
US 20140214749A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2014/0214749 A1 

Ruehle (43) Pub. Date: Jul. 31, 2014 

(54) SYSTEMAND METHOD FOR DFA-NFA (52) U.S. Cl. 
SPLITTING CPC ...................................... G06N 5/025 (2013.01) 

USPC ............................................................ 706/48 
(71) Applicant: LSI CORPORATION, San Jose, CA 

(US) (57) ABSTRACT 

Cost factors are utilized and may be estimated to determine 72). I tor: Michael Ruehle, Alb NMOUS (72) Inventor Icnaei Kuene, Albuquerque, (US) split points in a DFA-NFA hybrid. The cost factors may 
(73) Assignee: LS CORPORATION San Jose, CA comprise NFA Start States, DFA backup factor, DFA-NFA 

(US) s s token frequency, DFA steps to match, and NFA states to 
match. Other cost factors may be used as necessary. The cost 

(21) Appl. No.: 13/755.252 factors are multiplied by tunable coefficients and summed. 
NFA states at minimum cost points are determined for 

(22) Filed: Jan. 31, 2013 entrance states in the NFA. A DFA is compiled from the 
entrance paths to the entrance states. NFA states and transi 

Publication Classification tions needed only to reach entrance states may be deleted and 
all remaining NFA states are made available for execution by 

(51) Int. Cl. the NFA engine. An NFA representation of an NFA is exam 
G06N 5/02 (2006.01) ined by bounded depth-first recursion from each start state. 

200 y 

250 

instriction Merrery frterface 

230 

205 

fascist 
Cach 

DFA Engine 

290 

280 
Multiplexer 

  

  

  

    

  



Patent Application Publication Jul. 31, 2014 Sheet 1 of 5 US 2014/0214749 A1 

REGULAR 
EXPRESSION: labcd (abefaceghl s - //(7 

NFA 

DFA; 

Fig. 1 

  



Patent Application Publication Jul. 31, 2014 Sheet 2 of 5 US 2014/0214749 A1 

250 

240 
230 

fasci - Sir "g" 

280 
Multiplexer 

Fig. 2 

  



Patent Application Publication Jul. 31, 2014 Sheet 3 of 5 

xyz0-9abcdefgh 
Regular Expression 

3OO iStar asci. 
States Fig 

30 320 

E) 

3.5 

18 

S. 

35 

( SES ) O.S: 

$7 ) Sis 
\ 

i 

O.S.F.5 

s 

F-ri, 
Rei is: 

330 

SS 

82 

38 

O3 

C 

. 

{O} 

US 2014/0214749 A1 

DFA Siggs F. Sas Total Efisic: 
is Blais iii: 328i Exia:siri 

340 SO 

i. rtill 

Sis xy. 

5. si-S 

3. - i, 2 yi-Sala 

r -2 ii, xyac-Sabrieli,3e 

-2- 360 
- -N 3,53 xyz-Sibisi y 

35 Ex-Sabikii,3Efg 

3,50 xyg-9:tid,3-efgh 

3.5 xyg-9: fiti, 3 seight 

-3 3.5 

Fig. 3 

  

  

  



Patent Application Publication Jul. 31, 2014 Sheet 4 of 5 US 2014/0214749 A1 

425 

Regular Expression 
435 

FA Stari FA Basks DFAlias FA Stags. A Sists Total Eiigate 
States factor. Icke? Erzsi try atch to Match East. Expressic. 

- - - - - ( 1000D on (null ) 
--- --- ------- 

.8f35 0.3885 3.275 (.37 1. 

.338 3.34. 2 £2,53 (15g: 

35i i? 49. 3. 38836 1-9 g-z-3) 

. .338 488 3. . 21:3Egg 4-9s-Ei-ig-z 

tasitiot psi &is is firits 3 tirera-r" 

Fig. 4 

  



Patent Application Publication Jul. 31, 2014 Sheet 5 of 5 US 2014/0214749 A1 

abcdefg 8 

Regular Expression 
xxxxx 515 

- N 525 
NAStar DEA Backu? Alf BEASles. NASlates glas list: 

. tral 

s i. 

... i. a t 3. as 

O 33 , 3. 53. ge: 

.5 . 2.E. i:;a 

.25 , s 3. is 

s s i. s: 

w--- - 
E. : ... 153 ) iticist 3. 

--- -...-- 

Fig. 5 

    

  



US 2014/0214749 A1 

SYSTEMAND METHOD FOR DEA-NEA 
SPLITTING 

BACKGROUND OF THE INVENTION 

0001. With the maturation of computer and networking 
technology, the Volume and types of data transmitted on the 
various networks have grown considerably. For example, 
symbols in various formats may be used to represent data. 
These symbols may be in textual forms, such as ASCII, 
EBCDIC, 8-bit character sets or Unicode multi-byte charac 
ters, for example. Data may also be stored and transmitted in 
specialized binary formats representing executable code, 
Sound, images, and video, for example. Along with the 
growth in the Volume and types of data used in network 
communications, a need to process, understand, and trans 
form the data has also increased. For example, the World 
WideWeb and the Internet comprise thousands of gateways, 
routers, Switches, bridges and hubs that interconnect millions 
of computers. Information is exchanged using numerous high 
level protocols like SMTP. MIME, HTTP and FTP on top of 
low level protocols like TCP, IP or MAP. Further, instructions 
in otherlanguages may be included with these standards. Such 
as Java and Visual Basic. There are numerous instances when 
information may be interpreted to make routing decisions. In 
an attempt to reduce the complexity associated with routing 
decisions, it is common for protocols to be organized in a 
matter resulting in protocol specific headers and unrestricted 
payloads. Subdivision of the packet information into packets 
and providing each packet with a header is also common at 
the lowest level. This enables the routing information to be at 
a fixed location. With the increasing nature of the transmis 
sion of information, there is an increasing need to be able to 
identify the contents and nature of the information as it travels 
across servers and networks. Once information arrives at a 
server, having gone through all of the routing, processing and 
filtering along the way, it is typically further processed. This 
further processing necessarily needs to be high speed in 
nature. The first processing step that is typically required by 
protocols, filtering operations, and document type handlers is 
to organize sequences of symbols into meaningful, applica 
tion specific classifications. Different applications use differ 
ent terminology to describe this process. Text oriented appli 
cations typically call this type of processing lexical analysis. 
Other applications that handle non-text or mixed data types 
call the process pattern matching. 

