS	Healthy	100	8046351000	5368062000	2.13
CGPLH341	Preoperative treatment naïve	WGS	Healthy	100	7914788600	5200304800	2.06

Patient	Timepoint	Analysis type	Patient Type	Read Length	Total Bases	High Quality Bases	Coverage
0.0121-112.40		WOO.		400	Sequenceu	Analyzeg	0.00
CGPLH342	Preoperative treatment haive	WGS	Healthy	100	8633473000	5/019/2400	2.26
CGPLH343	Preoperative treatment naive	WGS	Healthy	100	6594759800	4410570800	1.75
CGPLH344	Preoperative treatment naïve	WGS	Healthy	100	/628192400	49614/6600	1.97
CGPLH345	Preoperative treatment naïve	WGS	Healthy	100	7121569400	4747223000	1.88
CGPLH346	Preoperative treatment naïve	WGS	Healthy	100	7707924600	4873321600	1.93
CGPLH35	Preoperative treatment naïve	WGS	Healthy	100	47305985200	4774186200	12.63
CGPLH350	Preoperative treatment naïve	WGS	Healthy	100	9745839800	6054055200	2.40
CGPLH351	Preoperative treatment naïve	WGS	Healthy	100	13317435800	8714465000	3.46
CGPLH352	Preoperative treatment naïve	WGS	Healthy	100	7659351600	4752309400	1.89
CGPLH353	Preoperative treatment naïve	WGS	Healthy	100	8435782400	5275098200	2.09
CGPLH354	Preoperative treatment naïve	WGS	Healthy	100	8018644000	4857577600	1.93
CGPLH355	Preoperative treatment naïve	WGS	Healthy	100	8624675800	5709726400	2.27
CGPLH356	Preoperative treatment naïve	WGS	Healthy	100	8817952800	5729595200	2.27
CGPLH357	Preoperative treatment naïve	WGS	Healthy	100	11931696200	7690004400	3.05
CGPLH358	Preoperative treatment naïve	WGS	Healthy	100	12802561200	8451274800	3.35
CGPLH36	Preoperative treatment naïve	WGS	Healthy	100	40173545600	3974810400	10.52
CGPLH360	Preoperative treatment naïve	WGS	Healthy	100	7280078400	4918566200	1.95
CGPLH361	Preoperative treatment naïve	WGS	Healthy	100	7493498400	4966813800	1.97
CGPLH362	Preoperative treatment naïve	WGS	Healthy	100	11345644200	7532133600	2.99
CGPLH363	Preoperative treatment naïve	WGS	Healthy	100	6117382800	3965952400	1.57
CGPLH364	Preoperative treatment naïve	WGS	Healthy	100	10823498400	7195657000	2.86
CGPI H365	Preoperative treatment naive	WGG	Healthy	100	5038367/00	3954556200	1 57
	Proporativo troatmont naivo	MOS	Hoalthy	100	7063469600	4724952000	1.07
	Presserative treatment naive	WGG	Healthy	100	7003100000	4731003000	1.00
CGPLH307	Preoperative treatment haive	WGG	neariny	100	7119031000	4027000200	1.04
CGPLH368	Preoperative treatment naive	WGS	Healthy	100	7726718400	4975233400	1.97
CGPLH369	Preoperative treatment naive	WGS	Healthy	100	10967584200	7130956800	2.83
CGPLH37	Preoperative treatment naive	WGS	Healthy	100	45970545400	4591328800	12.15
CGPLH370	Preoperative treatment naïve	WGS	Healthy	100	9237170600	6106373800	2.42
CGPLH371	Preoperative treatment naïve	WGS	Healthy	100	8077798800	5237070600	2.08
CGPLH380	Preoperative treatment naïve	WGS	Healthy	100	14049589200	8614241200	3.42
CGPLH381	Preoperative treatment naïve	WGS	Healthy	100	16743792000	10767882800	4.27
CGPLH382	Preoperative treatment naïve	WGS	Healthy	100	18474025200	12276437200	4.87
CGPLH383	Preoperative treatment naïve	WGS	Healthy	100	13215954000	8430420600	3.35
CGPLH384	Preoperative treatment naïve	WGS	Healthy	100	8481814000	5463636200	2.17
CGPLH385	Preoperative treatment naive	WGS	Healthy	100	9596118800	6445445600	2.56
CGPLH386	Preoperative treatment naïve	WGS	Healthy	100	7399540400	4915484800	1.95
CGPLH387	Preoperative treatment naïve	WGS	Healthy	100	6860332600	4339724400	1.72
CGPI H388	Preoperative treatment naive	WGS	Healthy	100	8679705600	5463945400	2.17
CGPI H389	Preoperative treatment naïve	WGS	Healthy	100	7266863600	4702386000	1.87
CGPI H390	Preoperative treatment naïve	WGS	Healthy	100	7509035600	4913901800	1.95
CGPLH391	Preoperative treatment naïve	WGS	Healthy	100	7252286000	4702404800	1.87
CGPLH392	Preoperative treatment naïve	WGS	Healthy	100	7302618200	4722407000	1.87
CGPLH393	Preoperative treatment naïve	WGS	Healthy	100	8879138000	59/7871800	2.36
CCDI LI304	Proporativo treatment naive	WGS	Hoalthy	100	8737031000	5500777700	2.00
COPI LI305	Proportativo treatment naivo	WGS	Hostithy	100	7783904800	4907146000	1 05
	Properative treatment naïve	MOS	Healthy	100	760504000	4307 140000	1.30
OGEL000	Preoperative treatment naive	WGG	rieatiny	100	1000007200	0070000200	2.01
CGPLH390	Preoperative treatment naive	WGS	Healthy	100	13001416200	6007020000 EE00040000	3.4Z
OGPLH399	Preoperative treatment naive	WGS	Healthy	100	9667699200	0020040000	2.19
CGPLH400	Preoperative treatment haive	WGS	Healthy	100	10573939000	6290438200	2.50
CGPLH401	Preoperative treatment naive	WGS	Healthy	100	9415150000	6139638000	2.44
CGPLH402	Preoperative treatment naive	WGS	Healthy	100	5541458000	2972027800	1.18
CGPLH403	Preoperative treatment naive	WGS	Healthy	100	6470913200	3549772600	1.41
CGPLH404	Preoperative treatment naive	WGS	Healthy	100	/369651800	4120205000	1.64
CGPLH405	Preoperative treatment naïve	WGS	Healthy	100	/360239000	4293522600	1.70
CGPLH406	Preoperative treatment naïve	WGS	Healthy	100	6026125400	3426007400	1.36
CGPLH407	Preoperative treatment naïve	WGS	Healthy	100	7073375200	4079286800	1.62
CGPLH408	Preoperative treatment naïve	WGS	Healthy	100	8006103200	5121285600	2.03
CGPLH409	Preoperative treatment naïve	WGS	Healthy	100	7343124600	4432335600	1.76
CGPLH410	Preoperative treatment naïve	WGS	Healthy	100	7551842000	4818779600	1.91
CGPLH411	Preoperative treatment naïve	WGS	Healthy	100	6119676400	3636478400	1.44
CGPLH412	Preoperative treatment naïve	WGS	Healthy	100	7960821200	4935752200	1.96
CGPLH413	Preoperative treatment naïve	WGS	Healthy	100	7623405400	4827888400	1.92
CGPLH414	Preoperative treatment naive	WGS	Healthy	100	7381312400	4743337200	1.88
CGPLH415	Preoperative treatment naive	WGS	Healthy	100	7240754200	4162208800	1.65
CGPLH416	Preoperative treatment naïve	WGS	Healthy	100	7745658600	4670226000	1.85
CGPI H417	Preoperative treatment naïve	WGS	Healthy	100	7627498600	4403085600	1 75
CGPI HA18	Prennerative treatment naïve	WGS	Haalthy	100	9090285000	509/81/000	2.02
	Preonerative treatment neivo	WCG	Healthy	400	791/100000	5078380800	2.02
	Proporativo troctmont neivo	WOO	Loolby	100	30,4020,40600	3004030400	10.20
	Proporative vestment naive	WD0	Healthy	100	70442040000	300 1030400 4744000000	10.32
OGPLH420	Preoperative treatment naive	WGS	Healthy	100	7014307800	47 11593600	1.07
UGPLH422	Freoperative treatment haive	WGS	Healthy	100	9103972800	0003009300	2.40
GGPLH423	Preoperative treatment naive	WGS	Healthy	100	10154714200	0128800200	2.43
CGPLH424	Preoperative treatment naive	WGS	Healthy	100	11002394000	65/3/56000	2.61
CGPLH425	Preoperative treatment naïve	WGS	Healthy	100	14681352600	9272557000	3.68

Patient	Timepoint	Analysis type	Patient Type	Read Length	Total Bases	High Quality Bases	Coverage
	Proparativo trastment naïvo	MICS	Hoolthy	400	9226724000	5477/20200	20.0
	Preoperative treatment naïve	WGO	Healthy	100	0000701000	5620004900	2.00
000010427	Crean eventive treatment naive	WOO	rieditity	100	0242924400	5002991000	2.24
00010400	Preoperative treatment haive	WGS	Heatiny	100	0012000400	0004700000	2.2.2
00FLH429	Preoperative treatment naive	WGO	Healthy	100	0000002000	5477121400	2.17
COPLH43	Preoperative treatment naive	WGS	Healthy	100	30013133400	3810096400	10.10
CGPLH430	Preoperative treatment haive	WGS	Heatiny	100	10307360400	0041011000	2.71
OGPLH431	Preoperative treatment haive	WGS	Healthy	100	7599875800	5006909000	1.99
CGPLH432	Preoperative treatment naive	WGS	Healony	100	7932532400	4932304200	1.95
UGPLH434	Preoperative treatment haive	WGS	Healthy	100	10417028600	6965998800	2.76
CGPLH435	Preoperative treatment naive	WGS	Healthy	100	8747793800	5677115200	2.25
CGPLH436	Preoperative treatment naive	WGS	Healthy	100	7990589400	5228737800	2.07
CGPLH437	Preoperative treatment naive	WGS	Healthy	100	10156991200	6935537200	2.75
CGPLH438	Preoperative treatment naive	WGS	Healthy	100	9473604000	6445455600	2.56
CGPLH439	Preoperative treatment naive	WGS	Healthy	100	8303723400	5439877200	2.16
CGPLH440	Preoperative treatment naive	WGS	Healthy	100	9055233800	6018631400	2.39
CGPLH441	Preoperative treatment naïve	WGS	Healthy	100	10290682000	6896415200	2.74
CGPLH442	Preoperative treatment naïve	WGS	Healthy	100	9876551600	6591249800	2.62
CGPLH443	Preoperative treatment naive	WGS	Healthy	100	9837225800	6360740800	2.52
CGPLH444	Preoperative treatment naïve	WGS	Healthy	100	9199271400	5755941600	2.28
CGPLH445	Preoperative treatment naïve	WGS	Healthy	100	8089236400	5218259800	2.07
CGPLH446	Preoperative treatment naïve	WGS	Healthy	100	7890664200	5181606000	2.06
CGPLH447	Preoperative treatment naïve	WGS	Healthy	100	7775775000	5120239800	2.03
CGPLH448	Preoperative treatment naïve	WGS	Healthy	100	8686964800	5605079200	2.22
CGPLH449	Preoperative treatment naïve	WGS	Healthy	100	8604545400	5527726600	2.19
CGPLH45	Preoperative treatment naïve	WGS	Healthy	100	39029653000	3771601200	9.98
CGPLH450	Preoperative treatment naïve	WGS	Healthy	100	8428254800	5439950000	2.16
CGPLH451	Preoperative treatment naïve	WGS	Healthy	100	8128977600	5186265600	2.06
CGPLH452	Preoperative treatment naïve	WGS	Healthy	100	6474313400	4216316400	1.67
CGPLH453	Preoperative treatment naïve	WGS	Healthy	100	9831832800	6224917600	2.47
CGPLH455	Preoperative treatment naïve	WGS	Healthy	100	7373753000	4593473600	1.82
CGPLH456	Preoperative treatment naïve	WGS	Healthy	100	8455416200	5457148200	2.17
CGPLH457	Preoperative treatment naïve	WGS	Healthy	100	8647618000	5534503800	2.20
CGPLH458	Preoperative treatment naïve	WGS	Healthy	100	6633156400	4415186000	1.75
CGPLH459	Preoperative treatment naïve	WGS	Healthy	100	8361048200	5497193800	2.18
CGPLH46	Preoperative treatment naïve	WGS	Healthy	100	35361484600	3516232800	9.30
CGPLH460	Preoperative treatment naïve	WGS	Healthy	100	6788835400	4472282800	1.77
CGPLH463	Preoperative treatment naïve	WGS	Healthy	100	8534880800	5481759200	2.18
CGPI H464	Preoperative treatment naïve	WGS	Healthy	100	6692520000	4184463400	1.66
CGPI H465	Preoperative treatment naïve	WGS	Healthy	100	7772884600	4878430800	194
CGPI H466	Preoperative treatment naïve	WGS	Healthy	100	9056275000	5830877400	2.31
CGPLH467	Preoperative treatment naïve	WGS	Healthy	100	6931419200	4585861000	1.82
CGPLH468	Preoperative treatment naïve	WGS	Healthy	100	9334067400	6314830400	2.51
CGPI H469	Preoperative treatment naïve	WGS	Healthy	100	7376691000	4545246600	1.80
CGPLH47	Proporativo treatment naive	WGS	Healthy	100	38485647600	353/883600	0.35
CGPI H470	Proporative treatment naive	Wigg	Hoalthy	100	7800707600	5224650600	2.00
00101470	Proporativo treatment naïvo	Wide	Hoalthy	100	0200420600	6402374000	2.07
CODI UZO	Properative treatment naive	WOO	Lighthy	100	9200400000	5200040000	2.42
	Properative treatment naïve	WGS	Godithy	100	0143/42400	5440000	2.14
00011474	Preoperative treatment naive	WGS	riealury	100	0120924000	0419020400	2.10
00PLH474	Preoperative treatment haive	WGS	rieatity Lieatity	100	000307 1400	5004009400	2.41
CGPLH475	Preoperative treatment naive	WGS	Heatiny	100	8110374000	5291716000	2.10
CGPLH476	Preoperative treatment naive	WGS	Healthy	100	8163162600	5096869600	2.02
CGPLH477	Preoperative treatment haive	WGS	Healthy	100	8350093200	5455458500	2.17
CGPLH478	Preoperative treatment naive	WGS	Healthy	100	8259642200	5406516200	2.15
CGPLH479	Preoperative treatment naive	WGS	Healthy	100	8027598600	541/3/6800	2.15
CGPLH48	Preoperative treatment naïve	WGS	Healthy	100	42232410000	4165893400	11.02
CGPLH480	Preoperative treatment naïve	WGS	Healthy	100	7832983200	5020127000	1.99
CGPLH481	Preoperative treatment naïve	WGS	Healthy	100	7578518800	4883280800	1.94
CGPLH482	Preoperative treatment naïve	WGS	Healthy	100	8279364800	5652263600	2.24
CGPLH483	Preoperative treatment naïve	WGS	Healthy	100	8660338800	5823859200	2.31
CGPLH484	Preoperative treatment naïve	WGS	Healthy	100	8445420000	5794328000	2.30
CGPLH485	Preoperative treatment naïve	WGS	Healthy	100	8371255400	5490207800	2.18
CGPLH486	Preoperative treatment naïve	WGS	Healthy	100	8216712200	5506871000	2.19
CGPLH487	Preoperative treatment naïve	WGS	Healthy	100	7936294200	5309250200	2.11
CGPLH488	Preoperative treatment naïve	WGS	Healthy	100	8355603600	5453160000	2.16
CGPLH49	Preoperative treatment naïve	WGS	Healthy	100	33912191800	3310056000	8.76
CGPLH490	Preoperative treatment naïve	WGS	Healthy	100	7768712400	5175567800	2.05
CGPLH491	Preoperative treatment naïve	WGS	Healthy	100	9070904000	6011275000	2.39
CGPLH492	Preoperative treatment naïve	WGS	Healthy	100	7208727200	4753213800	1.89
CGPLH493	Preoperative treatment naïve	WGS	Healthy	100	10542882600	7225870800	2.87
CGPLH494	Preoperative treatment naive	WGS	Healthy	100	10908197600	7046645000	2.80
CGPLH495	Preoperative treatment naïve	WGS	Healthy	100	8945040400	5891697800	2.34
CGPLH496	Preoperative treatment naïve	WGS	Healthy	100	10859729400	7549608000	3.00
CGPLH497	Preoperative treatment naïve	WGS	Healthy	100	9630507400	6473162800	2.57
CGPLH498	Preoperative treatment naïve	WGS	Healthy	100	10060232600	6744622800	2.68

