woO 2024/091613 A1 |0 0000 KO0 A O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
02 May 2024 (02.05.2024)

(10) International Publication Number

WO 2024/091613 Al

WIPO I PCT

(51) International Patent Classification:
A63F 13/60 (2014.01) GO6F 8/34 (2018.01)
GO6F 3/0484 (2022.01) GO6F 8/38 (2018.01)
GO6T 15/04 (2011.01) GO6F 9/448 (2018.01)
GO6T 15/06 (2011.01) GO6F 9/451 (2018.01)

Road, Ste. 110, Palo Alto, CA 94303 (US). QIU, Qiang;
2479 E. Bayshore Road, Ste. 110, Palo Alto, CA 94303
(US). SUN, Hongyu; 2479 E. Bayshore Road, Ste. 110, Pa-
lo Alto, CA 94303 (US).

GO6T 15/55 (2011.01) GO6T 9/00 (2006.01) (74) Agent; Z0U, Zhiwei; Bayes PLLC, 8260 Greensboro Dri-
GO6T 17/20 (2006.01) HO4N 13/111 (2018.01) ve, Suite 623, McLean, VA 22102 (US).
GO6T 19/20 (2011.01) HO4N 13/122 (2018.01) (81) Designated States (unless otherwise indicated, for every
GO6F 16/172 (2019.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
D CT/US2023/036024 CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE, KG,
26 October 2023 (26.10.2023) KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
(25) Filing Language: English M4, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
: NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
(26) Publication Language: English RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
o TI, T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
(30) Priority Data: ZA. ZM. ZW
63/419,422 26 October 2022 (26.10.2022) US ’ ’ '
(71) Applicant: IINNOPEAK TECHNOLOGY, INC. (84) Designated States (unless otherwise indicated, for every

[US/US], 2479 E. Bayshore Road, Ste. 110, Palo Alto, CA
94303 (US).

(72) Inventors: YE, Xiaoyu, 2479 E. Bayshore Road, Ste. 110,
Palo Alto, CA 94303 (US). LI, Chen; 2479 E. Bayshore

kind of regional protection available): ARIPO (BW, CV,
GH, GM,KE, LR, LS, MW, MZ, NA, RW, SC, SD, SL, ST,
Sz, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,

(54) Title: METHOD AND SYSTEM FOR RAY TRACING

| !;1 o1
' oo

adding, by a mesh adding module, game objects fo a ray wacing world class

associated with a scene

! 8102
i)

adding, by a material adding wodule, materials of the game cbijecis to the ray

tracing world class;

l B103

adding, by a light adding module, light configuration to the ray tracing world

class

i B104
.

rendering, by a rendering module, ray tracing effects for at least one portion of|

the game objects in the scere based on the ray tracing world class

‘l 8105

generating, by the rendering module, stereo views of the scene including the

game objects

(57) Abstract: A method for ray tracing is executed by an electronic
device. A mesh adding module adds game objects to a ray tracing world
class associated with a scene. A material adding module adds materials
of the game objects to the ray tracing world class. A light adding mod-
ule adds light configuration to the ray tracing world class. A rendering
module renders ray tracing effects for at least one portion of the game
objects in the scene based on the ray tracing world class and generates
stereo views of the scene including the game objects.

[Continued on next page]

WO 2024/09161.3 A | [0 000000000 O 0O

LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SL, SK, SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— of'inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))

WO 2024/091613 PCT/US2023/036024
METHOD AND SYSTEM FOR RAY TRACING

BACKGROUND OF DISCLOSURE
1. Cross-Reference to Related Applications
[0001] This application claims the benefit of priority to U.S. Provisional Application No.
63/419,422, filed on October 26, 2022, which is hereby incorporated in its entirety by this reference.
2. Field of Disclosure
[0002] The present disclosure relates to the field of artificial reality, and more particularly, to a
method and a system for ray tracing.
3. Description of Related Art
[0003] Technologies relating to extended reality (XR), such as virtual reality (VR), augmented
reality (AR), mixed reality (MR), and the like, have made rapid progress. A system implementing
an artificial-reality technology can include a device that allow digitally produced virtual objects,
such as 3D virtual objects, to be located in a 3D scene or to be overlaid in an image of a real-world
environment, along with objects from the real-world environment.
Technical Problem
[0004] Implementing ray tracing in real-time applications, be it on PC-based or all-in-one VR
devices, typically demands formidable graphics processing unit (GPU) power, making it a
challenging task in most scenarios.
[0005] Integrating ray tracing technology necessitates substantial coding efforts from developers
or designers, often requiring specific environments for successful implementation and integration.
Unfortunately, there is no universally user-friendly system or method available.
[0006] Executing real-time ray tracing effects with limited computational resources demands
optimization in stereo vision, ray tracing algorithms, and pipeline design. However, current

solutions often overlook the optimization aspect for real-time scenarios and all-in-one VR devices.

SUMMARY
[0007] An object of the present disclosure is to propose a method and a system for ray tracing.
[0008] In a first aspect, an embodiment of the invention provides a method for ray tracing
executable in an electronic device, comprising:
adding, by a mesh adding module, game objects to a ray tracing world class associated with a
scene;
adding, by a material adding module, materials of the game objects to the ray tracing world class;
adding, by a light adding module, light configuration to the ray tracing world class;

rendering, by a rendering module, ray tracing effects for at least one portion of the game objects

1

WO 2024/091613 PCT/US2023/036024

in the scene based on the ray tracing world class; and

generating, by the rendering module, stereo views of the scene including the game objects.

[0009] In a second aspect, an embodiment of the invention provides an electronic device
comprising a processor configured to call and run a computer program stored in a memory, to
cause a device in which the chip is installed to execute the disclosed method and any combination
of embodiments of the disclosed method.

