
(19) United States
US 200601 0 1436A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0101436A1
Anderson et al. (43) Pub. Date: May 11, 2006

(54) HOSTING ENVIRONMENT ABSTRACTION Publication Classification
MODEL FOR CONTENT

(51) Int. Cl.
G06F 9/45 (2006.01)

(75) Inventors: Christopher L. Anderson, Redmond, (52) U.S. Cl. 717/141; 717/105: 715/760
WA (US); Margaret L. Goodwin,
Lynnwood, WA (US); Mark A. (57) ABSTRACT
Alcazar, Seattle, WA (US) Software programming models are provided for Supporting

Correspondence Address:
John Campa

host-environment agnostic content that can be hosted in
different hosting environments (e.g., browser or window)
without needing to rewrite the content. The models comprise
a host-environment abstraction wrapper that provides a

c/o Microsoft Corporation transparent layer of abstraction between content and host
One Microsoft Way environment specific instructions. The host-environment
Redmond, WA 98052 (US) abstraction wrapper Supports the use of host-environment

independent interaction instructions or declarative state
ments in content by invoking host-environment specific

(73) Assignee: Microsoft Corporation, Redmond, WA implementation details on behalf of the content. The host
environment independent interaction instructions represent
particular interactions between some content and a hosting

(21) Appl. No.: 10/974,422 environment, but do not provide host-environment imple
mentation instructions that are specific to any particular

(22) Filed: Oct. 26, 2004 hosting environment.

110

120

130

DEVELOP CONTENT USING HOST-ENVIRONMENT

100
START ?

INDEPENDENT INTERACTION(S)

GENERATE EXECUTABLE FORM OF HOST
ENVIRONMENT INDEPENDENT CONTENT

STORE EXECUTABLE FORM OF HOST
ENVIRONMENT INDEPENDENT CONTENT FOR

SUBSEQUENT EXECUTION

END

Patent Application Publication May 11, 2006 Sheet 1 of 7 US 2006/0101436A1

-8
COMPUTER

10

INPUT MODULE
12

PROCESSOR OUTPUT
MODULE . MODULE

18 14

I/O MODULE
16

FIG. 1

MEMORY MODULE
20

CONTENT CREATION BUILDER/COMPILER
MODULE MODULE

30 32

HOST-ENVIRONMENT CONTENT HOSTING
MODULE
36

INFRASTRUCTURE
MODULE
34

FIG. 2

Patent Application Publication May 11, 2006 Sheet 2 of 7 US 2006/0101.436A1

110
DEVELOP CONTENT USING HOST-ENVIRONMENT

INDEPENDENT INTERACTION(S)

120
GENERATE EXECUTABLE FORM OF HOST
ENVIRONMENT INDEPENDENT CONTENT

130 STORE EXECUTABLE FORM OF HOST
ENVIRONMENT INDEPENDENT CONTENT FOR

SUBSEQUENT EXECUTION

FIG. 3
HOST

ENVIRONMENT
NFRASTRUCTURE

MODULE
34

Host
Environment
Independent
Content

CONTENT
CREATION
MODULE

30

Executable COMPLER
Content MODULE

Patent Application Publication May 11, 2006 Sheet 3 of 7 US 2006/0101.436A1

Host
Environment
Abstraction

Wrapper Object
108

HOST-ENVIRONMENT
INTERFACE

112

CONTENT CREATION MODULE
30

HOST-ENVIRONMENT INDEPENDENT
CONTENT

102
-

APPLICATION FUNCTIONALITY
104.

HoST-ENVIRONMENT INDEPENDENT
INTERACTION

106

HOST-ENVIRONMENT INDEPENDENT
INTERACTION

106

Window
Object
116

Browser
Object
114

BROWSER WINDow
ENVIRONMENT ENVIRONMENT

202 203

Patent Application Publication May 11, 2006 Sheet 4 of 7 US 2006/0101436A1

- - - - - - - - - - am - - - - a- as as as am as a or am m is an as ams -101(2)

Host
Environment
Abstraction

Wrapper Object
108

BrOWSer
Object
114

CONTENT CREATION MODULE
30

CONTENT
| HOST-ENVIRONMENT INDEPENDENT

102

WINDOW
ENVIRONMENT

203

BROWSER
ENVIRONMENT

2O2

Patent Application Publication May 11, 2006 Sheet 5 of 7 US 2006/0101.436A1

200 y

210

LAUNCH EXECUTABLE CONTENT

220
DETERMINE SELECTED HOSTING

ENVIRONMENT TO HOST
EXECUTABLE CONTENT

230
IS BROWSERENVIRONMENT

SELECTED TO HOST EXECUTABLE
CONTENT2

240
LAUNCH WINDOW

HOSTING ENVIRONMENT
LAUNCH BROWSER

HOSTING ENVIRONMENT

260
HOST CONTENT IN SELECTED

HOSTING ENVIRONMENT

FIG. 7

Patent Application Publication May 11, 2006 Sheet 6 of 7 US 2006/0101.436A1

122 Executable
Content

HOST
ENVIRONMENT

CONTENT HOSTING MODULE NFRASTRUCTURE
38 MODULE

34

WINDOW
ENVIRONMENT

203
WINDOW
TITLE BAR

WINDOW HOSTED
CONTENT

BROWSER
ENVIRONMENT

202'
BROWSER
TITLE BAR

-> x.
BROWSER HOSTED

CONTENT

204 2O6

FIG. 8

Patent Application Publication May 11, 2006 Sheet 7 of 7 US 2006/0101.436A1

300 Y
START

310 CONTENT CALLS APPROPRIATE
METHOD ON HOST-ENVIRONMENT
ABSTRACTION WRAPPER OBJECT
FOR IMPLEMENTING INTERACTION
WITH HOSTING ENVIRONMENT

350

CALLED METHOD ON HOST
ENVIRONMENT ABSTRACTION 320

S CONTENT HOSTED IN WRAPPER OBJECT CALLS
BROWSERP APPROPRIATE METHOD ON

WINDOW OBJECT FOR SETTING
PROPERTY IN WINDOW

ENVIRONMENT

YES

CALLED METHOD ON HOST
330 ENVIRONMENT ABSTRACTION

WRAPPER OBJECT CALLS WINDOW PROPERTY S SET AND
APPROPRIATE METHOD ON DISPLAYED IN

BROWSER OBJECT FOR SETTING WINDOW ENVIRONMENT
PROPERTY IN BROWSER

ENVIRONMENT

360

340
BROWSER PROPERTY S SET AND

DISPLAYED IN
BROWSERENVIRONMENT

END

FIG. 9

US 2006/0101436A1

HOSTING ENVIRONMENT ABSTRACTION
MODEL FOR CONTENT

FIELD OF TECHNOLOGY

0001. The technology relates generally to software archi
tecture and, more particularly, to programmatic models for
developing and executing host-environment agnostic con
tent.

BACKGROUND

0002 Traditional client software applications are often
developed for hosting in a standalone window environment
and Web applications are often developed for hosting in a
browser environment, for example. Software developed as
client applications typically include window-environment
specific code that enables the applications to interact with
their window hosting environment, and Web application
Software typically includes browser-environment specific
code for interacting with their browser hosting environment.
When a software application is developed for hosting in a
particular environment, the application has to be executed in
that environment.