Patient	Timenoint	Analysis tyne	Patient Type	Read Length	Total Bases	High Quality Bases	Coverage
	/micpone	Mayoro type	T duoine Type	Noad Longin	Sequenced	Analyzed	
CGPLH499	Preoperative treatment naïve	WGS	Healthy	100	10221293600	6951282800	2.76
CGPLH50	Preoperative treatment naïve	WGS	Healthy	100	41248860600	4073272800	10.78
CGPLH500	Preoperative treatment naïve	WGS	Healthy	100	9703168200	6239893800	2.48
CGPLH501	Preoperative treatment naïve	WGS	Healthy	100	9104779800	6161602800	2.45
CGPLH502	Preoperative treatment naïve	WGS	Healthy	100	8514467400	5290881400	2.10
CGPLH503	Preoperative treatment naïve	WGS	Healthy	100	9019992200	6100383400	2.42
CGPLH504	Preoperative treatment naïve	WGS	Healthy	100	9320330200	6199750200	2.46
CGPLH505	Preoperative treatment naïve	WGS	Healthy	100	7499497400	4914559000	1.95
CGPLH506	Preoperative treatment naïve	WGS	Healthy	100	10526142000	6963312600	2.76
CGPLH507	Preoperative treatment naïve	WGS	Healthy	100	9091018400	6146678600	2.44
CGPLH508	Preoperative treatment naïve	WGS	Healthy	100	10989315600	7360201400	2.92
CGPLH509	Preoperative treatment naive	WGS	Healthy	100	9729084600	6702691600	2.66
CGPLH51	Preoperative treatment naïve	WGS	Healthy	100	35967451400	3492833200	9.24
CGPLH510	Preoperative treatment naïve	WGS	Healthy	100	11162691600	7626795400	3.03
CGPLH511	Preoperative treatment naïve	WGS	Healthy	100	11888619600	8110427600	3.22
CGPLH512	Preoperative treatment naïve	WGS	Healthy	100	10726438400	7110078000	2.82
CGPLH513	Preoperative treatment naïve	WGS	Healthy	100	10701564200	7155271400	2.84
CGPLH514	Preoperative treatment naïve	WGS	Healthy	100	8822067000	5958773800	2.36
CGPLH515	Preoperative treatment naïve	WGS	Healthy	100	7792074800	5317464600	2.11
CGPLH516	Preoperative treatment naïve	WGS	Healthy	100	8642620000	5846439400	2.32
CGPLH517	Preoperative treatment naïve	WGS	Healthy	100	11915929600	8013937000	3.18
CGPLH518	Preoperative treatment naïve	WGS	Healthy	100	12804517400	8606661600	3.42
CGPLH519	Preoperative treatment naïve	WGS	Healthy	100	11513222200	7922798400	3.14
CGPLH52	Preoperative treatment naïve	WGS	Healthy	100	49247304200	4849631400	12.83
CGPLH520	Preoperative treatment naïve	WGS	Healthy	100	8942102400	6030683400	2.39
CGPLH54	Preoperative treatment naïve	WGS	Healthy	100	45399346400	4466164600	11.82
CGPLH55	Preoperative treatment naïve	WGS	Healthy	100	42547725000	4283337600	11.33
CGPLH56	Preoperative treatment naïve	WGS	Healthy	100	33460308000	3226338000	8.53
CGPLH57	Preoperative treatment naïve	WGS	Healthy	100	36504735200	3509125000	9.28
CGPLH59	Preoperative treatment naïve	WGS	Healthy	100	39642810600	3820011000	10.11
CGPLH625	Preoperative treatment naïve	WGS	Healthy	100	6408225000	4115487600	1.63
CGPLH626	Preoperative treatment naïve	WGS	Healthy	100	9915193600	6391657000	2.54
CGPLH63	Preoperative treatment naïve	WGS	Healthy	100	37447047600	3506737000	9.28
CGPLH639	Preoperative treatment naïve	WGS	Healthy	100	8158965800	5216049600	2.07
CGPLH64	Preoperative treatment naïve	WGS	Healthy	100	34275506800	3264508000	8.63
CGPLH640	Preoperative treatment naïve	WGS	Healthy	100	8058876800	5333551800	2.12
CGPLH642	Preoperative treatment naïve	WGS	Healthy	100	7545555600	4909732800	1.95
CGPLH643	Preoperative treatment naïve	WGS	Healthy	100	7865776800	5254772000	2.09
CGPLH644	Preoperative treatment naïve	WGS	Healthy	100	6890139000	4599387400	1.83
CGPLH646	Preoperative treatment naïve	WGS	Healthy	100	7757219400	5077408200	2.01
CGPLH75	Preoperative treatment naïve	WGS	Healthy	100	23882926000	2250344400	5.95
CGPLH/6	Preoperative treatment naïve	WGS	Healthy	100	30631483600	3086042200	8.16
CGPLH77	Preoperative treatment naïve	WGS	Healthy	100	31651/41400	3041290200	8.04
CGPLH78	Preoperative treatment naive	WGS	Healthy	100	31165831200	31300/9800	8.28
CGPLH79	Preoperative treatment naive	WGS	Healthy	100	31935043000	3128488200	8.27
CGPLH80	Preoperative treatment naive	WGS	Healthy	100	32965093000	33113/1800	8.76
CGPLH81	Preoperative treatment naive	WGS	Healthy	100	27035311200	2455084400	6.49
CGPLH82	Preoperative treatment haive	WGS	Healthy	100	28447051200	2893358200	7.65
CGPLH63	Preoperative treatment haive	WGS	Healthy	100	25702240200	2459494000	6.50
CGPLH84	Preoperative treatment haive	WGS	Heatiny	100	20176861400	2524467400	0.00
CGPLLU13	Pre-treatment, Day -2	WGS	Lung Cancer	100	9126585600	5915051800	2.35
OGPLLU13	Post-treatment, Day 5	WGS	Lung Cancer	100	7739120200	5071745800	2.01
COPILIUS	Post-treatment, Day 28	VVG5	Lung Cancer	100	9081565400	5754371600	2.29
OGPLLU13	Post-treatment, Day 91	WGS	Lung Cancer	100	9076007000	0100700200	2.44
OGPLLU14	Pre-treatment, Day -38	WGS	Lung Cancer	100	13639196400	9033455800	3.58
COPILUI4	Pre-treatment, Day - 16	WGS WCC	Lung Cancer	100	7 17 6600600	4800040000	1.93
CGPLLU14	Pre-treatment, Day -3	WGS	Lung Cancer	100	7653473000	4816193600	1.91
CGPLLU14	Pre-treatment, Day 0	WGO	Lung Cancer	100	7 40 30 1997 400	0190200000	2.00
COPILIUM	Post-treatment, Day 0.33	WGS	Lung Cancer	100	7 193040800	4009701000	1.93
CGPLLU14	Post-treatment, Day /	WGS	Lung Cancer	100	7 102000000	4741432000	1.00
COPILLU 144	Proportativo treatment neivo	MGO	Lung Cancer	100	4534013000	0410500400 0449670900	1.30
COPILIUM	Preoperative treatment naive	WGO	Lung Cancer	100	24403061000	21100/2000	0.01
COPIL 1440	Proporative treatment naive	W/CG	Lung Cancer	100	0330013400 0700709400	6407866400	2.33
CGPU LI163	Preoperative treatment neive	MOG	Lung Cancer	100	9709792400 9450690900	5407 000400	2.04
	Preoperative treatment naive	WDe	Lung Cancer	100	9100020200 98377798400	2654139600	2.91 7.01
COPELU 100	Proporative treatment news	00/W	Lung Cancer	100	2007 4400400	2001100000	1.01
CODELLUIDO	Proportativo treatment naive	WGO	Lung Cancer	100	0092109400	5050191000	0.47
COPIL 1175	Proportivo troatmont polico	60W	Lung Cancer	100	3030373000 33704942900	3/19750/000	2.30
COPELUI78	Preoperative treatment naive	W00	Lung Cancer	100	9778553900	5410700400	0.04 0.30
00FEL01/0	Proportative treatment naive	WGG	Lung Consor	100	373/61/0000	0754500200 0678606000	2.00 1.00
CGPU U190	Properative treatment noive	W/DQ	Lung Cancer	100	01 040 14000 28305036600	2010000200	7.02
CGPH LI10R	Prennerative treatment naive	WG9	Lung Cancer	100	23244959200	2700004200	5.86
CGPLLU202	Preoperative treatment naïve	Was	Lung Canoor	100	21110128200	1831279/00	0.00 4 8A
UCI LLUZUZ	reoperative restrictions	AKCCO	Lung Contool	100	21110120200	1001270400	4.04

Patient	Timepoint	Analysis type	Patient Type	Read Length	Total Bases Sequenced	High Quality Bases Analyzed	Coverage
CGPLLU203	Preoperative treatment naïve	WGS	Lung Cancer	100	4304235600	2896429000	1 15
CGPU U205	Preoperative treatment naïve	WGS	Lung Cancer	100	10502467000	7386984800	2.93
CGPLLU206	Preoperative treatment naïve	WGS	Lung Cancer	100	21888248200	2026666000	5.36
CGPLLU207	Preoperative treatment naïve	WGS	Lung Cancer	100	10806230600	7363049000	2.92
CGPLLU208	Preoperative treatment naïve	WGS	Lung Cancer	100	7795426800	5199545800	2.06
CGPLLU209	Preoperative treatment naïve	WGS	Lung Cancer	100	26174542000	2621961800	6.93
CGPLLU244	Pre-treatment, Day -7	WGS	Lung Cancer	100	9967531400	6704365800	2.66
CGPLLU244	Pre-treatment, Day -1	WGS	Lung Cancer	100	9547119200	5785172600	2.30
CGPLLU244	Post-treatment, Day 6	WGS	Lung Cancer	100	9535898600	6452174000	2.56
CGPLLU244	Post-treatment, Day 62	WGS	Lung Cancer	100	8783628600	5914149000	2.35
CGPLLU245	Pre-treatment, Day -32	WGS	Lung Cancer	100	10025823200	6313303800	2.51
CGPLLU245	Pre-treatment, Day 0	WGS	Lung Cancer	100	9462480400	6612867800	2.62
CGPLLU245	Post-treatment, Day 7	WGS	Lung Cancer	100	9143825000	6431013200	2.55
CGPLLU245	Post-treatment, Day 21	WGS	Lung Cancer	100	9072713800	6368533000	2.53
CGPLLU246	Pre-treatment, Day -21	WGS	Lung Cancer	100	95/9/8/000	6458003400	2.56
CGPLLU246	Pre-treatment, Day 0	WGS	Lung Cancer	100	9512703600	6440535600	2.56
CGPLLU245	Post-treatment, Day 9	WGS	Lung Cancer	100	9512646000	0300939200	2.50
CGPLLU246	Post-treatment, Day 42	WGS	Lung Cancer	100	0400305000	7300747400	2.92
COPLLU264	Pre-treatment, Day - I	WCS	Lung Cancer	100	9195305000	5239803600 5600 A64000	2.48
COPLEU204	Post-treatment, Day 6	WGS	Lung Cancer	100	0247410000	0000404200	2.22
CGPLLU204	Post-treatment, Day 27	WGG	Lung Cancer	100	9031022200	5050109000	2.32 2.37
COPUL U265	Pro troatmont, Day 0	WGS	Lung Cancer	100	0460634000	6111185000	2.07
CGPU U265	Post-treatment, Day 3	WGS	Lung Cancer	100	8051601200	498/166600	1.98
CGPU U265	Poet-treatment, Day 3	WGS	Lung Cancer	100	8082224600	51100000	2.03
CGPLLU265	Post-treatment Day 84	WGS	Lung Cancer	100	8368637400	5369526400	2.00
CGPLLU266	Pre-treatment Day 0	WGS	Lung Cancer	100	8583766400	5846473600	2.10
CGPU U266	Post-treatment Day 16	WGS	Lung Cancer	100	8795793600	5984531400	2.37
CGPU U266	Post-treatment Day 83	WGS	Lung Cancer	100	9157947600	6227735000	2.47
CGPLLU266	Post-treatment, Day 328	WGS	Lung Cancer	100	7299455400	5049379000	2.00
CGPLLU267	Pre-treatment, Day -1	WGS	Lung Cancer	100	10658657800	6892067000	2.73
CGPLLU267	Post-treatment, Day 34	WGS	Lung Cancer	100	8492833400	5101097800	2.02
CGPLLU267	Post-treatment, Day 90	WGS	Lung Cancer	100	12030314800	7757930400	3.08
CGPLLU269	Pre-treatment, Day 0	WGS	Lung Cancer	100	9170168000	5830454400	2.31
CGPLLU269	Post-treatment, Day 9	WGS	Lung Cancer	100	8905640400	5298461400	2.10
CGPLLU269	Post-treatment, Day 28	WGS	Lung Cancer	100	8455306600	5387927400	2.14
CGPLLU271	Post-treatment, Day 259	WGS	Lung Cancer	100	8112060400	5404979000	2.14
CGPLLU271	Pre-treatment, Day 0	WGS	Lung Cancer	100	13150818200	8570453400	3.40
CGPLLU271	Post-treatment, Day 6	WGS	Lung Cancer	100	9008880600	5854051400	2.32
CGPLLU271	Post-treatment, Day 20	WGS	Lung Cancer	100	8670913000	546 1 577000	2.17
CGPLLU271	Post-treatment, Day 104	WGS	Lung Cancer	100	8887441400	5609039000	2.23
CGPLLU43	Pre-treatment, Day -1	WGS	Lung Cancer	100	840/811200	5203486400	2.06
CGPLLU43	Post-treatment, Day 6	WGS	Lung Cancer	100	9264335200	5626714400	2.23
CGPLLU43	Post-treatment, Day 27	WGS	Lung Cancer	100	8902283000	5485656200	2.18
COPULU26	Post-treatment, Day 83	WGS	Lung Cancer	100	9201509200	5875084200	2.33
COPILIUM	Pie-treatment, Day 0	WGS	Lung Cancer	100	9152729200	02401/0200	2.40
CGPLLU86	Post-treatment, Day 7	WGS	Lung Cancer	100	6500101400	4003020000	1.00
CGPU U86	Post-treatment Day 17	WGS	Lung Cancer	100	8653551800	5900136000	2 34
CGPLLU88	Pre-treatment Day 0	WGS	Lung Cancer	100	8096528000	5505475400	2.04
CGPLLU88	Post-treatment Day 7	WGS	Lung Cancer	100	8283192200	5784217600	2.30
CGPLLU88	Post-treatment, Day 297	WGS	Lung Cancer	100	9297110800	6407258000	2.54
CGPLLU89	Pre-treatment. Day 0	WGS	Lung Cancer	100	7842145200	5356095400	2.13
CGPLLU89	Post-treatment, Day 7	WGS	Lung Cancer	100	7234220200	4930375200	1.96
CGPLLU89	Post-treatment, Day 22	WGS	Lung Cancer	100	6242889800	4057361000	1.61
CGPLOV11	Preoperative treatment naïve	WGS	Ovarian Cancer	100	8985130400	587 1959600	2.33
CGPLOV12	Preoperative treatment naïve	WGS	Ovarian Cancer	100	9705820000	6430505400	2.55
CGPLOV13	Preoperative treatment naïve	WGS	Ovarian Cancer	100	10307949400	7029712000	2.79
CGPLOV15	Preoperative treatment naïve	WGS	Ovarian Cancer	100	8472829400	5562142400	2.21
CGPLOV16	Preoperative treatment naïve	WGS	Ovarian Cancer	100	10977781000	7538581600	2.99
CGPLOV19	Preoperative treatment naïve	WGS	Ovarian Cancer	100	8800876200	5855304000	2.32
CGPLOV20	Preoperative treatment naïve	WGS	Ovarian Cancer	100	8714443600	5695165800	2.26
CGPLOV21	Preoperative treatment naïve	WGS	Ovarian Cancer	100	10180394800	7120260400	2.83
CGPLOV22	Preoperative treatment naive	WGS	Ovarian Cancer	100	10107760000	6821916800	2./1
CGPLOV23	Preoperative treatment naïve	WGS	Overian Cancer	100	10643399800	7206330800	2.86
CGPLOV24	Preoperative treatment naïve	WGS	Ovarian Cancer	100	6780929000 7947548000	4623300400	1.83
COPLOV25	Preoperative treatment naive	WGS	Ovarian Cancer	100	/01/0400UU	0309970200	2.13
COPLOV26	meoperative treatment halve	WOO	Ovarian Cancer	100	052257676400	0170024400	5.20 9.40
COPLOV20	Preserver the treatment naive	WOO	Ovarian Cancer	100	3022040400 0107834000	0209420400	2.40
CGPLOV31	Preoperative treatment naive	Wide	Ovarian Cancer	100	9104031200	0103000400	2.42
CGPLOV/37	Preoperative treatment neive	WGS	Ovarian Cancer	100	8808338600	5971018200	2.35
CGPLOV38	Preoperative treatment naive	WGS	Ovarian Canoar	100	8756825200	586 1536600	2.33
CGPLOV40	Preoperative treatment naïve	WGS	Ovarian Cancer	100	9709391600	6654707200	2.64
	+						

