wo 2014/035572 A1 IOV 0O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/035572 Al

6 March 2014 (06.03.2014) WIPOIPCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
G06T 17/20 (2006.01) G06T 15/00 (2011.01) kind of national protection available): AE, AG, AL, AM,
. L AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2013/052064 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
25 July 2013 (25.07.2013) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
13/599.645 30 August 2012 (30.08.2012) ys (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
ATTN: International IP Administration, 5775 Morehouse UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Drive, San Diego, California 92121-1714 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Imventors: GOEL, Vineet; 5775 Morchouse Drive, San EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
Diego, California 92121-1714 (US). CEYLAN, Usame; ¥[RC) gflglh/{TB%NIé}Ngl; PCLéPgi RCOI\;[R%ASEG’NSI’GS(I;’ (S;\I\f/
5775 Morehouse Drive, San Diego, California 92121-1714 > > T >0 > > > > >
Us). KM, ML, MR, NE, SN, TD, TG).
(74) Agent: NAYATE, Ambar P.; Shumaker & Sieffert, P.A,, Declarations under Rule 4.17:

1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(US).

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: STITCHING FOR PRIMITIVES IN GRAPHICS PROCESSING

FIG. 6

(57) Abstract: Techniques described in the disclosure are

generally related to determining the manner in which to con-
nect points that reside along an outer ring edge and an inner

ring edge for purposes of tessellation. For example, a two-di-
mensional (2D) stitching table may define the manner in
which points along the edges should be connected together to
form a plurality of primitives. The techniques may index the

2D stitching table to retrieve entry values that define the
manner in which the points along the edges should be con-

nected together.

/_go
DETERMINE POINTS ALONG OUTER RING EDGE
y
/-92
DETERMINE POINTS ALONG INNER RING EDGE
Y
UTILIZE ONLY A SINGLE 2D STITCHING TABLE TO 94
DETERMINE HOW MANY POINTS AND WHICH POINTS |~
OF THE OUTER AND INNER RING EDGES TO
GENERATE A PLURALITY OF PRIMITIVES
Y
Kss
OUTPUT COORDINATES OF VERTICES

WO 2014/035572 A1 WK 00N 000N X

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — with international search report (Art. 21(3))

WO 2014/035572 PCT/US2013/052064

STITCHING FOR PRIMITIVES IN GRAPHICS PROCESSING

TECHNICAL FIELD
[0001] This disclosure relates to stitching for primitives in graphics processing, and

more particularly, to stitching with tessellation.

BACKGROUND

[0002] A graphics processing unit (GPU) may implement a graphics processing pipeline
that includes a tessellation stage. The tessellation stage converts a surface into a
plurality of primitives on the GPU, resulting in a more detailed surface. For example,
the GPU can receive information for a coarse surface, and generate a high resolution
surface, rather than receiving information for the high resolution surface. Receiving
information for the high resolution surface, rather than the coarse surface, may be
bandwidth inefficient because the amount of information needed to define the high
resolution surface may be much greater than the amount of information needed to define

coarse resolution surface.

SUMMARY

[0003] In general, the techniques described in this disclosure are directed to utilizing a
single two-dimensional (2D) lookup table (LUT) for determining the manner in which
primitives are to be stitched. For example, the index to the 2D LUT may be based on
tessellation factors that indicate the manner in which to generate the primitives. A
tessellation unit may index the 2D LUT based on the tessellation factors to retrieve an
entry value. The tessellation unit may examine each bit in the entry value to determine
the manner in which to stitch points that reside along an outer ring edge and a
corresponding inner ring edge.

[0004] In one example, this disclosure describes a method for tessellation. The method
includes determining, with a graphics processing unit (GPU), a number of points along
an outer ring edge of a domain, and determining, with the GPU, a number of points
along an inner ring edge of the domain. The method also includes utilizing, with the
GPU, based on the number of points along the outer ring edge and the number of points
along the inner ring edge, only a single two-dimensional (2D) stitching table to

determine how many points and which points of the outer ring edge and how many

WO 2014/035572 PCT/US2013/052064

points and which points of the inner ring edge to use to generate each of a plurality of
primitives whose vertices are the points along the outer ring edge and the points along
the inner ring edge, and outputting, with the GPU, coordinates of the vertices.

[0005] In one example, this disclosure describes a tessellation unit for a GPU. The
tessellation unit includes a first unit configured to determine a number of points along
an outer ring edge of a domain, and determine a number of points along an inner ring
edge of the domain. The tessellation unit also includes a second unit configured to
utilize, based on the number of points along the outer ring edge and the number of
points along the inner ring edge, only a single two-dimensional (2D) stitching table to
determine how many points and which points of the outer ring edge and how many
points and which points of the inner ring edge to use to generate each of a plurality of
primitives whose vertices are the points along the outer ring edge and the points along
the inner ring edge, and output coordinates of the vertices.

[0006] In one example, this disclosure describes a device that includes a central
processing unit (CPU) and a GPU. The CPU is configured to generate a patch to be
tessellated. The GPU includes a first unit configured to receive the patch as an input
patch and output control points and tessellation factors for an output patch based on the
input patch. The GPU also includes a tessellation unit configured to determine a type of
a domain based on the tessellation factors, determine a number of points along an outer
ring edge of the domain based on the tessellation factors, determine a number of points
along an inner ring edge of the domain based on the tessellation factors, utilize, based
on the number of points along the outer ring edge and the number of points along the
inner ring edge, only a single two-dimensional (2D) stitching table to determine how
many points and which points of the outer ring edge and how many points and which
points of the inner ring edge to use to generate cach of a plurality of primitives whose
vertices are the points along the outer ring edge and the points along the inner ring edge,
and output coordinates of the vertices. The GPU also includes a second unit configured
to receive the coordinates of the vertices and add the primitives to the output patch
based on the received coordinates of the vertices.

[0007] In one example, this disclosure describes a tessellation unit for a GPU. The
tessellation unit includes means for determining a number of points along an outer ring
edge of a domain, and means for determining a number of points along an inner ring
edge of the domain. The tessellation unit also includes means for utilizing, based on the

number of points along the outer ring edge and the number of points along the inner ring

WO 2014/035572 PCT/US2013/052064

edge, only a single two-dimensional (2D) stitching table to determine how many points
and which points of the outer ring edge and how many points and which points of the
inner ring edge to use to generate each of a plurality of primitives whose vertices are the
points along the outer ring edge and the points along the inner ring edge, and means for
outputting coordinates of the vertices.

[0008] In one example, this disclosure describes a computer-readable storage medium
including instructions stored thereon that when executed cause one or more processors
to determine a number of points along an outer ring edge of a domain, determine a
number of points along an inner ring edge of the domain, utilize, based on the number
of points along the outer ring edge and the number of points along the inner ring edge,
only a single two-dimensional (2D) stitching table to determine how many points and
which points of the outer ring edge and how many points and which points of the inner
ring edge to use to generate each of a plurality of primitives whose vertices are the
points along the outer ring edge and the points along the inner ring edge, and output
coordinates of the vertices.

[0009] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0010] FIG. 1 is a block diagram illustrating an example of a graphics processing unit
(GPU) that may implement an example of a graphics processing pipeline in accordance
with one or more examples described in this disclosure.

[0011] FIG. 2 is a block diagram illustrating another example of a graphics processing
unit (GPU) that may implement another example of a graphics processing pipeline in
accordance with one or more examples described in this disclosure.

[0012] FIGS. 3A and 3B are graphical diagrams illustrating examples of domain types
that include a plurality of inner rings for stitching in accordance with one or more
examples described in this disclosure.

[0013] FIGS. 4A and 4B are graphical diagrams illustrating a domain divided into a
plurality of primitives in accordance with one or more examples described in this

disclosure.

WO 2014/035572 PCT/US2013/052064

[0014] FIG. 5 is a block diagram illustrating an example of a tessellation unit in greater
detail in accordance with one or more examples described in this disclosure.

[0015] FIG. 6 is a flow chart illustrating an example stitching operation in accordance
with one or more examples described in this disclosure.

[0016] FIGS. 7A-7G together illustrate an example of a stitching table.

DETAILED DESCRIPTION

[0017] Modern mobile devices, such as laptop computer, tablet computers,
smartphones, and digital media players, may include a CPU (Central Processing Unit), a
graphics processing unit (GPU) and system memory. When rendering graphics as part
of executing an application, the CPU transmits instructions and graphics data to the
GPU. In some examples, the graphics data may be in the form of vertices, which may
comprise one or more data structures that describes a point in 2D or 3D space.

[0018] The application executing on the CPU may communicate with the GPU in
accordance with an application programming interface (API). For instance, the
application may communicate with the GPU in accordance with the DirectX® API
developed by Microsoft® or the OpenGL® API developed by the Khronos Group, as
two examples. For purposes of illustration and to ease with understanding, the
techniques described in this disclosure are generally described in the context of the
DirectX and OpenGL APIs. However, aspects of this disclosure should not be
considered limited to the DirectX and OpenGL APIs, and the techniques described in
this disclosure may be extended to other APIs as well.

[0019] DirectX and OpenGL each define graphics processing pipelines that are to be
implemented by a GPU. These graphics processing pipelines may include a
combination of programmable stages, as well as fixed-function stages. Some recent
versions of the APIs, such as the Direct3D 11 API and the OpenGL 4.x API, include a
tessellation process that is to be performed by the GPU.

[0020] The tessellation process refers to dividing a portion (referred to as patch) of a
surface of an object into a plurality of smaller portions, and interconnecting the smaller
portions together. This results in a more highly detailed surface, as compared to the
surface prior to tessellation. Tessellation allows the application executing on the CPU
to define the surface with low resolution, which may require few points, and allows the

GPU to generate a higher resolution surface.

WO 2014/035572 PCT/US2013/052064

[0021] With tessellation, computation efficiency may be realized because the
application executing on the CPU may not need to generate the higher resolution
surface, and may instead offload the generation the higher resolution surface to the
GPU. Furthermore, bandwidth efficiency may also be realized because the CPU may
need to transmit information for fewer points of the surface because the low resolution
surface includes fewer points as compared to the higher resolution surface, and the GPU
may need to retrieve fewer points of the surface.

[0022] As described above, the GPU applies the tessellation process to a patch. A patch
may be considered as a specialized type of a primitive. A patch is defined by one or
more control points that together form a portion of a surface. For example, an object,
such as a sphere, may be divided into a plurality of surfaces. In this example, the
surfaces may be curved surfaces that, when combined, form the sphere. Each one of the
surfaces may be divided into one or more patches, where each of the patches is defined
by one or more control points.

[0023] The control points may be defined by coordinates (e.g., x and y coordinates for
two-dimensional patches or x, y, and z coordinates for three-dimensional patches), and
the control points may be considered as vertices of the patch. There may be any number
of control points in a patch. For instance, in some examples, the number of control
points in a patch may be between one control point up to 32 control points. The number
of control points in a patch may be fixed or user defined.

[0024] Unlike other primitive types, the control points within the patches may be
connected to one another in any way. In other words, there is no predefined way in
which the control points of the patches are connected. For example, a standard triangle
primitive includes three vertices, and the primitive is defined with a specific way in
which the three vertices are connected with one another to form the triangle. The
control points, on the other hand, may not need to be connected in any specific way to
form a shape. Rather, as one example, some control points in a patch may be connected
with one another to form a triangle, other control points in the same patch may be
connected with one another to form a rectangle, and yet other control points in the same
patch may be connected with one another to form an octagon. As another example, it
may be possible that the control points are connected with another to form the same type
of shapes as well (e.g., connected to only form a plurality of triangles).

[0025] The control points that define a patch of a surface may define a low resolution

surface. With the tessellation process, additional detail is added to create a higher

WO 2014/035572 PCT/US2013/052064

resolution surface. For example, referring back to the example of the sphere. If only
the control points were used to form the sphere, the sphere would appear jaggy with
stair step like points, rather than a smooth curved surface. After tessellation, additional
points are added such that when these points are connected, the sphere appears as if it is
a smooth sphere.

[0026] The tessellation process, in accordance with the both the DirectX API and the
OpenGL 4.x API, includes two shaders and a fixed-function unit. A shader is a
software application that executes on a programmable shader core of the GPU, and
provides substantial functional flexibility. The fixed-function unit is a hardwired logic
unit that performs fixed functions, and may not provide functional flexibility. However,
it may be possible to implement the functions of the fixed-function unit using a
programmable shader coder to provide additional functional flexibility. Solely for
purposes of illustration, the functions described in this disclosure for the fixed-function
unit are described with a fixed-function unit that provides limited functional flexibility.
[0027] In the DirectX API, a graphics processing pipeline that is configured to
implement the tessellation process includes a hull-shader stage coupled to a tessellation
stage, which is coupled to a domain-shader stage. The hull-shader stage and the
domain-shader stage in the DirectX API may form the two shaders of the tessellation
process, and the tessellation stage may form the fixed-function unit of the tessellation
process. The other stages in the graphics processing pipeline are similar to those in
DirectX APIs that do not implement the tessellation process.

[0028] In the OpenGL 4.x API, a graphics processing pipeline that is configured to
implement the tessellation process includes a tessellation control shader coupled to a
primitive generator, which is coupled to a tessellation evaluation shader. The
tessellation control shader and the tessellation evaluation shader in OpenGL 4.x may
form the two shaders of the tessellation process, and the primitive generator may form
the fixed-function unit of the tessellation process. The other stages in the graphics
processing pipeline may be similar to those in OpenGL APIs that do not implement the
tessellation process.

[0029] The techniques described in this disclosure are related generally to the fixed-
function unit of the tessellation process (e.g., the tessellation stage of the DirectX
graphics processing pipeline and the primitive generator of the OpenGL 4.x graphics
processing pipeline). For purposes of brevity, the fixed-function unit of the tessellation

process is referred to as a tessellation unit. For instance, examples of the tessellation

WO 2014/035572 PCT/US2013/052064

unit include the tessellation stage of the DirectX graphics processing pipeline, the
primitive generator of the OpenGL 4.x graphics processing pipeline, or any other
analogous unit for other types of graphics processing pipelines.

