(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 106753560 B (45)授权公告日 2019.01.25

(21)申请号 201510806258.5

(22)申请日 2015.11.20

(65)同一申请的已公布的文献号 申请公布号 CN 106753560 A

(43)申请公布日 2017.05.31

(73)专利权人 中国石油化工股份有限公司 地址 100728 北京市朝阳区朝阳门北大街 22号

专利权人 中国石油化工股份有限公司抚顺 石油化工研究院

(72)**发明人** 艾抚宾 徐彤 祁文博 乔凯 方向晨 袁毅 徐大海 杨成敏 刘平

(51) Int.CI.

C10G 70/02(2006.01)

(56)对比文件

US 4482767 A,1984.11.13,

CN 103450941 A,2013.12.18,

CN 1075740 A,1993.09.01,

审查员 孟令柱

权利要求书1页 说明书9页

(54)发明名称

一种干气加氢制备乙烯裂解料的工艺

(57)摘要

本发明公开了一种干气加氢制备乙烯裂解料的工艺。含有烯烃的干气、任选的补充氢气,与馏分油一起,进入固定床反应器,在加氢工艺条件下与加氢催化剂接触进行反应,所得反应产物经过分离后得到烯烃饱和的干气;其中所述的馏分油在反应条件下至少部分为液相。本发明的方法可以控制烯烃加氢反应的速度,使烯烃加氢反应转化率沿进料方向逐步提高,反应热得以逐步平缓释放,使催化剂床层的反应温升减小,从而延长催化剂的使用寿命。

1.一种干气加氢制备乙烯裂解料的工艺,包括以下内容:

含有烯烃的干气、任选的补充氢气,与一股馏分油一起,进入固定床反应器,在加氢工艺条件下与加氢催化剂接触进行反应,所得反应产物经过分离后得到烯烃饱和的干气;其中所述的馏分油在反应条件下至少部分为液相;

所述的馏分油选自加氢精制航空煤油、催化柴油或加氢柴油。

- 2.按照权利要求1所述的工艺,其特征在于,所述的馏分油中不含二烯烃,单烯烃的含量不高于4.0 wt%。
- 3.按照权利要求1所述的工艺,其特征在于,所述的含有烯烃的干气选自焦化干气、催化裂化干气、热裂解干气、加氢裂化富气或催化重整气的一种或几种。
- 4.按照权利要求1所述的工艺,其特征在于,所述的含有烯烃的干气中烯烃的体积分数为1.0v%以上。
- 5.按照权利要求4所述的工艺,其特征在于,所述的含有烯烃的干气中烯烃的体积分数为2.0v%以上。
- 6.按照权利要求4所述的工艺,其特征在于,所述的含有烯烃的干气中同时含有氢气, 氢气的体积分数为2 v%以上。
- 7.按照权利要求1所述的工艺,其特征在于,所述的加氢工艺条件包括:反应压力为0.5~6.0MPa,反应入口温度为120 $^{\circ}$ ~300 $^{\circ}$ 、含烯烃干气的体积空速为100~10000h $^{-1}$,馏分油体积空速为0.1~4.0 h $^{-1}$,任选的补充氢气的用量以气体进料中氢气与烯烃的摩尔比大于等于1为准计算。
- 8.按照权利要求1或7所述的工艺,其特征在于,所述的加氢工艺条件包括:反应压力为 $1.5\sim4.0$ MPa,反应入口温度为140 $\mathbb{C}\sim280$ \mathbb{C} ,含烯烃干气的体积空速为 $300\sim5000$ h⁻¹,馏分油体积空速为 $0.1\sim1.0$ h⁻¹。
- 9. 按照权利要求1所述的工艺,其特征在于,所述的加氢催化剂为负载型加氢催化剂或体相加氢催化剂。
- 10.按照权利要求9所述的工艺,其特征在于,所述的负载型加氢催化剂包括载体和负载的活性金属组分;载体为多孔耐熔无机氧化物或活性炭,活性金属组分选自贵金属或非贵金属,贵金属选自Pt,以金属计贵金属的重量含量为0.1~2.0 wt%;非贵金属选自W、Mo、Ni和Co中的一种或几种,以金属氧化物计,非贵金属组分的含量为5 wt%~35 wt%。
 - 11.按照权利要求10所述的工艺,其特征在于,所述的非贵金属包括W和/或Ni。
- 12.按照权利要求9所述的工艺,其特征在于,所述的体相加氢催化剂含有Mo、W、Ni三种金属组分,其中W、Ni以复合氧化物形态存在:Ni $_x$ W $_y$ O $_z$,z=x+3y,Mo以氧化物MoO $_3$ 形态存在;复合氧化物Ni $_x$ W $_y$ O $_z$ 中 $_x$ 和 $_y$ 的比例为1:8~8:1,复合氧化物Ni $_x$ W $_y$ O $_z$ 和氧化物MoO $_3$ 的重量比为1:10~10:1;催化剂中复合氧化物Ni $_x$ W $_y$ O $_z$ 和氧化物MoO $_3$ 的总重量含量为40%~100%。
- 13.按照权利要求1所述的工艺,其特征在于,含有烯烃的干气经过加氢后,反应产物中烯烃含量小于1 mo1%。

