(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

6 March 2014 (06.03.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/035377 Al

wo 2014/035377 A1 [N AP0 00 OO

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

GO6F 13/14 (2006.01) G11C 16/06 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

. e DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
PCT/US2012/052684 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
28 August 2012 (28.08.2012) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,

(25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(26) Publication Language: English ZW.

(71) Applicant (for all designated States except US): HEW- (84) Designated States (uniess otherwise indicated, for every
LETT-PACKARD DEVELOPMENT COMPANY, L.P. kind Of regional protection available): ARIPO (BW, GH,
[US/US]; 11445 Compaq Center Drive W., Houston, Texas GM, KE, IR, LS, MW, MZ, NA, RW, 8D, SL, SZ, 1Z,
77070 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(72) Inventors; and EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(75) Inventors/Applicants (for US only): LI, Sheng [CN/US]; MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
1501 Page Mill Rd., Palo Alto, California 94304-1100 TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
(US). YOON, Doe Hyun [KR/US]; 1501 Page Mill Rd., ML, MR, NE, SN, TD, TG).

Palo Alto, California 94304-1100 (US). JOUPPL, Norman .
Paul [US/US]; 1501 Page Mill Rd., Palo Alto, California D¢clarations under Rule 4.17:
94304-1100 (US). — as to the identity of the inventor (Rule 4.17(i))

(74) Agents: CHANG, Marcia Ramos et al.; Hewlett-Packard — as to applicant’s entitlement to apply for and be granted a
Company, Intellectual Property Administration, 3404 E. patent (Rule 4.17(ii))

Harmony Road, Mail Stop 35, Fort Collins, Colorado . .
2058 (%S). P Published:
L — with international search report (Art. 21(3))

(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,

(54) Title: HIGH PERFORMANCE PERSISTENT MEMORY

100\

/*_/110
A 110
/ / / /
/ ; \ﬁ 110
/ /
101
FEA
7
112
/ /
R N
/ /
106/—7L/ | ‘% 105

Fig. 1C

(57) Abstract: A method of performing data transactions in a high performance persistent memory comprising, with a processor, up -
dating data by writing new data to non-volatile memory (NVM) and receiving a done signal from a transaction accelerator commu -
nicatively coupled to the NVM. An apparatus for high performance persistent memory, comprising a processor, a memory controller
communicatively coupled to the processor, and non-volatile memory communicatively coupled to the memory controller and pro -
cessor, the non-volatile memory comprising an ACID transaction accelerator, in which the processor updates data on the non-volat -
ile memory (NVM) by writing new data to the NVM, and receives a done signal from the an ACID transaction accelerator when the
data has been updated.

WO 2014/035377 PCT/US2012/052684

HIGH PERFORMANCE PERSISTENT MEMORY

BACKGROUND

[0001] Large data centers use large and relatively complex data
structures. These data centers may manipulate large amounts of memory in
order to process, send and receive information. One concern for modern data
centers is business continuity in which a company or several companies rely on
the system to run their operations. If the power provided to a data center
system fails or the system crashes the company’s operations may be partially
impaired or operations may completely cease.

[0002] These power failures or system crashes may cause the system
or an application to reboot. During a system reboot, the data center re-loads
relatively complex data structures back onto the system. Data centers may load
terabytes of information onto the system in order for the system to resume
proper operation. Further, a system may address large amounts of data when
initially loading a program. Loading such information onto the system could
take several minutes or longer which may impact or stop business continuity all

together.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The accompanying drawings illustrate various examples of the
principles described herein and are a part of the specification. The examples
do not limit the scope of the claims.

[0004] Figs. 1A and 1B are block diagrams from a side and top view,

respectively, of a memory system comprising a number of three-dimensional

WO 2014/035377 PCT/US2012/052684

non-volatile memory (3D NVM) stacks according to one example of principles
described herein.

[0005] Fig. 1C is a three-dimensional block diagram showing one of
the three-dimensional non-volatile memory (3D NVM) stacks of Figs. 1A and 1B
according to one example of the principles described herein.

[0006] Fig. 2 is a flowchart showing a method of utilizing undo and
redo logging with an atomic, consistent, isolated, durable (ACID) accelerator
according to one example of principles described herein.

[0007] Fig. 3 is a flowchart showing a method for undo logging with
the ACID accelerator according to one example of principles described herein.

[0008] Fig. 4 is a flowchart showing a method of redo logging with the
ACID accelerator according to one example of principles described herein.

[0009] Fig. 5A and 5B are accelerator designs for undo logging and
redo logging, respectively, according to one example of principles described
herein.

[0010] Fig. 6 is a flowchart showing a method of scheduling memory
between a memory controller and an ACID accelerator and efficiently writing
data to NVM according to one example of the principles described herein.

[0011] Throughout the drawings, identical reference numbers

designate similar, but not necessarily identical, elements.

DETAILED DESCRIPTION

[0012] The present specification describes a method of performing
data transactions in high performance persistent memory comprising, with a
processor, updating data by writing new data to non-volatile memory (NVM) and
receiving a done signal from a transaction accelerator communicatively coupled
to the NVM.

[0013] The present specification further describes an apparatus for
high performance persistent memory, comprising a processor, a memory
controller communicatively coupled to the processor, and non-volatile memory

communicatively coupled to the memory controller and processor, the non-

WO 2014/035377 PCT/US2012/052684

volatile memory comprising an ACID transaction accelerator, in which the
processor updates data on the non-volatile memory (NVM) by writing new data
to the NVM, and receives a done signal from the ACID transaction accelerator
when the data has been updated.