SUMMARY OF THE INVENTION 

0002 An embodiment of the invention may therefore 
comprise a method of splitting an automaton into a DFA 
portion and an NFA portion, the method comprising compil 
ing a ruleset into an NFA representation, analyzing the NFA 
to determine entrance paths for matching by a DFA engine 
and tail portions for matching by an NFA engine, the entrance 
paths and tail portions covering the whole NFA, and compil 
ing the entrance paths into a DFA for execution by a DFA 
engine, wherein accepting states of the DFA are configured to 
signal from the DFA engine to an NFA engine to activate 
associated tail portion entrance states inside the NFA engine, 
wherein the step of analyzing comprises evaluating a cost 
function, said cost function comprising a plurality of factors. 
0003. An embodiment of the invention may further com 
prise a system for splitting an automaton into a DFA portion 
and an NFA portion, comprising a DFA engine enabled to find 
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matches to rules, an NFA engine, an NFA compiler enabled to 
compile a ruleset into an NFA representation, the compiler 
comprising a recursive entrance search function which is 
callable on each NFA start state to select entrance states and 
generate an entrance ruleset, and a DFA compiler enabled to 
compile the entrance ruleset into a DFA with instructions in 
an instruction format usable by the DFA engine. 
0004 An embodiment of the invention may further com 
prise a method of matching a ruleset in a DFA engine and an 
NFA engine, comprising generating an NFA with an NFA 
compiler from the ruleset, employing an entrance search 
function to select entrance states and generate an entrance 
ruleset, compiling the entrance ruleset into a set of DFA 
instructions for the DFA engine, generating NFA instructions 
for the NFA engine from the NFA states reachable from 
entrance states, executing the DFA instructions in the DFA 
engine, signaling entrance matches from the DFA engine to 
the NFA engine, and executing the NFA instructions in the 
NFA engine. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 FIG. 1 illustrates a sample regular expression and a 
corresponding NFA and DFA. 
0006 FIG. 2 is a block diagram of a DFA-NFA hybrid. 
0007 FIG.3 is an embodiment of an NFA with cost factors 
calculated for each state. 

0008 FIG. 4 is an embodiment of an NFA with cost factors 
calculated for each state and with the minimum score at the 
Start State. 

0009 FIG. 5 is an embodiment of an NFA with cost factors 
calculated for each state and with the minimum score at the 
terminal state. 

DETAILED DESCRIPTION OF THE 
EMBODIMENTS 

0010. To find matches to regular expressions or similar 
pattern matching rifles within a symbol stream, two main 
types of state machines may be constructed, nondeterministic 
and deterministic finite automata (NFAs and DFAs). 
Abstractly, an NFA or DFA is a directed graph, in which each 
graph vertex is a state and each graph edge is labeled with a 
class of input symbols that it accepts in order to make a 
transition from a source state to a destination state on that 
symbol class. The defining difference between NFAS and 
DFAs is that any two out-transitions from a DFA state must 
have non-intersecting symbol classes, whereas a single NFA 
state may have multiple out-transitions labeled with classes 
containing the same symbol. 
0011 FIG. 1 illustrates a sample regular expression 110, a 
corresponding NFA 120 and DFA 130. In the embodiment of 
FIG. 1, the regular expression 110 defines search criteria that 
will match input data that begins with any number of charac 
ters from the character class abcd, followed by a single 
character from the character class abef, followed by a single 
character from the character class aceg, followed by the 
character h. thus, the regular expression comprises a spin 
expression, e.g., abcd, where the * indicates that any 
number of the preceding character class matches the con 
straint, that results in a DFA 130 with many more states than 
the corresponding NFA120. In the embodiment of FIG.1, the 
input streams comprising the characters “bach' and 
“bababbbbaaaaddddach', for example, would each match the 
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regular expression, while the characters “ebach' and “back”, 
for example, would not match the regular expression. 
0012. The exemplary NFA 120 comprises a state S0 that 
either loops to itself upon receiving a character from the 
character class abcd or transitions to a state S1 upon receiv 
ing a character from the character class abef. The multiple 
possible transitions from state S1 of the NFA 120 upon 
receiving characters 'a' or billustrate the nondeterminism of 
the NFA 120. From state S1, the state machine transitions to 
state S2 upon receiving a character from the character class 
aceg, and becomes inactive in response to receiving any 
other characters. Finally, from state S2, the state machine 
transitions to state S3 upon receiving the character h, and 
becomes inactive in response to receiving any other character. 
In one embodiment, the state S3 may be associated with an 
output action, Such as outputting a token indicating a match of 
the regular expression. 
0013 U.S. patent application Ser. No. 13/684,922, by 
Ruehle, titled, “DFA-NFA Hybrid', describes a hybrid NFA 
DFA engine and methodology. This application is specifically 
incorporated herein, by reference for all that it discloses and 
teaches. A hybrid, HFA, can be used to draw on the strengths 
of each type of automata to compensate for possible weak 
nesses of the other type. The HFA engine comprises an NFA 
engine and a DFA engine, each of which may be implemented 
in hardware or software. The embodiment may comprise a 
multi-threaded hardware DFA engine and a hardware 
dynamically reconfigurable NFA cell array (in accordance 
with U.S. Pat. No. 7,899,904 which is specifically incorpo 
rated herein by reference for all that it discloses and teaches). 
The DFA and NFA engines communicate to cooperatively 
find rule matches in a symbol stream. The rules are not simply 
divided between DFA and NFA engines. Cooperation occurs 
within the matching process for each rule. A typical rule has 
a beginning or entrance fragment matched by the DFA 
engine, which then signals to the NFA engine indicating an 
entrance NFA state to be activated. The NFA can then match 
the remainder, or tail, of the rule. For simple rules, the split 
between DFA and NFA can be understood at the rule level, 
with a left portion of the rule being the DFA entrance and the 
remaining right portion being the NFA tail. 
0014 FIG. 2 is a block diagram of an embodiment of the 
invention. A hybrid architecture 200 comprises a DFA engine 
210 which receives input symbols 205 from an input stream 
(not shown). Instructions for the DFA engine 210 are 
accessed via an instruction cache 230. The instruction cache 
230 may be an L1 cache. The instruction cache 230 in turn 
receives/accesses instructions from an instruction memory 
(not shown) via an instruction memory interface 250. The 
architecture 200 also comprises an NFA engine 220. The NFA 
engine 220 is connected to an instruction cache 240 which 
also may be an L1 cache. The instruction cache 240 for the 
NFA engine 220 accesses instructions from the instruction 
memory (not shown) via the instruction memory interface 
250. The NFA engine 220 receives input symbols 205 from 
the same input stream (not shown) as the DFA engine 210. 
FIG. 1 shows an Event FIFO 260 and an LP Sorter 270 for 
processing signals from the DFA engine 210 to the NFA 
engine 220. A multiplexer 280 receives outputs (rule match 
information) from both the DFA engine 210 and the NFA 
engine 220 and may output an output token 290 upon a 
Successful match of a rule. 
0015. A typical rule can be logically divided into a begin 
ning, or entrance fragment, matched by the DFA engine 210 
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and a trailing or tail fragment typically matched by the NFA 
engine 220. The DFA engine 210, after matching an entrance 
fragment, will signal to the NFA engine 220 indicating an 
entrance NFA state which should be activated to continue 
matching the rule. The signal may include a launch position in 
the input symbol stream where that entrance state should be 
activated. Normally this position will be after the last symbol 
of the entrance fragment matched by the DFA. When the NFA 
engine 220 reaches the indicated launch position, the entrance 
state is activated and continues matching the rule by detecting 
transition classes and activating next states in the NFA cell 
array. This will happen until an accepting state is reached and 
reports a full match of the rule, taking an action Such as 
generating a token. The entrance fragment is assigned to the 
DFA engine 210 by a DFA/NFA compiler (not shown) such 
that it is a DFA friendly fragment. This may mean that it a 
relatively simple rule fragment, matching a relatively short 
maximum length, Such as 8 or 64 symbols, but which is not 
extremely short, such as 1 or 2 symbols. The fragment may 
also be relatively narrow as to symbol classes (character 
classes not matching many symbols, such as abcd). The 
fragment may also be at or near the beginning of the rule. 
0016 For example, the regular expression “abc.*defghi’ 
can be used to illustrate afragment methodology embodiment 
of the invention. In the expression, .* matches any number 
of symbols of any type. A DFA entrance fragment may then 
be “abc'. The first “... will not be included in the DFA frag 
ment because it can match any length and using just 'a' or 
'ab' would be too short, leaving ‘c’ either by itself or com 
bined with a potentially lengthy “... Nothing is added by this. 
Accordingly, the DFA is configured by the compiler to match 
the fragment “abc. It is understood that additional rules may 
be configured into the DFA. The NFA is configured to match 
the remainder, or tail fragment, of the rule, “..*def*ghi'. 
"Fragment accordingly means a portion of a rule whether it 
is an entrance fragment or a tail fragment. Moreover, in situ 
ations where a DFA or an NFA is suited to match an entire 
rule, a fragment may be the entire rule. When the DFA 
matches abc. somewhere in the input stream, it will signal to 
the NFA to launch an entrance NFA state such as a state 
matching “.*d”. This state will be activated in the NFA cell 
array at the input position after the 'c' in “abc. so it is able to 
match 'd at the next symbol position, or later (according to 
the . * possible indeterminate matches). When it matches 
'd, it transitions to a next state in the cell array, for example 
matching 'e', and so forth, until a final state matches i and 
generates a token. The DFA instructions indicating Successful 
matches in DFA accepting States can include a flag or code to 
indicate the proper action for each match. A DFA instruction 
may contain a token ID to output for a whole rule match. 
When an entrance fragment match is indicated, the same 
token ID field can contain a reference to the NFA state to be 
activated. This may be the address of the first instruction for 
the NFA state and a number of instructions in the NFA state. 

