[11] No.: 26026 [45] Issued: JAN 29 [992]

PARASITICIDES AND INSECTICIDES [54] Title:

DR. JEAR-CLAUDE GEHRET, of Acsch, Switzerland Inventor (s):

ciba-Goigy AG, of Basle, Switzerland, a Swiss Corporate of Switzerland [73] Assignee (s):

March 25, 1988 Filed: [22]

36686 Application Serial No: [21]

FOREIGN APPLICATION PRIORITY DATA

[31] Number (s) 1180/87-0

[32] Date (s) March 27, 1987

Country (ies) Switzerland.

..... 514/450; 549/268 PH Class [52]

[51] Int. Class CO7D 493/22; AOIN 43/90 .

Reference (s) Cited and/or Considered: Hone

[57]

ABSTRACT

see attached sheet

(I)

cont. ABSTRACT

in which

. . .

wherein R_1 is hydrogen or an OH-protecting group, and R_{11} is hydrogen, an CH-protecting group, or an alkyl, cycloalkyl or acyl group,

- R₂ is mothyl, ethyl, isopropyl, sec.=butyl or a -C(CH₃) = CR E group wherein E is methyl, ethyl or isopropyl,
- and R₁ together represent a bond between the two curben atoms to which they are bonded, or together represent a -C(X')(Z')- group whorein X' and Z' each represents, independently of the other, hydrogen or halogen and
- X and 2 each represents, independently of the other hydrogen or halogen,

the preparation of the novel compounds and the use thereof for controlling parasites of productive livestock and for controlling hermful insects.

PARASITICIDES AND INSECTICIDES

ABSTRACT

A novel compounds of formula

in which

20

25

5

10

15

wherein R_1 is hydrogen or an OH-protecting group, and R_{11} is hydrogen, an OH-protecting group, or an alkyl, cycloalkyl or acyl group,

- R₂ is methyl, ethyl, isopropyl, sec.-butyl or a -C(CH₃) = CH E group wherein E is methyl, ethyl or isopropyl,
- R_3 and R_4 together represent a hond between the two carbon atoms to which they are bonded, or together represent a -C(X')(Z')- group wherein X' and Z' each represents, independently of the other, hydrogen or halogen and
- 10 X and Z each represents, independently of the other,
 hydrogen or halogen,
 the preparation of the novel compounds and the
 use thereof for controlling parasites of productive
 livestock and for controlling harmful insects.

PARASITICIDES AND INSECTICIDES

The present invention relates to milbemycin derivatives of formula ${\bf I}$

5

H₃C X Z CH₃

H O H R₂

H O H R₂

(1)

15

10

in which

wherein R_I is hydrogen or an OH-protecting group, and R_{II} is hydrogen, an OH-protecting group, or an alkyl, cycloalkyl or acyl

group,

- R₂ is methyl, ethyl, isopropyl, sec.-butyl or a $-C(CH_3) = CH E$ group wherein E is methyl, ethyl or isopropyl,
- R_3 and R_4 together represent a bond between the two carbon atoms to which they are bound, or together represent a -C(X')(Z')- group wherein X' and Z' each represents, independently of the other, hydrogen or halogen, and
- 10 X and Z each represents, independently of the other, hydrogen or halogen.

The invention also relates to the preparation of compounds of formula I and to the use thereof for controlling harmful insects or parasites that infest productive livestock, and to compositions that contain at least one of these compopounds as active ingredient.

Throughout this specification, compounds in which R_2 is sec.—butyl are also to be regarded as milbemycin derivatives although, according to conventional classification, they are derived from avermectin derivatives. Avermectin aglyoons (having an OH group in the 13a - position) can, however, be converted into milbemycin

25

20

5

homologues in accordance with US-PS 4,173,571.

Naturally occurring milbemycins (R_1 =H; R_2 =CH $_3$, C_2 H $_5$ or iso- C_3 H $_7$)correspond to formula M given below (C_{14} - C_{15} -double bond):

CH₃

H
O
H
CH₃

CH₃

CH₃

CH₃

(M)

 $R_2 = CH_3 \qquad \text{milbemycin } A_3 \text{ (US-PS 3,950,360)}$ $R_2 = C_2H_5 \qquad \text{milbemycin } A_4 \text{ (US-PS 3,950,360)}$ $R_2 = isoC_3H_7 \qquad \text{milbemycin } D \text{ (US-PS 4,346,171)}$ $R_2 = sec.-C_4H_9 \qquad 13-deoxy-22,23-dihydro-C-076-Bla-aglycon (US-PS 4,173,571, GB 1,573,955)$ and DE-OS 2717040).

25

5

10

In avermectins, an c(- L - oleandrosy! - c(-L - oleandrose radical, which is linked via the oxygen atom in c(- configuration with the macrolid molecule, is present in the 13-position. Avermectins also differ structurally from milbemycins by a 23-OH group or $\Delta^{22,23}$ -double bond and usually by a substituent R_2 = sec. By hydrolysing the sugar residue of -CVHG. avermectins it is possible easily to obtain corresponding avermectin aglycons that contain a 13 c(- hydroxy group adjacent to a C - C double bond. As tated above, avermectin aglycons can be converted into milbemycin homologues. In the milbemycin derivatives of this Application the 22 - C atom and the 23 - C atom together form the structural molety -CH2-CH2- as also occurs in formula M.

The constitution of natural antibiotics

20 S541 is known from DE - OS 35 32 794 and is
as follows:

25

5

10

Factor	A	EmmisoC ₃ 7	R † = H
Factor	В	E*=CH3	R†=CH3
Factor	С	E*=CH3	R*=H .
Factor	D	E**C2H5	R # H
Factor I	E	E*= \$9#53 11 7	R#=CH3
Factor 1	F	E*=isoC ₃ H ₇	R _† =CH ₃

In order to simplify nomenclature, hereinafter the derivatives of antibiotic S541 are classified, according to factor, as derivatives of S541A, S541B, S541C, S541D, S541E or S541F.

10

Compounds of formula II wherein R_2 is a -C = CH - E group and E is as defined for CH_3

formula II, which can be used as starting materials in the process of the invention, can be prepared from the natural antibiotics S541 in a manner known per se.

The hydroxy group in the 23-position in the antibiotics S541 can be removed analogously to the method described in US-PS 4,328,335, and the antibiotics S541 can thus be converted into the corresponding 23-deoxy derivatives. compounds having a free 5-OH group $(R_1^* = H)$ must first be protected selectively by reaction with one of the silylating reagents $Y - Si(R_6)$ $(R_7)(R_8)$ mentioned below or with tert.-butyldimethylsilyloxyscetyl chloride. The reaction of these protected compounds in which R_{1}^{\star} has been replaced by $Si(R_6)(R_7)(R_8)$ or by C(=0) $CH_2OSi - (CH_3)_2 tert.-C_4H_9$ and the 23-C atom has been substituted by OH, with p-methylphenylchlorothionoformate yields derivatives of the antibiotics S541 that are substituted at the 23-position by \underline{p} -CH₃-C₆H₄-0-C(= S)-0-.

25

20

5

10

23-0-(4-methylphenoxy)-thiocarbonyl derivatives of antibiotics S541 are then reduced with tributyltin hydride in toluene in the presence of azobisisobutyronitrile at from 80 to 120°C to form the corresponding 23-deoxy derivatives (23-position unsubstituted).

Compounds of formula I wherein R_2 is methyl, ethyl, isopropy) of sec.-butyl are prefered, especially those in which A represents the $-CH(OR_1)$ - and $-C(=N-OR_{11})$ - groups, and R_1 and R_{11} each represents hydrogen.

Throughout this specification, OH-protecting groups for the substituents R_1 and/or R_{11} shall be understood as being the protective functional groups conventionally used in organic chemistry. These are especially acyl and silyl groups. Suitable acyl groups are, for example, R_5 -C(0)-radicals wherein R_5 is C_1 - C_{10} -alkyl, C_1 - C_{10} -haloalkyl, or a representative of the group comprising phenyl and benzyl which is unsubstituted or is substituted by at least one substituent selected from the group comprising halogen, C_1 - C_3 -alkyl, C_1 - C_3 -haloalkyl, C_1 - C_3 -alkoxy, C_1 - C_3 -haloalkoxy, cyano and nitro, and

is preferably $C_1 - C_6 - alkyl$, $C_1 - C_6 - haloalkyl$, or phenyl that is unsubstituted or is substituted by halogen, C1-C2-alkyl, CF2 or by Suitable silyl groups for the radical R_1 are the $-Si(R_6)(R_7)(R_8)$ radical wherein R_6 , R_7 and R_8 , preferably independently of one another, each represents $C_1 - C_4 - a k y l$, benzyl or phenyl and, for example, together with the silicon atom form any one of the groups trimethylsilyl, diphenyl-tert.-butylsilyl, bis (isopropyl) methylsilyl, triphenylsilyl and, especially, tert.-butyldimethylsilyl. OH group may also be etherified in the form of the benzyl ether or methoxyethoxy methyl ether or, in accordance with published European Patent No. 185,623, may be bonded to a carbohydrate residue, referred to hereinafter as a sugar residue for the sake of simplicity.

In compounds of formula I in which R_1 is a silyl group, especially tert.-butyldimethylsilyl, or is an acyl group, for example an R_5 -C(0)- group wherein R_5 has the meanings given above and is especially methyl, R_2 , R_3 , R_4 , R_5 and R_5 are preferably as defined in

25

20

5

10

Tables 1 and 2. In compounds of formula I in which R_{11} is a silyl group, especially tert.-butyldimethylsilyl, or is an acyl group, for example an R_5 -C(0)- group wherein R_5 has the meanings given above and is especially methyl, R_2 , R_3 , R_4 , R_4 , R_4 , R_5 and R_6 are preferably as defined in Tables 5 and 6.

Compounds of formula I wherein R_1 and/or R_{11} represent(s) a protecting group can be conwerted into the highly active free 5-hydroxy derivatives ($R_1 = H$) or 5-hydroxyimino derivatives ($R_{11} = H$) by simple removal of the protecting group, for example by hydrolysis, and thus have also the character of intermediates. The biological value of these compounds is not, however, reduced by the protecting group or the sugar residue.

