
US 20140214749A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0214749 A1

Ruehle (43) Pub. Date: Jul. 31, 2014

(54) SYSTEMAND METHOD FOR DFA-NFA (52) U.S. Cl.
SPLITTING CPC G06N 5/025 (2013.01)

USPC .. 706/48
(71) Applicant: LSI CORPORATION, San Jose, CA

(US) (57) ABSTRACT

Cost factors are utilized and may be estimated to determine 72). I tor: Michael Ruehle, Alb NMOUS (72) Inventor Icnaei Kuene, Albuquerque, (US) split points in a DFA-NFA hybrid. The cost factors may
(73) Assignee: LS CORPORATION San Jose, CA comprise NFA Start States, DFA backup factor, DFA-NFA

(US) s s token frequency, DFA steps to match, and NFA states to
match. Other cost factors may be used as necessary. The cost

(21) Appl. No.: 13/755.252 factors are multiplied by tunable coefficients and summed.
NFA states at minimum cost points are determined for

(22) Filed: Jan. 31, 2013 entrance states in the NFA. A DFA is compiled from the
entrance paths to the entrance states. NFA states and transi

Publication Classification tions needed only to reach entrance states may be deleted and
all remaining NFA states are made available for execution by

(51) Int. Cl. the NFA engine. An NFA representation of an NFA is exam
G06N 5/02 (2006.01) ined by bounded depth-first recursion from each start state.

200 y

250

instriction Merrery frterface

230

205

fascist
Cach

DFA Engine

290

280
Multiplexer

Patent Application Publication Jul. 31, 2014 Sheet 1 of 5 US 2014/0214749 A1

REGULAR
EXPRESSION: labcd (abefaceghl s - //(7

NFA

DFA;

Fig. 1

Patent Application Publication Jul. 31, 2014 Sheet 2 of 5 US 2014/0214749 A1

250

240
230

fasci - Sir "g"

280
Multiplexer

Fig. 2

Patent Application Publication Jul. 31, 2014 Sheet 3 of 5

xyz0-9abcdefgh
Regular Expression

3OO iStar asci.
States Fig

30 320

E)

3.5

18

S.

35

(SES) O.S:

$7) Sis
\

i

O.S.F.5

s

F-ri,
Rei is:

330

SS

82

38

O3

C

.

{O}

US 2014/0214749 A1

DFA Siggs F. Sas Total Efisic:
is Blais iii: 328i Exia:siri

340 SO

i. rtill

Sis xy.

5. si-S

3. - i, 2 yi-Sala

r -2 ii, xyac-Sabrieli,3e

-2- 360
- -N 3,53 xyz-Sibisi y

35 Ex-Sabikii,3Efg

3,50 xyg-9:tid,3-efgh

3.5 xyg-9: fiti, 3 seight

-3 3.5

Fig. 3

Patent Application Publication Jul. 31, 2014 Sheet 4 of 5 US 2014/0214749 A1

425

Regular Expression
435

FA Stari FA Basks DFAlias FA Stags. A Sists Total Eiigate
States factor. Icke? Erzsi try atch to Match East. Expressic.

- - - - - (1000D on (null)
--- --- -------

.8f35 0.3885 3.275 (.37 1.

.338 3.34. 2 £2,53 (15g:

35i i? 49. 3. 38836 1-9 g-z-3)

. .338 488 3. . 21:3Egg 4-9s-Ei-ig-z

tasitiot psi &is is firits 3 tirera-r"

Fig. 4

Patent Application Publication Jul. 31, 2014 Sheet 5 of 5 US 2014/0214749 A1

abcdefg 8

Regular Expression
xxxxx 515

- N 525
NAStar DEA Backu? Alf BEASles. NASlates glas list:

. tral

s i.

... i. a t 3. as

O 33 , 3. 53. ge:

.5 . 2.E. i:;a

.25 , s 3. is

s s i. s:

w--- -
E. : ... 153) iticist 3.

--- -...--

Fig. 5

US 2014/0214749 A1

SYSTEMAND METHOD FOR DEA-NEA
SPLITTING

BACKGROUND OF THE INVENTION

0001. With the maturation of computer and networking
technology, the Volume and types of data transmitted on the
various networks have grown considerably. For example,
symbols in various formats may be used to represent data.
These symbols may be in textual forms, such as ASCII,
EBCDIC, 8-bit character sets or Unicode multi-byte charac
ters, for example. Data may also be stored and transmitted in
specialized binary formats representing executable code,
Sound, images, and video, for example. Along with the
growth in the Volume and types of data used in network
communications, a need to process, understand, and trans
form the data has also increased. For example, the World
WideWeb and the Internet comprise thousands of gateways,
routers, Switches, bridges and hubs that interconnect millions
of computers. Information is exchanged using numerous high
level protocols like SMTP. MIME, HTTP and FTP on top of
low level protocols like TCP, IP or MAP. Further, instructions
in otherlanguages may be included with these standards. Such
as Java and Visual Basic. There are numerous instances when
information may be interpreted to make routing decisions. In
an attempt to reduce the complexity associated with routing
decisions, it is common for protocols to be organized in a
matter resulting in protocol specific headers and unrestricted
payloads. Subdivision of the packet information into packets
and providing each packet with a header is also common at
the lowest level. This enables the routing information to be at
a fixed location. With the increasing nature of the transmis
sion of information, there is an increasing need to be able to
identify the contents and nature of the information as it travels
across servers and networks. Once information arrives at a
server, having gone through all of the routing, processing and
filtering along the way, it is typically further processed. This
further processing necessarily needs to be high speed in
nature. The first processing step that is typically required by
protocols, filtering operations, and document type handlers is
to organize sequences of symbols into meaningful, applica
tion specific classifications. Different applications use differ
ent terminology to describe this process. Text oriented appli
cations typically call this type of processing lexical analysis.
Other applications that handle non-text or mixed data types
call the process pattern matching.

