»UK Patent ,GB 2563091 15D

(45)Date of B Publication 22.04.2020

(54) Title of the Invention: Threat detection SyStem

(51) INT CL: GO6F 21/56 (2013.01) GO6F 21/53 (2013.01) GO6F 21/55 (2013.01)

(21) Application No: 1718313.8 (72) Inventor(s):
Matti Aksela

(22) Date of Filing: 06.11.2017 Mika Stahlberg

(43) Date of A Publication 08.05.2019 (73) Proprietor(s)

F-Secure Corporation
(Incorporated in Finland)
PL 24, Tammasaarenkatu 7, Helsinki, 00180, Finland

(56) Documents Cited:

WO 2017/213400 A1 (74) Agent and/or Address for Service:
Berggren Oy
(58) Field of Search: P.O0.BOX 16, Eteldinen Rautatiekatu 10A,
As for published application 2568091 A viz: 00101 Helsinki, Finland
INT CL GO6F

Other: WPI, EPODOC, Patent Fulltext
updated as appropriate

Additional Fields
Other;: None

16089G¢ 99

d

1/3

1 Client computer 23 DB i47! g
12 t
. 4
» 2 Server
15 ' ;21 7R
3

Figure 1

2/3

200 Create modular representation of behavior of known
apps based on sub-components of set of known apps

\ 4

202 Enter modular representation to evolutionary
analysis system for generating previously unknown
combinations of the procedures

204 Store generated combinations as candidate
descendants of known apps to future threat candidate

DB l

206 Monitor behavior of computer system to detect
procedure(s) matching behaviour of stored candidate

descendant in the DB

208 Upon detecting a match and if matching candidate
descentant Is determined to be malicious or suspicious,
identify running app as malicious or suspicious

Figure 2

3/3

300 Execute malware in controlled environment

302 Perform feature extraction on semi-structured data

304 Use feature representation and chosen similarity
metric for building structures of data

306 Generate future candidates using genetic
algorithm(s)

308 Generate methods to protect against and/or detect
future threats

Figure 3

10

15

20

25

30

35

THREAT DETECTION SYSTEM

Field of the Invention

The present invention relates to the detection of malware on a computer system.

Background

The term "malware” i1s short for malicious software and Is used to refer to any software
designed to Infiltrate or damage a computer system without the owner's informed
consent. Malware can include viruses, worms, Trojan horses, rootkits, adware, spyware
and any other malicious and unwanted software. Many computer devices, such as
desktop personal computers (PCs), laptops, personal data assistants (PDAs) and mobile
phones can be at risk from malware. Computer systems running the Windows™
operating system are particularly at risk from malware, but all operating systems will be

at some risk. Examples of other operating systems that could be at risk are Mac OS™,

Linux™ Android™ and iOS™

Traditional malware and threat detection relies on having seen malware samples and
having analysed them. As current malware analysis relies on malware already existing
and Intrusion detection on identifying known patterns, methods allowing analysis of
malware that does not yet exist and prediction of their behaviour are needed. |t would be
very beneficial to see ahead what types of malware will occur in the future and thus be

ready to provide protection against them even before the malware exists.

Summary

Various aspects of examples of the invention are set out in the claims.

According to an aspect of the invention, there Is provided a method as specified in claim
1.

According to an aspect of the invention, there Is provided a computer system as specified

IN claim 16.

10

15

20

25

30

35

According to an aspect of the invention there iIs provided computer program comprising

computer readable code as specified In claim 21.

According to an aspect of the invention there Is provided a non-transitory computer

storage medium as specified in claim 22.

Embodiments of the invention are defined in the depended claims.

Brief Description of the Drawings

Figure 1 1s a schematic diagram of a system;
Figure 2 i1s a flowchart of a malware protection method according to an embodiment; and

Figure 3 Is a flowchart of another example of a malware protection method.