Depending on the number of carbon atoms indicated, the term "alkyl" as a substituent or as part of a substituent shall be understood as meaning, for example, the following groups: methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl or decyl, and the isomers thereof, such as, for example, isopropyl,

25

20

5

10

isobutyl, tert.-butyl or isopentyl. When R_{11} represents all alkyl group, it contains preferably from 1 to 8, especially from 1 to 4, carbon atoms.

5

Suitable cycloalkyl groups are monoto tetra-cyclic groups, such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, decahydronaphthalene, hydrindane, bicyclopheptane, bicyclooctane, norbornane, bornane or adamantyl. These cycloaliphatic groups are preferably unsubstituted or mono- or poly-substituted by methyl. When R₁₁ represents a cycloalkyl group, it contains preferably from 3 to 6 carbon atoms.

15

10

The above-mentioned acyl and silyl groups serve as protecting groups not only for the hydroxy groups present in the substituent. A but also for all other hydroxy groups present in the compounds of the invention or in the precursors of those compounds.

20

Halogen in the meaning of X, X', Z and Z' is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine. Halogen atoms bonded to the same

carbon atom are preferably identical with one another. Preferred dihalomethylene groups -C(X)(Z)- and -C(X')(Z')- are dichloromethylene and dibromomethylene.

5

The following subgroups of compounds of formula I are preferred on account of their pronounced activity against pests:

10

15

Group Ia: compounds of formula I wherein A is any one of the groups $-CH(OR_1)-$, -C(0)- or -C(=N-OH)- wherein R_1 is hydrogen, a silyl group or a monosaccharide group, R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound, or together form a $HC(X^*)(Z^*)-$ group wherein X^* and X^* each represents, independently of the other, hydrogen or halogen, and X and X^* each represents, independently of the other, hydrogen or halogen, and H0 the other, hydrogen or halogen;

20

Group 1b: compounds of formula I wherein A is any one of the groups $-CH(OR_1)$ -, -C(0)- or -C(=N-OH)- wherein R_1 is hydrogen, acetyl, tert.-butyldimethylsilyl or 2, 3, 4, 6-

tetraacetylglucopyranosyl, R₂ is methyl or ethyl, R₃ and R₄ together form a bond between the two carbon atoms to which they are bound, or together form a -C(Cl₂)- group, X is hydrogen, chlorine, bromine or fluorine, and Z is hydrogen, chlorine, bromine or fluorine, X preferably being identical with X in compounds in which X is chlorine, bromine or fluorine;

Group Ic: compounds of formula I wherein A is any one of the groups -CH(OR₁)-, -C(O)- or -C(= N - OH)- wherein R₁ is hydrogen, tert.-butyldimethylsilyl or 2, 3, 4, 6-tetrascetyl-glucopyranosyl, R₂ is methyl or ethyl, R₃ and R₄ together form a bond between the two carbon atoms to which they are bound, or together form a -C(Cl₂)-group, X is hydrogen, chlorine or bromine, and Z is hydrogen, chlorine or bromine, Z preferably being identical with X in compounds in which X is chlorine or bromine;

<u>Group Id</u>: compounds of formula I wherein A is a - CH(OH) - or - C(= N - OH) - group, R₂ is methyl or ethyl, R₃ and R₄ together form a

25

20

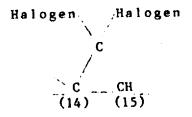
5

10

bond between the two carbon atoms to which they are bound, X is hydrogen, chlorine, bromine or fluorine, and Z is hydrogen, chlorine, bromine or fluorine;

5

10


Group Ie: compounds of formula I wherein A is a -CH(OH)- or -C(=N-OH)- group, R_2 is methyl or ethyl, R_3 and R_4 together from a bond between the two carbon atoms to which they are bound, and X and Z are identical with each other and each represents hydrogen, chlorine, or bromine, or X is hydrogen and Z is chlorine or bromine;

15

Group I f: compounds of formula I wherein A is a -CH(OH)- group, R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound, or together form a $-CCl_2-$ group, X is hydrogen, chlorine or bromine, and Z is hydrogen, chlorine or bromine.

20

Within the scope of this Application, the structural element

is defined by the term "14, 15-dihalomethylene-14, 15-dihydro";

the structural element

5

10

by the term "14, 15-methylene-14, 15-dihydro";

the structural element

15

2 🗗

by the term "14, 15-monohalomethylene-14, 15-dihydro";

the structural element

5

10 by the term "5-oxo";

and the structural element

15

by the term "5-hydroxyimino".

The terms used for the optionally halogenated $C_3^{-C}_4^{-m}$ methylene group are malogous to those given for $C_{14}^{-C}_{15}^{-c}$.

Preferred individual compounds are: 5-0-(tert.-butyldimethylsilyl)-14, 15-dichloro-methylene-14, 15-dihydromilbemycin A4,

25

.20

5-0-(tert.-butyldimethylsilyl)-3, 4-dichloro-methylene-14, 15-dickloromethylene-3, 4, 14, 15-tetrahydromilbemycin A_{Δ} ,

3, 4-dichloromethylene-14, 15-dichloromethylene 3, 4, 14, 15-tetrahydromilbemycin A₄,

5-0-(tert.-butyldimethylsilyl)-14, 15-dibromomethylene-14, 15-dihydromilbemycin A₄,

5-0-(2, 3, 4, 6-tetrascetylglucopyranosyl)-14, 15-dichloromethylene-14, 15-dihydromilbemycin A_{L} ,

5-oxo-14, 15-dichloromethylene-14, 15-dihydromilbemycin A₄,

5-hydroxyimino-14, 15-dichloromethylene-14, 15-dihydromilbemycin \mathbf{A}_{Δ} ,

20 14, 15-dichloromethylene-14, 15-dihydromilbemycin A3,

5-0-(tert.-butyldimethylsilyl)-14, 15-monobro-momethylene-14, $15-\text{dihydromilbemycin A}_4$,

25

10

5-0-(tert.-butyldimethylsilyl)-14, 15-methylene-14, 15-dihydromilbemycin A_{Δ} ,

14, 15-methylene-14, 15-dihydromilbemycin A_4 , and especially

14, 15-dibromomethylene-14, 15-dihydromilbemycin A_4 ,

10 14, 15-dichloromethylene-14, 15-dihydromilbemycin A₄,

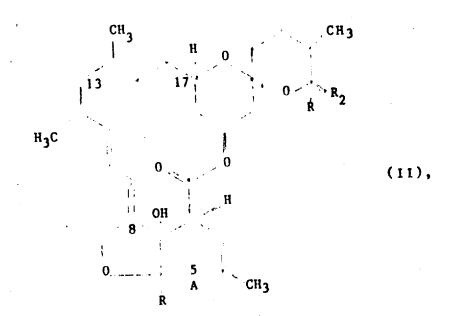
14, 15-monobromomethylene-14, 15-dihydromilbemycin $\mathbf{A_4} \quad \text{and} \quad$

15

5

14, 15-monochloromethylene-14, 15-dihydromilbe-mycin \mathbf{A}_{Δ} .

The preparation of compounds of formula I can be effected analogously to those methods described for the addition of carbenes to olefinically unsaturated structures in the literature relating to carbenes, for example in Liebigs Ann. Chem. 744, 42-50 (1971) and in Organic Chemistry, Vol. 1, "Carbene Chemistry", W. Kirmse,


25

Academic Press, New York, London, 1971, Part II:
"Structure and Reactivity of Carbenes and
Carbenoids", especially Chapter 8, including the
further reading material cited in the abovementioned literature.

To prepare compounds of formula I, a compound of formula II

10

5

15

20

in which A and R_2 are as defined for formula I, is reacted with a carbene of formula IIIs

c(x)(z)

(111a),

in which X and Z are as defined for formula I and which is formed in situxand is dissolved in an inert solvent, and, if desired, a resulting compound of formula I in which R_3 and R_4 together form a bond between the carbon atoms to which they are bound is reacted with a carbene of formula IIIb

C(X')(Z')

(IIIb).

10

15

5

in which X^{\star} and Z^{\star} are as defined for formula I and which is formed in situ; and is dissolved in an inert solvent. Suitable inert solvents are, for example, 1, 2-dimethoxyethane, bis(2-methoxyethyl) ether, acetonitrile, dichloromethane, chloroform, dichloroethane and alkanes, such as pentane or hexane. Temperature and reaction time are determined to a large extent by the conditions of the chosen carbene preparation. The temperatures are generally within a range of from -70° C to $+180^{\circ}$ C, preferably from 0° C to 40°C, and the reaction times vary within a range of approximately from 10 minutes to 2 days. Whereas, at low temperature, compounds

260.26

of formula I in which R_3 and R_4 together form a bond between the two carbon atoms to which they are bound (monoadduct) will preferably be formed, at higher temperatures the proportion of compounds in which R_3 and R_4 together form a $-C(X^1)(Z^1)$ - group (diadduct) will predominate.

The manufacture of carbenes of formulae IIIs and IIIb can be effected in conventional manner, such as, for example

- from a mercury salt, such as, for example, phenyl(trifluoromethyl)-mercury at approximately 80°C ;
- from sodium difluorochloroacetate from 100°C to 140°C;
 - from trichloroacetic acid ethyl ester and a base, such as, for example, sodium methoxide at approximately from 0° C to 29° C;
- example 30-50% aqueous sodium hydroxide solution, potassium tert.-butoxide or butyllithium) with or without phase-transfer catalysts (such as, for example, tetraalkylammonium chlorides or bromides), at temperatures of approximately from

25.