[0014] The present specification also describes a computer program
product for performing ACID transactions in a high performance persistent
memory device. The computer program product may comprise a computer
readable storage medium comprising computer usable program code embodied
therewith. The computer usable program code may comprise computer usable
program code to, when executed by a processor, update data by writing new
data to non-volatile memory (NVM) and receive a done signal from a
transaction accelerator communicatively coupled to the NVM.

[0015] As noted above, large data centers use large and relatively
complex data structures. These data centers may manipulate a large amount
of memory in order to process, send and receive information. One concern for
modern data centers is business continuity in which a company or several
companies rely on the system to run their operations. If the power provided to a
data center system fails or the system crashes, the company’s operations may
be partially impaired or operations may completely cease. Consequently, these
power failures or system crashes may cause the system or a program running
on the system to reboot. During a system reboot, the data center re-loads
relatively complex data structures back onto the system. Data centers may load
terabytes of information onto the system in order for the system to resume
proper operation. Further a system may address large amounts of data when
initially loading a program. Loading such information onto the system could
take several minutes or longer which may impact or stop business continuity all
together.

[0016] In order to load these large and relatively complex data
structures, a high performance persistent memory system may be used to
process that large amount of data in a quick, inexpensive, and efficient manner.
Accomplishing this, the large and complex data structures may be ready for use

when a program starts or after the program or system reboots.

WO 2014/035377 PCT/US2012/052684

[0017] In one example of the present description, the 3D NVM
achieves a much higher performance than existing implementations. This is
accomplished by maintaining checkpointing locally in the NVM without the
complex undo and redo log constraints. Thus, if a system using high
performance persistent memory, as described herein, loses power, the program
hangs, or the system crashes, the last transaction is used as a checkpoint to
restore system data. In one example, the 3D NVM may provide hardware
support for separating cache systems from durability to achieve inexpensive
universal persistent memory without forfeiting performance and programming
flexibility with minimal changes to the processor and operating system’s
architecture.

[0018] In various examples, a high performance persistent memory
system described herein is used for data centers with relatively large in-memory
data sets. Often large amounts of memory are loaded onto a computer system.
This data may be used to, for example, load a large operating system
comprising of a complex data structure onto a computer when the computer is
initially powered on. Additionally, this data may include relatively complex data
structures that provide functionality for a program. The present high-
performance persistent memory system leverages a number of 3D NVMs with a
logic stack to quickly access data after a crash without reading bytes serially
from memory and building data structures in the memory.

[0019] As used in the present specification and in the appended
claims, the term “high performance persistent memory“ is meant to be
understood broadly as fast access non-volatile memory (NVM) that can retain
and store information even when the power to the device is no longer available.
High performance persistent memory may therefore retain data if and when a
program running on the system is disrupted or the system experiences a drop in
power.

[0020] Additionally, as used in the present specification and in the
appended claims the term “three-dimensional non-volatile memory (3D NVM)”
refers broadly to any memory storage medium wherein data can be stored and

retrieved. |In one example, the 3D NVM may not require power to sustain the

WO 2014/035377 PCT/US2012/052684

information stored thereon. Still further, in one example, a number of 3D NVMs
may be stacked on top of each other allowing for vertical expansion of the high
performance persistent memory.

[0021] Further, as used in the present specification and in the
appended claims, the term “logic die“ is meant to be understood broadly as a
small block of semiconducting material on which functional integrated circuits
are fabricated. In one example, the logic die provides architecture support for
the high persistent memory.

[0022] Still further, as used in the present specification and in the
appended claims, the term “logical operation” is meant to be understood as any
operation involving the use of logical functions, such as “AND” or “OR”, that are
applied to the input signals of a particular logic circuit. A logical operation may
also be referred to as a “transaction.”

[0023] Even further, as used in the present specification and in the
appended claims, the term “ACID transaction® is meant to be understood
broadly as any set of transaction properties that provide that a transaction sent
to the database is processed reliably. In one example, a set of properties are
defined for each transaction such that they are atomic, consistent, isolated and
durable (ACID).

[0024] For a transaction to be “atomic” each transaction is entirely
commited. Therefore, if a transaction is “atomic” then, when one part of the
transaction fails, the whole transaction will fail and the state of the non-volatile
memory will remain unchanged.

[0025] Further, for a transaction to be “consistent” each transaction
made will bring the database from one valid state into another valid state. Any
data written to a database is assured to be valid for all predefined rules. These
rules may include, but are not limited to cascades, triggers, or constraints. For
example, if a transaction is requested and the system process determines the
transaction will move data into an invalid state the transaction is not executed.

[0026] Additionally, for a transaction to be “isolated” this property
ensures that if a number of transactions were to be executed instead of

sequentially, the result will comprise the same system state as if the

WO 2014/035377 PCT/US2012/052684

transactions were executed serially. Thus, any one transaction executed
before, after, or concurrently with another transaction, each will result in the
same state.

[0027] Further, for a transaction to be “durable,” once a transaction is
committed, it will remain committed or stored permanently, even in the event of
power loss or system crash. Thus, the transaction is non-volatile and
persistent.

[0028] Examples of the present system and method are described
below with reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program products. It will be
understood that each block of the flowchart illustrations and/or block diagrams,
and combinations of blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program code. This computer program code
may be provided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing apparatus to
produce a machine, such that the code, which executes via a processor of the
computer or other programmable data processing apparatus, to implement the
functions/acts specified in the flowchart(s) and/or block diagram block or blocks.