Patient	Timepoint	Analysis type	Patient Type	Read Length	Total Bases	High Quality Bases	Coverage
	Proparativo traatmont naivo	MICS	Overian Concor	100	0003636000	5072070400	ი ეე
CGPLOV41	Preoperative treatment naïve	WGS	Ovarian Cancer	100	10710390/00	7353214200	2.07
CGPLOV//3	Properative treatment naive	WGS	Ovarian Cancer	100	10772189000	6/23288600	2.52
CGPLOV44	Preciperative treatment naïve	WGS	Ovarian Cancer	100	9861862600	6769185800	2.60
CGPLOV44	Preoperative treatment naïve	WGS	Ovarian Cancer	100	8788956400	5789863400	2.30
CGPLOV47	Preoperative treatment naïve	WGS	Ovarian Cancer	100	9380561800	6480763600	2.57
CGPLOV48	Preoperative treatment naïve	WGS	Ovarian Cancer	100	9258552600	6380106400	2.53
CGPLOV49	Preoperative treatment naïve	WGS	Ovarian Cancer	100	8787025400	6134503600	2.43
CGPLOV50	Preoperative treatment naïve	WGS	Ovarian Cancer	100	10144154400	6984721400	2.77
CGPLPA112	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	12740651400	9045622000	3.59
CGPLPA113	Preoperative treatment naïve	WGS	Duodenal Cancer	100	8802479000	5909030800	2.34
CGPLPA114	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8792313600	6019061000	2.39
CGPLPA115	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8636551400	5958809000	2.36
CGPLPA117	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	9128885200	6288833200	2.50
CGPLPA118	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	7931485800	5407532800	2.15
CGPLPA122	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	10888985000	7530118800	2.99
CGPLPA124	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8562012400	5860171000	2.33
CGPLPA125	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	9715576600	6390321000	2.54
CGPLPA126	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8056768800	5651600800	2.24
CGPLPA127	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8000301000	5382987600	2.14
CGPLPA128	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	6165751600	4256521400	1.69
CGPLPA129	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	7143147400	4917370400	1.95
CGPLPA130	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	5664335000	3603919400	1.43
CGPLPA131	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8292982000	5844942000	2.32
CGPLPA134	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	/08891/000	5048887600	2.00
CGPLPA135	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8759665600	5800618200	2.30
CGPLPA136	Preoperative treatment naive	WGS	Bile Duct Cancer	100	/539/15800	5248227500	2.08
CGPLPA137	Preoperative treatment naive	WGS	Bile Duct Cancer	100	8391815400	5901273800	2.34
CGPLPA139	Preoperative treatment halve	WGS	Bile Duct Cancer	100	8992280200	6328314400	2.51
COPLPA 14	Preoperative treatment naive	VVG0	Pancreauc Cancer	100	0707700200	0/0101/000	2.21 A 45
COPEPA140	Preoperative treatment naive	WOO	Bile Duct Cancer	100	10.000041000	11210732000	4.40
COPI PA16	Preoperative treatment naive	WGS	Bile Duct Gancer	100	10066296000	10114/90200	4.01
COPLEATO	Prooperative treatment naïve	WG9	Pancreatic Cancer	100	0/67156800	6621891900	2.20
COPLEA 155	Procestive treatment naive	W00	Dile L/ust Cancer	100	9407 100000	6728653000	2.00
CGPI PA165	Precentative treatment naive	WGS	Rite Duct Cancer	100	8356604600	5820805800	2.07
CGPLPA168	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	10365661600	7048115600	2.80
CGPLPA17	Preoperative treatment naive	WGS	Panereatic Cancer	100	8073547400	4687808000	1.86
CGPI PA184	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	9014218400	6230922200	2 47
CGPI PA187	Preoperative treatment naïve	WGS	Bile Duct Cancer	100	8883536200	6140874400	2.44
CGPLPA23	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	9835452000	6246525400	2.48
CGPLPA25	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	10077515400	6103322200	2.42
CGPLPA26	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	8354272400	5725781000	2.27
CGPLPA28	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	8477461600	5688846800	2.26
CGPLPA33	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	7287615600	4596723800	1.82
CGPLPA34	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	6122902400	4094828000	1.62
CGPLPA37	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	12714888200	8527779200	3.38
CGPLPA38	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	8525500600	5501341400	2.18
CGPLPA39	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	10502663600	6812333000	2.70
CGPLPA40	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	9083670000	5394717800	2.14
CGPLPA42	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	5972126600	3890395200	1.54
CGPLPA46	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	4/20090200	2626298800	1.04
CGPLPA47	Preoperative treatment naive	WGS	Pancreatic Cancer	100	/31/385800	4543833000	1.80
CGPLPA48	Preoperative treatment naive	WGS	Pancreatic Cancer	100	7553856200	0022695600	1.99
	Preoperative treatment haive	WGS	Panoreatic Cancer	100	0500070000	0001001000	1.41
CODI DA59	Preoperative treatment naive	WGO	Pancreatic Cancer	100	9004749000	5323344000	2.51
COPLEAGO	Preoperative treatment naive	WGS	Panereatic Cancer	100	1/5/736/600	0617778600	2.00
COPI PA67	Precentive treatment naive	WGS	Panerostic Cancer	100	8222177/00	5351172600	2.02
COPI PARG	Preoperative treatment naive	WGG	Pancreatic Cancer	100	7800181/00	500611/2000	1 00
CGPLPA71	Preoperative treatment naive	WGS	Pancreatic Cancer	100	7349620400	4955417400	1.33
CGPI PA74	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	6666371400	4571394200	1.81
CGPI PA76	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	9755658600	6412606800	2.54
CGPLPA85	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	10856223000	7309498600	2.90
CGPLPA86	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	8744365400	5514523200	2.19
CGPLPA92	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	8073791200	5390492800	2.14
CGPLPA93	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	10390273000	7186589400	2.85
CGPLPA94	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	11060347600	7641336400	3.03
CGPLPA95	Preoperative treatment naïve	WGS	Pancreatic Cancer	100	12416627200	7206503800	2.86
CGST102	Preoperative treatment naïve	WGS	Gastric cancer	100	6637004600	4545072600	1.80
CGST11	Preoperative treatment naïve	WGS	Gastric cancer	100	9718427800	6259679600	2.48
CGST110	Preoperative treatment naïve	WGS	Gastric cancer	100	9319661600	6359317400	2.52
CGST114	Preoperative treatment naïve	WGS	Gastric cancer	100	6865213000	4841171600	1.92
CGST13	Preoperative treatment naïve	WGS	Gastric cancer	100	9284554800	6360843800	2.52

Patient	Timepoint	Analysis type	Patient Type	Read Length	Total Bases Sequenced	High Quality Bases Analyzed	Coverage		
CGST131	Preoperative treatment naïve	WGS	Gastric cancer	100	5924382000	3860677200	1.53		
CGST141	Preoperative treatment naïve	WGS	Gastric cancer	100	8486380800	5860491000	2.33		
CGST16	Preoperative treatment naïve	WGS	Gastric cancer	100	13820725800	9377828000	3.72		
CGST18	Preoperative treatment naïve	WGS	Gastric cancer	100	7781288000	5278862400	2.09		
CGST21	Preoperative treatment naïve	WGS	Gastric cancer	100	7171165400	4103970800	1.63		
CGST26	Preoperative treatment naïve	WGS	Gastric cancer	100	8983961800	6053405600	2.40		
CGST28	Preoperative treatment naïve	WGS	Gastric cancer	100	9683035400	6745116400	2.68		
CGST30	Preoperative treatment naïve	WGS	Gastric cancer	100	8684086600	5741416000	2.28		
CGST32	Preoperative treatment naïve	WGS	Gastric cancer	100	8568194600	5783369200	2.29		
CGST33	Preoperative treatment naïve	WGS	Gastric cancer	100	9351699600	6448718400	2.56		
CGST38	Preoperative treatment naïve	WGS	Gastric cancer	100	8409876400	5770989200	2.29		
CGST39	Preoperative treatment naïve	WGS	Gastric cancer	100	10573763000	7597016000	3.01		
CGST41	Preoperative treatment naïve	WGS	Gastric cancer	100	9434854200	6609415400	2.62		
CGST45	Preoperative treatment naïve	WGS	Gastric cancer	100	8203868600	5625223000	2.23		
CGST47	Preoperative treatment naïve	WGS	Gastric cancer	100	8938597600	6178990600	2.45		
CGST48	Preoperative treatment naïve	WGS	Gastric cancer	100	9106628800	6517085200	2.59		
CGST53	Preoperative treatment naïve	WGS	Gastric cancer	100	9005374200	5854996200	2.32		
CGST58	Preoperative treatment naïve	WGS	Gastric cancer	100	10020368600	6133458400	2.43		
CGST67	Preoperative treatment naïve	WGS	Gastric cancer	100	9198135600	5911071000	2.35		
CGST77	Preoperative treatment naïve	WGS	Gastric cancer	100	8228789400	5119116800	2.03		
CGST80	Preoperative treatment naïve	WGS	Gastric cancer	100	10596963400	7283152800	2.89		
CGST81	Preoperative treatment naïve	WGS	Gastric cancer	100	8494881200	5838064000	2.32		
Patient	Patient Type	Analysis Type	Timepoint	Stage af Diagnosis	Median cfDNA Fragment Size (bp)	Corretation of Fragment Ratio Profile to Median Fragment Ratio Profile of Healthy Individuals	Correlation of GC Corrected Fragment Ratio Profile to Median Fragment Ratio Profile of Healthy Individuals	Correlation of Fragment Ratio Profile to Median Fragment Ratio Profile of Lymphocytes	Correlation of Fragment Ratio Profile to Lymphocyte Nucleosome Distances
----------------	--------------	------------------	--------------------------------	-----------------------	------------------------------------	---	---	---	--
CGPLH75	Healthy	WGS	Preoperative treatment naïve	NA	168	776.0	0.952	0.920	-0.886
CGPLH77	Healthy	WGS	Preoperative treatment naïve	AN	166	0.970	0.960	0.904	-0.912
CGPLH80	Healthy	WGS	Precperative treatment naïve	NA	168	0.955	0.949	0.960	-0.917
CGPLH81	Healthy	WGS	Preoperative treatment naïve	NA	167	0.949	0.953	0.869	-0.883
CGPLH82	Healthy	WGS	Preoperative treatment naive	NA	166	0.969	0.949	0.954	-0.917
CGPLH83	Healthy	WGS	Preoperative treatment naive	NA	167	0,949	0.939	0.919	-0.904
CGPLH84	Healthy	WGS	Preoperative treatment naïve	NA	168	0.967	0.948	0.951	-0.913
CGPLH52	Healthy	WGS	Preoperative treatment naïve	NA	167	0.946	0.968	0.952	-0.924
CGPLH35	Healthy	WGS	Preoperative treatment naïve	AN	166	0.981	0.973	0.945	-0.321
CGPLH37	Healthy	WGS	Preoperative treatment naïve	ЧN	168	0.968	0.970	0.951	-0.922
CGPLH54	Healthy	WGS	Preoperative treatment naive	AN	167	0.968	0.976	0.948	-0.325
CGPLH55	Healthy	WGS	Preoperative treatment naïve	٨A	166	0.947	0.964	0.948	-0.917
CGPLH48	Healthy	WGS	Preoperative treatment naïve	NA	168	0.959	0.965	0.960	-0.923
CGPLH50	Healthy	WGS	Preoperative treatment naïve	NA	167	0.960	0.968	0.952	-0.921
OGPLH36	Healthy	WGS	Preoperative treatment naïve	NA	168	0.955	0.954	0.955	-0.919
CGPLH42	Healthy	WGS	Preoperative treatment naive	NA	167	0.973	0.963	0.948	-0.918
CGPLH43	Healthy	WGS	Preoperative treatment naïve	NA	166	0.952	0.958	0.953	-0.928
CGPLH59	Healthy	WGS	Preoperative treatment naive	NA	168	0.970	0.965	0.951	-0.925
CGPLH45	Healthy	WGS	Preoperative treatment naïve	NA	168	0.965	0.950	0.949	-0.911
CGPLH47	Healthy	WGS	Preoperative treatment naïve	ЧN	167	0.952	0.944	0.954	-0.321
CGPLH46	Healthy	WGS	Preoperative treatment naive	AN	168	0.966	0.965	0.953	-0.923
CGPLH63	Healthy	WGS	Preoperative treatment naive	AN	168	0.977	0.968	0.939	-0.320
CGPLH51	Healthy	WGS	Preoperative treatment naive	NA	168	0.935	0.955	0.957	-0.914
CGPLH57	Healthy	WGS	Preoperative treatment naïve	NA	169	0.965	0.954	0.955	-0.917
CGPLH49	Healthy	WGS	Preoperative treatment naïve	NA	168	0.958	0.951	0.950	-0.924
0GPLH56	Healthy	WGS	Preoperative treatment naive	NA	166	0.940	0.957	0.959	-0.911
CGPLH64	Healthy	WGS	Precperative treatment naïve	NA	169	0.960	0.940	0.949	-0.918
CGPLH78	Healthy	WGS	Preoperative treatment naïve	NA	166	0.956	0.936	0.958	-0.911
CGPLH79	Healthy	WGS	Preoperative treatment naïve	NA	168	0.960	0.957	0.953	-0.917
CGPLH76	Healthy	WGS	Preoperative treatment naïve	NA	167	0.969	0.965	0.953	-0.917
0GPLLU175	Lung Cancer	WGS	Preoperative treatment naïve		165	0.316	0.284	0.244	-0.262
CGPLL U180	Lung Cancer	WGS	Preoperative treatment naive		166	0.907	0.846	0.826	-0.819
0GPLL U198	Lung Cancer	WGS	Preoperative treatment naïve		166	0.972	0.946	0.928	-0.911
CGPLL U202	Lung Cancer	WGS	Preoperative treatment naïve		163	0.821	0.605	0.905	-0.843
CGPLLU165	Lung Cancer	WGS	Precperative treatment naïve		163	0.924	0.961	0.815	-0.851
CGPLL U209	Lung Cancer	WGS	Preoperative treatment naïve	=	163	0.578	0.526	0.513	-0.534
CGPLLU147	Lung Cancer	WGS	Preoperative treatment naïve	Ξ	166	0.953	0.919	0.939	-0.912
2021111200	1 und Cancer	NICES	Dronnerstivia trastmant najiva	-	153	0.488	5420	0.480	-0.481