[0030] As described in more detail, the shader preceding the tessellation unit (e.g., the
hull shader stage in DirectX or the tessellation control shader in OpenGL 4 .x) transmits
values to the tessellation unit that indicate how many primitives are to be generated for
the patch to increase the resolution (i.e., increase the detail) of the patch. The shader
preceding the tessellation unit also transmits a domain type to the tessellation unit. The
tessellation unit divides a domain into the primitives, and indicates the manner in which
the primitives in the domain are to be connected (i.c., the manner in which the
primitives in the domain are to be stitched).

[0031] The domain is a template shape that the tessellation unit divides into a plurality
of primitives. It is these primitives that are then added to the patch to increase the
resolution of patch. For example, the additional primitives generated in the domain are
then used to form a mesh on the patch, thereby adding detail to the patch.

[0032] The shader subsequent to the tessellation unit (e.g., the domain shader in
DirectX or the tessellation evaluation shader in OpenGL 4 .x) receives the vertices of the
primitives generated by the tessellation unit, and connectivity information for the
vertices from the tessellation unit. The shader subsequent to the tessellation unit then
adds the primitives, as generated by the tessellation unit, to the patch to add more
resolution to the surface.

[0033] In accordance with techniques described in this disclosure, the tessellation unit
may utilize a single two-dimensional (2D) look-up table to determine the manner in
which the generated primitives are to be connected (i.e., stitched). For example, there
may be fixed, pre-defined ways in which the primitives are to be stitched based on
various factors such as how many primitives the tessellation unit is to generate. Rather
than using multiple look-up tables to determine how to stitch the primitives, the
techniques described in this disclosure provide for a single two-dimensional look-up
table to which the tessellation unit refers for purposes of determining how to stitch the
primitives.

[0034] For example, some other techniques that rely upon multiple look-up tables
expend computational cycles determining whether or not a value from a table is to be
used. For instance, computational cycles may be wasted in some of these other

techniques in reading bits from the table, determining whether the bits are to be used,

WO 2014/035572 PCT/US2013/052064

and then reading next bits if the read bits are not be used. Then, in these other
techniques, computational cycles would be further wasted in determining which other
table to use. By using a single two-dimensional look-up table to determine how to stich
the primitives, computational efficiency may be promoted.

[0035] Stitching may be considered as the process of connecting vertices together to
form primitives. For example, as part of the tessellation process, the tessellation unit
may determine points within the domain. These points form vertices of the primitives.
Stitching refers to the process of determining which of these points should be used to
generate a primitive within the domain.

[0036] As described in more detail, the tessellation unit may index the single 2D lookup
table based on values determined by the preceding shader. For example, to indicate
how many primitives the tessellation unit is to generate, the preceding shader may
indicate the number of points that reside along an edge of an outer ring of the domain,
and a number of points that reside along an edge of an inner ring of the domain. The
tessellation unit may utilize these values as indices to the single 2D lookup table.
[0037] From these indices, the tessellation unit may retrieve an entry value from the 2D
lookup table. Hence, different combinations of numbers of points along the edge of the
outer edge and inner ring of a domain may yield different entry values from the LUT.
The entry value may include a plurality of bits such as 64 bits, as one non-limiting
example. The tessellation unit may determine the bit value of one or more bits of the
entry value. For example, the tessellation unit may start from the least significant bit
(LSB) and move to the most significant bit (MSB), or vice-versa, or in any predefined
pattern within the value. Each bit value may indicate how many points the tessellation
unit is to use from the outer edge and how many points the tessellation unit is to use
from the inner edge for stitching.

[0038] In this manner, the tessellation unit may need to access a single look-up table,
rather than multiple look-up tables to determine the manner in which the primitives are
to be stitched. This may result in fewer accesses to memory where the look-up table is
stored, as compared to when multiple look-up tables are needed, which promotes
efficient bandwidth utilization. Furthermore, by utilizing only one look-up table, and
not any other look-up table for stitching, computational efficiency may also be realized.
For instance, the techniques described in this disclosure may result in requiring fewer
bits to be read, as well as a reduction in computational cycles needed to determine

which table to retrieve values from.

WO 2014/035572 PCT/US2013/052064

[0039] FIG. 1 is a block diagram illustrating an example of a graphics processing unit
(GPU) that may implement an example of a graphics processing pipeline in accordance
with one or more examples described in this disclosure. FIG. 1 illustrates device 10 that
includes graphics processing unit (GPU) 12, system memory 14, and central processing
unit (CPU) 16. Examples of device 10 include, but are not limited to, mobile wireless
telephones, , video gaming consoles that include video displays, mobile video
conferencing units, laptop computers, desktop computers, television set-top boxes, and
the like.

[0040] CPU 16 may execute various types of applications. Examples of the
applications include web browsers, e-mail applications, spreadsheets, video games, or
other applications that generate viewable objects for display. Instructions for execution
of the one or more applications may be stored within system memory 14. CPU 16 may
transmit graphics data of the generated viewable objects to GPU 12 for further
processing.

[0041] For example, GPU 12 may be specialized hardware that allows for massive
parallel processing, which functions well for processing graphics data. In this way,
CPU 16 offloads graphics processing that is better handled by GPU 12. CPU 16 may
communicate with GPU 12 in accordance with a particular application processing
interface (API). Examples of such APIs include the DirectX ® API by Microsoft ® and
the OpenGL ® by the Khronos group; however, aspects of this disclosure are not
limited to the DirectX and the OpenGL APIs, and may be extended to other types of
APIs that have been developed, are currently being developed, or are to be developed in
the future.

[0042] In addition to defining the manner in which GPU 12 is to receive graphics data
from CPU 16, the APIs may define a particular graphics processing pipeline that GPU
12 is to implement. GPU 12, in FIG. 1, illustrates the graphics processing pipeline
defined by the Direct3D 11 API. As described in more detail, FIG. 2 illustrates the
graphics processing pipeline of the OpenGL 4.x APL

[0043] Examples of CPU 16 and GPU 12 include, but are not limited to, a digital signal
processor (DSP), general purpose microprocessor, application specific integrated circuit
(ASIC), field programmable logic array (FPGA), or other equivalent integrated or
discrete logic circuitry. In some examples, GPU 12 may be specialized hardware that
includes integrated and/or discrete logic circuitry that provides GPU 12 with massive

parallel processing capabilities suitable for graphics processing. In some instances,

WO 2014/035572 PCT/US2013/052064
10

GPU 12 may also include general purpose processing, and may be referred to as a
general purpose GPU (GPGPU). The techniques described in this disclosure may also
be applicable to examples where GPU 12 is a GPGPU.

[0044] System memory 14 may comprise one or more computer-readable storage
media. Examples of system memory 14 include, but are not limited to, a random access
memory (RAM), a read only memory (ROM), an electrically erasable programmable
read-only memory (EEPROM), flash memory, or any other medium that can be used to
carry or store desired program code in the form of instructions and/or data structures
and that can be accessed by a computer or a processor.

[0045] In some aspects, system memory 14 may include instructions that cause CPU 16
and/or GPU 12 to perform the functions ascribed to CPU 16 and GPU 12 in this
disclosure. Accordingly, system memory 14 may be a computer-readable storage
medium comprising instructions that cause one or more processors, ¢.g., CPU 16 and
GPU 12, to perform various functions.

[0046] System memory 14 may, in some examples, be considered as a non-transitory
storage medium. The term “non-transitory” may indicate that the storage medium is not
embodied in a carrier wave or a propagated signal. However, the term “non-transitory”
should not be interpreted to mean that system memory 14 is non-movable. As one
example, system memory 14 may be removed from device 10, and moved to another
device. As another example, a system memory, substantially similar to system memory
14, may be inserted into device 10. In certain examples, a non-transitory storage
medium may store data that can, over time, change (e.g., in RAM).

[0047] The execution of the applications on CPU 16 causes CPU 16 to generate a
plurality of primitives that connect together to form the viewable content. Examples of
the primitives include points, lines, triangles, squares, or any other type of polygon.
CPU 16 may define these primitives by their respective vertices. For example, CPU 16
may define coordinates and color values for the vertices. The coordinate values may be
three-dimensional (3D) coordinates or 2D coordinates.

[0048] In accordance with the techniques described in this disclosure, in some cases,
CPU 16 may also generate a special type of primitive referred to as a patch. Similar to
the other primitive types, a patch may be defined by a plurality of vertices, referred to as
control points of a patch. Unlike other primitive types, the patch may not be any
particular shape. For example, CPU 16 may interconnect the control points of the patch

in any manner, so that the interconnected control points form any desired shape. For

WO 2014/035572 PCT/US2013/052064
11

other primitive types such as triangles, CPU 16 may define the specific manner in which
the vertices are interconnected (e.g., such that interconnection of the vertices results in a
triangle).

[0049] Also, unlike other primitive types, the number of control points in a patch may
be variable. For example, the application executing on CPU 16 may define a maximum
number of control points that are allowed for a patch, or the maximum number of
control points may be user-defined. In some examples, the number of control points in
a patch may be one to thirty-two control points; however, the techniques described in
this disclosure are not so limited.

[0050] CPU 16 may utilize the control patch for purposes of tessellation. As described
above, a tessellation process refers to CPU 16 defining a portion of a surface of a
viewable object in low resolution, and tessellating the portion to generate a higher
resolution version of the surface. For example, CPU 16 may define control points of the
patch such that when the control points are interconnected the patch forms a portion of a
surface of a viewable object. If a surface were to be formed only from the control
points of the patch, the surface may not appear with high resolution and may appear
jaggy. With tessellation, additional primitives are added to the patch, such that when
the primitives are interconnected they add detail to the patch, which increases the
resolution of the patch and results in higher quality viewable content.

[0051] GPU 12 may be configured to implement tessellation. In this way, CPU 16 may
not need to define the vertices for all the additional primitives needed to create the
higher resolution patch, which saves on computations performed by CPU 16. Also,
CPU 16 may need to transmit fewer vertices (e.g., the vertices of the control points, and
not the vertices of the primitives to be added), and GPU 12 may correspondingly need
to receive fewer vertices, which promotes bandwidth efficiency due to fewer accesses to
system memory 14.

[0052] To perform graphics operations, GPU 12 may implement a graphics processing
pipeline. The graphics processing pipeline includes performing functions as defined by
software or firmware executing on GPU 12 and performing functions by fixed-function
units that are hardwired to perform very specific functions. The software or firmware
executing on the GPU 12 may be referred to as shaders, and the shaders may execute on
one or more shader cores of GPU 12. Shaders provide users with functional flexibility
because a user can design the shaders to perform desired tasks in any conceivable

manner. The fixed-function units, however, are hardwired for the manner in which the

WO 2014/035572 PCT/US2013/052064
12

fixed-function units perform tasks. Accordingly, the fixed-function units may not
provide much functional flexibility.

[0053] As indicated above, the graphics processing pipeline illustrated in FIG. 1 is a
graphic processing pipeline substantially as defined by Direct3D 11. In this example,
GPU 12 may include one or more of input assembler stage 18, vertex shader stage 20,
hull shader stage 22, tessellation stage 24, domain shader stage 26, geometry shader
stage 28, rasterizer stage 30, pixel shader stage 32, and output merge stage 34. GPU 12
may include more stages than those illustrated, and in some examples, GPU 12 may not
necessarily include all of the illustrated stages. Also, the specific ordering of the stages
is provided for purposes of illustration and should not be considered limiting.

[0054] In techniques described in this disclosure, CPU 16 may output the control points
of a patch to system memory 14. GPU 12 may then retrieve the control points from
system memory 14. In this manner, CPU 16 may transmit the control points to GPU 12.
As used in this disclosure, CPU 16 transmitting to GPU 12, or GPU 12 receiving from
CPU 16 may generally include CPU 16 writing to system memory 14, from which GPU
12 receives. Alternatively, it may be possible for CPU 16 to directly transmit to GPU
12, and for GPU 12 to directly receive from CPU 16.

[0055] Input assembler stage 18 may read the control points from system memory 14 as
defined by CPU 16, and assemble the control points to form the patch. For instance,
input assembler stage 18 may read the coordinates, color values, and other such
information of the control points. The coordinates, color values, and other such
information may be commonly referred to as attributes of the control points. Based on
the attributes of the control points, input assembler stage 18 may determine the general
layout of the patch. In this manner, input assembler stage 18 may assemble the control
points to form the patch. Input assembler stage 18 may be a fixed-function unit.

[0056] Vertex shader stage 20 may process the vertices (e.g., the control points of the
patch) from input assembler stage 18. For example, vertex shader stage 20 may perform
per-vertex operations such as transformations, skinning, morphing, and per-vertex
lighting. Vertex shader stage 20 may be a shader.

[0057] Hull shader stage 22 receives the control points of the patch, as processed by
vertex shader stage 20, process the control points, and outputs control points for a
processed patch. In other words, hull shader stage 22 receives an input patch, as
processed by vertex shader stage 20, processes the input patch, and outputs an output

patch. Hull shader stage 22 may perform various functions for processing the input

WO 2014/035572 PCT/US2013/052064
13

patch. For example, hull shader stage 22 may modify the coordinates of the control
points to change the locations of the control points, or may even add or delete control
points.

[0058] In addition, hull shader stage 22 may determine values that indicate how many
primitives are to be added to the patch generated by hull shader stage 22 (i.c., the output
patch). Hull shader stage 22 may utilize various criteria to determine how many
primitives are to be added to the patch. Described below are two example criteria that
hull shader stage 22 may utilize to determine how many primitives are to be added to
the patch. However, aspects of this disclosure are not so limited, and hull shader stage
22 may utilize any criteria to determine how many primitives should be added to the
patch.

[0059] As one example, hull shader stage 22 may utilize information indicative of the
depth of the patch to determine how many primitives should be added. For instance, a
patch that is further away, from the perspective of the viewer, may not need high
resolution because objects further in distance appear blurry in real life. However, a
patch that is closer, from the perspective of the viewer, may need higher resolution
because objects closer in distance appear sharper in real life. In this example, hull
shader stage 22 may determine that fewer primitives should be added to the patch that is
further away, and more primitives should be added to the patch that is closer, relative to
one another.

