
USOO5838909A

United States Patent (19) 11 Patent Number: 5,838,909
Roy et al. (45) Date of Patent: Nov. 17, 1998

54 REDUCING LATENCY WHEN OTHER PUBLICATIONS

56)

SYNCHRONIZING ACCESS TO A MULTI
USER DATABASE OVER A NETWORK

Inventors: H. Scott Roy, San Francisco; William
D. Harvey, Palo Alto, both of Calif.

Assignee: Sandcastle, Inc., San Jose, Calif.

Appl. No.: 652,803
Filed: May 23, 1996

Int. Cl. .. G06F 15/80
U.S. Cl. ... 395/200.39; 463/42
Field of Search 395/601, 617,

395/200.03, 200.05, 200.19, 200.08, 200.38,
200.39, 200.31, 200.32, 200.78, 200.43;

463/40, 41, 42, 43

References Cited

U.S. PATENT DOCUMENTS

4,473,889 9/1984 Ross 395/200.78
4,570,930 2/1986 Matheson 395/200.56
5,261,094 11/1993 Everson et al. 707/201
5,329,619 7/1994 Pagé et al. 395/200.33
5,423,037 6/1995 Hvasshovd 707/202
5,434,994 7/1995 Shaheen et al. ... 707/201
5,461,608 10/1995 Yoshiyama ... 395/200.39
5,538,255 7/1996 Barker 463/41
5,547.202 8/1996 Tsumura 463/41
5,561,769 10/1996 Kumar et al. . 395/200.32
5,586,257 12/1996 Perlman 348/1
5,586,937 12/1996 Menashe 463/41
5,630,757 5/1997 Gagin et al. 463/43
5,668,950 9/1997 Kikuchi et al. 463/42
5,685,775 11/1997 Bakoglu et al. 463/41

Bestavos, Azer et al., Application-Level Document Cach
ing in the Internet, pp. 166-172, IEEE 1995.
PCT Search Report for International Appl. No. PCT/US97/
O9054, Dated Nov. 24, 1997.

Primary Examiner Parshotam S. Lall
ASSistant Examiner Patrice L. Winder
Attorney, Agent, or Firm Fish & Richardson P.C.
57 ABSTRACT

Amethod and apparatus for reducing network latency during
execution of a multiple-player game acroSS a computer
network are provided. A master database represents a world
model for the game, and a master event Server Sequences
user inputs, or events, for updating the master database. The
master event Server and the master database are initially
located on a particular node in the network. Every other
node that is used by a player in the game has a slave event
Server and a slave database. Slave event Servers are respon
Sible for updating their local Slave database, Sending events
from their local node to the master event Server, and for
warding events to and from other slave Servers. In the
method, a determination is made of which player in the
game has a role in the game requiring the least latency of any
role and which node in the network is being used by that
player. The master event Server and the master database are
then migrated to that node by changing the Status of the Slave
server of that node to that of master event server. Once the
master event Server has been migrated, other slave Servers
can establish a direct connection with the new master event
SCWC.

59 Claims, 15 Drawing Sheets

v 921
INPUT MASTERMIGRATIONEVENT

MGRATIONEVENT

IS
XWALD
SERy5

YES

PassMASTERMIGRATIONEVENT
ALONG DESIGNATED PATH

SET CONNECTION
CORRESPONDING TOXASRTM

DETERMINE WHICHSERVER, X, SHOULD
NEXTRECEIVE MASTERMIGRATIONEVEN
FROMPATH DESIGNATED BY MASTER

922

927

CHANGE STATUSTO
MASTEREVENT SERVER

U.S. Patent Nov. 17, 1998 Sheet 1 of 15 5,838,909

FIG

U.S. Patent Nov. 17, 1998 Sheet 2 of 15 5,838,909

3S
S5 >

CO

N

U.S. Patent Nov. 17, 1998 Sheet 3 of 15 5,838,909

FG 33

U.S. Patent Nov. 17, 1998 Sheet 4 of 15 5,838,909

FG. 4A (PRIOR ART)

U.S. Patent Nov. 17, 1998 Sheet 5 of 15 5,838,909

PLAYERA

PLAYERB

FIG 43 (PRIOR ART)

5,838,909 Sheet 6 of 15 Nov. 17, 1998 U.S. Patent

PLAYER B

U.S. Patent Nov. 17, 1998 Sheet 7 of 15 5,838,909

PLAYERA

PLAYERB

FG

U.S. Patent Nov. 17, 1998 Sheet 8 of 15 5,838,909

PLAYERA

- - - -

PLAYERB

U.S. Patent Nov. 17, 1998 Sheet 9 of 15 5,838,909

CONNECT TO ANY SERVER, X,
KNOWN TO BE A PART OF THE GAME

702
INTIALIZE CONNECTIONLIST TO "X"

703
TAGXASRTM

701

FIG 7

U.S. Patent Nov. 17, 1998 Sheet 10 Of 15 5,838,909

ACCEPT ANYNEW CONNECTIONS
ANDADD THEM TO CONNECTION LIST

ENTER ANEVENT FROM USER
OR AN OPEN CONNECTION

IS
SEND EVENT TO EVENT A
LOCAL DATABASE LOCAL EVENT (EVENTISA MASTEREVENT)

