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METHOD AND SYSTEM FOR INDIVIDUAL DEMAND FORECASTING

TECHNICAL FIELD

[0001] The ftollowing relates generally to data processing, and more specifically, to a method

and system for individual demand forecasting.
BACKGROUND

[0002] Accurately forecasting individual demand for acquisition of single items Is a complex
technical problem with many facets. It necessitates predicting not only the next most likely
time of acquisition, but also having an accompanying measure of uncertainty is desirable
due there likely being inherent randomness of in the acquisition, especially If it Is based on
an individual's behavior. Such forecasts often also coincide with sparse observations and
partial information. Generally, sequential dependence is considered because future demand
patterns can be heavily influenced by past behavior. Additionally, there may be strong
correlation between demand patterns across substitutable acquisitions, generally requiring

that acquisition behavior should be jointly predicted.

SUMMARY

[0003] In an aspect, there is provided a computer-implemented method for individual
forecasting of a future event for a subject using historical data, the historical data comprising
a plurality of historical events associated with the subject, the computer-implemented
method executed on at least one processing unit, the computer-implemented method
comprising: receiving the historical data associated with the subject; determining a random
variable representing a remaining time until the future event; predicting a time to the future
event using a distribution function that is determined using a recurrent neural network, the
distribution function comprising a learned density with peaks that approximate the times of
the historical events in the historical data; determining a log-likelihood function based on a
probability that the random variable exceeds an amount of time remaining until a next
historical event in the historical data and parameterized by the distribution function; and

outputting a forecast of a time to the future event as the log-likelihood function.

[0004] In a particular case of the computer-implemented method, a loss function for the

recurrent neural network comprises a negative of the log-likelihood function.

[0005] In another case of the computer-implemented method, the random variable is

conditioned based on inter-arrival times of the historical events in the historical data.
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[0006] In yet another case of the computer-implemented method, the random variable is

conditioned based on excess times since arrival of preceding historical events in the

historical data.

[0007] In yet another case of the computer-implemented method, the log-likelihood function
at each time i1s the log of the probability that the random variable is in the set of time until the
next historical event when the next historical event has been observed, and the log of the

survival function otherwise.

[0008] In yet another case of the computer-implemented method, the distribution function

follows a Welibull distribution.

[0009] In yet another case of the computer-implemented method, the distribution function is
determined as (k/A)((s+1)/A)'Su(t), where k is the shape of the Weibull distribution, A is the

scale of the Welibull distribution, t is the time-step, and Su(t) is the survival function.

[0010] In yet another case of the computer-implemented method, outputting the forecast of

the time to the future event as the log-likelihood function comprises determining a sum of

log-likelihoods at each time-step.

[0011] In yet another case of the computer-implemented method, the computer-
iImplemented method further comprising transtorming the sum of log-likelihoods as a function
of recurrent neural network parameters and historical data, and determining a minimizer of

an overall observed loss of the recurrent neural network using such function.

[0012] In yet another case of the computer-implemented method, the computer-

Implemented method further comprising outputting derivative values of the log-likelihood

function.

[0013] In another aspect, there is provided a system for individual forecasting of a future
event for a subject using historical data, the historical data comprising a plurality of historical
events associated with the subject, the system comprising one or more processors in
communication with a data storage, the one or more processors configurable to execute: a
data acquisition module to receive the historical data associated with the subject; a
conditional excess module to determine a random variable representing a remaining time
until the future event; a machine learning module 120 to predict a time to the future event
using a distribution function that is determined using a recurrent neural network, the
distribution function comprising a learned density with peaks that approximate the times of

the historical events in the historical data; and a forecasting module to determine a log-
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likelihood function based on a probability that the random variable exceeds an amount of
time remaining until a next historical event in the historical data and parameterized by the

distribution function, and to output a forecast of a time to the future event as the log-

likelihood function.

[0014] In a particular case of the system, a loss function for the recurrent neural network

comprises a negative of the log-likelihood function.

[0015] In another case of the system, the random variable is conditioned based on inter-

arrival times of the historical events in the historical data.

[0016] In yet another case of the system, the random variable is conditioned based on

excess times since arrival of preceding historical events in the historical data.

[0017] In yet another case of the system, the log-likelihood function at each time is the log of
the probability that the random variable is in the set of time until the next historical event
when the next historical event has been observed, and the log of the survival function

otherwise.

[0018] In yet another case of the system, the distribution function follows a Weibull

distribution.

[0019] In yet another case of the system, the distribution function is determined as
(k/A)((s+1)/A)Y ' Suft), where k is the shape of the Weibull distribution, A is the scale of the

Weibull distribution, t is the time-step, and Su(f) is the survival function.

[0020] In yet another case of the system, outputting the forecast of the time to the future
event as the log-likelihood function comprises determining a sum of log-likelihoods at each

time-step.

[0021] In yet another case of the system, the forecasting module further transforms the sum
of log-likelihoods as a function of recurrent neural network parameters and historical data,
and determining a minimizer of an overall observed loss of the recurrent neural network

using such function.

[0022] In yet another case of the system, the forecasting module further outputs derivative

values of the log-likelihood function.

[0023] In yet another aspect, there Is provided a non-transitory computer-readable storage

medium, the computer-readable storage medium including instructions that when executed
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by a computer, cause the computer to: receive the historical data associated with the
subject; determine a random variable representing a remaining time until the future event;
predict a time to the future event using a distribution function that is determined using a
recurrent neural network, the distribution function comprising a learned density with peaks
that approximate the times of the historical events in the historical data; determine a log-
likelihood function based on a probability that the random variable exceeds an amount of
time remaining until a next historical event in the historical data and parameterized by the

distribution function; and output a forecast of a time to the future event as the log-likelihood

function.

[0024] In a particular case of the non-transitory computer-readable storage medium, a loss

function for the recurrent neural network comprises a negative of the log-likelihood function.

[0025] In another case of the non-transitory computer-readable storage medium, the
random variable I1s conditioned based on inter-arrival times of the historical events in the

historical data.

[0026] In yet another case of the non-transitory computer-readable storage medium, the
random variable is conditioned based on excess times since arrival of preceding historical

events in the historical data.

[0027] In yet another case of the non-transitory computer-readable storage medium, the log-
likelihood function at each time is the log of the probability that the random variable is in the
set of time until the next historical event when the next historical event has been observed,

and the log of the survival function otherwise.

[0028] In yet another case of the non-transitory computer-readable storage medium, the

distribution function follows a Welibull distribution.

[0029] In yet another case of the non-transitory computer-readable storage medium, the

distribution function is determined as (K/A)((s+1)/AY'Su(t), where k is the shape of the
Weibull distribution, A is the scale of the Weibull distribution, t is the time-step, and Su(f) Is

the survival function.

[0030] In yet another case of the non-transitory computer-readable storage medium,
outputting the forecast of the time to the future event as the log-likelihood function comprises

determining a sum of log-likelihoods at each time-step.

[0031] In yet another case of the non-transitory computer-readable storage medium, the

iInstructions further configure the computer to transform the sum of log-likelihoods as a

4



WO 2021/077226 PCT/CA2020/051422

function of recurrent neural network parameters and historical data, and determine a

minimizer of an overall observed loss of the recurrent neural network using such function.

[0032] In yet another case of the non-transitory computer-readable storage medium, the
Instructions further configure the computer to output derivative values of the log-likelihood

function.

