
(12) 
(19)

(54)

(51)

(21)

(30)

(31)

(45)
(45)
(45)

(71)

(72)

INNOVATION PATENT (11) Application No. AU 2019100212 A4
AUSTRALIAN PATENT OFFICE

Title
SYSTEM AND METHOD FOR DEVELOPING MODULARIZED APPLICATION

International Patent Classification(s)
G06F8/36 (2018.01) G06F8/20 (2018.01)

Application No: 2019100212 (22) Date of Filing: 2019.02.27

Priority Data

Number
2018900658

(32) Date
2018.02.28

(33) Country
AU

Publication Date: 2019.04.04
Publication Journal Date: 2019.04.04
Granted Journal Date: 2019.04.04

Applicant(s)
Michael Changcheng Chen

Inventor(s)
Chen, Michael Changcheng

Agent / Attorney
Michael Changcheng Chen, 21 Larool Cres, Castle Hill, NSW, 2154, AU

(74)



20
19

10
02

12
 

27
 F

eb
 20

19 ABSTRACT

A system and method of developing modularized application is disclosed. In one 

preferred embodiment, a modularized application 12’ is implemented as a directory­
hierarchy comprises a plurality of directories, with each directory 20 containing 

module-implementation definition 22 for implementing a module 14’. Directory 

relationship 26, such as parent-child, is used in defining modules association for 

inter-module communication. In one preferred embodiment, when executing a 

modularized application, modules’ module-implementation definitions 22A 22B are 

used by application runtime, for running hardware processes 24A 24B performing 

the modules’ intended tasks, and for conducting inter-module communication 28 

between hardware processes 24A 24B of associated modules 14A” 14B”.



5/6
20

19
10

02
12

 
27

 F
eb

 20
19

FIG. 3D



20
19

10
02

12
 

27
 F

eb
 20

19

AUSTRALIA Patents Act 1990

INNOVATION SPECIFICATION

SYSTEM AND METHOD FOR DEVELOPING

MODULARIZED APPLICATION

The invention is described in the following statement



1

20
19

10
02

12
 

27
 F

eb
 20

19 SYSTEM AND METHOD FOR DEVELOPING 

MODULARIZED APPLICATION

FIELD OF THE INVENTION

[0001] The present invention relates to software application development. In 

particular, the present invention relates to system and method for implementing and 

executing modularized applications.

BACKGROUND OF THE INVENTION

[0002] Using software component in application development promotes higher-level 

software reuse, it brings the benefits to the development such as faster development 

cycles, lower development costs, and higher software quality.

[0003] Application module, or simply "module", is high-level software component, 

functionally for "performing a task". This contrasts with low-level software 

component, such as classes in a Java library, which is for "performing a function (of 

a task)".

[0004] One character of application module is that, being high-level software 

component, it exposes its attributes or parameters through the application-building 

environment (i.e. an IDE), where a developer can change the application’s setting or 

behaviour by configuring these parameters, rather than by programming the source 

code.

[0005] Modularized application, or simply “application”, is a type of component-based 

application that uses application modules as its application-building blocks. 

Modularized applications are developed by assembling modules and configuring the 

modules' parameters. Such development is easier and has less software defects, as 

it does not involve low-level programming.

[0006] Application runtime, or simply “runtime”, is a program that provides resources 

and supports modularized application's execution. Through an API referred as



2

20
19

10
02

12
 

27
 F

eb
 20

19 “runtime service”, application’s implementation is translated into computer 

executable instructions, by application runtime, which then calls computer’s 

operating system (referred as the “hardware”) to execute the instructions.

[0007] Fig 1 is a functional diagram of modularized application architecture. As 

shown in Fig 1, modularized application 12 can have one or more modules 14, with 

each module 14 performs a task in the application. Application 12 can also have 

inter-module communications 18 between associated modules 14. Runtime 10 

executes modularized application 12 through providing runtime service 16, which 

translates application’s implementation (not shown) into hardware-executable 

instructions and executes the instruction 8 on computer’s hardware 6.