SEND EVENT TO LOCAL
DATABASE AND TO EVERY
SERVER OTHER THANRTM

EVENT
ORIGINATE ON
LOCAL MACHINE

ASSIGNEVENT LATEST EVENT NUMBER

808
SEND EVENT TO RTM

FIG BA

U.S. Patent Nov. 17, 1998 Sheet 11 Of 15 5,838,909

821 ACCEPT ANY NEW CONNECTIONS
ANDADD THEM TO CONNECTION LIST

ENTER ANEVENT FROMUSERs
OR AN OPEN CONNECTION

823

S
EVENTA

LOCAL EVENT
YES SEND EVENT TO

LOCAL DATABASE

NO
825 MARKEVENT As MASTEREVENT

828 SEND EVENT TO OCALDATABASE
AND TO EVERY CONNECTED SERVER

F.G. BB

U.S. Patent Nov. 17, 1998 Sheet 12 Of 15 5,838,909

v 901
INPUT SLAVE MIGRATION EVENT

902

RELINQUISH
STATUS AS MASTER
EVENT SERVER

NO

'S SEND MASTERMIGRATIONEVENTALONG
PATH DESIGNATED BY SLAVEMIGRATION
EVENT AND MARK CONNECTIONASRTM

CHANGE STATUSO
SLAVE EVENT SERVER

FIG 9)A

U.S. Patent Nov. 17, 1998 Sheet 13 Of 15 5,838,909

v 921
INPUT MASTERMIGRATIONEVENTS

922
DETERMINE WHICHSERVER, X, SHOULD

NEXT RECEIVE MASTERMIGRATIONEVENT
FROMPATH DESIGNATED BY MASTER

MIGRATIONEVENT

923
S

XVALID

SERV5

927

CHANGE STATUS TO
MASTEREVENT SERVER

925
YES

PASS MASTER MGRATIONEVENT
ALONG DESIGNATED PATH

SET CONNECTION
CORRESPONDING TO XASRTM

926

FG 93

U.S. Patent Nov. 17, 1998 Sheet 14 of 15 5,838,909

w
DETERMINE ROLE IN THE GAME 941
ASSOCATED WITH MACHINE

WHICH SENT SLAVEMIGRATIONEVENT

THATROLEREQUIRE
THE LEAS, LATENCY 944

YES DO NOT RELINQUISH
STATUS AS MASTER

RELINQUISH STATUSAS
MASTER TO THAT SERVER

943

FIG 9) C

U.S. Patent

FG

Nov. 17, 1998 Sheet 15 0f 15

v
OPEN A NEW CONNECTION

ANDADD TO CONNECTION LIST

DO
EVENT STREAMS

FROM NEW CONNECTION AND
OLD CONNECTION

OVERLAP

1003 CLOSE OLD CONNECTION AND
DELETE FROM CONNECTION LIST

1004 MAINTAINKNOWLEDGE OF WHICH
EVENTS HAVE BEEN PROCESSED

O

5,838,909

1001

5,838,909
1

REDUCING LATENCY WHEN
SYNCHRONIZING ACCESS TO A MULTI
USER DATABASE OVER A NETWORK

FIELD OF THE INVENTION

The present invention pertains to the field of computer
networking. More particularly, the present invention relates
to reducing latency when Synchronizing access to a multi
user database over a network.

BACKGROUND OF THE INVENTION

Use of the Internet has been increasing rapidly in the past
Several years. One potential use of the Internet which has
particular appeal for many users is the possibility of using
the Internet to play computer games. Existing technology
allows two players at different locations to Simultaneously
play a game using a direct telephone or ISDN connection.
Similarly, computer games can be implemented on a local
area network (LAN) in which each player in the game uses
a different computer. However, there are unique problems
asSociated with implementing a multi-player computer game
across a wide area network (WAN), particularly one as
expansive as the Internet.
One Such problem is that even computer games which are

designed for multiple players using different computers tend
to be Sensitive to latency in communicating data between
computerS. Consider, for example, a computer game in
which two or more players at remote locations interact with
each other within a fictitious “game world.” The game world
can be modeled by a database, which might be located on
one of the player's computers or on a central Server. The
players interact with each other by entering inputs through
a joystick, mouse, keyboard, or other input/output device. In
order for the game to be enjoyable, the game world must
accurately reflect the current history of user inputs, or
“events,” received from all players. To resolve ambiguity of
event ordering, events are typically collected at a central
server that establishes the event sequence. However, differ
ences in delays between the various computers involved in
the game can hinder the proper Sequencing of events when
updating the game world. In addition, the Speed with which
events are communicated to and from the game world (i.e.,
the database) can be critical, depending upon the type of
game being played. For example, in naturally fast-paced
games, Such as those involving close combat between char
acters and many Simulations, high latency can cause the
game to be unrealistic, if not completely unplayable. High
latency can be quite problematic even in games in which
only particular playerS have latency-Sensitive roles.

Sensitivity to latency presents a Significant obstacle to
implementing certain multi-player computer games on the
Internet, because the latencies associated with the Internet
can be Substantial and quite unpredictable. Various factors
contribute to this unpredictability, including diverse delayS
between different communication paths (which may be
caused by differences in communications hardware), uncer
tainty as to which physical route a given transmission will
take, and wide variations in network communications traffic
over time. Therefore, what is needed is a technique for
overcoming Such difficulties associated with the prior art
when implementing multi-player computer games on a
WAN. In particular, what is needed is a technique for
resolving latency concerns in a multi-player game imple
mented on the Internet.

SUMMARY OF THE INVENTION

A method is provided of reducing network latency in
accessing a database in a network. The network has a

15

25

35

40

45

50

55

60

65

2
number of nodes, including a first node and a Second node.
The first node includes a first event Server for Sequencing
commands to the database, which is Stored in one of the
nodes in the network. The Second node includes a Second
event Server for Sequencing commands to the database. The
method comprises the Steps of changing the Status of the first
event Server from master event Server to Slave event Server
based on a network latency criterion, and assigning the
Status of master event Server to the Second event Server
based on the network latency criterion.

Other features of the present invention will be apparent
from the accompanying drawings and from the detailed
description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate Similar elements
and in which:

FIG. 1 illustrates a plurality of computer Systems con
nected in a network configuration.

FIG. 2 is a block diagram of a computer System in which
the present invention can be implemented.

FIG. 3 illustrates a logical configuration in which a
plurality of computer Systems can be connected according to
the present invention.

FIG. 4A illustrates a Single-player game based on a
database running on a computer System.

FIG. 4B illustrates a multi-player game running in a
network using a client-Server configuration.

FIG. 5A illustrates a multi-player game running in a
network in accordance with the present invention, in which
the master event Server has not yet been migrated.

FIG. 5B illustrates a multi-player game running in a
network in which the master event Server has been migrated.

FIG. 6 illustrates a multi-player game running in a net
work in which a slave event server has established a direct
connection to the master event Server.

FIG. 7 is a flow diagram illustrating a technique for
establishing a connection to a computer System having
multi-player game Software.

FIG. 8A is a flow diagram illustrating a technique used by
a slave event Server for routing events in a network.

FIG. 8B is a flow diagram illustrating a technique used by
the master event Server for routing events in a network.