[0010] In a third aspect, an embodiment of the invention provides a system for ray tracing
comprising:

a mesh adding module configured to add game objects to a ray tracing world class associated with
a scene;

a material adding module configured to add materials of the game objects to the ray tracing world
class;

a light adding module configured to add light configuration to the ray tracing world class;
rendering, by a rendering module, ray tracing effects for at least one portion of the game objects
in the scene based on the ray tracing world class, wherein the rendering module generates stereo
views of the scene including the game objects.

[0011] The disclosed method may be programmed as computer executable instructions stored in
non-transitory computer readable medium. The non-transitory computer readable medium, when
loaded to a computer, directs a processor of the computer to execute the disclosed method.

[0012] The non-transitory computer readable medium may comprise at least one from a group
consisting of’ a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a Read
Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only
Memory, EPROM, an Electrically Erasable Programmable Read Only Memory and a Flash
memory.

[0013] The disclosed method may be programmed as a computer program product, that causes a
computer to execute the disclosed method.

[0014] The disclosed method may be programmed as a computer program, that causes a computer
to execute the disclosed method.

[0015] The described system and methodology offer a real-time solution for rendering ray tracing
effects in virtual reality, augmented reality, and mixed reality applications.

[0016] The system and methodology are applicable for both all-in-one devices and PC-based or
smartphone-based AR/VR/MR devices.

[0017] The system is implemented as a lightweight plugin that can be integrated in a game engine
to provide ray tracing effects.

[0018] The optimization methods can be manually or automatically enabled or disabled,

2

WO 2024/091613 PCT/US2023/036024

depending on the scene complexity and computational resources.

BRIEF DESCRIPTION OF DRAWINGS
[0019] In order to more clearly illustrate the embodiments of the present disclosure or related art,
the following figures will be described in the embodiments are briefly introduced. It is obvious
that the drawings are merely some embodiments of the present disclosure, a person having ordinary
skill in this field may obtain other figures according to these figures without paying the premise.
[0020] FIG. 1 illustrates a schematic view showing an electronic device used for extended reality
(XR).
[0021] FIG. 2 illustrates a schematic view showing an example of a personal computer for
execution of the disclosed system and method.
[0022] FIG. 3 illustrates a schematic view showing an embodiment of a system of the disclosure.
[0023] FIG. 4 illustrates a schematic view showing an embodiment of the disclosed method.
[0024] FIG. 5 illustrates a schematic view showing an example of a left view and a right view.
[0025] FIG. 6 illustrates a schematic view showing an embodiment of a rendering plugin of the
disclosure.
[0026] FIG. 7 illustrates a schematic view showing another example of a left view and a right
view in a scheme of multi-pass rendering.
[0027] FIG. 8 illustrates a schematic view showing another example of a left view and a right
view in a scheme of multi-view rendering.
[0028] FIG. 9 illustrates a schematic view showing a view synthesis using depth image based
rendering (DIBR).
[0029] FIG. 10 illustrates a schematic view showing a first example of a scene processed by
hybrid rendering with rasterization.
[0030] FIG. 11 illustrates a schematic view showing a second example of reducing reflection area
based on materials.

[0031] FIG. 12 illustrates a schematic view showing a chip for executing the disclosed method.

DETAILED DESCRIPTION OF EMBODIMENTS
[0032] Embodiments of the disclosure are described in detail with the technical matters, structural
features, achieved objects, and effects with reference to the accompanying drawings as follows.
Specifically, the terminologies in the embodiments of the present disclosure are merely for

describing the purpose of the certain embodiment, but not to limit the disclosure.

Table 1

API Application programming interface

WO 2024/091613 PCT/US2023/036024
AR Augment reality
BVH Bounding volume hierarchy
CPU Central Processing Unit
DIBR Depth Image Based Rendering
FBO frame buffer object
GPU Graphics processing unit
MR Mixed Reality
ORM Object relationship management
PC Personal computer
SDK Software development kit
VR Virtual Reality (VR)
XR Extended Reality

[0033] Embodiments of disclosure provides a new framework to enable ray tracing
implementation in XR. A system of the disclosure comprises a native ray tracing software
development kit (SDK) designed for mobile device or personal computer (PC). For example, the
mobile device may comprise a smartphone, a tablet, or others. The mobile device may execute an
embedded operating system (OS), such as Android™.

[0034] The system of the disclosure may further comprise a plugin that envelops native functions
and exposes them to the game engine. Embodiments of the disclosure provides a methodology
tailored for rendering stereo vision in VR and optimizations essential for handling intricate scenes
on VR devices.

[0035] The ray tracing SDK facilitates real-time ray tracing solutions for both desktop and mobile
platforms. To leverage the benefits of the ray tracing SDK for VR, a rendering plugin has been
developed to seamlessly integrate the SDK's static libraries and expose application programming
interfaces (APIs) accessible for scripts to call from within the game engine.

[0036] Furthermore, to meet the demands of VR rendering, which necessitates the creation and
rendering of dual views for both the left and right eye cameras, specific methods have been
established to generate stereo vision. These methods focus on the creation of dual views to ensure
an immersive VR experience.

[0037] To seamlessly integrate this system into real-time applications and ensure exceptional
visual experiences in VR scenes, several optimization techniques have been incorporated. These
optimization techniques involve the utilization of hybrid rendering techniques in rasterization,
reduction in the size of shadow maps, limitation of reflection areas based on physical
characteristics and materials, as well as the use of mesh space rendering for static scenes, among

others.