0017. Some rules, such as rules with complex beginnings, 
wide symbol classes or large quantifiers near the beginning of 
the rule, may be matched entirely by the NFA. The compiler 
will not assign a beginning fragment to the DFA. These rules 
may be essentially rules where no appropriate DFA entrance 
fragment is present. For example, the rule “a-Z.*123’ may 
be assigned entirely to the NFA because “a-Z is not an 
appropriate DFA entrance fragment. It matches too easily, 
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thus putting an undesirable burden of work on the DFA engine 
and generating an undesirable frequency of entrance state 
signals into the NFA. 
0018 Matching a whole rule requires the NFA cell array to 
contain a corresponding start state matching “a-Z’, which is 
active at the beginning of the scan and may remain active 
during the entire scan. An NFA start state could match “a-Z' 
and then transition to a next state matching “.* 1. If the NFA 
engine 220 is a statically configurable cell array, start states 
may be configured directly into the array before scanning. If 
it is dynamically reconfigurable, then the DFA engine 210 
may signal the NFA engine 220 at the beginning of each scan 
to activate the necessary start states. The NFA engine 220 may 
also be configured with a list of start states to activate at the 
beginning of each scan. Since signaling NFA state activations 
may be a function of the DFA engine 210, it may also function 
to activate start states. 
0019. By having the DFA engine 210 function to signal to 
activate start states, the NFA cell array begins each scan 
empty. By empty, it is meant that there are no active states. 
The NFA cell array waits for the DFA to signal NFA state 
activation. This puts the DFA engine 210 in full control of the 
scan. The NFA engine 220 will match only in response to the 
DFA engine's 210 signals. For example, the DFA engine 210 
may be constructed to be configurable to match using mul 
tiple DFAS, corresponding to multiple groups of rules, where 
a scan command indicates which rule group should be used to 
scan aparticular stream. The DFA engine 210 can then signal 
to activate NFA start states corresponding to the selected rule 
group by accessing start-of-scan instructions stored with the 
associated DFA and by executing that DFA. The DFA engine 
210 will match entrances and signal NFA entrance state acti 
Vations corresponding to the selected rule group. Resultantly, 
the NFA engine 220 will respond by activating states and 
finding matches corresponding to the selected rule group. 
0020. The DFA engine 210 may find numerous entrance 
matches rapidly and generate the next entrance state launch 
signal to the NFA engine 220 without waiting for the NFA 
engine 220 to process the previous signal. As noted, the DFA 
will be unaware of the state of the NFA since communication 
flows predominantly in one direction. The signals may be 
stored as entrance events in a buffer or queue which the NFA 
engine 220 will be enabled to access. Each entrance event will 
comprise a reference to the NFA state to be activated and a 
launch position in the symbol stream where it should be 
activated. This may be such as the position after the last 
symbol in the entrance fragment match. The entrance events 
may be sorted into order of increasing launch positions before 
the NFA engine 220 processes them. This way they can be 
processed in an order to activate their corresponding NFA 
states at increasing symbol positions. Such sorting may be 
accomplished by a Launch Position Sorter (LPS) 270 module 
situated between the DFA engine 210 and the NFA engine 
220. Though the LPS is shown in FIG. 2, it is understood that 
the module may also be part of either the DFA engine 210 or 
the NFA engine 220. The DFA engine 210 writes events with 
launch positions into the LPS 270 and the NFA engine 220 
will read events from the LPS 270. As noted, these may be 
accessed in increasing order of launch position. 
0021 Many sorter architectures are appropriate. For 
example, the LPS 270 can have a sliding window of launch 
position bins. Each bin would contain some number of events 
with the corresponding launch position, or each bit could 
contain a pointer into a linked list of events with the corre 
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sponding launch position. A sliding window offixed size may 
be adequate. Such as 128 symbol positions, assuming that 
DFA entrance fragments are restricted to some shorter length, 
such as 64 symbols. The left edge of the sliding window 
would be determined by the read position of the NFA engine 
220 and the DFA engine 210 may not progress so far ahead 
that it overwrites the right edge of the sliding window. How 
ever, to permit the DFA engine 110 to scan further ahead that 
the LPS window length, the DFA engine 210 can write events 
into a FIFO 260 of some predetermined capacity such as 256 
events. These would transfer from a read side of the FIFO 260 
into the LPS 270 whenever they did not transgress the right 
edge of the sliding window. The DFA engine 110 may scan 
arbitrarily far ahead of the NFA engine 220 until the event 
FIFO 260 becomes full. The LPS 270 can be designed to 
automatically output an event of the next lowest launch posi 
tion each time the NFA engine 220 accesses it, such as by 
transferring events from the first occupied bin within the 
sliding window or from the linked list accessed through than 
bin. 