FIG. 9A is a flow diagram illustrating a technique used by
the master event Server for handling a slave migration event.
FIG.9B is a flow diagram illustrating a technique used by

a slave event Server for handling a master migration event.
FIG. 9C is a flow diagram illustrating a technique for

determining whether the master event server should be
migrated to another computer.

FIG. 10 is a flow diagram illustrating a technique used by
a slave event Server for changing a connection from a
previous master event Server to a current master event
SCWC.

DETAILED DESCRIPTION

A technique for reducing latency when Synchronizing
access to a multi-user database over a network is described.
In the following description, for purposes of explanation,
numerous Specific details are Set forth in order to provide a
thorough understanding of the present invention. It will be

5,838,909
3

evident, however, to one skilled in the art that the present
invention may be practiced without these specific details. In
other instances, well-known Structures and devices are
shown in block diagram form in order to avoid unnecessarily
obscuring the present invention.

The present invention includes methods having various
Steps. These Steps may be embodied in computer program
instructions. The instructions can be used to cause a general
purpose processor which is programmed with the instruc
tions to perform the Steps. Alternatively, the Steps of the
present invention may be performed by Specific hardware
components that contain hardwired logic for performing the
required Steps, or by any combination of programmed gen
eral purpose computer components and custom hardware
components.

The present invention is particularly Suited to reducing
latency when implementing a multi-player game on the
Internet. In particular, the present invention is Suited to
implementing a game in which a fictitious game world is
modeled by a database, and in which one particular player
of the game has a role with a latency requirement that is
Significantly more restrictive than the other players' roles.
An example of Such a game is a simulated (American)
football game in which one player playS offense and a
Second player plays defense at any given point in time. In
Such a game, the player on offense might be responsible for
movement of the players, including the Speed and direction
of various players, while the player on defense might be
responsible only for Selecting a predefined defensive pattern.
Hence, in Such a game, the player on offense would have
Substantial interaction with the game world, whereas the
player on defense would have little or no interaction with the
game world. Accordingly, the role of the player on offense
would have a Substantially more restrictive latency require
ment than the role of the defensive player. Another example
of a game in which one player has Substantially more
restrictive latency requirement than the other playerS is a
role-playing fantasy game. In Such a game, one player acting
as a “Superhero” may participate on a very active level,
while various parameters of the game might be determined
at a high level by one or a Small number of players who
participate only in a peripheral manner (e.g., by Setting game
conditions, Selecting obstacles for the Superhero to
overcome, etc.). Hence, the player having the Superhero role
would have a much more restrictive latency requirement
than the other players, because he interacts with the database
on a much more active level.

Referring now to FIG. 1, a network configuration in
which the present invention may be implemented is illus
trated. A central Server computer 1 is coupled via the Internet
3 to a number of client computer systems 2. The server
computer System 1 and each of the client computer Systems
2 includes Stored game Software, including Software in
which the present invention is embodied. The game Software
includes various application program interfaces (APIs) pro
Viding an interface to operating System Software.

FIG. 2 illustrates an example of an architecture which
may be used for any of the client computer Systems 2 or the
Server computer System 1. The architecture includes a cen
tral processing unit (CPU) 10, memory 11, a mass storage
device 12, a modem 13, and various input/output (I/O)
devices 14. Memory 11 represents both random access
memory (RAM) and read-only memory (ROM). Mass stor
age device 12 includes an optical, magnetic, or other similar
Storage medium Suitable for use with a personal computer
system. I/O devices 14 may include any combination of
devices Such as a mouse, a joystick, a trackball, a keyboard,

15

25

35

40

45

50

55

60

65

4
a monitor, or other I/O devices. The Software in which the
present invention is embodied may be Stored in mass Storage
device 12, memory 11, or both. In addition, the software may
be distributed between two or more of the computer systems
illustrated in FIG. 1.

FIG. 4A shows a representation of a computer system 40
running game Software according to one prior art embodi
ment. A database 43 provides a world model for the game
(i.e., a “game world') . User inputs 41 are received through
a game-compatible I/O device 46 (Such as a mouse or
joystick) and provided to software 42. Software 42 receives
and Sequences user inputs, or “events,” that are used to
update the database 43. Rendering commands 45 are Sent
from the database to a display 44 of the computer system 40
to generate various Scenes representing the game world.
Techniques for implementing a game as illustrated in FIG.
4A are well-known.

FIG. 4B shows a well-known configuration for imple
menting a multi-user game on a network. In the configura
tion of FIG. 4B, the game world is provided by a database
53 located on a central server 51. Client computer systems
50 and 52 are used by Players A and B of the game,
respectively. Software 54 located in the central server 51
receives events 58 from computers 50 and 52 and provides
these events to the database 53 in order to update the game
world. Rendering commands 56 are then sent from the
updated database 53 in the central server 51 across the
network to update the displays 55 and 57 of client computers
50 and 52, respectively.
As mentioned above, implementing as shown in FIG. 4B

on the Internet can be problematic if either of Players A and
B are Subject to a significant latency restriction. In addition,
the transmission of rendering commands 56 from server 51
to clients 50 and 52 can be hindered by bandwidth limita
tions of the network. Consequently, the present invention
provides a technique for overcoming Such difficulties.

In the technique of the present invention, every machine
that participates in the game runs Software referred to herein
as an “event server.' One of the event servers is known as
the “master event Server' and is responsible for Sequencing
all changes to a master database representing the game
world. All event servers other than the master event server
are considered to be “slave event servers'.

In the preferred embodiment, the master database is
located on the same machine as the master event Server.
Slave copies of the master database (or portions thereof) are
Stored on each machine other than the machine in which the
master event Server is located. By providing one master copy
of the database, events originating from different machines
can be more easily Synchronized. By providing Slave copies
of the database in every other machine involved in the game,
the need to Send rendering commands across the network is
reduced or eliminated, which reduces bandwidth consump
tion.

In one embodiment of the present invention, the master
database is divided into multiple Sections, or “objects', each
of which may reside on a different machine. Each Section
functions as a master database relating to a particular aspect
or Subset of the game, and a separate master event Server is
asSociated with each Section.
An event Server generally performs the following primary

functions:
(1) connecting to other event servers;
(2) routing events to the local database and to other event

SerVerS.,
(3) migrating the master event server; and

5,838,909
S

(4) reconnecting to a new event Server Such that events are
not lost or duplicated.