[0033] These and other embodiments are contemplated and described herein. It will be
appreciated that the foregoing summary sets out representative aspects of systems and

methods to assist skilled readers in understanding the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] The features of the invention will become more apparent in the following detailed

description in which reference is made to the appended drawings wherein:

[0035] FIG. 1 is a schematic diagram of a system for individual forecasting of a future event

for a subject using historical data, in accordance with an embodiment;

[0036] FIG. 2 is a flowchart of a method for individual forecasting of a future event for a

subject using historical data, in accordance with an embodiment;

[0037] FIG. 3 is a plot of an example of time-since-event (tse(t)) and time-to-event (tte(t))

until an end of a training period, in accordance with the system of FIG. 1;

[0038] FIG. 4A is an example of a distributional estimate for an uncensored case with time

equals 3, in accordance with the system of FIG. 1;

[0039] FIG. 4B is an example of a distributional estimate for a censored case with time

equals 7, in accordance with the system of FIG. 1;

[0040] FIG. 5 is a diagram of an example recurrent neural network (RNN) computational

flow, in accordance with the system of FIG. 1;

[0041] FIG. 6 I1s a diagram of an example Bayesian Network, in accordance with the system
of FIG. 1;

[0042] FIG. 7 I1s a chart of a recelver operating characteristic (ROC) curve for example

experiments of the system of FIG. 1;

[0043] FIG. 8A illustrates a chart of predicted densities for remaining useful life (RUL) for the

example experiments of FIG. 7;

[0044] FIG. 8B illustrates a chart of predicted modes for RUL for the example experiments
of FIG. 7;
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[0045] FIG. 9A illustrates a histogram of errors for a comparison approach in the example

experiments of FIG. 7; and

[0046] FIG. 9B illustrates a histogram of errors for the system of FIG. 1 in the example

experiments of FIG. 7.

DETAILED DESCRIPTION

[0047] Embodiments will now be described with reference to the figures. For simplicity and
clarity of illustration, where considered appropriate, reference numerals may be repeated
among the Figures to indicate corresponding or analogous elements. In addition, numerous
specific details are set forth in order to provide a thorough understanding of the
embodiments described herein. However, it will be understood by those of ordinary skill in
the art that the embodiments described herein may be practiced without these specific
detalls. In other instances, well-known methods, procedures and components have not been
described In detall so as not to obscure the embodiments described herein. Also, the
description Is not to be considered as limiting the scope of the embodiments described

herein.

[0048] Various terms used throughout the present description may be read and understood
as follows, unless the context indicates otherwise: “"or” as used throughout is inclusive, as
though written "and/or”; singular articles and pronouns as used throughout include their
plural forms, and vice versa; similarly, gendered pronouns include their counterpart
pronouns so that pronouns should not be understood as limiting anything described herein
to use, implementation, performance, etc. by a single gender; "exemplary” should be
understood as “illustrative” or "exemplifying” and not necessarily as “preferred” over other
embodiments. Further definitions for terms may be set out herein; these may apply to prior
and subsequent instances of those terms, as will be understood from a reading of the

present description.

[0049] Any module, unit, component, server, computer, terminal, engine or device
exemplified herein that executes instructions may include or otherwise have access to
computer readable media such as storage media, computer storage media, or data storage
devices (removable and/or non-removable) such as, for example, magnetic disks, optical
disks, or tape. Computer storage media may include volatile and non-volatile, removable and
non-removable media implemented in any method or technology for storage of information,
such as computer readable instructions, data structures, program modules, or other data.
Examples of computer storage media include RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage,
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magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the desired information and which
can be accessed by an application, module, or both. Any such computer storage media may
be part of the device or accessible or connectable thereto. Further, unless the context clearly
Indicates otherwise, any processor or controller set out herein may be implemented as a
singular processor or as a plurality of processors. The plurality of processors may be arrayed
or distributed, and any processing function referred to herein may be carried out by one or
by a plurality of processors, even though a single processor may be exemplitied. Any
method, application or module herein described may be implemented using computer
readable/executable instructions that may be stored or otherwise held by such computer

readable media and executed by the one or more processors.

[0050] The following relates generally to data processing, and more specifically, to a method

and system for individual demand forecasting.

[0051] For the sake of clarity of illustration, the following disclosure generally refers to the
Implementation of the present embodiments for product demand forecasting; however, it is
appreciated that the embodiments described herein can be used for any suitable application
of individual event forecasting. For example, the embodiments described herein could be
used to predict the time until a future occurrence of a natural event; such as an earthquake
as the subject to be forecasted. In another example, the embodiments described herein
could be used to predict the time until a utility spike occurs; such as a spike in electricity
consumption or a spike in internet bandwidth as the subjects. In another example, the
embodiments described herein could be used to predict component failure times for factory
machinery; such as using workload history as input. In another example, the embodiments
described herein could be used to predict various other consumer behavior patterns; such as

predicting when a client will go on vacation.

[0052] In an illustrative example, retailers can have access to massive amounts of
consumer behavior data through, for example, customer loyalty programs, purchase
histories, and responses to direct marketing campaigns. These data sources can allow
retailers to customize their marketing communications at the individual level through
personalized content, promotions, and recommendations via channels such as email, mobile
and direct mail. Accurately predicting every individual customer behavior for each product is
useful in direct marketing efforts which can lead to significant advantages for a retailer
driving increased sales, margin, and return on investment. Especially for replenishable
products such as regularly consumed food products (e.g. milk) and regularly replenished

personal care products (e.g. soap). These products frequently drive store traffic, basket size,
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and customer loyalty, which are of strategic importance in a highly competitive retall

environment.

[0053] In the above illustrative example, accurately forecasting individual demand for single
products Is a challenging and complex technical problem. This problem generally requires
predicting not only the next most likely time of purchase of the product but also having an
accompanying measure of uncertainty due to the inherent randomness of an individual’'s
purchasing behavior. Additionally, this problem usually has sparse observations (for
example, few observations for individual customers) and partial information (for example,
purchases of related products and time since last purchase). Additionally, this problem
usually has sequential dependence because future purchase patterns are generally heavily
iInfluenced by past behavior. Additionally, this problem usually has strong correlation
between purchase patterns across substitutable products that indicates that customer
behavior should be jointly predicted. For example, among purchasers of items in a basket of
12 deli products that were recorded, there were 79,980 unique purchasers. Purchase
histories for any single product is generally sparse. For any single product in this basket, the
average customer buys only between 0.12 to 0.67 items over a 1.5-year period but
aggregating over all the products in the basket indicates that these customers purchase on
average 3.58 items during the same period. This I1s not surprising since people tend to prefer
variety in their meals even though their choice of whether to purchase a deli product can In

some cases be predicted.

[0054] Some approaches for accurately forecasting individual demand for single products
adapt methods from survival analysis, where a customer is defined to be "alive” it purchases
were made. In a scenario with sparse purchase data, this can be useful since non-
purchases can reveal information about whether a customer is likely to make a purchase In
the future. In addition to modeling whether customers are "alive”, the number of purchases a
customer makes in a given time period can also be accounted for. Solving this maximum
likelihood problem can yield optimal distributional estimates that model such behaviors.
However, these models impose strict assumptions that limit their effectiveness; such as
Independence and stationarity. In addition, covariates are often modeled in a regression
context, further restricting the hypothesis space. While these assumptions may be essential
for tractablility purposes, in some cases, they can be easily violated when there is a desire to
model highly-correlated, high-dimensional and heterogeneous processes. One example of a
survival model is a Pareto/NBD model. In this model, heterogeneity of customer purchase
rates and customer dropout times are assumed to follow parametric distributions. While this
may be suited for predicting a time-to-event, incorporating covariates in this context

generally requires imposing a linearity assumption on one of the model parameters in order



WO 2021/077226 PCT/CA2020/051422

to fit a model; which is an unrealistic assumption for models with a large number of data
features. While copulas may be used to model customer repurchase patterns, they cannot
be sufficiently extended to predict multiple products jointly and under changing

environmental conditions.