SUMMARY

0003. The following presents a simplified summary of the
disclosure in order to provide a basic understanding to the
reader. This summary is not an exhaustive or limiting
overview of the disclosure. The summary does not identify
key and/or critical elements in the ensuing claims, nor does
this Summary delineate or limit the scope of the ensuing
claims in any way. Its sole purpose is to present some of the
concepts disclosed in a simplified form as an introduction to
the more detailed description that is presented later.
0004. This disclosure provides software programming
models for developing and executing host-environment
agnostic content. Content developed according to these
models, such as Software applications, can be executed in
different hosting environments without needing to rewrite
the Software application’s source code. The models com
prise programmatic infrastructures, such as a host-environ
ment abstraction wrapper, which provide a transparent layer
of abstraction between a software application’s Source code
and host-environment specific instructions.
0005 The programmatic infrastructures support the use
of host-environment independent interaction instructions in
Software application Source code. The host-environment
independent interaction instructions represent particular
interactions between a Software application and any hosting
environment which is ultimately selected for hosting the
application. The host-environment independent interaction
instructions, however, are not specific to any particular
hosting environment.
0006 When a particular hosting environment is selected
for hosting a software application developed in the manner
disclosed herein, the programmatic infrastructures provide
the host-environment specific implementation details for
effecting the hosting environment interactions expressed by
the host-environment independent interaction instructions
used in the software application’s source code. This frees
Software developers from needing to use host-environment
specific interaction instructions in Software application

May 11, 2006

Source code. Further, developers can create software source
code without even knowing in which hosting environment
the software application will ultimately be hosted.

BRIEF DESCRIPTION OF THE DRAWINGS

0007. The foregoing summary will become more readily
appreciated as the same becomes better understood by
reference to the following detailed description, when taken
in conjunction with the accompanying drawings, wherein:
0008 FIG. 1 is a block diagram of an exemplary device
that may be used for developing and/or executing host
environment independent content;
0009 FIG. 2 is a functional block diagram of exemplary
modules stored in the memory of the device illustrated in
FIG. 1;

0010 FIG. 3 is a flow chart of at least a portion of an
exemplary process that may be used to develop host-envi
ronment independent content;
0011 FIG. 4 is a functional block diagram of at least a
portion of the process for developing host-environment
independent content illustrated in FIG. 3;
0012 FIGS. 5-6 are diagrams of exemplary host-envi
ronment independent programming models that may be used
to Support host-environment independent content;

0013 FIG. 7 is a flow chart of at least a portion of an
exemplary process that may be used to execute host-envi
ronment independent content;
0014 FIG. 8 is a functional block diagram of at least a
portion of the process for executing host-environment inde
pendent content illustrated in FIG. 7; and
0.015 FIG. 9 is a flow chart of at least a portion of an
exemplary process that may be used to execute host-envi
ronment independent content.

DETAILED DESCRIPTION

0016. An example of a system 8 that may be used to
implement method 100 for developing host-environment
independent content and/or methods 200 and 300 for execut
ing host-environment independent content are generally
shown in FIGS. 1, 3 and 5-9. System 8 includes computer
10, although system 8 may include a lesser or greater
number of devices. System 8 can be used to develop
host-environment independent content 102 that may be
executed in different hosting environments without needing
to rewrite the content 102 for each hosting environment.
0017 Basically, host-environment independent content
102 is developed by including in the content 102 one or
more host-environment independent interactions 106 that
are Supported by a host-environment abstraction wrapper
object 108 and one or more other Supporting components
shown in FIGS. 5-6. The host-environment abstraction
wrapper object 108 and other supporting components pro
vide host-environment specific implementation details for
effecting the hosting environment interactions expressed by
the host-environment independent interactions 106 included
in the content 102. The system 8 for developing and/or
executing the content 102 will now be described in further
detail herein below.

US 2006/0101436A1

0018 Referring specifically to FIG. 1, computer 10 is
provided for exemplary purposes only and may comprise
other devices, such as server computing systems, laptop or
notebook computers, personal digital assistants, cellular
telephones or any other device or combination of devices. In
its most basic configuration, computer 10 comprises input
module 12, output module 14, I/O module 16, processor
module 18, and memory module 20, which are coupled
together by one or more bus systems or other communica
tion links, although computer 10 may comprise other ele
ments in other arrangements. Modules 12, 14, 16, 18 and 20
will now be described below with continued reference to
F.G. 1.

0019. Input module 12 comprises one or more user input
devices, such as a keyboard and/or mouse, and any Support
ing hardware. Input module 12 enables a user who is
operating computer 10 to generate and transmit signals or
commands to processor module 18, Such as commands for
launching executable content 122, although other types of
user input devices may be used.
0020 Output module 14 comprises one or more user
output devices, such as a computer monitor (e.g., CRT, LCD
or plasma display), and any Supporting hardware, although
other types of output devices may be used. Output module
14 presents one or more results from processor module 18
executing instructions stored in memory module 20 as
described in further detail herein below.

0021. I/O module 16 comprises one or more communi
cation interface devices, such as a network interface card
(e.g., Ethernet card or wireless network card), and any
Supporting hardware, although other types of communica
tion interface devices may be used. Such as a serial interface
(e.g., RS-232 interface). I/O module 16 enables computer 10
to transmit or receive data to or from other devices, such as
other computing systems or peripherals (e.g., external
memory storage device or printer), via a network or direct
cable connection, for example.
0022 Processor module 18 accesses and/or executes data
and instructions stored in memory module 20 for control
ling, monitoring and managing (hereinafter referred to as
“operating) input module 12, output module 14, I/O mod
ule 16 and memory module 20 as described herein, although
Some or all of the data and instructions may be stored in
and/or executed by the modules themselves. Additionally,
processor module 18 accesses and/or executes data and
instructions stored in memory module 20 to perform func
tions for implementing at least a portion of the methods 100,
200 and 300 as described herein and illustrated in FIGS. 3,
7, and 9, respectively, although processor module 18 may
perform other functions, one or more other processing
devices or systems may perform some or all of these
functions, and processor module 18 may comprise circuitry
configured to perform the functions described herein.
0023 Memory module 20 comprises one or more types
of fixed and/or portable computer-readable media, Such as
computer storage media including ROM, RAM, SRAM,
DRAM, DDRAM, hard and floppy-disks, CDs, DVDs,
magnetic tape, optical disk, ferroelectric and ferromagnetic
memory, electrically erasable programmable read only
memory, flash memory, charge coupled devices, Smart cards,
or any other type of computer-readable media, which may be
read from and/or written to by one or more magnetic,

May 11, 2006

optical, or other appropriate reading and/or writing systems
coupled to processor module 18 and/or one or more other
processing devices or systems.