Each event Server maintains a list of open connections to
other event Servers, one of which is always tagged as the
route to the master (RTM) event server.
As will be described in greater detail below, the master

event Server is migrated to a machine used by the player
having the role with the most restrictive latency require
ment. In the embodiment described above in which there are
multiple master event Servers corresponding to multiple
Sections of the master database, each master event Server can
be independently migrated to another machine, as appropri
ate. Further, all machines participating in the game which do
not have the master event Server are then able to reconnect
to the machine which has the master event Server or to any
other machine in order to improve network latency.

FIG. 5A illustrates a technique according to the present
invention for implementing a multi-user game over the
Internet. In FIG. 5A, the game is played by two players,
playerS A and B, operating computer Systems 60 and 62,
respectively. It is noted, however, that the present invention
is equally applicable to a game played simultaneously by
more than two players. Initially, the master database 71 and
the master event Server 66 are located in a central Server
computer System 61. Located in computer System 60 (used
by player A) are a slave event queue 65 and a slave copy 68
of master database 71. Similarly, located in computer System
62 (used by player B) is a slave event server 67 and a slave
copy 72 of master database 71. The display 74 of computer
system 62 is updated by rendering commands 73 from the
slave copy 72 of master database 71, rather than from the
master database 71 itself, thereby reducing bandwidth con
Sumption on the network. Similarly, the display 70 associ
ated with computer System 60 is updated by rendering
commands 69 from slave copy 68 of master database 71,
rather than directly from master database 71.

Events 64 from computer system 62 are received by slave
event Server 67 and then passed along to the master event
server 66, unless the events 64 are purely local events for
updating only the slave copy 72 of the database. Purely local
events might be, for example, events which Set display
options or other functions that are only relevant to computer
System 62. Similarly, events 63 originating from computer
system 60 are received first by slave event server 65 and then
passed along to master event Server 66, unless those events
are purely local to computer system 60. Events received by
the master event Server 66 are used to update the master
database 71 and are passed along to all slave event Servers
as master events 75.

Referring now to FIG. 7, a routine is illustrated by which
by an event Server which is not yet involved in the game
connects to another event Server that is already part of the
game. An event Server which is not yet part of the game is,
by definition, a slave event server. Referring to FIG. 7, the
Slave event Server first connects to any other event Server, X,
which is known to be a part of the game (step 701). The
knowledge of which event Servers are already part of the
game, and their logical addresses, can be provided to the
connecting event Server in any of a number of possible ways.
The methods for providing Such knowledge are not germane
to the present invention. Next, the slave event server which
is joining the game initializes its connection list to include
X (step 702). X is then tagged as the RTM (route to master)
in the connection list (step 703).

According to the present invention, a determination is
made of which computer System participating in the game is
used by the player having the role which requires the least

15

25

35

40

45

50

55

60

65

6
latency. Once this is determined, the master event server 66
is migrated to the machine used by that player. Referring
now to FIG. 5B, assume that it has been determined that
player B (using computer System 62) has the role in the
game which requires the least latency. Consequently, master
event server 66 is migrated to computer system 62. More
Specifically, the Status of event Server 66 is changed from
master event Server to slave event Server, and the Status of
event server 67 is changed from slave event server to master
event server. Similarly, the master database 71 is migrated to
computer system 62. The status of slave event server 65
associated with Player A remains slave event server. Events
75 output by (newly designated) master event server 67 are
then considered to be master events, rather than Slave events.
AS mentioned above, the present invention is equally

applicable in a situation in which many players using many
computers are involved in the game using the Internet as a
communication medium. The logical configuration of com
puters involved in the game in that case would likely have
the form of a tree hierarchy, as illustrated in FIG. 3. FIG. 3
illustrates the logical configuration of Several computer
systems 20 through 26. Computer system 20 initially con
tains the master event Server and the master database and is
therefore shown as the root node of the tree hierarchy.

In a game situation involving two or more players, a given
computer may not be directly connected to the computer
having the master event Server, Such is the case for com
puters 23 through 26 in FIG. 3. Consequently, certain
computers, Such as computerS 21, 22 and 25, will be
required to forward events received from other computers.
The present invention provides a technique for handling
Such forwarding, which is discussed below in connection
with FIGS 8A and 8B.
The present invention includes steps by which the slave

event Server Sends slave events to the master event Server
over the network, and by which the master event server
sends (multi-casts) master events over the network to every
Slave event Server in the game. The master event Server has
the responsibility of ensuring that Slave events originating
from any given machine are processed in the order in which
they were Sent. This is a concern, Since it is possible for two
slave events to arrive out of order when the master event
Server migrates or when a Slave event Server reconnects to
a different event Server (e.g., after migration of the master
event server).

FIG. 8A illustrates a routine used by a slave event server
for opening connections to other event Servers and for
routing events. Initially, the Slave event Server accepts any
new connections and adds them to its connection list (Step
801). Next, the slave event server inputs an event received
either from a user or from one of its open connections (Step
802). If (in step 803) the event is a local event (i.e., if the
event is intended only for use on the local machine), then the
Slave event Server Sends the event only to its local database
(step 804) and the routine repeats from the beginning. If the
event is not a local event and the event is a slave event (Step
805) which originated on the local machine (step 806), then
the event is assigned the latest event number for the local
machine (step 807) and is routed to the RTM (step 808). If,
however, the event is a slave event, but the event did not
originate on the local machine, then the event is not assigned
an event number by the local slave event server, but is
simply routed to the RTM (step 808). If the event is neither
a local event nor a Slave event, then the event is a master
event, in which case the event is routed to the local database
and to every server connection other than the RTM (step
809).