SUMMARY OF THE INVENTION

0002 An embodiment of the invention may therefore
comprise a method of splitting an automaton into a DFA
portion and an NFA portion, the method comprising compil
ing a ruleset into an NFA representation, analyzing the NFA
to determine entrance paths for matching by a DFA engine
and tail portions for matching by an NFA engine, the entrance
paths and tail portions covering the whole NFA, and compil
ing the entrance paths into a DFA for execution by a DFA
engine, wherein accepting states of the DFA are configured to
signal from the DFA engine to an NFA engine to activate
associated tail portion entrance states inside the NFA engine,
wherein the step of analyzing comprises evaluating a cost
function, said cost function comprising a plurality of factors.
0003. An embodiment of the invention may further com
prise a system for splitting an automaton into a DFA portion
and an NFA portion, comprising a DFA engine enabled to find

Jul. 31, 2014

matches to rules, an NFA engine, an NFA compiler enabled to
compile a ruleset into an NFA representation, the compiler
comprising a recursive entrance search function which is
callable on each NFA start state to select entrance states and
generate an entrance ruleset, and a DFA compiler enabled to
compile the entrance ruleset into a DFA with instructions in
an instruction format usable by the DFA engine.
0004 An embodiment of the invention may further com
prise a method of matching a ruleset in a DFA engine and an
NFA engine, comprising generating an NFA with an NFA
compiler from the ruleset, employing an entrance search
function to select entrance states and generate an entrance
ruleset, compiling the entrance ruleset into a set of DFA
instructions for the DFA engine, generating NFA instructions
for the NFA engine from the NFA states reachable from
entrance states, executing the DFA instructions in the DFA
engine, signaling entrance matches from the DFA engine to
the NFA engine, and executing the NFA instructions in the
NFA engine.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 illustrates a sample regular expression and a
corresponding NFA and DFA.
0006 FIG. 2 is a block diagram of a DFA-NFA hybrid.
0007 FIG.3 is an embodiment of an NFA with cost factors
calculated for each state.

0008 FIG. 4 is an embodiment of an NFA with cost factors
calculated for each state and with the minimum score at the
Start State.

0009 FIG. 5 is an embodiment of an NFA with cost factors
calculated for each state and with the minimum score at the
terminal state.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

0010. To find matches to regular expressions or similar
pattern matching rifles within a symbol stream, two main
types of state machines may be constructed, nondeterministic
and deterministic finite automata (NFAs and DFAs).
Abstractly, an NFA or DFA is a directed graph, in which each
graph vertex is a state and each graph edge is labeled with a
class of input symbols that it accepts in order to make a
transition from a source state to a destination state on that
symbol class. The defining difference between NFAS and
DFAs is that any two out-transitions from a DFA state must
have non-intersecting symbol classes, whereas a single NFA
state may have multiple out-transitions labeled with classes
containing the same symbol.
0011 FIG. 1 illustrates a sample regular expression 110, a
corresponding NFA 120 and DFA 130. In the embodiment of
FIG. 1, the regular expression 110 defines search criteria that
will match input data that begins with any number of charac
ters from the character class abcd, followed by a single
character from the character class abef, followed by a single
character from the character class aceg, followed by the
character h. thus, the regular expression comprises a spin
expression, e.g., abcd, where the * indicates that any
number of the preceding character class matches the con
straint, that results in a DFA 130 with many more states than
the corresponding NFA120. In the embodiment of FIG.1, the
input streams comprising the characters “bach' and
“bababbbbaaaaddddach', for example, would each match the

US 2014/0214749 A1

regular expression, while the characters “ebach' and “back”,
for example, would not match the regular expression.
0012. The exemplary NFA 120 comprises a state S0 that
either loops to itself upon receiving a character from the
character class abcd or transitions to a state S1 upon receiv
ing a character from the character class abef. The multiple
possible transitions from state S1 of the NFA 120 upon
receiving characters 'a' or billustrate the nondeterminism of
the NFA 120. From state S1, the state machine transitions to
state S2 upon receiving a character from the character class
aceg, and becomes inactive in response to receiving any
other characters. Finally, from state S2, the state machine
transitions to state S3 upon receiving the character h, and
becomes inactive in response to receiving any other character.
In one embodiment, the state S3 may be associated with an
output action, Such as outputting a token indicating a match of
the regular expression.
0013 U.S. patent application Ser. No. 13/684,922, by
Ruehle, titled, “DFA-NFA Hybrid', describes a hybrid NFA
DFA engine and methodology. This application is specifically
incorporated herein, by reference for all that it discloses and
teaches. A hybrid, HFA, can be used to draw on the strengths
of each type of automata to compensate for possible weak
nesses of the other type. The HFA engine comprises an NFA
engine and a DFA engine, each of which may be implemented
in hardware or software. The embodiment may comprise a
multi-threaded hardware DFA engine and a hardware
dynamically reconfigurable NFA cell array (in accordance
with U.S. Pat. No. 7,899,904 which is specifically incorpo
rated herein by reference for all that it discloses and teaches).
The DFA and NFA engines communicate to cooperatively
find rule matches in a symbol stream. The rules are not simply
divided between DFA and NFA engines. Cooperation occurs
within the matching process for each rule. A typical rule has
a beginning or entrance fragment matched by the DFA
engine, which then signals to the NFA engine indicating an
entrance NFA state to be activated. The NFA can then match
the remainder, or tail, of the rule. For simple rules, the split
between DFA and NFA can be understood at the rule level,
with a left portion of the rule being the DFA entrance and the
remaining right portion being the NFA tail.
0014 FIG. 2 is a block diagram of an embodiment of the
invention. A hybrid architecture 200 comprises a DFA engine
210 which receives input symbols 205 from an input stream
(not shown). Instructions for the DFA engine 210 are
accessed via an instruction cache 230. The instruction cache
230 may be an L1 cache. The instruction cache 230 in turn
receives/accesses instructions from an instruction memory
(not shown) via an instruction memory interface 250. The
architecture 200 also comprises an NFA engine 220. The NFA
engine 220 is connected to an instruction cache 240 which
also may be an L1 cache. The instruction cache 240 for the
NFA engine 220 accesses instructions from the instruction
memory (not shown) via the instruction memory interface
250. The NFA engine 220 receives input symbols 205 from
the same input stream (not shown) as the DFA engine 210.
FIG. 1 shows an Event FIFO 260 and an LP Sorter 270 for
processing signals from the DFA engine 210 to the NFA
engine 220. A multiplexer 280 receives outputs (rule match
information) from both the DFA engine 210 and the NFA
engine 220 and may output an output token 290 upon a
Successful match of a rule.
0015. A typical rule can be logically divided into a begin
ning, or entrance fragment, matched by the DFA engine 210