[0060] As another example, hull shader stage 22 may determine how many primitives
should be added based on the size of the patch. For a smaller sized patch, hull shader
stage 22 may determine that fewer primitives should be added because the patch
encompasses a smaller area. For a larger sized patch, hull shader stage 22 may
determine that more primitives should be added because the patch encompasses a larger
area.

[0061] Based on a determination of how many primitives should be added, hull shader
stage 22 may output a domain type and values that indicate how many primitives are to
be added to the patch to tessellation stage 24. The values that indicate how many
primitives are to be added to the patch, in the Direct3D 11 API, are referred to as
tessfactors.

[0062] The domain may be a considered as a template shape that tessellation stage 24
uses for tessellation purposes. Examples of the domain type include a line, a triangle, a

quad (e.g., a four sided polygon), or any other type of polygon. The domain may be a

WO 2014/035572 PCT/US2013/052064
14

two-dimensional (2D) shape, even if the patches define a three-dimensional (3D)
surface or a 2D surface. When the domain is a line, the domain may be a one-
dimensional (1D) shape (i.e., a line), even if the patches define a 3D surface, a 2D
surface, or a 1D surface. For purposes of illustration, the techniques described in this
disclosure are described with respect to the domain being a 2D surface. For instance,
the techniques are described with domain shapes that are the triangle or quad.

[0063] In some examples, hull shader stage 22 may not explicitly indicate the domain
type. Rather, tessellation stage 24 may determine the domain type based on the number
of transmitted tessfactors. For example, the presence of four tessfactors may indicate
that the domain type is a triangle domain type, and the presence of six tessfactors may
indicate that the domain type is a quad domain type.

[0064] In some examples, a quad domain may be defined by 2D Cartesian coordinates
(u, v). In some examples, a triangle domain may be defined by Barycentric coordinates.
Barycentric coordinates utilize three coordinates to identify any point within the
triangle. For example, the vertices of the triangle domain may be defined as (u, v, w),
as described below in more detail. The location of any point within the triangle is
defined by vertex weighting that indicates its proximity to a vertex. For instance, the
closer a point is to a vertex, the higher its vertex weighting, and the further away the
point is from the vertex, the lower its vertex weighting.

[0065] As an example, assume the vertices of the triangle are defined with Barycentric
coordinates (u, v, w) as follows: (1, 0, 0), (0, 1, 0), and (0, 0, 1). In this example, the
center point is located at (1/3, 1/3, 1/3) because the center point is equally distant from
cach of the vertices. Also, with the given definition of the vertex coordinates, in this
example, the sum of the u, v, and w coordinates for any point within the triangle domain
should equal one.

[0066] The Cartesian and Barycentric coordinates are described for purposes of
illustration only, and should not be considered limiting. In other examples, it may be
possible to define the quad domain with Barycentric coordinates or Cartesian
coordinates, and the triangle domain with Cartesian coordinates or Barycentric
coordinates. In general, a domain, of any type, may be defined using any coordinate
System.

[0067] Tesscllation stage 24 may tessellate (e.g., divide) the domain into a plurality of
primitives. It should be understood that, in this example, tessellation stage 24 is not

dividing the patch outputted by hull shader stage 22 into primitives, but rather dividing

WO 2014/035572 PCT/US2013/052064
15

the domain into the primitives. In some examples, tessellation stage 24 may not even
have access to the patch outputted by hull shader stage 22. Tessellation stage 24 may be
a fixed-function unit, although aspects of this disclosure need not be so limited.

[0068] Tesscllation stage 24 may utilize the tessfactors outputted by hull shader stage
22 to tessellate (e.g., divide) the domain into a plurality of primitives. For example, in
addition to defining the domain type (e.g., triangle or quad) the tessfactors may define
how many rings are to be included within the domain.

[0069] A ring may be a series of concentric shapes within the domain, where the
concentric shapes are the same shape as the domain shape. For example, if the domain
shape is a quad, the perimeter of the quad may be considered as the outer ring. Hull
shader stage 22 may define the number of inner rings, which may be series of smaller
sized quads that reside within the quad domain. Similarly, if the domain shape is a
triangle, the perimeter of the triangle may be considered as the outer ring, and the inner
rings may be series of smaller sized triangles that reside within the triangle domain.
[0070] In addition to defining the number of rings within a domain, the tessfactors
define the points that reside along the rings. The points that reside along the rings
should not be confused with control points. The control points define the patch. The
points that reside along the rings are points generated by tessellation stage 24 based on
the tessfactors. These points are generated within the domain, and not within the patch.
[0071] Also, it is these points that tessellation stage 24 connects together to divide the
domain into a plurality of primitives. For example, assume that the primitives that
tessellation stage 24 will divide the domain into are triangles. In this example,
tessellation stage 24 may connect one point that resides along the outer ring, with two
points that reside along the inner ring to form a triangle primitive. Alternatively,
tessellation stage 24 may connect two points that reside along the outer ring with one
point that resides along the inner ring to form a triangle primitive. In this way, by
defining the domain type, the number of rings within the domain, and the number of
points along the outer and inner rings, hull shader stage 22 may define the number of
primitives into which tessellation stage 24 should divide the domain.

[0072] In some examples, the number of points that can reside along an edge of ring
may be one point to sixty-four points. For example, if the domain type is a triangle,
than there may be up to 65 points per edge of the triangle domain. Similarly, if the
domain type is a quad, than there may be up to 65 points per edge of the quad.

WO 2014/035572 PCT/US2013/052064
16

However, the techniques described in this disclosure are not limited to an edge having a
maximum of sixty-four points.

[0073] Furthermore, the number of points that along a ring may be different for outer
and inner rings. For example, the number of points that reside along an edge of the
outer ring may be more than or less than the number points that reside along an edge of
the inner ring. It may also be possible that number of points that reside along the edge
of the outer ring and the inner ring are the same number of points.

[0074] Moreover, the number points along an edge of the same ring may be different.
For example, for a triangle domain, the number of points that reside along one of the
edges may be different than the number of points that reside along one other edge, or
both edges. Similarly, for a quad domain, the number of points that reside along one of
the edges may be different than the number of points that reside along one, two, or all
three other, remaining edges. It may also be possible for each of the edges of the rings
to have the same number of points.

[0075] As described above, in some examples, tessellation stage 24 may not divide the
patch into a plurality of primitives. Accordingly, in some examples, tessellation stage
24 may not receive any information such as the number of control points, the locations
of the control points, or the size of the patch. Without any information as to the size of
the patch and the locations of the control points, tessellation stage 24 may not be able to
define the size of the domain that is used or the specific coordinates for the vertices of
the domain.

[0076] To address this, tessellation stage 24 may rely upon a normalized coordinate
system for defining the vertices of the domain, as well as for determining the locations
of the interconnected points within the domain. As one example of the normalized
coordinates, tessellation stage 24 may define the vertices of a quad domain, inu, v
coordinates, as: (0, 0), (1, 0), (0, 1), and (1, 1), which is a unit square. Tessellations
stage 24 may define the vertices of a triangle domain, in u, v, w coordinates, as: (0, 0,
1), (0, 1, 0), and (1, 0, 0), which is an equilateral triangle. Tessellation stage 24 may
determine the coordinates for the interconnected vertices of the plurality of primitives in
this normalized coordinate system.

[0077] Tessellation stage 24 may output the vertices of the plurality of primitives of the
domain to domain shader stage 26 in the normalized coordinate system (e.g., the u, v
coordinates or the u, v, w coordinates, as applicable). The function of domain shader

stage 26 may be to map the vertex coordinates, as received from tessellation stage 24,

WO 2014/035572 PCT/US2013/052064
17

on to the patch. For example, while tessellation stage 24 may not receive information of
the patch as defined by hull shader stage 22, domain shader stage 26 may receive such
information from hull shader stage 22.

[0078] Domain shader stage 26 may execute for each vertex coordinate outputted by
tessellation stage 24. With the coordinates of the control points of the patch from hull
shader stage 22, domain shader stage 26 may determine the location of the vertex, as
outputted by tessellation stage 24, on the patch. Because tessellation stage 24 outputs
vertices of the plurality of primitives generated by tessellation stage 24, and domain
shader stage 26 adds these primitives to the patch, the combination of hull shader stage
22, tessellation stage 24, and domain shader stage 26 together add additional primitives
to the patch. This results in a mesh of primitives that are added to the patch creating a
higher resolution, more detailed patch, as compared to the patch defined by CPU 16. In
this manner, hull shader stage 22, tessellation stage 24, and domain shader stage 26
implement a tessellation process.

[0079] Geometry shader stage 28 receives the vertices of the primitives added to the
patch by domain shader stage 26 and may further generate additional vertices for the
primitives to add even more resolution. Rasterizer stage 30 receives the primitives from
geometry shader stage 28 and converts the primitives into pixels for the display. For
example, the primitives may be defined as vectors that indicate the interconnection of
the primitives, and may be defined in a coordinate space that is independent of the
display on which the image is to be displayed. Rasterizer stage 30 converts these
vectors into the display coordinates, and performs any additional functions such as
removing points within primitives that are occluded.

[0080] Pixel shader stage 32 receives the pixels as outputted by rasterizer stage 30 and
performs post processing to assign color values to each of the pixels that are to be
displayed. For example, pixel shader stage 32 may receive constant values stored in
system memory 14, texture data stored in system memory 14, and any other data to
generate per-pixel outputs such as color values. Pixel shader stage 32 may also output
opacity values that indicate the opaqueness of the pixels.

[0081] Output merge stage 34 may perform any final pixel processing. For example,
output merge stage 34 may utilize depth information to further determine whether any
of the pixels should be removed from being displayed. Output merge stage 34 may also

perform blending operations to generate final pixel values.

WO 2014/035572 PCT/US2013/052064
18

[0082] Output merge stage 34 may output the final pixel values to a frame buffer,
generally located within system memory 14, but which may be located within GPU 12.
A display processor (not shown) may retrieve the pixel values from the frame buffer and
cause pixels of a display (not shown) of device 10 to illuminate accordingly to the pixel
values to cause the display to display the image.

[0083] As described above, tessellation stage 24 interconnects points of the outer and
inner rings within the domain to generate a plurality of primitives within the domain. In
accordance with techniques described in this disclosure, tessellation stage 24 may utilize
a single look-up table (referred to as a stitching table) to determine the manner in which
the points should be interconnected to generate the primitives within the domain.

[0084] In some examples, GPU 12 may include local memory such as cache memory,
and the cache memory may store the look-up table. In some other examples, system
memory 14 may store the look-up table. For purposes of bandwidth efficiency, it may
be more desirable for the local memory of GPU 12 to store the look-up table rather than
system memory 14.

[0085] Furthermore, in some examples, the stitching table may be a preprogrammed
stitching table. In other words, the stitching table may not be created during the
execution of the application on CPU 16, or based on instructions received by GPU 12.
Rather, the stitching table may define a specific way in which the primitives should be
connected (i.e., stitched) for given tessfactors. For example, for X number of points
along an edge of the outer ring (i.c., outer ring edge), and Y number of points along an
edge of the inner ring (i.c., inner ring edge), there is a specific way in which the points
are to be connected for each X and Y pair.

[0086] The specific way in which the points are to be connected may define how many
points are to be taken from the outer ring edge, and how many points are to be taken
from the inner ring edge to form the primitive. For example, assume that tessellation
stage 24 divides a quad domain into triangle primitives. In this example, two points
may be taken from the outer ring edge, and one point may be taken from the inner ring
edge to form the triangle. Alternatively, one point may be taken from the outer ring
edge, and two points may be taken from the inner ring edge to form a triangle. The
stitching table may define how many points should be taken from each ring edge for the
purposes of forming the primitives for a given number of points along the outer ring

edge, and the number of points along the inner ring edge.

WO 2014/035572 PCT/US2013/052064
19

[0087] For stitching, the outer ring edge and the inner ring edge may be parallel with
one another. In other words, the edges that are used for forming the primitives are
corresponding edges in outer and inner ring. For example, when stitching primitives
with points along the left edge of an outer ring of a quad domain, tessellation stage 24
may utilize the points along the left edge of the inner ring of the quad domain. The
same may apply for the top, bottom, and right edges of the outer and inner rings.

[0088] The tessfactor that indicates the number of points that reside along the outer ring
edge may form the basis for one index into the stitching table, and the tessfactors that
indicates the number of points that reside along the inner ring edge may form the basis
for another index into the stitching table. In this manner, the stitching table may be a
two-dimensional (2D) look-up table. From the indices to the stitching table, tessellation
stage 24 may retrieve an entry value. The entry value may be a series of bits (e.g., ones
and zeros). Each bit may indicate how many points from the outer ring edge are used to
form the primitive, and how many points from the inner ring edge are used to form the
primitive. The manner in which the entry value indicates how many points from the
inner ring edge and the how many points from the outer ring edge are used is described
below in more detail.

[0089] Utilizing the 2D stitching table may allow tessellation stage 24 to determine how
to interconnect the points within one clock cycle. For example, the entry values in the
2D stitching table may provide sufficient information that tessellation stage 24 does not
need to access any other stitching table for the purposes of interconnecting the points of
the primitives. This may allow domain shader stage 26 to add the primitives to the
patch earlier than if tessellation stage 24 were to access multiple different look-up tables
to determine the manner in which the points are to be interconnected to form the
primitives. For example, some other techniques may waste computational cycles in
reading a value from a table, determining whether the value is to be used for stitching,
and then reading other values if the read value is not to be used for stitching. Also,
some other techniques may waste computational cycles in accessing different tables. By
using a single 2D stitching table, as described in this disclosure, there may be a
reduction in the number of computational cycles needed to determine the manner in
which the points are to be interconnected to form the primitives.