Detailed Description

In order to provide improved detection of malware that is not yet known, a system is
proposed which makes use of behaviour profiles generated for a plurality of known
malicious and/or benign applications. In various embodiments of the invention, analysis
of previously unknown malware and the prediction of its behaviour is enabled. This is all
accomplished without actually generating malicious code but rather using evolutionary
modelling of malware behaviour. There are some known approaches that may detect
similarity of samples on code level and that can detect coexistence of specific
components, but these are often dependent on e.g. the ability to unpack runtime packers
of the malware. Some embodiments of the proposed approach instead focus on the
behaviour of malware and/or intrusions in order to model them to be further "mutated” In

an evolutionary manner, for example by using genetic algorithms.

Thus detecting malicious behaviour Is enabled also In very early stages of the activity
and even before actual malicious actions are taken. For example, having evaluated a
certain behavioural pattern to be a potential candidate as an evolution of a known threat,
It IS possible to block the activities before actual harm-causing steps are performed by
them. Thus, the proposed solution Is able to detect and prevent malware and/or fileless
attacks that have not seen before. The proposed solution has many benefits, such as
providing identification/classification instead of merely detection of malware, providing
identification of future versions of samples, providing early detection and stopping

execution prior to malicious actions, and understanding the lineage of the threat in an

10

15

20

25

30

35

automated manner providing significant benefits to threat intelligence through providing

detailed information.

An example schematic diagram of a system according to the invention will be described
with reference to Figure 1. A client computer 1 has installed thereon a security application
14 provided by a security service provider. The computer runs a number of further
applications, and the security application 14 monitors actions taken by those further
applications. The client computer 1 may connect to a server 2, and the security
application 14 sends results of the monitoring to the server 2 for analysis, or the analysis
may be performed at the client computer 1 by the security application. The behaviour
profiles may be constructed at the client 1 by the security application 14, at the server 2,
and/or at a second server 3. The client computer 1 and the servers 2 and 3 each typically
comprise a hard drive 12, 20, 30, a processor 13, 21, 31, and RAM 15, 22, 32. The client
computer 1 may connect to the servers 2 and 3 over the Internet, or any suitable network.

The servers 2 and 3 (if used) are operated by the security service provider.

Figure 2 1s a flowchart of a method of detecting malware. In 200, the security application
creates a modular representation of the behaviour of known malicious and/or benign
applications based on sub-components of a set of known applications. Each sub-
component identifies one or more procedures known to be performed by the applications.
For each such application, the security application may also maintain identification
Information for the application such as filenames, hash data, certificates, etc. The
security application may further maintain a behaviour profile for each of the known
applications. The behaviour profile for an application identifies how the application
implements one or more procedures, for example how an SSL or other secure
connection Is established, how the application edits registry entries, or any other
operation such as file access, network access or memory related operations. The profile
identifies, for each procedure, a characteristic action (which will typically be the action
which i1s the result of the procedure) and one or more expected actions. For example, In
the case of an SSL connection, the characteristic action may be the sending of an SSL
encrypted message, and the expected actions may include a call to a library which

provides an SSL implementation.

As a further example, the characteristic action may be the editing of a registry entry. The
APl used to perform this action will generally be the same regardless of implementation,
but there I1s a detectable difference In the actions preceding the registry edit depending

on the programming language in which the code Is written, and possibly on the compiler

10

15

20

25

30

35

used. The actions may be anything which is done by the application or other software or
hardware on the computer system as part of the procedure. The procedures may include

file, registry, memory, and/or network operations.

In an embodiment, the sub-components of the set of known applications may be selected
on the basis of one or more of: a previously generated behavioral model, a set of sub-
components having similarities with each other, detected previously unknown sub-
components, and/or using specifically generated new sub-components. In an
embodiment, the behavioural model can be complemented with low-level behaviour such
as execution traces, memory and/or register contents and possibly augment this with
more static code block analysis that provides structure to the functionality. Thus, the

behavioural analysis may be complemented with a static analysis.