[0008] Development of modularised application has three phases: design, 

implementation, and execution. Design phase is where the required tasks are 

identified from an application's functional requirements, and modules for these tasks 

are selected. Inter-module communications, such as data and commands exchange, 

are also identified and specified.

[0009] Implementation phase is where the application’s selected modules are 

assembled into a “runtime executable” program (referred as the application's 

"implementation"). In this phase, each module is configured for its intended task in 

the application, inter-module communications are also established and configured.

[0010] Application’s execution phase is where the application’s implementation is 

executed, as computer hardware processes that perform the application’s designed 

functions, by a runtime.

Prior Arts

[0011] Microsoft SSIS (SQL Server Integration Services) is specialised program (an 

“application runtime”) that runs a kind of modularized application, called “SSIS 

package", for data warehousing ETL tasks. SQL Server Data Tool (SSDT) is an IDE 

(Integrated Development Environment) for developing SSIS packages.



3

20
19

10
02

12
 

27
 F

eb
 20

19 [0012] Fig 2A shows in SSDT, modules 14 are used in assembling a data-processing 

flow of a SSIS package, each module has an assigned task. Data-flow link 18 (“inter­

module communication”) associates related modules according to the required data- 

processing sequence. Fig 2A also indicates, in SSDT, pre-built modules can be 

added into or be removed from the data-processing flow, allowing easy 

customisation to a package.

[0013] Oracle JCAPS is type of program called "middleware", which is primarily used 

in the field of System Integration. JCAPS interface is another example of 

modularized application. JCAPS Enterprise Designer is the IDE for building JAPS 

interfaces. Developed JCAPS interfaces (i.e. the "modularized applications") can be 

executed in a runtime environment called "logical host" (i.e. the "application 

runtime").

[0014] Fig 2B shows in Enterprise Designer, multiple modules 14 are linked 

(“associated”) in building an interface.

SUMMARY OF THE INVENTION

Technical Problem

[0015] One drawback in these prior arts is that the format of the pre-built modules is 

proprietary, meaning modules from different vendors cannot be used in the same 

application's development. For example, JCAPS modules cannot be used in a SSIS 

package, and vice versa.

[0016] Another drawback of these prior arts is that a developed application can only 

be executed in vendor-specific runtimes. For example, a SSIS package must be run 

in SSIS, it cannot be run in JCAPS' Logical host, or in any other third-party 

developed runtime.

[0017] Yet another drawback of these prior arts is that a developed application 

cannot be customised without using vendor-specific development tools. Tools such 

as SSDT and Enterprise Designer are specialised tools, they can be expensive and



4

20
19

10
02

12
 

27
 F

eb
 20

19 not available in every computer. Furthermore, these tools can be complex to install 

and to learn.

Solution to Problem

[0018] In accordance with the present invention, a system and method for 

developing modularized application, comprise an abstraction layer that separates a 

module’s implementation from the runtime, so compatible module and runtime can 

be independently implemented.

[0019] The system and method of the present invention use file-system directory in 

defining module in application’s implementation; and use directory relationship in 

defining module-associations for inter-module communications.

[0020] Because directory is a file-system feature universally available on every 

computer, the present invention allows building and customising applications through 

simple file-system operations that are familiar to most computer users. Not only it 

makes developing and managing applications easier and more convenient, it gives 

users more choices in their application development, by not restricting them to only 

use proprietary modules, runtimes, and application development tools.

Objects and Advantages

[0021] Accordingly, several objects and advantages of the present invention are:

[0022] To have an open format for defining modularized application’s 

implementation, so compatible modules can interoperate and can be mixed in 

developing applications in such format, and such developed applications can be run 

in compatible runtimes;

[0023] To enable end-users to conveniently build and customise modularized 

applications, using tools and features that are available in every computer, thus to 

avoid the cost and restrictions from using proprietary tools for application 

development.



5

20
19

10
02

12
 

27
 F

eb
 20

19 [0024] Further objects and advantages will become apparent from a consideration of 

the ensuring description and drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0025] The invention may best be understood by reference to the following 

description taken in conjunction with the accompanying drawings in which:

[0026] FIG. 1 is a functional diagram of modularized application architecture.