一种干气加氢制备乙烯裂解料的工艺

技术领域

[0001] 本发明涉及一种低碳烯烃加氢处理工艺,更具体地说,是一种将含烯烃干气加氢制备乙烯裂解料的工艺方法。

背景技术

[0002] 我国乙烯装置初始设计使用的原料以石脑油为主。乙烯原料是影响乙烯成本的最主要因素,原料在总成本中所占比例为70%~75%。近几年来,国内石化企业新建、扩建了多套大型乙烯生产装置,虽然在实际生产中拓宽了原料来源,但乙烯裂解原料还是相当紧张。另外,近年几来,原油价格不断上涨,乙烯裂解原料石脑油价格也随之升高,企业生产经济性变差。现实状况迫使企业寻找新的乙烯原料来解决这个问题,焦化干气(C2馏分)加氢作乙烯原料就是解决这一问题的有效方法之一。

[0003] 目前,国内许多走炼化一体化的石化企业,既有乙烯装置,同时也有富裕的焦化干气。而焦化干气中富含乙烷和少量的乙烯,如果将其中少量的乙烯进行饱和加氢,此焦化干气就是很好的乙烯原料。

[0004] 在通常情况下,工业 C_2 馏分中的烯烃含量均较高,同时还含有少量的硫等杂质。如将 C_2 馏分直接作为蒸汽裂解制乙烯的原料,烯烃会在裂解炉中发生聚合、环化、缩合和结焦反应。因此,必须将烯烃加氢使之成为烷烃。

[0005] 将焦化干气中的烯烃加氢转化成为烷烃,从理论上说是简单易行的,但在技术的具体实施过程中会有许多难点。比如,焦化干气组成具有如下难点:(1)含有一氧化碳和二氧化碳;(2)含硫较高;(3)在对焦化干气加氢降烯烃的同时,还要加氢深度脱氧,并且要达到氧含量指标>1.0mg. m^{-3} ;(4)焦化干气主要组分为 C_2 ,热容值较低;反应放热集中,热点温度(或温包)过高。

[0006] CN1800308A公开了一种干气回收C₂及C₂以上烃类组分的方法。该项方法对干气包括如下的处理程序:变压吸附、胺洗脱硫、水洗、水分离、精脱硫、脱砷、精脱硫、脱氧、碱洗脱二氧化碳、水洗脱碱、水分离、脱碱、变压吸附干燥等十几个工序。按该方法组织生产虽然可以获得乙烯裂解原料,但是生产流程太长,工艺繁杂,生产成本较高。

[0007] 针对上述方法中存在的问题,CN103450941A进行了改进,提出了一种焦化干气制备乙烯裂解料的方法。该方法采用硫化型催化剂,对焦化干气采用如下依次的处理程序:(1)对焦化干气进行胺洗;脱去H₂S、CO₂、焦粉。(2)对焦化干气进行加氢,脱烯烃、脱氧、脱除部分CO和CO₂。(3)对焦化干气进行变压吸附,收集富乙烷气。解决了上述四个难点中的三个,同时较CN1800308A比,也简化了流程,但反应放热集中,热点温度(或温包)过高的问题依然未能解决。

发明内容

[0008] 针对上述加氢方法的不足,本发明开发了一种改进的含烯烃干气加氢方法。该方法可以控制烯烃加氢反应的速度,使烯烃加氢反应转化率沿催化剂床层逐步提高,反应热