[0055] Some approaches for accurately forecasting individual demand for single products
attempt to use machine learning approaches to predict arrival times; for example, Recurrent
Neural Networks (RNNs). These approaches leverage the capacity of RNNs to model
sequential data with complex temporal correlations as well as non-linear associations.
However, these models generally do not deal explicitly with the uncertainty of random arrival
times and are not able to properly exploit censored data. Other machine learning
approaches have been used; for example, Random Forest models and other ensemble
models have been used with binary predictions due to their scalability to wide datasets, ease
of training and regularization strategies. However, such tree-based supervised learning
models are not well suited to sequentially dependent problems. Recurrent Neural Nets
(RNN) are better suited to model data with complex sequential dependencies. For example,
using a Long-Short-Term-Memory (LSTM) structure that incorporates gates to recursively
update an internal state in order to make sequential path-dependent predictions. In an
example LSTM can be trained to make point estimates for time-to-event by minimizing a
distance-based metric. However, unobserved arrival times cannot be explicitly accounted for
In these models. Non-arrivals can be important as they can reveal a significant amount of

iInformation for the prediction.

[0056] Embodiments of the present disclosure advantageously integrate probabilistic
approaches of survival analysis with Recurrent Neural Networks to model inter-purchase
times for multiple products jointly for each individual customer. In some embodiments, the
output of the RNN models the distribution parameters of a "time to next purchase” random
variable instead of a point estimate. In a survival analysis framework, partial information,
such as time since the previous arrival, can induce a distribution on the partially observed
version of the “time to next purchase” random variable. The structure of such embodiments
can impose additional constraints which transform the complex censoring problem into a
likelihood-maximization problem. Advantageously, the use of RNNs can remove the need for
strict assumptions of past survival analysis models while still having the flexibility to take into
account the censored and sequential nature of the problem. In the present disclosure, such

Multivariate Arrival Times Recurrent Neural Network models may be referred to as "MAT-
RNN".

[0057] The present inventors determined the efficacy of the present embodiments in

example experiments. The example experiments were performed on data from a large

9
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European health and beauty retailer, several benchmark datasets as well as a synthetic
dataset. The present embodiments were determined to out-perform other approaches in
predicting whether a customer made purchases in the next time period. The results of the
example experiments illustrate that the present embodiments perform better than other
approaches in 4 out of the 5 categories of products considered. Additionally, results on the
benchmark and synthetic datasets show comparable performance increases when
compared to other survival model technigues and RNNs trained on the usual squared-loss

metric.

[0058] Referring now to FIG. 1, a system 100 for individual forecasting of a future event for a
subject, in accordance with an embodiment, is shown. In this embodiment, the system 100 is
run on a server. In further embodiments, the system 100 can be run on any other computing
device; for example, a desktop computer, a laptop computer, a smartphone, a tablet

computer, a point-of-sale ("PoS") device, a smartwatch, or the like.

[0059] In some embodiments, the components of the system 100 are stored by and
executed on a single computer system. In other embodiments, the components of the
system 100 are distributed among two or more computer systems that may be locally or

globally distributed.

[0060] FIG. 1 shows various physical and logical components of an embodiment of the
system 100. As shown, the system 100 has a number of physical and logical components,
iIncluding a central processing unit ("CPU") 102 (comprising one or more processors),
random access memory ("RAM") 104, an input interface 106, an output interface 108, a
network interface 110, non-volatile storage 112, and a local bus 114 enabling CPU 102 to
communicate with the other components. CPU 102 executes an operating system, and
various modules, as described below in greater detail. RAM 104 provides relatively
responsive volatile storage to CPU 102. The input interface106 enables an administrator or
user to provide input via an input device, for example a keyboard and mouse. The output
interface 108 outputs information to output devices, such as a display and/or speakers. The
network interface 110 permits communication with other systems, such as other computing
devices and servers remotely located from the system 100, such as for a typical cloud-based
access model. Non-volatile storage 112 stores the operating system and programs, including
computer-executable instructions for implementing the operating system and modules, as
well as any data used by these services. Additional stored data, as described below, can be
stored in a database 116. During operation of the system 100, the operating system, the
modules, and the related data may be retrieved from the non-volatile storage 112 and placed

In RAM 104 to facilitate execution.

10
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[0061] In an embodiment, the system 100 further includes a data acquisition module 117, a
conditional excess module 118, a machine learning module 120, and a forecasting module
122. In some cases, the modules 117, 118, 120, 122 can be executed on the CPU 110. In
further cases, some of the functions of the modules 117, 118, 120, 122 can be executed on
a server, on cloud computing resources, or other devices. In some cases, some or all of the
functions of any of the modules 117, 118, 120, 122 can be run on other modules.

[0062] Forecasting is the process of obtaining a future value for a subject using historical
data. Machine learning techniques, as described herein, can use the historical data in order

to train their models and thus produce reasonably accurate forecasts when queried.

[0063] In some embodiments, the machine learning module 120 uses a Recurrent Neural
Net (RNN) to output distributional parameters which represent predictions for the remaining
time to arrival. By iterating through time for each customer, the RNN can output sequential
distributional estimates for the remaining time until the next purchase arrival, giving an
iIndividual demand forecast. Advantageously, the output as a distribution can allow for better

decision-making ability because it can allow for the performance of a cost analysis.

[0064] In some cases, each product’s inter-purchase time can be assumed to be a
realization of a random variable that is distinct for each customer and each product. In some
cases, each product’s inter-purchase time can also be dependent on other product purchase
times. The conditional excess module 118 can use a conditional excess random variable,
which represents a remaining time till next arrival conditioned on observed information to
date. This random variable can have a distribution that is induced by an actual inter-

purchase time as well as a censoring state.

[0065] In some embodiments, the forecasting module 122 can determine a log-likelihood
function based on the conditional excess random variable and the outputs of the RNN. In
some cases, It Is assumed that the approach of these embodiments follows a conditional
Independence structure where these conditional excess random variables are assumed to
be independent given the internal state of the RNN. In such embodiments, the loss function
can be defined to be the negative log-likelihood. The optimal RNN parameters in such
embodiments can generate distributional parameters that can be advantageously used to
model the observed data. Hence, the RNN outputs at the end of training period can be used
by the forecasting module 122 as best distributional estimates for a remaining time to next

purchase.