APPENDIX E: Table 5. High coverage whole genome cfDNA analyses of healthy individuals and lung cancer patients

5		
~ ~		
76	l	
В		
U)		
5		
ž		
-12		
Ē		
~~		
8		
ð		
25	1	
10		
E		
ŝ	ł	
တ္ဆ		
ž		
ö		
ā		
Ē		
3		
3		
5		
Ē		
5	ģ	
12		
<1		
z		
-9		
్ల		
6		
හි		
2		
÷	1	
Ľ,		
.0		
Ĕ		
ē		
ъ,		
50	ġ	
픚		
ž		
3		
g	Î	
5		
3		
ð		
Ē		
ĕ		
-		
3		
50	ŀ	
Ë	ļ	
8	l	
ទទ		
~		
5		
Ē		
2	ŀ	
E.	l	
ž		
9		
ž		
্র্যু		
	ļ	
-	ŀ	
X		
ç		
μ		
p.		
1		

Patient	Patient Type	Analysis Type	Timepoint	Stage	Progression-free Survival (months)	Correlation of Fragment Ratio Profile to Median Fragment Ratio Profile of Healthy Individuals	Correlation of Fragment Ratio Profile to Lymphocyte Nucleosome Distances	Targeted Mitation	Maximum Mutant Allele Fraction
CGPLLU14	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -38	N	15.4	0.941	-0.841	EGFR 861L>Q	0.89%
CGPLLU14	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -16	N	15.4	0.933	-0.833	EGFR 861L>Q	0.18%
CGPLLU14	Lung Cancer	Targeted Mutation Analysis and WCS	Pre-treatment, Day -3	≥	15.4	0.908	-0.814	EGFR 719G>S	0.49%
CGPLLU14	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day 0	≥	15.4	0.883	-0.752	EGFR 861L>Q	1.39%
CGPLLU14	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 0.33	2	15.4	0.820	-0.692	EGFR 719G>S	1.05%
CGPLLU14	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 7	2	15.4	0.927	-0.887	EGFR 861L>Q	0.00%
CGPLLU88	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day 0	2	18.0	0.657	-0.584	EGFR 745KELREA>T	9.06%
CGPLLU88	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 7	≥	18.0	0.939	-0.799	EGFR 790T>M	0.15%
CGPLLU88	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 297	2	18.0	0.946	-0.869	EGFR 745KELREA>T	0.93%
06PLLU244	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -7	2	1.2	0.850	-0.706	EGFR 858L>R	4.98%
OGPLLU244	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -1	2	1.2	0.867	-0.764	EGFR 62L>R	3.41%
CGPLLU244	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 6	N	1.2	0.703	-0.639	EGFR 858L>R	5.57%
OGPLLU244	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 62	N	1.2	0.659	-0.660	EGFR 858L>R	11.80%
CGPLLU245	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -32	N	1.7	0.871	-0.724	EGFR 745KELREA>K	10.60%
OGPLLU245	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day 0	≥	1.7	0.738	-0.608	EGFR 745KELREA>K	14.10%
CGPLLU245	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 7	N	1.7	0.731	0.559	EGFR 745KELREA>K	8.56%
CGPLLU245	Lung Cancer	Targeted Mutation Analysis and WGS	Post treatment, Day 21	N	1.7	0.613	-0.426	EGFR 745KELREA>K	10.69%
CGPLLU246	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -21	N	1.3	0.897	-0.757	EGFR 790T>M	0.49%
CGPLLU246	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day 0	N	1.3	0.469	0.376	EGFR 858L>R	6.17%
CGPLLU246	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 9	N	1.3	0.874	-0.746	EGFR 858L>R	1.72%
CGPLLU246	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 42	N	13	0.775	-0.665	EGFR 353L>R	5.29%
CGPLLU86	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day 0	N	12.4	0.817	-0.630	EGFR 746ELREATS>D	%00.0
CGPLLU86	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 0.5	N	12.4	0.916	-0.811	EGFR 746ELREATS>D	0.19%
CGPLLU86	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 7	2	12.4	0.859	-0.694	EGFR 746ELREATS>D	0.00%
CGPLLU86	Lung Cancer	Targeted Mutation Analysis and WKSS	Post-treatment, Day 17	2	12.4	0.932	-0.848	EGFR 746ELREATS>D	0.00%
CGPLLU89	Lung Cancer	Targeted Mutation Analysis and WSS	Pre-treatment, Day 0	N	6.7	0.864	-0.729	EGFR 747LREATS>-	0.42%
CGPLLU89	Lung Cancer	Targeted Mutation Analysis and WSS	Post-treatment, Day 7	N	6.7	0.908	-0.803	EGFR 747LREATS>-	0.20%
CGPLLU89	Lung Cancer	Targeted Mutation Analysis and WSS	Post-treatment, Day 22	≥	6.7	0.853	-0.881	EGFR 747LREATS>-	0.00%
CGL U316	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -53	≥	1.4	0.331	-0.351	EGFR L861Q	15.72%
CCLU316	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -4	2	1.4	0.225	-0.253	EGFR L861Q	45.67%
CGL U316	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 18	≥	1.4	0.336	-0.364	EGFR G719A	33.36%
CGLU316	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 37	≥	1.4	0.340	-0.364	EGFR L861Q	66.01%
CGLU344	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -21	2	Ongoing	0.935	-0.818	EGFR E746_A750del	0.00%
CGLU344	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day 0	≥	Ongoing	0.919	-0.774	EGFR E746_A750del	0.22%
CGLU344	Lung Cancer	Targeted Mutation Analysis and WGS	Post treatment, Day 0.1875	N	Ongoing	0.953	-0.860	EGFR E746_A750del	0.40%
CGLU344	Lung Cancer	Targeted Mutation Analysis and WGS	Post-freatment, Day 59	≥	Ongoing	0.944	-0.832	EGFR E746_A750del	0.00%
CGL U369	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -2	≥	7.5	0.825	-0.826	EGFR L858R	20.61%
CGL U369	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 12	≥	7.5	0.950	-0.903	EGFR L858R	0.22%
CCLU369	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 68	≥	7.5	0.945	-0.889	EGFR L858R	0.16%
CCL (1369	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 110	≥	7.5	0.886	-0.883	EGFR L858R	0.10%
CGL U373	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day -2	≥:	Ongoing	0.922	-0.804	EGFR E746_A750del	0.82%
CGL U373	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 0.125	2	Origoing	0.959	-0.853	EGFR E745_A750de	0.00%
CGLU3/3	Lung Canoar	largeled Mulation Analysis and WGS	Post-reatment, Uay /	≥ :	Ongoing	0.367	0.530		U. 15%
UGLU3/3	Lung Cancer	Targeted wuration Analysis and wes	Post-liteaunent, Day 4/	22	Ongoing	102.0	-0.400		0.00%
	Lung Cancer	Tangeted Mulador Analysis and WGO	Post tractment, Day 6	2	. u	0.24-0	-0.067		9400° J
	Lung Cantoar	Targeled mulation Analysis and week	Pust-readilant, Day 3	2 2	0.1	2/2/0	107.0-		13. 1476 C 0.067
	Lung Cancer	Targeted Mulation Analysis and WGS	Post tracteries, Day 25	N	0. T	400.22 CC:3 C	-11.000 0.11		0.03%
	Lung Cancer	Targeted Mutation Analysis and WGS	Provenedurient, Day 91 Des Fractmant, Day 4	N 22	0.1 Ondoine	0.020 0.0360	2010 2020	ECTA E/ 40_M/ JAURI	0/07/G
CGP111264	Lung Caricot Lung Cancer	Targeted Mutation Analysis and MCS	Prettreatment Day -	2 ≥	Ongoing	0,000	12000 12000	ECER 1761N	0.48%
CGPI 11264	Lung Cancer Lung Cancer	Tanatad Mutation Analysis and MGS	Post-treatment, Day 27	2 2	Oncoing	690 0	0.856	EGER D761N	0.00%
CGPI 11264	Lung Cancer Lung Cancer	Tanostad Mutation Analysis and MGS	Post-treatment Dav 69	: ≥	Ondoing	1980	10894	EGER D761N	0.00%
CGPL1 U265	Lung Cancer	Tarreted Mutation Analysis and WGS	Pre-treatment Day 0	: 2	Oncoinc	0.953	-0.859	EGER 1858R	0.21%
CGPLLU265	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 3	2	Ongoing	0.549	-0.842	EGFR L858R	0.21%
CGPLLU265	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 7	N	Ongoing	0.955	-0.844	EGFR T790M	0.21%
CGPLLU265	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 84	N	Ongoing	0.946	-0.825	EGFR L858R	0.00%
CGPLLU266	Lung Cancer	Targeted Mutation Analysis and WGS	Pre-treatment, Day 0	N	9.6	0.961	-0.904	NA	0.00%
CGPLLU266	Lung Cancer	Targeted Mutation Analysis and WKSS	Post-treatment, Day 16	N	9.6	0.959	-0.886	NA	0.00%
CGPLLU266	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 83	2	9.6	0.961	-0.880	NA	0.00%
CGPLLU266	Lung Cancer	Targeted Mutation Analysis and WGS	Post-treatment, Day 328	≥	9.6	0.958	-0.855	NA	0.00%

ession-free Correlation of Fragment Ratio C (months) Profile to Median Fragment Ratio Rat (months) Profile to Healiny Individuals 20 31	Progression-free Correlation of Fragment Ratio C Stage Survival (months) Profile to Mealint Fragment Ratio Profile of Mealify Individuals N 39
9.6 6.6	ക് ക വ
3.9	IV 3.9
Dngoing	IV Ongoing
Dngoing	IV Ongoing
Dngoing	IV Ongoing
8.2	IV 8.2
8.2	IV 8.2
8.2	IV 8.2
8.2	N 8.2
8.2	IV 8.2
Dngoing	IV Ongoing
Dingoing	IV Ongoing
Drigoing	IV Ongoing
Dngoing	IV Ongoing

WO 2019/222657

DELFI DELFI DELE core (95% specificity) Targeted
0.9576 Y 7.299 Y N
× 92876 × 184866 × 18486 × 184
A 2000 A
0615 0 7464% 0 7525 0 7555 0 7555 0 7555 0 7555 0 7555 0 7555 0 7555 0 7555
0.0464% 0.020% % % % 0.030% % % 0.030% % % 0.030% % % 0.0110 0 % % 0.0110 0 % % 0.0110 0 % % % % % % % % % % % % % % % % %
0 65568 0 8615 0 9804 0 9804 0 19835 0 9858 0 9368 0 9368 0 9511 0 9511 0 9521 0 9521 0 9521 0 9521
2,5258 2,5268 2,5269 4,5205 2,
972 3904 3551 2651 2652 2682 2682 2682
0.1572 0.7504 0.9335 0.9531 0.9552 0.9552 0.9552 0.9552 0.9562 0.9562 0.9562 0.9562 0.9562 0.9562 0.9562
ខ្លួន ខ្ល ខ្លួន ខ្លួន ខ្លួ
222========
Proconcision decement real/w Proconcision sector and the analysis of the Proconcision deciment rai/w Proconcision deciment rai/w
argeback Muchton Analysis and WCS5 F argeback Muchton Analysis and WCS5 F argeback Mucation Analysis and WCS5 F
torectal Cancer Targea Mustitur Analysis and WGS F (mocual Cancer Targea Mustitur Analysis and WGS F (arcetal Cancer Targead Mustitur Analysis and WGS F