[0012]

得以逐步平缓放出,而不是集中放出,使催化剂床层的反应温升减小,催化剂床层的"温包"大为平缓,从而延长催化剂的使用寿命。

[0009] 本申请的发明人,通过对现有技术中的焦化干气加氢反应进行系统研究,获得如下认识:

[0010] (1)该项反应为气相且强放热反应,以表1企业焦化干气典型的组成为例,其反应为1mol的焦化干气原料加氢反应的放热量为6.55 KJ•mol⁻¹;理想绝热温升为80℃。

[0011] 表1 企业焦化干气典型的组成

序号	组分	组成, v%
1	H ₂	10.12
2	N ₂	2.01
3	CH ₄	60.35
4	C ₂ H ₆	18.75
5	C ₂ H ₄	2.67
6	C ₃ H ₂	1.96
7	C ₃ H ₆	1.14
8	nC ₄ H ₁₀	0.55
9	iC₄H ₁₀	0.20
10	iC ₄ Hg+nC ₄ Hg	0.30
11	oC4Hg+tC4Hg	0.10
12	nC ₅ H ₁₂	0.40
13	CO ₂	0.17
14	co	0.34
15	H ₂ O	0.84
16	H ₂ S	0.01
17	O ₂	0.09
合计		100.00

[0013] (2) 该项反应为一级快速加氢反应,在烯烃类加氢反应中, C_2 烯烃是最易加氢,也是反应速度最快的。

[0014] (3) 反应采用上部进料,下部出料;反应放热是不均匀的;在反应床层入口20%处,反应原料中85%的烯烃已经被加氢,即相应的反应热也已经放出来了。

[0015] (4)该项反应为气(焦化干气)-固(催化剂)反应,经过对焦化干气加氢反应动力学研究可知:反应为气相反应;控制步骤为催化剂表面反应步骤,反应历程为如下五步:①、 C_2 烯烃组分扩散到催化剂表面;②、 C_2 烯烃组分吸附在加氢活性中心上;③、 C_2 烯烃组分完成加氢反应;④、 C_2 烷烃组分从加氢活性中心上脱附;⑤、 C_2 烷烃组分从催化剂表面扩散到反应产物中。

[0016] 上述的研究结果给我们的启示是:如果我们能采一种手段,增加反应传质的反应步骤,即增加了外扩散的传质步骤,改变原有的焦化干气加氢反应历程,以此控制反应速

度,延缓反应热的放出,就能够使得催化剂床层温度比较均匀,反应温升减小,催化剂床层的"温包"大为平缓。

[0017] 基于上述发现,本申请的发明人提出了一种改进的干气加氢制备乙烯裂解料的工艺(方法),包括以下内容:

[0018] 含有烯烃的干气、任选的补充氢气,与一股馏分油一起,进入固定床反应器,在加氢工艺条件下与加氢催化剂接触进行反应,所得反应产物经过分离后得到烯烃饱和的干气,其中所述的馏分油在反应条件下至少部分为液相。

[0019] 本发明的工艺中,其中所述的馏分油中不含二烯烃,其可以含有少量单烯烃,所含单烯烃的含量不高于4.0 wt%。

[0020] 所述的含有烯烃的干气一般选自焦化干气、催化裂化干气、热裂解干气,加氢裂化富气、催化重整气,也可以是同类组成的炼油厂所副产的气体;该干气也可以在富含 C_2 馏分的同时含有 C_3 馏分、 C_4 馏分。含烯烃干气中的烯烃主要为 C_2 烯烃,也可以有少量的 C_3 烯烃或 C_4 烯烃,其中烯烃(一般情况下乙烯含量占80%以上,余量烯烃为 C_3 ~ C_4 烯烃)的体积分数一般为1.0v%以上,优选2.0v%以上,最优选 3.0v%~8.0 v%。

[0021] 本发明的工艺中,含烯烃的干气原料中一般还同时含有氢气。含烯烃干气中氢气的体积分数一般为2 v%以上,优选5.0 v%以上,最优选5.0 v%~10.0 v%。在通常情况下,含烯烃的干气中氢气摩尔分数与烯烃的摩尔分数之比要在1.0以上;如果氢气不足时,可以往含烯烃干气中混合少量补充氢气,以满足烯烃加氢反应的需要。