5,838,909
7

FIG.8B illustrates a routine used by a master event server
for opening connections and routing events to slave event
Servers. Initially, the master event Server accepts any new
connections and adds the connections to its connection list
(step 821). Next, an event is input to the master event server,
either from a user or from an open connection (Step 822). If
the event is determined to be a local event (step 823), then
the event is sent only to the master database. However, if the
event is not a local event, then the event is considered to be,
and is marked as, a master event (step 825). Hence, when a
Slave event is received and processed by the master event
Server, it effectively becomes a master event once it is
retransmitted (multi-cast) by the master event Server. Once
the event is marked as a master event, the master event
Server checks the event number associated with that event to
Verify that no earlier events from the Sending event Server
are missing (step 826). It is possible for events to be missing
in Situations in which a Sending Slave event Server has
recently reconnected to a newly assigned master event
Server. In that Situation, two events Sent by the Slave event
Server may take different routes to their destination and may
therefore arrive out of Sequence. Consequently, once all
earlier events have been processed (step 827), the event is
Sent to the local database and to every event Server listed in
the connection list of the master event server (step 828).
AS described above, a key feature of the present invention

is that the master event Server and the master database are
migrated to another machine in order to minimize latency.
The authority to initiate migration can be placed with either
the master event server or a slave event server. If the
authority to migrate is placed with a Slave event Server, then
a slave event Server determines whether it has a latency
requirement that is Sufficiently Stringent to justify migrating
the master event Server to that machine. A Slave server can
make this determination by knowing the topology of the
game and the latencies of the participating devices.
Accordingly, in Such an embodiment, the master event
Server can broadcast information describing the current
network configuration and latencies associated with each
device in the game to each connected Slave event Server at
regular intervals, or whenever a new slave event Server
connects to the game.

Regardless of which device has the actual authority to
approve of migration of the master event Server, the migra
tion process can be initiated by a request or command
transmitted over the network by a slave event server. The
request or command is a Special event known as a “slave
migration event.” The master event Server initiates the
migration process by Sending a “master migration event'.
When a Slave event Server receives a Slave migration event
from another slave event server, it adds its identifier to the
end of the event message. Hence, the Slave migration event
gets annotated with the complete path it follows to reach the
master event Server. The master migration event Sent in reply
also contains the same path information. Accordingly, inter
ceding Slave event Servers can correctly route the master
migration event to the slave event Server that transmitted the
slave migration event and update their respective RTM
information.

FIG. 9A illustrates the migration routine performed by the
master event Server according to one embodiment. Initially,
the master event Server inputs a slave migration event (Step
901). The master event server then determines whether to
relinquish its status as the master event server (step 902).
(AS already mentioned, this decision might be made by a
Slave event server in another embodiment.) If it is appro
priate to relinquish its status as the master event Server, then

15

25

35

40

45

50

55

60

65

8
the master event Server Sends a master migration event along
the path which was designated by the received slave migra
tion event, and marks that connection as the RTM (step 903).
Next, the master event Server changes its status to Slave
event server (step 904). If the master event server determines
that it is not appropriate to change its Status as master event
server (step 902), then the slave migration event is ignored
and the routine ends.
FIG.9B illustrates the migration routine used by a slave

event Server according to one embodiment. Initially, a local
Slave event Server inputs a master migration event that was
Sent in reply to a Slave migration event Sent by one of the
slave event servers (step 921). Next, the local slave event
Server determines which event Server, X, should next receive
the master migration event (step 922). This determination is
made on the basis of the path designated by the master
migration event. Next, the local Slave event Server deter
mines whether X is a valid server (step 923). If not, the local
Slave event Server changes its own Status to master event
Server, despite the fact that it was not the slave Server which
had requested to become the master (step 927). If X is a valid
event Server, then the local Slave event Server determines if
X is still connected (step 924). If not, the local slave event
Server changes its own status to master event server (Step
927). Therefore, if a given slave event server requests to
become the master event Server and Subsequently becomes
disconnected from the network before the master migration
event is received, the master event Server will be migrated
by default to the last Slave event Server along the path toward
the disconnected slave event server. Note that there is no
master event Server until the master migration event reaches
its destination. Hence, this step (927) ensures that some
event server will always assume the status of master event
Server if a connection is lost.
ASSuming X is a valid event Server and is still connected,

the receiving Slave event Server passes the master migration
event to the next Slave event Server along the designated path
(step 925). Accordingly, the connection through which the
master migration event is passed is designated as the RTM
by the local slave event server.

FIG. 9C illustrates a routine by which a master event
Server can determine whether to relinquish its Status as
master event Server. Upon receiving a slave migration event,
the master event Server identifies the role in the game that is
asSociated with the slave event Server that Sent the Slave
migration event (step 941). If that role requires the lowest
latency of any role in the game, then it is appropriate to
migrate the master event Server. Accordingly, the master
event Server relinquishes its Status as master event Server
(step 943). Otherwise, the master event server retains its
status as master (step 944).

Referring again to FIG. 5B, once the master event server
has been migrated to computer System 62, it may not be
desirable from a latency Standpoint (or for other reasons) to
require events originating from computer System 60 to pass
through the central Server computer System 61. For example,
once the master event Server has been migrated to a different
machine, it may be appropriate for one Slave event Server to
reconnect to another Slave event Server to reduce its latency.
Referring to both FIG. 5B and FIG. 6, note that slave event
server 65 on computer 60 was initially connected to event
server 66 on computer 61 (FIG. 5B). Event server 66 was
initially the master event Server. However, once event Server
67 in computer 62 becomes the master event server, it
becomes more efficient for slave event server 65 to connect
directly to event server 67 (FIG. 6). Consequently, the
present invention allows any given Slave event Server in the

5,838,909
9

game to alter its connections in order to improve network
latency. For example, slave event server 65 can establish a
new connection directly to the newly designated master
event Server 67 and drop its existing connection to the
former master event server 66, as illustrated in FIG. 6.

FIG. 10 illustrates a routine for performing such recon
nection. In one embodiment, the reconnection routine is
initiated in response to a message from the former master
event Server, indicating that the receiving event Server
should reconnect to the new master event server. In FIG. 10,
upon receiving the Signal to reconnect, a Slave event Server
opens a new connection to the newly-designated master
event Server (or to another slave event Server, if appropriate),
and adds that connection to the connection list (step 1001).
Next, the slave event server waits until the event streams
from the new connection and the old connection overlap
(step 1002). In other words, the slave event server waits until
it sees a Sequence of events that is the same in the Streams
coming from both the old connection and the new connec
tion. When the streams overlap, the event server closes the
old connection and deletes the old connection from its
connection list (step 1003). In addition, the slave event
Server maintains knowledge of which events have been
processed in order to avoid duplication of events (step
1004).