WO 2019/222657

Mutant Alelle Fraction Detected using Targeted sequencing*	0.12%		0.12%	0.28%	0.4000	0.40%	-	QN	0.20%	, NL																																													, .		
Detected using DELFI (98% specificity)	Y	×	٢	>- :	- >	- >	. >	×	> :	zz	z	z	z	zz	εz	z	z	z;	≻ z	z	Z	z	2 2	z	z	z	z	zz	: 2	z	z	2 3	zz	z	z	zz	22	z	z z	zz	z	zz	zz	z	z	Z 2	z	z	z 2	zz	z	z	٤z	z	Z 2	: 2	22
Detected using DELFi (95% specificity)	ý	~	¥	>- :	× >	- >-	· >-	~	> >	- 2	z	z	z	z	zz	. >	z	Z)	r Z	z	Z	z	2 2	zz	z	z	z	Z >	·z	z	z	z	e z	z	z	z z	zz	z:	zz	z	Z	zz	zz	z	z	zz	z	z	Z 2	zz	z	z	2 2	z	z >	· z	zz
DELFI Score	0.9334	0.9839	0.9834	0.9810	0.9500	0.9998	0.9667	0.8710	0.9866	0.1748 0.1748	0.5168	0.0178	0.5794	0.1615	0.4639	0.6571	0.5564	0.3833	0.0395	0.2485	0.4401	0.2706	0.2215	0.1752	0.0226	0.1789	0.0185	0.0441	0.2589	0.1632	0.3450	0.4697	0.2230	0.1095	0.0749	0.0126	0.0475	0.4891	0.0134	0.2642	0.0304	0.1633	0.3872	0.2976	0.0431	0.03/9 0.03/9	0.1775	0.0904	0.0150	0.0031	0.0686	0.0071	0.0512	0.0132	0.0082 0.6407	0.2437	0.0070 0.1451
Fraction of Reads Mapped to Mitochondrial Genome	0.0775%	0.0241%	0.1540%	0.0419%	0.02743%	0.023478 G D183%	0.0417%	0.0793%	0.1042%	U.U30276 0.059196	0.1193%	0.0276%	0.0420%	0.0407%	0.0334%	0.0302%	0.0170%	0.0362%	0.04/0%	0.0455%	0.0409%	0.03/1%	767240.0 M 72640.0	0.0317%	0.0397%	0.0368%	0.0311%	0.0226%	0.0202%	0.0212%	0.0071%	0.0191%	0.0563%	0.0222%	0.0248%	0.0402%	0.0213%	0.1275%	0.0230% Fi Fi269%	0.0203%	0.0314%	0.0350% 0.0366%	0.0159%	0.0367%	0.0103%	0.0280%	0.0448%	0.0283%	0.0632% 0.0557%	0.0445%	0.0208%	0.0284%	0.0513%	0.0408%	0.0318% 6 nann%	0.0427%	6.0217% 0.0174%
Sorrelation of GC Corrected Fragment Ratio Profile to Median Fragment Ratio Profile of Healthy Individuals	0.9254	0.8193	0.9288	0.9138	0.05009 0.0707	0.8547 D.8547	0.8330	0.9408	0.8835	2.70.5U D.89.47	0.9369	0.9487	0.9442	0.9259	0.9415	0.9457	0.8439	0.9391	0.91500	0.9575	0.9283	0.9409	03494	0.9410	0.9200	0.9167	0.9352	1047.0 Coro C	0.9348	0.9491	0.9427	0.9552	0.0000	0.9165	0.9411	0.9133	0.9408	0.3071	1 9765 D 9766	0.9403	0.9377	0.9132	0.9159	0.9262	0.9303	D 9305	0.9187	26880 1	0.9067	0.5307	0.9074	0.9268	0.8190	0.9130	0.9121 0.937/8	0.9312	0.9540 0.9372
Correlation of Fragment Ratio Profile to Median Fragment Ratio Profile of Heatthy Individuals	0.9410	0.9043	0.9254	0.9451	01800	40100	0.9002	0.7955	0.6774	0.077.5 0.9225	0.9433	0.9646	0.9423	0.9567	0.9605	0.9236	0.9618	0.9183	0.90474	0.9534	0.9075	0.9422	000000 2440 C	0.9538	0.9019	0.9576	0.9481	0.35672	0.9302	0.9482	0.8659	0.9374	0.9578	0.6913	0.8751	0.9519	0.9574	0.9533	0.3043	0.9118	0.9679	0.9474	0.000	0.9533	0.9388	0.9396 0.9486	0.9533	0.7858	0.9421	0.9345	0.9475	0.9570	0.9521	0.9435	0.9481	0.9474	0.9255 0.7777
Median cfDNA Fragment Size (bp)	170	170	166	169	201	169	169	164	162	164 168	167	167	167	158	156	167	165	167	136 136	167	158	168	202	89	168	168	158	100	200	167	167	185	89 24	164	167	5 2 2	166	168	155	191	156	109	163	167	185	16/ 167	166	156	167	100	169	171	38	167	158 751	166	167 167
Stage at Diagnosis	-			-	≝ =			=		MM	AN	NA	ΝA	NN N	AN AN	ΥN	MA	AN I	AN AN	MA	NA	AN :	AN AN	AN N	NA	ΝA	YN :	AN NA	NA	MA	NA	AN 2	AN AN	MA	ΥN	AN AN	AN	AN .	AN AA	AN AN	MA	AN MA	s s	MA	NA :	AN MA	AN	NA NA	¥N N	¥ X	NA	NA NA	AN AN	NA	NA NA	AN N	NA NA
Timepoint	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment nalive	Preoperative treatment naive	Precperative meanment haive	Preconstrive descrient native Preconstrive treatment native	Preoperative treatment naive	Preoperative treatment naïve	Preoperative treatment haive	Preconstrive geagnent haive Preconstrive meanment haive	Preoperative treatment naïve	Precoerative reament naïve	Preoperative treatment naïve	Preoperative neament naive	Preoperative treatment native	Precoerative treatment haive	Preoperative treatment naïve	Precoerative reament naive	Preoperative treatment nailve Preoperative treatment nailve	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naive	Preoperative deadhant naive Promemike meatheant naive	Preoperative treatment naive	Precoerative reament naive	Preoperative treatment naïve	Preoperative treatment nalive	Preoperative Teatment naive Dreoperative heatment rafive	Precoerative treatment halve	Preoperative treatment naive	Preoperative rearment naive	Preoperative treatment naïve	Preoperative treatment native	Preoperative treatment naïve	Preoperative treatment naive	Preoperative treatment naïve	Preoperative treatment naive	Precoerative rearment naive	Preoperative deaunent native Preoperative meanment native	Preoperative treatment naive	Preoperative treatment naïve	Preoperative treatment naive	Preoperative reament naive	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naïve Preoperative treatment naïve	Preoperative treatment naive	Preoperative treatment naïve	Precoerative treatment naive	Precoerative reament naive	Preoperative treatment naïve	Preoperative meatment halive	Preoperative treatment naive	Precoerative treatment naive	Preoperative steatment naïve Preoperative meanment naïve	Presserative treatment naïve	Preoperative treatment naïve Preoperative treatment naïve
Analysis Type	Fargeted Mutation Analysis and WGS	WGS	Targeted Mutation Analysis and WGS	Tergeted Mutation Analysis and WGS	WGS	Terrated Mutation Analysis and wess Terrated Mutation Analysis and WGS	WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	l argerad iwu:ation Analysis and wee wees	SM	WGS	WGS	MGS	MGS	MGS	WGS	WGS	SOM	WG8	WGS	MGS	2 C/MA	NG8	WGS	WGS	MGS	5005 500	MGS	WGS	WGS	MGS	2004	WGS	WGS	WGS	MGS	WGS	2 SIM	MGS	MGS	WGS MCs	MGS	WGS	MGS	VGG VDCS	SDW	WGS	MG8	MGS	WGB	WGS	NGS	WGS	NGS MGS	89W	WGS
Patient Type	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	Breast Cancer	treest vancer Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy Healthy	Healthy	Healthy Healthy
Patient	CGPLBR76	CGPLBR81	CGPLBR82	CGPLBR83	0.072 0.024	CGP/BR88	CGPLER90	CGPLBR91	CGPLBR92	0.0PL H189	CGPLH190	CGPLH192	CGPLH193	0GPLH194 CCD 11406	CGPLH197	CCPLH198	CGPLH199	CGPLH200	CGPLH207	CGPLH203	CGPLH205	CGPLH208	CGPLH208 CODE H210	CGPLH211	CGPLH300	CGPLH307	CGPLH308	UGPLH309	CCPLH311	CGPLH314	CGPLH315	CGPLH315	DGPI H349	CGPLH320	CGPLH322	CGPLH324 COBLH324	CGPLH326	CGPLH327	UGPLH323 CEPI H192	CGPLH330	CGPLH331	DEPLH333 DEDI U235	CGPLH336	CGPLH337	0GPLH338	CGPLH339 CCPLH339	CGPLH341	CGPLH342	CCPLH343	CGPLH345	CGPLH345	0GPLH350	CGPLH352	CCPLH353	CGPLH354 CGPLH355	CGPLH356	06PLH357 06PLH358

ø	Analysis Type	Timepoint	Stage at Discoseie	Nedian cfDNA Fragment Size	Correlation of Fragment Ratio Profile to Median Fragment Ratio	Correlation of GC Corrected Fragment Ratio Profile to Median Fragment	Fraction of Reads Mapped to	DELFI	Detected using DELFI	Detected using DELFI	Mutant Alelle Fraction Detected using
			CICCUSCU.	(bp)	Profile of Healthy Individuals	Ratio Profile of Healthy Individuals	Mitochondriai Genome	51010	(95% specificity)	(98% specificity)	Targeteci sequencing*
	WGS	Preoperative treatment native	NA	168	0.85.00	0.8775	0.0395%	0.0048	z	z	
	WGS	Preoperative treatment narve	AN :	157	0.9261	0.9283	0.0268%	0.1524	z;	z	
	WGS	Precoerative treatment haive	¥.	167	0.9236	0.9503	0.0309%	0.4832	z	z	
	MGS	Preoperative treatment naive	AN.	15/	0.9436	0.916/	0.0520%	0.0199	z	z	
	MGS	Precperative rearment naive	S S	108	0.8311	0.5480	0.0282%	0.8/19	~ ;	- :	
	SUV5	Preoperative geament naive	MN MN	3 [0.95/1	0.0470	0.1/40%	0.0005	×- 2	× 2	
	ANGS MADE	Preoperative veetment nalive	YN.	101	0.0200	0/15/0	0.034436	0.4552	z	2 2	
	200A4	Frequerative descritent native Preonerstive iteatiment native	AN AN	150	0.0740	10120	0.1073%	0.1250	2 2	2 2	
	NACE.	Precision and treatment instruction	MAN	187	0.9428	0.000	0.024696	0.2824	. 2	: z	
	MGS	Preoperative treatment retive	AN	167	0.9642	0.9423	0.0410%	0.0989	z	: 2	
	MGS	Precoerative treatment naïve	¥N.	168	0.9621	0.9414	0.0734%	0.2173	z	z	
	WGS	Preoperative treatment naïve	٧N	170	0.9652	0.9424	0.0523%	0.0128	z	z	
	WGS	Precoerative treatment naïve	NA	163	0.9541	0.9501	0.0435%	0.0152	z	z	
	WGS	Preoperative treatment naïve	NA	167	0.9380	0.9584	0.0340%	0.0326	z	z	
	WGS	Preoperative treatment naïve	NN.	158	0.9700	0.8407	0.0389%	0.0035	z	z	
	WGS	Preoperative treatment naïve	NA	169	0.8051	0.9043	0.0207%	0.0258	z	z	
	WGS	Preoperative treatment naïve	NA	167	0.8856	0.9245	0.0165%	0.0566	z	z	
	WGS	Precoerative treatment naive	٨N	167	0.6920	0.8859	0.0502%	0.2677	z	z	
	WGS	Preoperative treatment naïve	NA	163	0.9583	0.9223	0.0375%	0.0081	z	N	
	WGS	Precoerative reament naïve	AN :	157	0.9346	0.9266	0.0527%	0.0499	z	z	
	WGS	Preoperative treatment naïve	¥N.	1 <u>8</u>	0.9409	0.9035	0.0557%	0.6565	>- :	2	
	WGS	Preoperative treatment naïve	MN :	167	0.9216	0.9162	0.0229%	0.0837	z	z	
	50CG	Preoperative treatment naive	AN N	126 23	0.9334	0.0142	0.0223%	0.0716	zz	zz	
	2014	Preoperative rearment native	42	101	0.8100	2010 C	0.942430	0.1000	2. 2	2 2	
	20CA	Precoerative reament haive	AN M	102	0.9250	C2000 0	0.0407%	0.003/	zz	zz	
	2004	Proposition to manual to the	YN YN	10/	0.9611	0.0054	24770010	0.1070	2.2	2 2	
	0000	Precipitative descriminations Precipitative freetment refive	AN N	201	0.0011	10200 1 6008	3/ 124240.0	0.0171	2 2	2 2	
	2 CAN	Precionative descriptions in the fee	VIV	167		0.05728	0.0000%	0.0000	2 2	2 2	
	WG8	Precision and treatment relive	AN N	169	0.8780	0.000	0.0573%	0.0685	z	2 2	
	MGS	Preoperative treatment halive	MA	158	0.6862	0.8047	0.0300%	0.2103	z	z	
	MGS	Precoerative treatment naïve	AN	167	0.9428	0.9339	0.0146%	0.0620	z	z	
	MGS	Preoperative geagment naïve	MA	167	0.9353	0.8800	0.1516%	0.0395	z	z	
	WGS	Precoerative treatment naive	AN	168	0.9329	0.8823	0.0515%	0.0223	z	z	
	WGS	Preoperative treatment naïve	MA	169	0.9402	0.8948	0.0528%	0.3027	z	z	
	WGS	Precoerative meanment naive	NA	166	0.9579	0.9204	0.0359%	0.0188	z	z	
	WGS	Preoperative treatment naïve	٩N	167	0.8186	0.8592	%299010	0.0206	z	2	
	WGS	Preoperative treatment naïve	NA	169	0.9527	0.9099	0.0229%	0.0040	z	z	
	WGS	Preoperative treatment naïve	NA	167	0.9584	0.9192	0.0415%	0.1257	z	z	
	WGS	Preoperative treatment native	MA	158	0.9220	0.8950	0.0302%	0.0056	z	z	
	WGS	Preoperative treatment naive	¥2	168	0.9102	0.9008	0.0453%	0.0019	z	z	
	WGS	Preoperative treatment naïve	AN.	167	0.9392	0.8857	0.0521%	0.0186	z	z	,
	MGS	Precoerative treatment naive	AN S	16/	0.9561	0.9191	0.0140%	0.0417	z:	z	
	MGS	Preoperative treatment naïve	¥.	167	0.9451	0.9145	0.0355%	0.0084	z:	2 :	
	WGS	Precperative meanment naive	NN NN	89 199	0.9258	0.9127	0.0290%	0.0284	z	2 2	
	WIG6	Preoperative deadhent naive	AN AN	102	11.76.0	070600	0.0290%	0.0046	z 2	zz	
	2004 14/02	Precipitative vestigation for the second sec	42	10/	0.067g	000000	0.014000	0.0040	2.2	2 2	
	SCW.	Preoperative description traine	AN AN	150	0.0000	761570 00000	0.024176	0.0050	2 2	٤z	
	MGS	Precoerative treatment haive	NA.	167	0.9226	0.9295	0.0260%	0.0469	: 2	: 2	
	WGS	Preoperative treatment naïve	AN	159	0.9164	0.9109	0.0167%	0.0420	z	z	
	WGS	Precentive treatment haive	NA	156	0.9069	0.9006	0.0209%	0.0324	z	z	
	WGS	Preoperative treatment naïve	NA	169	0.9606	0.9289	0.0832%	0.0139	z	z	
	WGS	Preoperative treatment naïve	NA	157	0.9553	0.9265	0.1119%	0.0854	Z	z	
	WGS	Preoperative treatment naïve	AN :	168	0.9722	0.9488	0.0722%	0.0156	z	z	
	NGS	Preoperative steatment nailve	AN N	89 (j	0.9550	0.9080	0.0546%	0.1075	z	z	
	56C8	Preoperative treatment naive	AN N	10/	0.9594	19750 0 0 00200	0.0182%	0.04/0	zz	zz	
	2004	Proceedings sectored for the Processing Sectored and the P	YN YN	101	100000	0.8267	0.04030 7 6503%	0.0102	= >	≥ >	
	WGS	Preoperative description interve Preoperative treatment native	AN N	167	96696	0.9307	0.0258%	0.0369	- z	- 2	
	MGS	Precoerative treament naïve	NA.	167	0.9570	0.3185	0.0234%	0.0174	z	z	
	WGS	Preoperative treatment naïve	AN	168	0.9485	0.9082	0.0433%	0.0181	z	z	
	WGS	Preoperative treatment naïve	NA	158	0.9671	0.9442	0.0297%	0:00:0	Z	z	
	WGS	Preoperative treatment naïve	NA	170	0.9133	0.9097	0.0179%	0.0441	z	z	
	WGS	Preoperative treatment native	NA	158	0.9350	0.9158	0.0290%	0.0958	Z	z	
	WGS	Precoerative treatment naive	NA	170	0.9445	0.9245	0.0156%	0.0136	z	z	
	MGS	Preoperative treatment naive	AN S	170	0.9537	0.9138	0.0169%	0.1041	z	z	
	0.000 0.000	Preconditive vestment refue Dressentius treatment refue	VN NV	1/1	0,804/ 0.0560	02020 10 00055	0.0320%	0.0067	2 2	zz	
	WGS	Preoperative treatment naive	AN N	167	0.9650	0.9430	0.0178%	0.0085	z z	:z	
	WG3	Preoperative treatment naïve	AN	167	0.9589	6046.0	0.0169%	0.0562	z	z	
		-									