0024 Memory module 20 stores at least a portion of the
data and instructions that are accessed and/or executed by
processor module 18 for operating input module 12, output
module 14, I/O module 16, processor module 18 and
memory module 20, although some or all of the data and
instructions may be stored elsewhere. Such as in the modules
themselves and/or the processor module 18.
0025 Referring now to FIG. 2, memory module 20 also
stores content creation module 30, builder/compiler module
32, host-environment infrastructure module 34 and content
hosting module 36. Modules 30, 32.34 and 36 comprise data
and/or instructions written in one or more programming
languages, which when accessed and/or executed by pro
cessor 18, cause computer 10 to implement at least a portion
of the methods 100, 200 and 300, as described herein and
illustrated in FIGS. 3, 7 and 9, respectively, although the
modules may comprise circuitry configured to operate in the
manner described herein.

0026. For ease of description and exemplary purposes
only, modules 30, 32, 34 and 36 are shown in FIG. 2 as four
separate modules stored in memory module 20. However, a
fewer or greater number and other types of modules may be
used. Moreover, one or more modules 30, 32.34 and 36 may
reside on one or more other computing systems or devices
and one or more of the modules may be combined or
separated. Modules 30, 32, 34 and 36 will now be described
below with continued reference to FIG. 2.

0027 Content creation module 30 comprises one or more
mechanisms including a word processor or text editor appli
cation and/or a programming code or script generator appli
cation, and is used to generate host-environment agnostic
content, such as host-environment independent content 102
illustrated in FIGS. 5-6 and described in connection with
method 100 further herein below, although the module 30
may also be used to generate one or more program modules
associated with the content 102, also described in connec
tion with method 100.

0028 Builder/compiler module 32 comprises one or
more mechanisms used to generate an executable applica
tion, such as an executable version of host-environment
independent content 102 illustrated as executable content
122 in FIG. 4 and described in connection with method 100
further herein below, although the content 122 could com
prise interpreted or declarative content.

0029 Host-environment infrastructure module 34 com
prises one or more dynamic-link libraries that include one or
more compiled components from host-environment inde
pendent programming models 101 (1) and/or 101 (2), such
as host-environment abstraction wrapper object 108 and
host-environment interface 112, although one or more of the
components may comprise intermediate language instruc
tions.

0030 Content hosting module 36 comprises one or more
mechanisms, such as a shell, file type extension/mime-type
handlers, browser and window environment servers, and
code Sniffers, used to host an executable application (e.g.,
executable content 122 shown in FIGS. 4 and 8) in one or

US 2006/0101436A1

more selected hosting environments in the manner described
further herein below in connection with method 200.

0031. An example of the mechanisms in content hosting
module 36 that may be used to host content in one or more
hosting environments is disclosed in U.S. patent application
Ser. No. 10/715,707 (Attorney Docket No. 301444.02) to
Alcazar et al., entitled “HOSTING AN APPLICATION IN
ONE OF A PLURALITY OF EXECUTION ENVIRON
MENTS,” filed Nov. 18, 2003; and U.S. patent application
Ser. No. 10/715,804 (Attorney Docket No. 305608.01) to
Goodwin et al., entitled “APPLICATION MODEL THAT
INTEGRATES THE WEB EXPERIENCE WITH THE
TRADITIONAL CLIENT APPLICATION EXPERI
ENCE,” filed Nov. 18, 2003, both of which are incorporated
herein by reference in their entirety.
0032. An example of a method 100 for developing host
environment independent content will now be described
with reference to FIGS. 3-6 in the context of being carried
out by system 8 described above in connection with FIGS.
1-2, although one or more other systems could carry out this
method or portions thereof.
0033 Referring now to FIGS. 3-4, and beginning the
method 100 at step 110, by way of example only, a user of
computer 10, Such as a content developer, in conjunction
with operation of input module 12, output module 14, I/O
module 16, processor module 18 and memory module 20,
operates content creation module 30 to generate host-envi
ronment independent content 102.
0034) Host-environment independent content 102, and
ultimately an executable version thereof, may be supported
by a host-environment independent programming model
101(1) shown in FIG. 5, although other programmatic
models could be employed as described further herein below
in connection with FIG. 6. The components in model 101(1)
that support the host-environment independent content 102
comprise host-environment abstraction wrapper object 108,
host-environment interface 112, browser object 114 and
window object 116. The host-environment independent con
tent 102 and each of these supporting components will be
described further herein below. A pseudo-code example will
also be provided following each description.

0035) It should be appreciated, however, that the pseudo
code examples for these Supporting components are pro
vided for explanatory and demonstrative purposes only and,
in practice, the host-environment independent content 102
and the Supporting components may be expressed in a
variety of other manners. Such as actual programming lan
guage Statements or declaratives where a markup language
is used. Such as XAML, without undue experimentation.
Moreover, these pseudo-code examples are not intended to
recite complete programming language or code statements
that are ready for compilation, and they may include more
or less information. As such, host-environment independent
content 102 will now be described below with continued
reference to FIG. 5.

0.036 Generally, host-environment independent content
102 comprises the source code of a software application that
is host-environment agnostic, although content 102 may
comprise intermediate language, compiled code, markup
language and other information. Host-environment indepen
dent content 102 includes one or more references (not

May 11, 2006

illustrated) to one or more locations, such as one or more
dynamic-linked libraries where the Supporting components
(e.g., host-environment abstraction wrapper object 108) are
stored, although content 102 might not include these refer
ences where the components are globally available.

0037 As shown in FIG. 5, host-environment indepen
dent content 102 comprises application functionality 104
and one or more host-environment independent interactions
106, although the interactions 106 may be located elsewhere
apart from the content 102. The arrangement of application
functionality 104 and host-environment independent inter
action 106 within host-environment independent content
102 in FIG. 5 is provided for ease of description and
exemplary purposes only.

0038 Application functionality 104 represents the logic
of a software application embodied by host-environment
independent content 102. Specifically, application function
ality 104 comprises one or more Software application spe
cific instructions expressed as programming statements writ
ten in one or more programming languages, although the
instructions may be expressed as markup language State
ments or declaratives, and functionality 104 may comprise
other information besides instructions.

0039 Host-environment independent interactions 106
are each associated with a particular interaction involving
the software application embodied by host-environment
independent content 102 and a hosting environment (e.g.,
browser environment 202, window environment 203) in
which the content 102 is ultimately hosted. An example of
Such a hosting environment interaction involves setting a
particular property of a browser or window (e.g., title to be
displayed in window/browser frame, text color in window/
browser frame, window/browser frame size) where an
executable form of the host-environment independent con
tent 102 is hosted during execution. However, host-environ
ment independent interactions 106 themselves do not pro
vide the implementation details for implementing the
interactions and are not specific to any particular hosting
environment.

0040 Host-environment independent interactions 106
enable the user of computer 10, such as a content developer,
to express their desired host-environment interaction within
host-environment independent content 102 without needing
to provide the implementation details for the interaction.
Also, the content developer does not even need to know
which particular hosting environment the host-environment
independent content 102 will ultimately be hosted in at the
time the content 102 is developed. The host-environment
independent interactions 106 also enable the content devel
oper to express the interaction using a single instruction
instead of potentially several instructions, although one or
more of the interactions 106 could comprise several instruc
tions.