[0029] In one example, this computer program code may be stored in
a computer-readable storage medium that can direct a computer or other
programmable data processing apparatus to function in a particular manner,
such that the code stored in the computer-readable memory produces an article
of manufacture including program code which implements the functions/act
specified in the flowchart(s) and/or block diagram blocks or blocks.

[0030] The computer program code may also be loaded onto a
computer or other programmable data processing apparatus to cause a series
of operations to be performed on the computer or other programmable
apparatus to produce a computer implemented process such that the computer
code which executes on the computer or other programmable apparatus
implements the functions/acts specified in the flowchart(s) and/or block diagram

blocks or blocks.

WO 2014/035377 PCT/US2012/052684

[0031] In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a thorough
understanding of the present systems and methods. It will be apparent,
however, to one skilled in the art that the present apparatus, systems, and
methods may be practiced without these specific details. Reference in the
specification to “an example” or similar language means that a particular
feature, structure, or characteristic described in connection with that example is
included as described, but may not be included in other examples.

[0032] Referring now to the Figures, Fig. 1A shows a side view block
diagram of a memory system (100) comprising a number of three-dimensional
non-volatile memory (3D NVM) stacks (101) according to one example of
principles described herein. As illustrated in the system (100), the 3D NVM
stacks (101) may include a number of vertically placed slices of non-volatile
memory (NVM) (110) comprising multiple NVM dies. Other examples of
memory which may be used may include memory devices such as ROM,
nvSRAM, FeRAM, MRAM, PRAM, CBRAM, SONOS, NRAM or other types of
non-volatile memory. Therefore, although Fig, 1 shows a number of vertically
stacked NVRAM (110) devices, the NVM devices may incorporate any type of
non-volatile memory, NVRAM being an example.

[0033] Additionally, instead of the NVM being in the form of 3D NVM
stacks (101), the NVM memory may instead be positioned in a two-dimensional
configuration. Therefore, although Figs. 1A, 1B, and 1C show the NVM stack
(101) being three-dimensional, any memory configuration may be used in the
present description without diverging from the principles described herein.

[0034] The vertically placed NVRAM devices (110) may be stacked on
each other to produce a 3D stack (101) of NVMRAM devices (110). Each
NVRAM device (110) within each of the 3D NVM stacks (101) may be
communicatively coupled to a number of other NVRAM devices (110) in the 3D
NVM stack (101) via a through-silicon via (TSV) (112, Fig. 1C) created in each
of the NVRAM devices (110) during the manufacturing process. The TSVs
(112, Fig. 1C) may act as a bus to allow all of the NVRAM devices (110) within
the 3D NVM stacks (101) to behave as a single device.

WO 2014/035377 PCT/US2012/052684

[0035] In one example, the 3D NVMRAM stacks (101) may be used to
build simple memory modules or to build scalable memory networks. Although
Fig. 1 shows a number of vertically placed slices of NVRAM (110) stacked
together forming a 3D NVRAM (101), the present specification contemplates
that any number and type of NVM may be communicatively coupled together
either horizontally or vertically. Stacking of the number of NVRAM devices
(110) of may have a number of advantages. One advantage is that physical
space within a computing system (100) is saved by taking advantage of the
vertical space available above the memory board. The system (100) may
therefore involve as few or as many NVRAM devices (110) in order for the
system to operate.

[0036] The 3D NVRAM stacks (101) may receive data from a
processor (102) and be directed to store the data thereon. Additionally, a
memory controller (Fig. 1B, 103) may be used to manage the flow of data
moving to and from each of the NVRAM devices (110) in the 3D NVM stacks
(101).

[0037] Fig. 1B shows a top view block diagram of a memory system
(100) comprising a number of three-dimensional non-volatile memory (3D NVM)
stacks (101) according to one example of principles described herein. As
discussed above, the NVRAM devices (110) may be controlled by a memory
controller (103) that manages the data flow in and out of the 3D NVM stacks
(101). Communication between the NVRAM devices (110) and the memory
controller (103) may be accomplished by using routing interconnects (111) on a
silicon interposer (104). In one example, the individual NVRAM devices (110)
or three-dimensional non-volatile memory (3D NVM) stacks (101) may not be
included on the same silicon interposer (104) and instead may be physically
distant form the processor (102) and memory controller (103) while still being
communicatively coupled to them via an interconnect (111).

[0038] In operation, the processor (102) may send executable code to
the memory controller (103) so that the memory controller can manage the data
flow to the individual NVRAM devices (110). In one example, the processor
(102) may send updated data to the number of NVMRAM devices (110).

WO 2014/035377 PCT/US2012/052684

[0039] Fig. 1C is a three-dimensional block diagram showing one of
the number of three-dimensional non-volatile memory (3D NVM) stacks (101) of
Figs. 1A and 1B according to one example of the principles described herein.
Each vertically placed NVRAM device (110) may comprise portions of multiple
NVM dies and may form single rank or multiple rank channels (108) between
each NVRAM device (110). An ACID transaction accelerator (105) may be
communicatively coupled to each of NVRAM devices (110) as well as on the
logic die (106). In one example, the ACID transaction accelerator (105) may be
physically coupled to the NVM such that it is placed on the logic die onto which
the NVM devices (110) are also coupled. In another example, the ACID
transaction accelerator (105) can physically exist apart form the logic die (106).
Therefore, although Fig. 1C may show that the ACID transaction accelerator
(105) is placed on a three-dimensional stack of NVM devices, other examples
exist where the ACID transaction accelerator (105) is communicatively coupled
to the NVM devices, but placed on its own logic die.