WO 2024/091613 PCT/US2023/036024
[0038] With reference to FIG. 1, a system including XR device 10a. The XR device 10a executes

the disclosed method according to an embodiment of the present disclosure. The XR device 10a
may be a mobile phone, a PC-based XR device, standalone XR device, AR/VR glasses, or other
XR processing devices. FIG. 1 is shown for illustrative not limiting, and the system may comprise
more XR devices. Connections between devices and device components are shown as lines and
arrows in the FIGs. The XR device 10a may include a processor 11a, a memory 12a, a transceiver
13a, a camera 14a, a depth camera 15a, and an inertial measurement unit (IMU) 16a. The cameras
14a captures and generates color space images from a scene. The depth cameras 15a captures and
generates depth images from a scene. The IMU 16a measures and generates external odometry of
the device 10a. Odometry of a device is an estimation that uses data from motion sensors to
estimate the position change of the device over time. A color space image camera, such as camera
14a, is configured to capture a sequence of input frames, wherein each of the input frames
comprises a color space image. A depth camera, such as depth camera 15a, is configured to capture
a depth image that is associated with the color space image in each frame. An IMU, such as IMU
16a, is configured to provide external odometry that is associated with the color space image in
each frame. In various embodiments, the display 17a may include a display, such as a liquid crystal
display and a touch screen display. The display 17a may displays a left view 141a and a right view
to realize a stereo view for a user.

[0039] The processors 11a may include an application-specific integrated circuit (ASIC), other
chipsets, logic circuits and/or data processing devices. The memory 12a may include read-only
memory (ROM), a random access memory (RAM), a flash memory, a memory card, a storage
medium and/or other storage devices. The transceivers 13a may include baseband circuitry and
radio frequency (RF) circuitry. When the embodiments are implemented in software, the
techniques described herein can be implemented with modules, procedures, functions, entities and
so on, that perform the functions described herein. The modules can be stored in a memory and
executed by the processors. The memory can be implemented within a processor or external to the
processor, in which those can be communicatively coupled to the processor via various means are
known in the art.

[0040] With reference to FIG. 2, a personal computer (PC) 200 may include a processor 21a, a
memory 22a, and a transceiver 23a. The processor 21a is configured to call and run a computer
program stored in the memory 22a, to cause PC 200 in which the processor 11 is installed to
execute the method, steps, and/or functions of one or more embodiments of the disclosure. The
transceiver 23a may include baseband circuitry and radio frequency (RF) circuitry.

[0041] The processors 21a may include an application-specific integrated circuit (ASIC), other

chipsets, logic circuits and/or data processing devices. The memory 22a may include read-only

5

WO 2024/091613 PCT/US2023/036024

memory (ROM), a random access memory (RAM), a flash memory, a memory card, a storage
medium and/or other storage devices. The transceivers 23a may include network interface card
(NIC) or a wireless communication unit, which may comprise baseband circuitry and radio
frequency (RF) circuitry. When the embodiments are implemented in software, the techniques
described herein can be implemented with modules, procedures, functions, entities and so on, that
perform the functions described herein. The modules can be stored in a memory and executed by
the processors. The memory can be implemented within a processor or external to the processor,
in which those can be communicatively coupled to the processor via various means are known in
the art.

[0042] System Architecture:

[0043] As shown in FIG. 3, a VR ray tracing system 100 comprises a plurality of modules,
including a game engine 50, RenderingPlugin 51, XR SDK 52, Scenes 53, Customized shader,
Native SDK 55, Static library 56, Shaders 57, and Texture 58. The ray tracing system 100 may be
installed and executed by the XR device 10a or the PC 200.

[0044] The RenderingPlugin 51 and the native SDK 55 can be seamlessly integrated into or
utilized by the game engine 50. The RenderingPlugin 51 is configured to invoke native functions
within the native SDK 55 for ray tracing. The native SDK 55 for ray tracing is configured to
perform all the essential computations for effects, such as shadows, reflections, and refractions.
[0045] The XR SDK 52 is operable to configure camera information and render scenes on VR
devices, typically tailored to specific platforms and provided with hardware devices. Example of
the XR SDK 52 such as the Oculus™ Plugin and Pico™ XRSDK. Once all the necessary
dependencies of game objects are in place, developers can design scenes (e.g., scenes 53) in the
game engine 50, either by importing 3D assets or utilizing the inbuilt editing tools of the game
engine 50, just like with non-ray-tracing applications or games. Ultimately, customized shaders 54
that are attached to the game objects will render shadow maps onto the game objects and apply
ray tracing effects to the original colors of the game objects.

[0046] With reference to FIG. 4, an embodiment of the disclosed method for ray tracing
comprises:

[0047] adding, by a mesh adding module, game objects to a ray tracing world class associated
with a scene (B101);

[0048] adding, by a material adding module, materials of the game objects to the ray tracing
world class (B102);

[0049] adding, by alight adding module, light configuration to the ray tracing world class (B103);
[0050] rendering, by a rendering module, ray tracing effects for at least one portion of the game

objects in the scene based on the ray tracing world class (B104); and

6

WO 2024/091613 PCT/US2023/036024

[0051] generating, by the rendering module, stereo views of the scene including the game objects
(B105).

[0052] As shown in FIG. 6, in some embodiments of the disclosure, examples of the mesh adding
module, material adding module, light adding module, and rendering module comprise
addMeshToRTworld 621, addMaterialToRTworld 622, addLightToRTworld 623, and
renderShadowMap 624.

[0053] In some embodiments of the disclosure, the mesh adding module, the material adding
module, the light adding module, and the rendering module are included in a software development
kit (SDK). In some embodiments of the disclosure, the SDK is included in a game engine.

[0054] In some embodiments of the disclosure, the materials of the game object comprise albedo,
normal, object relationship mapping (ORM), color, emission, roughness, and metallic. The light
configuration comprises a light source.

[0055] In some embodiments of the disclosure, the stereo views are generated in a multi-pass
rendering mode in which a game engine renders the scene twice using two draw calls for each of
the game object.

[0056] In some embodiments of the disclosure, the stereo views are generated in a multi-view
rendering mode in which a game engine alternates rendering of the scene between a left view and
a right view. A graphics processing unit (GPU) conducts a single iteration through all the game
objects in the scene for a culling process, and renders the game objects that successfully pass the
culling process.