[0090] Accordingly, in some examples, the techniques described in this disclosure may
increase the computational efficiency of the graphics processing pipeline of GPU 12, as

compared to if tessellation stage 24 referred to multiple look-up tables. Furthermore,

WO 2014/035572 PCT/US2013/052064
20

because tessellation stage 24 may access only one look-up table (i.c., the single 2D
stitching table), and no other table to determine the manner in which the points are to be
interconnected, the number of accesses to the local memory of GPU 12 or system
memory 14 may be reduced, resulting in a reduction in power consumption and an
increase in bandwidth efficiency.

[0091] FIG. 2 is a block diagram illustrating another example of a graphics processing
unit (GPU) that may implement another example of a graphics processing pipeline in
accordance with one or more examples described in this disclosure. For instance, FIG.
1 illustrated a graphics processing pipeline formulated substantially in accordance with
the Direct3D 11 API. FIG. 1 illustrates the graphics processing pipeline substantially in
accordance with the OpenGL 4.x API.

[0092] The OpenGL 4.x graphics processing pipeline may function in a substantially
similar fashion as the Direct3D 11 graphics processing pipeline. Accordingly, for
purposes of brevity, reference is made to FIG. 1 to describe components that are similar
to both the Direct3D 11 graphics processing pipeline and the OpenGL 4.x graphics
processing pipeline.

[0093] As illustrated in the example of FIG. 2, GPU 12 includes input assembler 36,
vertex shader 38, tessellation control shader 40, primitive generator 42, tessellation
evaluation shader 44, geometry shader 46, clipping unit 48, rasterizer 50, fragment
shader 52, and post-processor 54. Similar to FIG. 1, in the example illustrated in FIG.
2, GPU 12 may include more or fewer components than those illustrated in FIG. 2.
Also, the specific ordering of the unit is provided for purposes of illustration and should
not be considered limiting.

[0094] In some ways, the tessellation process with the OpenGL 4.x graphics processing
pipeline may be substantially similar to the tessellation process with the Direct3D 11
graphics processing pipeline. For example, OpenGL 4.x tessellation process may rely
upon patches and control points, in the manner similar to that described above with
respect to FIG. 1. For instance, input assembler 36 and vertex shader 38 of FIG. 2 may
function substantially similar as input assembler stage 18 and vertex shader stage 20 of
FIG. 1, respectively.

[0095] As more examples, for tessellation, tessellation control shader 40 of FIG. 2 may
function substantially similarly to hull shader stage 22 of FIG. 1. However, tessellation
control shader 40 outputs tessellation levels, which may be analogous to the tessfactors

of Direct3D 11. For example, the tessellation levels of OpenGL 4.x may define the

WO 2014/035572 PCT/US2013/052064
21

domain type, the number of rings within the domain, and the number of points per ring
edge.

[0096] Primitive generator 42 may function in a substantially similar manner as
tessellation stage 24. For example, primitive generator 42 may utilize the tessellation
levels and the domain type to divide the domain into a plurality of primitives. Also, in
accordance with techniques described in this disclosure, primitive generator 42 may
utilize a single 2D look-up table as described above (i.e., the above described stitching
table) for determining the manner in which primitives are to be interconnected.

[0097] Tessellation evaluation shader 44 of FIG. 2 may function substantially similarly
to domain shader stage 26 of FIG. 1. For example, tessellation evaluation shader 44
may receive the vertices of the generated primitives from primitive generator 42 and add
the primitive to the patch outputted by tessellation control shader 40. In this manner,
the graphics processing pipeline of the OpenGL 4.x API may perform tessellation on a
patch to increase the resolution of the patch.

[0098] Geometry shader 46 may function substantially similar to geometry shader stage
28. The combination of clipping unit 48 and rasterizer 50, in FIG. 2, may function
substantially similarly to rasterizer stage 30 in FIG. 1. Fragment shader 52 and post-
processor 54 in FIG. 2 may function substantially similar to pixel shader stage 32 and
output merge stage 34 in FIG. 1, respectively. Post-processor 54 may output the final
pixel values to a frame buffer and the display processor may retrieve the pixel values
from the frame buffer and cause a display to illuminate according to the pixel values to
display the image.

[0099] As described above, tessellation control shader 40, primitive generator 42, and
tessellation evaluation shader 44 of FIG. 2 function substantially similar to hull shader
stage 22, tessellation stage 24, and domain shader stage 26 of FIG. 1, respectively, for
implementing the tessellation process. Accordingly, both the Direct3D 11 and the
OpenGL 4.x APIs rely upon two programmable shader units and one fixed-function unit
to implement the tessellation process.

[0100] For purposes of generality, the techniques described in this disclosure may be
described with a first tessellation shader unit, a tessellation unit, and a second
tessellation shader unit. Examples of the first tessellation shader unit include hull
shader stage 22 and tessellation control shader 40. Examples of the tessellation unit

include tessellation stage 24 and primitive generator 42. Examples of the second

WO 2014/035572 PCT/US2013/052064
22

tessellation shader unit include domain shader stage 26 and tessellation evaluation
shader 44.

[0101] Also, Direct3D 11 uses the term “tessfactors” and OpenGL 4.x uses the term
“tessellation levels,” which may be considered analogous terms. For purposes of
generality, this disclosure uses the term “tessellation factor,” examples of which include
tessfactors and tessellation levels. In this way, the first shader unit may be considered
as outputting tessellation factors to the tessellation unit, and the tessellation unit may
output vertices to the second shader unit in response to the tessellation factors.

[0102] It should be noted that while the Direct3D 11 and OpenGL 4.x utilize two shader
units and one fixed-function unit, the techniques described in this disclosure are not so
limited. For example, it may be possible in other systems for the first and second shader
units to be fixed-function units and the tessellation unit to be a shader unit. As another
example, all may be fixed-function units or all may be shader units, or any combination
thereof.

[0103] Therefore, in some examples, it may be considered that a first unit performs
functions similar to the first shader unit, but may be a shader unit or a fixed-function
unit, a second unit performs functions similar to the tessellation unit, but may be a
shader unit or a fixed-function unit, and a third unit performs functions similar to the
second shader unit, but may be a shader unit or a fixed-function unit. Moreover,
although the first shader unit, the tessellation unit, and the second shader unit are
illustrated as separate units in FIGS. 1 and 2, aspects of this disclosure are not so
limited. These units, and possibly any unit of the graphics processing pipelines
illustrated in FIGS. 1 and 2, may be combined together into a common unit.
Accordingly, while the functionality of these units is described separately for ease of
description, these units may be implemented in shared hardware or as distinct
components.

[0104] FIGS. 3A and 3B are graphical diagrams illustrating examples of domain types
that include a plurality of inner rings in accordance with one or more examples
described in this disclosure. For example, FIG. 3A illustrates triangle domain 56 and
FIG. 3B illustrates quad domain 66. As illustrated, triangle domain 56 and quad domain
66 each include concentric triangles and squares, respectively.

[0105] In FIG. 3A, triangle domain 56 includes outer ring 58 and inner ring 60. Outer
ring 58 includes outer ring edge 62, and inner ring 60 includes inner ring edge 64.

Outer ring edge 62 and inner ring edge 64 are parallel with one another. In aspects

WO 2014/035572 PCT/US2013/052064
23

described in this disclosure, the tessellation unit may interconnect (i.¢., stitch) points
along outer ring edge 62 with the points along inner ring edge 64. For example, the
tessellation factors may define the number of points that reside along outer ring edge 62
and the number of points that reside along inner ring edge 64. As indicated in FIG. 3A,
there is an addition inner ring, which is inner to inner ring edge 64.

[0106] The tessellation unit may utilize these tessellation factors to determine indices
into the single 2D stitching table. The entry value in the stitching table that corresponds
to the indices may define how many points along outer ring edge 62 and how many
points along inner ring edge 64 the tessellation unit should interconnect to form the
primitives whose vertices reside along outer ring edge 62 and inner ring edge 64.

[0107] After generating the primitive whose vertices reside along outer ring edge 62
and inner ring edge 64, the tessellation unit may advance to the other two edges of outer
ring 58 and inner ring 60 in a clockwise fashion, in this example. For each of these
edges of outer ring 58 and inner ring 60, the tessellation unit may access the single 2D
stitching lookup table to determine the manner in which the points that reside along
these edges are to be interconnected.

[0108] In some examples, after the tessellation unit completes the stitching of the
primitives whose vertices reside along outer ring 58 and inner ring 60, the tessellation
unit may proceed with the next inner ring. In this case, inner ring 60 becomes the outer
ring, and the ring following inner ring 60 becomes the inner ring, and the process of
accessing the 2D stitching table repeats until, upon progressively proceeding inward,
there are no more rings.

[0109] The tessellation unit may perform similar function on quad domain 66. For
example, in FIG. 3B, quad domain 66 includes outer ring 68 and inner ring 70. As
illustrated, there is another inner ring, which is inner to inner ring 70. Outer ring 68
includes outer ring edge 72, and inner ring 70 includes inner ring edge 74. Outer ring
edge 62 and inner ring edge 64 are parallel with one another, and the points along these
edges may form primitives (e.g., may be vertices of the primitives).

[0110] Similar to the example of FIG. 3A, the tessellation unit may utilize the
tessellation factors for outer ring edge 62 and inner ring edge 64 to determine indices
into the single 2D stitching table. The entry value in the stitching table that corresponds
to the indices may define how many points along outer ring edge 72 and how many
points along inner ring edge 74 the tessellation unit should interconnect to form the

primitives whose vertices reside along outer ring edge 72 and inner ring edge 74.

WO 2014/035572 PCT/US2013/052064
24

[0111] After generating the primitive whose vertices reside along outer ring edge 72
and inner ring edge 74, the tessellation unit may advance to the other two edges of outer
ring 68 and inner ring 70 in a clockwise fashion, in this example, and may access the 2D
stitching table to determine how the points are to be connected. In some examples, after
the tessellation unit completes the stitching of the primitives whose vertices reside along
outer ring 68 and inner ring 70, the tessellation unit may proceed with the next inner
ring. In this case, inner ring 70 becomes the outer ring, and the ring following inner
ring 70 becomes the inner ring, and the process of accessing the 2D stitching table
repeats until, upon progressively proceeding inward, there are no more rings.

[0112] FIGS. 4A and 4B are graphical diagrams illustrating a domain divided into a
plurality of primitives in accordance with one or more examples described in this
disclosure. For example, FIG. 4A illustrates triangle domain 76 divided (i.e.,
tessellated) into a plurality of primitives, and FIG. 4B illustrates quad domain 78
divided into a plurality of primitives. The tessellation unit may utilize the single 2D
stitching table to determine how the points along the edges of the rings of triangle
domain 76 and quad domain 78 are to be connected together.

[0113] In FIGS. 4A and 4B, the interconnection of the points that form the triangle may
be based on the tessellation factors. For example, the dense interconnections at the left
edge of FIG. 4B are due to the interconnections as defined by the stitching table. For
example, the tessellation factors for the left edge of FIG. 4B may form the basis for the
indices into the stitching table. In this example, the entry value in the stitching table
that corresponds to the indices may indicate that the points of the primitives should be
connected in the manner illustrated for the left edge of FIG. 4B. The entry values in the
stitching table may similarly indicate the manner in which the points along the different
edges in FIGS. 4A and 4B should be connected based on the tessellation factors for the
different edges.

[0114] FIG. 5 is a block diagram illustrating an example of a tessellation unit in greater
detail in accordance with one or more examples described in this disclosure. For
example, FIG. 5 illustrates tessellation unit 80. Examples of tessellation unit 80 include
tessellation stage 24 of FIG. 1 and primitive generator 42 of FIG. 2.

[0115] Tessellation unit 80 may include setup unit 82, point generator 84, and
connectivity generator 86, which may be fixed-function hardware units of tessellation
unit 80. Setup unit 82, point generator 84, and connectivity generator 86 are illustrated

as separate components for ease of description. Setup unit 82, point generator 84, and

WO 2014/035572 PCT/US2013/052064
25

connectivity generator 86 may be formed as a single unit, as separate units, or a
combination thereof. Stitching table 88 is illustrated as being within connectivity
generator 86 for case of illustration. However, stitching table 88 may reside within the
local memory of GPU 12 or system memory 14.

[0116] Setup unit 82 may receive the tessellation factors as input a first shader unit such
as hull shader stage 22 of FIG. 1 and tessellation control shader 40, and may determine
the domain type from the tessellation factors. For example, if there are four tessellation
factors, setup unit 82 may determine that the domain type is a triangle, and if there are
six tessellation factors, setup unit 82 may determine that the domain type is a quad.
Setup unit 82 may perform other setup functions such as correcting rounding problems,
ceiling and floor functions, determining half tessellation factors, and reducing and
combining tessellation factors. In general, setup unit 82 may process the tessellation
factors to ensure that the other components of tessellation unit 80 can perform
respective functions.

[0117] Point generator 84 may determine how many points reside along each edge of
cach ring of the domain, from the tessellation factors, and the locations of the points
(e.g., the u, v coordinates or the u, v, w coordinates of the points). Connectivity
generator 86 may connect (i.c., stitch) the points to form a plurality of primitives in the
domain, such as those illustrated in FIGS. 4A and 4B.

[0118] For example, point generator 84 may determine coordinates of points along an
outer ring, such as outer ring 58 and outer ring 68 of FIGS. 3A and 3B, respectively,
and coordinates of points along an inner ring, such as inner ring 60 and inner ring 70 of
FIGS. 3A and 3B, respectively. In some examples, point generator 84 may store the
determined coordinates in buffers. For example, one buffer may store the coordinates of
points along the inner ring edge, and another buffer may store the coordinates of points
along the outer ring edge.

[0119] For each edge of the outer ring that is parallel with an edge of the inner ring,
connectivity generator 86 may determine how the points of the outer ring edge should
connect with the points of the inner ring edge to form primitives. For instance, there
may be at least two different ways in which points along the outer ring edge and the
points along the inner ring edge can form triangles. As one example, connectivity
generator 86 may form a triangle using two points from the outer ring edge and one

point from the inner ring edge, and connect them together to form a triangle. As another

WO 2014/035572 PCT/US2013/052064
26

example, connectivity generator 86 may form a triangle using two points from the inner
ring edge and one point from the outer ring edge to form the triangle.