0022. When the NFA engine 220 reads entrance events 
from the LPS 270, it will need to activate the referenced state 
at the indicated launch position. In the case of a dynamically 
reconfigurable NFA cell array, the NFA engine 220 will load 
the referenced state in at least one cell of the array. The needed 
state may not already be present, which may occur since the 
state is for a rule just beginning to match and may not have 
been used recently. If the state is already present in the NFA 
cell array then the NFA engine 220 will not need to load that 
state. To load a state into a cell(s), one or more instructions 
corresponding to the state will be accessed from au instruc 
tion memory or cache. If it is a cache, it is not unlikely that 
there may be a cache miss. This may occur because the rule 
may not have been matched recently. Due to the fact that the 
NFA lags the DFA by a number of symbols, there is time to 
resolve the cache miss by filling referenced instructions into 
the cache. Accordingly, when a cache 240 is used for NFA 
instructions, the NFA engine 220 will read events from the 
LPS 270 as soon as possible without waiting until the NFA 
engine 220 scan approaches the launch position. This is so as 
to have more time to resolve any cache misses. After the 
instructions for the state are retrieved from the memory or 
cache, they can be loaded into one or more cells in the cell 
array as required or indicated by those instructions. The cells 
can be configured earlier, in background, rather than waiting 
until the cell array reaches the launch position. The cells, 
however, should not be configured too earlier to avoid too 
many cells being occupied with inactive states waiting to 
activate. Accordingly, the NFA engine 120 may wait until a 
reasonable time before the launch position. This may be, for 
example, 16 symbols prior to the commencement of loading 
the state using its instructions. To support early instruction 
cache access but delayed sate loading, the retrieved instruc 
tions may be held in a queue waiting for their time to load. 
0023. Once the target state is present in the NFA cell array 
(statically or dynamically configurable), it needs to be acti 
vated at the launch position indicated by the event. Each NFA 
cell may contain a launch timer which can be programmed in 
the background before the launch position is reached. The 
timer will wait until the launch position is reached and then 
autonomously activate the cell. In this manner, the entire 
action of the event can be applied to the cell(s) with the target 
state in advance in the background and no other actions need 
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to be performed at the launch position. This may aid in mini 
mizing stalls that would ensue for taking actions exactly at the 
lunch position. 
0024. The HFA architecture, in which a DFA engine 210 
matches rule entrance fragments, and an NFA engine 220 
activates corresponding entrance states and matches the 
remainders of the rules, leverages strength of both DFA 210 
and NFA engines 220. It also compensates for any weakness 
that may be part of either type of engine. In the HFA, the DFA 
portion is only assigned simple entrances and simple whole 
rules to minimize state explosion. It is understood that the 
term simple is relative and a compiler can vary in its assigna 
tions of fragments to DFAs. Further, the DFA is assigned 
relatively short fragments and rules. Again, it is understood 
that the term short is relative and a compiler can vary in its 
assignations of fragments to the DFAs. The DFA will match 
the entrances of most rules, which correspond to the most 
frequent active NFA states if an NFA engine is used without 
DFA assistance. In other words, the most frequent active NFA 
states are those that are at the beginning of rules. Accordingly, 
have the DFA match these portions will minimize the number 
ofrequired active states in the NFA, thus leaving fewer active 
NFA states to track on average. The sub-expression level 
cooperation between DFAs and NFAS achieves good com 
pensation between the weaknesses and strengths of DFAS and 
NFAS. The high scan speed of a multi-threaded DFA engine 
may be used to keep up with the NFA cell array speed. 
0025. An HFA compiler will configure the DFA and NFA 
instructions with instructions appropriate to cooperate in 
matching a given ruleset. The compiler may be constructed as 
follows: An NFA compiler will be used to translate a set of 
regular expressions or similar rules into an NFA. Then an 
algorithm is applied to cut the NFA graph into DFA portions 
adjacent to the root state(s) and remaining NFA portions. One 
possible algorithm is to make the cut a fixed distance from the 
root state. Such as 4 transitions away but cut closer to the root 
prior to any NFA state with an alternative in-transition other 
than the path from the root, such as the self-transition in a .* 
state or prior to a transition with a symbol class wider than 
some threshold, such as 5 symbols. The DFA portion of the 
NFA graph is then transformed into an actual DFA by subset 
construction algorithms. These treat each state with a cut 
point transition as an accepting state which is used to generate 
an entrance event into the NFA state across the cut transition. 
0026. There may be different ideal splits in the HFA 
engine. The above described mechanism may be somewhat 
tunable by varying threshold numbers, fine granularity may 
also be difficult to achieve. 