Jul. 31, 2014

and a trailing or tail fragment typically matched by the NFA
engine 220. The DFA engine 210, after matching an entrance
fragment, will signal to the NFA engine 220 indicating an
entrance NFA state which should be activated to continue
matching the rule. The signal may include a launch position in
the input symbol stream where that entrance state should be
activated. Normally this position will be after the last symbol
of the entrance fragment matched by the DFA. When the NFA
engine 220 reaches the indicated launch position, the entrance
state is activated and continues matching the rule by detecting
transition classes and activating next states in the NFA cell
array. This will happen until an accepting state is reached and
reports a full match of the rule, taking an action Such as
generating a token. The entrance fragment is assigned to the
DFA engine 210 by a DFA/NFA compiler (not shown) such
that it is a DFA friendly fragment. This may mean that it a
relatively simple rule fragment, matching a relatively short
maximum length, Such as 8 or 64 symbols, but which is not
extremely short, such as 1 or 2 symbols. The fragment may
also be relatively narrow as to symbol classes (character
classes not matching many symbols, such as abcd). The
fragment may also be at or near the beginning of the rule.
0016 For example, the regular expression “abc.*defghi’
can be used to illustrate afragment methodology embodiment
of the invention. In the expression, .* matches any number
of symbols of any type. A DFA entrance fragment may then
be “abc'. The first “... will not be included in the DFA frag
ment because it can match any length and using just 'a' or
'ab' would be too short, leaving ‘c’ either by itself or com
bined with a potentially lengthy “... Nothing is added by this.
Accordingly, the DFA is configured by the compiler to match
the fragment “abc. It is understood that additional rules may
be configured into the DFA. The NFA is configured to match
the remainder, or tail fragment, of the rule, “..*def*ghi'.
"Fragment accordingly means a portion of a rule whether it
is an entrance fragment or a tail fragment. Moreover, in situ
ations where a DFA or an NFA is suited to match an entire
rule, a fragment may be the entire rule. When the DFA
matches abc. somewhere in the input stream, it will signal to
the NFA to launch an entrance NFA state such as a state
matching “.*d”. This state will be activated in the NFA cell
array at the input position after the 'c' in “abc. so it is able to
match 'd at the next symbol position, or later (according to
the . * possible indeterminate matches). When it matches
'd, it transitions to a next state in the cell array, for example
matching 'e', and so forth, until a final state matches i and
generates a token. The DFA instructions indicating Successful
matches in DFA accepting States can include a flag or code to
indicate the proper action for each match. A DFA instruction
may contain a token ID to output for a whole rule match.
When an entrance fragment match is indicated, the same
token ID field can contain a reference to the NFA state to be
activated. This may be the address of the first instruction for
the NFA state and a number of instructions in the NFA state.

0017. Some rules, such as rules with complex beginnings,
wide symbol classes or large quantifiers near the beginning of
the rule, may be matched entirely by the NFA. The compiler
will not assign a beginning fragment to the DFA. These rules
may be essentially rules where no appropriate DFA entrance
fragment is present. For example, the rule “a-Z.*123’ may
be assigned entirely to the NFA because “a-Z is not an
appropriate DFA entrance fragment. It matches too easily,

US 2014/0214749 A1

thus putting an undesirable burden of work on the DFA engine
and generating an undesirable frequency of entrance state
signals into the NFA.
0018 Matching a whole rule requires the NFA cell array to
contain a corresponding start state matching “a-Z’, which is
active at the beginning of the scan and may remain active
during the entire scan. An NFA start state could match “a-Z'
and then transition to a next state matching “.* 1. If the NFA
engine 220 is a statically configurable cell array, start states
may be configured directly into the array before scanning. If
it is dynamically reconfigurable, then the DFA engine 210
may signal the NFA engine 220 at the beginning of each scan
to activate the necessary start states. The NFA engine 220 may
also be configured with a list of start states to activate at the
beginning of each scan. Since signaling NFA state activations
may be a function of the DFA engine 210, it may also function
to activate start states.
0019. By having the DFA engine 210 function to signal to
activate start states, the NFA cell array begins each scan
empty. By empty, it is meant that there are no active states.
The NFA cell array waits for the DFA to signal NFA state
activation. This puts the DFA engine 210 in full control of the
scan. The NFA engine 220 will match only in response to the
DFA engine's 210 signals. For example, the DFA engine 210
may be constructed to be configurable to match using mul
tiple DFAS, corresponding to multiple groups of rules, where
a scan command indicates which rule group should be used to
scan aparticular stream. The DFA engine 210 can then signal
to activate NFA start states corresponding to the selected rule
group by accessing start-of-scan instructions stored with the
associated DFA and by executing that DFA. The DFA engine
210 will match entrances and signal NFA entrance state acti
Vations corresponding to the selected rule group. Resultantly,
the NFA engine 220 will respond by activating states and
finding matches corresponding to the selected rule group.
0020. The DFA engine 210 may find numerous entrance
matches rapidly and generate the next entrance state launch
signal to the NFA engine 220 without waiting for the NFA
engine 220 to process the previous signal. As noted, the DFA
will be unaware of the state of the NFA since communication
flows predominantly in one direction. The signals may be
stored as entrance events in a buffer or queue which the NFA
engine 220 will be enabled to access. Each entrance event will
comprise a reference to the NFA state to be activated and a
launch position in the symbol stream where it should be
activated. This may be such as the position after the last
symbol in the entrance fragment match. The entrance events
may be sorted into order of increasing launch positions before
the NFA engine 220 processes them. This way they can be
processed in an order to activate their corresponding NFA
states at increasing symbol positions. Such sorting may be
accomplished by a Launch Position Sorter (LPS) 270 module
situated between the DFA engine 210 and the NFA engine
220. Though the LPS is shown in FIG. 2, it is understood that
the module may also be part of either the DFA engine 210 or
the NFA engine 220. The DFA engine 210 writes events with
launch positions into the LPS 270 and the NFA engine 220
will read events from the LPS 270. As noted, these may be
accessed in increasing order of launch position.
0021 Many sorter architectures are appropriate. For
example, the LPS 270 can have a sliding window of launch
position bins. Each bin would contain some number of events
with the corresponding launch position, or each bit could
contain a pointer into a linked list of events with the corre

Jul. 31, 2014

sponding launch position. A sliding window offixed size may
be adequate. Such as 128 symbol positions, assuming that
DFA entrance fragments are restricted to some shorter length,
such as 64 symbols. The left edge of the sliding window
would be determined by the read position of the NFA engine
220 and the DFA engine 210 may not progress so far ahead
that it overwrites the right edge of the sliding window. How
ever, to permit the DFA engine 110 to scan further ahead that
the LPS window length, the DFA engine 210 can write events
into a FIFO 260 of some predetermined capacity such as 256
events. These would transfer from a read side of the FIFO 260
into the LPS 270 whenever they did not transgress the right
edge of the sliding window. The DFA engine 110 may scan
arbitrarily far ahead of the NFA engine 220 until the event
FIFO 260 becomes full. The LPS 270 can be designed to
automatically output an event of the next lowest launch posi
tion each time the NFA engine 220 accesses it, such as by
transferring events from the first occupied bin within the
sliding window or from the linked list accessed through than
bin.