[0120] In accordance with the techniques described in this disclosure, stitching table 88
may define which points connectivity generator 86 should utilize to form the primitives.
In some examples, stitching table 88 may define which points connectivity generator 86
should utilize to form the primitives based on the number of points along the outer ring
edge and the number of points along the inner ring edge. For example, there may be
specific, predefined ways in which connectivity generator 86 should connect the points
for a given number of points along the outer ring edge and a number of points along the
inner ring edge.

[0121] Stitching table 88 may store such information regarding the way in which
connectivity generator 86 should connect the points of the outer ring edge and the inner
ring edge. In some examples, connectivity generator 86 may only need to access
stitching table 88, and may not need to access any other table to determine the manner
in which to connect the points of the outer ring edge and the inner ring edge.

[0122] As described above, stitching table 88 may be a 2D stitching table, and
connectivity generator 86 may index stitching table 88 based on the number of points
that are present along the inner edge and the outer edge. The number of points that are
present along the inner edge and the outer edge may be based on the received
tessellation factors.

[0123] Connectivity generator 86 may use the number of points that reside along the
inner edge [i] as the basis for determining the column index of stitching table 88, and
the number of points that reside along the outer edge [j] as the basis for determining the
row index of stitching table 88. In other words, connectivity generator 86 may utilize
the values [i, j] to access stitching table 88. In other examples, the number of points that
reside along the inner edge may form the basis for indexing the row of stitching table
88, and the number of points that reside along the outer edge may form the basis for
indexing the column of stitching table 88.

[0124] In some examples, the manner in which connectivity generator 86 connects the
points may be based on half tessellation factors. For example, connectivity generator 86
may form primitives using half the points that reside along the outer ring edge and/or
using half the points that reside along the inner ring edge (e.g., halfway along the length
of the outer ring edge and/or inner ring edge). Connectivity generator 86 may then

connect the remaining half of the points in the same way as the first half or in a

WO 2014/035572 PCT/US2013/052064
27

reciprocal way. For example, when connecting the remaining half in the reciprocal
way, the first half and the second half may appear as mirror primitives.

[0125] Because connectivity generator 86 copies or inverts the manner in which it
connected the primitives in the first half of the outer ring edge and/or inner ring edge
with the second half, connectivity generator 86 may only need to retrieve stitching
information for the first half of the outer and/or inner ring edge. For example, assume
that there are 10 points along the outer ring edge; in this example, connectivity
generator 86 may retrieve information for how to connect 5 of the 10 points. In this
manner, connectivity generator 86 may rely upon half tessellation factors (e.g., 5
divided by 10 is 0.5) to determine how to connect (i.e., stitch) the points.

[0126] Connectivity generator 86 may then connect the remaining 5 points in the same
way or in an inverted way as the first 5 points. For example, in the inverted way,
connectivity generator 86 may connect the remaining 5 points in such a manner that
primitives generated from the remaining 5 points are the mirror primitives of the
primitives generated from the first 5 points.

[0127] In examples where connectivity generator 86 relies on half tessellation factors,
the number of rows and columns in stitching table 88 may be approximately half the
maximum possible number of points in an edge (e.g., the outer ring edge or the inner
ring edge). For instance, as described above, in some examples, the maximum number
of points along an edge may be 65 points. In these examples, stitching table 88 may be
a 33x33 table because 33 is approximately half of 65.

[0128] In some examples, there may be a requirement that half of an inner ring edge is
not allowed to have less than 3 points. In these cases, rather than having 1 to 33 points
along half of an inner ring edge, there may be 3 to 33 points along half of an inner ring
edge. For these cases, it may be possible to reduce the size of stitching table 88. For
example, because half of the inner ring edge may be allowed to have 3 to 33 points, it
may be possible to remove rows from stitching table 88 for the cases where half of the
inner ring edge has less than 3 points. For instance, the rows of stitching table 88 may
be for the inner ring edge, and because there may be 3 to 33 points along half of an
inner edge, stitching table 88 may need 31 rows to represent the possibility of 3 to 33
points. In these examples, stitching table 88 may be a 31x33 table.

[0129] Connectivity generator 86 may index stitching table 88 using the half
tessellation factors to retrieve entry values that define the way in which connectivity

generator 86 should connect points that reside along half an edge of the domain. For

WO 2014/035572 PCT/US2013/052064
28

example, if the tessellation factors define that there are 10 points along the outer ring
edge and 8 points along the inner ring edge, then the index into stitching table 88 is 5
and 4 (i.e., 10 divided by 2 is 5, and 8 divided by 2 is 4). If, however, half tessellation
factors are not used then the index into stitching table 88 may be 10 and 8.

[0130] In some examples, connectivity generator 86 may subtract 2 from the half
tessellation factor of the inner ring edge, and use the resulting value as the index into
stitching table 88. For example, because in some instances, there may be only 3 to 33
points along half of an edge of an inner ring edge, resulting in 31 rows in stitching table
88, connectivity generator 86 may need to subtract 2 from the half tessellation factor to
properly index stitching table 88 in these instances.

[0131] In this manner, connectivity generator 86 may determine a first index into
stitching table 88 based on the number of points along the outer ring edge of the
domain, and may determine a second index into stitching table 88 based on the number
of points along the inner ring edge of the domain. Connectivity generator 86 may then
utilize the first index and the second index to retrieve an entry value from stitching table
88.

[0132] The entry values may be plurality of bits, where each bit indicates how many
points from the outer ring edge and how many points from the inner ring edge
connectivity generator 86 should use to connect to form the primitives. For example, if
the number of points on an edge is 64, then there may be a maximum of 128 primitives
whose vertices reside along the outer ring edge and the inner ring edge. Accordingly,
there may be a maximum of 64 primitives whose vertices reside along the halfway
length of the outer and inner ring edges. In this example, the number of bits in the entry
value may be 64, with each bit indicating the number of points from the inner and outer
ring edges that connectivity generator 86 should use to form one primitive.

[0133] As one example, a bit value of 1 may indicate that connectivity generator 86
should utilize two points from the outer ring edge and one point from the inner ring
edge to form a triangle primitive. A bit value of 0 may indicate that connectivity
generator 86 should utilize one point from the outer ring edge and two points from the
inner ring edge. However, in other examples, a bit value of 1 may indicate the
connectivity generator 86 should utilize one point from the outer ring edge and two
points from the inner ring edge, and a bit value of 0 may indicated that connectivity
generator 86 should utilize two points rom the outer ring edge and one point from the

inner ring edge.

WO 2014/035572 PCT/US2013/052064
29

[0134] In this example, connectivity generator 86 may determine the bit value of each
of the bits in the entry value starting from the least significant bit (LSB). The LSB may
indicate how many points connectivity generator 86 should use from the inner and outer
ring edges to generate the first primitive along the inner and outer ring edges. The bit
after the LSB may indicate how many points connectivity generator 86 should use from
the inner and outer ring edges to generate the second primitive along the inner and outer
ring edges, and so forth. In some examples, the first primitive may be at the left bottom
of the domain, and the second primitive may be the next primitive moving in a
clockwise direction.

[0135] Connectivity generator 86 may repeat these steps until connectivity generator 86
generates a predetermined number of primitives (e.g., generates the primitives along
half of the inner and/or outer ring edges). For example, the most significant bit (MSB)
of the entry value from stitching table 88 may indicate how many points from the outer
and inner ring edges connectivity generator 86 should use to generate the last primitive
which occurs at the half way point along the inner and outer ring edges. Connectivity
generator 86 may then repeat these steps for generating the primitives that reside along
the second half of the inner and outer ring edges, as described above. For example, the
total number of primitives that connectivity generator 86 is to create may be based on
number of points along half of the outer ring edge and the number of points along half
of the inner ring edge. For instance, by summing the number of points along half of the
outer ring edge and the number of points along half of the inner ring edge, and
subtracting one from the resulting value, connectivity generator 86 may determine the
total number of primitives that are to be created along an inner and an outer ring edge.
[0136] In this manner, connectivity generator 86 may determine how many points of the
outer ring and how many points of the inner ring edge to use to generate each of the
plurality of primitives based on the retrieved entry value. The shader unit after the
tessellation unit (e.g., domain shader 26 (FIG. 1) or tessellation evaluation shader 44
(FIG. 2)) uses the resulting plurality of primitives in the domain to add primitives in the
patch. The resulting patch, with the additional primitives, is then further processed
through the graphics processing pipeline and ultimately rasterized to render an image.
[0137] As described above, connectivity generator 86 may determine bit values of one
or more bits (¢.g., from the LSB to the MSB) of the entry value. In this example, each

bit value of the one or more bits corresponds to each one of the plurality of primitives.

WO 2014/035572 PCT/US2013/052064
30

Connectivity generator 86 may then connect the points of outer ring edge and the inner
ring edge based on the determination to generate each of the plurality of primitives.
[0138] Furthermore, in some examples, connectivity generator 86 may connect points
that reside up to halfway of the edge, and repeat for the other half. In these examples,
the indices into stitching table 88 may be based on the half tessellation factors. In other
examples, connectivity generator 86 may connect points all the way up the edge. In
these examples, the indices into stitching table 88 may be based on the tessellation
factors, and not necessarily the half tessellation factors.

[0139] The MSB need not necessarily be the first bit in the 64 bit entry value. For
example, although half an edge may include a maximum of 64 primitives, in some
examples, it is not necessary that there always be 64 primitives. In these examples,
connectivity generator 86 may start with the LSB and determine bit values starting from
the right to the left until connectivity generator 86 generated all of the primitives for the
half the outer and inner ring edges. In this example, the last bit value that connectivity
generator 86 determined may be considered as the MSB.

[0140] Connectivity generator 86 may then stop determining the bit value for any
remaining bits in the entry value. For example, if there are only 50 primitives whose
vertices are points along the inner and outer edge ring, then after determining the bit
values for the LSB to the 50™ bit, starting from the LSB, connectivity generator 86 may
stop determining the bit values for any of the remaining 14 bits of the 64 bit entry value.
[0141] As described above, stitching table 88 may define how many points from the
inner and outer ring edges connectivity generator 86 should use for half an edge.
However, aspects of this disclosure are not so limited. In other examples, stitching table
88 may define how many points from the inner and outer ring edges connectivity
generator 86 should use for the entire inner and outer ring edges.

[0142] In this case, the size of stitching table 88 may be 64x64 because there are a
maximum of 64 points along each of the outer and inner ring edges. Also, in this case,
the number of bits of the entry value may be 128 because there could be up to 128
primitives whose vertices reside along the inner and outer ring edges; however, fewer
primitives are possible. Accordingly, the index for the rows and columns of stitching
table 88 may be based on the maximum number of allowable points along a ring edge.
Also, the number of bits in the entry value may be based on the maximum number of

allowable points along a ring edge.

WO 2014/035572 PCT/US2013/052064
31

[0143] Using half tessellation factors as indices and determining the connectivity for
primitives that reside halfway up the inner and outer ring edges may allow for a smaller
sized stitching table 88 that stores fewer bits. For example, as described above, when
relying upon half tessellation factors, the size of stitching table 88 may be 33x33, rather
than 64x64, and the number of bits in the entry value may be 64, rather than 128.

[0144] FIG. 6 is a flow chart illustrating an example stitching operation in accordance
with one or more examples described in this disclosure. For purposes of illustration
only, reference is made to FIG. 5. As described above, FIG. 5 provides an example of a
tessellation unit. Examples of the tessellation unit include tessellation stage 24 of FIG.
1 and primitive generator 42 of FIG. 2.

[0145] In FIG. 6, point generator 84 may be configured to determine a number of points
along an outer ring edge of a domain (90). Point generator 84 may also determine a
number of points along an inner ring edge of the domain (92). For example, point
generator 84 may divide the length of the edge with the tessellation factor to determine
the number of points along the outer ring edge and inner ring edge. For instance, if the
tessellation factor indicates four for an edge, then there are four points that reside along
the edge, which results in the edge being divided into five portions.

[0146] Connectivity generator 86 may be configured to utilize only a single stitching
table 88, based on the number of points along the outer ring and the number of points
along the inner ring edge, to determine how many points and which ones of the outer
ring edge and how many points and which ones of the inner ring edge to use to generate
cach of a plurality of primitives whose vertices are the points along the outer ring edge
and the points along the inner ring edge (94). Connectivity generator 86 may output the
coordinates of the vertices (96). The output coordinates may then be processed utilizing
the graphics processing pipeline as described above with respect to FIGS. 1 and 2.
[0147] FIGS. 7A-7G together illustrate an example of a stitching table. For instance,
FIGS. 7A-7G together illustrate one non-limiting example of stitching table 88 of FIG.
5. For example, stitching table 88 may be preprogrammed stitching table, and FIGS.
7A-7G illustrate one such preprogrammed stitching table 88. Other stitching tables
may be possible, and aspects of this disclosure should not be considered limited to the
illustrated stitching table 88.

[0148] Due to the size of this example of stitching table 88, stitching table 88 is
illustrated across FIGS. 7A-7G. As described above, in some examples, stitching table

88 may be a 31x33 table. FIG. 7A illustrates the 31 rows, and illustrates columns 1-7,

WO 2014/035572 PCT/US2013/052064
32

labeled A-G, of the 33 columns. FIG. 7B illustrates the 31 rows, and illustrates
columns 8-12, labeled H-L, of the 33 columns. FIG. 7C illustrates the 31 rows, and
illustrates columns 13-18, labeled M—R, of the 33 columns. FIG. 7D illustrates the 31
rows, and illustrates columns 19-23, labeled S—W, of the 33 columns. FIG. 7E
illustrates the 31 rows, and illustrates columns 24-28, labeled X—AB, of the 33
columns. FIG. 7F illustrates the 31 rows, and illustrates columns 29-31, labeled AC—
AE, of the 33 columns. FIG. 7G illustrates the 31 rows, and illustrates columns 32 and
33, labeled AF and AG, of the 33 columns.