[0057] In some embodiments of the disclosure, the stereo views are generated in a depth image
based rendering (DIBR) mode in which a left view and a depth map are used as input to generate
a right view through 3D wrapping and hole filling.

[0058] In some embodiments of the disclosure, an optimization function for the rendering is
operable to be enabled or disabled. In some embodiments of the disclosure, the optimization
function comprises a hybrid method in which a portion of shadow areas in the scene are generated
by rasterization, and another portion of the shadow areas in the scene are recalculated by a ray
tracing method. In some embodiments of the disclosure, the optimization function comprises
reflection area reduction which comprises:

determining whether a mesh of a game object is reflective; and

adding the mesh of the game object to the ray tracing world class when the mesh of the game
object is reflective, wherein bounding volume hierarchy (BVH) for the mesh is built and rendering
of ray tracing effects is performed for the mesh.

[0059] Product Integration:

[0060] With reference to FIG. 5, an example of the native SDK 55 is provided. A native plugin

7

WO 2024/091613 PCT/US2023/036024
620 is an example of the native SDK 55. The example may be a sample of using the VR ray tracing

system with Unity™ and Oculus™. In this scene, a ball 25 and a wine bottle 26 in the left view

24a and right view 24b are set as reflective surfaces with different metallic and roughness settings.

By parsing all these information of the ball 25 and the wine bottle 26 to the native SDK 55, the

reflection on surfaces of ball 25 and the wine bottle 26 is calculated. For the shadow in this scene,

the system in the embodiment of the disclosure also uses a hybrid method of combining ray traced

shadow and rasterized shadow to reduce complexity and computation.

[0061] Rendering Plugin for Game Engine:

[0062] With reference to FIG. 6, an embodiment of a rendering plugin RenderingPlugin 51 is

provided. The RenderingPlugin 51 works as a middle layer between scenes of game engine 50 and

the native ray tracing functionalities in the system 100 (e.g., native SDK 55).

[0063] A model InitializeRTworld 601 is a function that is used to initialize the ray-tracing world

in XR applications. The real-time world is a virtual environment or a virtual scene that is rendered

and updated according to the user’s actions and inputs. The function takes some parameters that

define the properties and settings of the real-time world, such as the size, the lighting, the physics,

and the objects. The function also creates and returns a handle to the ray-tracing world, which can

be used to access and modify it later.

[0064] An onCamerapreRender 602 is a function that is used to execute some code before a

camera that is represented by a camera object starts rendering in XR applications. It is similar to

the Camera.onPreRender event in Unity™, which allows you to register a callback function that

is invoked before any camera renders. The difference is that onCamerapreRender 602 is specific

to each camera (e.g., camera 14a), while Camera.onPreRender is global to all cameras.

[0065] The onCamerapreRender 602 performs some operations that affect appearance or

behavior of the camera or the scene before the rendering process begins. For example, the

onCamerapreRender 602 can:

® Adjust the camera parameters, such as the field of view, the projection matrix, or the clipping
planes.

® Modify the scene objects, such as changing their positions, rotations, scales, or materials.

® Apply some effects, such as lens distortion, chromatic aberration, or vignetting.

[0066] An UpdateGameObject 610 is a function that is used to update properties and behaviors

of a GameObject in XR applications. A GameObject is a basic unit of a scene that can represent

characters, props, scenery, cameras, and more. A GameObject’s functionality is defined by the

components attached to it, such as scripts, renderers, colliders, and so on.

[0067] The UpdateGameObject 610 function takes a GameObject as an argument and performs

some operations on it, such as changing its position, rotation, scale, material, or animation. The

8

WO 2024/091613 PCT/US2023/036024
UpdateGameObject 610 function can be called by the onCameraPreRender 602. Alternatively, in

the script attached to a GameObject, an Update method can call the UpdateGameObject 610

function every frame to make the GameObject move, rotate, or animate according to some logic

or input.

[0068] A UpdateCamera 611 is a function that is used to update the properties and behaviors of

a camera in XR applications. A camera is a component that captures and displays the scene from

a certain point of view. A camera’s functionality is defined by the parameters attached to it, such

as the field of view, the projection mode, the clipping planes, and the target texture.

[0069] The UpdateCamera 611 function takes a camera as an argument and performs some

operations on it, such as changing its position, rotation, zoom, or focus. The UpdateCamera 611

function can be called by the UpdateGameObject 610. Alternatively, he UpdateCamera 611

function can be called by an Update method in the script attached to the camera every frame to

make the camera follow, look at, or orbit around a target object according to some logic or input.

[0070] An m_ ShadowMap.Render 612 is a function that is used to render a shadow map in a

game engine. A shadow map is a texture that stores the depth values of the scene from the light’s

point of view. A shadow map can be used to create realistic shadows by comparing the depth values

of the scene from the camera’s point of view with the depth values of the shadow map.

[0071] The m ShadowMap.Render 612 function takes a light source and a scene as arguments

and performs the following steps:

® [t creates a frame buffer object (FBO) and attaches a depth texture to it. The FBO is used to
render the scene off-screen and store the depth values in the texture.

® [t sets the viewport size and the projection matrix according to the light source’s parameters,
such as the position, direction, and angle. The projection matrix defines how the scene is
projected onto the texture.

® [t binds the FBO and clears the depth buffer. It also enables depth testing and culling of front-
facing triangles to avoid self-shadowing artifacts.

® [t renders the scene using a shader that only outputs the depth value of each fragment. The
shader can also apply some bias or offset to avoid shadow acne or light leaks.

® [t unbinds the FBO and restores the original viewport size and projection matrix. Thus, the
depth texture is ready to be used for shadow mapping.

[0072] The m ShadowMap.Render 612 function implementing shadow mapping. Different game

engines may have different ways of rendering shadow maps, but the basic principle is similar.