0027. Rather than the rules being analyzed to split into 
DFA entrance fragments and NFA tails, the ruleset is first 
compiled into an NFA representation. The NFA is then ana 
lyzed to determine appropriate cut points. It is understood that 
the NFA may not be cleanly split at cut points into DFA and 
NFA portions, but various possibly overlapping entrance 
paths and tail portions may be identified, with entrance paths 
compiled into DFA instructions, and tail portions compiled 
into NFA instructions. The NFA can be optimized and thereby 
provide a stable methodology for rule splitting. 
0028. The NFA may be constructed by well-known meth 
ods. Those skilled in the art will readily understand NFA 
construction. Standard methods may involve the use of epsi 
lon transitions (state transitions that are followed without 
consuming an input symbol). Epsilons are compatible with 
the method of this invention, merely by following them auto 
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matically by additional recursion without altering any calcu 
lations. They will not be considered because they can be 
removed by other well-known algorithms which is lends itself 
efficiently to hardware NFA engines. If the target NFA engine 
employs complex state cells, for example cells able to track a 
quantified symbol class (“spinner) followed by an out-tran 
sition symbol class such as “a-Z{0,20123, then the clas 
sical NFA states may be fit into complex NFA “super-states' 
before applying the methods of this invention. This may result 
in more accurate cost estimation using the methodology 
described herein. The NFA may also be optimized by well 
known methods, such as combining parallel transitions or 
merging redundant states. In addition to improving HFA 
engine performance, an optimized NFA is closer to being a 
canonical representation, so that DFA-NFA splitting is more 
stable, thus giving consistent results independent of equiva 
lent rule representation. 
0029. In a method of the invention, an intermediate 
“entrance ruleset' is generated, containing “entrance expres 
sions', which are regular expressions representing paths from 
NFA start states to selected NFA “entrance states'. Each 
entrance expression references its associated entrance state. 
When a simple rule is considered, there may often be a single 
entrance expression corresponding to the rule which matches 
or resembles a beginning portion of that rule. However, for 
more complex rules, there may be multiple associated 
entrance expressions representing various ways the rule can 
match a beginning sequence of symbols. Also, multiple rules 
may share a single associated entrance expression, such as 
multiple rules with identical or similar beginnings. 
0030. An entrance ruleset may then be compiled into a 
DFA by well-known algorithms for execution by the DFA 
engine. Accepting states of the DFA are configured to signal 
from the DFA engine to the NFA engine to activate their 
associated entrance states inside the NFA engine. The NFA 
engine may be configured to execute these entrance states 
when activated as well as all other NFA states reachable from 
those entrance states. When the entrance NFA state associated 
with a DFA accepting state is a terminal accepting state, for 
example if the entrance expression is an entire rule, the DFA 
accepting state may instead be configured to signal a match of 
the associated rule, without signaling to the NFA engine, thus 
implementing rules matched purely by the DFA engine. 
When an entrance expression is an empty or null expression, 
containing no symbol classes, the referenced entrance state 
must be an NFA start state which may beactivated in the NFA 
engine at the beginning of each scan (with or without signal 
ing from the DFA engine), thus implementing rules matched 
purely by the NFA engine. 
0031. For example, a linear sequence of NFA states such 
as A->B->C->D->E->F, derived from a simple rule, an 
entrance state Such as State D may be chosen. The symbol 
classes for A->B->C->D transitions may then be written 
sequentially in the form of a regular expression, which is the 
associated entrance expression. For choosing a more prefer 
able entrance state, a cost function can be defined. This cost 
function algorithm will evaluate the cost of choosing any 
given state as the entrance state for a branch of an NFA. The 
factors used in the cost analysis can be any factor that a user 
determines provides useful input to the algorithm. It is under 
stood by those in the art that the range of cost factors is very 
broad. The state which minimizes the cost function is selected 
as the entrance state. If the start state (A) is selected as the 
entrance state, the entrance expression will accordingly be 
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empty. This will result in a pure NFA engine matching for the 
example rule. If the terminal state (F) is selected as the 
entrance state, the entrance expression will be equivalent to 
the whole rule, resulting in pure DFA engine matching for the 
example rule. 
0032. In an embodiment of the invention, a cost function 
uses 5 cost components. These cost components are measured 
for any target candidate entrance state tested. FIG. 3 is an 
embodiment of an NFA with cost factors calculated for each 
state. The NFA 300 shows an NFA starting in the root state 
(S0) and descending to a matching state (S9). A first cost 
factor is "NFA start states' 310. This cost component will 
have a value of 1 if the target state is a start state, or 0 if the 
target state is not a start state. This cost component represents 
the impact of having a start state always active in the NFA 
engine, which will be the case if a start state is selected as an 
entrance State. 

0033. A second cost component is “DFA backup factor 
320. This component is the average length of each DFA 
descent if a DFA for the entrance expression for the target 
state is stimulated by arbitrary input symbols, realistic for the 
particular application but not deliberately matching the rule. 
This cost factor determines the work associated with the 
selected entrance expression in the form of state transitions 
executed. These may be estimated as an average descent 
depth. It is noted that the name “backup factor derives from 
a DFA execution model in which, after each DFA descent, the 
scanner backs up to the symbol following the first symbol 
consumed, to look for a match starting at the next position. 
For example, if an entrance expression is “a-Za-Za-Za 
Z’, the backup factor may be close to 4 because the sequence 
of classes matches so easily and this means a correspondingly 
high burden of work for the DFA engine. To compute the 
“DFA backup factor 320 cost component, a series of prob 
abilities may be estimated for Successfully matching up to 
each NFA state, from the start state to the target state. The 
probabilities are based on the width or content of the various 
transition symbol classes and decrease with each state 
because all previous classes must be matched before reaching 
the next class. Precise appropriate probability estimation 
methods vary by application. For example, if the input stream 
will be independent, uniform, random distributions of all 
possible symbols, then the probability of matching a single 
symbol class may be estimated by the number of symbols in 
the class divided by the total number of symbols existing and 
the probability of matching up to each state may be estimated 
as the product of the preceding symbol class match probabili 
ties. For example, statistical factors in typical input streams 
may be considered. A q followed by a u may factor appro 
priately. The compiler may use simple statistics regarding 
typical frequencies for determining the costs. The estimated 
probabilities of matching through each symbol class may 
then be summed to obtain an estimated backup factor. The 
backup factor calculation may be modified to omit the first K 
estimated probabilities from the sum. For example, if K=1 or 
2, then to represent the concept that given a full ruleset the 
DFA engine is likely to take K steps from the root state in most 
descents even without the current rule so backup factor up to 
that point is “free'. The final estimated probability may not be 
omitted when in this range if signaling to the NFA engine 
requires an extra DFA engine step. 
0034. A third cost component is “DFA-NFA token fre 
quency' 330. This is the cost component for the average 
number of signals (tokens) that would be sent from the DFA 
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engine to the NFA engine per symbol position in the input 
stream, if a DFA for the entrance expression for the target 
state is stimulated by arbitrary input symbols. Equivalently, it 
is the probability of reaching the accepting state and emitting 
a DFA-NFA token on each DFA descent, so it is expressed as 
a value between 0.0 and 1.0. This cost component may be 
considered relevant because each DFA-NFA token uses lim 
ited system resources. Such as the path to access NFA instruc 
tions and load or activate NFA states. If DFA-NFA tokens are 
too frequent, performance may bottleneck. For example, if an 
entrance expression is “a-Z’, the DFA-NFA token frequency 
may be very high, Such as 0.8 because that expression is easily 
matched. To compute DFA-NFA token frequency, a probabil 
ity may be estimated for Successfully matching through all 
NFA state transition symbol classes from the start state up to 
the target state, as described for the “DFA backup factor 320 
cost component. 
0035 A fourth cost component is “DFA steps to match' 
340. This is an estimated number of state transition steps the 
DFA engine may take to descent all the way from the start 
state to the target state. If the states in the path are simple 
classical NFA states, this cost component is simply the num 
ber of States preceding the target state. If some state is a 
complex NFA “super-state', such as S3 matching “d{1,3} e” 
then its contribution may be high or not precisely defined (2 to 
4 in this example). Either the highest or lowest value can be 
used. A medium value could also be used to provide a blend 
ing of the two numbers. This cost component provides rel 
evant input for when a rule matches, or partially matches, 
when the DFA engine will do a corresponding amount of 
work. 