[0149] Morcover, for ease of illustration, FIGS. 7A-7G illustrate numerical values.
However, in some examples, rather than storing numerical values, stitching table 88
may store binary value equivalents for the numerical values illustrated in FIGS. 7A-7G.
For instance, in some examples, stitching table 88 may store 64 bit entry values. In
these examples, the values illustrated in FIGS. 7A-7G may be represented by up to the
64 bits needed to represent the values illustrated in FIGS. 7A-7G. It should be
understood that not all values illustrated in FIGS. 7A-7G need to be represented by 64
bits.

[0150] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0151] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored as one or more instructions or code on a computer-readable
medium. Computer-readable media may include computer data storage media. Data
storage media may be any available media that can be accessed by one or more
computers or one or more processors to retrieve instructions, code and/or data structures
for implementation of the techniques described in this disclosure. By way of example,
and not limitation, such computer-readable media can comprise random access memory
(RAM), read-only memory (ROM), EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or any other medium that can
be used to store desired program code in the form of instructions or data structures and

that can be accessed by a computer. Disk and disc, as used herein, includes compact

WO 2014/035572 PCT/US2013/052064
33

disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray
disc where disks usually reproduce data magnetically, while discs reproduce data
optically with lasers. Combinations of the above should also be included within the
scope of computer-readable media.

[0152] The code may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. Also, the techniques could be fully
implemented in one or more circuits or logic elements.

[0153] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (i.c., a chip set). Various components, modules or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a hardware unit or
provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0154] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2014/035572 PCT/US2013/052064
34

CLAIMS:

1. A method for tessellation comprising;:

determining, with a graphics processing unit (GPU), a number of points along an
outer ring edge of a domain;

determining, with the GPU, a number of points along an inner ring edge of the
domain;

utilizing, with the GPU, based on the number of points along the outer ring edge
and the number of points along the inner ring edge, only a single two-dimensional (2D)
stitching table to determine how many points and which points of the outer ring edge
and how many points and which points of the inner ring edge to use to generate each of
a plurality of primitives whose vertices are the points along the outer ring edge and the
points along the inner ring edge; and

outputting, with the GPU, coordinates of the vertices.

2. The method of claim 1, wherein utilizing only the single 2D stitching table
comprises:
determining a first index into the stitching table based on the number of points
along the outer ring edge of the domain;
determining a second index into the stitching table based on the number of
points along the inner ring edge of the domain; and
utilizing the first index and the second index to retrieve an entry value from the
single 2D stitching table,
the method further comprising;:
determining how many points of the outer ring edge and how many
points of the inner ring edge to use to generate cach of the plurality of primitives
based 0034n the retrieved entry value; and
connecting the points of the outer ring edge and the inner ring edge based

on the determination to generate each of the plurality of primitives.

3. The method of claim 2, wherein determining the first index comprises dividing
the number of points along the outer ring edge by two, and wherein determining the

second index comprises dividing the number of points along the inner ring edge by two.

WO 2014/035572 PCT/US2013/052064
35

4, The method of claim 2,
wherein determining how many points and which points of the outer ring edge
and how many points and which points of the inner ring edge to use comprises:
determining bit values of one or more bits of the entry value, wherein
cach bit value of the one or more bits corresponds to each one of the plurality of
primitives, and
wherein connecting the points of the outer ring edge and the inner ring edge
comprises:
connecting two points from the outer ring edge and one point from the
inner ring edge when a bit value of the one or more bits of the entry value is one

to generate a primitive that corresponds to the bit value.

5. The method of claim 2,
wherein determining how many points and which points of the outer ring edge
and how many points and which points of the inner ring edge to use comprises:
determining bit values of one or more bits of the entry value, wherein
cach bit value of the one or more bits corresponds to each one of the plurality of
primitives, and
wherein connecting the points of the outer ring edge and the inner ring edge
comprises:
connecting one point from the outer ring edge and two points from the
inner ring edge when a bit value of the one or more bits of the entry value is zero

to generate a primitive that corresponds to the bit value.

6. The method of claim 1, wherein the inner ring edge is parallel to the outer ring

edge.

WO 2014/035572 PCT/US2013/052064
36

7. The method of claim 1, wherein the outer ring edge comprises a first outer ring
edge, the inner ring edge comprises a first inner ring edge, and the plurality of
primitives comprises a first plurality of primitives, the method further comprising:
determining a number of points along a second outer ring edge of the domain;
determining a number of points along a second inner ring edge of the domain;
utilizing, based on the number of points along the second outer ring edge and the
number of points along the second inner ring edge, only the single two-dimensional
(2D) stitching table to determine how many points and which points of the second outer
ring edge and how many points and which points of the second inner ring edge to use to
generate each of a second plurality of primitives whose vertices are the points along the

second outer ring edge and the points along the second inner ring edge.

8. The method of claim 1, wherein the single 2D stitching table includes a plurality
of rows and columns, and wherein a number of the rows and columns is based on a

maximum number of allowable points along the outer ring edge and the inner ring edge.

9. A tessellation unit for a graphics processing unit (GPU), the tessellation unit
comprising:

a first unit configured to determine a number of points along an outer ring edge
of a domain, and determine a number of points along an inner ring edge of the domain;
and

a second unit configured to utilize, based on the number of points along the
outer ring edge and the number of points along the inner ring edge, only a single two-
dimensional (2D) stitching table to determine how many points and which points of the
outer ring edge and how many points and which points of the inner ring edge to use to
generate each of a plurality of primitives whose vertices are the points along the outer
ring edge and the points along the inner ring edge, and output coordinates of the

vertices.

10. The tessellation unit of claim 9, wherein the first unit comprises a point

generator, and the second unit comprises a connectivity generator.

WO 2014/035572 PCT/US2013/052064
37

11. The tessellation unit of claim 9, wherein the second unit is configured to:

determine a first index into the stitching table based on the number of points
along the outer ring edge of the domain;

determine a second index into the stitching table based on the number of points
along the inner ring edge of the domain;

utilize the first index and the second index to retrieve an entry value from the
single 2D stitching table;

determine how many points of the outer ring edge and how many points of the
inner ring edge to use to generate each of the plurality of primitives based on the
retrieved entry value; and

connect the points of the outer ring edge and the inner ring edge based on the

determination to generate each of the plurality of primitives.

12. The tessellation unit of claim 11, wherein the second unit divides the number of
points along the outer ring edge by two to determine the first index, and divides the

number of points along the inner ring edge by two to determine the second index.

13. The tessellation unit of claim 11,

wherein, to determine how many points and which points of the outer ring edge
and how many points and which points of the inner ring edge to use, the second unit is
configured to determine bit values of one or more bits of the entry value, wherein each
bit value of the one or more bits corresponds to each one of the plurality of primitives,
and

wherein, to connect the points of the outer ring edge and the inner ring edge, the
second unit is configured to connect two points from the outer ring edge and one point
from the inner ring edge when a bit value of the one or more bits of the entry value is

one to generate a primitive that corresponds to the bit value.

WO 2014/035572 PCT/US2013/052064
38

14, The tessellation unit of claim 11,

wherein, to determine how many points and which points of the outer ring edge
and how many points and which points of the inner ring edge to use, the second unit is
configured to determine bit values of one or more bits of the entry value, wherein each
bit value of the one or more bits corresponds to each one of the plurality of primitives,
and

wherein, to connect the points of the outer ring edge and the inner ring edge, the
second unit is configured to connect one point from the outer ring edge and two points
from the inner ring edge when a bit value of the one or more bits of the entry value is

zero to generate a primitive that corresponds to the bit value.

15. The tessellation unit of claim 9, wherein the inner ring edge is parallel to the

outer ring edge.

16. The tessellation unit of claim 9, wherein the outer ring edge comprises a first
outer ring edge, the inner edge comprises a first inner ring edge, and the plurality of
primitives comprises a first plurality of primitives, and wherein the second unit is
configured to:

determine a number of points along a second outer ring edge of the domain;

determine a number of points along a second inner ring edge of the domain;

utilize, based on the number of points along the second outer ring edge and the
number of points along the second inner ring edge, only the single two-dimensional
(2D) stitching table to determine how many points and which points of the second outer
ring edge and how many points and which points of the second inner ring edge to use to
generate each of a second plurality of primitives whose vertices are the points along the

second outer ring edge and the points along the second inner ring edge.

17. The tessellation unit of claim 9, wherein the single 2D stitching table includes a
plurality of rows and columns, and wherein a number of the rows and columns is based
on a maximum number of allowable points along the outer ring edge and the inner ring

edge.

WO 2014/035572 PCT/US2013/052064
39

18. A device comprising:
a central processing unit (CPU) configured to generate a patch to be tessellated;
a graphics processing unit (GPU) comprising:

a first unit configured to receive the patch as an input patch and output
control points and tessellation factors for an output patch based on the input
patch;

a tessellation unit configured to:

determine a type of a domain based on the tessellation factors;

determine a number of points along an outer ring edge of the
domain based on the tessellation factors;

determine a number of points along an inner ring edge of the
domain based on the tessellation factors;

utilize, based on the number of points along the outer ring edge
and the number of points along the inner ring edge, only a single two-
dimensional (2D) stitching table to determine how many points and
which points of the outer ring edge and how many points and which
points of the inner ring edge to use to generate each of a plurality of
primitives whose vertices are the points along the outer ring edge and the
points along the inner ring edge; and

output coordinates of the vertices; and
a second unit configured to receive the coordinates of the vertices and

add the primitives to the output patch based on the received coordinates of the

vertices.
19. The device of claim 18, wherein the GPU includes a local memory that stores
the 2D stitching table.
20. The device of claim 18, wherein the first unit comprises a first shader unit, and

the second unit comprises a second shader unit.

21. The device of claim 20, wherein the first shader unit comprises one of a hull
shader stage and a tessellation control shader, wherein the tessellation unit comprises
one of a tessellation stage and a primitive generator, and wherein the second shader unit

comprises one of a domain shader stage and a tessellation evaluation shader.

WO 2014/035572 PCT/US2013/052064
40

22. The device of claim 18, wherein the tessellation unit is configured to:

determine a first index into the stitching table based on the number of points
along the outer ring edge of the domain;

determine a second index into the stitching table based on the number of points
along the inner ring edge of the domain;

utilize the first index and the second index to retrieve an entry value from the
single 2D stitching table;

determine how many points of the outer ring edge and how many points of the
inner ring edge to use to generate each of the plurality of primitives based on the
retrieved entry value; and

connect the points of the outer ring edge and the inner ring edge based on the

determination to generate each of the plurality of primitives.

23. The device of claim 18, wherein the inner ring edge is parallel to the outer ring
edge.
24. The device of claim 18, wherein the outer ring edge comprises a first outer ring

edge, the inner edge comprises a first inner ring edge, and the plurality of primitives
comprises a first plurality of primitives, and wherein the tessellation unit is configured
to:

determine a number of points along a second outer ring edge of the domain;

determine a number of points along a second inner ring edge of the domain;

utilize, based on the number of points along the second outer ring edge and the
number of points along the second inner ring edge, only the single two-dimensional
(2D) stitching table to determine how many points and which points of the second outer
ring edge and how many points and which points of the second inner ring edge to use to
generate each of a second plurality of primitives whose vertices are the points along the

second outer ring edge and the points along the second inner ring edge.

25. The device of claim 18, wherein the single 2D stitching table includes a plurality
of rows and columns, and wherein a number of the rows and columns is based on a

maximum number of allowable points along the outer ring edge and the inner ring edge.

WO 2014/035572 PCT/US2013/052064
41

26. A tessellation unit for a graphics processing unit (GPU), the tessellation unit
comprising:

means for determining a number of points along an outer ring edge of a domain;

means for determining a number of points along an inner ring edge of the
domain;

means for utilizing, based on the number of points along the outer ring edge and
the number of points along the inner ring edge, only a single two-dimensional (2D)
stitching table to determine how many points and which points of the outer ring edge
and how many points and which points of the inner ring edge to use to generate each of
a plurality of primitives whose vertices are the points along the outer ring edge and the
points along the inner ring edge; and

means for outputting coordinates of the vertices.

27. A computer-readable storage medium including instructions stored thereon that
when executed cause one or more processors to:

determine a number of points along an outer ring edge of a domain;

determine a number of points along an inner ring edge of the domain;

utilize, based on the number of points along the outer ring edge and the number
of points along the inner ring edge, only a single two-dimensional (2D) stitching table to
determine how many points and which points of the outer ring edge and how many
points and which points of the inner ring edge to use to generate cach of a plurality of
primitives whose vertices are the points along the outer ring edge and the points along
the inner ring edge; and

output coordinates of the vertices.