0022. When the NFA engine 220 reads entrance events
from the LPS 270, it will need to activate the referenced state
at the indicated launch position. In the case of a dynamically
reconfigurable NFA cell array, the NFA engine 220 will load
the referenced state in at least one cell of the array. The needed
state may not already be present, which may occur since the
state is for a rule just beginning to match and may not have
been used recently. If the state is already present in the NFA
cell array then the NFA engine 220 will not need to load that
state. To load a state into a cell(s), one or more instructions
corresponding to the state will be accessed from au instruc
tion memory or cache. If it is a cache, it is not unlikely that
there may be a cache miss. This may occur because the rule
may not have been matched recently. Due to the fact that the
NFA lags the DFA by a number of symbols, there is time to
resolve the cache miss by filling referenced instructions into
the cache. Accordingly, when a cache 240 is used for NFA
instructions, the NFA engine 220 will read events from the
LPS 270 as soon as possible without waiting until the NFA
engine 220 scan approaches the launch position. This is so as
to have more time to resolve any cache misses. After the
instructions for the state are retrieved from the memory or
cache, they can be loaded into one or more cells in the cell
array as required or indicated by those instructions. The cells
can be configured earlier, in background, rather than waiting
until the cell array reaches the launch position. The cells,
however, should not be configured too earlier to avoid too
many cells being occupied with inactive states waiting to
activate. Accordingly, the NFA engine 120 may wait until a
reasonable time before the launch position. This may be, for
example, 16 symbols prior to the commencement of loading
the state using its instructions. To support early instruction
cache access but delayed sate loading, the retrieved instruc
tions may be held in a queue waiting for their time to load.
0023. Once the target state is present in the NFA cell array
(statically or dynamically configurable), it needs to be acti
vated at the launch position indicated by the event. Each NFA
cell may contain a launch timer which can be programmed in
the background before the launch position is reached. The
timer will wait until the launch position is reached and then
autonomously activate the cell. In this manner, the entire
action of the event can be applied to the cell(s) with the target
state in advance in the background and no other actions need

US 2014/0214749 A1

to be performed at the launch position. This may aid in mini
mizing stalls that would ensue for taking actions exactly at the
lunch position.
0024. The HFA architecture, in which a DFA engine 210
matches rule entrance fragments, and an NFA engine 220
activates corresponding entrance states and matches the
remainders of the rules, leverages strength of both DFA 210
and NFA engines 220. It also compensates for any weakness
that may be part of either type of engine. In the HFA, the DFA
portion is only assigned simple entrances and simple whole
rules to minimize state explosion. It is understood that the
term simple is relative and a compiler can vary in its assigna
tions of fragments to DFAs. Further, the DFA is assigned
relatively short fragments and rules. Again, it is understood
that the term short is relative and a compiler can vary in its
assignations of fragments to the DFAs. The DFA will match
the entrances of most rules, which correspond to the most
frequent active NFA states if an NFA engine is used without
DFA assistance. In other words, the most frequent active NFA
states are those that are at the beginning of rules. Accordingly,
have the DFA match these portions will minimize the number
ofrequired active states in the NFA, thus leaving fewer active
NFA states to track on average. The sub-expression level
cooperation between DFAs and NFAS achieves good com
pensation between the weaknesses and strengths of DFAS and
NFAS. The high scan speed of a multi-threaded DFA engine
may be used to keep up with the NFA cell array speed.
0025. An HFA compiler will configure the DFA and NFA
instructions with instructions appropriate to cooperate in
matching a given ruleset. The compiler may be constructed as
follows: An NFA compiler will be used to translate a set of
regular expressions or similar rules into an NFA. Then an
algorithm is applied to cut the NFA graph into DFA portions
adjacent to the root state(s) and remaining NFA portions. One
possible algorithm is to make the cut a fixed distance from the
root state. Such as 4 transitions away but cut closer to the root
prior to any NFA state with an alternative in-transition other
than the path from the root, such as the self-transition in a .*
state or prior to a transition with a symbol class wider than
some threshold, such as 5 symbols. The DFA portion of the
NFA graph is then transformed into an actual DFA by subset
construction algorithms. These treat each state with a cut
point transition as an accepting state which is used to generate
an entrance event into the NFA state across the cut transition.
0026. There may be different ideal splits in the HFA
engine. The above described mechanism may be somewhat
tunable by varying threshold numbers, fine granularity may
also be difficult to achieve.

0027. Rather than the rules being analyzed to split into
DFA entrance fragments and NFA tails, the ruleset is first
compiled into an NFA representation. The NFA is then ana
lyzed to determine appropriate cut points. It is understood that
the NFA may not be cleanly split at cut points into DFA and
NFA portions, but various possibly overlapping entrance
paths and tail portions may be identified, with entrance paths
compiled into DFA instructions, and tail portions compiled
into NFA instructions. The NFA can be optimized and thereby
provide a stable methodology for rule splitting.
0028. The NFA may be constructed by well-known meth
ods. Those skilled in the art will readily understand NFA
construction. Standard methods may involve the use of epsi
lon transitions (state transitions that are followed without
consuming an input symbol). Epsilons are compatible with
the method of this invention, merely by following them auto