In an embodiment, the behavior of the set of known malicious and/or benign applications
IS first analysed In a protected environment before creating the modular representation.
Thus, In an embodiment, a feature extraction system may generate the behavioral model

of the analyzed behavior based on output from the protected environment.

In 202, the created modular representation i1s entered to an evolutionary analysis system
for generating previously unknown combinations of the procedures. In an embodiment,
experimentation may be used for generating the previously unknown combinations of
the procedures. In another embodiment, probabilities of occurrence are assigned to the
generated previously unknown combinations of the sub-components by the evolutionary
analysis system and combinations having the highest likelihood of occurrence are stored

as candidate descendants of known applications.

In an embodiment, a previously generated behavioural model Is analysed in a system
that Is able to find sub-component similarity and cluster the data, essentially creating a
representation of the behaviour that iIs modular and can be fed to at least one

evolutionary algorithm of the evolutionary analysis system.

In 204, the generated previously unknown combinations are stored as candidate
descendants of known applications 17, 18 to a future threat candidate database 23. In
an embodiment, the sample pool of the future threat candidate database evolves and

highest likelihood viable candidates may be entered for further analysis and evaluation.

10

15

20

25

30

35

In 206, the behavior of the computer system Is monitored to detect one or more
procedures matching the behavior of a stored candidate descendant in the future threat
candidate database. In an embodiment, protection techniques are generated against the

future threat candidates.

In 208, upon detection of one or more procedures matching the behavior of the stored
candidate descendant and If the stored candidate descendant is determined to be
malicious or suspicious, the running application is identified as malicious or suspicious.
The candidate descendants stored In the future threat candidate database are analysed
for maliciousness before or after being compared with the behaviours of running
applications. In an embodiment, the candidate descendants are predefined as being
malicious or suspicious and the running applications are compared only with the
procedures matching the behaviour of the candidate descendants that were predefined
as malicious or suspicious. In another embodiment, the behaviour of the running
application Is compared with the behaviours of all candidate descendants and If a
matching candidate descendant is found, then a security analysis for maliciousness Is
executed for determining whether the matching candidate descendant is malicious or

SUSpPICIOuUS.

Figure 3 Is a flowchart of another example of a method according to the invention.

In 300, malware is executed in a controlled environment. Number of measurements may
be performed at each step identifying things such as file access, processes started,
executables, etc. This may be a raw format limited structure data such as a very detailed
sandbox report with additional Iinputs from network detection sensors monitoring

activities initiated by attackers, for example.

In 302 feature extraction is performed on the semi-structured set of data that has been
identifled In 300. In this context, the features are required for enabling the use of
evolutionary method steps: a suitable data structure is needed for the analysis. In an
example, some similarity metrics between data blocks are computed. These blocks may
represent certain steps a malware takes and thus finding similar steps, such as starting
to encrypt drive for ransomware, may be expected to be found elsewhere also. As a
result, an activity abstraction representation of the activities the malware takes may be

generated, for example.

10

15

20

25

30

35

In 304 further “families” or hierarchies of steps the methods complete are detected based
on the feature representation and chosen similarity metrics, for example. Further,
stereotypical structures and orderings between the components, for example a functional
block first writing something for ensuring that on next restart something specific would
happen and/or a block that instigates the restart and/or a block that does encryption,
may be built. In an embodiment, building a highly hierarchical model related to this Is
enabled, the model comprising a combination of the sequential steps following one
another (or some In parallel) as happens In real applications. Thus, by first finding the
structure In the data, a representation where the combinations of certain types of actions
have probabilities of occurrence within a certain context of prior (and/or consequent)

actions may be build and then be fed into the next step.