[0066] In the present disclosure, a random variable representing the remaining time till next
arrival conditioned on the current information is denoted as Z:. In most cases, this random

variable is not the true inter-arrival time, but is instead a version of it, conditioned on

11
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observing partial information. Consider an arrival process, where W, is the time of the n-th
arrival. Let Wy = 0 at the start of a training period. Additionally, let N(f) be the number of
arrivals by time f and let Y, be the inter-arrival time of the n-th arrival, which is the difference

between consecutive arrival times.
N (f)=max {n| W, <t} (1)
Yn = Wn - Wn-1

[0067] At a particular time {, the number of arrivals observed is N(f). The system 100
predicts the subsequent (i.e. the {N(f) + 1}-th arrival) and its inter-arrival time Yn+1. Let tse(f)
(time-since-event) be the amount of time that has elapsed since the last arrival or start of
training period, whichever is smaller. This represents the censoring information that is
avallable to the RNN at each time {. Let tte(f) (time-to-event) be the amount of time

remaining until the next arrival or the end of testing period (7), whichever is smaller.
tse(t) =[ - WN(t) (2)
tte(f) = min { Wnip+1 — £ 71— 1}

[0068] For the purposes of illustration, consider an example of the above with 3 arrivals;
where W, =16, W, = 28, and W5 = 32, such that Y1 =16, Y> =12, and Y3 =4. Also, N(f) is a
piecewise constant function which is O fort < 16, 1 for t € [16, 28), 2 for t € [28, 32), and 3 for
t= 32. FIG. 3 illustrates an example plot of tse(f), tte(f) for f until r = 40, which is the end of

the training period.

[0069] In some embodiments, the remaining time till next arrival (Z;) can be a conditional
random variable that depends only on Ynp+1, which is the inter-arrival time of the subsequent
arrival. The random variable Z;, given the observed information, can thus be defined; which
IS referred to as a conditional excess random variable. In these embodiments, Z; has a

distribution induced by Ynu+1 Since tse(l) is fixed.
Zt = Ynw+ — tse(f) | Yne+1 > tse(l). (3)

[0070] For example, consider Z= Y - t|Y > t. This random variable Z is conditioned on the
fact that Y has been observed to exceed f and the system 100 is interested in the excess
value: I1.e., Y — . The distribution of Y induces a distribution on Z.

P(Y>s+¢t)

P(Z>8)=P(Y=t>s]Y>t)=— o0

(4)

[0071] In an embodiment, there are two cases to define the log-likelihood function. When
the next arrival time is observed, the likelihood evaluation i1s P (Z; € [tte(f), tte(f) + 1]), since

inter-arrival times are only discretely observed. However, where the time to next arrival is not
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observed (i.e. no more subsequent arrivals are observed by end of training), the likelihood
evaluation is instead P (Z; > tte(f)), namely the survival function. Therefore, at each time {,
the random variable Ywnu+1 which has distribution parametrized by 6;, induces a distribution
on Z:. Thus, the log-likelihood at each time t can be written as follows:

log P (Z; € |tte(t),tte(t) + 1]|) ifuncensored
log P (Z, > tte(t)) otherwise

(60 = | 5)

[0072] FIGS. 4A and 4B illustrate examples of distributional estimates at two respective
times (=3 for FIG. 4A and =7 for FIG. 4B) to illustrate the above two cases. FIGS. 4A and
4B illustrate log-likelihood visualizations for different censoring statuses. In the uncensored
log-likelihood computation, 13 is a density function of Zs, which is the predictive distribution
for the remaining time till next arrival. Since the next arrival is observed to have occurred at
time 0, 13 Is evaluated at the value 3, which is the true time to next arrival to compute the
log-likelihood. In the censored case, for the predictive distribution at time 7, the next arrival

was not observed and hence the right tail of Z7 (i.e. 2 3) was used to compute the log-
likelihood.

[0073] It can be generally assumed that Y, follows distributions with differentiable density
and survival functions to exploit the back-propagation approach used to fit the RNN. An

example i1s a Welbull distribution parametrized by scale (A) and shape (k), whose survival

function is made up of exp() and power() functions.

SG) = P(Y > y) = e O/ (6)
[0074] To determine Welibull likelihoods, a random variable Y ~ Welbull (scale = A, shape =

k) can be determined that has simple densities and cumulative distribution functions. Since

the survival function (S(x)) has the form:
S(y)=P(Y>y)

— o~/ DF

F(y) = (k/A) (y/ A e~ /D"
=(k/A) (y/A)" S(y)

[0075] The conditional excess random variable, given that it exceeds s, isW =Y -s|Y >s.
The definition of conditional probability in terms of some continuous random variable X1, X5,

for any measurable set A4, Az, given P (X € Az) > 0:

P (x{ €A, X,€A,)

P(X1EA1‘X2€A2)= P(X EA)
2 2

[0076] The conditional excess survival function can thus be derived as:
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Sw(t)=P(W?>t)
=P (Y >s+t|Y>3)
= S (s + )/ S(s)
=exp{-((s+ 1) /A + (s/A)}
[0077] The conditional excess density function can be determined as:
fw () = F(s + 1)/ S(s)
=(k/A) ((s+ 1) /A" S(s+ 1)/ S(s)
= (k/A) ((s + 1) / A" Suft)

[0078] In an example, a Long Short Term Memory (LSTM) model can be used by the
machine learning module 120 as a type of RNN structure for modeling sequential data. In
further cases, other types of RNN models can be used by the machine learning module 120.
At each time (), the outputs of the LSTM, which Is parametrized by 8, are passed through an
activation function so that they are valid parameters of a distribution function (8;). Then, the
log-likelihood Is determined for each time step (/) by the forecasting module 122, as
described herein. FIG. 5 illustrates an example RNN computational flow with outputs (61)
generated by the LSTM. Log-likelihoods at each time are determined as log of densities
parametrized by 6f, evaluated at zt. Where h; 1s the internal state of the LSTM and X; are the
covariates at each time t. In this way, the machine learning module 120 can output a single

prediction of expected value for each time (1).

[0079] In some embodiments, the machine learning module 120 can determine loss as a
negative of the log-likelihood. Optimal parameters for the LSTM (8) can be determined as
outputs of a series of distributional estimates 6; that best “explain” the sequence of data
observed. In a particular case, the distribution can be a normal distribution. In the event of an
uncensored arrival time at time {, the weights 6; can be determined as those that generate a
density that has a peak close to the actual arrival time. In this way, at each time step, a
range of values and their relatively likelihood are provided; with the output denoted by 6.
Advantageously, with an output as a distribution, additional operations can be performed.
For example, determining a "best guess” expected value of the distribution. For example,
certain quantities of the distribution can also be optimized; for example, it might be more
costly to under-predicted to over-predict, producing a different "best guess.” For example, a
credibility interval can be used (for example, a 90% credible interval) to determine where an
output value is most likely to be; which can allow for better planning and better decision

making.
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[0080] In an embodiment, the machine learning module 120 can assume a Bayesian
Network, for example similar to a Hidden-Markov model, where random variables at each
time t are emitted from a hidden state h:.. As described, h: represents an internal state of the
RNN at each time t and Z; is an observed time series. FIG. 6 illustrates an example of a

Bayesian Network where observations are independent conditioned on hidden states.