Jul. 31, 2014

matically by additional recursion without altering any calcu
lations. They will not be considered because they can be
removed by other well-known algorithms which is lends itself
efficiently to hardware NFA engines. If the target NFA engine
employs complex state cells, for example cells able to track a
quantified symbol class (“spinner) followed by an out-tran
sition symbol class such as “a-Z{0,20123, then the clas
sical NFA states may be fit into complex NFA “super-states'
before applying the methods of this invention. This may result
in more accurate cost estimation using the methodology
described herein. The NFA may also be optimized by well
known methods, such as combining parallel transitions or
merging redundant states. In addition to improving HFA
engine performance, an optimized NFA is closer to being a
canonical representation, so that DFA-NFA splitting is more
stable, thus giving consistent results independent of equiva
lent rule representation.
0029. In a method of the invention, an intermediate
“entrance ruleset' is generated, containing “entrance expres
sions', which are regular expressions representing paths from
NFA start states to selected NFA “entrance states'. Each
entrance expression references its associated entrance state.
When a simple rule is considered, there may often be a single
entrance expression corresponding to the rule which matches
or resembles a beginning portion of that rule. However, for
more complex rules, there may be multiple associated
entrance expressions representing various ways the rule can
match a beginning sequence of symbols. Also, multiple rules
may share a single associated entrance expression, such as
multiple rules with identical or similar beginnings.
0030. An entrance ruleset may then be compiled into a
DFA by well-known algorithms for execution by the DFA
engine. Accepting states of the DFA are configured to signal
from the DFA engine to the NFA engine to activate their
associated entrance states inside the NFA engine. The NFA
engine may be configured to execute these entrance states
when activated as well as all other NFA states reachable from
those entrance states. When the entrance NFA state associated
with a DFA accepting state is a terminal accepting state, for
example if the entrance expression is an entire rule, the DFA
accepting state may instead be configured to signal a match of
the associated rule, without signaling to the NFA engine, thus
implementing rules matched purely by the DFA engine.
When an entrance expression is an empty or null expression,
containing no symbol classes, the referenced entrance state
must be an NFA start state which may beactivated in the NFA
engine at the beginning of each scan (with or without signal
ing from the DFA engine), thus implementing rules matched
purely by the NFA engine.
0031. For example, a linear sequence of NFA states such
as A->B->C->D->E->F, derived from a simple rule, an
entrance state Such as State D may be chosen. The symbol
classes for A->B->C->D transitions may then be written
sequentially in the form of a regular expression, which is the
associated entrance expression. For choosing a more prefer
able entrance state, a cost function can be defined. This cost
function algorithm will evaluate the cost of choosing any
given state as the entrance state for a branch of an NFA. The
factors used in the cost analysis can be any factor that a user
determines provides useful input to the algorithm. It is under
stood by those in the art that the range of cost factors is very
broad. The state which minimizes the cost function is selected
as the entrance state. If the start state (A) is selected as the
entrance state, the entrance expression will accordingly be

US 2014/0214749 A1

empty. This will result in a pure NFA engine matching for the
example rule. If the terminal state (F) is selected as the
entrance state, the entrance expression will be equivalent to
the whole rule, resulting in pure DFA engine matching for the
example rule.
0032. In an embodiment of the invention, a cost function
uses 5 cost components. These cost components are measured
for any target candidate entrance state tested. FIG. 3 is an
embodiment of an NFA with cost factors calculated for each
state. The NFA 300 shows an NFA starting in the root state
(S0) and descending to a matching state (S9). A first cost
factor is "NFA start states' 310. This cost component will
have a value of 1 if the target state is a start state, or 0 if the
target state is not a start state. This cost component represents
the impact of having a start state always active in the NFA
engine, which will be the case if a start state is selected as an
entrance State.

0033. A second cost component is “DFA backup factor
320. This component is the average length of each DFA
descent if a DFA for the entrance expression for the target
state is stimulated by arbitrary input symbols, realistic for the
particular application but not deliberately matching the rule.
This cost factor determines the work associated with the
selected entrance expression in the form of state transitions
executed. These may be estimated as an average descent
depth. It is noted that the name “backup factor derives from
a DFA execution model in which, after each DFA descent, the
scanner backs up to the symbol following the first symbol
consumed, to look for a match starting at the next position.
For example, if an entrance expression is “a-Za-Za-Za
Z’, the backup factor may be close to 4 because the sequence
of classes matches so easily and this means a correspondingly
high burden of work for the DFA engine. To compute the
“DFA backup factor 320 cost component, a series of prob
abilities may be estimated for Successfully matching up to
each NFA state, from the start state to the target state. The
probabilities are based on the width or content of the various
transition symbol classes and decrease with each state
because all previous classes must be matched before reaching
the next class. Precise appropriate probability estimation
methods vary by application. For example, if the input stream
will be independent, uniform, random distributions of all
possible symbols, then the probability of matching a single
symbol class may be estimated by the number of symbols in
the class divided by the total number of symbols existing and
the probability of matching up to each state may be estimated
as the product of the preceding symbol class match probabili
ties. For example, statistical factors in typical input streams
may be considered. A q followed by a u may factor appro
priately. The compiler may use simple statistics regarding
typical frequencies for determining the costs. The estimated
probabilities of matching through each symbol class may
then be summed to obtain an estimated backup factor. The
backup factor calculation may be modified to omit the first K
estimated probabilities from the sum. For example, if K=1 or
2, then to represent the concept that given a full ruleset the
DFA engine is likely to take K steps from the root state in most
descents even without the current rule so backup factor up to
that point is “free'. The final estimated probability may not be
omitted when in this range if signaling to the NFA engine
requires an extra DFA engine step.
0034. A third cost component is “DFA-NFA token fre
quency' 330. This is the cost component for the average
number of signals (tokens) that would be sent from the DFA

Jul. 31, 2014

engine to the NFA engine per symbol position in the input
stream, if a DFA for the entrance expression for the target
state is stimulated by arbitrary input symbols. Equivalently, it
is the probability of reaching the accepting state and emitting
a DFA-NFA token on each DFA descent, so it is expressed as
a value between 0.0 and 1.0. This cost component may be
considered relevant because each DFA-NFA token uses lim
ited system resources. Such as the path to access NFA instruc
tions and load or activate NFA states. If DFA-NFA tokens are
too frequent, performance may bottleneck. For example, if an
entrance expression is “a-Z’, the DFA-NFA token frequency
may be very high, Such as 0.8 because that expression is easily
matched. To compute DFA-NFA token frequency, a probabil
ity may be estimated for Successfully matching through all
NFA state transition symbol classes from the start state up to
the target state, as described for the “DFA backup factor 320
cost component.
0035 A fourth cost component is “DFA steps to match'
340. This is an estimated number of state transition steps the
DFA engine may take to descent all the way from the start
state to the target state. If the states in the path are simple
classical NFA states, this cost component is simply the num
ber of States preceding the target state. If some state is a
complex NFA “super-state', such as S3 matching “d{1,3} e”
then its contribution may be high or not precisely defined (2 to
4 in this example). Either the highest or lowest value can be
used. A medium value could also be used to provide a blend
ing of the two numbers. This cost component provides rel
evant input for when a rule matches, or partially matches,
when the DFA engine will do a corresponding amount of
work.