0036) A fifth cost component in FIG. 3 is “NFA states to 
match' 350. This is an estimate of the number of NFA states, 
beginning with the target state, which would be activated in 
the course of matching the rule. If complex NFA super-states 
are used by the NFA engine, as noted above, the number of 
Super-states may be estimated. For example, if a Super-state 
can match a string of multiple symbol classes, represented by 
a linear sequence of single-transition NFA states, then a com 
patible linear state sequence in the path from the start state to 
the target state may be counted once. If various Super-state 
types have varying system cost, they may be given different 
weights in the count. The "NFA states to match' 350 cost 
component provides relevant input when a rule matches, or 
partially matches, and the NFA engine will do a correspond 
ing amount of work by tracking the active states. Calculation 
of the “NFA states to match”350 can be simplified (there may 
be varying numbers of states to match by varying paths in a 
complex NFA and long distances may remain in the NFA to 
final accepting states). Rather than counting states after the 
target state as a positive cost, the states before the target State 
may be counted as a negative cost. The states after the target 
state can be thereby ignored. This negative/positive Switch 
provides a similar impact to the cost because the absolute cost 
value is what is being targeted. The difference between cost 
values at different target states is the value that matters for 
selecting a minimum cost entrance state, and whatever the 
true number of NFA states to match may be, this number 
decreases as longer DFA entrances are considered and more 
NFA states are left behind the target state. 
0037. The cost factors, five in the examples shown in FIG. 
3, can be combined. To combine the five cost components into 
a single cost value, various methods may be used by those 
skilled in the art. One example is to multiply each component 
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by a corresponding cost weight and Sum the results. The cost 
weights can be chosen based on an expected impact of each 
cost component on the performance of the DFA-NFA hybrid 
engine. This adjusts the cost components into a comparable 
scale. It is understood that the weighting can be interpreted 
differently and is not absolute. For example, the first three 
cost components (NFA start states 310, DFA backup factor 
320 and DFA-NFA token frequency 330) apply under arbi 
trary stimulus and typically have corresponding system lim 
its. This is such that they are well tolerated without perfor 
mance loss up to their limits. However, they degrade 
performance beyond their limits. Weights can be chosen to 
scale the corresponding limit values to the same cost contri 
bution. The last two cost components (DFA steps to match 
340 and NFA states to match 350) apply when rules fully or 
partially match and the relative impact of another step in the 
DFA engine related to another state in the NFA engine may be 
compared, with weights chosen to Scale equivalent impacts to 
equivalent cost contributions. Scaling between the first three 
and last two cost components may be accomplished by esti 
mating the frequency at which a typical single rule will match 
or partially match in the target application. The weights for 
“DFA backup factor”320 and “DFA steps to match”340 may 
be in a ratio equal to this estimated rule match frequency. The 
weights for “DFA-NFA token frequency” 330 and “NFA 
states to match 360 may be in the same ratio. For example, 
total cost calculation using weights for one HFA engine 
embodiment and target application may be: (1,000xNFA start 
statesx10)+(100,000xDFA backup factorx20)+(600,000x 
DFA-NFA token frequencyx30)+(1xDFA steps to matchx 
50)+(6xNFA states to matchX60). 
0038. The cost value may thus be calculated for each target 
state in a linear state path from a start state and the target state 
with lowest cost may be selected as an entrance state. In the 
example used in FIG. 3, the lowest target state cost is S5 with 
a lowest cost of 913.53 360. The entrance expression for S5 
would accordingly be "xyz0-9abcd{1,3}ef. The state 
path from the start state to the entrance state is the associated 
entrance path, which may be represented by an entrance 
expression, written to the entrance ruleset, to be compiled for 
the DFA engine. 
0039 FIG.4 is an embodiment of an NFA with cost factors 
calculated for each state and with the minimum score at the 
start state. Similar to FIG.3, an NFA 400 is shown starting in 
a root state (S0) and descending to a matching state (S6). A 
same set of cost factors 415 are used to determine the entrance 
fragment. The start state cost of S0 is 10000 with a null 
entrance expression 425. The rule 425 used in FIG. 4 has wide 
initial classes of 1-9 and g-Z. These initial classes cause a 
high DFA backup factor in states S1 through S4. This high 
DFA backup factor causes the total cost to well exceed the 
start state cost in states S1 through S4. Further costs cannot be 
considered past state S4 due to the spinner a-Z*. Accord 
ingly, the global minimum cost is 10000 at S0, with a null 
entrance expression 425. Due to the start state having the 
lowest cost, start state S0 should be programmed into the NFA 
engine as a start state and the rule will be matched entirely in 
the NFA. Although this may be an expensive result, 10,000, it 
is cheaper than the backup factor in states S1 through S4 and 
the token frequency that would result from any entrance frag 
ment that might be assigned to the DFA engine. It is under 
stood that the cost factors are combined in the same manner as 
that of FIG. 3. 
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0040 FIG. 5 is an embodiment of an NFA with cost factors 
calculated for each state and with the minimum score at the 
terminal state. Similar to FIG. 3 and FIG. 4, an NFA500 is 
shown starting in a root state (S0) and descending to a match 
ing state (S7). A same set of cost factors 515 are used to 
determine the entrance fragment. The start state cost of S0 is 
again 10000 with a null entrance expression 525. However, 
due to the progressive matching of a, b, c, and d in 
states S1 through S4, which have low DFA backup factor 
costs and DFA-NFA token frequency costs, the cost factor 
stabilizes through state S4. Accordingly, S4 has a minimum 
local cost and “abed may be a reasonable entrance expres 
S1O. 

0041 Continuing with FIG. 5, in states S5 through S6, the 
total cost increases due to increasing DFA steps to match, but 
NFA states to match does not decrease because any portion of 
the linear character sequence 'abcdefg' can fit in one Super 
state. At the terminal accepting state S7, NFA states to match 
decreases from 0 to -1. This decrease to -1 reflects that if the 
DFA matches the whole rule, the character sequence super 
state is no longer required in the NFA to match, and the total 
score decreases. Accordingly, terminal state S7 has the lowest 
score, 119.53. The entrance expression “abcdefg” is the 
whole rule, and the DFA engine will be programmed to match 
this rule without NFA involvement. It is understood that the 
cost factors are combined in the same manner as that of FIG. 
3 

0042. The foregoing discussion relates to choosing 
entrance States by minimizing a cost function along a linear 
NFA graph. It is understood, however, that the actual NFA for 
a given ruleset may not be a linear state path. Recursive 
analysis can be used for non-linear State path issues. Begin 
ning at each start state in the NFA, a depth-first recursive walk 
through the NFA can be performed. The recursive path will 
reach to maximum depth along one branch from the start state 
before backing up to follow another branch. The recursion 
may be limited to a maximum number of steps from the start 
state, corresponding to the maximum entrance length desired, 
Such has 64, to avoid infinite recursion. A recursive function 
may be defined which his called with parameters of next state 
and next depth and returns a value which is either “covered 
or “not covered. At a current state and depth, this function 
may recursively call itself with parameters of a destination 
state of a transition from the current state and the current 
depth plus one. To compute cost components and compare 
cost values, this function may be able to access its current 
recursive path through various states from the start state, as 
well as the history of total costs computed at each state on that 
path. For example, this may be done by pushing a new state 
and cost information onto a stack at each stage of recursion, 
popping entries from the stack whenever the function returns, 
and reading the stack from within the function as needed. 
0043. Whena recursive function is called on a current state 
and depth, it may first compute the cost components and total 
cost value for potentially selecting the current state as an 
entrance state, using the recursive path to this state from the 
start state as the entrance path.Cost components at the current 
state may be computed incrementally from cost components 
at the previous state to save computation time. Current state 
and cost information may be saved on a stack for access 
during deeper recursion. Then, if the current depth is not the 
maximum depth, and the current state is not an accepting 
state, the function may recursively call itself on the destina 
tion state of each out-transition from the current state and 



US 2014/0214749 A1 

examine the return values. If all return values are “covered', 
then longer entrances have already been selected and the 
current function call simply returns “covered as well. In all 
other cases (at maximum depth, at an accepting state, or an 
out-transition not covered) an entrance must still be chosen. 
The current cost is compared with cost values for previous 
positions in the recursive path. If the current cost is the mini 
mum cost, then the function selects the current state as an 
entrance state, generates an entrance expression correspond 
ing to the recursive path to this state, to it to the entrance 
ruleset along with a reference to the entrance (current) state 
and returns a “covered value. If the current cost is not the 
minimum cost, then the function returns an “uncovered 
value. 