0041 A pseudo-code example of a host-environment
independent interaction 106 that may be used in the host
environment independent content 102 for setting a title
property in a hosting environment, for instance, is provided
below:

US 2006/0101436A1

Host-Environment Independent Interaction
Pseudo-Code Example

0042

Host-Environment Abstraction Wrapper. SetTitle(“foo');

0043. The portion of the host-environment independent
interaction pseudo-code comprising "Host-Environment
Abstraction Wrapper. SetTitle' represents a call to a “Set

Title' method on the host-environment abstraction wrapper
object 108 shown in FIG. 5.
0044 Generally, host-environment abstraction wrapper
object 108 makes host-environment specific instructions
available for actually implementing the interactions
expressed in the host-environment independent interactions
106. Specifically, host-environment abstraction wrapper
object 108 comprises one or more instructions that reference
one or more other instructions (e.g., attributes, methods,
events) exposed by the hosting environment (e.g., browser
and window objects 114, 116, respectively) to the wrapper
108 for implementing the expressed interactions in the
hosting environment. The wrapper object 108 thus invokes
these host-environment specific instructions on behalf of the
interactions 106 expressed in the content 102 as described in
further detail herein below.

0045. In particular, the wrapper object 108 provides one
or more methods that may be referenced by the interactions
106 for setting properties in a selected hosting environment,
although the wrapper object 108 may provide attributes or
properties and events that may be referenced by the inter
actions 106. Thus, the interactions 106 may be used for
calling one or more of these methods on the object 108, for
setting one or more attributes or properties on the object 108,
or for registering one or more event handlers for one or more
events on the object 108 to call one or more methods, set one
or more properties, or register one or more events on a
hosting environment where an executable version of the
content 102 is hosted.

0046) A pseudo-code example of a portion of a “Host
Environment Abstraction Wrapper” class representing an
application program interface (API) that may be instanti
ated into host-environment abstraction wrapper object 108 is
provided below:

“Host-Environment Abstraction Wrapper Class
Pseudo-Code Example

0047

Class Host-Environment Abstraction Wrapper :
Implements IHostEnvironmentService

IHostEnvironmentService Environment Object;

Public:

May 11, 2006

-continued

Void SetTitle(string Title Value)

Environment Object. Set Title(Title Value);

0048. The portion of the “Host-Environment Abstrac
tion Wrapper class pseudo-code comprising “Void SetTi
tle(string Title Value) defines the “SetTitle” method refer
enced by the host-environment independent interaction
pseudo-code provided earlier for interaction 106. The “Titl
e Value' variable receives the “foo' value passed in from
the host-environment independent interaction pseudo-code.
The “SetTitle' method actually initiates or causes the host
environment specific instructions to be executed for imple
menting the interaction expressed in the host-environment
independent interaction pseudo-code provided earlier.
0049. The host-environment specific instructions are
accessible in this model 101(1) by way of the host-environ
ment interface 112 shown in FIG. 5. The host-environment
interface 112 enables the browser object 114 and the window
object 116 to expose one or more instructions (e.g., methods,
events, attributes) to the host-environment abstraction wrap
per object 108 for actually implementing the interactions
expressed in the host-environment independent interactions
106.

0050 A pseudo-code example of a portion of an “IHos
tEnvironmentService' interface that may be used for the
host-environment interface 112 is provided below:
0051) “IHostEnvironmentService'
Code Example:

Interface Pseudo

Public Interface IHostEnvironmentService

Void Set Title(string Title);

0.052 The portion of the “IHostEnvironmentService'
interface pseudo-code comprising “Public Interface IHos
tEnvironmentService' defines the “IHostEnvironmentSer
vice' interface and the portion comprising “Void Set Ti
tle(string Title) represents a method signature for a method
that should be implemented by any object or component that
implements the interface. Here, browser object 114 and
window object 116 shown in FIG. 5 may implement the
host-environment interface 112.

0053 Generally, the browser object 114 and window
object 116 each have instructions comprising methods,
attributes and events that describe and enable interacting
with a particular hosting environment (e.g., browser or
window frame) that hosts some content, such as an execut
able form of host-environment independent content 102
(e.g., executable content 122). Further, the browser object

US 2006/0101436A1

114 and window object 116 each have their own unique
instructions for actually implementing the interactions
expressed in the host-environment independent interactions
106 in their own way.
0054) A pseudo-code example of a portion of a
“Browser class that may be instantiated into browser object
114 is provided below:

“Browser Class Pseudo-Code Example
0055)

Class Browser implements IHostEnvironmentService

Public:

String Browser Frame Title Property;

Void Set Title(string Title)

Browser Frame Title Property=Title:

0056. The portion of the “Browser class pseudo-code
comprising “Void Set Title(string Title)' implements the
“Set Title' method defined in the “IHostEnvironmentSer
vice' interface pseudo-code provided above earlier in a
manner specific for a browser environment. Specifically, the
portion of the “Browser class pseudo-code comprising
“Browser Frame Title Property=Title' sets a title property
on browser object 114 to have the 'foo' value passed in from
host-environment abstraction wrapper object 108, which in
turn received the 'foo' value from host-environment inde
pendent interaction 106 pseudo-code provided above earlier.
0057. A pseudo-code example of a portion of a “Win
dow” class that may be instantiated into window object 116
is provided below:

“Window” Class Pseudo-Code Example
0058

Class Window implements IHostEnvironmentService

Public:

String Window Title Property;

Void Set Title(string Title)

Window Title Property=Title:

0059) The portion of the “Window” class pseudo-code
comprising “Void Set Title(string Title)' implements the
“Set Title' method defined in the “IHostEnvironmentSer
vice' interface pseudo-code provided above earlier in a

May 11, 2006

manner specific for a window environment, such as a
standalone window. Specifically, the portion of the “Win
dow” class pseudo-code comprising “Window Title Prop
erty=Title' sets a title property on window object 116 to
have the 'foo' value passed in from host-environment
abstraction wrapper object 108, which in turn received the
“foo' value from host-environment independent interaction
106 pseudo-code.
0060. Other examples of a “Browser' and a “Window”
class that may be instantiated into objects 114 and 116,
respectively, are disclosed in U.S. patent application Ser. No.
10/715,804 (Attorney Docket No. 305608.01) to Goodwin et
al., entitled “APPLICATION MODEL THAT INTE
GRATES THE WEB EXPERIENCE WITH THE TRADI
TIONAL CLIENT APPLICATION EXPERIENCE, filed
Nov. 18, 2003, which has already been incorporated herein
by reference in its entirety.
0061 The content hosting module 36 provides the
browser object 114 and/or window object 116 when an
executable version of the host-environment independent
content 102 (e.g., executable content 122) is launched for
execution in a selected hosting environment in method 200
described further below. The particular objects 114, 116 that
are provided depend upon which hosting environment is
ultimately selected and indicated for hosting the content
102, also described further below in connection with method
2OO.