Thus, a technique for reducing latency when Synchroniz
ing access to a multi-user database over a network has been
described. Although the present invention has been
described with reference to Specific exemplary
embodiments, it will be evident that various modifications
and changes may be made to these embodiments without
departing from the broader Spirit and Scope of the invention
as Set forth in the claims. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive Sense.
What is claimed is:
1. A method of reducing latency in accessing in a master

database Stored in a node of a network having a plurality of
nodes including a first node and a Second node, the first node
including a first event Server and the Second node including
a Second event Server, the first event Server and the Second
event Server each having a status as a master event Server or
a slave event Server with respect to network events, the event
Server having the Status of master event Server Sequencing
node commands to the master database, wherein at any
given time only one node in the network can have the Status
of master event Server and each node in the network pro
ceSSes events received from the master event Server differ
ently than events received from Slave event Servers, the
method comprising the Steps of

(a) changing the status of the first event server from
master event Server to slave event Server based on a
network latency criterion; and

(b) assigning the status of master event server to the
Second event Server based on the network latency
criterion.

2. The method of claim 1, wherein the Step of changing
the status of the first event server from master event server
to slave event Server based on a network latency criterion
comprises the Step of changing the Status of the first event
server from master event server to slave event server if the
Second node has a more restrictive network latency require
ment than the first node.

3. A method of reducing latency in accessing in a master
database Stored in a node of a network having a plurality of
nodes, the plurality of nodes including a local node and a
plurality of remote nodes, a first one of the remote nodes

15

25

35

40

45

50

55

60

65

10
having a master database and a master event Server for
Sequencing commands to the master database, each network
node having a status as a master event Server or a slave event
Server with respect to network events, wherein at any given
time only one node in the network can have the Status of
master event Server and only one database in the network
can have the Status of master database, and wherein each
node in the network processes events received from the
master event server differently than events received from
Slave event Servers, the method comprising the Steps of:

(a) migrating the master database from the first remote
node to the local node,

(b) migrating the master event Server from the first remote
node to the local node, and

(c) inputting Slave events from one or more remote nodes
to the migrated master event Server for execution by the
local node against the migrated master database.

4. The method of claim 3, wherein the local node has a
Slave event Server, and wherein the Step of migrating the
master event Server comprises the Steps of:

(a) changing the status of the master event server to slave
event Server; and

(b) changing the status of the slave event server to master
eVent SerVer.

5. The method of claim 4, wherein the second one of the
remote nodes includes a Second Slave event Server, the
method further comprising the Steps of:

(a) disconnecting the Second Slave event Server from the
first Slave event Server; and

(b) connecting the Second Slave event Server directly to
the master event Server migrated to the local node.

6. The method of claim 4, wherein the second one of the
remote nodes includes a Second Slave event Server, the
method further comprising the steps of:

(a) disconnecting the Second Slave event Server from the
first one of the remote nodes, and

(b) connecting the Second slave event server directly to a
third one of the remote nodes.

7. The method of claim 3, wherein the first one of the
remote nodes includes a first Slave event Server, the method
further comprising the Steps of:

(a) inputting to the first one of the remote nodes a slave
event received from a Second one of the remote nodes,

(b) forwarding the slave event from the first one of the
remote nodes to the master event Server migrated to the
local node for execution by the local node against the
master database;

(c) inputting to the first Slave event server an event
received from the master event Server; and

(d) forwarding the event received from the master event
Server migrated to the local node from the first one of
the remote nodes to the Second one of the remote nodes.

8. The method of claim 3, wherein the step of migrating
the master event Server comprises the Step of migrating the
master event Server to the local node based on a network
latency criterion.

9. The method of claim 8, wherein the step of migrating
the master database comprises the Step of migrating the
master database to the local node based on a network latency
criterion.

10. The method of claim 3, further comprising the step of
Selecting the local node as the node to which the master
event Server is to be migrated based on a network latency
criterion.

11. The method of claim 3, wherein the local node is the
node in the network having the most restrictive network
latency requirement of the nodes in the network.

5,838,909
11

12. A method of implementing a machine executable
game for a plurality of players, the game being playable over
a network including a first node in communication with a
plurality of other nodes, the game being generated based on
a master database and a master event Server, the master event
Server receiving a plurality of Slave events and Sequencing
the received Slave events for updating the master database,
each network node having a Status as a master event Server
or a slave event Server with respect to network events,
wherein at any given time only one node in the network can
have the Status of master event Server and each node in the
network processes events received from the master event
server differently than events received from slave event
Servers, the master event Server and the master database
being initially Stored in the first node, each player using one
of Said other nodes to perform one of a plurality of roles in
the game, the method comprising the Steps of

(a) determining one of Said other nodes to which the
master event Server will be migrated based on a net
work latency criterion associated with at least one of
the roles, and

(b) migrating the master event server to said one of said
other nodes.

13. The method of claim 12, wherein the migrating step
comprises the Step of changing the Status of the master event
server to that of slave event server.

14. The method of claim 13, wherein said one of said
other nodes to which the master event Server is migrated has
a slave event Server, and wherein the migrating Step further
comprises the Step of changing the Status of the slave event
Server to that of master event Server.

15. The method of claim 12, wherein a first one of said
other nodes includes a first slave event Server, and wherein
a second one of said other nodes includes a second slave
event Server, the method further comprising the Steps of:

(a) inputting to the first one of Said other nodes a slave
event received from the Second one of Said other nodes,

(b) forwarding the slave event from the first one of said
other nodes to the migrated master event Server
migrated to Said one of Said other nodes;

(c) inputting to the first slave event server a master event
received from the master event Server migrated to Said
one of Said other nodes, and

(d) forwarding the master event received from the master
event Server migrated to Said one of Said other nodes to
the Second Slave event Server.

16. The method of claim 15, wherein the network includes
a communication link between the first Slave event Server
and the second slave event server, the method further
comprising the Steps of:

(a) disconnecting the communication link between the
first Slave event Server and the Second Slave event
Server; and

(b) establishing a communication link between the Second
slave event Server and the migrated master event Server,
Such that requests initiated from the Second one of Said
other nodes are transmitted to the master event Server
migrated to Said one of Said other nodes without
passing through the first one of Said other nodes.