0044) When the recursive function called on a next state 
returns “covered', a “covered' flag should generally be 
applied to that next stated as well as to the state transition the 
function call was made through if it was a recursive call. Such 
covered flags can be later used to delete states and transitions 
needed only for entrance paths. But entrance states them 
selves should not be flagged as covered. If any state in the 
recursive path to the transition or next state has an alternative 
in-transition not involved in the recursive path itself, then the 
transition or next state will not be flagged “covered” because 
they may be needed for matching activity other than entrance 
paths. 
0045. The recursive function can be called once on each 
NFA start state, at a starting depth of Zero, from which it will 
search deeper for entrances. By this recursive technique, vari 
ous recursive paths from each start state can be examined as 
linear state paths, from which entrance state will be chosen. 
Optimizations may be applied to the recursive function. 
Though recursion to a depth such as 64 is possible, the current 
cost components in comparison with the minimum cost seen 
on the entrance path so far can be examined and determine 
whether it is very likely, or unlikely, that a new minimum will 
be found by deeper recursion. If so, the recursion can be 
exited early. The first three cost components in FIG.3 tend to 
stabilize to near-constant values after the estimated probabil 
ity of penetrating the NFA to the current depth becomes very 
Small. After this happens, only the increasing “DFA steps to 
match'350 and decreasing "NFA states to match'360 remain 
changing. If the current cost is Substantially higher than the 
minimum cost, it may be judged very unlikely to recover. 
0046. Another optimization is that loops in the NFA may 
be penalized during recursion. If the same state has been 
visited more than once in the recursive path, then passing it 
should only decrease "NFA states to match 360 once, or 
perhaps not at all, because the state apparently may be acti 
vated by the NFA engine Subsequent to an entrance State 
beyond it. This cost penalty can then lead to an early exit, 
rather than following the same loop repeatedly to maximum 
depth. Alternatively, recursion can be terminated automati 
cally if the same state is seen twice. 
0047 Another optimization is that recursion may be ter 
minated at any state transitioning to itself, or a complex 
Super-state comprising an infinite 'spinner” Such as “a-Z'. 
This type of state is very inefficient for DFA engine matching 
and limited-depth recursion cannot get cleanly past it. So, 
typically, it may be preferable to select an earlier entrance and 
leave it to the NFA engine. Similarly, if a spinner super-state 
is encountered with a high finite maximum spin value, such as 
“a-Z. {0,100, recursion can terminate. A spinner with small 
maximum, such as “a-Z. {3,5}” can be traversed by the 
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recursion, with appropriate cost component updates, such as 
“DFA steps to match' 350 increased by the spin maximum 
and “DFA backup factor 320 and “DFA-NFA token fre 
quency’330 adjusted for multiple symbol class transitions. 
0048. Another optimization is that each NFA state visited 
during recursion may have an associated counter incre 
mented, and recursion may terminate at any state where the 
counter exceeds a limit value, such as 100, which could hap 
pen in a complex NFA graph with many possible recursive 
paths to reach the state. By terminating recursion early in Such 
a case, exponential growth in search time can be prevented. 
0049. After completing the recursion through Each NFA 
start state, the NFA will have various states selected as 
entrance states. The entrance ruleset will contain entrance 
expressions associated with those entrance States. The 
entrance ruleset can be compiled into a DFA with accepting 
states configured to signal from the DFA engine to the NFA 
engine to activate the associated NFA entrance states inside 
the NFA engine. Other states of the NFA may also be executed 
by the NFA engine, but portions which are only needed to 
implement entrance paths may be deleted to reduce and sim 
plify the states remaining for the NFA engine. Specifically, 
any state or transition flagged “covered by the recursive 
search may be deleted from the NFA before encoding into 
instructions for the NFA engine. 
0050. In a complex NFA, some NFA states may be used in 
entrance expressions, but may be reachable from other 
entrance states. Thus, some original NFA states may contrib 
ute to the DFA executed by the DFA engine, but also some 
times be tracked by the NFA engine. While this may be 
duplicative, it does not provide extreme inefficiencies. For 
example, for the expression “ac12)?bcdefghijk.*.xyz, 
selected entrances may be “abed” and “al2b'. The “abed” 
path passes through the entrance state of the “a 12b' path. If a 
DFA is constructed directly from the entrance-only portion of 
this NFA, the DFA engine will reach an accepting state to 
signal the NFA engine after just 'ab', which is generally too 
short to be effective as an entrance. The earlier accepting state 
may be removed, extending the latter entrance to “a 12bcd'. 
However, this entrance is not optimal. Thus, to compile the 
DFA straight from the entrance portions of the original NFA, 
without intermediate generation of entrance expressions, one 
of the suboptimal options is chosen. DFA construction meth 
odologies can be altered to obtain the same results as using 
entrance expressions. 
0051 One possible way to alter DFA construction is as 
follows: Each NFA state and transition on any entrance path 
may be labeled with a list of entrance path IDs corresponding 
to all selected entrance paths comprising that state. During 
subset construction on the labeled NFA states, each state with 
multiple IDs listed is treated as multiple states, with one 
variant for each ID and thus, each state may appear multiple 
times in each NFA state Subset corresponding to a constructed 
DFA state. All ID variants of each start state are included in 
the subset for the DFA root state. When constructing DFA 
next states, each NFA state may transition only through NFA 
transitions with the same ID. An NFA state is considered an 
accepting state for DFA construction only if it is the entrance 
state for the entrance path corresponding to its ID. This 
adjusted Subset construction scheme generates a DFA equiva 
lent to the use of entrance expressions because it essentially 
operates on multiple entrance path NFA graphs, although by 
reference to a single master NFA graph. 
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0.052 An embodiment of this invention extends each rule 
entrance path to an optimal length in the DFA by selecting the 
length that minimizes the total impact of multiple cost com 
ponents. Three cost components, "NFA start states”, “DFA 
NFA token frequency” and “NFA states to match', decrease 
as the entrance length grows, and therefore push the entrance 
choice longer. Two cost components, “DFA backup factor” 
and “DFA steps to match generally increase as the entrance 
length grows and therefore pull the entrance choice shorter. 
The optimal length occurs where these competing forces 
balance. The "NFA start states’ component matters for the 
step from a null entrance to a 1-step entrance, pushing to 
generate Some 1 + step entrance unless all have very high 
costs. Typically, the “DFA-NFA token frequency” and “DFA 
backup factor” components dominate for short entrances, 
Such as 1 to 4 steps, but their contribution gradients decrease 
rapidly and after several steps the “DFA steps to match' and 
“NFA states to match” components are left to compete. 
0053 Embodiments of methods and systems of this inven 
tion are tunable by altering the cost component weights. If a 
particular cost component is overly prominent at Scan time, 
Such as the DFA engine slowing down because its backup 
factor is too high, then the corresponding weight may be 
increased. If a particular cost factor has great room to spare at 
scan time, then the corresponding weight may be decreased. 
0054 The foregoing description of the invention has been 
presented for purposes of illustration and description. It is not 
intended to be exhaustive or to limit the invention to the 
precise form disclosed, and other modifications and varia 
tions may be possible in light of the above teachings. The 
embodiment was chosen and described in order to best 
explain the principles of the invention and its practical appli 
cation to thereby enable others skilled in the art to best utilize 
the invention in various embodiments and various modifica 
tions as are Suited to the particular use contemplated. It is 
intended that the appended claims be construed to include 
other alternative embodiments of the invention except insofar 
as limited by the prior art. 
What is claimed is: 
1. A method of splitting an automaton into a DFA portion 