0062 Referring back to the “Host-Environment Ab
straction Wrapper” class pseudo-code example provided
above earlier for the host-environment abstraction wrapper
object 108, the portion comprising “Environment Object
..Set Title' represents a call to the “Set Title' method on the
“Environment Object' interface (e.g., host-environment
interface 112) that is implemented by the browser object 114
and the window object 116 in this model 101(1). Moreover,
the portion of the pseudo-code comprising “IHostEnviron
mentService Environment Object” represents the “Environ
ment Object’ property being of the type “IHostEnviron
mentService' (e.g., host environment interface 112).
0063. The “Environment Object’ property represents a
host environment (e.g., browser environment 202 or window
environment 203), regardless of which environment an
executable version of the host-environment independent
content 102 (e.g., executable content 122) is actually hosted
in at method 200, and is used in this model 101(1) by the
host environment abstraction wrapper object 108 to com
municate with the host environment (e.g., browser environ
ment 202 or window environment 203) via browser object
114 or window object 116.
0064. Thus, the content hosting module 36 makes the
object 114 or object 116 available to the host-environment
abstraction wrapper object 108 by setting the host-environ
ment interface 112 property to reference the actual host
environment object (e.g., browser object 114 or window
object 116). As such, the “Host-Environment Abstraction
Wrapper class pseudo-code (e.g., wrapper object 108)
may simply invoke the “Set Title' method on either object
114 or 116 using the “Environment Object. Set Title'
pseudo-code to set a title property, for instance, in either
hosting environment, as mentioned above earlier.
0065. The content developer does not need to know the
underlying details of the host-environment abstraction wrap

US 2006/0101436A1

per object 108, host-environment interface 112, browser
object 114 and window object 116 to be able to develop
host-environment independent content 102. It is sufficient
for the developer to know one or more methods, events
and/or attributes that are available via host-environment
abstraction wrapper object 108 for using host-environment
independent interactions 106 in developing host-environ
ment independent content 102.
0.066 Referring now to FIG. 6, a host-environment inde
pendent programming model 101(2) that may also be
employed to Support host-environment independent content
102, and ultimately an executable version thereof, will now
be described. Like reference numbers in FIG. 6 are identical
to those in and described with reference to FIG. 5. Further,
host-environment independent programming model 101(2)
is identical to model 101(1) described above in connection
with FIG. 5, except as described below.
0067 Host-environment abstraction wrapper object 108
in model 101(2) may directly reference instructions on the
browser object 114 and the window object 116 for imple
menting the host-environment independent interactions 106
without using host-environment interface 112.
0068 A pseudo-code example of a portion of a “Host
Environment Abstraction Wrapper class API that may be
instantiated into host-environment abstraction wrapper
object 108 which directly references instructions on the
objects 114 and 116 is provided below:

“Host-Environment Abstraction Wrapper Class
Pseudo-Code Example

0069

Class Host-Environment Abstraction Wrapper

Public:

Void SetTitle(string Title Value)

If (Selected Environment=BROWSER)

Browser. Title=Title Value:
}:

ELSE

{
Window. Title=Title Value:

0070 The portion of the “Host-Environment Abstrac
tion Wrapper class pseudo-code comprising “Browser
..Title=Title Value' sets a title property on browser object
114 to have the “foo' value passed into the wrapper 108
pseudo-code from the host-environment independent inter
action 106 pseudo-code provided above earlier in connec
tion with model 101 (1). The portion of the “Host-Environ
ment Abstraction Wrapper class pseudo-code comprising
“Window.Title=Title Value' sets a title property on window
object 116 to have the “foo’ value passed into the wrapper
108 pseudo-code.

May 11, 2006

0.071) Whichever one of objects 114 or 116 have their
“Title” property assigned the “foo” value by way of the “IF'
and “ELSE' pseudo-code depends on the result of the
“Selected Environment=BROWSER test in the pseudo
code provided for the wrapper object 108. The purpose of
the “Selected Environment=BROWSER' test is to deter
mine the active hosting environment. This could be deter
mined by checking a Boolean variable that is set when the
host-environment abstraction wrapper object 108 is instan
tiated, although the wrapper object 108 could include its
own logic to check which environment it is hosted in.
0072. It should be noted that this implementation, in
which the host-environment abstraction wrapper object 108
directly references the instructions on the objects 114 and
116 in model 101(2), could be used in a programming
language that does not support interfaces, in which case the
objects 114 and 116 could not implement the host-environ
ment interface 112. It should also be noted that the same
host-environment independent interactions 106 in host-en
vironment independent content 102 described above in
connection with model 101(1) may be used in this model
101 (2) since the underlying details of the host-environment
abstraction wrapper object 108, browser object 114, and
window object 116 are transparent to the computer 10 user
(e.g., content developer). Step 120 in method 100 will now
be described below with reference back to FIGS. 3 and 4.

0073. At step 120, content creation module 30 sends
host-environment independent content 102 to builder/com
piler module 32 to be compiled into executable content 122,
although module 32 may receive or retrieve content 102
from other sources. While executable content 122 is illus
trated in FIG. 4 as a single program module, it may in fact
comprise several modules.
0074 By way of example only, a user of computer 10,
Such as a content developer, operates builder/compiler mod
ule 30 to generate executable content 122. Specifically, the
computer 10 user operates builder/compiler module 32 to
generate several program modules (not illustrated), includ
ing a settings module and one or more Supporting code
modules, although the computer 10 user may generate one
or more of these program modules, or portions thereof,
themselves by operating content creation module 30 to
generate the information for these modules, the modules
may have already been generated, or the modules may be
provided or retrieved from another source.
0075. The settings module includes information about
how host-environment independent content 102 will be
compiled and executed. Such as information provided in a
manifest file by the computer 10 user (e.g., content devel
oper) that indicates a particular hosting environment in
which the executable version of the host-environment inde
pendent content 102 will be hosted (e.g., browser environ
ment 202 or window environment 203), although this infor
mation may be provided in other ways, such as in the form
of a compile time directive. The Supporting code modules
include components from the host-environment infrastruc
ture module 34 and the content hosting module 36, although
the Supporting code modules may include other types of
modules and may include modules from other sources.
0076 Basically, builder/compiler module 32 compiles
host-environment independent content 102, together with
the settings module and any supporting code modules, into

US 2006/0101436A1

executable content 122 utilizing an early bind technique,
although a late binding technique may be utilized. Where an
early binding technique is utilized, one or more of the
Supporting code modules in the executable content 122
comprise components from models 101 (1) or 101(2) that
are specific to the hosting environment indicated in the
settings module. To enable the executable content 122 to be
hosted in a different hosting environment than the hosting
environment indicated in the settings module when the
content 102 was compiled, the settings module could be
modified to indicate the desired hosting environment and the
host-environment independent content 102 could then be
recompiled, although the host-environment independent
content 102 would not need to be modified.

0077. Where a late binding technique is utilized, one or
more of the Supporting code modules in the executable
content 122 comprise logic for accessing components from
models 101(1) or 101(2) that are specific to the hosting
environment indicated in the settings module during execu
tion. Here, a content developer can change the hosting
environment for the executable content 122 simply by
modifying the settings module to indicate the desired host
ing environment without recompiling the host-environment
independent content 102 or modifying the content 102 itself.
In either case, executable content 122 represents a compiled,
executable version of the host-environment independent
content 102 that may be executed in the selected hosting
environment indicated in the settings module or some other
fashion as described further herein below in connection with
method 200, although the content 122 could represent inter
preted language or declarative markup language.
0078. At step 130, builder/compiler module 32 stores
executable content 122 in memory module 20, although
executable content 122 may be stored in other locations, and
the method 100 ends.