17. The method of claim 15, wherein a third one of Said
other nodes includes a third Slave event Server, wherein the
network includes a communication link between the first
Slave event Server and the Second Slave event Server, and
wherein the method further comprises the steps of:

(a) disconnecting the communication link between the
first Slave event Server and the Second Slave event
Server; and

15

25

35

40

45

50

55

60

65

12
(b) establishing a communication link between the Second

slave event server and the third event server, Such that
requests initiated from the Second one of Said other
nodes are transmitted to the third event server without
passing through the first one of Said other nodes.

18. The method of claim 17, wherein the first of the other
nodes is used by the player having the role requiring the
lowest level of latency, the method further comprising the
Step of using the third node to forward a slave event received
from the first of the other nodes to the second of the other
nodes.

19. The method of claim 12, wherein the network is a
wide-area network.

20. The method of claim 12, wherein the step of deter
mining comprises the Step of determining Said one of Said
other nodes to which the master event server should be
migrated based on the role of the player using Said one of
Said other nodes.

21. The method of claim 12, further comprising the step
of migrating at least a portion of the master database based
on the network latency criterion.

22. The method of claim 12, further comprising the step
of migrating a copy of at least a portion of the master
database to each of Said other nodes.

23. The method of claim 12, wherein the network latency
criterion is a target latency for a given one of the roles.

24. The method of claim 12, wherein the network latency
criterion is a maximum allowable latency for a given one of
the roles.

25. A method of reducing latency in a network during
execution of computer program code embodying a multiple
player game, the network having a first node and a Second
node coupled to a third node, a first player of the multi
player game participating in the game using the first node
and a Second player of the multi-player game participating
in the game using the Second node, the game being charac
terized by a master event Server receiving and Storing user
inputs and a database representing a game environment in
response to the user inputs, each network node having a
Status as a master event Server or a Slave event Server with
respect to network events, wherein at any given time only
one node in the network can have the Status of master event
Server and each node in the network processes events
received from the master event server differently than events
received from Slave event Servers, the master event Server
and the database being initially Stored on the third node, the
method comprising the Steps of

(a) determining which of the playerS has a role in the
game requiring a lowest level of latency;

(b) identifying which one of the first node and the second
node is used by the player having the role requiring the
lowest level of latency; and

(c) migrating the master event server to said one of the
first node and the Second node that is used by the player
having the role requiring the lowest level of latency.

26. The method of claim 25, wherein the migrating step
comprises the Step of changing the Status of the master event
server to that of slave event server.

27. The method of claim 25, wherein said one of the first
node and the Second node that is used by the player having
the role requiring the lowest level of latency has a Slave
event Server, and wherein the migrating Step further com
prises the Step of changing the Status of the Slave event
Server to that of master event Server.

28. The method of claim 25, further comprising the step
of using the third node to forward a slave event to Said one
of the first node and the second node that is used by the
player having the role requiring the lowest level of latency.

5,838,909
13

29. The method of claim 25, further comprising the step
of migrating the database to Said one of the first node and the
Second node that is used by the player having the role
requiring the lowest level of latency.

30. The method of claim 25, further comprising the step
of placing a copy of the database in each of the first node and
the Second node, Such that each said copy is updated from
the contents of the master event Server migrated to Said one
of the first node and the second node that is used by the
player having the role requiring the lowest level of latency.

31. An apparatus for reducing latency in a network having
a plurality of processing Systems, the apparatus comprising:

(a) a first processing System generating a first portion of
a multi-player game, the first processing System having
Stored therein an event Server, the event Server receiv
ing and Storing user inputs for controlling the game, the
first processing System further having Stored therein a
database representing a game environment responsive
to the user inputs;

(b) a second processing System coupled to the first pro
cessing System, the Second processing System generat
ing a Second portion of the multi-player game operable
by a first player of the multi-player game, the first
player performing a first role in the multi-player game,
the first role having a first latency requirement;

(c) a third processing System coupled to the first process
ing System, the third processing System generating a
third portion of the multi-player game operable by a
Second player of the multi-player game, the Second
player performing a Second role in the multi-player
game, the Second role having a Second latency require
ment; and

(d) the first processing System evaluating the first latency
requirement and the Second latency requirement and, in
response, migrating the event Server to either the Sec
ond memory or the third memory according to a
relationship between the first latency requirement and
the Second latency requirement.

32. The apparatus of claim 31, wherein the database is
migrated to either the Second memory or the third memory
according to the relationship between the first latency
requirement and the Second latency requirement.

33. The apparatus of claim 31, further comprising means
for migrating a copy of the database to both the first
processing System and the Second processing System.

34. The apparatus of claim 31, wherein the latency
requirement is a target latency for a given one of the roles.

35. The apparatus of claim 31, wherein the latency
requirement is a maximum allowable latency for a given one
of the roles.

36. The apparatus of claim 31, wherein the first processing
system forwards a slave event received from whichever of
the Second processing System and the third processing
System does not have the master event Server to whichever
of the Second processing System and the third processing
System has the master event Server.

37. The apparatus of claim 31, wherein the first processing
System is further configured:

(a) to determine when the master event server has been
migrated to the third processing System, and

(b) to transmit the slave event directly to the master event
Server in the third processing System, Such that the
slave event does not pass through the Second process
ing System.

38. An apparatus for reducing latency in accessing a
database in a network having a plurality of nodes, the

15

25

35

40

45

50

55

60

65

14
plurality of nodes including a local node and a plurality of
remote nodes, at least one of the remote nodes including the
database and a master event Server for Sequencing com
mands for the database, each network node having a status
as a master event Server or a slave event Server with respect
to network events, wherein at any given time only one node
in the network can have the Status of master event Server and
each node in the network processes events received from the
master event server differently than events received from
Slave event Servers, the apparatus comprising:

(a) means for migrating a master copy of the database to
the local node,

(b) means for migrating the master event Server to the
local node, and

(c) means for forwarding slave events from the remote
nodes to the migrated master event Server for Sequenc
ing the forwarded slave events for execution by the
local node against the copy of the database migrated to
the local node.