[0022] 本发明的工艺中,所述"任选的补充氢气"的含义是指,补充氢气可有可无。当含烯 烃干气中的氢气量能够满足烯烃加氢的需要时,进料中即不需包含补充氢气;当干气中的 氢气含量不足以满足烯烃加氢的需要时,进料中即需要包括补充的氢气。

[0023] 反应中引入的馏分油要保证在反应条件下至少部分呈液体。所述的馏分油可以是精制石脑油、非芳汽油、加氢精制航空煤油、加氢柴油,或在反应条件下呈液体的其它馏分油;馏分油中不可以含二烯烃,所含单烯烃不大于4.0 wt%。所述的馏分油的初馏点一般要高于50℃,优选为高于60℃;馏分油的终馏点一般为低于400℃,优选为低于360℃。

[0024] 本发明的工艺中,所述的加氢工艺条件包括:反应压力为0.5~6.0MPa,优选为1.5~4.0MPa;反应入口温度为120℃~300℃,优选 140℃~280℃;反应出口温度一般为130℃~400℃,优选 220℃~360℃;含烯烃干气的体积空速为100~10000h⁻¹,优选300~5000h⁻¹;床层热点温度为200℃~380℃,优选为220℃~350℃(也可以,);馏分油体积空速为0.1~4.0 h⁻¹,优选为0.1~1.0 h⁻¹,最优选为0.1~0.6 h⁻¹。任选的补充氢气的用量以气体进料中氢气与烯烃的摩尔比大于等于1,优选在1.3以上为准计算。

[0025] 本发明方法中所使用的加氢催化剂,可以选择本技术领域中的常规加氢催化剂。所述的加氢催化剂可以为负载型加氢催化剂或体相加氢催化剂。负载型加氢催化剂包括载体和负载的活性金属组分。所述载体一般为多孔耐熔无机氧化物或活性炭。具体的说,载体通常选自Al₂O₃、含SiO₂的Al₂O₃、TiO₂、含分子筛的Al₂O₃和活性炭构成的一组物质中的一种或几种。活性金属组分选自贵金属或非贵金属。贵金属通常包括Pt、Pa和Re的一种或几种,非贵金属通常选自W、Mo、Ni和Co中的一种或几种。本发明中,非贵金属优选包括W和/或Ni。以金属氧化物计,贵金属的含量一般为0.1~2.0 wt%;非贵金属组分的含量一般为5 wt%~35 wt%。

[0026] 体相加氢催化剂含有Mo、W、Ni三种金属组分,其中W、Ni以复合氧化物形态存在: Ni_xW_yO_z, z=x+3y,Mo以氧化物形态存在: MoO₃。复合氧化物Ni_xW_yO_z中x和y的比例 (原子摩尔比) 为1:8~8:1,优选为1:4~4:1。复合氧化物Ni_xW_yO_z和氧化物MoO₃的重量比为1:10~10:1,优选为1:5~5:1。体相催化剂中复合氧化物Ni_xW_yO_z和氧化物MoO₃的总重量含量为40%~100%,优选为50%~8%。(上述催化剂组成为氧化态时的组成,催化剂在使用时需按本领域技术人员熟知的方法进行硫化处理)。

[0027] 本发明的工艺中,含烯烃干气经过加氢后,反应产物中烯烃含量一般小于等于1 mo1%;氧含量一般小于等于1 $mg \cdot m^{-3}$ 。

[0028] 本发明工艺中,在含烯烃干气反应进料时,同时进一股馏分油,使得原反应的气(干气)-固(催化剂)反应,转化为气(干气)-液(馏分油)-固(催化剂)反应。由于所引入的馏分油在反应条件下至少部分呈液体,馏分油进料采用滴加状态,即馏分油在催化剂床层上形成滴流床,并在催化剂表面形成一层油膜。油膜(液膜)的形成,增加了反应传质的反应步骤,即增加了外扩散的传质步骤,从而改变了原有的干气加氢反应历程。改变后的反应历程变为如下七步:①、C2烯烃需要先扩散到这个油膜中;②、C2烯烃透过油膜扩散到催化剂表面;③、C2烯烃吸附在加氢活性中心上;④、C2烯烃完成加氢反应;⑤、C2烷烃从加氢活性中心上脱附;⑥、C2烷烃从催化剂表面扩散到油膜中;⑦、C2烷烃从油膜中扩散到反应产物中。