[0040] The transaction accelerator (105) is used to maintain atomic,
consistent, isolated, and durable transactions as described above. Additionally,
the accelerator (105) may ensure that minimal changes are made to the
processor and operating system architecture of the system (100).

[0041] Fig. 2 is a flowchart showing a method of utilizing undo and
redo logging using an ACID accelerator (105) according to one example of
principles described herein. The method may begin by issuing an update (201)
command, for example, by an operator, system, or device. Here the new data
may be written to the NVM (201) according to the ACID properties mentioned
above. During this process (200), the accelerator (105) may use a
checkpointing technique to, with the current data in the NVM (110), store the
current state of data being transferred. If, according to any of the ACID
transaction properties, the update process or the transaction process fails and
the new data is not written to the NVM, this checkpointing procedure will allow
the system (100) to be able to restart at the point of failure.

[0042] As will be described below, the accelerator (105) may be given

access to a number of buffers which contain new data received from the

WO 2014/035377 PCT/US2012/052684

processor (102) and old data retained by the NVRAM device (110). Control
logic may be used by the accelerator (105) to read the old data, log data to the
NVRAM device (110), wait until the logging finishes, and write the buffered new
data to the NVRAM device (110). During this process, however, the durability
property is separate from the writing data process. In one example, by
buffering the data in a new data buffer and an old data buffer on the accelerator
(105), the memory operations may be optimized through bulk data processing.

[0043] In this case, updating the data to the NVRAM devices (110) by
having the processor (102) read the old data, pushing a tuple comprising the
address of the old data to an undo log, waiting until the tuple is written out to the
undo log, and writing the new data to the 3D NVM stacks (101) need not
happen. Here, it can be appreciated that the NVM will be accessed for both the
log operation and the data updates.

[0044] Instead, the memory controller (103) as described in the
present specification may simply write the new data to the 3D NVM stacks (101)
and wait until all the data in the transaction is written out to the 3D NVM stacks
(101). The ACID requirement that the transaction be durable is separated from
the data access process and the system may provide a high performing, yet
fast and cheap persistent memory system (100). Additionally, the logging
operation is transparent to the processor (102) and the processor (102) will
treat the transaction updates as regular memory updates.

[0045] Once all of the data has been written to the NVM a done signal
will be received (202) from the accelerator (105). Thus, the ACID transaction is
now stored in the appropriate 3D NVM stack (101). If a system (100) were to
fail or lose power, the accelerator (105) can recognize the most recent version
of persistent data.

[0046] Fig. 3 is a flowchart showing a method (300) for undo logging
with the ACID accelerator (105) according to one example of principles
described herein. Fig 3 shows how the system (100) of Figs. 1A, 1B, and 1C
completes ACID transactions as an undo logging transaction. The ACID
transaction begins when the accelerator receives (301) new data from the
processor (102). The old data is then read (302). The ACID accelerator then

10

WO 2014/035377 PCT/US2012/052684

logs (303) bulk data the NVM. The bulk data may be defined as buffered old
data with addresses defining where within the NVRAM devices (110) the data
was stored. Using the bulk data that is buffered helps to optimize memory
operations where write and wait time is optimized in the stacked NVM since
there is no roundtrip delay between the NVM and memory controller. The
system then waits (304) until logging is finished. Once logging has finished the
buffered new data is written (305) the NVM.

[0047] The buffers within the accelerator (105) can be memory
managed by the controller (103) or can be a cache like structure with hardware
managed tag and metadata in addition to data blocks. Additionally, the
accelerator (105) may perform multiple loggings for a transaction, or may
handle multiple transactions at the same time.

[0048] As noted above, data may be reordered to improve the
channel utilization, and the ACID accelerator (105), by buffering incoming data,
may reconstruct the correct ordering. The processor (102) may direct the
memory controller (103) to send metadata defining the order of the data along
with the data and transaction ID. This metadata may be sent to the accelerator
(105) via an express bus created between the last level cache and the controller
(103). This bus may be dedicated to sending a write-reservation that includes
the time stamp and transaction ID. Since the data to be sent over this bus
includes meta-data, it may be relatively smaller than data of real memory
accesses. Thus, the extra bus will incur minimal pressure on processor pin
count. When the data write is complete a done signal is received from the
accelerator (306) by the processor (102). Advantageously, any new data is
written out to NVM after the old data is pushed to the undo log. Thus,
serialization may be avoided in the architecture of the present example during
undo logging.

[0049] Therefore, the present system (100) may allow memory writes
of transactions to be issued from memory controller (103) out-of-order as if they
were normal memory writes so as to maintain a high performance level. While
the buffers within the ACID accelerator (105) can buffer and reorder the

memory writes with the metatdata to maintain the correct order with regards to

11

WO 2014/035377 PCT/US2012/052684

transactions it is also possible for the buffers to be filled up with partially
updated transactions. In other systems this may prevent a number of
transactions from moving forward and the systems may be dead-locked.
However, the present ACID accelerator (105) may place a threshold limit on
how many partially committed transactions and their data can be queued up in
the buffers. This threshold limit may be defined by the system (100) to fit any
particular set of transactions or may be user defined.