Patient
Patient Type

Patient Type
Patient Type

CCPLH362
Healthy Healthy CCPLH363
Healthy Healthy Healthy CCPLH363

CCPLH363
Healthy Healthy CCPLH363
Healthy Healthy Healthy CCPLH364

CCPLH363
Healthy Healthy CCPLH363
Healthy Healthy Healthy CCPLH364

CCPLH363
Healthy Healthy CCPLH364
Healthy Healthy Healthy CCPLH364

CCPLH363
Healthy Healthy Healthy CCPLH364
Healthy Healthy Healthy Healthy Healthy Healthy Healthy CCPLH364

CCPLH363
Healthy Healthy Healthy CCPLH364
Healthy Healthy Healthy Healthy Healthy Healthy Healthy CCPLH364

CCPLH364
Healthy Healthy Healthy CCPLH364
Healthy Healthy Healthy Healthy Healthy CCPLH364

CCPLH364
Healthy Healthy Healthy CCPLH364
Healthy Healthy Healthy CCPLH364

CCPLH364
Healthy Healthy Healthy CCPLH364
Healthy Healthy Healthy CCPLH364

CCPLH364
Healthy Healthy CCPLH364
Healthy Healthy Healthy CCPLH364

CCPLH364
Healthy Healthy CCPLH364
Healthy Healthy Healthy CCPLH364

CCPLH364
Healthy H

Mutant Alelle Fraction Detected using Targeted sequencing*		,													•							,								,			,									. ,			,		,				,		,			. ,	
Detected using DELFI (98% specificity)	N	2	z	z	z:	2 2	2	N	z	22	2 2	Z	z	zz	zz	2 2	z	z	2 2	: 2	z	z;	2 2	2	z	2 :	2 2	2 2	z	2	zz	2 2	2	z	z 2	2 2	z	z	2 2	z	z	zz	z	z	2 2	z	z	2 2	22	z	zz	zz	z	z 2	z	2 2	2 2
Detected using DELFI (95% specificity)	N	Z	Z	z	z	2 2	z	Z	z	2 2	2 2	Z	z	zz	2 2	2	Z	z:	z 2	z	Z	z	2	~	z	z:	22	2 2	٢	Z	2 2	2 2	z	z	2 2	2 2	z	z	2 2	Z	Z :	2 2	: 2	z	2 2	2 2	z	2 2	z	z:	2 2	2 2	Z :	2 2	z	zz	2 Z
DELFI Score	0.0578	0.0097	0.1939	0.0340	0.0017	0.0000 0.0116	0.0597	0.0104	0.4722	0.3419 A 4636	0.0365	0.0364	0.1891	0.0371	0.115/ 0.0886	0.2040	3.0124	0.1733	0.2505	0.5351	0.0327	0.0406	0.2995	0.5246	0.0736	0.0143	0.1111	0.0648	0.7473	0.0282	0.0058 A AAAE	0.0048	0.1064	0.0820	0.2154	0.0424	0.0223	0.0311	0.0824	0.0465	0.0572	0.0404	0.0149	0.0754	0.0014 0.0844	0.0649	0.1231	0.3609 0.0180	0.0848	0.1077	0.0828	0.1779	0.0076	0.3131	0.4935	0.0916	0.0130
Fraction of Reads Mapped to Mitochondrial Genome	0.0202%	0.0464%	0.0267%	0.0281%	0.0167%	U.U4UT% G G2SR%	0.0331%	0.0262%	0.0480%	0.0186% n nates.	0.0207%	0.0296%	0.0298%	0.0281%	0.0227%	0.0659%	0.0325%	0.0155%	0.0225%	0.0201%	0.0715%	0.0150%	0.0443%	0.0316%	0.0269%	0.0236%	0.0382% n nakew	0.0221%	0.0672%	0.0311%	0.0162% 0.0064av	0.0261%	0.0291%	0.0220%	0.0594%	0.0432%	0.0144%	0.0322% 0.0322%	0.0232%	0.0513%	0.0208%	0.0355%	0.0196%	0.0433%	0.0300%	0.0398%	0.0440%	0.000% 0.0284%	0.0186%	0.0150%	0.0703% 6.6428%	0.0224%	0.0094%	0.0114%	0.0352%	0.0175% 6.6464%	0.0274%
Correlation of GC Corrected Fragment Ratio Profile to Median Fragment Patio Profile of Healthy Individuals	Distance and the second se	0.9065	0.8750	0.9257	0.8968	0.0254	0.9195	0.9167	0.8948	90590 00200	0.9098	0.9022	0.9275	0.9209	U.0003 0 0270	0.8511	0.9164	0.9408	U 3024 D 9345	0.6739	0.9228	0.9333	0.9128	0.9245	0.9233	0.9059	0.9376	0.9207	0.9046	0.9113	0.9336	0.3366	0.9128	0.9042	0.9098	0.8794	0.9332	0.8793	0 3303	0.6908	0.9398	U.93300 P. 0345	0.9442	0.9240	0.53US 0.0200	0.833	0.9324	0.82458 D 9498	0.9192	0.9410	0.05480	0.9493	0.9244	0.9369	0.9263	0.9298 D 0464	0.9432
Correlation of Fragment Ratio Profile to Median Fragment Ratio Profile of Heatthy Individuals	0.9431	0.9429	0.9446	0.9502	0.9421	0.9000	0.9572	0.9548	0.9498	2796.0 acao n	0.9537	0.9429	0.9511	0.9609	0.9533	0.9133	0.9251	0.9679	0.9273 0.8253	0.8225	0.9073	0.9354	0.9206	0.8474	0.9155	0.8807	0.9129	0.9303	0.9522	0.9568	0.9379	0.9530	0.9547	0.9199	0.9575	0.8950	0.9631	0.9335	0.9623	0.8777	0.8788	0.3576	0.9733	0.9542	0.5526	0.8947	0.9581	4206°0	0.9222	0.9674	0.9450	0.3714	0.9442	0.9690	0.9568	0.9508 0.0528	0.9647
Median cfDNA Fragment Size (bp)	170	1/1	171	167	163	107	167	163	16/	196	168	167	167	158	108	170	167	167	168 167	. 68	168	16/	200	168	167	169	168 67	167	169	158	168	156	168	169	169	167	168	170	153	166	156	16/	167	168	105	169	167	155	168	167	167	168	158	100	167	168 168	168
Stage at Diagnosis	MA	MA	NA	MA	AN :	AM MA	NA	MA	¥ :	AN MA	× ×	NA	NA	NN NN	AN AN	A N	MA	YN.	AN AN	NA	NA	AN S	AN N	٨N	NA	AN .	NN NN	AN AN	NA	MA	NN NN	AN AN	MA	MA	AN N	¥ ¥	NA	NN NN	AN AN	AN	MA	AN AN	NA.	AN N	AN N	AN N	AN .	AN AN	AN	¥N.	NN NN	AN AN	NA N	s s	NA	NA NA	NA NA
Timepoint	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naive	Preoperative treatment naïve	Precoerative meanment naive	Precognative destinant naïve Precognative treatment naïve	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naive	Preoperative rearment marve	Precoerative treatment naïve	Precoerative treament naïve	Preoperative treatment naïve	Preoperative treatment naive	Pressentive reament refue Dressentive heatment refue	Precipitative reaction instru- Precipitative reactionent instive	Preoperative treatment nailve	Precoerative meanment naive	Preoperative treatment nailve Preoperative treatment nailve	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naive	Precoerative reactment naive	Preoperative treatment naïve	Precoerative treatment halive	Preoperative treatment naïve	Preoperative treatment nailve Preoriere treatment valve	Preoperative descrimination Preoperative treatment marve	Precoerative treatment naive	Preoperative treatment nalive	Precentative treatment naive	Preoperative descriter instrue Preoperative treatment native	Preoperative treatment naïve	Preoperative treatment native	Preoperative treatment rative Democratics from trains	Precoenative treatment naive	Preoperative treatment naïve	Preciperative treatment halive	Precoerative treatment native	Preoperative treatment naïve	Preoperative treatment narve	Precipierative treatment native Dresserative treatment refive	Precipierative treatment naive	Preoperative treatment naive	Preoperative treatment native Preoperative treatment native	Preoperative treatment naïve	Preoperative treatment naive	Preoperative seasment naive Preoperative treatment naive	Preoperative treatment naïve	Precoerative rearment naive	Freoperative treatment native Dreoperative treatment native	Preoperative treatment naive	Preoperative treatment naïve	Precoerative treatment haive Precoerative treatment haive	Precoerative treatment naïve	Preoperative treatment naïve Dreoperative treatment païve	Preoperative treatment naive
Analysis Type	www.coccontraction.coccontraction.coccontraction.coccontraction.coccontraction.coccontraction.coccontraction.co	MGS	WGS	WGS	MGS	SOM	WGS	WGS	MGS	20M	WGS	WGS	WGS	WGS	0.0AA	WGS	WGS	MGS	S5M	MGS	WGS	WGS	WGS	WGS	WGS	WGS	MGS	MGS	WGS	WGS	WGS	MGS	WGS	WGS	WGS MCB	WGS	WGS	WGS	MGS	WGS	WGS	WGS MCG	MGS	WGS	NGS MCS	MGS	WGS	2004 MCS	MGS	WGS	2504	WGS	WCS	WGS WGS	WGS	WGS MCS	WGS
Patient Type	Healthv	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy Healthy	Healthy
Patient	CGPI H443	CGPLH444	CGPLH445	CGPLH445	06PLH447	CGPCH443	CGPLHH50	CGPLH451	CGPLH452	CGPLH453 CODN HAES	CGPLH456	CGPLH457	CGPLHH58	CGPLH453 CCBLH453	OGPLH46U	CGPLH464	CGPLH465	CCPLH468	CGPLH46/ CGPLH468	CGPLH469	CGPLH470	CGPLH471	CCPLH473	CGPLH474	CGPLH475	CGPLH475	OGPLH477 COPLH478	CGPLH473	CGPLH480	CGPLH481	CGPLH482 CCPLH482	CGPLH484	CGPLH485	CGPLH486	CGPLH48/	CGPLH400	CGPLH491	CGPLH492	CGPLR494	CGPLH495	CGPLR495	CGPLH49/ CCEM HADA	CGPLH493	CGPLH500	CGPLH501 CGBLH502	CGPLH503	CGPLH504	COPP H505	CGPLH507	CCPLH508	CGPLH5U9 CGPLH5U9	CGPLH511	CGPLH512	CGPLH514 CGPLH514	CGPLH515	CGPLH516 CCBI H517	CGPLH518