[0029] 因此,本发明方法与现有技术相比具有以下有益效果:

[0030] 1、在 C_2 烯烃组分进行加氢反应时,由于这个馏分油所形成油膜的存在,使得原来的加氢表面反应控制步骤,改变为现在的——有限的扩散控制步骤和表面反应控制步骤。这样就大大地减缓了 C_2 烯烃组分加氢的反应速度,即含烯烃干气的加氢反应速度从原来的很快,受控制很小,变为了现在的受控反应。

[0031] 2、引入一股馏分油后,改变了原有的干气加氢反应历程,以此控制了反应速度,从而避免了烯烃在反应器入口端的集中加氢饱和,避免了加氢反应热在反应器入口段的大量集中释放,从而延缓了反应热的集中放出,使得催化剂床层温度比较均匀,反应温升有所减小,而催化剂床层的"温包"大为平缓,这种结果也有利于延长催化剂的使用寿命。

[0032] 3、本发明方法中,只需要很少量的馏分油即可在催化剂床层上形成液膜,满足改变反应历程和控制反应速度的要求,因此馏分油的用量可以比较少。

[0033] 4、由于干气加氢装置通常均是建在炼油厂,可选择的馏分油范围较宽,因此本发明的方法容易实现,同时也不会额外增加生产成本。

具体实施方式

[0034] 下面通过具体实施例对本发明的方法做更进一步的描述。

[0035] 本发明实施例中所用的原料见表2。反应所用的催化剂的物性见表3,催化剂在使用时需要进行硫化,硫化操作采用本领域的常规硫化方法进行,不再赘述。反应条件见表4。[0036] 表2干气原料组成,v%。

[0037]

序号	组分	焦化干气	热裂化干气
1	H ₂	9.12	7.71
2	N ₂	2.01	0
3	CH ₄	60.35	27.96
4	C₂H ₆	18.75	31.23
5	C₂H₄	3.67	4.04
6	C ₃ H ₂	1.96	15.41
7	C ₃ H ₆	1.14	3.53
8	C ₄ H ₁₀	0.75	7.95
9	C ₄ H ₈	0.40	1.26
10	nC ₅ H ₁₂	0.40	0.10
11	CO ₂	0.17	0.12
12	co	0.34	0.24
13	H ₂ O	0.84	0.44
14	H ₂ S	0.01	0.01
15	O ₂	0.09	0.02
合计	_	100.00	100
烯烃小计	_	5.21	8.83

[0038] 表3 催化剂的物化性质。

项目 化学组成,质量% MoO ₃ WO ₃ NiO 物理性质 孔容/mL·g ⁻¹ 比表面积/m ² ·g ⁻¹	项目	
	化学组成,质量%	
	MoO ₃	4.0
	WO ₃	10.0
	Machine Was in son	3.5
	孔容/mL-g-1	≮0.42
	比表面积/m²-g-1	≮220
	压碎强度/N.cm ⁻¹	≮150
外型 粒度/mm	外型	三叶草或四叶草
	粒度/mm	Φ(1.3~2.3)×(2~8)

[0040] 比较例1

[0041] 反应采用固定床反应器,采用上进料,采用表3中所列催化剂,加氢原料气为中国石化炼油厂的焦化干气,组成见表2,反应条件及结果见表4。

[0042] 表4 加氢反应器操作条件及结果

[0043]

反应条件	
入口压力/MPa	2.5
出口压力/MPa	2.4
干气体积空速/16-1	600
催化剂床层温度/℃	
1	174.4
2	284.8
3	243.1
4	206.0
5	181.3
床层最高温度/°C	284.8
床层纵向最大温差/°C	110.4
平均反应温度/°C	217.92
反应结果	
反应产物中烯烃含量,mol%	≯1.0
氧含量/mg-m ⁻³	≯1.0

[0044] 1-5*,为沿于气进料方向,不同床层高度的温度。

[0045] 由表4中的反应结果可知,只采用单一的焦化干气进料进行加氢反应,反应床层温升高达110℃,热点温度较高;平均反应温度为217.92℃,不利于延长催化剂使用寿命。