[0027] FIG. 2A is a screenshot of a prior art, Microsoft SQL Server Data Tool 

(SSDT), showing “data flow tasks” of a SSIS package.

[0028] FIG. 2B is a screenshot of a prior art, Oracle JCAPS Enterprise Designer, 

showing a “connectivity map” of a JCAPS schema.

[0029] FIG. 3A is a schematic illustrates the three phases of modularized application 

development, of one preferred embodiment.

[0030] FIG. 3B-3C are schematics of modularized applications’ design and their 

corresponding implementation, of one preferred embodiment.

[0031] FIG. 3D is a flowchart of the runtime process for running an application.

[0032] FIG. 4 is a schematic of an example application in its development phases.

DETAILED DESCRIPTION OF THE INVENTION

[0033] One object of the invention is to have an "open" format for defining 

application’s implementation, so it can be run by any compatible runtimes.

[0034] Fig 3A shows a modularized application under development, in its design 12, 

implementation 12’, and execution 12” phases, in accordance to an embodiment of 

the present invention. It shows in Fig 3A, file-system directories are used for 

constructing and representing modules in an application’s implementation 12'.



6

20
19

10
02

12
 

27
 F

eb
 20

19 [0035] As Fig 3A shows, the use of file-system directory in developing modularized 

application is twofold: 1) directory 20A (same as 20B) is used to contain a module’s 

implementation details, which describe to a runtime how to perform the module's 

task, and 2) directory relationships 26 are used to associate modules, which are 

presented by the related directories in the application, for inter-module 

communications.

[0036] Effectively in a such implementation, an application is a directory-hierarchy, 

with each directory in the hierarchy represents a module in the application. Directory 

used for representing a module is referred herein as "module-directory".

[0037] Since directory is a common file-system feature on all computers, using 

module-directories in defining application’s implementation allows such 

implementation (format-wise) universally portable and accessible. The application in 

such "format" (that is, a hierarchy of directories) can then be easily copied, moved, 

like operating on a normal group of directories.

Module-Implementation Definition

[0038] Module-implementation definition refers to a specific content in module­

directory. The purpose of such content is to provide “sufficient information about a 

module” to a runtime, so the later can retrieve the module’s implementation details, 

and convert such information into hardware executable instructions that perform the 

module’s intended task.

[0039] From software design perspective, module-implementation definition is an 

abstraction layer (i.e. an “interface”) between a runtime’s and a module’s underlying 

implementation. That is, it is a “contract” between a runtime and a module, about 

how the runtime can access the module’s implementation, and how such 

implementation can be utilised to perform the module’s intended task. It enables the 

runtime and the module to work together, but at the same time, it “hides” each 

party’s implementation details from the other.



7

20
19

10
02

12
 

27
 F

eb
 20

19 [0040] Module-implementation definition (the “contract”) can be complex and 

explicitly expressed (e.g. as a web service described in WSDL), or it can also be 

simply implied. The actual module implementation can be in a form directly 

accessible, but it can also be in a form that needs to be indirectly derived.

[0041] For example, an implied contract can be 1) for the runtime, is “to run every 

executable file placed in a module-directory”, and 2) for the module’s 

implementation, is “to place executables for performing a task in the module­

directory”. If such an application executes, both parties will exercise the contract, 

resulting the runtime running the executables in the directory and performing the 

module’s task.

[0042] In this case, the module’s implementation (the “executable”) is included in the 

files that reside in the module-directory and it’s directly accessible. There can also be 

cases where a reference is used to refer to such implementation at a remote location 

(e.g. by using an URL in the module-implementation definition).

[0043] Nonetheless, it can be said the content of a module-directory conclusively 

describes how to perform a module's task to a runtime. In other words, a module­

directory includes “everything about the module a runtime needs to know”. Such 

conclusiveness means a modularized application can be built or customised byways 

of normal directory operations (e.g. copy-and-paste, drag-and-drop, etc.), without the 

need for any specialized tools.

Modules Association and Inter-module Communication

[0044] Defining inter-module communications is also part of application’s 

implementation. In the present invention, this is done in two steps:

[0045] First, file-system directory relationship is used to associate modules having 

inter-module communication. As shown in Fig 3A, the “parent-child” relationship 26 

of directories 20A and 20B indicates module 14A’ and 14B’ in the application 

implementation are associated for the designed inter-module communication 18.