0079 An exemplary method 200 for executing host
environment independent content will now be described
with reference to FIGS. 7-8 in the context of being carried
out by system 8 described above in connection with FIGS.
1-2. Like reference numbers in FIG. 8 are identical to those
in and described in connection with FIGS. 1, 2 and 4-6.
0080 Referring now to FIGS. 7-8, and beginning the
method 200 at step 210, by way of example only, a user
operating computer 10 launches or initiates execution of
executable content 122 by activating a hyperlink (not illus
trated) to the content 122 that is displayed in computer 10's
display 11, for example, although executable content 122
may be launched by providing a Universal Resource Locator
(“URL) through an address bar, by activating (e.g., double
clicking) an icon or some other representation of executable
content 122, by being invoked by another component, or in
other ways.
0081. At step 220, content hosting module 36 examines
one or more of the program modules associated with execut
able content 122. Such as the settings module, to determine
in which particular hosting environment content 122 will be
executed, although module 36 may examine content 122
itself to determine the particular hosting environment, as
disclosed in the 707 application to Alcazar et al., which has
already been incorporated by reference herein.
0082) At step 230, if it is determined above at step 220
that the executable content 122 will be executed in a browser

May 11, 2006

environment 202, the YES branch is followed and step 240
is performed. If it is determined that the executable content
122 will be executed in a window environment 203', the NO
branch is followed and step 250 is performed.
0083. At step 240, the content hosting module 36
launches the browser environment 202 where the execut
able content 122 will be hosted at step 260 by providing the
browser object 114 described above in connection with step
110 in method 100.

0084. At step 250, the content hosting module 36
launches the window environment 203 where the execut
able content 122 will be hosted at step 260 by providing the
window object 116 described above in connection with step
110 in method 100.

0085. At step 260, the executable content 122 is executed
in the particular environment (e.g., browser environment
202' or window environment 203') determined above at step
220 according to the application functionality 104 and the
host-environment independent interactions 106. The
browser object 114 or the window object 116, and hence the
browser environment 202 or the window environment 203',
respectively, will be customized for the executable content
122 based on the host-environment independent interactions
106, as described in further detail herein below in connec
tion with method 300.

0086 An exemplary method 300 for interacting with a
selected hosting environment according to host-environment
independent interactions 106 will now be described with
reference to FIG. 9 in the context of being carried out by
system 8 described above in connection with FIGS. 1-2,
with reference back to FIGS. 1-8. Further, this method 300
further describes step 260 discussed above in connection
with method 200.

0087 Referring now to FIG. 9, and beginning the
method 300 at step 310, by way of example only, each
portion of the hosted executable content 122 representing
the host-environment independent interactions 106 call one
or more methods on the host-environment abstraction wrap
per object 108 for interacting with the selected hosting
environment, although events and/or properties on the object
108 may also be handled or set, respectively. For instance,
the portion of the pseudo-code example provided above for
a host-environment independent interaction 106 comprising
“Host-Environment Abstraction Wrapper. SetTitle' calls
the “SetTitle' method that may be defined in the wrapper
object 108 for setting the title for executable content 122 that
is hosted in a selected hosting environment.
0088 At step 320, if the executable content 122 is hosted
in the browser environment 202', the YES branch is fol
lowed and step 330 is performed. If the executable content
122 is hosted in the window environment 203', the NO
branch is followed and step 350 is performed.
0089. At step 330, if the content 122 is hosted in the
browser environment 202', then the host-environment
abstraction wrapper object 108 calls one or more appropriate
methods on the browser object 114 and provides the appro
priate arguments into the call for implementing the interac
tion expressed by the host-environment independent inter
actions 106, although attributes may be set and/or event
handlers may be registered for the object 114. For instance,
the portion of the pseudo-code example provided above for

US 2006/0101436A1

the wrapper object 108 comprising “Environment Object
Set Title(Title Value)” calls the “Set Title” method on the
browser object 114 and provides the 'foo' value for the
"Title Value” argument.
0090 The wrapper object 108 either references the
appropriate method, attribute or event on the browser object
114 via the host-environment interface 112 where the host
environment independent programming model 101 (1)
shown in FIG. 5 supports the executable content 122, or the
object 108 directly references the appropriate method,
attribute or event on the browser object 114 without the
interface 112 where the model 101 (2) shown in FIG. 6
Supports the content 122.
0091 At step 340, the appropriate method on the browser
object 114 is executed and a property of the browser
environment 202' is set according to the interaction
expressed by the host-environment independent interaction
106, although an attribute may be set and/or an event handler
may be registered for the object 114. For instance, the title
(e.g., “foo”) of the application embodied by the executable
content 122 is displayed on a browser title bar 204 in the
browser environment 202 shown in FIG. 8. One or more
other host-environment independent interactions 106
expressed in the executable content 122 are executed in the
same manner described herein, except other types of inter
actions may be expressed by the interactions 106, and the
method 300 ends when the last interaction 106 is imple
mented.

0092 At step 350, if the content 122 is hosted in the
window environment 203', then the host-environment
abstraction wrapper object 108 calls one or more appropriate
methods on the window object 116 and provides the appro
priate arguments into the call for implementing the interac
tion expressed by the host-environment independent inter
actions 106, such as for setting the title on the window object
116, although attributes may be set and/or event handlers
may be registered for the object 116. As described above in
connection with step 330, the wrapper object 108 either
references the appropriate method, attribute or event on the
window object 116 via the host-environment interface 112 or
the object 108 directly references the appropriate method,
attribute or event on the window object 116 without the
interface 112.

0093. At step 360, the appropriate method on the window
object 116 is executed and a property of the window
environment 203' is set according to the interaction
expressed by the host-environment independent interaction
106, such as the title (e.g., “foo”) of the application embod
ied by the executable content 122, although an attribute may
be set and/or an event handler may be registered for the
object 116. The title may be displayed on a window title bar
206 in the window environment 203' shown in FIG.8. One
or more other host-environment independent interactions
106 expressed in the executable content 122 are executed in
the same manner described herein, except other types of
interactions may be expressed by the interactions 106, and
the method 300 ends when the last interaction 106 is
implemented.

0094) Having described methods 100, 200 and 300
above, an example will now be provided to demonstrate the
utility in developing host-environment independent content
102 and/or one or more supporting components, with ref
erence back to methods 100, 200 and 300 and FIGS. 1-9. By
way of example only, host-environment independent content
102 is developed and compiled in the same manner

May 11, 2006

described above in connection with method 100. Thus, the
developer generates the host-environment independent con
tent 102 by including the functionality 104 and one or more
host-environment independent interactions 106 in the con
tent 102. For instance, the developer sets a title for the
content 102 using one of the interactions 106.
0095 At step 120, the content developer includes infor
mation in the settings module associated with the host
environment independent content 102 being compiled that
indicates the executable content 122 will be hosted in a
browser environment, although the developer could indicate
a window environment instead. The content 102 is then
compiled and executable content 122 is generated and stored
at step 130. The executable content 122 is then executed in
the browser environment 202', as shown in FIG. 8 and
described in connection with methods 200 and 300 illus
trated in FIGS. 7 and 9, respectively.
0096] At some later point, the content developer may
decide that they would like to execute the executable content
122 in a window environment 203' instead of the browser
environment 202'. If the host-environment independent con
tent 102 was compiled at step 120 utilizing early binding,
then the content developer modifies the settings module
associated with the content 102 to indicate that the execut
able content 122 will be hosted in the window environment
203'. Further, the developer uses the builder/compiler mod
ule 32 to recompile the host-environment independent con
tent 102. However, the developer does not need to modify
the host-environment independent content 102 to enable the
executable version of the content 102 to executed in the
window environment 203'.