39. The apparatus of claim 38, wherein the local node has
a slave event Server, and wherein the means for migrating
the master event Server comprises:

(a) means for changing the status of the master event
Server to that of Slave event Server; and

(b) means for changing the status of the Slave event Server
to that of master event Server.

40. The apparatus of claim 38, wherein a first one of the
remote nodes includes a first Slave event Server, the appa
ratus further comprising:

(a) means for inputting to the first one of the remote nodes
a slave event received from a Second one of the remote
nodes,

(b) means for forwarding the slave event from the first one
of the remote nodes to the master event Server migrated
to the local node for execution by the local node against
the master database;

(c) means for inputting to the first Slave event Server a
master event received from the master event Server; and

(d) means for forwarding the master event received from
the master event Server migrated to the local node to the
Second one of the remote nodes.

41. The apparatus of claim 39, wherein the second one of
the remote nodes includes a Second slave event Server, the
method further comprising the Steps of:

(a) means for disconnecting the Second slave event Server
from the first slave event server; and

(b) means for connecting the Second slave event Server
directly to the master event Server migrated to the local
node.

42. The apparatus of claim 39, wherein the second one of
the remote nodes includes a Second slave event Server, the
method further comprising the Steps of:

(a) means for disconnecting the Second slave event Server
from the first slave event server; and

(b) means for connecting the Second slave event Server
directly to a third one of the remote nodes, Such that
slave events transmitted by the Second event Server and
destined for the master event Server do not pass through
the first one of the remote nodes.

43. The apparatus of claim 38, wherein the means for
migrating the event Server comprises means for migrating
the master event Server to the local node based on a network
latency criterion.

44. The apparatus of claim 43, wherein the network
latency requirement is a target latency value.

5,838,909
15

45. The apparatus of claim 43, wherein the network
latency requirement is a maximum allowable latency for the
local node.

46. The apparatus of claim 43, wherein the means for
migrating the master copy of the database comprises means
for migrating the master copy of the database to the local
node based on a network latency criterion.

47. The apparatus of claim 38, further comprising means
for Selecting the local node as the node to which the master
event Server is to be migrated based on a network latency
criterion.

48. The apparatus of claim 38, wherein the local node is
the node in the network having the most restrictive network
latency requirement of the nodes the network.

49. The apparatus of claim 38, further comprising:
(a) means for evaluating a bandwidth criterion associated

with at least one of the nodes in the network;
(b) wherein the means for migrating a master copy of the

database includes means for migrating the master copy
of the database to the local node based on an output of
the means for evaluating.

50. A machine-readable program Storage medium tangibly
embodying a program of instructions, the instructions
executable by a Server computer to perform method steps for
implementing a game using a computer network, the com
puter network including the Server computer and a plurality
of client computers, the game having a plurality of players,
each player having a different role in the game by using a
different one of Said client computers, the game character
ized by a master event Server Storing user inputs for updating
a master database, each network node having a Status as a
master event Server or a slave event Server with respect to
network events, wherein at any given time only one node in
the network can have the Status of master event Server and
each node in the network processes events received from the
master event server differently than events received from
Slave event Servers, the method steps comprising the Steps
of:

(a) providing a latency criterion for at least one of the
roles in the game;

(b) determining, for at least one of the roles having a
latency criterion, which of the client computers in the
network is associated with Said role;

(c) identifying a first one of the client computers that is
used by a player having the role with the most restric
tive latency criterion of all the roles, and

(d) migrating the master event server from the server
computer to the first one of the client computers.

51. The program storage medium of claim 50 wherein the
local node has a Slave event Server, and wherein the migrat
ing Step comprises the Steps of:

(a) changing the Status of the master event server to that
of slave event Server; and

(b) changing the status of the Slave event server to that of
master event Server.

52. The program storage medium of claim 50, wherein the
method steps further comprise the Step of using the Server
computer to forward a slave event received from a Second
one of the client computers to the master event Server
migrated to the first one of the client computers.

15

25

35

40

45

50

55

60

16
53. The program storage medium of claim 50, wherein the

method steps further comprise the Step of using the Server
computer to forward a master event received from the
master event Server migrated to the first one of the client
computers to a Second one of the client computers.

54. The program storage medium of claim 52, wherein the
method steps further comprise the Steps of:

(a) providing an indication to the Second one of the client
computers that the master event Server has been
migrated to Said particular one of the client computers,
and

(b) providing a direct link between the Second one of the
client computers and the master event Server, Such that
slave events initiated by the Second client computer do
not pass through the Server computer.

55. The program storage medium of claim 50, wherein the
method steps further comprise the Step of migrating a copy
of at least a portion of the master database to at least one of
the client computers to which the master event Server has not
been migrated.

56. A method of communicating events in a network
including a plurality of nodes, each network node having a
Status as a master event Server or a Slave event Server with
respect to network events, wherein at any given time only
one node in the network can have the Status of master event
Server and each node in the network processes events
received from the master event server differently than events
received from Slave event Servers, one of the plurality of
nodes having a master database and the master event Server
Stored therein, the master event Server Sequencing Slave
commands to the master database, the method comprising
the steps of:

(a) inputting to a first one of the nodes a slave event
received from a Second one of the remote nodes;

(b) determining whether the master event Server resides
within the first one of the nodes;

(c) if the master event server does not reside within the
first one of the nodes, identifying a third one of the
plurality of nodes in which the master event server
resides and forwarding the Slave event to the master
event server in the third one of the nodes.

57. The method of claim 56, further comprising the step
of establishing a communication link between the Second
one of the nodes and the third one of the nodes, Such that a
Second Slave event initiated by the Second one of the nodes
is transferred to the third one of the nodes without passing
through any other nodes of the plurality of nodes.

58. The method of claim 56, wherein the master event
Server has been migrated from the first one of the nodes to
the third one of the nodes prior to the inputting Step.

59. The method of claim 56, wherein the first one of the
nodes includes a first event Server, wherein the first event
server can have a first status in which the first event server
is the master event Server, or a Second Status in which the
first event server is a slave event server, the method further
comprising the Step of Switching the Status of the first event
Server from the first Status to the Second Status prior to the
inputting Step.