WO 2014/035572

CPU
16

1/13

SYSTEM

MEMORY |@€—»

14

FIG. 1

PCT/US2013/052064

Ve

10

GPU
12

INPUT ASSEMBLER STAGE
18

Y

VERTEX SHADER STAGE
20

Y

HULL SHADER STAGE
22

v

TESSELLATION STAGE
24

Y

DOMAIN SHADER STAGE
26

Y

GEOMETRY SHADER
STAGE
28

Y

RASTERIZER STAGE
30

v

PIXEL SHADER STAGE
32

v

OUTPUT MERGE STAGE
34

WO 2014/035572

CPU
16

2/13

SYSTEM

MEMORY |@€—»

14

FIG. 2

PCT/US2013/052064

Ve

10

GPU
12

INPUT ASSEMBLER
36

Y

VERTEX SHADER
38

Y

TESSELLATION CONTROL
SHADER
40

v

PRIMITIVE GENERATOR
42

Y

TESSELLATION
EVALUATION SHADER
44

Y

GEOMETRY SHADER
46

Y

CLIPPING UNIT
48

Y

RASTERIZER
50

v

FRAGMENT SHADER
52

v

POST-PROCESSOR
54

WO 2014/035572 PCT/US2013/052064

3/13

FIG. 3A
70
74 72 [68 / [66

FIG. 3B

WO 2014/035572 PCT/US2013/052064

4/13

76

AN

FIG. 4A

78

WO 2014/035572 PCT/US2013/052064

5/13

80

SETUP UNIT
82

POINT GENERATOR

84

o]

CONNECTIVITY GENERATOR | STITCHING
86 | TABLE

- 88 |

| I

FIG. 5

WO 2014/035572

PCT/US2013/052064

6/13

DETERMINE POINTS ALONG OUTER RING EDGE

/-90

l

DETERMINE POINTS ALONG INNER RING EDGE

/-92

l

UTILIZE ONLY A SINGLE 2D STITCHING TABLE TO
DETERMINE HOW MANY POINTS AND WHICH POINTS
OF THE OUTER AND INNER RING EDGES TO
GENERATE A PLURALITY OF PRIMITIVES

/-94

l

OUTPUT COORDINATES OF VERTICES

/-96

FIG. 6

PCT/US2013/052064

WO 2014/035572

7713

V. '9Old

0/8ST6TY99T 06/€L60C€8 0T698V09TY 0660CCLvTC 0SLOTIEL0T OT60/89ES SSVSEVSIT TE
8/TI861S08 V679009707 TITEOOETOT 99T6LYELOT 8ESEELIES VSYSEVBIT LTLLTTYET 0t
8EV6YYSCOY ¥/SOV/TTOC TOEOLE900T ¥ST8099€S TSEVOESIT 9TLLITYET €9880TL9 | 6¢
8TSESTZIOC ¥T9/0T900T CTSESOE0S 86LTLTSIT ¥S9980VET 79880TL9 TEVYSSEE | 8¢
8GG0SSS00T VETT6LT0S TSSS6ETSC OLOSS6EET 06LL/699 OEVPSSEE STTLLLIT %
8/0VETT0S V6STETIST T9V99SSCT 90T9¥899 S8SEETYEE ¥ITLLLOT L0988€8 K74
9ZT00TISC 8T699SSCT V/678/T9 9V8TCYEE SLOTT/IT 90988€8 €OEV6TY 57
OSTEESSCT OEvr8LT9 OSCI6ETE 99TTTLOT 8€E8SSES COEW6IVy TSTLE0T €7
9%099.279 98906€TE 8SES69ST 9TESSES 8T6LLTY 0STL60C SLSSYOT K4
V6vZSETE VISV69ST TTYLYSL 90v/LTy ~ 8S6880C ¥/SSYOT [8TiS 4
0€CT69ST 06€LY8L 0TLET6E 20£880¢ 8LVYYOT 98TV €Y19C 0T
865578L 8/9€T6€ 7581961 0SEVYOT 8€TTTS Trie9e TLOTET 61
86.T6€ 8€8T96T 976086 vLTTCS 8TTT9C 0LOTET S€S59 8T
86€T96T 816086 7906V 98019¢C 8550€T €999 L9/T€ a3
7s8eie 0£99SY 8T€8CT ¥T00ET 22059 99/2€ €8€91 m
7€588€E 98¥6T WTL6 8L¥9 vseee 78¢€91 1618 5T
976161 8196 7608t 0TLTE 0L8ST 0618 S601 €T
7956 0€0LY 8TSET 97€ST 8.9/ 60V Lv0T T
8159 8LYET 474 9L 8€8€ 90T €20T 1T
(4444 20LTT 589 908€ 8161 zeot T1S 0T
90911 98S 926 06T 856 015 14 | 6
208S zeee 9T 056 8LY 1474 LTt | 8
90LT /8 8€v 8€v (444 9T €9 | £
789 79€ [4:1) 1431 6 9 153 |M
0€€ 0LT 98 98 9w 0€ ST —
9T 8 4y 4y 144 14! L —
9¢ 0z)) 9 9 € 7
91 8 14 14 z z T B

9 _ i : _

PCT/US2013/052064

WO 2014/035572

8/13

O0T6SPSTOEYTIY 86698/04GT/.G0C B8T/LE6E£SG/S8C0T C98969/8CW1S 98¢8CS69/LE/C
8GE06¢8LCST6T CCC6ST6€E9L96 0€86/596188LF 81668L60V6EC VI8V/LSGOEEQET
¢8G¢9999/GT8 vEESPEEBB/OY 988C/9Tv6E0C 9VP9E€80L610T 8/08601T19L9
991¢0861vvEOY 9CTST6VC/LT0C ¢8LLSPCO9800T ¥688¢CTeV0S OTL6SETSCEE
8G6TLET6CLET CC000LSP986 0€ECOS8Cceby 8TIGCPT99%C 9¢S061T/09T
0ST¥CTL0S86 8T19/G€Gq¢6r 8/¢88L979YC CrIv6EETECT 9¥89CYB8TO8
9¢000ST 16V AN ARTAS) 14 ¢0€LGL8LTCT PS98LE6ET9 900S968T66E
CC09S9TESSYC 760¢659/L7CT 9rC96¢8ET9 9¢18Y1690€ COE90VS66T
oTegeceLetT 8660€T9ET9 81.590890¢ ¢98Ce0rEST 0S96T9T/66
849T/96GET9 €79/66/90¢ 0€0666€E£ST 81666699/ 90195861
¢8L£€8/90¢€ PE60EBEEST 98949699/ 9r8I8YEBE 81T59¢61¢C
991868EEST 9¢1€9699L (8L18VEBE ¥6807L16T 0€0¢CearCT
v/L97699L ClT6LYEBE 0€86ELT6T 81669846 98rST1ECO
8/0E/VEBE 8TE6ELTET 8/869856 rereELLY 9¢LLSTTE
¢0S9¢€/LT6T €7969846 co6reE6LY Pavr/96€¢ 9¥88LSGST
917789846 908vE6LY v L96€¢ 9¢/€86TT ive68LL
l1veEeLy ov/96¢€¢ CeLEB6TT 981664 0T/¥68¢
0696/LEVT 98106T.L PITG6SE 849G/6L1 849G/6L1
¢801664 (88566¢ 96L6V1 8681L 868YL
PSEST8L 8T0ECYT 0€STTL 99/44¢€ 99/45¢€
¢9Se0rT [44x4074 ¢80T4¢€ [421TA" [44°TA"
050669 99861¢ raev/l 8L¥L8 8/V/[8
17413923 OLvLT [40) 74%] oLey coLeY
9991 /1 0L€/8 069¢tv 9r81¢ 9¥81¢
CEEL8 789ty ¥¥81¢ <2601 60T
96/1¢ 91601 09rs 0€L¢ 0€L¢
8046 LLY 88¢€¢ vetll vetll
rror ovee [4An» 984 984
ocee 8911 78S 6¢ ¢6¢
[4X4 144" L 9¢ 9¢
8¢T 79 [43 91 91

1 A r I H

T€

NN < N W00

4. 'Old

PCT/US2013/052064

WO 2014/035572

9/13

0S8ST8YSSLCOTT 9¢6L0VLL/896S 9C6L0V///8965 98V8EEBE66TCE (¢8/695089¢T9T ¥//908/68908 1€
€80€9801¢0685 CYSTIEYOCTSYeC CPSTEVOCTaveC CC89680E/0/ST 0968V897068L 8SE9t6085V6¢ M
Pereoce0eseoe ST/LTI8ITS9/9PT STLI89TS9/9PT 8SEVIEOSYO8L 81//58606£6¢ Cv/0SC10/61 | 6¢
C0C8YSYet99rT COTV/LCCTCEEL COTvLCcTeeel Cev068Y1968E COTCOETre96l e6C0C8CC86 | 8¢
0Tv¢883850ccL 90¢THI6¢599¢ 90CTPr6CS99c 99e6r/0EL6T 90CS86£6086 98rristoler %
Cv¢/9¢01599¢ CC9CETAGCEST CCICETNGCE8T C0LL8/SSEL6 950V LC06Y 9C0L9CYSYC <7
VL89¢/¢STEST 8E89€9CIT6 8Er89¢9CoT6 8/15699/981 8EVOSLTISYC 84/9¢T0LCCT Ezd
CV88909¢916 Cerre0e18sy CCrre0e1s8sy v6/618celC 0984l 848161c19 c7
0/6966C185Y 981861906¢¢C 981786v906¢¢ 9¢080691¢C1 9817¢8¢6C19 999077/ 90¢ K4
08e6v906¢C 069t cestil 069 el C8/1€513809 €068€9190¢ [4{TAVAS ST [T
PLEOPeSrTl 89T€C99¢LS 85T€C99¢LS 864989¢ct0¢ 84T6TECesT 8/985899. H
80€¢99¢LS CYSTTEE98C CYSTTEE98C C9CreETTeST CVS6S199L 40157425213 | 61
0€STTEE98C 99/5591¢evl 99/S59Tetl 9¢T/9509L 99/6/0€8¢ IoriLiel | 8T
V9/S591¢erl C88LC8STL (88LL8STL €95¢8¢08¢ 886¢c5161 CCE/5896 %
0ov6eTo/SE 0/69568L1 0/69568.1 90T8¥8TTT Yelceels 85187/ 8¢ <7
8Vc/89991 V/9€6C8L V/9e6C8L veeelvy CCLI9L¢EC vet/elt s
/956891 98LLY¥8E 98/LL¥¥8¢ 0/4S049T¢ OT8¥8TIT 9876494 CT
YOr09€8¢E 0208161 ¢0c08161 v6S16/01 Y1/8vSS €0¢96Lc [T
oviviTel 0£€/856 0/£€4856 990€6£5 9¢91LLC 0/€S6¢T [TT
8¢0/856 viseely viseely 9£969¢ r9s8el V1S469 M
(4514374 % 9/96¢¢C 9/96¢¢C 0LT8rET 018¢69 or/8VE | 6
Yr/96¢C ¢LEB61T (243251 v80v/9 YOrore cLev/1 | 8
6566¢ 96/611 96/6V1 96/6v1 09¢v8 oocer | £
[4<TAS Y 9/8/9 9/849 9/849 80TS¢E Vel81 |M
999/9 8¢8ee 8¢8eL 8¢8eL 22/A" [4°145] B2
ve8ee 1691 1691 1691 0¢/8 veor ¢
9401 8¢s 8¢S 8¢a 8¢S 8¢S [

c1s 95¢ 94¢ 94¢ 94¢ 94¢ [T

g _ 0 _ d 0 _ N _ N

9. 'Old

PCT/US2013/052064

WO 2014/035572

10/13

899T1609/T00C8c 0E6ES89L8000T61T 9VEVTS8EV00956 €9CI9C61C0SLLY 8S9TE960TSLBEC 1€
C80ECOLLBYB88T C9609cS8eVcy6 COCCO8ICOTICTLY ¢991S1E96095EC CC19C/ 1810811 M
orEreErr0L6C6E6 Y/LCST9ES8Y969Y 8109689CrI8rec 0L6CSPETCIVLIT 9¢89¢/9090L85 m
CCEOYECB899C69Y C99TLST6LCOVET TITELE96ETELIT CPOCE18699989 C9E9606¥8CE6L m
8LSTr0T88L5FeC 0688161¥68CLTT 9C89Y0T L7985 VL88CS9€CCeE6 8LLVOLLTTI9TL m
C0799E9CE8CLTT C0C9L0YITHI8S Z817SC1C80Ce6L C0C89011¥099YT CibeS0T0ceL M'M
9CrY8EY801798S YTE065E0CERT 858810991 0€L916010cEL 90LELPS0999¢ Ezd
0v£001€0CE6C 081069109911 7878e5800¢ceL ¢09¥/LZr0999¢ CP9LETCSTEST €
099¥08¥71099¥1 0S8194£00¢EL 90££96£0999¢ VI1/8615C¢E8T 868¢665C916 [CC
£989€£00¢cEL YETCE8E0999¢ 7964¢6159CE3T v /69C916 799/86C1851 [TC
9899/9¢0999¢ 98eET61aCesT 059799697916 06862185 985¢6¥906c¢ M
[A4% 1321 ATA %] 29959697916 962861851 ¥£026¥906CC (A4l 74340} m
050616597916 0S978L6C185Y 99t16¥906C¢ 9C09rCeSrTl 090€799¢LS m
25656185 ¥Z168t906CC CELSYTESYTT C10€¢99¢La VCST1EE98C %
99T1CeeSrTl 0r66199¢LS OVTTTEE98C 9T/S99T¢erT 9/8L78STL <7
¢1¢0LL010S 891¥6£905¢C YOr869¢acl 8rE6rE9Co ce9v/L1ETE T
08c€e909¥C 2909¢e0edt 9611914919 re8s/0E OVTT6LEST €T
008054t P9EE9LETS 298¢8890¢ (AR 445 1" ¥080¢L9L [T
99/995¢19 0vL2¢6/90¢ 0vSL6£eal 9168699 9/v61E8E [TT
99€9/4/90¢ 8rE68ELTl 85699 890817¢8¢ [A°10, 7A0Y M
89088¢cSl ¥95¥699. C18L1E8E veeeLlol 0869856 |m
CE0v699.L 08CLrE8E voetLl6l 0969896 88reo6Ly |w
8915856 8V8C6LY 88996¢£¢C 7Se8611 V81665 | £
88l 80r1L1C 8969801 66215 v0STLC |M
91ce9te /81801 00C1vS 8090L¢ cresael 2
0091801 8260175 650LC 96cacl 819/9 ¢
¥coce 0991 8ri78 ey [49x4 [T
¥8€91 618 960 810¢ ¥cot |H