[0050] Since the accelerator (105) is aware of how many transactions
have been issued and how many cache lines have been updated based on the
metadata stored in the accelerator’s buffers and provided by the processor-side
memory controller (103), the accelerator (105) may request the memory
controller (103) to flush the dirty cache lines of the finished transactions (i.e.
transactions not committed to the NVM (110)). In this case, the memory
controller (103) may not be allowed to issue the memory required at will and
based on its own scheduling policy. Through careful co-operation between the
memory controller (103) and the ACID accelerator (105), the system (100) may
be able to support persistent memory with minimal performance penalty and
avoid any potential dead-locks. In one example, this persistency-aware
memory scheduling may be implemented based on whether the instant
durability is needed. In one example, the memory controller (103), processor
(102), and operating system can also choose whether to allow memory writes
to be issued out-of-order or just flush the data to the NVM (101) as soon as it
may be allowed.

[0051] An example of the undo logging process according to the
present application will now be described. Assume 5 transactions are sent to
the ACID accelerator (105), namely; A, B, C, D, and E. Originally, these
transactions are committed in alphabetical order. Further assume that these
transactions produce the following data blocks, namely; A1, A2, A3, B4, B5, B6,
C7, C8, D9, and E10. As described above, the transaction accelerator (105)
may receive a number of write-reservations with time stamps and transaction
IDs. In this way, the transaction accelerator (105) is notified of the fact that, for

example, transaction A has 3 memory write blocks, A1, A2, and A3. Further

12

WO 2014/035377 PCT/US2012/052684

assuming, the processor or memory controller (103) reorders the data writes so
the NVM receives the following sequence: A1, E10, A2, B4, B5, C7, A3, C8, D9,
B6. As described above the incoming data is first buffered (303). When A3 is
received, the accelerator commits A1, A2, and A3 to NVM and a done signal is
received from the accelerator (306). Further, B is not committed until B6 is
received so the transactions B, C, D, and E are buffered. When B6 is received,
the last transaction in the set, the ACID accelerator (105) has all the data for
transactions B, C, D, and E. Consequently, serialization is avoided and all the
transactions are then committed at the same time.

[0052] Fig. 4 is a flowchart showing a method for redo logging with the
ACID accelerator (105) according to one example of principles described
herein. Fig 4 shows how the system (100) of Figs. 1A, 1B, and 1C completes
ACID transactions as a redo logging transaction. The ACID transaction begins
wherein the accelerator (105) receives (401) new buffered data from the
processor (102). No further action is performed immediately until the last data
write for the transaction is sent (402) to the accelerator (105). After all the new
buffered data has been received by the accelerator (105), the bulk data is
logged (403) to the NVM. Once logging (403) has been finished (404) a done
signal is received (405) from the accelerator (105). When the done signal is
received (405), the new buffered data is written (406) to the NVM.

[0053] Similar to above, the accelerator (105) may perform multiple
loggings for a transaction, or may handle multiple transactions at the same
time. Additionally, new data may be written (406) out to the NVM after the
transaction finishes and the whole redo logging for the transaction is finished
(404). Also, similar to undo logging, the ACID accelerator (105) can provide a
relatively simpler interface by optimizing the memory operation with the bulk
data processing by buffering the data, writing it, and waiting. This proves to be
a much faster process within the stacked memory since there is no roundtrip
delay between the 3D NVM stacks (101) and the memory controller (103). Still
further, the processor can have the same interface, while the NVM stack
chooses the optimal approach; namely undo logging (300) or redo logging (400)
for ACID support.

13

WO 2014/035377 PCT/US2012/052684

[0054] Fig. 5A is an illustration of an accelerator (500) design for undo
logging according to one example of principles described herein. Fig 5A shows
a 3D NVM stack (101) within the system (100) of Figs. 1A, 1B, and 1C with an
accelerator (500) design for undo logging transaction. Undo logging provides
for a logic controller (501) which may include hardware logic and a processor
executing computer usable program code. Here, the controller (501) may
produce the desired logic for the system. As noted above, both the new data
and the old data is to be buffered when undo logging is desired and is written to
NVM (504). Fig. 5A shows that the new data and old data may be stored, at
least temporarily in a new (502) and old data buffer (503) respectively. These
buffers (502, 503) may be reused once a consistent and/or persistent version of
the data being updated has been created in the NVM (504). In one example,
the operating system associated with the computing system and NVM (504)
may help to allocate portions of the NVM (504). In some examples, different
portions of the NVM (504) may be allocated to fit a variety of different
transactions that may take place in connection with the NVM (504).

[0055] As discussed above, the system (100) may allow memory
writes to be issued from memory controller (103) to the NVM (504) out-of-order
as if they were normal memory writes. While the number of buffers (502, 503)
within the ACID accelerator (105, 500) can buffer and reorder the memory
writes with the metadata provided from the memory controller (103), it is
possible for the number of buffers (502, 503) to be filled up with partially
updated transactions. The ACID accelerator (105, 500), however, may place a
threshold limit on how many partially committed transactions and their data can
be queued up in the buffers. This threshold limit may be defined by the system
(100) to fit any particular set of transactions or may be user defined.

[0056] Since the accelerator (105, 500) is aware of how many
transactions have been issued and how many cache lines have been updated
based on the metadata provided by the processor-side memory controller (103),
the accelerator (105, 500) may request the memory controller (103) to flush the
dirty cache lines of the finished transactions. In this case, the memory

controller (103) may not be allowed to issue the memory required at will based

14

WO 2014/035377 PCT/US2012/052684

on its own scheduling policy. Through co-operation between the memory
controller (103) and the ACID accelerator (105, 500), the system (100) may be
able to support persistent memory with minimal performance penalty. In one
example, this persistency-aware memory scheduling may be implemented
based on whether the instant durability is needed. |In one example, the memory
controller (103), processor (102), and operating system can also choose
whether to allow memory writes to be issued out-of-order or just flush the data
to the NVM (110) as soon as it may be allowed.