[0081] The forecasting module 122 can factor the joint distribution of {Z:}, giving the log-
likelihood for an entire time series as a sum of log-likelihoods at each time; such that the
forecasting module 122 obtains a sum described below, for arbitrary events E:. Since E: s
determined by the censoring status, where E; = {[tte(f), tte(f)+ 1]} if uncensored and E; = {>
tte(f)} otherwise, the forecasting module 122 can decompose the overall log-likelihood as a

sum.
T
P({Z: € Exlical{helicy) = | [P @€ Eelhe)
t=1

[({6:3) = 2 1:(6¢) (7)

[0082] Assuming that the RNN model is parametrized by 8, there exists a function g that
recursively maps X: to (6;, hy) that depends only on 6. By substituting he-1, 1{6:) = [{g{6))
where g: depends only on 6, g, {X;}};<;. Then since the overall log-likelihood is a sum of [{6:),

It can be written as a function of only the RNN parameters (8) and observed data. The

structure of the RNN and the back-propagation algorithm allows the determination of

gradients of any order efficiently and therefore allows for the determination of @, the

minimizer of the overall observed loss.
(6, ht) = g(he-1, X | O) (8)

[0083] In some embodiments, the machine learning module 120 can transform the outputs
of the RNN such that they are parameters of a distribution. In a particular case, the machine
learning module 120 can use a Welbull distribution, which is parametrized by shape and
scale parameters, both of which are positive values. In example cases, the RNN output can
be initialized for scale at the maximume-likelihood estimate (MLE) for a scale parameter of a
Weibull distribution whose shape parameter is 1; as this was determined by the present
iInventors to be useful in preventing likelihood-evaluation errors. In example cases, a
maximum shape parameter (set at 10) can be used and the RNN output can be passed for
shape through a sigmoid function, which is rescaled and shifted such that o+ : R = (0, 10)
and 0<(0) = 1. In some cases, for the scale parameter, an exponential function is used, which

IS rescaled such that it maps O to the average inter-arrival-time.
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[0084] In some embodiments, the system 100 can model multivariate arrivals by assuming
there are p different arrival processes of interest. For the /~th waiting time of interest, Wi, Is
defined to be the time of the n-th arrival of this type and N{f), and Y, is likewise defined.
Additionally, tse(/, t) and tte(/, t) are defined for the /~th type.

Zf,t — Yf,N,-(t)+1 - tse(i, t) | Y;,N,(t)ﬂ > tSG(i, t) (9)
[0085] Using the example of the Bayesian Network of FIG. 6, Zi=[Z1, . . ., Zp4] and the
RNN output 6: =161, . .., 6,4. The log-likelihoods for each event type can be determined

where [;:(0;) = log P (Zi: = tte(s, t)) or [;:(6;¢) = log P (Zi: > tte(s, 1)), recalling that the former Is
for the case where the next arrival 1s observed while the latter i1s for the case where the no

arrivals are observed until the end of training.

[0086] Advantageously, the Bayesian Network of FIG. 6 generally requires minimal
modifications as it merely requires that the emissions are conditionally independent given h;.

The forecasting module 122 can then determine the log-likelihood at each time as a sum,

[{6) = )i i+ (B:¢). Since the LSTM model is still parameterized by 6, the remaining

operations are the same as described above. In this way, temporal dependence as well as
dependence between the p arrival processes can be modeled by the RNN, whose weights @
can then be optimized by training data. This allows the forecasting module 122 to also model
other outputs by appending [K1s, . . ., Ky i to Z: where K;; IS some other variable of interest
for process j at time . In the retail product forecasting example, K;: can be other factors
affecting the customer; for example, a promotion. In a factory machinery example, K;: can

be other variables that affect output; for example, ambient temperature

[0087] In some cases, for multi-variate purchase arrival times, masking sequences observed
before the first arrival of each product can be useful in preventing numerical errors
encountered in stochastic gradient descent. In these cases, log-likelihoods determined for
time steps before the earliest arrival can be masked. In the case of RNNs, each time step
can have a component in the loss function (for each output) and masking can be used to
remove those time steps from the loss function so that they are not used in the optimization.
This can ensure that RNN parameters are not updated due to losses incurred during these

times.

[0088] The forecasting module 122 can determine predictions using the fact that at each
time ¢, the estimated parameter 6; can be used to determine the expectation of any function
of Z;;, assuming that Z; is distributed according to 6;. Since the system 100 takes into account
the next arrival time after the end of training period (time 1), it can compute many different

values of interest. As described herein, the values of interest can be derivative values of the
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output distribution; for example, expected value, median, 90% credible range, some other
cost function (using a different under/over weighting of forecasts), and the like.

[0089] For example, the forecasting module 122 can determine a predicted probability that
the next arrival will occur within y time after end of training, and thus determine P (Z; < y).
The forecasting module 122 can also determine a deferred arrival probability, which is the
probability that the next arrival will occur within an interval of between y1 and y1 + y2 time
after end of training; given that the forecasting module 122 knows it will not occur within y-
time after the end of training. This can be determined by computing P (Z: € [y1, y1 + Vo] | Z; >
v1). The quantities of interest may not necessarily be limited to probabillities (for example,
mean and quantiles of the predictive distribution) and can be extended to generate other
analytics; for example, in the case of predicting product purchases, to aid in revenue

analysis or forecasting that depends on the subsequent purchase time.

[0090] Turning to FIG. 2, a flowchart for a method 200 for individual forecasting of a future
event for a subject, according to an embodiment, is shown. The forecast is based on
historical data, for example, as stored in the database 116 or as otherwise received. The

historical data comprising a plurality of historical events associated with the subject.

[0091] At block 202, the data acquisition module 117 receives the historical data associated
with the subject from the input interface 106, the network interface 110, or the non-volatile

storage 112. At block 204, the conditional excess module 118 determines a random variable
representing a remaining time until the future event. The random variable conditioned based

on excess times since arrival of the historical events in the historical data.

[0092] At block 206, the machine learning module 120 determines a distribution function that

predicts the time of the future event using a recurrent neural network. The distribution

function comprising a learned density with peaks that approximate the times of the historical

events In the historical data.

[0093] At block 208, the forecasting module 122 determines a log-likelihood function based
on a probability that the random variable exceeds an amount of time remaining until a next
historical event in the historical data and parameterized by the distribution function. A loss

function for the recurrent neural network comprising a negative of the log-likelihood function.

[0094] At block 210, the forecasting module 122 forecasts and outputs a time to the future

event for a given subject using the log-likelihood function.

[0095] Described below are three sets of example experiments conducted by the present
iInventors to verify the functionality, efficacy, and advantages of the present embodiments.
First, example experiments were conducted to check model assumptions and verify that

parameters for Welibull inter-arrival times can be recovered by the present embodiments
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(using MAT-RNN) on a synthetic dataset. Second, example experiments were performed to
compare the performance of MAT-RNN on two open datasets to benchmark models. Third,
example experiments were conducted to apply MAT-RNN to predict customer purchases for

a large retailer and compare its performance to other approaches in the art.

[0096] For the example experiments, a structure used for the RNN had three stacked layers,
with two LSTM layers of size W followed by a densely connected layer of size 2p, where p is
the number of arrival processes. The densely connected layer transforms the LSTM outputs
to a vector of length 2p. In MAT-RNN, the densely connected layer outputs are passed
through an activation layer. For squared-loss RNNs, the activation can be passed through a

softplus layer since time to arrivals are non-negative.

[0097] In the example experiments, a masking layer was applied prior to the other layers so
that the RNN does not train on time indices prior to the initialization of the time series. This
structure Is the same for other neural network based models used for benchmark
comparison. The RNN was trained with a learning rate of 0.001 and trained for 100 steps
unless otherwise stated. Gradients were component-wise clipped at 5 to prevent numerical

ISSuUes.

[0098] The example experiments used a generated synthetic dataset, where inter-arrival
times followed Welbull distributions. In the synthetic dataset, as shown in TABLE 1, a set of
Welibull parameters was generated for each of eight product types, from which inter-arrival
times are sampled. The individual product identification is referred to as SKU (stock keeping

unit).