8

20
19

10
02

12
 

27
 F

eb
 20

19 [0046] Second, details of inter-module communication are defined or specified in the 

module-implementation definition. Such details can include, but not limited to, the 

module’s role in communication (e.g. client or server), the direction (e.g. one-way or 

two-ways), types of data or commands that are exchanged, etc, and they can be 

expressed implicitly or explicitly. Such information is used when runtime conducts 

the communication during the application’s execution.

[0047] As illustrated in Fig 3B and 3C, inter-module communications 18 from an 

application’s design 12 can be flexibly setup and easily changed in the application’s 

implementation 12’, byways of arranging module-directories relationships 26 and 

configuring module-implementation definition 22 that resides in module-directories 

20, corresponding to the application’s design.

[0048] Note there are many ways of defining directory relationship, other than 

nesting directories as parent-child as illustrated in Fig 3A. For example, operating 

systems like Unix and Linux use “symbolic link” as reference to another directory in 

the file-system. Windows has similar feature, called a “shortcut”, for referencing a 

directory. Another technique of relating two directories is through lookup tables, 

where related directories’ paths can be linked as table entries. Such lookup table can 

be placed inside module-implementation instructions or can be placed in somewhere 

the runtime can read.

Application Runtime Process

[0049] An application enters its execution phase when its implementation is executed 

by a runtime. Fig 3A shows an application 12” in its execution phase, where module­

implementation definition is translated by runtime into hardware executable 

instructions 22A’ 22B’, which are in turn executed in computer hardware as 

processes (or threads) 24A 24B that perform the modules’ intended tasks.

[0050] Fig 3D is a flowchart of runtime process executing an application. It’s 

highlighted in the flowchart how module-directories (as in the application’s 

implementation) are used to derive detailed module-implementation information,



9

20
19

10
02

12
 

27
 F

eb
 20

19 which are subsequently used for running module’s intended tasks and 

communications, in computer hardware processes.

[0051] As being illustrated, the present invention has many advantages over prior 

arts. By using file-system directories in application implementation, it allows 

application to be developed and customized through normal file-system directory 

operations, which are familiar to normal users and available on every computer. By 

using module-implementation definition as an abstraction layer between modules 

and runtime, it allows modules and runtime to be implemented independently, 

possibly by different vendors, using different technologies, thus giving end-user more 

choices.

[0052] These and other advantages of the present invention become more apparent 

though the following example, in which we demonstrate how an application is 

developed, in each of the development phases. We also give details about how a 

runtime can be implemented to run the developed application, so a person skilled in 

the art can follow the example and carry out the invention.

[0053] Without any specific preference, .NET technology and related terminology are 

used in illustrating the example application development.

Example Application Development - The Design

[0054] Assuming we are developing a hypothetical data-processing application with 

the following requirement, as in Table 1.

TABLE 1: Example application requirement.

From a give path, retrieve all ‘admission records’ from a set of input 

files, and write the retrieved records to an output file. The records in 

the input files are encoded in HL7.



10

20
19

10
02

12
 

27
 F

eb
 20

19 [0055] To provide the background to people who’s not familiar with the subject: HL7 

is a messaging standard used in the Healthcare system integration industry. HL7 

messages are text-based records used for transferring patient information between 

integrated health information systems. Admissions HL7 messages indicate patient’s 

hospital admission status, and can be identified by checking a HL7 message 

element at address location ‘EVN-T, for matching value ‘Α0Τ.

[0056] As part of the design, it is identified that from the requirement, the application 

needs to perform three different tasks, in the following order:

• The “Reading” task, which reads input files and parse the file content for 

retrieving HL7 records, output retrieved records;

• The “Filtering” task, which filters the retrieved HL7 records from the input and 

selects only messages with data element at “EVN-1” having value “A01”, output 

selected records; and

• The “Writing” task, which writes selected records from the input to a file of a 

given path.