[0073] A renderShadowMap 624 is operable to render shadows. The rendering involves creating

a texture (called a shadow map) that stores the depth values of the scene from the perspective of a

light source. Then, in the final rendering pass, the shadow map is used to determine whether a

9

WO 2024/091613 PCT/US2023/036024

pixel is in shadow or not by comparing its depth value with the one stored in the shadow map. The
renderShadowMap 624 can create realistic and dynamic shadows for various types of scenes and
objects, such as trees, buildings, characters, etc.

[0074] The renderShadowMap 624 uses a stereo rendering mode that creates two images, one for
each eye, with a slight horizontal offset to simulate the distance between the eyes. There are three
main modes of stereo rendering;

(1). Multi-pass Rendering;

(2). Multi-view Rendering; and

(3). DIBR-based view synthesis.

[0075] A standard ORM shader is commonly used in modern game engines and 3D modeling
tools that support PBR (physically based rendering) materials. PBR materials are materials that
simulate how light interacts with real-world materials in a realistic way.

[0076] A standard ORM shader 641 works by using the different color channels of the texture to
encode the occlusion, roughness, and metallic values. The red channel stores the occlusion, which
is the amount of ambient light that reaches a surface. The green channel stores the roughness,
which is the smoothness or roughness of a surface. The blue channel stores the metallic, which is
the metalness or non-metalness of a surface.

[0077] The advantage of using a standard ORM shader 641 is that it reduces the number of
textures needed for a material, which can improve the performance and memory usage of the
application. It also makes the file management easier, as there is only one texture file per material.
[0078] A camera rendering module 642 creates realistic and immersive images for XR
applications using the outputs from the standard ORM shader 641.

[0079] A ray tracing world initialization module InitializeRTWorld 601 may initialize game
objects associated with a ray tracing world class RTWorld. Each game objects are represented by
an object GameObject. Script (e.g., onCameraPreRender 602) that is attached to the game objects
use modules in native plugin 620 to add information of the objects, cameras, materials, and lights
iteratively to the RTWorld class. The native plugin 620 is included in the native SDK 55. The
information includes positional matrices, characteristics of the objects, and what is required for
ray tracing calculations. For example, a camera pre-rendering module onCameraPreRender 602
invokes module addMeshToRTworld 621 to add objects to the RTWorld class, invokes module
addMaterial ToORTworld 622 to add materials to the RTWorld class, and invokes module
addLightToRTworld 623 to add lights to the RTWorld class. The module addMaterial ToRTworld
622 may use material attributes of albedo, normal, orm, color, emission, roughness, and metallic
in a material library 650.

[0080] A game object updating module UpdateGameObject 610 updates game objects. A camera

10

WO 2024/091613 PCT/US2023/036024

updating module UpdateCamera 611 uses game objects to update the camera 14a.

[0081] Two customized shadow maps, which are needed for the left and right views respectively,
will be created as the render target for ray tracing effects, such as shadow, reflection, refraction
etc. The two customized shadow maps comprise a RayTracedShadowMap 631 for the left view
141a and a RayTracedShadowMap 632 for the right view 142a. A shadow map rendering module
m_ShadowMap.Render 612 invokes a module renderShadowMap 624 to generates
RayTracedShadowMap 631 for the left view and the RayTracedShadowMap 632 for the right view
by calling the native functions in ray tracing SDK (i.e., native SDK 55) that do all the calculations
for ray tracing effects, such as shadow, reflection, refraction etc. A standard object relationship
mapping (ORM) shader 641 adds the shadow maps to the original scene (e.g., RTWorld) to add all
the ray tracing effects.

[0082] Stereo Vision:

[0083] The native plugin 620 performs rendering to generate the left view and right view. The
native plugin 620 may drive a GPU to do the rendering.

[0084] (1). Multi-pass Rendering:

[0085] With reference to FIG. 7, an embodiment of the disclosure using multi-pass rendering is
detailed in the following. The game engine 50 renders the Scene (e.g., scene 53) twice using 2
draw calls for each game object (i.e., GameObject) that has a Renderer component. The Renderer
component only iterates through the Scene graph once when rendering for both the left view and
right view (e.g., the left view 241a and right view 241b). The ray tracing effects are rendered on
two shadow maps (e.g, RayTracedShadowMap 631 for the Ileft view and the
RayTracedShadowMap 632 for the right view) for each eye. In the multi-pass rendering scheme,
the two shadow maps will be rendered to the left eye or right eye sequentially.

[0086] (2). Multi-view Rendering:

[0087] With reference to FIG. 8, an embodiment of the disclosure using multi-view rendering is
detailed in the following. During multi-view rendering, both the left view and right view (e.g., the
left view 242a and right view 242b) share the work required by culling and shadow computation.
Culling, such as frustum culling, occlusion culling, and level of detail (LOD) culling, is to reduce
the number of objects that need to be rendered in a scene, by discarding those that are not visible
to the camera. In the multi-view rendering scheme, the graphics processing unit (GPU) renders
each game object (i.e., GameObject) in a ping pong fashion, alternating rendering of game objects
between eyes. As a result, fewer graphics commands changes or switches states. The GPU
conducts a single iteration through all the GameObjects in the Scene for a culling process, and
renders the GameObjects that successfully pass the culling process. For the ray traced shadow map

of the Scene, the left eye and right eye views (e.g., the left view 242a and right view 242b) are

11

WO 2024/091613 PCT/US2023/036024

clipped into one render texture with left half and right half for each eye’s view. The camera render
process (i.e., camera render 642) will then fetch the combined texture only once and render unto
the game objects with one draw call.