TABLE 1

SKU 0 1 2 3 4 5 o /

Shape |[42.48 32.35 37.68 1.99 26.59 6.91 20.57 8.04

Scale 1.15 1.09 1.06 1.01 0.97 0.88 0.62 0.78

[0099] Purchase times were recorded and used to train the MAT-RNN model. In the
example experiments, there were 11,000 subjects. Event arrivals were observed over a
period of 156 time steps. It was then veritied that the trained model (W = 6) recovers these
parameters by taking the RNN predictions at the last time step. The results indicated that
relative error (i.e. 8 — 8, where 8 is the estimated parameter and @ is the true parameter) is

low for both scales as well as shapes. TABLE 2 shows errors for estimated parameters for

Welbull inter-arrival.
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TABLE 2
Mean Quantiles (x107%)
Parameter (x1072)
0 25 50 /5 100
Shape +1.02 -1.21 -0.10 +0.58 +1.02 +4.82
Scale +2.32 -3.55 -0.61 +0.61 +5.25 +11.80

[0100] The example experiments show the flexibility of the present embodiments with two
open dataset benchmarks. Generally, these two problems are often tackled with different
models since the prediction problem is different. The model of the present embodiments can,
however, be adapted to solve these problems since they can be modeled by a distributional

approach to inter-arrival times.

[0101] The first example dataset is the CDNOW dataset. For this dataset, the example
experiments considered a binary classification problem where the system 100 predicts if
purchases are made during a testing period. Predictions by the system 100 were determined
as the probability that the inter-arrival time occurs before end of testing period. The input
data was the transaction history where only purchase records are available without other
covariate data. The example experiments show that present embodiments out-perform other

approaches on this dataset, even with no covariates.

[0102] The second example dataset is based on the CMAPSS dataset. For this dataset, the
system 100 predicted the remaining useful lifetime, or the time to failure. Predictions were
determined as the mode, mean, or some other function of the inter-arrival time distribution.
The training data was an uncensored time series where sensor readings and operational

settings were collected up until the engine fails. A customized loss function was used to

evaluate models.

[0103] The CDNOW dataset includes purchase transactions, where number of customer
purchases are recorded. Transaction dates, purchase counts, and transaction values were
available as covariates. The performance of the present embodiments, where W = 1 trained
on a weekly level, was compared to another approach, the Pareto/NBD model, which is a
classical demand forecasting model using the lifetimes package. The CDNOW dataset is
often used as an example where Pareto/NBD type models do well since there's limited

covariate data available and there is only a single event type.

[0104] In the example experiments, with W = 1, there were 32 trainable parameters in the
MAT-RNN model of the present embodiments. The training period was set at 1.5 years, from
1997-01-01 to 1998-05-31. Predictions were made for customer purchases within a month of

the end of training; i1.e., before 1998-06-30. As illustrated in the chart of FIG. 7, the MAT-

RNN model of the present embodiments achieved an ROC-AUC (area under the receiver
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operating characteristic curve) of 0.84 on the CDNOW dataset; which is substantially better
when compared to 0.80 that is obtained using the Pareto/NBD estimate for the "alive”
probability. It can be seen that the approach of the present embodiments of integrating a
survival-based maximum log-likelihood approach with an RNN yielded substantially

iImproved prediction accuracy, even with a small number of weights and on a small dataset.

[0105] The CMAPSS dataset is a high dimensional dataset on engine performance with 26
sensor measurements and operational settings. In training of the model for the example
experiments, the engines were run until failure. In testing of the model, data was recorded
until a time prior to failure. The goal was to predict the remaining useful life (RUL) for these
engines. A first set of engine simulations in the dataset, which has 100 uncensored time
series of engines, were run until fallure. The maximum cycles run before failure was found to
be 363. Time series for each engine was segmented into sliding windows of window length
/8, resulting In 323 windowed time series each of length 78. For the testing dataset, the
RNN model was run on a time series 78 cycles before end of observation. A custom loss
function was used, where over-estimation was more heavily penalized. The mean custom

loss metric (MCL) is defined as follows, where d is the predicted RUL subtracted by the true
RUL.:

—A/13 1 d <0
| dz{e 10
0ss (d) = Y a0 _ 4 d> 0 (19)

[0106] The performance of the MAT-RNN model of the present embodiments was compared
to the SQ-LOSS, which has a softplus activation and is trained on squared loss.
Performance was evaluated based on the mean squared loss metric (MSE) as well as the
MCL. The RNN models were trained with W = 64. As illustrated in FIGS. 8A and 8B, the
performance of MAT-RNN was substantial, with modes that correspond roughly to the true
RUL. FIG. 8A illustrates a chart of predicted densities for RUL on C-MAPSS and True RUL.
FIG. 8B illustrates a chart of predicted modes for RUL on C-MAPSS and True RUL.

[0107] The example experiments determined that the MAT-RNN model of the present
embodiments performed better than SQ-LOSS in the metrics considered, with MAT-RNN
having a mean loss of 40.09 compared to SQ-LOSS of 193.36. In the RMSE metric (root-
mean-squared-error), MAT-RNN had an error of 35.65 compared to SQ-LOSS which as
36.48. It was advantageously determined by the present inventors that MAT-RNN is more
biased towards under-estimating RUL which makes it perform much better in the custom
loss metric. Also, we find that from the histogram of errors illustrated in FIGS. 9A and 9B that
MAT-RNN predictions are unimodal and clustered tightly around its mode. FIG. 9A illustrates
a histogram of errors for SQ-LOSS and FIG. 9B illustrates a histogram of errors for MAT-
RNN.
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[0108] In the example experiments, the present inventors determined the predictive
performance on a real-life application for predicting purchases of a few baskets of goods
sold by a large European retailer. The time resolution of the dataset was on a weekly level.
Training data was available over roughly 1.5 years, which gave 78 weeks of training data
from 2014-01-01 to 2015-06-30. Performance of the MAT-RNN model of the present
embodiments was measured on a binary classification problem of predicting whether a

customer purchases the product within 4 weeks after the end of training period from 2015-
06-30 to 2015-07-31.

[0109] The MAT-RNN model of the present embodiments can be used to predict various
different quantities of interest; however, for the purposes of the example experiments,
comparison was of the predictive performance of the MAT-RNN model to a few benchmark
models. Such comparison was with respect to whether an event will arrive within y time after
the end of the training period. The benchmark models were a Squared-Loss RNN (SQ-RNN)
and a Random Forest Predictor (RNG-F). Models were trained on all customers who bought
an item in the basket during the training period and performance was evaluated on this

group of customers during the testing period.

[0110] RNG-F was trained by splitting the training period into two periods. Covariates at the
end of the first period were fed into the model, which was trained to predict whether subjects
purchase in the second period, which was also y long. A different RNG-F model was trained

for each product, but was fed covariate datasets for all products.

[0111] SQ-LOSS was trained by setting the loss function as the squared difference between
the predicted time-to-arrival and the actual time-to-arrival. An activation function of softplus
was applied. Predictions of SQ-LOSS were then compared to the testing period length of .
It by the end of the training period, SQ-LOSS predicts the next time- to-arrival as s, then the
prediction metric is y-s. For time periods where no actual time-to-arrival was observed (i.e.

no further purchases were observed by end of training), loss was set to 0.