In 306, after having detected the abstracted behavioural representation, a suitable
genetic algorithm may be utilised for the generated candidates. In an embodiment, also
possible links to actual code blocks may be included in the method. In an embodiment,
as much information as Is possible Is used for generating structural and behavioural
models. In an embodiment, a “gene pool” of candidates Is continuously evolved by
INncluding both existing samples as well as injected "mutations” into the abstracted pool
and each descendant’'s likelihood may be estimated based on the probabilities extracted
IN the previous stage. As In real nature, it Is not uncommon that malware families copy
features or even code from each other and/or use released exploit code or such, thus
causing “cross pollination” between malware families as well and not just within a family.
Thus, In an embodiment the method may use an algorithm intended to simulate the
processes that happen In nature where something changes just a bit and then If that
change actually generates something viable (even though it has not been seen before)
and the change could survive, then this new combination can be stored as a candidate
descendant to the future threat candidate database and be used to detect future malware

that has not been seen before.

In 308, security methods for detecting and/or protecting against the future threats are
generated on the basis of the outputs from the genetic algorithm(s) that has been used.
This enables protecting computer systems against malware threats that have not been
seen before even before actual attacks against any systems take place. Thus, methods
for detecting the descendants of known threats are generated and methods that can be
used to protect against and/or detect early enough anything that would match the
behaviour of the candidate threat are identified. In an embodiment, the potential next

generation threats are studied and methods to protect against them are identified. In an

10

15

20

25

30

35

embodiment, this can be achieved by first extracting the most likely new sample threats
from the generated pool that are not original samples (protection against known samples
usually exists already). Then a detection logic based on the consequent steps that the
candidate threat would take to reach its process are constructed. Note that there may be
also completely harmless steps in between after the mutations and it is the combination
of the steps that defines the threat, not any individual step or fingerprint etc. Finally the

constructed detection logic Is deployed to enable pre-emptive protection against the

selected threat.

The embodiments of the invention may use any suitable evolutionary/genetic algorithms
and frameworks. The following Is one example of a high-level flow for an
evolutionary/genetic algorithm that uses a Selection-Crossover-Mutation framework
often used to describe genetic algorithms:

a) Selection:

) Select the first “parent” for a new “child” threat using a weighted
probability of fithess (or the combined likelihood of occurrence In this
case),

1) Repeat for the second parent (in an embodiment, a further model where
there exists different likellhoods of finding the proper "mate”™ may be
Introduced also),

b) Crossover:

) By utilizing similar principles as in genetics, the features of the child are
combined, basically in random but following the structural rules of the
model that has been created and essentially combining the features of

the two parents to make a descendant,

c) Mutation:
) Select one of the candidates in the present pool in random,
Il) Introduce (by random) a mutation to a part of the selected candidate from

a set of possible mutations (which could Iinclude deleting/adding a
functional block or changing a functional block to a different one of the
same family etc.,
) Return the mutated candidate to the pool,
d) Repeat steps a-b-c until a sufficient set of new candidates for forming a new
generation Is achieved (for example, as many as the previous generation had),
e) Pool re-generation:
) Evaluate the total conditional probability of the combinations given the

current understanding of all the samples from the previous phase,

10

15

20

25

30

35

Il) Keep track of the generation (for example a factor decreasing the
probabilities of later generations may be used in an exponential manner).
In an embodiment, the process may be restarted and “bootstrapped”
rather than letting the pool go on for extended periods of time.

1) In an embodiment, some additional variation may be Iintroduced by
altering the probability based on a suitable distribution of likelihood of
change (for example using a Gaussian filter or such),

V) Evaluate fithess and select the ones to survive, for example 25% of the
new pool and 75% of the old pool (a parameter controlling the speed of
change In the pool can be predefined and set accordingly). In an
embodiment, the pool can also only be grown and then select the ones
based on probabilities. In another embodiment, a time-to-live can be
added and have at least part of the samples deleted after enough
generations have passed.

f) Based on the total conditional probabilities, an ordered list of likely new
candidates from this generation is now generated. The list may be passed on to

the next step of the flow and repeated to generate a new generation.

The method steps according to the invention may be created on the "back end”, 1.e. by
a security service provider and provided to the security application at the client computer.
The feature extraction part may be performed by an automated and/or manual analysis
of known malware. A set of characteristic actions relating to suitable procedures,
performed by an application, may be specified and the application then analysed to
determine characteristic and expected actions. The analysis may also include recelving
behavioural monitoring information from each of a plurality of client computers on which
the application has been running, and determining the characteristic and expected

actions from the aggregated results of the behavioural monitoring.