Mutant Alelle Fraction Detected using Targeted sequencing*										5.10%	0.20%	0.22%	0.21%	0.13%	ND	3.22%	0.11%	140A	1.33%	0.87%	QN	0.35%	0.04% 1.12%	46.35%	0.21%	14.36%	0.49%	1.39%	2 CZ	ND	QN	ON .	140	4.89%	6.73%	0.60%	ND ND	0.37%	UD 0000	3.20% 10.70%	2.03%	QN				G 1406	37.22%	0.62%	- CN		ON ON	QN	0.21%	0.83%	0.10%		0.21%
Detected using DELFI (98% specificity)	N	: 2	z	z	z	z	z	z 2	zz	= >-	×	≻ :	≻ >	- >-	- >-	×	7	- >	- >-	Y	≻ :	× >	- >-	• ≻	¥	Y	≻ :	~ >	- >-	· >-	~ >-	≻ :	- >	- >-	7	> >	- z	×	> 7	z 2	×	> :	z>	• ≻	≻ >	~ >	- >-	≻:	z≻	· >-	~ >	• ≻-	≻:	>- 2	. ≻	zz	: > >
Detected using DELFI (95% specificity)	N	2 2	z	z	z	z	Z	z	2 2	2 >-	*	>- :	~ >	- >-	- >-	>-	> >	- >	- > -	Y	> :	~ >	- >-	• >	≻-	Y	> :	>- >	- >-	~~	>-	> >	- >	- >-	7	× >	- 2	> -	≻ 7	22	<i>.</i>	>- :	2>	• >	> :	~ >	- >-	× :	2 >	~	>>	- >-	> :	>- >	~	≻z	: > >
DELFI Score	0 nado	0.0944	0.4977	0.3100	0.0773	0.0327	0.0555	0.1325	0.0675	0.9892	0.9955	0.9986	0.9940	0.9886	0.8769	0.9924	0.9178	0.90/L	0.9273	0.9343	0.9764	0.9690	0.9983	0.9989	0.9749	0.3951	0.9775	0.3916	0.8544	0.9946	0.8160	0.9795	0,0000	066610	0.9983	0.9484	0.8042 0.6042	0.9962	0.9128	0.3410	0.9897	0.9955	0.0656	0.7598	0.9974	0.3049	0.9983	0.8791	0770°0	0.9789	0.9812 n q83q	0.9895	0.9885	0.9896 0.6594	0.9596	0.7292	0.9824
Fraction of Reads Mapped to Mitochondrial Genome	0.0471%.	0.0241%	0.0697%	0.0231%	0.0549%	0.0232%	0.0768%	0.0573%	0.0462%	0.0423%	0.0273%	0.1410%	0.0/24%	0.01.12.75	0.0525%	0.0564%	0.0568%	0.049378	0.0815%	0.0469%	0.2767%	0.1017% 6 6876%	0.0400%	0.1089%	0.0561%	0.0677%	0.0251%	0.1520%	0.0141%	0.0645%	0.0547%	0.1805%	0.100176	0.0490%	0.6145%	0.1110%	0.0432%	0.1346%	0.0801%	0.02/0%	0.1527%	0.0807%	0.0268%	0.0835%	0.0763%	0.1084% 0.4842%	0.2047%	0.1542%	0.027.37% D 4349%	0.4371%	0.1317% 0.0542%	0.1005%	0.0780%	0.0260%	0.0769%	0.0499% 0.0465%	0.0515% 0.0330%
Correlation of GC Corrected Fragment Ratio Profile to Median Fragment Ratio Profile of Healthy Individuals	0 4354	0.9476	0.9231	0.9269	0.9413	0.9264	0.9376	0.9271	0,0040	0.8681	0.9187	0.6836	0.3033	0.9189 0.9189	0.9081	0.679.0	0.8741	0.9370	0.6942	0.8872	0.6973	0.8148 A REFO	200000 20000	0.7578	0.9154	0.8889	0.9355	0.688.0	0.9228	0.9361	0.9378	0.9293	0.0000	0.6502	0.8127	0.8923	0.9342	0.9173	0.9291	0.9429	0.8083	0.9382	0.9429 F 2674	0.3246	0.8310	0.8/18/ 0.9004	0.8058	0.9238	0.9139	0.8117	0.3003	0.8499	0.9195	U.804/ D.9184	0.9050	0.3320 6.6374	0,9069 0,9548
Correlation of Fragment Ratio Profile to Median Fragment Ratio Profile of Heathy Individuals	0.9386	0.9649	0.8766	0.9011	0.9482	0.9131	0.9641	0.9450	9000 U	0.8702	0.9126	0.7753	0.4770	10,200	0.9572	0.8472	0.9119	010010 VY200	0.9091	0.8902	0.8779	U./56U 0.8685	0.9050	0.7854	0.8711	0.8942	0.8944	0.6550	0.9590	0.8148	0.9635	0.9461	2000,0	0.5779	0.6097	0.9403	0.9626	0.9536	0.9622	0.9675	0.8936	0.9682	0.8814	0.9098	0.8053	0,9406	0.8231	0.9108	0.9455	0.8916	0.9262 0.9256	0.8586	07/202	0.4545 0.4545	0.9289	0.9568	0.8718 0.3215
Median cfDNA Fragment Size (bp)	166	155	166	170	165	166	167	169	175	164	165	165	156 156	3	168	166	164		164	166	16/	106 265	16. 16.	165	165	167	164	168 168	166 166	161	167	167	170	166	1/0	167	167	164	166	162	164	165	164	166	165	185 787	164	166	166 166	167	167 166	169	165	160 165	164	156 156	167 166
Stage at Diagnosis	ΝA	AM AM	NA	AM.	NA N	٧N	NA	AN N	4N	Ş										N_{i}	:	≥ ≞				N	= ·					= ·			2	2 -					=	= ·			2 :					2						= >	
Timepoint	Pronerstive treatment naïve	Preoperative treatment native	Precoerative treatment naive	Preoperative treatment naïve	Precoerative meament naive	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment haive Preoperative treatment haive	Preoperative treatment naive	Precoerative treatment naive	Preoperative treatment naïve	Precoerative reament naive	Prennerative descrient rafve	Preoperative treatment naive	Preoperative treatment naïve	Precoerative treatment naive	Precoerative descriction naive Precoerative meanment naive	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naive	Preoperative treatment naive	Preventative destantant naive Preventive treatment naive	Precoerative meanment naïve	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative seament naive	Precoerative deadment naive	Precoerative treatment nailve	Preoperative treatment naïve	Precoerative reament haive	Pressonation treatment mailed	Precoerative treatment naive	Preoperative treatment naïve	Precoerative treatment naive	Precoerative treatment haive	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative deatment naive Preonerative treatment naive	Preoperative treatment naïve	Preoperative treatment naive	Preoperative treatment naive Properative treatment refive	Preoperative reament naïve	Preoperative treatment naïve	Preoperative treatment naive Dreonerative treatment naive	Preoperative treatment naive	Preoperative treatment naive	Frequerative seasonent naive	Preoperative treatment naïve	Precoerative treatment naïve Precoerative treatment naïve	Preoperative treatment naïve	Preoperative treatment naive	Precisitive treatment naive	Preoperative treatment naïve	Precoerative treatment naïve Precoerative treatment naïve	Precperative treatment naive Precperative treatment naive
Analysis Type	NASA.	MGS	MGS	MGS	WGS	MGS	WGS	WG8	2022	Terceted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Terroted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS Targeted Mutation Analysis and WGS	Fargeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targetsa Mukuon Analysis and WGS Terrered Mitretion Anelysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Eargeled Muration Analysis and WGS Temorod Muration Analysis and MCS	Targated investion Analysis and MGS Targated Mitiation Analysis and MGS	Targeted Mutation Analysis and WGS	l argeted Mutation Analysis and WGS	Targetad Mutation Analysis and MGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Nutation Analysis and WGS	Targetad (vutation Analysis and web Targetad his ration Analysis and Wight	Fargeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS Targeted Mutation Anelysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	l argeted intration Analysis and wes Terreted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	2000 1910 - 2010	SM	MGS .	WGS Terrated Mitation Analysis and MCS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Terreted Mutation Analysis and WGS	WGS	Targeted Mutation Analysis and WGS Terreted Mutation Analysis and MGS	Targeted Mutation Analysis and WGS	Fargeted Mutation Analysis and WGS	l argeted inutation Analysis and WGS Mr23	Tergeted Mutation Analysis and WGS	NGS MGS	WGS Targeted Mutation Analysis and WGS			
Patient Type	Healthu	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Healthy	Lune Cancar	Lung Cancer	Lung Cancer	Lung Cencer	Luno Cancer	Lung Cancer	Lung Cancar	Lung Cancer	Lung Genoer Lung Cencer	Lung Cancer	Overtian Cancer	Ovarian Cancer	Ovarian Cancer Ovarian Cancer	Overlage Control Overlage Control	Ovarian Cancer	Ovarian Cancer Ovarian Cancer	Ovarian Cancar	Ovarian Cancer	Ovarian Cancer	Ovarian Cancer	Ovarian Cancer	Ovarian Cancer	Ovarian Cancer	Ovarian Cancer	Ovarian Cencer	Overtian Cancer	Ovarian Cancer Ovarian Cancer	Ovarian Cancer	Ovarian Cancer	Pancreetto Cencer Duorlenai Cancar	Bile Duct Cancer	Bile Duct Cancer	Bile Duct Cancer Bile Duct Cancer	Bile Duct Cancer	Bite Duct Cancer	Bile Durt Canter	Bile Duct Cancer	Bile Duct Cancer Rite Duct Cancer	Bile Duct Cancer	Bile Duct Cancer	Bile Duct Cancer Bile Duct Cancer	Bile Duct Cancer	Bile Duct Cancer Rite Duct Cancer	Pancreatic Cancer Bile Duct Cancer				
Patient	CGPI H510	CGPLH520	CCPLH525	CGPLH526	06PLH639	CGPLH640	CGPLH542	CGPLH643	CCFN HSA6	CGPLU144	CGPLLU161	CGPULU162	CGPILUTE	CGP111166	CGPLLU1/6	CGPLLU177	CGPLLU203	000111000	CGPLLU208	CGPLOV11	CGPLOV12	CGPLCV13	CGPLOV15	CGPLOV19	CGPLOV20	CGPLOV21	CGPLOV22	CGPLCV23	CGPLOV25	CGPLOV26	CGPLOV28	CGPLOV31		CGPLOV38	CGPLCV40	CGPLOV41	CGPLOV43	CGPLOV44	CGPLOV46	CGPLOV4/ CGPLOV48	CGPLCV49	CGPLOV50	CGPLPA112 CGPLPA113	CGPLPA114	CGPLPA115	CGPLPA11/ CGDI DA118	CGPLPA122	CGPLPA124	CGPLEFA120 CGPLPA126	CGPLPA127	CGPLPA128 FGPI PA129	CGPLPA130	CGPLPA131	CGPLPA134 CGPI PA135	CGPLPA136	CGPLPA137 FGPI PA136	CGPLPA14 CGPLPA140

Mutant Alelle Fraction Detected using Targeted sequencing*			. ,							. ,																									0.43%	CIN	9	QN	. 4	0.03%C	0.14%			1.62%	2.99%	2.32%		Q	02	0.45%	4.21%		GN		1.04%	0.20%
Detected using DELFI (98% specificity)	~	- >	- >	- 2	2 2	~	7	¥	>- >	~ >	- >-	~	×	≻ :	>- >	- >	- >	- 2	Y	≻	z	z>	- >	- >-	- 2	z	z	z	27	2 >	- 2	: >-	۲	≻ :	> 2	2 >	- z	7	~ 7	2 >	- 2	7	z	~ >	- >-	~	~	> :	× >	- >	~	7	>>	- >	• >-	Y
Detected using DELFI (95% specificity)	~	~ >	- >	- 2	z	-<	Y	¥	>->	× >	• >	<i>.</i> -	¥	≻ :	>- 3	- >-	- >	Z	×	≻	z	z>	- >	- >-	• >	z	Z	z	z	z >	- >	· >-	¥	≻ ;	> 2	z >-	· z	>-	> 2	2 >	Z	>-	z	>- >	- >-	· >	¥	> :	× >	- >-	· >-	¥	> >>	- >	• >-	7
DELFI Score	0.0000	0.8737	0.00.07	0.0150	0.2158	0.9678	0.9956	0.9926	0.9675	0.9954	0.8231	0.9036	0.3957	2262.0	0.3924	0.9051	0.000	0.3544	0.9952	0.9946	0.2251	0.0000	0.0340	0.9759	0.6746	0.1245	0.0524	0.0108	0.0697	0.0000	0 7061	0.9978	0.9025	0.9944	0.8581	0.8900	0.5893	0.9754	0.9409	0.2005	0.3842	0.3910	0.5009	0.9955	0.9612	0.9805	0.9416	0.8480	0.5253	0.9687	0.9975	0.9914	0.9705	0.9981	0.9513	0.9748
Fraction of Reads Mapped to Mitochondrial Genome	0.0000000000000000000000000000000000000	0.032076	0.0100 P	0 02019K	0.0558%	0.3123%	1.2600%	0.0897%	0.0558%	0.5/65% 0.036/06/	0.0247%	0.0546%	0.0894%	0.0433%	0.0410%	0.03/27%	6 0000 M	0.0263%	1.0362%	0.1595%	1.0232%	%#c1010	U. 102470 D. DRD3%	0.1479%	0.0329%	0.0453%	0.0479%	0.0292%	0.034576	0.7564%	0.1458%	0.6250%	0.0180%	0.0815%	0.0704% n.nas4%	0.0817%	0.0317%	0.0321%	0.2752%	0.0398% 6.17AA%	0.0299%	0.2299%	%6660.0	%C67110	0.0247%	%66200	0.0540%	0.0287%	0.0385% 0.0000.00	0.0157%	0.0220%	0.1140%	0.0596%	0.1954%	0.0490%	0.0138%
Sorrelation of GC Corrected Fragment Ratio Profile to Median Fragment Ratio Profile of Healthy Individuals	0.0004	0.9007	120000 00342	01000	20020	0.7757	0.6771	0.9203	0.8968	U.03435 Fi 03230	0.9356	0.6938	0.8553	0.8385	0.9294	0.0041 0.7920	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.8863	0.7525	0.6439	0.9207	0.0770	677970 19994	0.9193	0.5248	0.8582	0.8893	0.9372	0.3443	0.8040	20050	0.6023	0.9433	0.8571	0.9057	Ch(6 U	0.9038	0.9155	0.8886	0.9205	0.9111	0.2687	0.9140	0.7852	0.6639	0.777.0	0.8758	0.9401	0.9284	0.9095	0.5445	0.7888	0.9094	0.0003 D.6295	0.8845	0.6200 and 0.7500, respectively.
Correlation of Fragment Ratio Profile to Median Fragment Ratio Profile of Meathy Individuals	07.140 V	0.0151	12100	00420	0.9536	0.7836	0.8524	0.9100	0.8577	0.7867	0.9598	0.9069	0.8361	0.8545	0.8840	0.0/40	0.000	0.9126	0.8274	0.8376	0.9391	2 C P C C	0.5170	0.9230	0.9574	0.9172	0.9424	0.9688	0.9631	0.815/ 0.8875	0.9389	0.8585	0.9365	0.8542	0.9496	0.0450	0.9635	0.9369	0.9428	0.9021	0.9523	-0.4778	0.9554	0.9076	0.9431	0.7995	0.9368	0.8742	0.5134	0.9611	0.7469	-0.0019	0.9470	0.0043	0.9313	0.9480 eoritoly is based on scores greater than
Median cfDNA Fragment Size (bp)	406	167	101	201	168 168	162	166	165	165	100 841	166	165	166	168	165	167	191	167	163	166	167	101	165 165	59	166	168	167	166	163	165 785	167	166	162	<u>163</u>	15/ 15/	187	164	166	1/1	166	69	165	166	168	3	168	168	164	155 50	99 89	167	173	169	170	168	168 t 95% and 98% sp
Stage at Diagnosis																					:				• ==										- 2	8 ⊟			-	= =	÷ ==		2	× =	ē ===		0	2	≥ =		\sim	0		- >	: ≡	l cer detection a
Timepoint	Brosserski strativation (more than the second	Prevoerative deschert haive Prevoerative treatment refive	Promorphics treatment traine	Properties resures that to be been been as the beauties of the beauties the beauties of the be	Precoerative meanment naive	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naive	Preoperative treatment naive	Preciperative treatment native Drementine treatment refive	Preoperative meanment naive	Preoperative treatment naïve	Preoperative treatment native	Preoperative treatment naïve	Preoperative treatment naive	Prevoerative desturient native Prevoerative treatment native	Promontive treatment polyte	Preoperative treatment naïve	Preoperative rearment naive	Preoperative treatment naïve	Preoperative treatment naive		Prevoletative seaurent native Prevoletative treatment native	Prenorative treatment native	Precoerative meanment naive	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative treatment naïve	Preoperative rearment naive	Prevoerative desturient native Prevoerative treatment native	Preconstitues reactment marke	Preoperative treatment naïve	Precoerative meament naive	Preoperative treatment naïve	Preoperative treatment naive	Prennerstive heatmant raive	Preciperative treatment naive	Preoperative treatment naïve	Precoerative reament naive	Preoperative treatment naive Dreoperative treatment naive	Preoperative treatment naive	Preoperative treatment naive	Preoperative treatment native	Presentive rearment naive	Preoperative treatment naive	Precperative meanment naïve	Preoperative treatment naïve	Preoperative treatment naive	Preoperative reament naive	Precoerative treatment halve	Preoperative treatment naïve	Precoerative rearment naïve	Preoperative treatment naïve	Precentive treatment refive	Preoperative treatment halve	Preoperative treatment naive ted sequencing analyse. DELFI can
Analysis Type	00000000000000000000000000000000000000	80M	2004	0004	WGS	MGS	WGS	WGS	WGS	5005 5005	WGS	WGS	WGS	MG8	MGS	0.0VV	2022	MGS	WGS	WGS	WGS	AVGO AVGO	2002	MGS	WGS	MGS	WGS	MG8	MGS 2004	0.004	MGR	MGS	WGS	WG3	l argered Muration Analysis and WGS Mine a	Tarnahad Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	WGS	l argeisal inutation Analysis and webs Terreted Ministion Analysis and MCS	Targeted Mutation Analysis and WGS	WGS	WGS	Largetad Mutation Analysis and WGS Tamond Mutation Androin and MCS	Terrested Mutation Analysis and WGS	Targeted Mutation Anelysis and WGS	WGS	Targeted Mutation Anelysis and WGS	I argeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS	WGS	Targeted Mutation Analysis and WGS	2000 1000	Targeted Mutation Analysis and WGS	Targeted Mutation Analysis and WGS srence 10 for additional information on targe
Patient Type	Bila Duet Concernen	Pareneotic (Caner Pareneotic (Caner	Bits Dury Canver	Enviroatio Contan	Bile Duct Canner	Bile Duct Cancer	Pancreatic Cancer	Bile Duct Cancer	Bite Duct Cancer	Panoreatic Cencer Paroreatic Cencer	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Paroreatic Centrel Paroreatic Centrel	Parversatio Canoar	Panoreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Panoreatic Canoar Panoreatic Canoar	Panoraatio Cancer	Pancreatic Cancer	Panoreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Paroneatic Centrel Paroneatic Centrel	Pancreatic Canoar	Pancreatic Cancer	Pancreatic Cancer	Pancreatic Cancer	Gastric cancer	Gastric cancer	Gastric cercer	Gastric cancer	Gastric cancer	Gestric cancer Gestric cancer	Gastric cencer	Geistric cancer	Gastric cencer	Cestric cancer	Gastric cancer	Gastric cancer	Gastric cancer	Gastric cancer	Castric cancer	Gastric carloar	Gastric cancer	Gastric cencer	Gastric cancer	Gastric center	Gastric cancer	Gastric cancer letected. Please see refe
Patient	CC0 DA444		COD D DOC	COPI 0 4155	CGPLPA165	CGPLPA168	OGPLPA17	CGPLPA184	CGPLPA187	CGPLFAZS CORE DADE	CCPLPA26	CGPLPA28	OGPLPA33	CGPLPA34	CGPLPAS/	COLLENSO		CGPLPA42	CGPLPA46	CGPLPA47	06PLPA48	OGPERADZ	0.025 PA58	CCE PASS	CCPLPA67	CGPL PA69	0GPLPA71	CGPLPA74	CGPLPA/6	CGPLFA03	COPI PAGE	CGPLPA93	CGPLPA94	CGPLPA95	UGS1102 7705111	CGS1110	CGST114	CC3T13	CGST131	CGS1141	CCST18	CG5121	0G8126	CGS128 CCST20	CCST32	CGST33	CGST38	CG3139	008141	CGST47	CCS148	CGST53	CGST58	CGST77	CGS180	CGST81 *ND indicates not c