[0088] (3). DIBR-based view synthesis:

[0089] With reference to FIG. 9, an embodiment of the disclosure using a scheme of DIBR-based
view synthesis is detailed in the following. To further reduce the computation for generating two
shadow maps for left and right eye views, the scheme of DIBR-based view synthesis can be applied.
DIBR stands for depth image based rendering, which utilizes left view (e.g., left view 243a) and a
depth map (e.g., depth map 243) as input to generate right view (e.g., right view 243b) through 3D
wrapping and hole filling (e.g., 3D wrapping 661 and hole filling 662). This will reduce half of the
ray tracing computations and works fine on objects that are not close to a viewpoint.

[0090] Rendering Optimization:

[0091] (1). Hybrid rendering with rasterization:

[0092] With reference to FIG. 10, an embodiment of the disclosure using a scheme of DIBR-
based view synthesis is detailed in the following. The CPU and GPU on current VR devices are
not as powerful as those on smartphones, not mentioning the latest GPUs that has specific
hardware for ray tracing calculation. Hence, the system has to be simplified and adapted to achieve
the goal of real-time ray tracing for virtual reality scenes. For example, some of the ray-traced
effects may be partially or entirely disabled to improve efficiency. In this system, an embodiment
of the disclosure provides a hybrid method to render shadows. In the hybrid method, the majority
of the shadow areas in the scene are generated by rasterization. The shadow areas generated by
rasterization are only hard shadow, such as the black parts in the scene 244 in FIG. 10. The zig-
zagging edges (e.g., edge 245) will then be recalculated by a ray tracing method of the native
plugin 620 to have better effects. Finally, the zig-zagging edges (e.g., edge 245) will be rendered
with ray-traced shadows.

[0093] (2). To reduce reflection area based on materials:

[0094] With reference to FIG. 11, an embodiment of the disclosure reducing reflection area based
on materials is detailed in the following. The operations may be performed by native plugin 620.
To enhance ray tracing performance on VR devices, the non-reflective game objects will not be
added to the RT world, thereby omitting the non-reflective objects from the ray tracing
computation. Consequently, most of the background scenes or objects remain unchanged as the
original settings. The reflection condition of each game object can be either determined by the
material of the object, or can be further calculated based on the physical characteristics of the
object. For example, only the most metallic and smooth areas of a bottle will be considered as

reflective.

12

WO 2024/091613 PCT/US2023/036024
[0095] As shown in FIG. 11, steps 711 and 712 can be applied to each game object. As a current

game object 1s input a mesh 710 the system 100. The system 100 determines whether the mesh
710 is reflective (711). If the mesh 710 is not reflective, the system 100 inputs the mesh 710 for
camera rendering (715). If the mesh 710 is reflective, the system 100 adds the mesh 710 to the
class RTWorld (712). The system 100 builds BVH for the mesh 710 (713) and performs ray tracing
rendering for the mesh 710 (714). The system 100 performs camera rendering for the game objects
(715).

[0096] The operations in FIG. 11 can be executed in a GPU or the modules in the FIG. 6.

[0097] In some embodiments of the disclosure, ray tracing can also be done completely in a game
engine (e.g., the game engine 50) without using the native plugin (e.g., the RenderingPlugin 51)
and calling native functions (e.g., the native SDK 55).

[0098] In some embodiments of the disclosure, the native plugin (e.g., the RenderingPlugin 51)
and native functions (e.g., the native SDK 55) can either be integrated into a game engine (e.g.,
the game engine 50) or be used as a third-party library in applications to run ray tracing effects.
[0099] In some embodiments of the disclosure, the stereo vision can be configured as left eye
dominant, right eye dominant, or center view dominant to enable real-time ray tracing effects on
AR/VR/MR devices.

[0100] In DIBR-based view synthesis, a left view can be used to generate right view. Alternatively,
a right view can also be used to generate left view, or a center view can be used to generate a left
view or right view.

[0101] With reference to FIG. 12, the embodiment of the disclosure also provides a chip 700 that
may correspond to a XR device 10a in the embodiments of the disclosure. The chip 700 may
implement a corresponding process realized by the XR device 10a in various methods of the
embodiments of the disclosure. The chip 700 includes a processor 701, and the processor 701 may
call and run a computer program from memory to implement the methods in the embodiments of
the present application.

[0102] Optionally, the chip 700 may also include a memory 702. In particular, the processor 701
may call and run the computer program from the memory 702 to implement the methods in the
embodiments of the present application.

[0103] Moreover, the memory 702 may be a separate device from the processor 701 or may be
integrated into the processor 701.

[0104] Optionally, the chip 700 may further include an input interface 703. Note that the
processor 701 may control the input interface 703 to communicate with other devices or chips,
specifically, to obtain messages or data sent by other devices or chips.

[0105] Optionally, the chip 700 may further include an output interface 704. Note that the

13

WO 2024/091613 PCT/US2023/036024

processor 701 may control the output interface 704 to communicate with other devices or chips,
specifically, to output messages or data to other devices or chips.

[0106] The described system and methodology offer a real-time solution for rendering ray tracing
effects in virtual reality, augmented reality, and mixed reality applications.

[0107] The system and methodology are applicable for both all-in-one devices and PC-based or
smartphone-based AR/VR/MR devices.

[0108] The system is implemented as a lightweight plugin that can be integrated in a game engine
(e.g., game engine 50) to provide ray tracing effects.

[0109] The optimization methods can be manually or automatically enabled or disabled,
depending on the scene complexity and computational resources.

[0110] While the present disclosure has been described in connection with what is considered the
most practical and preferred embodiments, it is understood that the present disclosure is not limited
to the disclosed embodiments but is intended to cover various arrangements made without

departing from the scope of the broadest interpretation of the appended claims.

14

WO 2024/091613 PCT/US2023/036024
CLAIMS:

What is claimed is:

1. A method for ray tracing for execution by an electronic device, comprising:

adding, by a mesh adding module, game objects to a ray tracing world class associated with a
scene;

adding, by a material adding module, materials of the game objects to the ray tracing world class;
adding, by a light adding module, light configuration to the ray tracing world class;

rendering, by a rendering module, ray tracing effects for at least one portion of the game objects
in the scene based on the ray tracing world class; and

generating, by the rendering module, stereo views of the scene including the game objects.