[0057] Fig 4 shows, as in the application’s design 12, three modules 14R,14F 

and14W are selected for performing these tasks. It shows in the design 12, between 

modules 14R-14F and 14F-14W, there are data-exchange 18A, 18B forexchanging 

input and output data, as part of the data-processing requirement.

Example Application Development - The Implementation

[0058] Fig 4 shows the application’s implementation 12’ that is corresponding to its 

design 12. It shows three module-directories 20R, 20F and 20W are used to 

construct the identified modules 14R, 14F and 14W from the design 12.

[0059] In this application development example, the “module-implementation 

definition” is a single XML file referred as the “step-config” file, resides in each 

module-directory. Each step-config file has the same XML structure that contains the 

configurations of the module. These files are listed as the following:



11

20
19

10
02

12
 

27
 F

eb
 20

19 TABLE 2: step-config file content for the “Reading” module.

<StepConfig>

<Handler>HL7FileReader</Handler> 

<HandlerAssembly>handlers.dll</HandlerAssembly> 

<Parameters>

<Parameter> 

<Name>source-file-name-pattern</Name> 

<Value>*.hl7</Value>

</Parameter>

<Parameter>

<Name>source-path</Name> 

<Value>D:\DATA\Reader-in</Value> 

</Parameter>

</Parameters>

</StepConfig>

TABLE 3: step-config file content for the “Filtering” module.

<StepConfig>

<Handler>HL7Filter</Handler>

<HandlerAssembly>handlers.dll</HandlerAssembly>

<Parameters>

<Parameter>

<Name>filtering-rule</Name>

<Value>EVN-1 =A01 </Value>

</Parameter>

</Parameters>

</StepConfig>



12

20
19

10
02

12
 

27
 F

eb
 20

19 TABLE 4: step-config file content for the “Writing” module.

<StepConfig>

<Handler>HL7FileWriter</Handler>

<HandlerAssembly>handlers.dll</HandlerAssembly>

<Parameters>

<Parameter>

<Name>destination-path</Name> 

<Value>D:\DATA\Out</Value>

</Parameter>

</Parameters>

</StepConfig>

[0060] Being the “module-implementation definition”, the step-config files are to 

provide modules’ details to the runtime, so the runtime can perform the modules’ 

intended tasks. Because this is an illustrative mock example, also for the sake of 

simplicity, we assume the meaning of each configuration item is understood and 

agreed by the application and runtime developers. The following configuration item 

interpretation is based on such assumption.

[0061] Referring to Table 2, in our example, it specifies to the runtime how to perform 

the “reading” task. More specifically, the “Handler” configuration is set as 

“HL7FileReader” referring to a .NET class by name. The next configuration item 

“HandlerAssembly” refers to a .NET DLL file (called an “assembly” in .NET terms). 

Together these two configuration values enable the runtime to locate and load the 

named class in the specified DLL, for performing the HL7 file-reading task.

[0062] Table 2 also shows that, in the step-config file, the “parameter” XML element 

allows extra parameters to be set and passed to the runtime, for performing the 

module’s task. The “source-file-name-pattern” parameter specifies the reader 

handler only to process files with “*.hl7” naming pattern; and the “source-path”



13

20
19

10
02

12
 

27
 F

eb
 20

19 parameter specifies the reader handler to only scan for data files in the 

“D:\Data\Reader-in” file location.

[0063] Similarly, configurations in Table 3 and Table 4 are pseudo instructions 

following the same pattern, that is, these step-config files contain reference to the 

task-implementing .NET classes, and parameters required for running each of the 

task. These are the details required for the runtime to construct the modules’ task­

handlers and perform the “filtering” and “writing” tasks.

[0064] It shall be noted, as in the example, the module’s task handler can be 

changed through modifying configuration elements in the step-config file. This is an 

advantage of the present invention, because for a given task, it’s possible to make 

the module-implementation refer to another .NET class, from another DLL, perhaps 

from a different vendor, or even use a different technology other than .NET. Such 

flexibility give the user choices when implementing and executing the modules.

Implementing Data-exchange as Inter-Module Communication

[0065] As shown in Fig 4, module-directories 20R, 20F, 20W are nested in each 

other, forming a directory-hierarchy. The parent-child directory-hierarchy in the 

implementation 12’ corresponds to the order of the data-processing modules 14R, 

14F, 14W in design 12.