Alternatively, at least part of the method steps may be performed at the client computer.
In order to create the profile of the malware, the application may be run in a sandbox by
the security application installed on the client computer, or the behaviour of the
application may be monitored during normal use of the computer. In order to mitigate the
risks of creating the profile at the client computer, the application may be subject to

Intensive behavioural analysis technigues while the profile is being created.

As a further alternative, the behaviour profile may be created either at the client computer

or the server by examining the binary code of the application. The code Is examined to

10

15

20

look for characteristic actions of interest, and to determine which expected actions would

be associated with those characteristic actions.

Prior to performing any of the above analyses, the application may be identified as a
known malware by comparing it to identification information of the malware. For exampile,
the application may be compared to a hash of a known malicious application, or a digital

signature of the application may be examined to determine whether it is valid or issued

by a trusted source.

The behaviour monitoring and detection of characteristic and expected actions may be
performed at the client computer or at the server. Alternatively, the client computer may
monitor the behaviour of the suspect application, and send details of monitored actions
to a server, along with identification information for the monitored application. The
INformation may be sent periodically, or only when characteristic actions are detected
(e.g. detecting an SSL connection may cause the client computer to send details of the
behaviour leading up to the SSL connection to the server). The server maintains the
database of future malware threats, and detects characteristic actions (if not already
detected by the client), and the expected action. The detection is carried out as described
above. If the analysis 1dentifies the application running on the client computer as
malicious or suspicious, then the server notifies the client computer, and may specify a

response to be performed.

10

15

20

25

30

35

10

CLAIMS:

1. A method of detecting a threat against a computer system, the method
comprising:

a) creating a modular representation of behavior of known applications on the
basis of sub-components of a set of known applications, wherein each sub-
component identifies one or more procedures known to be performed by the
applications;

b) entering the modular representation to an evolutionary analysis system for
generating previously unknown combinations of the procedures;

c) storing the generated previously unknown combinations as candidate
descendants of known applications to a future threat candidate database;

d) monitoring the behavior of the computer system to detect one or more
procedures matching the behavior of a stored candidate descendant in the
future threat candidate database; and

e) upon detection of one or more procedures matching the behavior of the
stored candidate descendant and If the stored candidate descendant is

determined to be malicious or suspicious, identifying the running application

as malicious or suspicious.

2. The method according to claim 1, the method further comprising selecting the sub-
components of the set of known applications on the basis of one or more of: a previously
generated behavioral model, a set of sub-components having similarities with each other,
detected previously unknown sub-components, and/or using specifically generated new

sub-components.

3. The method according to claim 2, the method further comprising:

analyzing the behavior of the set of known malicious and/or benign applications
IN a protected environment; and

generating, by a feature extraction system, the behavioral model of the analyzed

behavior based on output from the protected environment.

4. The method according to claim 2, the method further comprising configuring the
behavioural model on the basis of one or more of: execution traces, memory contents,

register contents, and/or using static code block analysis.

10

15

20

25

30

35

11

5. The method according to claim 1, wherein each procedure of the one or more

procedures known to be performed by the applications is identified by a characteristic

action and one or more expected actions.

6. The method according to clam 1, further comprising using experimentation for

generating the previously unknown combinations of the procedures.

/. The method according to clam 1, the method further comprising assigning
probabilities of occurrence to the generated previously unknown combinations of the
sub-components by the evolutionary analysis system, and storing combinations having

the highest likelihood of occurrence as candidate descendants of known applications.

8. The method according to claim 1, wherein said procedures include any one or more
of: establishment of a secure session, communication over a secure session, file

operations, reqistry operations, memory operations, network operations.