[0057] In one example, the ACID accelerator (105, 500), using the
control logic (501) within the ACID accelerator (105, 500), may control the
interfacing between the number of buffers (502, 503) and the NVM (110). In
one example, as the number of buffers (502, 503) begin to fill up, the ACID
accelerator (105, 500) will complete the log transactions in order to make sure
that data is persistently logged when appropriate and as soon as possible.
However, once any log transaction is completed, the ACID accelerator (105,
500) may write bulk data to the NVM (110) when appropriate. For example, if
the target memory block within the NVM (110) may be busy when the ACID
accelerator (105, 500) is attempting to write to that memory block, the ACID
accelerator (105, 500) may first commit other transactions to the NVM (110)
until that memory block becomes available. In this way, the ACID accelerator
(105, 500) may take advantage of time that would have otherwise been spent
waiting for busy memory blocks to complete other transactions.

[0058] Fig. 5B is an illustration of an accelerator (105) design
example for undo logging according to one example of principles described
herein. Fig 5B shows a 3D NVM stack (101) within the system (100) of Figs.
1A, 1B, and 1C with an accelerator (105) design for redo logging transaction.
Redo logging provides for a logic controller (501) which may be hardware logic
or a simple processor with computer usable program code embodied thereon.
In either case the controller (501) is able to produce the desired logic for the
system (100). As noted above, the new data (502) is to be buffered when redo

logging is initiated and is written to the NVM (504).

15

WO 2014/035377 PCT/US2012/052684

[0059] Fig. 6 is a flowchart showing a method (600) of scheduling
memory between a memory controller (103) and an ACID accelerator (105,
500) as well as a method for efficiently writing data to the NVM (101) according
to one example of the principles described herein. Although the two methods
depicted here in Fig. 6 (i.e. the method of scheduling memory between a
memory controller (103) and an ACID accelerator (105, 500) and the method for
efficiently writing data to NVM (101)) are shown together as method 600, the
present specification also contemplates that these two methods may be started
and occur separately and independently of each other. Therefore, Fig. 6 is
meant to be understood as being merely an example of the methods described
herein.

[0060] While the processor and memory controller keep generating
memory requests from both transactions and normal writes, the ACID
accelerator (105, 500) may make a decision (610) as to whether a threshold
limit on the number of partially committed transactions has been met. If the
threshold has been met (Determination Yes, 610), the ACID accelerator (105,
500) may notify (650) the memory controller (103) to stop sending data of new
transactions and request (655) that the memory controller (103) flush the dirty
cache lines of the finished transactions. The ACID accelerator (105, 500) may
then complete (660) a number of partially updated transactions by performing
the logging and updating steps (605, 615, 620, 625, 630, 635, 645, 640) as
mentioned below. Once this occurs, the ACID accelerator (105, 500) may then
again determine (610) if the threshold limit on the number of partially committed
transactions has been met. Therefore, in one example, the ACID accelerator
(105, 500) may continually check after each completion of a partially updated
transaction, whether the threshold limit has still been reached. In another
example, the ACID accelerator (105, 500) may complete a predetermined
number of partially updated transactions and then make the same query (610).

[0061] If the threshold has not been met (Determination No, 610), the
ACID accelerator (105, 500) may complete the method of writing data to the

NVM (110) by continuing to let the memory controller (103) issue a number of

16

WO 2014/035377 PCT/US2012/052684

memory requests at will and accept (605) new data from the memory controller
(103). As described above, the new data received (605) may be out-of-order.

[0062] The ACID accelerator (105, 500) may then read (615) the old
data as described above. After reading (615) the old data, the ACID
accelerator may then log (620) bulk data the NVM. A determination may then
be made (625) as to if the data block that is to be written to is busy. If the data
block is busy (Determination Yes, 625), then the ACID accelerator (105, 500)
may commit (645) other transactions to the NVM and wait for the data block to
become available. In this case, when the data block does become available,
the process continues with the ACID accelerator (105, 500) waiting (630) until
logging is finished, writing (635) the buffered new data to the NVM (110), and
sending (640) a done signal to the processor (102) and memory controller
(103).

[0063] If the data block is not busy (Determination No, 625), then the
ACID accelerator (105, 500) waits (630) until logging is finished. The ACID
accelerator (105, 500) then writes (635) the buffered new data to the NVM (110)
and sends (640) a done signal to the processor (102) and memory controller
(103). The whole process may then repeat throughout the execution of
applications.

[0064] Although Fig. 6 above describes a method of scheduling
memory between a memory controller (103) and an ACID accelerator (105,
500) and efficiently writing data to the NVM (110), in one example, the method
may include only the method of scheduling memory between a memory
controller (103) and the ACID accelerator (105). In another example, the
method may include only the method of efficiently writing data to the NVM (110)
as described above.

[0065] The present specification may also be described as a
computer program product for performing ACID transactions in a high
performance persistent memory device. The computer program product may
comprise a computer readable storage medium comprising computer usable
program code embodied therewith. The computer usable program code may

comprise computer usable program code to, when executed by a processor,

17

WO 2014/035377 PCT/US2012/052684

update data by writing new data to non-volatile memory (NVM) and computer
usable program code to, when executed by a processor, receive a done signal
from a transaction accelerator communicatively coupled to the NVM.