2. The method for ray tracing of claim 1, wherein the mesh adding module, the material adding
module, the light adding module, and the rendering module are included in a software development
kit (SDK).

3. The method for ray tracing of claim 2, wherein the SDK is included in a game engine.

4. The method for ray tracing of any of claims 1 to 3, wherein the materials of the game object
comprise albedo, normal, object relationship mapping (ORM), color, emission, roughness, and
metallic.

5. The method for ray tracing of any of claims 1 to 4, wherein the light configuration comprises a
light source.

6. The method for ray tracing of any of claims 1 to 5, wherein the stereo views are generated in a
multi-pass rendering mode in which a game engine renders the scene twice using two draw calls
for each of the game object.

7. The method for ray tracing of any of claims 1 to 6, wherein the stereo views are generated in a
multi-view rendering mode in which a game engine alternates rendering of the scene between a
left view and a right view.

8. The method for ray tracing of any of claims 1 to 7, wherein a graphics processing unit (GPU)
conducts a single iteration through all the game objects in the scene for a culling process, and
renders the game objects that successfully pass the culling process.

9. The method for ray tracing of any of claims 1 to 8, wherein the stereo views are generated in a
depth image based rendering (DIBR) mode in which a left view and a depth map are used as input
to generate a right view through 3D wrapping and hole filling.

10. The method for ray tracing of any of claims 1 to 9, wherein an optimization function for the
rendering is operable to be enabled or disabled.

11. The method for ray tracing of any of claims 1 to 10, wherein the optimization function

comprises a hybrid method in which a portion of shadow areas in the scene are generated by

15

WO 2024/091613 PCT/US2023/036024

rasterization, and another portion of the shadow areas in the scene are recalculated by a ray tracing
method.

12. The method for ray tracing of any of claims 1 to 10, wherein the optimization function
comprises reflection area reduction which comprises:

determining whether a mesh of a game object is reflective; and

adding the mesh of the game object to the ray tracing world class when the mesh of the game
object is reflective, wherein bounding volume hierarchy (BVH) for the mesh is built and rendering
of ray tracing effects is performed for the mesh.

13. An electronic device comprising:

a processor configured to call and run a computer program stored in a memory, to cause a device
in which the processor is installed to execute the method of any of claims 1 to 12.

14. A chip, comprising:

a processor, configured to call and run a computer program stored in a memory, to cause a device
in which the chip is installed to execute the method of any of claims 1 to 12.

15. A computer-readable storage medium, in which a computer program is stored, wherein the
computer program causes a computer to execute the method of any of claims 1 to 12.

16. A computer program product, comprising a computer program, wherein the computer program
causes a computer to execute the method of any of claims 1 to 12.

17. A computer program, wherein the computer program causes a computer to execute the method
of any of claims 1 to 12.

18. A system for ray tracing, comprising:

a mesh adding module configured to add game objects to a ray tracing world class associated with
a scene;

a material adding module configured to add materials of the game objects to the ray tracing world
class;

a light adding module configured to add light configuration to the ray tracing world class;
rendering, by a rendering module, ray tracing effects for at least one portion of the game objects
in the scene based on the ray tracing world class, wherein the rendering module generates stereo
views of the scene including the game objects.

19. The system for ray tracing of claim 18, wherein the mesh adding module, the material adding
module, the light adding module, and the rendering module are included in a software development
kit (SDK).

20. The system for ray tracing of claim 19, wherein the SDK is included in a game engine.

21. The system for ray tracing of any of claims 18 to 20, wherein the materials of the game object

comprise albedo, normal, object relationship mapping (ORM), color, emission, roughness, and

16

WO 2024/091613 PCT/US2023/036024

metallic.

22. The system for ray tracing of any of claims 18 to 21, wherein the light configuration comprises
a light source.

23. The system for ray tracing of any of claims 18 to 22, wherein the stereo views are generated in
a multi-pass rendering mode in which a game engine renders the scene twice using two draw calls
for each of the game object.

24. The system for ray tracing of any of claims 18 to 23, wherein the stereo views are generated in
a multi-view rendering mode in which a game engine alternates rendering of the scene between a
left view and a right view.

25. The system for ray tracing of any of claims 18 to 24, wherein a graphics processing unit (GPU)
conducts a single iteration through all the game objects in the scene for a culling process, and
renders the game objects that successfully pass the culling process.

26. The system for ray tracing of any of claims 18 to 25, wherein the stereo views are generated in
a depth image based rendering (DIBR) mode in which a left view and a depth map are used as
input to generate a right view through 3D wrapping and hole filling.

27. The system for ray tracing of any of claims 18 to 26, wherein an optimization function for the
rendering is operable to be enabled or disabled.

28. The system for ray tracing of any of claims 18 to 27, wherein the optimization function
comprises a hybrid method in which a portion of shadow areas in the scene are generated by
rasterization, and another portion of the shadow areas in the scene are recalculated by a ray tracing
method.

29. The system for ray tracing of any of claims 18 to 27, wherein the optimization function
comprises reflection area reduction which comprises:

determining whether a mesh of a game object is reflective; and

adding the mesh of the game object to the ray tracing world class when the mesh of the game
object is reflective, wherein bounding volume hierarchy (BVH) for the mesh is built and rendering

of ray tracing effects is performed for the mesh.