M _ A _ n 1 _ S

al ‘old

PCT/US2013/052064

WO 2014/035572

11/13

00€PS88€CS0L0CCCT 0S80e6Ve98I8TIT9 Olvrerer6000950€ 09¢0rE8619008¢ST 17/0¥80/SYe009L 1€
08861¢19/99¢8¢09 OVOLTTIT68E6SST0E 008SCST/LS888L0ST ¢96S8ECT00S6E9L CC690TOESLE9LE M
0€€0891S9L66E£C00E 098E6CT68999¢0ST VI6STIOTLSYErISL ST0TEVCI08TLSLE 0SV6LTVOL6S8L8T m
0T€8c0898991700ST ¢80S968.£66659505L CC9916r6916E9LE CCETBOVCSTOLLBT C09VS66TTITS8E6 m
9991€01¢9L8T0SL 090€9655TVSCSLE 0LLELVP866V9L8T 9¥66588TL0E8EL VI6EVELTLSTOOY %
€0850¢/L760605LE 766699V1ZV(9/81 VSESC68C1CC8ED 8119611691 91€/650994517¢€C <7
0€65179v6LS1SL81 9¢08/c8¢6118¢C6 9049095880169 05¢C0169095t¢C 0196¢0VC18C¢L1T Ed
VST8ETIEACLLED €0Cr00€S650691 CP089STEYSatEe P1e99€€C08eL1T 766680507985 c7
9200LELTEI889Y 090€085L6¢aved 0£6¥80STLLLLIT 9011860T0V98S Ir6S1Ltc0ce6l K
CCETYI8STEYPEL Ve8LSBLBYICLIT V6/86¥/58¢985 9e8Y7S00CE6L C8CPLEeCTO99r1 [TC
0€641€6/STZLTT 9819¢6EVCE98S 999917/ 8¢61c6C 0Sv1¢Lc009971 OTvPS1900ECL M
V6/85968£0985 €C62961¢91¢6¢ C9TELEYIOSOVT 73S09€100€EL €04£0€0999¢€ m
98€68Y6£0c6¢ 0571860185971 0/5981¢36¢¢CL 99¢08900599¢ 90498¢914¢E8T m
Ce9ovIv/615911 YcL06v506CEL ¥8ec60T6v99¢ CCcT0Pe0s¢Ce8T ¢5C69/5¢916 %
91698/£58959¢ 9€89/9611€81 0re981cI9T6 09998¢c118SY 915¢6¢906¢¢ <7
80£95€/4¢S6ST CELTOV0L008 88£8.9¢/00V ¥88¢8S11700¢ 8¢906£1¢00T 5T
V808L6C¢6LL 0cteLe89c6e CETv8YrC/961 9G955¢01186 V969111 cor €T
00T8¢LCc68¢ 89¢SLES0961 V118,086 ¢S0rCcS806Y C1C998Yratc T
09971659161 Y8086 ¢/1162E06Y7 9€9/18¢SPe 91LE869¢CT [TT
80€056¢EL6 00TCTTI106Y 958914 96/1069¢C1 9e8Y8YET9 H
Yr0SL 9987 0r695509t7¢ ¢/L16185¢C1 8805119 80ec/90¢ |m
0csLeceerd 8964L¢SCCT 78560619 €6€49¢/90¢ CSTTLEEST |w
[AA15TAS 14 Pr19eS1al ¢/98¢09L 9£668(8¢ vevestel |h
8C68SLPET ¥90059/9 €€95601¢ 9Iv8IELT 799/998 |M
9eSTLELS VOT/L18¢EE 8886¢0LT 08¢15998 vo6scey B3
09£989¢€ YS80691 966158 [43=1T4% % r6¢o1c ¢
8eelel 8celel 8celel 8celel 6499 A
9€4999 9€4999 9€4999 9€499 89/L¢¢E |H
av _ vv z A _ X

PCT/US2013/052064

WO 2014/035572

12/13

00C06686CC6EVL0E6 00CS8CSC096EBENSY 001065 T86L6VV6ETC TE
00ETZ0S9TOVS6VEdy 0088IT8TOBYSTEBET OOETTEIN0665600¢T | OF
000T8Y8S6VYOEITEL 008YS0068SVOVOSTT OSOTET6LETLOE66S | 6C
00988YTLy68L08STT 09SSLTLEG6STISES ~ OLIET8T8OLO8S66C | SC
0S86SLTT68VE06LS 06TESISST66SSL6T OVETT6LISSSBLEYT =3
06€89086STLTS68C OTTSTSYTL96LL8YT TY96790067C68YL m
0TZLLO0T9S8SLYYT 98SO0EBLISE8EVL 0S8LIETLTTIVYLE 7
T08ES8B6LTGLETL T8VSIGLLOGYGTILE VITGGYFTITETLST 4
0S8LT/B6E968TIE 0BIESTBESVLEST 90SOSSTISSIIEG K4
VECOTEG6TIBYE08T VSI86069C/8676 COSTELOBLLOSIY TC
98€/596607L 706 OVEVSVEIEGYIY OSOEIE0E8EOVET [0
TTSBTS6YOLELSY T00€LTLTIBOVTET YSETTSYETOLTT 61
0STYT67CS8TITT 0679€980VETOTT 9990652L6058S 8T
¥CTLS¥TITE0ETT YZ8TEYOLTTSS TEES6T98YSTET =
9T6rEVEITETST OYT£08LS9ETHT 08L6€0€9Y9TL w
96T0066.L8ETT 80980720685 79E6LTIVTYTE T
886VT6VSL9S 788TYETLIT6T CTY68ETETSST T
TL6EIBSVLEST 00S0T690€9YT YOLEEVLBSLL T
965787 C/8TYT 098500€STEL T67L9TE6L8E 1T
9LT7ETIEBOL 8065679LS9€ 72L9TI96E6T 0T
870LTT89VSE 778L778878T 7STETERG96 | &
CTS8SOVELLT 0T6ETTIYT6 72995T6v8Y | 8
8TE68IYSS 8E68TYSS 8TE68TYSS |m
9999,6897 9999/689¢ 9599/689¢ —
00v08YYET 00V08FVET 0008 VET —
T610v72L9 T610v72L9 T610v2L9 —
8TETET 8CETET 8CETET <
9€559 9€559 9€559 K

3V av [oV

4. "Old

PCT/US2013/052064

WO 2014/035572

13/13

000ST69£€986TETSOT 0008T69EE936TETSOT T¢E
00£S86E8TEVESLET8 00ES86E8TEVESLETS M
000€96/9VEWVL/TTy 000€96/9VEry /Ty | 6C
00967797/886/850C 00967797.886/850C | 8¢
00€0€T0SS8Y6E60T 00E0ETOSSIY6E620T =
OV9ESLTTYTL69VTS OV9ESLTIVIL69YTS M|M
0S86T697SS8YELST 0S86T697SS8YELST 7
OTTS/CCSLTV/98CT OTTSLTTSLTYL98CT 7
90S8EVSLETLEEY9 90S8EVSLETLEEY9 K
7955/9/895891¢C¢ 7955/9/895891¢C¢ [T
0S0SE8EY8ZS09T 0S0SE8EY8Z809T H
YSELT6TCYTTR08 ¥SELT6TTYTCH08 | 61
9998S60TL0TZ0Y 9998S60T.0TZ0Y | 8T
ZEE6LYSSESOTOT ZEEB6LYSSESOTOT LT
9T6YEV69TETST 9T6VEV69TETST M|w
96T0066//8€TT 96T0066//3ETT T
87867767595 878667595 T
26598517/ €8T 2L6£98SYLE8T 7T
96SC8YCL3THT 96578YCL3TYT [TT
9/T¥ET9E60L 9/T¥ET9E60L H
8Z0LTT89YSE 8Z0LTT89YSE | 6
ZTS8SOVELLT ZTS8SOVELLT | 8
87€68TYSS 87E68THSS |m
9999/689¢ 9999/689¢ —
00t08t7ET 00v08YYET —
Z6T0VCL9 Z6T0VTL9 —
8TETET 8TETET 7
9€4999 9€599 |H

oV 3V

o4 'OIld

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/052064

A. CLASSIFICATION OF SUBJECT MATTER
I

NV. GO6T17/20
ADD. GO6T15/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6T

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, EMBASE, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

CHOI Y-S ET AL: "“ADAPTIVE TESSELLATION OF
PN TRIANGLES USING MINIMUM-ARTIFACT EDGE
LINKING",

IEICE TRANSACTIONS ON FUNDAMENTALS OF
ELECTRONICS,COMMUNICATIONS AND COMPUTER
SCIENCES, ENGINEERING SCIENCES SOCIETY,
TOKYO, JP,

vol. E87-A, no. 10,

1 October 2004 (2004-10-01), pages
2821-2828, XP001210488,

ISSN: 0916-8508

1. Introduction;

page 2821, left-hand column, line 18 -
right-hand column, line 10

3. Adaptive LOD;

page 2822, right-hand column, Tine 1 -
page 2823, right-hand column, Tast line
4.2 Architecture of Tessellation;

page 2825, left-hand column, line 1 -

_/__

1-27

Further documents are listed in the continuation of Box C.

See patent family annex.

filing date

means

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed

"&" document member of the same patent family

Date of the actual completion of the international search

5 December 2013

Date of mailing of the international search report

12/12/2013

Name and mailing address of the ISA/

Tel. (+31-70) 340-2040,

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Authorized officer

Fax: (+31-70) 340-3016 Gauthier, J

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/052064

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

right-hand column, last line
figures 2,3,5,7,8,9,13,17,21
US 8 120 607 B1 (LEGAKIS JUSTIN S [US] ET
AL) 21 February 2012 (2012-02-21)
figures 4,5A-F,6,7B
column 1, line 6 - line 59
column 9, line 12 - line 53
column 10, line 45 - column 11, line 24
column 11, line 60 - column 12, line 44
column 13, line 36 - column 14, Tine 3
column 14, line 46 - line 63
US 6 438 266 B1 (BAJAJ CHANDRAJIT [US] ET
AL) 20 August 2002 (2002-08-20)
figures 3(b),6,7,9,13,19,20,21,22,23,24
column 4, line 6 - line 21
column 7, line 62 - column 8, line 17
column 9, line 53 - last Tline
column 12, line 35 - column 13, Tine 39
US 6 445 389 B1 (BOSSEN FRANK J [CH] ET
AL) 3 September 2002 (2002-09-03)
figures 4,5,6,8
column 3, line 46 - line 66
column 4, line 17 - line 26
column 4, line 46 - line 56
column 5, line 1 - line 6
column 5, line 24 - line 29

5, line 52 - line 55
US 2011/057931 Al (GOEL VINEET [US] ET AL)
10 March 2011 (2011-03-10)
figures 2,7,10,11,13
paragraph [0008] - paragraph [0011]
paragraph [0036]
paragraph [0082] - paragraph [0087]
US 2011/310102 Al (CHANG HUA-YU [TW])
22 December 2011 (2011-12-22)
figures 3,4A-B,5,6,7,8,10
paragraph [0003] - paragraph [0005]
paragraph [0018] - paragraph [0019]
paragraph [0029] - paragraph [0031]
paragraph [0035] - paragraph [0041]

column

US 6 597 356 B1 (MORETON HENRY P [US] ET
AL) 22 July 2003 (2003-07-22)

figures 1A,37,38,38E-38G,39,40,41

column 39, line 12 - line 50

column 39, line 62 - column 40, Tine 2
column 40, line 30 - line 38

column 40, line 64 - column 41, line 28

_/__

1-27

1-27

1-27

1-27

1-27

1-27

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/052064

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 20117128285 Al (GONG MINMIN [CN])

2 June 2011 (2011-06-02)

figures 1,3,9,10

paragraph [0003] - paragraph [0006]
paragraph [0021]

paragraph [0031] - paragraph [0041]
paragraph [0071] - paragraph [0086]
GABRIEL TAUBIN ET AL: "Geometric
Compression through Topological Surgery",
42. MPEG MEETING; 02-02-1998 - 06-02-1998;
SAN JOSE; (MOTION PICTUREEXPERT GROUP OR
ISO/I1EC JTCl/SCZ9/WG11),,

no. M3059, 23 January 1998 (1998-01-23),
pages 1-16, XP030032332,

ISSN: 0000-0315

2.3 Connectivity Encoding;

page 4, left-hand column, Tine 1 -
right-hand column, line 8

3. Overview;

page 4, right-hand column, line 1 - page
6, left-hand column, line 20

YOTAM LIVNY ET AL: "Seamless patches for
GPU-based terrain rendering",

THE VISUAL COMPUTER ; INTERNATIONAL
JOURNAL OF COMPUTER GRAPHICS, SPRINGER,
BERLIN, DE,

vol. 25, no. 3, 11 March 2008 (2008-03-11)
, pages 197-208, XP019711678,

ISSN: 1432-2315

page 198, left-hand column, line 15 -
right-hand column, line 24

3.1 Patch scheme;

page 200, left-hand column, line 12 -
right-hand column, line 10

3.3 Runtime rendering;

page 200, right-hand column, line 1 - line
4

page 204, left-hand column, line 1 - line
11

figures 2,3,4,5,8

1-27

1-27

1-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/052064

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A Henry Moreton: "Watertight Tessellation
using Forward Differencing",

HWWS '01 Los Angeles, CA, USA,

31 December 2001 (2001-12-31), pages
25-32, XP055056554,

Retrieved from the Internet:
URL:http://www.cs.cmu.edu/afs/cs/academic/
class/15869-f11/www/readings/moreton0l tes
sellation.pdf

[retrieved on 2013-03-14]

page 25, right-hand column, line 21 - line

5.1 Integer Tessellation;

page 28, left-hand column, line 1 -
right-hand column, line 13

7 Triangular Patches;

page 29, left-hand column, line 1 -
right-hand column, line 16

figures 5,7,8,14

1-27

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 4 of 4

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/052064
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 8120607 Bl 21-02-2012 NONE

US 6438266 Bl 20-08-2002 NONE

US 6445389 Bl 03-09-2002 NONE

US 2011057931 Al 10-03-2011 CN 102598063 A 18-07-2012
EP 2476101 Al 18-07-2012
JP 2013504816 A 07-02-2013
KR 20120061973 A 13-06-2012
US 2011057931 Al 10-03-2011
WO 2011031844 Al 17-03-2011

US 2011310102 Al 22-12-2011 CN 102184522 A 14-09-2011
W 201201141 A 01-01-2012
US 2011310102 Al 22-12-2011

US 6597356 Bl 22-07-2003 AU 2871802 A 03-06-2002
EP 1350225 Al 08-10-2003
JP 4113776 B2 09-07-2008
JP 2004514973 A 20-05-2004
US 6597356 Bl 22-07-2003
US 2004085313 Al 06-05-2004
WO 0243011 Al 30-05-2002

US 2011128285 Al 02-06-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - wo-search-report
	Page 58 - wo-search-report
	Page 59 - wo-search-report
	Page 60 - wo-search-report
	Page 61 - wo-search-report