0036) A fifth cost component in FIG. 3 is “NFA states to
match' 350. This is an estimate of the number of NFA states,
beginning with the target state, which would be activated in
the course of matching the rule. If complex NFA super-states
are used by the NFA engine, as noted above, the number of
Super-states may be estimated. For example, if a Super-state
can match a string of multiple symbol classes, represented by
a linear sequence of single-transition NFA states, then a com
patible linear state sequence in the path from the start state to
the target state may be counted once. If various Super-state
types have varying system cost, they may be given different
weights in the count. The "NFA states to match' 350 cost
component provides relevant input when a rule matches, or
partially matches, and the NFA engine will do a correspond
ing amount of work by tracking the active states. Calculation
of the “NFA states to match”350 can be simplified (there may
be varying numbers of states to match by varying paths in a
complex NFA and long distances may remain in the NFA to
final accepting states). Rather than counting states after the
target state as a positive cost, the states before the target State
may be counted as a negative cost. The states after the target
state can be thereby ignored. This negative/positive Switch
provides a similar impact to the cost because the absolute cost
value is what is being targeted. The difference between cost
values at different target states is the value that matters for
selecting a minimum cost entrance state, and whatever the
true number of NFA states to match may be, this number
decreases as longer DFA entrances are considered and more
NFA states are left behind the target state.
0037. The cost factors, five in the examples shown in FIG.
3, can be combined. To combine the five cost components into
a single cost value, various methods may be used by those
skilled in the art. One example is to multiply each component

US 2014/0214749 A1

by a corresponding cost weight and Sum the results. The cost
weights can be chosen based on an expected impact of each
cost component on the performance of the DFA-NFA hybrid
engine. This adjusts the cost components into a comparable
scale. It is understood that the weighting can be interpreted
differently and is not absolute. For example, the first three
cost components (NFA start states 310, DFA backup factor
320 and DFA-NFA token frequency 330) apply under arbi
trary stimulus and typically have corresponding system lim
its. This is such that they are well tolerated without perfor
mance loss up to their limits. However, they degrade
performance beyond their limits. Weights can be chosen to
scale the corresponding limit values to the same cost contri
bution. The last two cost components (DFA steps to match
340 and NFA states to match 350) apply when rules fully or
partially match and the relative impact of another step in the
DFA engine related to another state in the NFA engine may be
compared, with weights chosen to Scale equivalent impacts to
equivalent cost contributions. Scaling between the first three
and last two cost components may be accomplished by esti
mating the frequency at which a typical single rule will match
or partially match in the target application. The weights for
“DFA backup factor”320 and “DFA steps to match”340 may
be in a ratio equal to this estimated rule match frequency. The
weights for “DFA-NFA token frequency” 330 and “NFA
states to match 360 may be in the same ratio. For example,
total cost calculation using weights for one HFA engine
embodiment and target application may be: (1,000xNFA start
statesx10)+(100,000xDFA backup factorx20)+(600,000x
DFA-NFA token frequencyx30)+(1xDFA steps to matchx
50)+(6xNFA states to matchX60).
0038. The cost value may thus be calculated for each target
state in a linear state path from a start state and the target state
with lowest cost may be selected as an entrance state. In the
example used in FIG. 3, the lowest target state cost is S5 with
a lowest cost of 913.53 360. The entrance expression for S5
would accordingly be "xyz0-9abcd{1,3}ef. The state
path from the start state to the entrance state is the associated
entrance path, which may be represented by an entrance
expression, written to the entrance ruleset, to be compiled for
the DFA engine.
0039 FIG.4 is an embodiment of an NFA with cost factors
calculated for each state and with the minimum score at the
start state. Similar to FIG.3, an NFA 400 is shown starting in
a root state (S0) and descending to a matching state (S6). A
same set of cost factors 415 are used to determine the entrance
fragment. The start state cost of S0 is 10000 with a null
entrance expression 425. The rule 425 used in FIG. 4 has wide
initial classes of 1-9 and g-Z. These initial classes cause a
high DFA backup factor in states S1 through S4. This high
DFA backup factor causes the total cost to well exceed the
start state cost in states S1 through S4. Further costs cannot be
considered past state S4 due to the spinner a-Z*. Accord
ingly, the global minimum cost is 10000 at S0, with a null
entrance expression 425. Due to the start state having the
lowest cost, start state S0 should be programmed into the NFA
engine as a start state and the rule will be matched entirely in
the NFA. Although this may be an expensive result, 10,000, it
is cheaper than the backup factor in states S1 through S4 and
the token frequency that would result from any entrance frag
ment that might be assigned to the DFA engine. It is under
stood that the cost factors are combined in the same manner as
that of FIG. 3.

Jul. 31, 2014

0040 FIG. 5 is an embodiment of an NFA with cost factors
calculated for each state and with the minimum score at the
terminal state. Similar to FIG. 3 and FIG. 4, an NFA500 is
shown starting in a root state (S0) and descending to a match
ing state (S7). A same set of cost factors 515 are used to
determine the entrance fragment. The start state cost of S0 is
again 10000 with a null entrance expression 525. However,
due to the progressive matching of a, b, c, and d in
states S1 through S4, which have low DFA backup factor
costs and DFA-NFA token frequency costs, the cost factor
stabilizes through state S4. Accordingly, S4 has a minimum
local cost and “abed may be a reasonable entrance expres
S1O.

0041 Continuing with FIG. 5, in states S5 through S6, the
total cost increases due to increasing DFA steps to match, but
NFA states to match does not decrease because any portion of
the linear character sequence 'abcdefg' can fit in one Super
state. At the terminal accepting state S7, NFA states to match
decreases from 0 to -1. This decrease to -1 reflects that if the
DFA matches the whole rule, the character sequence super
state is no longer required in the NFA to match, and the total
score decreases. Accordingly, terminal state S7 has the lowest
score, 119.53. The entrance expression “abcdefg” is the
whole rule, and the DFA engine will be programmed to match
this rule without NFA involvement. It is understood that the
cost factors are combined in the same manner as that of FIG.
3

0042. The foregoing discussion relates to choosing
entrance States by minimizing a cost function along a linear
NFA graph. It is understood, however, that the actual NFA for
a given ruleset may not be a linear state path. Recursive
analysis can be used for non-linear State path issues. Begin
ning at each start state in the NFA, a depth-first recursive walk
through the NFA can be performed. The recursive path will
reach to maximum depth along one branch from the start state
before backing up to follow another branch. The recursion
may be limited to a maximum number of steps from the start
state, corresponding to the maximum entrance length desired,
Such has 64, to avoid infinite recursion. A recursive function
may be defined which his called with parameters of next state
and next depth and returns a value which is either “covered
or “not covered. At a current state and depth, this function
may recursively call itself with parameters of a destination
state of a transition from the current state and the current
depth plus one. To compute cost components and compare
cost values, this function may be able to access its current
recursive path through various states from the start state, as
well as the history of total costs computed at each state on that
path. For example, this may be done by pushing a new state
and cost information onto a stack at each stage of recursion,
popping entries from the stack whenever the function returns,
and reading the stack from within the function as needed.
0043. Whena recursive function is called on a current state
and depth, it may first compute the cost components and total
cost value for potentially selecting the current state as an
entrance state, using the recursive path to this state from the
start state as the entrance path.Cost components at the current
state may be computed incrementally from cost components
at the previous state to save computation time. Current state
and cost information may be saved on a stack for access
during deeper recursion. Then, if the current depth is not the
maximum depth, and the current state is not an accepting
state, the function may recursively call itself on the destina
tion state of each out-transition from the current state and

US 2014/0214749 A1

examine the return values. If all return values are “covered',
then longer entrances have already been selected and the
current function call simply returns “covered as well. In all
other cases (at maximum depth, at an accepting state, or an
out-transition not covered) an entrance must still be chosen.
The current cost is compared with cost values for previous
positions in the recursive path. If the current cost is the mini
mum cost, then the function selects the current state as an
entrance state, generates an entrance expression correspond
ing to the recursive path to this state, to it to the entrance
ruleset along with a reference to the entrance (current) state
and returns a “covered value. If the current cost is not the
minimum cost, then the function returns an “uncovered
value.