0097. On the other hand, if the host-environment inde
pendent content 102 was compiled at step 120 utilizing late
binding, then the content developer modifies the settings
module associated with the content 102 to indicate that the
executable content 122 will be hosted in the window envi
ronment 202'. The developer or another computer 10 user
can now execute the content 122 as described above in
connection with methods 200 and 300, and the content 122
is hosted in the window environment 203' illustrated in FIG.
8. However, the developer does not need to modify the
host-environment independent content 102 to enable the
executable version of the content 102 to be executed in the
window environment 203' nor does the developer need to
recompile the host-environment independent content 102.
0098. In sum, examples of methods 100, 200 and 300 for
developing, supporting and using host-environmentagnostic
content have been provided above to provide the reader of
this disclosure with a basic understanding of the concepts
disclosed herein. It should be appreciated, however, that
methods 100, 200 and 300 are provided as examples only
and should not be construed to limit the ensuing claims. The
pseudo-code examples provided above earlier, again, are
merely used for demonstrative and explanatory purposes
only as their associated functions may be implemented in
many other ways and may include additional information,
Such as information for implementing other interactions in
addition to setting a title property in a hosting environment
as described above.

0099 For instance, the pseudo-code example of a portion
of the "Host-Environment Abstraction Wrapper” class rep
resenting an API provided above earlier that may be instan
tiated into host-environment abstraction wrapper object 108
for setting a title property for an application embodied by the
host-environment independent content 102 may support

US 2006/0101436A1

additional functionalities or interactions besides just setting
a title property. As mentioned above, setting a title property
for the content 102 is but one of many properties that may
be set via the interactions 106.

0100. As such, a more comprehensive example of the
“Host-Environment Abstraction Wrapper class represent

May 11, 2006

ing an API that may be instantiated into host-environment
abstraction wrapper object 108 for setting other properties in
either a browser or window environment is provided below:

Host-Environment Abstraction Wrapper Class
Example

0101

class Host-Environment Abstraction Wrapper: IEnvironmentService {

// Properties

l

ment el e
l

l

l

l

l

O

l

l

l

l

l

l

W
l

OWSe

Hos

if Methods

pub
pub
pub

pub

ic UIElement Child:

ic LayoutRange Height;
ic Icon Data Icon:
ic double Left:
ic Point Location;
ic INavigator Navigator;

ic StatusBar StatusBar;
ic object StatusBarContent;
ic string Text:
ic double Top;
ic LayoutRange Width:
ic Window AutoLocation Window AutoLocation:
dow or Browser
ic WindowState WindowState:

minimized, or normal
protected override Ienumerator LogicalChildren:

-Environment Abstraction Wrapper

fi Host-Environment Abstraction Wrapper s child

// Height of the hosting Window or Browser
ff Icon on the hosting Window or Browser title bar
// Left edge of the hosting Window or Browser
// Upper left corner of the hosting Window or Browser
fi Inavigator interface of the hosting NavigationWindow

// Status bar of the hosting Window or Browser
if Status bar content

// Title of the hosting Window or Browser
// Top edge of the hosting Window or Browser
// Width of the hosting Window or Browser

if Initial location of the hosting

f. Whether the window or browser is maximized,

f Enumerator for logical children of

ic Host-Environment Abstraction Wrapper(); //constructor
ic object GetService(Type serviceType);
ic void IAddChild. AddText(String str);

Environment Abstraction Wrapper object
ic void IAddChild. AddChild (object obj):

Environment Abstraction Wrapper object iself

i? obtains a service object
if adds a child to the Host

if adds text to the Host

protected override Size ArrangeOverride(Size finalSize); // override to arrange and size
a window and its child elements
protected override Size Measure0verride(Size constraint); // override to measure size
of window
protected virtual void On Activated (object sender, EventArgs args); // raises Activated
ewent

protected virtual void OnGlosed (object sender, EventArgs args); // raises Closed
ewent
protected virtual void OnClosing(object sender, CancelEventArgs args); if raises
Closing event
protected virtual void OnDeactivated (object sender, EventArgs args); // raises
Deactivated event
protected virtual void OnLoading (object sender, EventArgs args); if raises Activated
ewent
protected virtual void OnLocationChanged (object sender, EventArgs args); if raises
Activated event
protected virtual void OnSizeChanged (object sender, EventArgs args); if raises
SizeChanged event
protected virtual void OnStateChanged (object sender, EventArgs args); if raises
StateChanged event

if Events

public event EventHandler Activated:
public event EventHandler Closed;
public event CancelEventHandler Closing:
public event EventHandler Deactivated:
public event EventHandler Loading:
public event EventHandler LocationChanged;
public event EventHandler StateChanged;

US 2006/0101436A1

0102) Additionally, as described above in connection
with methods 100, 200 and 300, one or more components in
models 101(1) and 101(2) may be expressed as program
matic Statements or declaratively. For instance, the host
environment independent content 102 with host-environ
ment independent interactions 106 was described above in
the context of comprising the Source code of an application
that may ultimately be compiled into executable content
122. Thus, the pseudo-code examples provided above in that
context represented programmatic statements.

0103). However, the host-environment independent con
tent 102 could comprise other types of content besides
Source code that is ultimately compiled into executable
content 122. Such as mark-up language content that is not
compiled yet may include host-environment independent
interactions 106 that may be used to set properties on a
hosting environment in the same manner described above.

0104. To illustrate this concept, a programmatic pseudo
code example of a host-environment independent interaction
106 for setting various properties in a hosting environment
for the content 102 where the content 102 is ultimately
compiled into content 122 as described above is provided
herein below, followed with a declarative pseudo-code
example of the same interaction 106:

Host-Environment Independent Interaction
Programmatic Pseudo-Code Example

01.05

Host-Environment Abstraction Wrapper. Height=400;
Host-Environment Abstraction Wrapper. Width=600;
Host-Environment Abstraction WrapperText="foo":

0106 The host-environment independent interaction pro
grammatic pseudo-code example above sets size properties
(e.g., height and width) for a hosting environment (e.g.,
browser or window frame) and a title for the content 102
hosted in the environment via the host-environment abstrac
tion wrapper object 108.

0107 Where the host-independent content 102 comprises
information that will not ultimately be compiled into execut
able content 122. Such as markup language content, the
content 102 may include host-environment independent
interactions 106 that are expressed declaratively and may be
used to access methods, attributes and/or events exposed by
the host-independent abstraction wrapper object 108 in the
same manner described above where a late-bound imple
mentation of the host-environment abstraction wrapper 108
is used.