5

10

-40°C to +60°C, chloroform or bromoform simultaneously serving as solvent (yields dihalocarbenes);

and a base (for example 30-50% aqueous sodium hydroxide solution, potassium tert.-butoxide or butyllithium) with or without phase-transfer catalysts (such as, for example, tetraalkyl-ammonium chlorides or bromides), at temperatures of approximately from -40°C to +60°C, it being possible for methylene chloride or methylene bromide to serve simultaneously as solvent (yields monohalocarbenes);

- from chloroform, bromoform, methylene chloride or methylene bromide with solid sodium hydroxide or solid potassium hydroxide with exposure to ultrasonic waves.

In compounds of formula I it is possible by reduction to convert mono- and di-halomethylene groups into unsubstituted methylene groups or to convert dihalomethylene groups into monohaloë methylene groups. The reduction can be carried out analogously to known methods, for example using tributyltin hydride or zinc and acid.

20

5

10

Compounds of formula I can be obtained, for example, either by converting a milben mycin of formula M or the 23-deoxy derivatives of S541A, S541C or S541D into a compound of formula II in which A has a meaning other than -CH(OH)- and then reacting with a carbene, or by first reacting a compound of formula M or the 23-deoxy derivative of S541A, S541C or S541D with a carbene and then converting the resulting compound into a compound of formula I in which A has a meaning other than -CH(OH)-.

It is also possible for substituents at the 5-C stom in compounds of formulae I and II to be removed and, if desired, replaced by other substituents provided that these correspond to the definitions according to the invention. The removal and introduction of substituents corresponding to the definitions according to the invention can be carried out by methods that are known per se. In order to introduce acyl, silyl and saccharide groups, it is advantageous to use as starting materials compounds of formulae I and II in which A

-C(=N-OH)--CH(OH)- or or compounds of formula M or the 23-deoxy derivatives of S541A, S541C or S541D. Compounds of formula I or II in which A represents $-C(=N-OR_{11})$ - can be prepared, for example, 5 by reacting compounds of formula I or II in which A represents -C(0)- with hydroxylamine or salt thereof and, if desired, subsequently introducing the substituent R₁₁, which substituent has the meaning given for formula I with 10 the exception of hydrogen, or by carrying out the reaction with a compound of formula NH2-OR11 or in which R , , has the meanings given for formula I with the exception of hydrogen, or with a salt thereof. Suitable salts are, for 15 example, those of the above-mentioned amino compounds with sulphuric acid, nitric acid and, especially, hydrochloric scid. The reaction is advantageously carried out in a suitable solvent, for example a lower alkanol, such as 20 methanol, ethanol, propanol; an ethereal compound, such as tetrahydrofuran or dioxan; an aliphatic carboxylic acid, such as acetic acid or propionic acid; water; or in mixtures of

these solvents with each other or with other conventional inert solvents. The reaction temperatures may vary within wide limits. The reaction is advantageously carried out in the range of approximately from $+10^{\circ}$ to $+100^{\circ}$ C. If hydroxylamine is employed in the form of one of its salts, for example in the form of the hydrochloride, in order to bind the acid it is advantageous to add one of the bases customarily used for that purpose and, where appropriate, to carry out the reaction in the presence of a water-binding agent, for example a molecular sieve. Suitable bases are organic and inorganic bases, for example tertiary amines such as trialkylamines (trimethylamine, triethylamine, tripropylamine etc.), pyridine and pyridine bases (4-dimethylaminopyridine, 4pyrrolidylaminopyridine etc.), oxides, hydrides and hydroxides, carbonates and hydrogen carbonates of alkali metals and alkaline earth metals (CaO, BaO, NaOH, KOH, NaH, Ca(OR), KHCO3, NaHCO3, Ca(HCO3)2, K2CO3, Na2CO3), and alkali metal acetates such as CH_3COONs or CH_3COOK . Also suitable are alkali metal alcoholates such

25

5

10

15

as C_2H_5ONa , $n-C_3H_7ONa$ etc.. Thriethylamine is preferred.

Compounds of formulae I and II in which A represents -C(0)- can be obtained, for example, by treating compounds of formula I or II in which A represents -CH(0)- with a reagent suitable for oxidation. Suitable oxidising agents are, for example, activated manganese dioxide, oxalyl chloride/dimethyl sulphoxide/triethylamine or chromium trioxide/pyridine.

Another suitable process is the Oppenauer oxidation in which compounds of formulae I and II in which A represents -CH(0)- are reacted with a ketone, preferably cyclohexanone or acetone, in the presence of an aluminium alcoholate, preferably aluminium isopropoxide or aluminium tert.-butoxide.

The oxidation is advantageously carried out in an inert solvent. Suitable solvents are alkanes, such as, for example, hexane, heptane or octane, aromatic hydrocarbons, such as,, for example, benzene, toluene or xylenes, or, preferably, chlorinated hydrocarbons, especially methylene chloride. The oxidation is advantageously carried out at temperatures of from

25

5

10

15

 -80° C to $+60^{\circ}$ C, preferably from -60° C to $+30^{\circ}$ C.

From compounds of formulae I and II in which A represents a -C(0)- group it is possible, by reduction in a manner known per se, to obtain again compounds in which A represents a -CHOH- group. The reduction can be effected, for example, by catalytic hydrogenation with a platinum or Raney nickel catalyst or in accordance with the Heerwein-Ponndorf-Verley reduction with aluminium isopropoxide in isopropanol,

The introduction of a saccharidei into compounds of formula H, into 23-deoxy derivatives of S541A, S541C or S541D or into compounds of formulae I and II in which A represents -CH(OH)-can be effected by reacting these compounds with the corresponding saccharide, advantageously using methods analogous to those generally known in sugar chemistry for linking reactions, such as, for example, the Koenigs-Knorr method, the Ag-triflate process, the so-called orghosster

25

20

5

10

15

process, the phenyithio systhesis or the 2-

pyridylthio method (in accordance with published

European Patent Specification No. 185,623).

For the preparation of compounds of (formula II in which R, is an acyl group, the 5-OH group of a milbemycin of formula M or of a 23-deoxy derivative of S541A, S541C or S541D is The introduction of the acyl group acylated. is usually carried out using the corresponding acyl halides or acyl anhydrides, the term "acyl halide", meaning acyl chloride or acyl bromide, and is preferably used to introduce the $R_gC(0)$ -

group defined at the beginning.

For the preparation of compounds of formula II in which R, is a silyl group, the 5-OH group of a milbemycin of formula M or of a 23-deoxy derivative of S541A, S541C or S541D is silylated. For the silylation there is advantageously used a silane of formula $Y-Si(R_6)$ $(R_7)(R_8)$ in which R_6 , R_7 and R_8 have the meanings mentioned hereinbefore and Y represents a silyl leaving group. Silyl leaving groups Y include, for example, bromine, chlorine, cyano, Azido, acetamide, trifluoroacetoxy and trifluoromethaneaulphonyloxy. list does not constitute any limitation; the

20

5

10

15

skilled person will know other typical silyl leaving groups.

5-0-acylations and 5-0-silylations are carried out in anhydrous medium, preferably in inert solvents and, especially, in aprotic solvents. The reaction proceeds advantageously within a temperature range of from 0° to $+80^{\circ}$ C, preferably from $+10^{\circ}$ to $+40^{\circ}$ C. It is preferably to add an organic base. Suitable organic bases are, for example, tertiary amines such as triethylamine, triethylenediamine, triazole and preferably pyridine, imidazole or 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU).

The removal of these silyl and acyl radicals R_1 or R_{11} in the 5-position is effected by selective mild hydrolysis (\longrightarrow R_1 or R_{11} = H) for example with dilute acids such as dilute HCl, HF, arylsulphonic acid in alcoholic or aqueous solution, or in accordance with another method familiar to the skilled person. Acyl radicals are preferably removed under basic conditions (for example in alcoholic ammonia solution).

The process of the invention for the preparation of compounds of formula I wherein A,

25

20

5

10

$260\,26$

 R_2 , R_3 , R_4 , X and Z are as defined for formula I comprises reacting a compound of

5

CH₃

17

0

H₃C

0

0

(11),

10

15

in which A and ${\bf R}_2$ are as defined for formula I, with a carbene of formula IIIa

20

C(X)(Z)

(IIIa)

in which X and Z are as defined for formula I and which is formed in situ and is dissolved in an inert solvent and, in resulting compounds,

if desired i) reducing a -C(halogen)(halogen)-group that represents -C(X)(Z)-group to a -CH(halogen)-group or $-CH_2-group$ or ii) reducing a -CH(halogen)-group that represents -C(X)(Z)-group to a $-CH_2-group$ or iii) converting the group that represents A into another of the groups defined under A, or reacting resulting compounds in which R_3 and R_4 together form a bond between the two carbon atoms to which they are bound with a carbene of formula IIIb

C(X')(Z')

(IIIb)

in which X' and Z' are as defined for formula I and which is formed in situ and is dissolved in an inert solvent, and, in resulting compounds, if desired iv) reducing a -C(halogen)(halogen)- group that represents -C(X)(Z)- or -C(X')(Z')- to a -CH(halogen)- or $-CH_2-$ group or v) reducing a -CH(halogen)- group that represents -C(X)(Z)- or -C(X')(Z')- to a $-CH_2-$ group or vi) converting the group that represents A into another of the groups defined under A.

25

20

5

10

The present invention relates also to the described process for the preparation of compounds of formula I.

The compounds of formula I are eminently suitable for controlling pests of animals and plants, especially ectoparasites of animals.

These last-mentioned pests comprise, of the order Acarina, especially pests of the families

Ixodidae, Ermanyssidae, Sarcoptidae and Psoroptidae; the orders Mallophaga, Siphonaptera and Anoplura (for example the Haemotopinidae family); and the order Diptera, especially pests of the families Muscidae, Calliphoridae,

Oestridae, Tabanidae, Hippoboscidae and Gastrophilidae.

The compounds I can also be used to control hygiene pests, especially of the order <u>Diptera</u> comprising the families <u>Sarcophagidae</u>, <u>Anophilidae</u> and <u>Culicidae</u>; of the order <u>Orthoptera</u>, of the order <u>Dictyoptera</u> (for example the <u>Blattidae</u> family) and of the order <u>Hymenoptera</u> (for example the <u>Formicidae</u> family).