and an NFA portion, the method comprising: 
compiling a ruleset into an NFA representation; 
analyzing said NFA to determine entrance paths for match 

ing by a DFA engine and tail portions for matching by an 
NFA engine, said entrance paths and tail portions cov 
ering a whole NFA; and 

compiling said entrance paths into a DFA for execution by 
a DFA engine, wherein accepting states of said DFA are 
configured to signal from said DFA engine to an NFA 
engine to activate associated tail portion entrance states 
inside said NFA engine; 

wherein said process of analyzing comprises evaluating a 
cost function, said cost function comprising a plurality 
of factors. 

2. The method of claim 1, wherein the step of compiling an 
entrance ruleset into a DFA comprises: 

generating entrance expressions corresponding to said 
determined entrance paths; 

compiling said entrance expressions into an entrance NFA; 
and 

compiling, by Subset construction, said entrance NFA into 
said DFA for execution by said DFA engine. 

3. The method of claim 1, wherein said step of compiling 
an entrance ruleset into a DFA comprises: 
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labeling each NFA state and transition on any entrance path 
with a list of entrance path IDs which correspond to all 
determined entrance paths traversing said NFA state; 

treating each state with multiple IDs listed as multiple 
states during Subset construction with one variant for 
each ID: 

including all ID variants of each start state in the subset for 
a DFA root state; and 

when constructing DFA next states, limiting NFA transi 
tions so that each NFA state may transition only through 
NFA transitions with the same ID. 

4. The method of claim 1, wherein said plurality of factors 
are Summed in the cost function. 

5. The method of claim 1, wherein said plurality of factors 
comprise: 
NFA start states; 
DFA backup factor; 
DFA-NFA token frequency; 
DFA steps to match; and 
NFA states to match. 
6. The method of claim 1, wherein said plurality of factors 

are Summed in the cost function, said plurality of factors are 
individually multiplied by a cost weight, and said plurality of 
factors comprise: 
NFA start states; 
DFA backup factor; 
DFA-NFA token frequency; 
DFA steps to match; and 
NFA states to match. 
7. The method of claim 1, wherein said step of analyzing 

the NFA comprises recursively analyzing said NFA, wherein 
entrance paths are examined in depth first order, and selected 
when the cost function values are lower than cost function 
values for shorter and longer entrance paths. 

8. The method of claim 7, wherein said step of compiling 
an entrance ruleset into a DFA comprises: 

generating entrance expressions corresponding to said 
Selected entrance paths; 

compiling said entrance expressions into an entrance NFA; 
and 

compiling by Subset construction said entrance NFA into 
said DFA for execution by a DFA engine. 

9. The method of claim 7, wherein said plurality of factors 
are Summed in the cost function. 

10. The method of claim 7, wherein said plurality of factors 
comprise: 
NFA start states; 
DFA backup factor; 
DFA-NFA token frequency; 
DFA steps to match; and 
NFA states to match. 
11. The method of claim 7, wherein said plurality of factors 

are Summed in said cost function, said plurality of factors are 
individually multiplied by a cost weight, and said plurality of 
factors comprise: 
NFA start states; 
DFA backup factor; 
DFA-NFA token frequency; 
DFA steps to match; and 
NFA states to match. 
12. A system for splitting an automaton into a DFA portion 

and an NFA portion, comprising: 
a DFA engine enabled to find matches to rules: 
an NFA engine; 
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an NFA compiler enabled to compile a ruleset into an NFA 
representation, said compiler comprising a recursive 
entrance search function which is callable on each NFA 
start state to select entrance States and generate an 
entrance ruleset; and 

a DFA compiler enabled to compile said entrance ruleset 
into a DFA with instructions in an instruction format 
usable by said DFA engine. 

13. The system of claim 12, wherein said NFA compiler is 
further enabled to encode states reachable from selected 
entrance states for use by said NFA engine. 

14. The system of claim 12, wherein instructions for DFA 
accepting states corresponding to non-terminal entrance 
states are able to command signals to said NFA engine to 
activate corresponding NFA entrance states. 

15. The system of claim 12, wherein: 
the NFA compiler is further enabled to encode states reach 

able from selected entrance states for use by said NFA 
engine; and 

wherein instructions for DFA accepting states correspond 
ing to non-terminal entrance States are able to command 
signals to said NFA engine to activate corresponding 
NFA entrance states. 

16. A method of matching a ruleset in a DFA engine and an 
NFA engine, comprising: 
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generating an NFA with an NFA compiler from said 
ruleset; 

employing an entrance search function to select entrance 
states and generate an entrance ruleset; 

compiling said entrance ruleset into a set of DFA instruc 
tions for said DFA engine; 

generating NFA instructions for said NFA engine from said 
NFA states reachable from entrance states: 

executing said DFA instructions in said DFA engine; 
signaling entrance matches from said DFA engine to said 
NFA engine; and 

executing said NFA instructions in said NFA engine. 
17. The method of claim 16, further comprising activating 

entrance states which are NFA start states in said NFA engine 
at a beginning of a new scan. 

18. The method of claim 16, further comprising matching 
at least one whole rule with said DFA engine. 

19. The method of claim 16, further comprising: 
activating entrance states which are NFA start states in said 
NFA engine at said beginning of a new scan; and 

matching at least one whole rule with said DFA engine. 
20. The method of claim 16, further comprising reporting 

rule match information from either said DFA engine or said 
NFA engine. 