[0066] It’s intended that the parent-child module-directory relationship 26A, as in Fig 

4, is used to indicate the two related modules 14R’, 14F’ are involved in exchanging 

input and output data. Furthermore, it’s implied the data-exchange direction is from 

the “parent” module 14R’ to the “child” module 14F’.

[0067] In this example, it’s assumed the handlers are programmed to specifically 

handle HL7 data, this implies all records processed by the application are HL7 

records, therefore in this example, it is not necessary to specify the data-types in the 

data-exchange details in the step-config files, as it’s implied.

Application Development Example - The Execution



14

20
19

10
02

12
 

27
 F

eb
 20

19 [0068] In the application implementation described above, with information contained 

in step-config files, and module associations that can be derived from the directory 

hierarchy, it includes the required information for a runtime to perform these 

modules’ tasks and inter-module communications on a targeted computer hardware.

[0069] Fig 4 shows the application 12” in its execution phase. It shows running 

modules 14R”, 14F”, 14W” as hardware processes (or threads, or similar) 24R, 24F, 

24W which are created by the runtime (not shown), these processes 24R, 24F, 24W 

are executing hardware instructions 22R’, 22F’, 22 W’ that are translated from setting 

values retrieved from the step-config files 22R, 22F,22W.

[0070] Specifically, for example, the runtime retrieves the task-implementing .NET 

class “HL7FileReder” in DLL “handlers.dll”, as specified in the step-config file in the 

“Reading” module implementation 14R’, for creating the “reader handler” hardware 

process 24R. Similarly, the “filter handler” process 24F and the “writer handler” 

process 24W can also be created. Dynamically locating an executable 

implementation (e.g. a compiled .NET class) by name from an assembly (EXE or 

DLL file) is a well-known technique called “reflection”. Such technique is familiar to 

those skilled in the art, i.e. software developers.

[0071] Fig 4 shows inter-module communication 18A in the design 12 is performed in 

the application’s hardware execution 12” as inter-module communication execution 

28A: the output from the “reader” module (execution) 14R” is passed to the “filter” 

module (execution) 14F” as its input. This is done by the runtime associating the two 

hardware processes 24R and 24F, based on the module-directory relationship 26A 

in application implementation 12’, and conducting the required data-processing (i.e. 

data-exchange) between the processes, based on the communication’s 

implementation details from the module-implementation definitions 22R and 22F.

[0072] Similarly, inter-module communication 28B is also performed between the 

“filter” module (execution) 14F” and the “writer” module 14W”.

[0073] As illustrated in the above example application development, using the 

system and method of the present invention, the application’s design 12 is



15

20
19

10
02

12
 

27
 F

eb
 20

19 developed into an implementation 12’, and through the application’s execution 12”, 

the designed modules’ tasks and inter-module communications are performed 

corresponding to application’s requirement.

Conclusion, Ramification, and Scope

[0074] Accordingly, the advantages of the present invention become apparent. As a 

novel application development system and method, it allows implementing a 

modularized application physically as a directory hierarchy with module-directories.

[0075] As directory is a common feature to all computer file-systems, and directory 

operations are familiar to most computer users, the system and method of the 

present invention have many advantages over prior arts, in regard to developing and 

managing applications, including being able to easily and conveniently customize an 

application without the need for any vendor-specific tools.

[0076] Through using module-implementation definition, an abstract layer between a 

module and a runtime, both the module and the runtime can be independently 

implemented, it potentially allows an application to be developed using modules from 

different implementations, from different vendors and using different technologies, at 

the same time, and allow applications can be run by compatible runtimes.

[0077] Although the description above contains many specificities, these should not 

be construed as limiting the scope of the invention but as merely providing 

illustrations of some of the presently preferred embodiments of this invention. For 

example, there can be embodiments where the modules of an application are 

geographically distributed, and the directories can be related though many kinds of 

technologies such as the Web Services.

[0078] Thus the scope of the invention should be determined by the appended 

claims and their legal equivalents, rather than by the examples given.