[0112] For each customer, at each time period, the Recency, Frequency and Monetary
(RFM) metrics were determined, which are commonly used in demand modeling, at 3
different levels; namely for all products, in-basket products and each individual product.
Recency Is the time since last purchase, Frequency is the number of repeat purchases and
Monetary is the amount of money spent on all purchases to date. Included in the covariates
are time-since-event (tse(f)) and indicators for whether a first purchase has occurred (pch(t)).
The time-to-event (tse(f)) and the censoring status of the next arrival (unc(f)) were also

determined.
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[0113] On a per-product level, the types of covariates were limited to only RFM metrics (3
covariates) and transformations of purchase history (2 series). RFM metrics on the category
and overall purchase history levels were available as well, but these account for an
additional 6 covariates that were shared across the various purchase arrival processes. The
total number of covariates for each product is thus 11, 6 of which are shared with other

products.

[0114] Five baskets of popular replenishable products were selected for the example
experiments. These were selected from products ranked by a score, where Nunique IS the

number of unique customers and X is the average purchases per customer:
score = X x log Nunique (11)

[0115] The five selected baskets were bars, deli, floss, pads, soda. Their data summaries
are presented in TABLE 3, where uoveran IS the average in-basket purchase counts, Uper-sku IS
the mean over the per-product average purchase counts, and potners IS the mean over the
per-product proportion of buyers who bought another product in-basket. Also note that pirial IS
the mean over the per-product proportion of trial customers (i.e. those who have made only

a single purchase).

TABLE 3
customers
basket | SKUs (x1000) Uoverall Uper-sku Pothers Ptrial
bars o 44 4.78 0.79 0.71 0.43
deli 12 79 3.58 0.29 0.55 0.62
floss 11 200 2.58 0.23 0.40 0.64
pads / 317 2.26 032 0.28 0.66
soda 8 341 2.97 0.37 0.45 0.63

[0116] As shown, pads had the highest proportion of trial customers along with the smallest
proportion of customers who bought another item in the basket. On the other hand, tper-sku
was roughly median in the baskets considered. This is similar for floss as well. For these
categories, it would be reasonable to expect product purchases are strongly dependent. A
good joint-prediction model should separate trial purchasers from repeat purchasers who

decided to stick to one product after trying another.
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[0117] Performance was measured based on the ROC-AUC metric where each of the
models predicted whether customers who made in-basket purchases would make another
iIn-basket purchase in a 4 week period after the end of a training period of 78 weeks. The
RNN-based models had W = 36 and predict arrival times jointly over different products for
each customer. The RNG-F model was trained with 100 trees with covariates at week 74
and purchases between week 74 and 78 but predicts purchases for only one product at a

time. As such, a separate RNG-F model is trained for each product.

[0118] The example experiments determined how each model does for every product in the
basket, and as such, there are multiple ROC-AUC metrics. TABLE 4 shows the results of the
example experiments in terms of summary statistics for ROC- AUCs for each item in the
basket. The results illustrate that the MAT-RNN model of the present embodiments almost
always dominates in the ROC-AUC metric for every category other than bars and deli, which
has the smallest number of customers. Even so, MAT-RNN still performs the best in terms of

average ROC-AUC among products in each category other than bars.

[0119] The number of products for which ROC-AUC has improved over RNG-F is
substantial for the MAT-RNN model. Excluding bars where only 2 out of 6 products saw
improved performance, other categories saw ROC-AUC improvements in more than 60% of
the products in-category, with soda and pads showing improvements in all products.
Advantageously, the ability to model sequential data and sequential dependence separates
MAT-RNN model from RNG-F. Even though RNG-F is trained on the evaluation metfric, it
was determined that MAT-RNN almost always performed better in this binary classification

task.

[0120] Notably, the performance difference of the MAT-RNN model of the present
embodiments over SQ-LOSS and RNG-F is greatest for the pads category. This is likely due
to the large amount of missing data since customers are least likely to buy other products. It
was also determined that SQ-LOSS performs poorly compared to MAT-RNN, even though
these models have a similar recurrent structure and are fed the same sequential data. One
possible explanation is that the lack of ground truth data has a significant impact on the
ability of SQ-LOSS to learn. In cases where event arrivals are sparse or where inter-
purchase periods are long, the censored nature of the data gives no ground truth to train
SQ-LOSS on. Theretfore, even though the recurrent structure makes it possible to model
sequential dependence, the structure that the MAT-RNN model imposes on the problem
makes it much easier to make predictions with censored observations. Additionally, from the
results, it was determined that the MAT-RNN model performs even better for larger

customers with larger sample sizes.
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2 125 |0 9 ] 5 9
o o9l a . o= 20
Q 8 O | € ® 0 = Q) >
° |=3|8 Z 9 | Min Q25 Q50 Q75 Max ® C
< w O S O
3 'II1 o

RNG-F - 0.7696 |0.7986 0.8428 0.8648 0.8710 0.8304
bars |44 6 |SQ-LOSS (0 0.6608 |0.7165 0.7228 0.7406 0.7550 0.7204
MAT-RNN |2 0.7588 |0.7762 0.8174 0.8537 0.8783 0.8167
RNG-F - 0.7452 |0.7995 0.8389 0.9004 0.9220 0.8468
delil |79 12 | SQ-LOSS |4 0.7763 |0.8047 0.8248 0.8458 0.8810 0.8259
MAT-RNN |8 0.8686 |0.8823 0.8911 0.9021 0.9131 0.8919
RNG-F - 0.5537 |0.6066 0.6199 0.6517 0.7683 0.6408
floss 1200 |11 [SQ-LOSS (10 0.7298 |0.7809 0.8089 0.8366 0.8739 0.8055
MAT-RNN |11 0.8680 |0.9016 0.9317 0.9421 0.9640 0.9214
RNG-F - 0.5851 |0.6148 0.6358 0.6411 0.8234 0.6509
pads |317 [7 |SQ-LOSS |4 0.5650 |0.6149 0.6392 0.6941 0.7154 0.6482
MAT-RNN |7 0.8544 |0.9160 0.9459 0.9511 0.9621 0.9281
RNG-F - 0.6959 |0.7372 0.7663 0.7903 0.8300 0.7641
soda (341 |8 [SQ-LOSS |1 0.6844 |0.7221 0.7259 0.7320 0.7612 0.7258
MAT-RNN (8 0.8605 |0.8669 0.8795 0.8854 0.8909 0.8768

[0121] From the example experiments, joint predictions enjoy some advantages over

iIndividual predictions as product purchases can be modeled better through joint modeling.

Generally, It network structure 1s the same, then the amount of time required to train a

separate model for each product scales linearly with the number of products. The number of

parameters in a collection of individual models is also significantly larger than that of a joint

model.

[0122] The advantages of training a joint MAT-RNN model over a collection of individual

ones can be illustrated by comparing ROC-AUC performance in the soda basket, as shown

In TABLE 5. The per-product individual models were given the same covariates but trained

only on the purchase arrivals of that particular product. The network structure Is the same

with W = 36, but the final densely connected layer outputs only a vector of size 2, since

distributional parameters for one product is required. However, since the collection of single

models have different weights for their RNNs, they have approximately 8 times the number

of parameters found in the joint model. As shown in TABLE 5, there is a consistent

advantage of a joint model over the individually trained single models, with improvements

ranging from 0.0029 to 0.1098. Potential improvements in model performance can be

observed by modeling purchase arrivals jointly, even with much fewer number parameters in

the joint model.