0044) When the recursive function called on a next state
returns “covered', a “covered' flag should generally be
applied to that next stated as well as to the state transition the
function call was made through if it was a recursive call. Such
covered flags can be later used to delete states and transitions
needed only for entrance paths. But entrance states them
selves should not be flagged as covered. If any state in the
recursive path to the transition or next state has an alternative
in-transition not involved in the recursive path itself, then the
transition or next state will not be flagged “covered” because
they may be needed for matching activity other than entrance
paths.
0045. The recursive function can be called once on each
NFA start state, at a starting depth of Zero, from which it will
search deeper for entrances. By this recursive technique, vari
ous recursive paths from each start state can be examined as
linear state paths, from which entrance state will be chosen.
Optimizations may be applied to the recursive function.
Though recursion to a depth such as 64 is possible, the current
cost components in comparison with the minimum cost seen
on the entrance path so far can be examined and determine
whether it is very likely, or unlikely, that a new minimum will
be found by deeper recursion. If so, the recursion can be
exited early. The first three cost components in FIG.3 tend to
stabilize to near-constant values after the estimated probabil
ity of penetrating the NFA to the current depth becomes very
Small. After this happens, only the increasing “DFA steps to
match'350 and decreasing "NFA states to match'360 remain
changing. If the current cost is Substantially higher than the
minimum cost, it may be judged very unlikely to recover.
0046. Another optimization is that loops in the NFA may
be penalized during recursion. If the same state has been
visited more than once in the recursive path, then passing it
should only decrease "NFA states to match 360 once, or
perhaps not at all, because the state apparently may be acti
vated by the NFA engine Subsequent to an entrance State
beyond it. This cost penalty can then lead to an early exit,
rather than following the same loop repeatedly to maximum
depth. Alternatively, recursion can be terminated automati
cally if the same state is seen twice.
0047 Another optimization is that recursion may be ter
minated at any state transitioning to itself, or a complex
Super-state comprising an infinite 'spinner” Such as “a-Z'.
This type of state is very inefficient for DFA engine matching
and limited-depth recursion cannot get cleanly past it. So,
typically, it may be preferable to select an earlier entrance and
leave it to the NFA engine. Similarly, if a spinner super-state
is encountered with a high finite maximum spin value, such as
“a-Z. {0,100, recursion can terminate. A spinner with small
maximum, such as “a-Z. {3,5}” can be traversed by the

Jul. 31, 2014

recursion, with appropriate cost component updates, such as
“DFA steps to match' 350 increased by the spin maximum
and “DFA backup factor 320 and “DFA-NFA token fre
quency’330 adjusted for multiple symbol class transitions.
0048. Another optimization is that each NFA state visited
during recursion may have an associated counter incre
mented, and recursion may terminate at any state where the
counter exceeds a limit value, such as 100, which could hap
pen in a complex NFA graph with many possible recursive
paths to reach the state. By terminating recursion early in Such
a case, exponential growth in search time can be prevented.
0049. After completing the recursion through Each NFA
start state, the NFA will have various states selected as
entrance states. The entrance ruleset will contain entrance
expressions associated with those entrance States. The
entrance ruleset can be compiled into a DFA with accepting
states configured to signal from the DFA engine to the NFA
engine to activate the associated NFA entrance states inside
the NFA engine. Other states of the NFA may also be executed
by the NFA engine, but portions which are only needed to
implement entrance paths may be deleted to reduce and sim
plify the states remaining for the NFA engine. Specifically,
any state or transition flagged “covered by the recursive
search may be deleted from the NFA before encoding into
instructions for the NFA engine.
0050. In a complex NFA, some NFA states may be used in
entrance expressions, but may be reachable from other
entrance states. Thus, some original NFA states may contrib
ute to the DFA executed by the DFA engine, but also some
times be tracked by the NFA engine. While this may be
duplicative, it does not provide extreme inefficiencies. For
example, for the expression “ac12)?bcdefghijk.*.xyz,
selected entrances may be “abed” and “al2b'. The “abed”
path passes through the entrance state of the “a 12b' path. If a
DFA is constructed directly from the entrance-only portion of
this NFA, the DFA engine will reach an accepting state to
signal the NFA engine after just 'ab', which is generally too
short to be effective as an entrance. The earlier accepting state
may be removed, extending the latter entrance to “a 12bcd'.
However, this entrance is not optimal. Thus, to compile the
DFA straight from the entrance portions of the original NFA,
without intermediate generation of entrance expressions, one
of the suboptimal options is chosen. DFA construction meth
odologies can be altered to obtain the same results as using
entrance expressions.
0051 One possible way to alter DFA construction is as
follows: Each NFA state and transition on any entrance path
may be labeled with a list of entrance path IDs corresponding
to all selected entrance paths comprising that state. During
subset construction on the labeled NFA states, each state with
multiple IDs listed is treated as multiple states, with one
variant for each ID and thus, each state may appear multiple
times in each NFA state Subset corresponding to a constructed
DFA state. All ID variants of each start state are included in
the subset for the DFA root state. When constructing DFA
next states, each NFA state may transition only through NFA
transitions with the same ID. An NFA state is considered an
accepting state for DFA construction only if it is the entrance
state for the entrance path corresponding to its ID. This
adjusted Subset construction scheme generates a DFA equiva
lent to the use of entrance expressions because it essentially
operates on multiple entrance path NFA graphs, although by
reference to a single master NFA graph.