[0046] 实施例1

[0047] 反应采用固定床反应器,上进料,采用表3中所列催化剂,加氢原料气为焦化干气,组成见表2。反应进料除了焦化干气之外,同时还有精制石脑油,其进料与焦化干气并行进料。精制石脑油的主要性质见表5。反应条件及结果见表6。

[0048] 表5 精制石脑油的主要性质

项目		
密度(20)/g.cm ⁻³	0.7334	
馏程/°C		
IBP	33	
10%	66	
50%	148	
90%	210	
EBP	226	
硫/µg.g ⁻¹	≯150	
烯烃, v%	≯1.0	

[0049]

[0050] 表6 加氢反应器操作条件及结果

反应条件	
入口压力/MPa	2.5
出口压力/MPa	2.39
干气体积空速/16-1	605
精制石脑油体积空速/16-1	0.35
催化剂床层温度/°C	
1	178.5
2	245.2
3	237.8
4	225.0
5	211.7
床层最高温度/C	245.2
床层纵向最大温差/°C	66.7
平均反应温度/°C	219.6
反应结果	
反应产物中烯烃含量,mol%	≯1.0
氧含量,mg-m ⁻³	≯1.0

[0052]

[0051]

1-5*,为沿干气进料方向,不同床层高度的温度。

[0053] 由表6中的反应结果可知,引入精制石脑油后,反应"温包"大幅度地降低,反应温升由原来的110℃,降低到66.7℃;但平均反应温度几乎未变,反应结果依然合格。

[0054] 实施例2

[0055] 反应采用固定床反应器,上进料,采用表3中所列催化剂,加氢原料气为焦化干气,

[0057]

组成见表2。反应进料除了进焦化干气之外,同时还进催化柴油,其进料与焦化干气并行进料。催化柴油的主要性质见表7。反应条件及结果见表8。

[0056] 表7 催化柴油主要性质

原料油	催化柴油
密度(20°C)/g-cm ⁻³	0.9440
馏程/℃	
IBP/10%	198/241
50%/90%	278/345
95%/EBP	352/362
S, wt%	0.43
N/μg-g ⁻¹	606
十六烷指数 (ASTM D4637-96a)	25.2

[0058] 表8 加氢反应器操作条件及结果

反应条件	
入口压力/MPa	2.5
出口压力/MPa	2.39
干气体积空速/16-1	650
催化柴油体积空速/h-1	0.55
催化剂床层温度/℃	
1	177.4
2	238.8
3	233.1
4	226.7
5	214.7
床层最高温度/°C	238.8
床层纵向最大温差广C	61.4
平均反应温度/°C	218.14
反应结果	
反应产物中烯烃含量,mol	% ≯1.0
氧含量/mg-m ⁻³	≯1.0

[0060] 1-5*,为沿干气进料方向,不同床层高度的温度。

[0061] 由表8中的反应结果可知,引入催化柴油后,也可以将反应"温包"大幅度地降低,反应温升由原来的110℃,降低到61.4℃;但平均反应温度几乎未变,反应结果依然合格。

[0062] 实施例3

[0065]

[0063] 反应采用固定床反应器,上进料,使用表3中所列催化剂。加氢原料气为热裂化干气,组成见表2。反应进料除了进热裂化干气之外,同时还进一股催化柴油,其进料与热裂化干气并行进料。催化柴油的主要性质见表7。反应条件及结果见表9。

[0064] 表9 加氢反应器操作条件及结果

反应条件	
入口压力/MPa	2.51
出口压力/MPa	2.39
干气体积空速/16-1	635
补充氢气体积空速*/h-1	127
催化柴油体积空速/h-1	0.60
催化剂床层温度/℃	
1	178.5
2	233.7
3	230.0
4	226.5
5	208.8
床层最高温度/°C	233.7
床层纵向最大温差/°C	55.20
平均反应温度/°C	215.5
反应结果	
反应产物中烯烃含量,mol%	≯1.0
氧含量/mg-m ⁻³	≯1.0

[0066] *:由于原料气中的烯烃合计有8.83v%,而氢气含量只为7.781v%;所以在进行加氢反应时,按干气进料量的5%左右补进氢气。

[0067] 由表9中的反应结果可知,引入催化柴油后,也可以将反应"温包"大幅度地降低,反应温升由原来的110 \mathbb{C} ,降低到55.20 \mathbb{C} ;但平均反应温度几乎未变,反应结果依然合格。