TABLE 5
sku |single |[joint |diff
1 0.83868 [0.8897 |+0.0029
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0.8073 |10.8686 |+0.0614

0.8331 |1 0.8605 |+0.0274
0.8501 [0.8761 |+0.0260

0.8445 | 0.8829 |+0.0384
0.8193 [ 0.8615 |+0.0422
0.8640 | 0.8909 |+0.0269
0.7742 10.8840 |+0.1098

NSO |O1 B [WIN

[0123] Advantageously, the present embodiments can use a survival analysis approach with
recurrent neural nets (RNN) to forecast joint arrival times until a next event for each
individual over multiple items. The present inventors advantageously recognized the
technical advantages of transforming an arrival time problem into a likelihood-maximization
problem with loose distributional assumptions regarding inter-arrival times. The example
experiments demonstrated that not only can known parameters be recovered during fitting,

but also that there are substantial improvements over other approaches.

[0124] Although the invention has been described with reference to certain specific
embodiments, various modifications thereof will be apparent to those skilled in the art
without departing from the spirit and scope of the invention as outlined in the claims
appended hereto. The entire disclosures of all references recited above are incorporated

herein by reference.
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CLAIMS

1. A computer-implemented method for individual forecasting of a future event for a
subject using historical data, the historical data comprising a plurality of historical
events associated with the subject, the computer-implemented method executed on

at least one processing unit, the computer-implemented method comprising:

receiving the historical data associated with the subject;

determining a random variable representing a remaining time until the future

event;

predicting a time to the future event using a distribution function that is
determined using a recurrent neural network, the distribution function comprising

a learned density with peaks that approximate the times of the historical events In

the historical data:

determining a log-likelihood function based on a probability that the random
variable exceeds an amount of time remaining until a next historical event in the

historical data and parameterized by the distribution function; and
outputting a forecast of a time to the future event as the log-likelihood function.

2. The computer-implemented method of claim 1, wherein a loss function for the

recurrent neural network comprises a negative of the log-likelihood function.

3. The computer-implemented method of claim 1, wherein the random variable is

conditioned based on inter-arrival times of the historical events in the historical data.

4. The computer-implemented method of claim 1, wherein the random variable is
conditioned based on excess times since arrival of preceding historical events in the

historical data.

5. The computer-implemented method of claim 1, wherein the log-likelihood function at
each time is the log of the probability that the random variable is in the set of time
until the next historical event when the next historical event has been observed, and

the log of the survival function otherwise.

6. The computer-implemented method of claim 5, wherein the distribution function

follows a Welibull distribution.
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/.

10.

11.

The computer-implemented method of claim 6, wherein the distribution function is
determined as (k/A)((s+t)/A) ' Su(t), where k is the shape of the Weibull distribution, A
is the scale of the Weibull distribution, f is the time-step, and Sw/(f) is the survival

function.

The computer-implemented method of claim 1, wherein outputting the forecast of the
time to the future event as the log-likelihood function comprises determining a sum of

log-likelihoods at each time-step.

The computer-implemented method of claim 8, further comprising transforming the
sum of log-likelihoods as a function of recurrent neural network parameters and
historical data, and determining a minimizer of an overall observed loss of the

recurrent neural network using such function.

The computer-implemented method of claim 1, further comprising outputting

derivative values of the log-likelihood function.

A system for individual forecasting of a future event for a subject using historical
data, the historical data comprising a plurality of historical events associated with the
subject, the system comprising one or more processors in communication with a data

storage, the one or more processors configurable to execute:

a data acquisition module to receive the historical data associated with the

subject;

a conditional excess module to determine a random variable representing a

remaining time until the future event;

a machine learning module 120 to predict a time to the future event using a
distribution function that is determined using a recurrent neural network, the
distribution function comprising a learned density with peaks that approximate the

times of the historical events in the historical data: and

a forecasting module to determine a log-likelihood function based on a probability
that the random variable exceeds an amount of time remaining until a next
historical event in the historical data and parameterized by the distribution
function, and to output a forecast of a time to the future event as the log-

likelihood function.

12. The system of claim 11, wherein a loss function for the recurrent neural network
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comprises a negative of the log-likelihood function.

13. The system of claim 11, wherein the random variable i1s conditioned based on inter-

arrival times of the historical events in the historical data.

14. The system of claim 11, wherein the random variable is conditioned based on excess

times since arrival of preceding historical events in the historical data.

15. The system of claim 11, wherein the log-likelihood function at each time is the log of
the probability that the random variable is in the set of time until the next historical
event when the next historical event has been observed, and the log of the survival

function otherwise.

16. The system of claim 15, wherein the distribution function follows a Welbull

distribution.

17. The system of claim 16, wherein the distribution function is determined as
(K/A)((s+E/AY'Su(t), where k is the shape of the Weibull distribution, A is the scale of

the Welbull distribution, £ is the time-step, and Su/f) is the survival function.

18. The system of claim 11, wherein outputting the forecast of the time to the future
event as the log-likelihood function comprises determining a sum of log-likelihoods at

each time-step.

19. The system of claim 18, wherein the forecasting module further transtforms the sum
of log-likelihoods as a function of recurrent neural network parameters and historical
data, and determining a minimizer of an overall observed loss of the recurrent neural

network using such function.

20. The system of claim 11, wherein the forecasting module further outputs derivative

values of the log-likelihood function.

21. A non-transitory computer-readable storage medium, the computer-readable storage
medium including instructions that when executed by a computer, cause the

computer to:
receive the historical data associated with the subject;
determine a random variable representing a remaining time until the future event;

predict a time to the future event using a distribution function that is determined
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22.

23.

24

25.

20.

27.

28.

29.

using a recurrent neural network, the distribution function comprising a learned
density with peaks that approximate the times of the historical events in the

historical data;

determine a log-likelihood function based on a probability that the random
variable exceeds an amount of time remaining until a next historical event in the

historical data and parameterized by the distribution function; and
output a forecast of a time to the future event as the log-likelihood function.

The computer-readable storage medium of claim 21, wherein a loss function for the

recurrent neural network comprises a negative of the log-likelihood function.

The computer-readable storage medium of claim 21, wherein the random variable is

conditioned based on inter-arrival times of the historical events in the historical data.

The computer-readable storage medium of claim 21, wherein the random variable Is
conditioned based on excess times since arrival of preceding historical events in the

historical data.

The computer-readable storage medium of claim 21, wherein the log-likelihood
function at each time is the log of the probability that the random variable is in the set
of time until the next historical event when the next historical event has been

observed, and the log of the survival function otherwise.

The computer-readable storage medium of claim 25, wherein the distribution function

follows a Weibull distribution.

The computer-readable storage medium of claim 26, wherein the distribution function
IS determined as (k/A){((s+1)/AMk—1SW(t), where K Is the shape of the Weibull
distribution, A is the scale of the Welbull distribution, t is the time-step, and SW(t) is

the survival function.

The computer-readable storage medium of claim 21, wherein outputting the forecast

of the time to the future event as the log-likelihood function comprises determine a

sum of log-likelihoods at each time-step.

The computer-readable storage medium of claim 28, wherein the instructions further
configure the computer to transform the sum of log-likelihoods as a function of

recurrent neural network parameters and historical data, and determining a minimizer
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of an overall observed loss of the recurrent neural network using such function.

30. The computer-readable storage medium of claim 21, wherein the instructions further

configure the computer to output derivative values of the log-likelihood function.
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