The compounds I also have lasting action against mites and insects that are parasites of

25

20

5

10

plants. When used to control spider mites of the order Acarina, they are effective against eggs, nymphs and adults of Tetranychidae

(Tetranychus spp. and Panynychus spp.).

5

They have high activity against sucking insects of the order Homoptera, especially against pests of the families Aphididae,

Delphacidae, Cicadellidae, Psyllidae, Coccidae, Diaspididae and Eriophididae (for example the rust mite on citrus fruits); of the orders Hemiptera, Hetesoptera and Thysanoptera; and against plant-eating insects of the orders Lepidoptera, Coleoptera, Diptera and Orthoptera.

15

10

They are also suitable as soil insecticides against soil pests.

The compounds of formula I are therefore effective against all developmental stages of sucking and feeding insects in crops such as cereals, cotton, rice, maize, soybeans, potatoes, vegetables, fruits, tobacco, hops, citrus fruit, avocados and others.

The compounds of formula I are also effective against plant nematodes of the species Meloidogyne,

25

Heterodera, Pratylenchus, Ditylenchus, Radopholus, Rhizoglyphus and others.

The compounds are also effective against helminths in all developmental stages, and among thee the endoparasitic nematodes can be the cause of severe diseases in mammals and fowls, for example sheep, pigs, goats, cattle, horses, donkeys, dogs, cats, guinea pigs, cage birds. Typical nematodes having this indication are: Haemonchus, Trichostrongylus, Ostertagia, Nematodirus, Cooperia, Ascaris, Bunostomum, Oesophagostomum, Chabertia, Trichuria, Strongylus, Trichonema, Dictyocaulus, Capillaria, Heterakis, Toxocara, Ascaridia, OXyuris, Ancylostoma, Uncinaria, Toxascaris and Parascaris. particular advantage of the compounds of formula I is their activity against parasites that are resistant to benzimidazole-based active substances.

Cooperia and Oesophagostomum attack the intestinal tract of the host animal, whereas others of the genera Haemonchus and Ostertagia parasiticise the stomach and those of the genus Dictyocaulus the lung tissue. Parasites of the families

25

5

10

15

Filariidae and Setariidae are found in internal cell tissue and in organs, for example in the heart, blood vessels and lymph vessels and in subcutaneous tissue. In this connection, particular methion should be made of the dog heartworm, Dirofilaria immitis. The compounds of formula I are highly effective against these parasites.

The compounds of formula I are also suitable for controlling pathogenic parasites in humans, among which parasites there may be mentioned as typical representatives occurring in the alimentary tract those of the genera Ancylostoma, Necstor, Ascaris, Strongyloides, Trichinella, Capillaria, Trichuris and Enterobius. The compounds of this invention are also effective against parasites of the genera Wuchereria, Brugia, Onchocerca and Loa of the Filariidae family, which occur in the blood, in tissue and various organs, and, in addition, against Dracunculus and parasites of the genera Strongyloides and Trichinella which infest in particular the gastro-intestinal tract.

25

5

10

15

The compounds of formula I are sused in unmodified form, or preferably together with the adjuvants conventionally employed in the art of formulation, and are therefore formulated in known manner e.g. to emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations in e.g. polymer substances.

As with the nature of the compositions, the methods of application such as spraying, atomising, dusting, scattering or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

The compounds of formula I are administered to warm-blooded animals in amounts of from 0.01 to 10 mg/kg of body weight. Over enclosed crop areas they are applied in amounts of from 10 g to 1000 g per hectare. they are also used in pens, paddocks, stalls and other livestock buildings.

The formulations, i.e. the compositions, preparations or mixtures containing the compound (active ingredient) of formula I are prepared

25

20

5

10

in known manner, e.g. by homogeneously mixing and/or grinding the active ingredients with extenders, such as, ê.g. solvents, solid carriers and, where appropriete, surface—active compounds (surfactants).

Suitable solvents are: aromatic hydrocarbons, preferably the fractions containing

8 to 12 carbon atoms, such as, for example,

xylene mixtures or substituted naphthalenes,

phthalates, such as dibutyl phthalate or

dioctyl phthalate, aliphatic hydrocarbons, such

as cyclohexane or paraffins, alcohols and glycols

and their ethers and esters, such as ethanol,

ethylene glycol, ethylene glycol monomethyl or

monoethyl ether, ketones, such as cyclohexanone,

strongly polar solvents, such as N-methyl
2-pyrrolidone, dimethyl sulphoxide or dimethyl
formamide, as well as vegetable oils or epoxidised

vegetable oils, such as epoxidised coconut oil

or soybean oil; or water.

The solid carriers used, for example for dusts and dispersible powders, are normally natural mineral fillers, such as calcite, talcum, kaolin, montmorillonite or attapulgite. In order

25

20

5

10

15.

to improve the physical properties it is also possible to add highly dispersed salicic acid or highly dispersed absorbent polymers.

Suitable granulated adsorptive carriers are porous types, such as, for example, pumice, broken brick, sepiolite or bentonite; and suitable nonsorbent carriers are materials such as calcite or sand. In addition, a great number of pregranulated materials of inorganic or organic nature can be used, such as especially dolomite or pulverised plant residues.

Depending on the nature of the active ingredient to be formulated, suitable surface-active compounds are nonionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. The term "surfactants" will also be understood as in-cluding mixtures of surfactants.

Both so-called water-soluble soaps and water-soluble synthetic surface-active compounds are suitable anionic surfactants.

Suitable soaps are the alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts of higher fatty acids

25

5

10

15

 $(C_{10}-C_{22})$, such as, for example, the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which can be obtained, for example, from coconut oil or tallow oil. Other suitable surfactants are also the fatty acid methyltaurin salts.

More frequently, howerver, so-called synthetic surfactants are used, especially fatty sulphonates, fatty sulphates, sulphonated benzimidazole derivatives or alkylarylsulphonates.

The fatty sulphonates or sulphates are usually in the form of alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts and contain a $C_8^-C_{22}^-$ alkyl radical, alkyl also including the alkyl moiety of acyl radicals, for example the sodium or calcium salt of lignosulphonic acid, of dodecylsulphate or of a mixture of fatty alcohol sulphates obtained from natural fatty acids. These compounds also comprise the salts of the sulphuric acid esters and sulphonic acids of fatty alcohol/ethylene oxide adducts. The sulphonated benzimidazole derivatives preferably contain 2 sulphonic acid groups and

25

20

5

10

one fatty acid radical containing 8 to 22 carbon atoms. Examples of alkylarylaulphonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulphonic acid, dibutylnaphthalenesulphonic acid and formaldehyde.

Also suitable are corresponding phosphates, such as, for example, salts of the phosphoric acid ester of an adduct of <u>p</u>-nonylphenol with 4 to 14 moles of ethylene oxide; or phospholipids.

Non-ionic surfactants are especially polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, saturated or unsaturated
fatty acids and alkylphenols, said derivatives
containing 3 to 30 glyocl ether groups and 8
to 20 carbon atoms in the (aliphatic)hydrocarbon
mowety and 6 to 18 carbon atoms in the alkyl
moiety of the alkylphenols.

Furthee suitable non-ionic surfactants are the water-soluble adducts of polyethylene oxide with polypropylene glycol, ethylenediaminopoly-propylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethylene

25

5

10

15

glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit.

5

Representative examples of non-ionic surfactants are nonylphenolpolyethoxyethanols, castor oil polyglycol ethers, polypropylene/polyethylene oxide adducts, tributylphenoxy-polyethoxyethanol, polyethlene glycol and octylphenoxypolyethoxyethanol.

10

Fatty acid esters of polyoxyethylene sorbitan, e.g. polyoxyethylene sorbitan trio-leate, are also suitable non-ionic surfactants.

15

Cationic surfactants are especially quaternary ammonium salts which contain, as N-substituent, at least one $C_8^-C_{22}^-$ alkyl radical and, as further substituents, unsubstituted or halogenated lower alkyl, benzyl or hydroxy-lower alkyl radicals. The salts are preferably in the form of halides, methyl sulphates or ethyl sulphates, e.g. stearyltrimethylammonium chloride or benzyldi-(2-chloroethyl)ethylammonium bromide.

20

The surfactants customarily employed in the

art of formulation are described inter alia in the following publication:
"1986 International McCutcheon's Emulsifiers and Detergents", The Manufacturing Confectioner Publishing Co., Glen Rock, New Jersey, USA.

The pesticidal compositions usually contain from 0.01 to 95 %, especially from 0.1 to 80 %, of an active ingredient of formula I, from 5 to 99.99 % of a solid or liquid adjuvant, and from 0 to 25 %, especially from 0.1 to 25 %, of a surfactant.

Whereas commercial products are preferably formulated as concentrates, the end user will normally employ dilute formulations having an active ingredient content of from 1 to 10,000 ppm.

The present invention therefore also relates to pesticidal compositions which contain as active ingreddent at least one compound of formula I together with customary carriers and/or dispersing agents.

The compositions may also contain further ingredients such as stabilisers, antifoams, viscosity regulators, binders, tackifiers and also fertilisers or other active ingredients

25

20

5

10

for obtaining special effects.

Preparation Examples

Example P-1: Preparation of 5-0-(tert.-butyldimethylsilyl)-14, 15-dichloromethylene14, 15-dihydromilbemycin A₄ and 5-0-(tert.-butyldimethylsilyl)-3, 4-dichloromethylene14, 15-dichloromethylene-3, 4, 14, 15-tetra-hydromilbemycin A₄

10

15

20

5

With continuous stirring at from 0 to 5° C, 15 ml of a 50% aqueous sodium hydroxide solution are added to a solution of 1300 mg of 5° C-(tert.-butyldimethylsisyl)-milbemycin A_4 and 15 mg of tetrabutylammonium chloride in 60 ml of chloroform. After 30 minutes, the reactionmixture is diluted with 200 ml of ethyl acetate and washed until neutral with water/sodium chloride solution. After drying the solution over sodium sulphate and concentrating by evaporation, the residue is purified over silica gel (hexane: ether = 5:1). Freeze-drying of the product yields 1090 mg of 5-0-(tert.-butyldimethyl-

sily1)-14, 15-dichloromethylene-14, 15-dihydromilbemycin A₄, m.p. 102-105°C, and 80 mg of 5-0-(tert.-butyldimethylsily1)-3, 4-dichloromethylene-14, 15-dichloromethylene-3, 4, 14, 15-tetrahydromilbemycin A₄, m.p. approximately 200°C.