[0066] Any combination of computer readable medium(s) may be
utilized in the present specification. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic, optical
electromagnetic, infrared, or semiconductor system, apparatus, or device or any
suitable combination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable mediums would include the following:
an electrical connection having a number of wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only memory (ROM), an
erasable programmable read-only memory (EPROP or Flash memory), an
optical fiber, a portable compact disk read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable combination of the
foregoing. In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or store a program for
use by or in connection with any instruction execution system, apparatus, or
device such as, for example, a processor.

[0067] Program code embodied on a computer readable medium may
be transmitted using any appropriate medium, including but not limited to
wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of
the foregoing.

[0068] Computer program code for carrying out operations of the
present specification may be written in an object oriented programming
language such as Java, Smalltalk, or C++, among others. Computer program
code for carrying out operations of the present specification may also be written
in declarative programming language such as Structured Query Language,
However, the computer program code for carrying out operations of the present
systems and methods may also be written in procedural programming
languages, such as, for example, the “C” programming language or similar
programming languages. The program code may execute entirely on the user’s

computer, partly on the user's computer, as a stand-alone computer readable

18

WO 2014/035377 PCT/US2012/052684

medium package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the latter scenario,
the remote computer may be connected to the user’'s computer through a local
area network (LAN) or a wide area network (WAN), or the connection may be
made to an external computer (for example, thought the internet using an
internet service provider).

[0069] The flowchart and block diagrams in the figures illustrate the
architecture, functionality, and operations of possible implementations of
systems, methods, and computer program products. In this regard, each block
in the flowchart or block diagrams may represent a module, segment, or portion
of code, which comprises a number of executable instructions for implementing
the specific logical function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur out of the order
noted in the figures. For example, two blocks shown in succession may, in fact,
be executed substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the functionality involved. It will
also be noted that each block of the block diagrams and/or flowchart
illustrations and combination of blocks in the block diagrams and/or flowchart
illustrations, can be implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations of special purpose
hardware and computer instructions.

[0070] The terminology used herein is for the purpose of describing
particular examples, and is not intended to be limiting. As used herein, the

singular forms “a,” “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicated otherwise. It will be further understood
that the terms “comprises” and/or “comprising” when used in the specification,
specify the presence of stated features, integers, operations, elements, and/or
components, but do not preclude the presence or addition of a number of other
features, integers, operations, elements, components, and/or groups thereof.
[0071] The preceding description has been presented to illustrate and

describe examples of the principles described. This description is not intended

19

WO 2014/035377 PCT/US2012/052684

to be exhaustive or to limit these principles to any precise form disclosed. Many

modifications and variations are possible in light of the above teaching.

20

WO 2014/035377 PCT/US2012/052684

CLAIMS

WHAT IS CLAIMED IS:

1. A method of performing data transactions in a high performance
persistent memory comprising
with a processor:
updating data by writing new data to non-volatile memory (NVM);
and
receiving a done signal from a transaction accelerator

communicatively coupled to the NVM.

2. The method of claim 1, in which updating data comprises
receiving new data from the processor at the transaction accelerator and
temporarily buffering the new data in a new data buffer associated with the

transaction accelerator.

3. The method of claim 2, in which the new data received comprises
a number of partially committed transactions and in which, upon exceeding a
threshold limit of the number of partially committed transactions in the buffer,
the transaction accelerator instructs the processor to flush a number of dirty

cache lines of a number of finished transactions.

4. The method of claim 3, in which, if a number of data blocks within
the NVM to which the transaction accelerator is attempting to write a completed
transaction to is busy, the transaction accelerator commits a number of other

transactions to the NVM until the data block becomes available.
5. The method of claim 2, in which updating data comprises

buffering new data received from the processor and old data retained on the

non-volatile memory.

21

WO 2014/035377 PCT/US2012/052684

6. The method of claim 1, in which writing new data to NVM

comprises writing the new data to NVM using bulk data processing.

7. The method of claim 1, in which receiving the done signal from the
accelerator comprises sending a done signal from the accelerator to the

processor when a data write is complete.

8. The method of claim 1, further comprising receiving metadata
from a memory controller communicatively coupled to the processor defining

the number and order of writes to the new data.

9. The method of claim 6, in which the metadata is received by the
transaction accelerator from the memory controller via a dedicated bus

communicatively coupling the memory controller to the NVM.

10. An apparatus for high performance persistent memory,
comprising:
a processor;
a memory controller communicatively coupled to the processor; and
a non-volatile memory communicatively coupled to the memory controller
and processor, the non-volatile memory comprising an ACID transaction
accelerator;
in which the processor:
updates data on the non-volatile memory (NVM) by writing new
data to the NVM; and
receives a done signal from the an ACID transaction accelerator

when the data has been updated.

11. The apparatus of claim 10, in which the ACID accelerator, when

instructed by the processor:

22

WO 2014/035377 PCT/US2012/052684

reads old data;
logs the old data to NVM; and

writes buffered new data to NVM.

12. The apparatus of claim 10, in which the memory controller is
communicatively coupled to the NVM via a dedicated bus, and in which the
memory controller sends to the NVM metadata defining the number and order

of writes made to the new data.

13. The apparatus of claim 10, in which the ACID accelerator sends a

done signal to the processor when the data has become persistent.

14. The apparatus of claim 10, in which the new data received
comprises a number of partially committed transactions and in which, upon
exceeding a threshold limit of the number of partially committed transactions in
the buffer, the transaction accelerator instructs the memory controller to flush a

number of dirty cache lines of a number of finished transactions.