17

WO 2024/091613 PCT/US2023/036024

1/9
XR device
10a
Camera Transceiver
14a 13a
:"””""""'“““”"""“"i\ - -
i A Depth Processor
; _ i canera 1]
| Leftview | 1 i5a 1la
§ Y
1 l4la 0 *
E Lo IMU Memory
: L 16a 12a
1} ' \
]) s . 3
+ | Right view | 1 :
: 1424 ; Eibpid‘y
: ! 17a
£ 1
| L
e e e ——————— [
FIG 1
BC
200
Transcewer
23a
&
Processor
21a
y
Memory
22a

FIG. 2

WO 2024/091613 PCT/US2023/036024

100,
// 77777 HJ
¥
Game Engine
50
v ¥ ¥ ¥
RenderingPlugin XR SDK Scenes Custemized Shader
21 32 53 24
Native SDK
55
Slatic Library Shaders Texture
28 o7 28

FIG. 3

WO 2024/091613 PCT/US2023/036024

3/9
B101

(START)
P

adding, by a mesh adding module, game objects to a ray tracing world class

associaied with 4 scene

B102
_

-4

adding, by a matenial adding module, materials of the game objects to the ray

tracing world class;

B103
7

adding, by a light adding module, light configuration to the ray tracing world

class

B104

rendering, by a rendering module, ray tracing effects for at least one portion of

the game objects in the scene based on the ray fracing world class

B105

generating, by the rendering module, stereo views of the scene including the

game objects

END

FiG. 4

PCT/US2023/036024

WO 2024/091613
4/9

™
)

RN N
‘j" w\:,(\w“\\‘:

\\\\th§~"

|
o
o
e !
e {
N 1
3 ; |
3 S
& / Sy Sod
& { 3 3 kY
y i
3
B
W
N

?S
§ !
¥ i ¥
: N
‘ i
:\g | 3
§ : i
k o § i
Fvnnasssnasinssanasnasaane § it
R H e ——
i N
$1 %
RN
¥
N
¥

e

i

i

554t et

A,

RS

i
i
3
§
§
i

§

§

H

3
3
X .
& TN
N ¥ SNy
e i Mo My
~ o o T Rt _
T M NNascss AR AR ARSI
s o
3

s,
BN
TN
AR
o

A

i s

FIG 35

WO 2024/091613 PCT/US2023/036024
: Native Plugin
€20
: addMeshToRTworld
InitializeRTWorld 621 550
801 :
: : atbedo;
! | addMaterialToRTworld normal;
- 622 i orm,
onCameraPreRender : —— color;
802 emission,
addlightToRTworld roughness,
823 metaliic
UpdateGameaObject
810
4
UpdateCamera
11 .
i RenderTexiure
- 51

m_ShadowMap. Render # renderShadowMap
812 624

FiG 6

o RayTracedShadowMap-Left eye ,// | Standard_ORM Shader
631 841

N RayTracsdShadowhMap-Right eye Camera rendsr
832 842

WO 2024/091613

PCT/US2023/036024

6/9

|
3
Lo
e R
e -\\

o
e
‘..«“
o
&
.4("“
o
§
&
e % -
& b % &
R &
% .\t'
5 5
5
e
&
\\.\‘\
. =
oy o
N
Nx‘!\\&\\u\\x\\\“\‘-)\\“*
_—
FiG. 7
2423 242b
AN
.\ \\
»/ 4
e -
) P
/
|
L
e S
= \\\\
kY

/
f
|

A
oty .
e \u\\x\\\\)\\
o

\\\ e e
R

o, .
e o
\\‘:"—\\) o
e

F1G. 8

WO 2024/091613 PCT/US2023/036024

719
3D -
- Wrapping - Hoiggimg
881 T
FIG. 9
244
{

FIG 10

WO 2024/091613

,,,,,,,,,,,, is reflective?

Camera Rendering |.

Add o RT =
Buii(; BVH |
Ray tracing pa
rendering '

3 B

FIG. 11

712

714

715

PCT/US2023/036024

WO 2024/091613

9/9

PCT/US2023/036024

chip
700

input mterface
703

PYOCCRS0Y

701

output interface
704

&
¥

memory
702

FHG 12

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US23/36024

A,
IPC -

CLASSIFICATION OF SUBJECT MATTER

CPC -

ADD.

INV. AB3F 13/60; GOBF 3/0484; GO6T 15/04; GO6T 15/06; GO6T 15/55; GOBT 17/20; GO6T 19/20; GO6F 16/172 (2023.01)

ADD. GO6F 8/34; GO6F 8/38; GO6F 9/448; GO6F 9/451; GOBT 9/00; HO4N 13/111; HO4N 13/122 (2023.01)

INV. AG3F 13/60; GO6F 3/0484; GO6F 8/315; GO6F 8/34; GO6F 8/38; GO6F 9/4488; GO6F 9/451; GO6F 16/173; GO6T 9/001;
GO6T 15/04; GO6T 15/06; GO6T 15/506; GO6T 15/55; GOBT 17/20; GO6T 19/20; HO4N 13/111; HO4N 13/122

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, wheré appropriate, of the relevant passages Relevant to claim No.
Y US 2018/0122139 A1 (DG HOLDINGS INC.) 03 May 2018; para [0020-0099], [0114] 1-4, 18-21
Y US 2015/0356769 A1 (IMAGINATION TECHNOLOGIES LIMITED) 10 December 2015; para 1-4, 18-21
[0028-0035]
A US 2021/0335051 A1 (OGUZATA, M.) 28 October 2021; entire document 1-4, 18-21

I:] Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“D” document cited by the applicant in the international application

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other
special reason (as specified)

“O” documentreferring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be consideredto involve an inventive step

when the document is taken alone

document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

wym

“&” document member of the same patent family

Date of the actual completion of the international search

21 December 2023 (21.12.2023)

Date of mailing of the international search report

FPEBO1 2024

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Shane Thomas

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2022)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US23/36024

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. I_—_l Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3, Claims Nos.: 517, 22-29
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No.III. Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

L. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:l As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. [:I As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted
to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest I:l The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

I___I The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation. '

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2022)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