By removing the silyl group from 5-0-(tert.-butyldimethylsilyl-3, 4-dichloromethylene- $\frac{1}{4}$, 15-dichloromethylene- $\frac{1}{4}$, 14, 15-tetrahydro-milbemycin A_4 , 3, 4-dichloromethylene- $\frac{1}{4}$ 15-dichloromethylene- $\frac{1}{4}$, 15-tetrahydromilbe-mycin A_4 , m.p. 153-157°C. is obtained.

Example P-2: Preparation of 14, 15-dichloromethylene-14, 15-dihydromilbemycin A_{Δ}

120 mg of 5-0-(tert.-butyldimethylsilyl)14, 15-dichloromethylene-14, 15-dihydromilbemycin A₄ in 5 ml of a 1% methanolic solution of
p-toluenesulphonic acid are stirred at room
temperature for one hour and then treated with
5% aqueous sodium hydrogen carbonate solution.
After extracting by shaking three times with

25

20

5

10

20 ml of diethyl ether each time, drying over sodium sulphate, concentrating the organic phase and chromatographing the crude product on 20 g of silica gel (eluant: diethyl ether), 92 mg of 14, 15-dichloromethylene-14, 15-dihydromil-bemycin A_{Δ} are obtained; m.p. $127-131^{\circ}$ C.

By reacting 14, 15-dichloromethylene-14, 15-dihydromilbemycin A_4 with 2, 3, 4, 6-tetraactyl-glucopyranose, 5-0-(2, 3, 4, 6-tetraacetyl-glucopyranosyl)-14, 15-dichloromethylene-14, 15-dihydromilbemycin A_4 , m.p. 133-138°C (compound No. 7.1) is obtained.

Example P-3: Preparation of 14, 15-dichloromethylene14, 15-dihydromilbemycin A_3

With continuous stirring at from 0 to 3° C, 7 ml of a 50% aqueous sodium hydroxide solution are added to a solution of 400 mg (0.75 mmol) of milbemycin A_3 and 5 mg of tetrabutylammonium chloride in 50 ml of chloroform. After 15 minutes, the reaction mixture is diluted with 100 ml of diethyl ether and washed with water/sodium

25

5

10

15

chloride solution until a neutral reaction is obtained. The solution is dried over sodium sulphate and concentrated by evaporation. The resulting residue is purified over a silica column thexane: ether = 4:1). Freeze-drying of the resulting product yields 212 mg of 14, 15-dichloromethylene- 14, 15-dihydromilbemycin A3; m.p. 130-135°C.

Example P-4: Preparation of 14, 15-dibromomethylene-14, 15-dihydromilbemycin A₄

perature to 100 mg of milbemycin A₄ and 100 mg of magnesium chippings in 5 ml of diethyl ether. The reaction mixture, in which an exothermic reaction commences after a few minutes, is maintained at from 30 to 35°C by cooling with an ice bath until, after about one hour, the reaction is complete. The reaction mixture is fidtered and concentrated. Purification of the crude product by column chromatography (silica gel; diethyl ether/

25

20

5

10

hexane = 10:1) yields 78 mg of 14, 15-dibromo-methyl-methylene-14, 15-dibydromilbemycin A_4 which decomposes at 141 - 144°C.

By introducing the $-Si(CH_3)_2$ -tert.- C_4H_9 group into 14, 15-dibromomethylene-14, 15-dibydromilbemycin A_4 , 5-0-(tert.-butyldimethyl-silyl)-14, 15-dibromomethylene-14, 15-dibydromilbemycin A_4 , m.p. $137-141^{\circ}C$, is obtained.

Example P-5: Preparation of 5-0-(tert.-buty1-dimethy1sily1)-14, 15-dichloromethylene-14, 15-dihydromilbemycin A₄

15

10

5

at -60°C, under argaon, to 100 mg of 5-0-(tert.-butyldimethyldilyl)-milbemycin A₄ in 4 ml of dry chloroform. The reaction mixture is slowly heated to 20°C, stirred thoroughly for 4 hours and then filtered and concentrated. The resulting crude product is purified by column chromatography (silica gel; diethyl ether/petroleum ether = 1:5). 90 mg of 5-0-(tert.-butyldimethylsilyl)-14, 15-dichloromethyelene-

25

14, 15-dihydromilbemycin A_4 , m.p. $103-105^{\circ}C$, are obtained.

Example P-6: Preparation of 5-0-(tert.-butyl-dimethylsilyl)-14, 15-monobromomethylene-14, 15-dihydromilbemycin A₄ and 5-0-(tert.-butyl-dimethylsilyl)-14, 15-methylene-14, 15-dihydro-

milbemycin A

10

15

5

2.0 g of zinc powder are slowly added at 15°C to a solution of 200 mg (0.24 mmol) of 5-0-(tert.-butyldimethylsilyl)-14, 15-dibromomethylene-14, 15-dihydromilbemycin A₄ in 10 ml of glacial acetic acid. After 4 hours, the solvent is evaporated off in vacuo and the residue is filtered and purified over a silica gel column (cyclohexane: ethyl acetate = 12:1). Freeze-drying yields 70 mg of 5-0-(tert.-butyl-dimethylsilyl)-14, 15-monobromomethylene-14, 15-dihydromilbemycin A₄ in the form of an amorphous powder, m.p. 180-185°C, and 100 mg of 5-0-(tert.-butyldimethylsilyl)-14, 15-methylene-14, 15-dihydromilbemycin A₄ in

25

amorphous form, which melts at approximately 75°C.

Example P-7: Preparation of 14, 15-monobromomethylene-14, 15-dihydromilbemycin \mathbf{A}_{Δ}

2 ml of 1% methanolic p-toluenesulphonic acid solution is added at room temperature to 70 mg of 5-0-(tert.-butyldimethylsilyl)-14, 15-monobromomethylene-14, 15-dihydromilbemyicn A₄. Working up in accordance with the foregoing Examples yields 14, 15-monobromomethylene-14, 15-dihydromilbemycin A₄ in the form of an amorphous powder which melts at 85-88°C.

Example P-8: Preparation of 14, 15-methelene-14, 15-dihydromilbemycin A₄

20

5

10

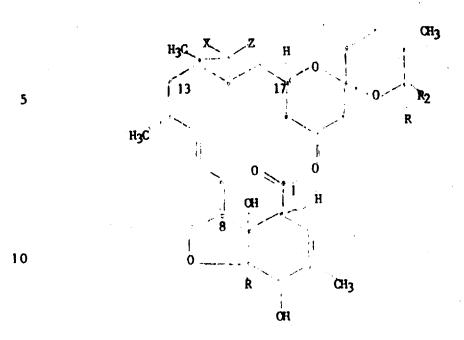
15

2 ml of 1% methanolic <u>p</u>-toluenesulphonic acid solution is added at room temperature to 100 mg of 5-0-(tert.-butyldimethylsilyl)-14, 15-methylene-14, 15-dihydromilbemycin A_{Δ} .

Working up in accordance with the foregoing Examples yields 14, 15-methylene-14, 15-dihydromelbemycin A_4 in the form of an amorphous powder which melts at $80-83^{\circ}$ C.

5

14, 15-dichloromethylene-14, 15-dihydro-milbemycin A₄ can be oxidised to 5-oxo-14, 15-dichloromethylene-14, 15-dihydromilbemycin A₄ and, by reaction of this 5-oxo compound with hydroxylamine, it is possible to prepare 5-hydroxylimino-14, 15-dihcloro-14, 15-dihydro-milbemycin A₄; m.p. 171-173°C.


10

15

The following compounds of formula I, listed together with compounds of the predeiding Examples, are also prepared analogously to the described procedures. this list does not, however, constitute any limitation.

20

Table 1

15	Comp.			
	No.	<u>R</u> 2	X	Z
	1.1	снз	н	Br
	1.2	C ₂ H ₅	H	Br
0	1.3	C ₃ H ₇ -iso	H	Br
	1.4	C4H9-sec.	Ħ	Вr
	1.5	сн 3	н	C1
	1.6	^C 2 ^H 5	н	C1
	1.7	C ₃ H ₇ -iso	н	C 1

26026

Table I (continued)

	**************			<u> </u>
	Comp.	R ₂	X	Z
5	Committee of the state of the s			
	1.8	C ₄ H ₉ -seC.	н	Cl
	1.9	CH ₃	н	н
	1.10	^C 2 ^H 5	н	н
10	1.11	C ₃ H ₇ -iso	н	н
	1.12	C ₄ H ₉ -seC.	н	н
	1.13	снз	C 1	C1
	1.14	^C 2 ^H 5	C 1	Cl
	1.15	C ₃ H ₇ -iso	Cl	C 1
15	1.16	C ₄ H ₉ -seC.	C 1	C1
, ,	1.17	CH ₃	Br	Вт
	1.18	C ₂ H ₅	Br	Br
	1.19	C ₃ H ₇ -iso	Br	Br
	1.20	C ₄ H ₉ -seC.	Br	Br
20	1.21	CH ₃	H	F
40	1.22	C ₂ H ₅	1	I
	1.23	С ₃ П ₇ -іво	C1 .	Br
	1.24	C ₄ H ₉ -seC.	н	I
	1.25	CH ₃	Cl	Br
25	1.26	C ₂ H ₅	F	F

Table 1 (continued)