WHAT IS CLAIMED IS:

1. A method of determining a cell free DNA (cfDNA) fragmentation profile of a mammal, the method comprising:

processing cfDNA fragments obtained from a sample obtained from the mammal into sequencing libraries;

subjecting the sequencing libraries to low-coverage whole genome sequencing to obtain sequenced fragments;

mapping the sequenced fragments to a genome to obtain windows of mapped sequences; and

analyzing the windows of mapped sequences to determine cfDNA fragment lengths.

2. The method of claim 1, wherein the mapped sequences comprise tens to thousands of windows.

3. The method of claims 1-2, wherein the windows are non-overlapping windows.

4. The method of any one of claims 1-3, wherein the windows each comprise about 5 million base pairs.

5. The method of any one of claims 1-4, wherein a cfDNA fragmentation profile is determined within each window.

6. The method of any one of claims 1-5, wherein cfDNA fragmentation profile comprises a median fragment size.

7. The method of any one of claims 1-5, wherein cfDNA fragmentation profile comprises a fragment size distribution.

8. The method of any one of claims 1-5, wherein the cfDNA fragmentation profile comprises a ratio of small cfDNA fragments to large cfDNA fragments in said windows of mapped sequences.

9. The method of any one of claims 1-5, wherein the cfDNA fragmentation profile comprises the sequence coverage of small cfDNA fragments in windows across the genome.

10. The method of any one of claims 1-5, wherein the cfDNA fragmentation profile comprises the sequence coverage of large cfDNA fragments in windows across the genome.

11. The method of any one of claims 1-5, wherein the cfDNA fragmentation profile comprises the sequence coverage of small and large cfDNA fragments in windows across the genome.

12. The method of any one of claims 1-11, wherein the cfDNA fragmentation profile is over the whole genome.

13. The method of any one of claims 1-11, wherein the cfDNA fragmentation profile is over a subgenomic interval.

14. A method of identifying a mammal as having cancer, the method comprising:

determining a cell free DNA (cfDNA) fragmentation profile in a sample obtained from the mammal;

comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile; and

identifying the mammal as having cancer when the cfDNA fragmentation profile obtained from the mammal is different from the reference cfDNA fragmentation profile.

15. The method of claim 14, wherein the reference cfDNA fragmentation profile is a cfDNA fragmentation profile of a healthy mammal.

16. The method of claim 15, wherein the reference cfDNA fragmentation profile is generated by determining a cfDNA fragmentation profile in a sample obtained from the healthy mammal.

17. The method of claim 14, wherein the reference DNA fragmentation pattern is a reference nucleosome cfDNA fragmentation profile.

18. The method of any one of claims 14-17, wherein the cfDNA fragmentation profile comprises a median fragment size, and wherein a median fragment size of the cfDNA fragmentation profile is shorter than a median fragment size of the reference cfDNA fragmentation profile.

19. The method of any one of claims 14-17, wherein the cfDNA fragmentation profile comprises a fragment size distribution, and wherein a fragment size distribution of the cfDNA fragmentation profile differs by at least 10 nucleotides as compared to a fragment size distribution of the reference cfDNA fragmentation profile.

20. The method of any one of claims 14-17, wherein the cfDNA fragmentation profile comprises a ratio of small cfDNA fragments to large cfDNA fragments in said windows of mapped sequences, wherein a small cfDNA fragment is 100 base pairs (bp) to 150 bp in length, wherein a large cfDNA fragments is 151 bp to 220 bp in length, and wherein a correlation of fragment ratios in the cfDNA fragmentation profile is lower than a correlation of fragment ratios of the reference cfDNA fragmentation profile.

21. The method of any one of claims 14-17, wherein the cfDNA fragmentation profile comprises the sequence coverage of small cfDNA fragments in windows across the genome.

22. The method of any one of claims 14-17, wherein the cfDNA fragmentation profile comprises the sequence coverage of large cfDNA fragments in windows across the genome.

23. The method of any one of claims 14-17, wherein the cfDNA fragmentation profile comprises the sequence coverage of small and large cfDNA fragments in windows across the genome.

24. The method of any one of claims 14-17, wherein the cancer is selected from the group consisting of: colorectal cancer, lung cancer, breast cancer, gastric cancers, pancreatic cancers, bile duct cancers, and ovarian cancer.

25. The method of claim 14, wherein the step of comparing comprises comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over the whole genome.

26. The method of claim 14, wherein the step of comparing comprises comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over a subgenomic interval.

27. The method of any one of claim 14-23, wherein the mammal has previously been administered a cancer treatment to treat the cancer.

28. The method of claim 27, wherein the cancer treatment is selected from the group consisting of: surgery, adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy, targeted therapy, and combinations thereof.

29. The method of any one of claims 14-28, further comprising administering to the mammal a cancer treatment selected from the group consisting of: surgery, adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy, targeted therapy, and combinations thereof.

30. The method of claim 29, wherein the mammal is monitored for the presence of cancer after administration of the cancer treatment.

31. The method of any one of claim 14 to claim 30, the method further comprising identifying one or more cancer-specific sequence alterations in the sample.

32. The method of any one of claim 14 to claim 30, the method further comprising identifying one or more chromosomal abnormalities in the sample.

33. The method of claim 32, wherein the one or more chromosomal abnormalities comprises a copy number change in one or more chromosome arms.

34. A method of identifying the tissue of origin of a cancer in a mammal identified as having a cancer, the method comprising:

determining a cell free DNA (cfDNA) fragmentation profile in a sample obtained from the mammal;

comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile; and

identifying the tissue of origin of the cancer in a mammal when the cfDNA fragmentation profile obtained from the mammal matches a reference cfDNA fragmentation profiles from a mammal identified as having a cancer with the same tissue of origin.

35. The method of claim 34, wherein the reference cfDNA fragmentation profile comprises reference cfDNA fragmentation profiles from mammals identified as having one or more of colorectal cancer, lung cancer, breast cancer, gastric cancers, pancreatic cancers, bile duct cancers, and ovarian cancer.

36. The method of claim 35, wherein the reference cfDNA fragmentation profile is generated by determining a cfDNA fragmentation profile in a sample obtained from the mammals

identified as having one or more or colorectal cancer, lung cancer, breast cancer, gastric cancers, pancreatic cancers, bile duct cancers, and ovarian cancer.

37. The method of claim 34, wherein the reference DNA fragmentation pattern is a reference nucleosome cfDNA fragmentation profile.

38. The method of any one of claims 34-37, wherein the cfDNA fragmentation profile comprises a median fragment size, and wherein a median fragment size of the cfDNA fragmentation profile is shorter than a median fragment size of the reference cfDNA fragmentation profile.

39. The method of any one of claims 34-37, wherein the cfDNA fragmentation profile comprises a fragment size distribution, and wherein a fragment size distribution of the cfDNA fragmentation profile differs by at least 10 nucleotides as compared to a fragment size distribution of the reference cfDNA fragmentation profile.

40. The method of any one of claims 34-37, wherein the cfDNA fragmentation profile comprises a ratio of small cfDNA fragments to large cfDNA fragments in said windows of mapped sequences, wherein a small cfDNA fragment is 100 base pairs (bp) to 150 bp in length, wherein a large cfDNA fragments is 151 bp to 220 bp in length, and wherein a correlation of fragment ratios in the cfDNA fragmentation profile is lower than a correlation of fragment ratios of the reference cfDNA fragmentation profile.

41. The method of any one of claims 34-37, wherein the cfDNA fragmentation profile comprises the sequence coverage of small cfDNA fragments in windows across the genome.

42. The method of any one of claims 34-37, wherein the cfDNA fragmentation profile comprises the sequence coverage of large cfDNA fragments in windows across the genome.

43. The method of any one of claims 34-37, wherein the cfDNA fragmentation profile comprises the sequence coverage of small and large cfDNA fragments in windows across the genome.

44. The method of any one of claims 34-37, wherein the cancer is selected from the group consisting of: colorectal cancer, lung cancer, breast cancer, gastric cancers, pancreatic cancers, bile duct cancers, and ovarian cancer.

45. The method of claim 34, wherein the step of comparing comprises comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over the whole genome.

46. The method of claim 34, wherein the step of comparing comprises comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over a subgenomic interval.

47. The method of any one of claims 34-46, the method further comprising identifying one or more cancer-specific sequence alterations in the sample.

48. The method of any one of claims 34-46, the method further comprising identifying one or more chromosomal abnormalities in the sample.

49. The method of claim 48, wherein the one or more chromosomal abnormalities comprises a copy number change in one or more chromosome arms.

50. A method treating a mammal having cancer, the method comprising: identifying said mammal as having cancer, wherein said identifying comprises: determining a cell free DNA (cfDNA) fragmentation profile in a sample obtained from the mammal;

comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile; and

identifying the mammal as having cancer when the cfDNA fragmentation profile obtained from the mammal is different from the reference cfDNA fragmentation profile; and

administering a cancer treatment to said mammal.

51. The method of claim 50, wherein said mammal is a human.

52. The method of any one of claims 50-51, wherein the cancer is selected from the group consisting of: colorectal cancer, lung cancer, breast cancer, gastric cancers, pancreatic cancers, bile duct cancers, and ovarian cancer.

53. The method of any one of claims 50-52, wherein said cancer treatment is selected from the group consisting of: surgery, adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy, targeted therapy, and combinations thereof.

54. The method of any one of claims 50-53, wherein the reference cfDNA fragmentation profile is a cfDNA fragmentation profile of a healthy mammal.

55. The method of claim 54, wherein the reference cfDNA fragmentation profile is generated by determining a cfDNA fragmentation profile in a sample obtained from the healthy mammal.

56. The method of any one of claims 50-53, wherein the reference DNA fragmentation pattern is a reference nucleosome cfDNA fragmentation profile.

57. The method of any one of claims 50-56, wherein the cfDNA fragmentation profile comprises a median fragment size, and wherein a median fragment size of the cfDNA

fragmentation profile is shorter than a median fragment size of the reference cfDNA fragmentation profile.

58. The method of any one of claims 50-56, wherein the cfDNA fragmentation profile comprises a fragment size distribution, and wherein a fragment size distribution of the cfDNA fragmentation profile differs by at least 10 nucleotides as compared to a fragment size distribution of the reference cfDNA fragmentation profile.

59. The method of any one of claims 50-56, wherein the cfDNA fragmentation profile comprises a ratio of small cfDNA fragments to large cfDNA fragments in said windows of mapped sequences, wherein a small cfDNA fragment is 100 base pairs (bp) to 150 bp in length, wherein a large cfDNA fragments is 151 bp to 220 bp in length, and wherein a correlation of fragment ratios in the cfDNA fragmentation profile is lower than a correlation of fragment ratios of the reference cfDNA fragmentation profile.

60. The method of any one of claims 50-56, wherein the cfDNA fragmentation profile comprises the sequence coverage of small cfDNA fragments in windows across the genome.

61. The method of any one of claims 50-56, wherein the cfDNA fragmentation profile comprises the sequence coverage of large cfDNA fragments in windows across the genome.

62. The method of any one of claims 50-56, wherein the cfDNA fragmentation profile comprises the sequence coverage of small and large cfDNA fragments in windows across the genome.

63. The method of any one of claims 50-62, wherein the step of comparing comprises comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over the whole genome.

64. The method of any one of claims 50-62, wherein the step of comparing comprises comparing the cfDNA fragmentation profile to a reference cfDNA fragmentation profile over a subgenomic interval.

65. The method of any one of claims 50-64, wherein the mammal has previously been administered a cancer treatment to treat the cancer.

66. The method of claim 65, wherein the cancer treatment is selected from the group consisting of: surgery, adjuvant chemotherapy, neoadjuvant chemotherapy, radiation therapy, hormone therapy, cytotoxic therapy, immunotherapy, adoptive T cell therapy, targeted therapy, and combinations thereof.

67. The method of any one of claims 50-66, wherein the mammal is monitored for the presence of cancer after administration of the cancer treatment.

Noninvasive cancer screening (DELFI)

FIG.1

FIG.2

cfDNA fragments size

FIG. 3 (Cont.)

GC Content (%)

FIG. 4A (Cont.)

FIG.4B

FIG₅

8/33

CGCRC297

CGCRC296

CGCRC292

CGCRC306

CGCRC306

9/33

cfDNA Fragment Size

FIG. 5(Cont.)

100 125 150 175 200

11/33

CfDNA fragment size

FIG. 6(Cont.)

FIG. 7B

FIG.8

22/33

FIG. 13A

FIG. 13B

FIG. 14

Healthy Cancer Healthy Cancer Healthy Cancer 8.1 · 3·. 4p 16p 11p 7q 19q \$ FIG. 16A .. 8. •#. **\$.** \: 39 ۲p 10q 15q 19p ŧ Ż 1 ₽ : : Б. Зр <u>6</u>q 14q 10p 18q 8 8 1 Healthy Cancer Healthy Cancer Healthy Cancer Healthy Cancer : 2q <u>р</u> 13q 18p 22q gp 2 2 2 . . 2::: al 1. 1 59 12q 17q 21q 2p 9 0 8 1 2 2 3 19 5р 8q 12p 17p 20q 8 ۶ ١. 8 f **k**.., ¥.: 4q 8p 1 11q 16q 20p £ 20^{-1} 20^{-5} 20^{-} 20^{-2} Z score

26/33

FIG. 16B

FIG. 17A

FIG. 20