US 2014/0214749 A1

0.052 An embodiment of this invention extends each rule
entrance path to an optimal length in the DFA by selecting the
length that minimizes the total impact of multiple cost com
ponents. Three cost components, "NFA start states”, “DFA
NFA token frequency” and “NFA states to match', decrease
as the entrance length grows, and therefore push the entrance
choice longer. Two cost components, “DFA backup factor”
and “DFA steps to match generally increase as the entrance
length grows and therefore pull the entrance choice shorter.
The optimal length occurs where these competing forces
balance. The "NFA start states’ component matters for the
step from a null entrance to a 1-step entrance, pushing to
generate Some 1 + step entrance unless all have very high
costs. Typically, the “DFA-NFA token frequency” and “DFA
backup factor” components dominate for short entrances,
Such as 1 to 4 steps, but their contribution gradients decrease
rapidly and after several steps the “DFA steps to match' and
“NFA states to match” components are left to compete.
0053 Embodiments of methods and systems of this inven
tion are tunable by altering the cost component weights. If a
particular cost component is overly prominent at Scan time,
Such as the DFA engine slowing down because its backup
factor is too high, then the corresponding weight may be
increased. If a particular cost factor has great room to spare at
scan time, then the corresponding weight may be decreased.
0054 The foregoing description of the invention has been
presented for purposes of illustration and description. It is not
intended to be exhaustive or to limit the invention to the
precise form disclosed, and other modifications and varia
tions may be possible in light of the above teachings. The
embodiment was chosen and described in order to best
explain the principles of the invention and its practical appli
cation to thereby enable others skilled in the art to best utilize
the invention in various embodiments and various modifica
tions as are Suited to the particular use contemplated. It is
intended that the appended claims be construed to include
other alternative embodiments of the invention except insofar
as limited by the prior art.
What is claimed is:
1. A method of splitting an automaton into a DFA portion

and an NFA portion, the method comprising:
compiling a ruleset into an NFA representation;
analyzing said NFA to determine entrance paths for match

ing by a DFA engine and tail portions for matching by an
NFA engine, said entrance paths and tail portions cov
ering a whole NFA; and

compiling said entrance paths into a DFA for execution by
a DFA engine, wherein accepting states of said DFA are
configured to signal from said DFA engine to an NFA
engine to activate associated tail portion entrance states
inside said NFA engine;

wherein said process of analyzing comprises evaluating a
cost function, said cost function comprising a plurality
of factors.

2. The method of claim 1, wherein the step of compiling an
entrance ruleset into a DFA comprises:

generating entrance expressions corresponding to said
determined entrance paths;

compiling said entrance expressions into an entrance NFA;
and

compiling, by Subset construction, said entrance NFA into
said DFA for execution by said DFA engine.

3. The method of claim 1, wherein said step of compiling
an entrance ruleset into a DFA comprises:

Jul. 31, 2014

labeling each NFA state and transition on any entrance path
with a list of entrance path IDs which correspond to all
determined entrance paths traversing said NFA state;

treating each state with multiple IDs listed as multiple
states during Subset construction with one variant for
each ID:

including all ID variants of each start state in the subset for
a DFA root state; and

when constructing DFA next states, limiting NFA transi
tions so that each NFA state may transition only through
NFA transitions with the same ID.

4. The method of claim 1, wherein said plurality of factors
are Summed in the cost function.

5. The method of claim 1, wherein said plurality of factors
comprise:
NFA start states;
DFA backup factor;
DFA-NFA token frequency;
DFA steps to match; and
NFA states to match.
6. The method of claim 1, wherein said plurality of factors

are Summed in the cost function, said plurality of factors are
individually multiplied by a cost weight, and said plurality of
factors comprise:
NFA start states;
DFA backup factor;
DFA-NFA token frequency;
DFA steps to match; and
NFA states to match.
7. The method of claim 1, wherein said step of analyzing

the NFA comprises recursively analyzing said NFA, wherein
entrance paths are examined in depth first order, and selected
when the cost function values are lower than cost function
values for shorter and longer entrance paths.

8. The method of claim 7, wherein said step of compiling
an entrance ruleset into a DFA comprises:

generating entrance expressions corresponding to said
Selected entrance paths;

compiling said entrance expressions into an entrance NFA;
and

compiling by Subset construction said entrance NFA into
said DFA for execution by a DFA engine.

9. The method of claim 7, wherein said plurality of factors
are Summed in the cost function.

10. The method of claim 7, wherein said plurality of factors
comprise:
NFA start states;
DFA backup factor;
DFA-NFA token frequency;
DFA steps to match; and
NFA states to match.
11. The method of claim 7, wherein said plurality of factors

are Summed in said cost function, said plurality of factors are
individually multiplied by a cost weight, and said plurality of
factors comprise:
NFA start states;
DFA backup factor;
DFA-NFA token frequency;
DFA steps to match; and
NFA states to match.
12. A system for splitting an automaton into a DFA portion

and an NFA portion, comprising:
a DFA engine enabled to find matches to rules:
an NFA engine;

US 2014/0214749 A1

an NFA compiler enabled to compile a ruleset into an NFA
representation, said compiler comprising a recursive
entrance search function which is callable on each NFA
start state to select entrance States and generate an
entrance ruleset; and

a DFA compiler enabled to compile said entrance ruleset
into a DFA with instructions in an instruction format
usable by said DFA engine.

13. The system of claim 12, wherein said NFA compiler is
further enabled to encode states reachable from selected
entrance states for use by said NFA engine.

14. The system of claim 12, wherein instructions for DFA
accepting states corresponding to non-terminal entrance
states are able to command signals to said NFA engine to
activate corresponding NFA entrance states.

15. The system of claim 12, wherein:
the NFA compiler is further enabled to encode states reach

able from selected entrance states for use by said NFA
engine; and

wherein instructions for DFA accepting states correspond
ing to non-terminal entrance States are able to command
signals to said NFA engine to activate corresponding
NFA entrance states.

16. A method of matching a ruleset in a DFA engine and an
NFA engine, comprising:

Jul. 31, 2014

generating an NFA with an NFA compiler from said
ruleset;

employing an entrance search function to select entrance
states and generate an entrance ruleset;

compiling said entrance ruleset into a set of DFA instruc
tions for said DFA engine;

generating NFA instructions for said NFA engine from said
NFA states reachable from entrance states:

executing said DFA instructions in said DFA engine;
signaling entrance matches from said DFA engine to said
NFA engine; and

executing said NFA instructions in said NFA engine.
17. The method of claim 16, further comprising activating

entrance states which are NFA start states in said NFA engine
at a beginning of a new scan.

18. The method of claim 16, further comprising matching
at least one whole rule with said DFA engine.

19. The method of claim 16, further comprising:
activating entrance states which are NFA start states in said
NFA engine at said beginning of a new scan; and

matching at least one whole rule with said DFA engine.
20. The method of claim 16, further comprising reporting

rule match information from either said DFA engine or said
NFA engine.