2602		2	60	20	
------	--	---	----	----	--

	Comp. No.	R ₂	X	7.
5	•			
	1.27	C ₃ H ₇ -iso	н	F
	1.28	C ₄ H ₉ -seC.	Cl	Ī
	1.29	CH ₃	F	F
	1.30	с ₂ н ₅	C 1	Br
10	1.31	C ₃ H ₇ -iso	Br	F
	1.32	C ₄ H ₉ -seC.	H	F
	1.33	cH ₃	Br	1
	1.34	^C 2 ^H 5	H	. F
	1.35	C ₃ H ₇ -iso	F	F
15	1.36	С ₄ Н ₉ -веС.	Cl	Br
	1.37	CH ₃	F	I
	1.38	^C 2 ^H 5	н	I
	1.39	C ₃ H ₇ -iso	C1	I
	1.40	C ₄ H ₉ -seC.	Br	.
20	1.41	cH ₃	H	I
	1.42	c ₂ H ₅	C 1	· F
•	1.43	C ₃ H ₇ -iso	Вr	1
	1.44	C ₄ H ₉ -seC.	I	1
	1.45	CH ₃	Br	F

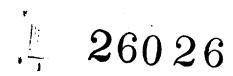


Table 1 (continued)

	Comp.	R ₂	X	Z
5				
	1.46	^C 2 ^H 5	Cl	ī
	1.47	C ₃ H ₇ -iso	н	I
	1.48	C ₄ H ₉ -seC.	F	F
	1.49	CH ₃	C 1	I
0	1.50	с ₂ н ₅	Вr	F
	1.51	C ₃ H ₇ -iso	C1	F
	1.52	C ₄ H ₉ -seC.	Вr	I
	1.53	CH ₃	Ī	I
	1.54	c ₂ 11 ₅	Br	P
5	1.55	C 3 H 7 - 1 8 0	F	1
	1.56	C ₄ H ₉ -seC.	F	I
	1.57	сн ₃	Cl	F
٠	1.58	^C 2 ^H 5	· F	I
	1.59	C ₃ H ₇ -iso	I	I
Ö	1.60	C ₄ H ₉ -seC.	C1	F
		•		

and the compounds of Table 1 in which the hydrogen atom of the hydroxy group in the 5-position has been

replaced by a silyl group $-\text{Si}(\text{CH}_3)_2$ -tert.- C_4H_9 (= compounds S-1.1 to S 1.60) and the compounds of Table 1 in which the hydrogen stom of the hydroxy group in the 5-position has been replaced by the acyl group $-\text{COCH}_3$ (= compounds A-1.1 to A-1.60).

Table 2:

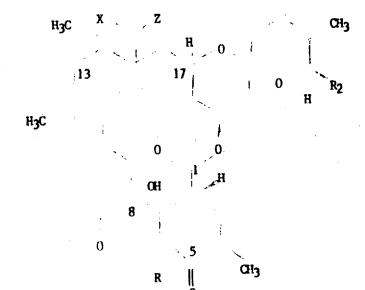
	Comp. No.	R ₂	x	2	X †	z '	

20	2.1	CH ₃	н	Br	н	Br	
	2.2	^С 2 ^Н 5	н	Br	H	Br	
,	2.3	C ₃ H ₇ -iso	H	Br	H ,	C1	
	2.4	C ₄ H ₉ -seC.	H	Br	Ħ	C1	
	2.5	СН3 .	н	Ç1	H	н	

26026

Table 2 (continued)

Comp. No.	R ₂	x	Z	X *	Z ¹
2.6	с ₂ н ₅	н	C1	н	C1
2.7	C ₃ H ₇ -iso	н	C 1	н	H
2.8	C ₄ H ₉ -seC.	н	C 1	H	Br
2.9	снз	н	Н	H	H
2.10	C 2 H 5	н	н	C1	C 1
2.11	C ₃ H ₇ -iso	н	H	Br	Br
2.12	C4H9-seC.	н	н	Н	н
2.13	сн ₃	CI	C 1.	C1	C 1
2.14	с ₂ н ₅	C1	C1	Cl	CI
2.15	C3H7-1so	Cl	Cl	Br	В
2.16	С ₄ Н ₉ -веС.	Cl	C 1	1	1
2.17	снз	Br	Br	H	H
2.18	с ₂ н ₅	Br	Вr	Вr	В
2.19	C ₃ H ₇ -iso	Br	Br	Br	В
2.20	C ₄ H ₉ -seC.	Br	Br	H	H
2.21	CH ₃	н	F	H	F
2.22	C ₂ H ₅	Ī.	I	1	1
2.23	C3117-180	C1	Вr	C 1	С


Table 2 (continued)

				· · · · · · · · · · · · · · · · · · ·	
Comp. No.	R ₂	x	Z	X 1	Z ¹
2.24	снз	C 1	Br	C 1	Br
2.25	с ₂ н ₅	F	F	f	F
2.26	снз	F	. F	Cl	C 1
2.27	C 2 H 5	C 1	Br	C1	Br
2.28	C ₄ H ₉ -seC.	H	F	Ħ	H
2.29	C2H5	н	F	Я	F
2.30	C ₃ H ₇ -iso	F	F	F	F
2.31	C ₄ H ₉ -seC.	C 1	Br	. C1	C 1
2.32	c ₂ n ₅	H	1	Ħ	C1
2.33	сн3	Н	I	н	I
2.34	C2H5	C 1	F	C1	F
2.35	CH ₃	I	1	C1	C1
2.36	СН3	C 1	F	C1	Br
2.37	C ₂ H ₅	F	1	ч Н .	H
	2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35	2.24	2.24 CH_3 $C1$ 2.25 C_2H_5 F 2.26 CH_3 F 2.27 C_2H_5 $C1$ 2.28 C_4H_9 —seC. H 2.29 C_2H_5 H 2.30 C_3H_7 —iso F 2.31 C_4H_9 —seC. $C1$ 2.32 C_2H_5 H 2.33 CH_3 $C1$ 2.34 C_2H_5 $C1$ 2.35 CH_3 $C1$ 2.36 CH_3 $C1$	2.24	2.24

and the compounds of Table 2 in which the hydrogen atom of the hydroxy group in the 5-position has been replaced by the silyl group $-\text{Si}(\text{CH}_3)_2$ -tert.- $-\text{C}_4\text{H}_9$ (= compounds S-2.1 to S-2.37) and the compounds of Table 2 in which the hydrogen atom of the hydroxy group in the 5-position has been replaced by the acyl group -COCH₃ (= compounds A-2.1 to A-2.37).

Table 3:

5

10

	Comp. No.	R 2	x	Z
20	3.1	сн ₃	н	н
	3.2	^C 2 ^H 5	H	н .
	3.3.	C ₃ H ₇ -iso	H	H
	3.4	C ₄ H ₉ -SeC.	H	н
	3.5	CH ₃	Br	Br

Table 3 (continued)

Comp. No.	R ₂	x	z
**************************************	emininte emininte eministra eministra en la entre en el eministra eministra en el entre entre entre entre entre		
3.6	C2H5	Br	Br
3.7	C ₃ H ₇ -iso	Br	Br
3.8	C ₄ H ₉ -seC.	Вr	Br
3.9	снз	C 1	Cl
3.10	с ₂ н ₅	C 1	C 1
3.11	C ₃ H ₇ -iso	Cl	CI
3.12	C4H9-seC	C1	C 1
3.13	CH ₃	н	Br
3.14	C ₂ H ₅	н	Br
3.15	C ₃ H ₇ -iso	н	Br
3.16	C4H9-seC.	H	Br
3.17	CH ₃	н	C 1
3.18	с ₂ н ₅	н	C 1
3.19	C ₃ H ₇ -iso	Н	C 1
3.20	C ₄ H ₉ -seC.	H	C 1
3.21	CH ₃	H	F
3.22	C2H5	H	F
3.23	C ₃ H ₇ -iso	H	F
3.24	C ₄ H ₉ -seC.	H	F

Table 4:

26026

The second of th

15

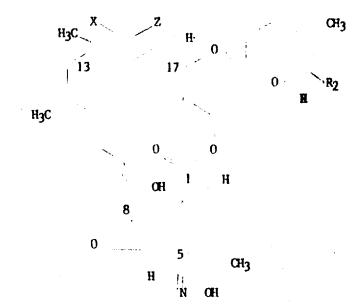

	Comp. No.	R ₂	X	2	x *	z '
20	4.1	C ₃ H ₇ -iso	Cl	C1	Br	Br
	4.2	сн ₃	Вr	Вr	C 1	Cl
	4.3	с ₂ н ₅	Н	Br	н	Br

Table 4 (continued)

5	Comp. No.	R 2	x	7.	x'	z ¹
		Cu	11	н	н	н
	4.4.	CH ₃				
	4.5	С ₄ Н ₉ -seС.	Br	Br	H	H
	4.6	сн ₃	H	Br	H	C1
10	4.7	C ₃ H ₇ -iso	Ħ	н	H	Н
	4.8	^C 2 ^H 5	C1	C 1	C 1.	C 1
	4.9	C ₄ H ₉ -seC.	C 1	C 1	H	H
	4.10	^С 2 ^Н 5	H	н	C 1	Cl
	4.11	C ₂ H ₅	Br	Вr	Br	Br
15	4.12	снз	C 1	C1	C 1	C 1
						•

Table 5:

	Comp. No.	R ₂	X	z	
20	5.1	сн _з	н	н	
	5.2	С ₂ н ₅	Н	Н	
	5.3	C ₃ H ₇ -iso	н	н	
	5.4	C ₄ H ₉ -seC.	Н	H	
	5.5.	CH ₃	Br	Br	

Table 5 (continued):

	*				
Comp. No.	R ₂	X	Z		
And the second section of the section			, qaya garamin kalin Angalaka erramin		
5.6	C2H5	Br	Br		
5.7	C ₃ H ₇ -iso	Br	Br		
5.8	C ₄ H ₉ -seC.	Br	Вr		
5.9	сн ₃	C1	C 1		
5.10	с ₂ н ₅	C 1	C 1		
5.11	C3H7-ido	C 1	C 1		
5.12	C4H9~seC	C 1	CI		
5.13	сн ₃	H	Br		
5.14	с ₂ н ₅	H	Br		
5.15	C ₃ H ₇ -iso	H	Br		
5.16	C ₄ H ₉ -seC.	H	Br		
5.17	СН 3	H	C 1		
5.18	с ₂ н ₅	H	Cl		
5.19	с ₃ -н ₇ -іво	н	C 1		
5.20	C ₄ H ₉ -seC	H	Cl		
5.21	CH ₃	H	F		
5.22	C2H5	R	F		
5.23	C ₃ H ₇ -iso	н	F		
5.24	C4H9-seC.	н	F		
-					

and the compounds of Table 5 in which the hydrogen atom of the oxime group in the 5-position has been replaced by the silyl group $-Si(CH_3)_2$ -tert.- C_4H_9 (= compounds S-5.1 to S-5.24) and the compounds of Table 5 in which the hydrogen atom of the oxime group in the 5-position has been replaced by the acyl group $-COCH_3$ (= compounds A \pm 5.1 to A-5.24).