15. A computer program product for performing ACID transactions in
a high performance persistent memory device, the computer program product
comprising:

a computer readable storage medium comprising computer

usable program code embodied therewith, the computer usable program
code comprising:

computer usable program code to, when executed by a processor,
update data by writing new data to non-volatile memory (NVM); and

computer usable program code to, when executed by a processor,
receive a done signal from a transaction accelerator communicatively coupled
to the NVM.

23

WO 2014/035377

100\

110 —~~NVRAM

117

102

_

/
Processor

PCT/US2012/052684

Fig. 1A

111 —

101

NVRAM NVRAM NVRAM NVRAM ~—
| Processor »{/\\/102
NVRAM st 03 —J 10
Memory — 1—_|
Controller
NVRAM NVRAM NVRAM NVRAM

Fig. 1B

101

27

RN
/
/

Z
7
T/

7
Y

\
4\\

T e - 7

\7/// RTINS ///. Ty

w4/ J/ S

/ ~
0ol

>~ 10l

WO 2014/035377

317

200

Update data by writing new data
to NVM
201

Receive done signal from
accelerator
202

End

Fig. 2

PCT/US2012/052684

WO 2014/035377

300

Accelerator receives new
data from processor
301

Read old data
302

|

Log data to NVM
(buffered old data with
addresses)

303

4/7

PCT/US2012/052684

Wait until logging finishes
304

l

Write buffered new data
to NVM
305

'

Send done signal to
processor
306

End

Fig. 3

WO 2014/035377

400

N

< Start

Accelerator receives new
buffered data from
processor
401

Wait until last data write
for transaction is received
by accelerator
402

Log bulk data (buffered
new data with addresses)
to NVM
403

57

PCT/US2012/052684

Wait until logging finishes
404

Receive done signal from
accelerator
405

Write buffered new data
to NVM
406

End

Fig. 4

WO 2014/035377

500

N

6/7

Control Logic

(502) —~ |

New data buffer

Old data buffer

NVM

Fig. 5A

Control Logic

(502) —| | _

New data buffer

NVM

T

Fig. 5B

PCT/US2012/052684

(501)

(503)

(504)

| (501)

(504)

WO 2014/035377 PCT/US2012/052684

600

threshold limit on the
number of partially committed
No

Yes i ,
v

v
Notify memory control to Accept out-of-order of
stop sending data of new memory updates of new
transactions transactions from memory
650 controller
T 605

: 1

Request the memory
controller to flush the dirty Read and buffer old
cache lines of the — > data

finished transactions 615
655 l
l Log bulk data to NVM
Accept out-of-order of (buffered old data with
memory updates for addresses)
finished transactions, and 620

start to commit a number
of partially updated
transactions

660
— No the data block to be
' written to busy?
625
Write buffered
ne\/}/\ﬁ/?\;a to Wait until Yes
<«+— logging
635 finishes +
630 Commit other transactions
to NVM and wait for data
Send done block to become available
signal to 645
processor
640

Fig. 6

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2012/052684

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 13/14(2006.01)i, G11C 16/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 13/14; GO6F 11/07; GO6F 12/16; GO6F 11/14; GO6F 12/00; GO6F 13/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & keywords: NVM, power, fail, checkpoint and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2011-0113208 Al (NORMAN PAUL JOUPPI et al.) 12 May 2011 1,6-7,10,13,15
A See paragraphs 17, 23, 32, 43; and figures 1-4. 2-5,8-9,11-12,14
A US 2011-0276827 A1 (ROBERT J. ROYER et al.) 10 November 2011 1-15

See paragraphs 15-27; and figures 1-4.

A US 2008-0059834 Al (DAVID OWEN ERSTAD) 06 March 2008 1-15
See paragraphs 41-44; and figure 4.

A US 7516267 B2 (RICHARD L. COULSON et al.) 07 April 2009 1-15
See column 7, line 23 — column &, line 6, and figures 3A-9.

A US 5682517 A (THOMAS A. D ANDREA et al.) 28 October 1997 1-15
See column 3, line 38 — column 4, line 23; and figures 2-3C.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
28 March 2013 (28.03.2013) 29 March 2013 (29.03.2013)
Name and mailing address of the ISA/KR Authorized officer .
' Korean Intellectual Property Office a‘?/g:;w
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan BYUN, Sung Cheal E’iﬂg DA P
’ City, 302-701, Republic of Korea L1l
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-8262 Nl

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2012/052684
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2011-0113208 A1 12.05.2011 CN 102016808 A 13.04.2011
EP 2271987 A1 12.01.2011
EP 2271987 A4 20.04.2011
JP 2011-519460 A 07.07.2011
KR 10-2011-0002064 A 06.01.2011
WO 2009-134264 A1 05.11.2009
US 2011-0276827 A1 10.11.2011 US 2010-169710 A1 01.07.2010
US 7925925 B2 12.04.2011
US 8312326 B2 13.11.2012
US 2008-0059834 A1 06.03.2008 US 2004-0006723 A1 08.01.2004
US 2007-0022316 A1 25.01.2007
US 7058849 B2 06.06.2006
US 7272747 B2 18.09.2007
US 7702949 B2 20.04.2010
US 7516267 B2 07.04.2009 CN 101300554 A 05.11.2008
US 2007-0168698 A1 19.07.2007
WO 2007-056106 A2 18.05.2007
WO 2007-056106 A3 08.11.2007
US 05682517 A 28.10. 1997 CA 2152204 A1 22.12.1995
CA 2152204 C 01.09. 1998
DE 69522155 D1 20.09.2001
DE 69522155 T2 25.04.2002
EP 0690380 A1 03.01. 1996
EP 0690380 B1 16.08.2001
US 6027481 A 22.02.2000

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report