9. The method according to claim 5, wherein the characteristic and/or expected actions
Include one or more of: API calls and/or API call parameters made by the running
application, information made available to plugins of the running application, actions
relating to browser extensions, fille access operations performed by the running
application, network operations performed by the running application, encrypted
communications sent by the running application, error conditions relating to the running

application.

10. The method according to claim 1, further comprising handling the running application
by one or more of. terminating a process of the running application, terminating the
characteristic action or an action resulting from the characteristic action, removing or
otherwise making safe the running application and performing a further malware scan on

the application.

11. The method according to clam 1, upon identifying the running application as
malicious or suspicious, further comprising at least one of: sending from a client
computer to a server details of the characteristic action and other actions taken on the
client computer; sending from the server to client computer an indication as to whether
or not the running application is malicious or suspicious; sending from the server to the

client computer instructions for handling the running application; prompting the client

10

15

20

25

30

35

12

computer to kill and/or remove the application; storing information indicating the

application.

12. The method according to claim 1, further comprising, at step ¢), utilizing a genetic

algorithm for generating the candidate descendants.

13. The method according to claim 12, further comprising creating new sub-components

by mutating the sub-components of the set of known applications.

14. The method according to claim 12, the method further comprising using one or more
fitness functions of the genetic algorithm for determining whether a candidate
descendant is viable for use and storing only the viable candidate descendants in the
future threat candidate database based on the results received from the one or more

fitness functions.

15. The method according to claim 1, further comprising extracting the most likely new
candidate descendant from the future threat candidate database; constructing a

detection logic based on the consequent steps the candidate descendant takes; and

using the constructed detection logic at step e).

16. A computer system comprising:
a memory configured to store computer program code, and
a processor configured to read and execute computer program code stored in the
memory,
wherein the processor Is configured to cause the computer system to perform:
a) creating a modular representation of behavior of known applications on the
basis of sub-components of a set of known applications, wherein each sub-
component identifies one or more procedures known to be performed by the
applications;
b) entering the modular representation to an evolutionary analysis system for
generating previously unknown combinations of the procedures;
c) storing the generated previously unknown combinations as candidate
descendants of known applications to a future threat candidate database;
d) monitoring the behavior of the computer system to detect one or more
procedures matching the behavior of a stored candidate descendant in the

future threat candidate database; and

10

15

20

25

30

35

13

e) upon detection of one or more procedures matching the behavior of the
stored candidate descendant and if the stored candidate descendant is
determined to be malicious or suspicious, identifying the running application

as malicious or suspicious.

17. The system according to claim 16, wherein the processor is further configured to
cause system to perform:

selecting the sub-components of the set of known applications on the basis of one or
more of. a previously generated behavioral model, a set of sub-components having
similarities with each other, detected previously unknown sub-components, and/or using

specifically generated new sub-components.

18. The system according to claim 17, wherein the processor is further configured to
cause the system to perform:

analyzing the behavior of the set of known malicious and/or benign applications
INn a protected environment; and

generating, by a feature extraction system, the behavioral model of the analyzed

behavior based on output from the protected environment.

19. The system according to claim 16, wherein the processor is further configured to
cause the system to perform assigning probabilities of occurrence to the generated
previously unknown combinations of the sub-components by the evolutionary analysis
system, and storing combinations having the highest likelihood of occurrence as

candidate descendants of known applications.

20. The system according to claim 16, wherein the processor Is further configured to
cause the system to perform handling the running application by one or more of:
terminating a process of the running application, terminating the characteristic action or
an action resulting from the characteristic action, removing or otherwise making safe the

running application and performing a further malware scan on the application.

21. A computer program comprising computer readable code which, when run on a
computer system or server, causes the computer system or server to act as a computer

system or server according to any one of claims 1 to 15.

14

22. A computer program product comprising a non-transitory computer readable
medium and a computer program according to claim 21, wherein the computer program

IS stored on the computer readable medium.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - CLAIMS
	Page 15 - CLAIMS
	Page 16 - CLAIMS
	Page 17 - CLAIMS
	Page 18 - CLAIMS