Table 6:

25

5 H₃C X Z CH₃

13 17 0 H R₂

10 8 X Z CH₃

O H R₂

O H CH₃

O H CH₃

	Comp. No.	R 2	X	Z	x '	Ż'
	6.1	сн ₃	CI	Cl	C1	C1
20	6.2	C ₂ H ₅	Br	Br	Br	Br
	6.3	C ₂ H ₅	B'I	8 -1	Ħ	H
	6.4	C ₄ H ₉ -seC.	C1	CL	H	н
	6.5	C2H5	Cl	C1	C1	C I

26026

Table 6 (continued):

5	Comp. No.	R ₂	x	Z	x '	z'			
•									
	6.6.	C ₃ H ₇ -iso	H	H	Br	Br			
	6.7	CH ₃	Ħ	Br	H	Br			
	6.8	C ₄ H ₉ -seC.	Вr	Br	Cl	C 1			
10	6.9	CH ₃	H	н	Ħ	Cl			
	6.10	C ₂ H ₅	H	Br	Ħ	Br			
	6.11	CH ₃	Br	Вr	н .	H			
	6.12	C ₃ H ₇ -ido	C 1	C1	Br	Br			
	6.13	C ₂ H ₅	Cl	Br	Br	C1			
15	6.14	C ₄ H ₉ -seC.	Br	C 1	Br	Cl			

and the compounds of Table 6 in which the hydrogen atom of the oxime group in the 5-position has been replaced by the silyl group $-\text{Si}(\text{CH}_3)_2$ -tert.- C_4H_9 (= compounds S-6.1 to S-6.14) and the compounds of Table 6 in which the hydrogen atom of the oxime group in the 5-position has been replaced by the acyl group $-\text{COCH}_3$ (= compounds A-6.1 to A-6.14).

25

Formulation Examples for the active ingredients of formula 1 (% = per cent by weight)

5	Wettable powders	а)	ъ)	c)
,		a <i>)</i>	o)	c)
	an active ingredient			
	from Tables 1 to 6	25%	50%	75%
	sodium lignosulphonate	5 %	5 %	- ,
10				
	sodium laurylsulphate	37	<u>-</u>	5%
		<i>3.</i>		,
	sodium diisobutylnaph-			
	thalenesulphonate	-	6 %	10%
15				•
	octylphenol polyethylene			
	glycol ether (7-8 moles			
,	of ethylene oxide)	- ·	2 %	-
20	highly dispersed			
	silicic acid	5%	10%	10%
		<i>3 %</i>	1 1/19	10%
	hard for			
	keolin	62%	27%	-

The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill. Wettable powders are obtained which can be diluted with water to give suspensions of any desired concentration.

	Emulsifiable concentrate	.1)
10	an active ingredient from Tables 1 to 6	10%
10	Trom Tool to the second	
	octylphenol polyethylene	
	glycol ether (4-5 moles	
	of ethylene oxide)	3 %
15		
	calcium dodecylbenzene-	
•	sulphonate	3%
	castor oil polyglycol ether	-
20	(36 moles of ethylene oxide)	4 %
	cyclohexanone	30%
	xylene mixture	50%

. **2602**6

Emulsions of any desired concentration can be prepared from this concentrate by dilution with water.

5	Dusts	a)	b)
	an active ingredient		
	from Tables 1 to 6	5 %	8%
10	talcum	95%	-
	kaolin	_	92%

Ready-for-use dusts are obtained by mixing

the active ingredient with the carrier and

grinding the mixture in a suitable mill.

Extruder granulate

an active ingredient from

Tables 1	to 6	10%
Sodium l	ignosulphonate	2 %
Carboxyn	nethylcellulose	1 %
kaolin		87%

25

The active engredient is mixed and ground with the adjuvants, and the mixture is moistened with water. This mixture is extruded and then dried in a stream of air.

5

Tablets or boli

I an active ingredient

from Tables 1 to 6

33.00%

10

methylcellulose

0.80%

highly dispersed

silicic acid

0.80%

15

maiseabtarch

8.40%

The methylcellulose is stirred in water and allowed to swell; silicic acid is stirred in to give a homogeneous suspension. The active ingredient and the maize starch are mixed and the aqueous suspension is incorporated into this mixture, which is kneaded to a paste. This mass is granulated through a sieve (mesh width 12 M) and the granulate is then dried.

25

II crystalline lactose

22.50%

maize starch

17.00%

5

microcrystalline cellulose 16.50%

magnesium stearate

1.00%

10

All 4 adjuvants are thoroughly mixed.

Phases I and II are mixed and compressed to form tablets or boli.

Injectable composition

A. Oily vehicle (slow release)

15

an active ingredient

from the Tables

0.1-1.0g

groundnut oil

ad 100 ml

20

an active ingredient

from the Tables

0.1-1.0 g

sesame oil

ad $100\ ml$

Preparation: The active ingredient is dissolved in some of the oil while stirring, and, if necessary, while heating gently; after cooling, the solution is made up to prescribed volume and sterile-filtered through a suitable membrane filter having a pore diameter of 0.22 um.

B. Water-miscible solvent (medium rate of release)

10	an active ingredient	0.1-1.0 g
	4-hydroxymethy1-1,3-	
15	dioxolane (glycerol formal) 1,2-propanediol	40.0 g ad 100 ml
	an active ingredient	
20	from the Tables	0.1-1.0 g
	glycerin dimethyl ketal 1,2-propanediol	40.0 g

Preparation: the active ingredient is dissolved in some of the solvent while stirring, and the solution is made up to the prescribed volume and sterile-filtered through a suitable membrane filter having a pore diameter of 0.22 um.

C. Aqueous solubilisate (rapid release)

	an active ingredient	
10	from the Tables	0.1-1.0 g
	polyethoxylated castor oil	L
	(40 ethylene oxide units)	10 g
· ·		
15	1,2-propanediol	20 g
	benzył alcohol	1 g
	·	
•	aqua ad inject.	ad 100 mi
20	·	
	*Available commercially u	nder the name
C	REMOPHOR (R) EL (BASF AG);	

25

an active ingredient from the Tables

0.1-1.0 g

polyethoxylated sorbitan monooleate (20 ethylene

oxide units)**

8 g

4-hydroxymethyl-1,3-dioxolane

(glycerol formal)

20 g

10

5

benzyl alcohol

1 g

aqua ad inject.

ad 100 ml

15 **Available commercially under the name
TWEEN (R) 80 (ICI);

Preparation: the active ingredient is dissolved in the solvents and the surfactant and the solution is made up to prescribed solume with water. Sterile-filtration is carried out through a suitable membrane filter having a pore diameter of 0.22 mm.

25

260.26

The aqueous systems can preferably also be used for oral and/or intraruminal administration.

When compounds of formula I or corresponding compositions are used for controlling endoparasitic nematodes, cestodes and trematodes in domestic animals and productive livestock, such as cattle, sheep, goats, cats and dogs, the compounds or compositions can be administered to the animal either as a single dose or repeatedly, the individual doses preferably being from 0.1 to 10 mg per kg of body weight depending on the type of animal. By protracted administration it is possible in some cases to achieve a better action of lower overall doses can The active ingredient, or the composuffice. sition containing it, can also be added to the The concentration of active feed or the drink. ingredient in the prepared feed is preferably from 0.005 to 0.1 % by weight. The compositions can be administered to the animals perorally in the form of solutions, emulsions, suspension, powders, tablets, boli or capsules. Provided that the physical and toxicological properties of solutions or emulsions permit, the compounds

25

20

5

10

of formula I, or the compositions containing them, can also be administered to the animal, for example, by subcutaneous injection or itraruminally, or can be applied to the body of the animal by means of the pour-on method. It is also possible to administer the active ingredient to the animal by means of licks (salt) or molasses blocks.

Biological Examples

B-1: Action against L1 larvae of Lucilia sericata

aubstance to be tested is mixed in such a manner with 3 ml of a special larval culture medium at about 50°C that a homogeneous composition containing, as desired, 250 ppm or 125 ppm of active ingredient is obtained. About 30 Lucilia larvae (L₁) are put into each test tube containing active ingredient. The mortality rate is ascertained after 4 days. Compounds from the Preparation Examples, such as for example, compounds Nos. 1.14, 1.18, 5.5 and

25

20

5

10

7.1 (compound from Example p-2), achieve 100 % effectiveness at 100 ppm.

These results are also obtained in the same test against \mathbf{L}_1 larvae of <u>Lucilia</u> cuprina.

B-2: Acaricidal action agains Boophilus microplus (Biarra strain)

Adhesive tape is so applied horizontally across a PVC plate that 10 female Boophilus microplus ticks (Biarra strain) fully replete with blood can be affixed thereto on their backs, side by side, in a row. Each tick is injected from an injection needle with 1 ul of a liquid which is a 1:1 mixture of polyethylenegglycol and acetone, in which mixture a specific amount of active ingredient of, as desired, 1, 0.1 or 0.01 ul per tick is dissolved. Control ticks are injected with a corresponding mixture that does not contain the active ingredient. After this treatment, the ticks are kept in an insectarium under normal conditions at about 28°C and 80 % relative humidity until oviposition

25

20

5

10

has taken place and the larvae have emerged from the eggs of the control ticks.