16

20
19

10
02

12
 

27
 F

eb
 2

01
9 Reference Signs List

[0079] 6 - operating system (hardware)

[0080] 8 - hardware instruction (execution)

[0081] 10 - runtime

[0082] 12 - modularized application (design of)

[0083] 12’ - modularized application (implementation of)

[0084] 12” - modularized application (execution of)

[0085] 14, 14A,14B, 14R, 14F, 14W - module (design of)

[0086] 14’, 14A’,14B’, 14R’, 14F’, 14W’ - module (implementation of)

[0087] 14”, 14A”,14B”, 14R”, 14F”, 14W” - module (execution of)

[0088] 16 - runtime service

[0089] 18, 18A, 18B - inter-module communication (implementation of)

[0090] 20, 20A, 20B, 20R, 20F, 20W - module-directory

[0091] 22, 22A, 22B, 22R, 22F, 22W - module-implementation definition

[0092] 22’, 22A’, 22B’, 22R’, 22F’, 22W’ - hardware instruction

[0093] 24, 24A, 24B, 24R, 24F, 24W - hardware process

[0094] 26, 26A, 26B - directory relationship 

[0095] 28, 28A, 28B - inter-module communication (execution of)



20
19

10
02

12
 

27
 F

eb
 20

19 Editorial Note
2019100212

There is only One page of Claim



1
20

19
10

02
12

 
27

 F
eb

 20
19 CLAIMS

1. A modularized application implementation, comprising: 1) a first directory, 

wherein said first directory contains a first module-implementation definition, 

whereby said first module-implementation definition defines implementation of a first 

application module; 2) a second directory, wherein said second directory contains a 

second module-implementation definition, whereby said second module­
implementation definition defines implementation of a second application module; 

and 3) a directory relationship between said first directory and said second directory, 

whereby said directory relationship associates said first application module with said 

second application module for inter-module communication between said first 

application module and said second application module.

2. The modularized application implementation of Claim 1 wherein said inter­

module communication is data-exchange.

3. The modularized application implementation of Claim 1 wherein said first 

module-implementation definition includes a computer-executable.

4. The modularized application implementation of Claim 1 wherein said 

module-implementation definition includes a reference to a computer-executable.

5. A method of implementing an application module for performing a task, and 

for performing an inter-module communication to another application module, 

comprising steps of: 1) providing a directory, wherein said directory contains a 

module-implementation definition; 2) including a first execution instruction in said 

module-implementation definition, whereby said application module performs said 

task when said first execution instruction is executed; 3) including a second 

execution instruction in said module-implementation definition, whereby said 

application module performs said inter-module communication to said other module 
when said second execution instruction is executed.



1/6
20

19
10

02
12

 
27

 F
eb

 2
01

9

FIG. 1



2/6
20

19
10

02
12

 
27

 F
eb

 2
01

9

9 x cutting Started (SSIS) P01.DatAFIowTask.dtsx [Design] X

Control Flow Gfi Data How Parameters J Event Handers

Data How Task: Goj Data How Task

a Commdn

Σ Aggregate

A Conditional Split 
‘'♦o Data Conversion 

Derived Column 

Lookup 

r ¥ A 
3

1

Excel Source

1
Data Conversion 14

Merge

Merge Join 

Multicast

OLE DB Command 

Row Count

Script Component

Slowly Changing Dimension 

It Sort
V ..

3

• st

Lookup

^-18

14

Lookup No l^atch Output

OLE DB Destination

(Prior Art)

FIG. 2A

FIG. 2B



3/6
20

19
10

02
12

 
27

 F
eb

 2
01

9

FIG. 3A

! <14
I 
I Task A

I 
I Task B

l”-0

I 
I TaskC

FIG. 3B

I



4/6
20

19
10

02
12

 
27

 F
eb

 2
01

9

b

Folder

'Folder

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I

FIG. 3C



5/6
20

19
10

02
12

 
27

 F
eb

 2
01

9

FIG. 3D



6/6
20

19
10

02
12

 
27

 F
eb

 2
01

9

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I

FIG. 4

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I

Input

Λ

24F

28B

24W

Output

14W"

H

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I