The activity of a tested substance is determined by the IR_{90} , i.e. that dose of active ingredient is determined at which 9 out of 10 female ticks (90%), even after 30 days, lay eggs from which larvae are unable to emerge. Compounds from the Preparation Examples achieve an IR_{90} of 1 ug.

10

5

B-3: Trial with sheep infected with namatoides

(Haemonchus contortus and Trichostrongylus

colubriformis)

15

20

The active ingredient is formulated as a suspension and administered using a stomach probe or by intraruminal injection to sheep that have been artificially infected with Haemonchus contortus and Trichostrongylus colubriformis. I to 3 animals are used for each dose. Each sheep is treated only once with a single dose of, as desired, 0.5 mg or 0.1 mg/kg of body weight. Evaluation is made by comparing the number of worm eggs

excreted in the faeces of the sheep before and after treatment.

Sheep infected simultaneously and in the same manner but untreated are used as controls. In comparison with untreated but infected control groups, nematode infestation was reduced by from 50 to 100% (= reduction of worm eggs in the faeces) in sheep that had been treated with 0.1 mg/kg of one of the compounds from the Preparation Exmaples, such as, for example, No. 1.14, 1.18, 2.14 or 5.5.

B-4: Larvicidal action against Aedes aegypti

A 0.1% solution of the active ingredient in acetone is pipetted onto the surface of 150 ml of water in containers in amounts sufficient to give concentrations of, as desired, 10 ppm, 3.3 ppm and 1.6 ppm. After the acetone has evaporated, about 30 to 40 three-day-old Aedes larvae are put into each container. Mortality counts are made after 1, 2 and 5 days.

In this test, compounds from Tables 1 to 6 at a concentration of 10 ppm achieve complete

25

5

kill of all larvae after only 1 day.

B-5: Miticidal action against Sermanyssus gallinae

5

10

15

2 to 3 ml of a test solution (100, 10, l and 0.1 ppm of active substance) are put into a glass container which is open at the top and about 200 mites in different stages of development are put into this container. container is sealed with a wad of cotton wool and is uniformly shaken for 10 minutes until the mites are ocmpletely wet. The container is then inverted until excess test solution has been absorbed by the cotton wool. The container is then stood upright again and the treated mites are kept under observation for 3 days under laboratory conditions to evaluate the effectiveness of the test substances. Mortality is the criterion for effectiveness.

20

Compounds from the Preparation Examples, such as, for example, Nos. 1.14, 1.18 and 5.5, exhibit 100% effectiveness at 100 ppm.

Patent Claims

1. Compounds of formula 1

in which

wherein \mathbf{R}_1 is hydrogen or an OH-protecting group, and \mathbf{R}_{11} is hydrogen or an OH-protecting group,

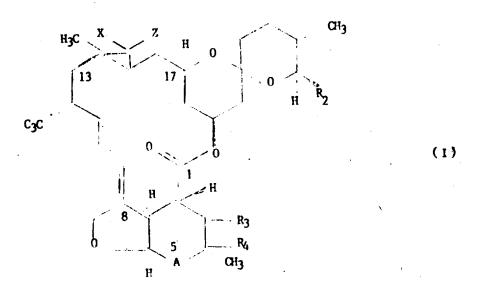
- R₂ is methyl, ethyl, isopropyl or sec-butyl,
- R_3 and R_4 together represent a bond between the two carbon atoms to which they are bound, or together represent a -C(X') (Z')- group wherein X' and Z' each represents, independently of the other, hydrolgen or halogen, and
- X and Z each represents, independently of the other, hydrogen or halogen.
- 2. Compounds of formula I according to claim 1, wherein A is any one of the groups $-CH(OR_1)-$, -C(O)- or -C(=N-OH)- wherein R_1 is hydrogen, a silyl group or a mono-saccharide group, R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound, or together form a -C(X')(Z')- group wherein X' and Z' each represents, independently of the other, hydrogen or halogen, and X and Z each represents, independently of the other, hydrogen or halogen.
- 3. Compounds of formula I according to claim 1, wherein A is any one of the groups $-CH(OR)_{1}$, -C(O)— or -C(=N-OH)— wherein R_{1} is hydrogen, acetyl, tert.—butyldimethylsilyl or 2, 3, 4, 6-tetraacetylglucopyranosyl,

 R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound, or together form a $-C(Cl_2)$ - group, X is hydrogen, chlorine, bromine or fluorine, and Z is hydrogen, chlorine, bromine or fluorine.

- 4. Compounds of formula I according to claim 1, wherein A is any one of the groups $-CH(OR_1)$ -, -C(0)- or -C(=N-OH)- wherein R_1 is hydrogen, tert.-buty1-dimethylsily1 or 2, 3, 4, 6-tetraacetylglucopyranosyl, R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound, or together form a $-C(Cl_2)$ group, X is hydrogen, chlorine or bromine and Z is hydrogen, chlorine or bromine.
- 5. Compounds of formula 1 according to claim 1, wherein A is a -CH(OH)- or -C(=N-OH)- group, R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound. X is hydrogen, chlorine, bromine or fluorine, and Z is hydrogen, chlorine, bromine or fluorine.

- 6. Compounds of formula I according to claim 1, wherein A is a -CH(OH)- or -C(=N-OH)- group, R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound, and X and Z are identical with each other and reach represents hydrogen, chlorine or bromine, or X is hydrogen and Z is chlorine or bromine.
- 7. Compounds of formula I according to claim 1, wherein A i a -CH(OH)- group, R_2 is methyl or ethyl, R_3 and R_4 together form a bond between the two carbon atoms to which they are bound, or together form a $-CCl_2-$ group, X is hydrogen, chlorine or bromine, and Z is hydrogen, chlorine or bromine.
- 8. 5-0-(Tert.-butyldimethylsilyl)-14, 15-dichloromethylene14, 15-dihydromilbemycln A_4 .
- 9. 5-0-(Tert.-butyldimethylsilyl)-3, 4-dichloromethylene14, 15-dichloromethylene-3, 4, 14, 15-tetrahydromilbemycin A₄.

- 10. 3, 4-Dichloromethylene-14, 15-dichloromethylene-3, 4, 14, 15-tetrahydromilbemycin \mathbf{A}_{Λ} .
- 11. 5-0-(Tert.-butyldimethylsily1)-14, 15-dibromomethylene-14, 15-dihydromilbemycin A_{λ} .
- 12. 5-0-(2, 3, 4, 6-Tetraacetylglucopyranosyl)-14, 15-dichloromethylene-14, 15-dihydromilbemycin A_{Λ} .
- 13. 5-0x0-14, 15-dichloromethylene-14, 15-dihydromilbe-mycin \mathbf{A}_{Δ} .
- 14. 5-Hydroxyimino-14, 15-dichloromethylene-14, 15-dihydromilbemycin A_{λ} .
- 15. 14, 15-Dichloromethylene-14, 15-dihydromilbemycin Ag.
- 16. 5-0-(Tert.-butyldimethylsilyl)-14, 15-monobromomethylene-14, 15-dihydromilbemycin A_{Λ} .
- 17. 14, 15-Monobromomethylene-14, 15-dihydromilbemycin A_4 .
- 18. 14, 15-Monochloromethylene-14, 15-dihydromilbemycin A₄.


19. 5-0-(tert.-butyldimethylsilyl)-14, 15-methylene14, 15-dihydromilbemycin A_{Δ} .

20. 14, 15-Methylene-14, 15-dihydromilbemycin A_4 .

21. 14, 15-Dibromomethyelene-14, 15-dihydromilbemycin A_4 .

22. 14, 15-Dichloromethylene-14, 15-dihydromilbemycin A4.

23. A process for the preparation of compounds of formula 1

in which

wherein \mathbf{R}_1 is hydrogen or an OH-protecting group, and \mathbf{R}_{11} is hydrogen or an OH-protecting group,

R₂ is methyl, ethyl, isopropyl or sec.-butyl,

- R_3 and R_4 together represent a bond between the two carbon atoms to which they are bound, or together represent $= -C(X^\dagger)(Z^\dagger) \text{ group wherein } X^\dagger \text{ and } Z^\dagger \text{ each represents, independently of the other hydrogen or halogen, and }$
- X and Z each represents, independently of the other hydrogen, wherein a compound of formula 11

BAD ORIGINAL

in which A and \mathbf{R}_2 are as defined for formula I, is reacted with a carbene of formula IIIa

c(x)(z)

(IIIa),

in which X and Z are ad defined for formula I and which is formed in situ and is dissolved in an inert solvent, and, in resulting compounds, if desired i) a -C(halogen)(halogen)- group that represents -C(X)(Z)- is reduced to a -CH(halogen)- or $-CH_2-$ group or ii) a -CH(halogen)- group that represents -C(X)(Z)- is reduced to a $-CH_2-$ group or iii) the group that represents A is converted into another of the groups defined under A, or resulting compounds in which R_3 and R_4 together form a bond between the two carbon atoms to which they are bound are reacted with a carbene of formula IIIb

c(x')(z')

(IIIb)

in which X' and Z' are as defined for formula I and which is formed in situ and is dissolved in an inert solvent, and, in resulting compounds, if

BAD ORIG

desired iv)a -C(halogen)(halogen)- group that represents -C(X)(Z)- or -C(X')(Z')- is reduced to a -CH(halogen)- or -CH₂- group or v) a -CH (halogen)- group that represents -C(X)(Z)- or -C(X')(Z')- is reduced to a -CH₂- group or vi) the group that represents A is converted into another of the groups defined under A, the reaction being carried out in the range of from -70° to +80° C, the reaction time varying within a range of from 10 minutes to 2 days.

24. A composition for controlling ecto- and endoparasites in productive livestock or for controlling
harmful insects, containing as active ingredient, at
least one compound of formula I according to claim 1,
together with carriers, distributing agents of a
mixture of carriers and distributing agents.