0108) As such, a declarative pseudo-code version of a
host-environment independent interaction 106 that may be
used to set the same hosting environment properties that are
set in the programmatic pseudo-code example provided
above is provided herein below:

May 11, 2006

Host-Environment Independent Interaction
Declarative Pseudo-Code Example

01.09)

< Host-Environment Abstraction Wrapper Height="400
Width=600 Text-foot

</Host-Environment Abstraction Wrappers

0110 Here, the declarative pseudo-code for the interac
tion 106 instructs the hosting environment, via the host
independent abstraction wrapper 108, to set the size prop
erties (e.g., height and width) for the hosting environment
and the title for the content 102 hosted in the environment,
for example. The declarative pseudo-code provided above in
this example is in the XAML markup language, although
other types of markup languages may be used. An example
of the XAML markup language is disclosed in U.S. patent
application Ser. No. 10/715,136 (Attorney Docket No.
300417.01) to Bogdan et al., entitled “SYSTEM AND
METHOD FOR COMPILING MARKUP FILES, filed
Nov. 18, 2003, which is incorporated herein by reference in
its entirety.
0111. It should also be noted that the system 8 and
methods 100, 200 and 300 have been described above in the
context of utilizing object-oriented programming concepts
where data types, referred to as classes herein, are defined
along with associated data (e.g., attributes, properties) and
instructions (e.g., methods, events). It should be appreciated,
however, that the system 8, methods 100, 200 and 300, and
the components in models 101(1) and 101(2) may be imple
mented utilizing procedure-oriented, logic-oriented, rule
oriented and constraint-oriented programming methodolo
gies, or combinations thereof.
0112 Furthermore, while the memory module 20 illus
trated in FIGS. 1-2 is described above as comprising com
puter storage media, the module 20 should be broadly
interpreted to cover communication media as well. Com
munication media may embody computer-readable instruc
tions, data structures, program modules, or other data in a
modulated data signal. Such as a carrier wave or other
transport mechanism, and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in Such
a manner as to encode information in the signal. By way of
example only, communication media includes wired media,
Such as a wired network or direct-wired connection, and
wireless media, such as acoustic, RF, infrared, other wireless
media, and combinations thereof.
0113 Alternatives, modifications, variations, improve
ments, and Substantial equivalents that are or may be pres
ently unforeseen may arise to applicants or others skilled in
the art. Accordingly, the appended claims as filed, and as
they may be amended, are intended to embrace all Such
alternatives, modifications, variations, improvements, and
substantial equivalents. Further, the recited order of process
ing elements or sequences, or the use of numbers, letters, or
other designations therefor, is not intended to limit the
claimed processes to any order except as may be specified in
the claims.

US 2006/0101436A1

What is claimed is:
1. At least one computer-readable medium having at least

one instruction embodied as an application program inter
face stored thereon, which when executed by at least one
processing system, enables content to be hosted in a plurality
of hosting environments, the at least one medium compris
1ng:

at least one host-environment abstraction instruction that
invokes at least one host-environment interaction
implementation instruction that is specific to a selected
hosting environment from the plurality of hosting envi
ronments on behalf of at least one host-environment
interaction instruction for the content that does not
provide at least one interaction implementation detail
that is specific to any one of the plurality of hosting
environments.

2. The medium as set forth in claim 1 wherein the at least
one host-environment abstraction instruction comprises at
least one reference to the at least one host-environment
interaction implementation instruction that is on a host
environment object associated with the selected hosting
environment.

3. The medium as set forth in claim 2 wherein the at least
one reference comprises at least one of a method call for a
method defined in the host-environment object, an event
handler registration for an event defined in the host-envi
ronment object, and an attribute value assignment for an
attribute defined in the host-environment object.

4. The medium as set forth in claim 2 wherein the
host-environment object comprises a representation of a
browser or a window in which the content is hosted.

5. The medium as set forth in claim 1 wherein the selected
hosting environment comprises at least one of a browser
environment and a window environment.

6. A method for enabling content to be hosted in a
plurality of hosting environments, the method comprising:

invoking at least one host-environment interaction imple
mentation instruction that is specific to a selected
hosting environment from the plurality of hosting envi
ronments on behalf of at least one host-environment
interaction instruction for the content that does not
provide at least one interaction implementation detail
that is specific to any one of the plurality of hosting
environments.

7. The method as set forth in claim 6 wherein invoking at
least one host-environment interaction implementation
instruction that is specific to a selected hosting environment
further comprises:

referencing the at least one host-environment interaction
implementation instruction that is on a host-environ
ment object associated with the selected hosting envi
rOnment.

8. The method as set forth in claim 7 wherein referencing
the at least one host-environment interaction implementa
tion instruction further comprises:

calling a method defined in the host-environment object,
registering an event handler for an event defined in the
host-environment object, or assigning a value to an
attribute defined in the host-environment object.

9. The method as set forth in claim 7 wherein the
host-environment object comprises a representation of a
browser or a window in which the content is hosted.

May 11, 2006

10. The method as set forth in claim 6 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

11. A system for enabling content to be hosted in a
plurality of hosting environments, the system comprising:

a host-environment abstraction system that invokes at
least one host-environment interaction implementation
instruction that is specific to selected hosting environ
ment from the plurality of hosting environments on
behalf of at least one host-environment interaction
instruction for the content that does not provide at least
one interaction implementation detail that is specific to
any one of the plurality of hosting environments.

12. The system as set forth in claim 11 wherein the
host-environment abstraction system references the at least
one host-environment interaction implementation instruc
tion that is on a host-environment object associated with the
selected hosting environment.

13. The system as set forth in claim 12 wherein the
host-environment abstraction system references the at least
one host-environment interaction implementation instruc
tion by calling a method defined in the host-environment
object, registering an event handler for an event defined in
the host-environment object, or assigning a value for an
attribute defined in the host-environment object.

14. The system as set forth in claim 12 wherein the
host-environment object comprises a representation of a
browser or a window in which the content is hosted.

15. The system as set forth in claim 11 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

16. At least one computer-readable medium having at
least one instruction associated with content stored thereon,
which when executed by at least one processing system,
enables the content to be hosted in a selected hosting
environment, the at least one medium comprising:

at least one host-environment interaction instruction that
identifies at least one desired interaction involving the
content and any one of a plurality of hosting environ
ments without providing at least one interaction imple
mentation detail that is specific to any one of the
plurality of hosting environments including the
Selected hosting environment; and

at least one reference instruction that references at least
one host-environment abstraction instruction which
invokes at least one host-environment interaction
implementation instruction that is specific to the
Selected hosting environment for implementing the at
least one desired interaction.

17. The medium as set forth in claim 16 wherein the at
least one host-environment interaction instruction comprises
at least one of programmatic and declarative markup lan
guage content.

18. The medium as set forth in claim 16 wherein the at
least one host-environment interaction instruction comprises
extensible application markup language (XAML) content.

19. The medium as set forth in claim 16 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

20. A method for enabling content to be hosted in a
selected hosting environment, the method comprising:

US 2006/0101436A1

identifying at least one desired interaction involving the
content and any one of a plurality of hosting environ
ments without providing at least one interaction imple
mentation detail that is specific to any one of the
plurality of hosting environments including the
Selected hosting environment; and

referencing at least one host-environment abstraction
instruction which invokes at least one host-environ
ment interaction implementation instruction that is spe
cific to the selected hosting environment for imple
menting the at least one desired interaction.

21. The method as set forth in claim 20 further compris
1ng:

identifying the at least one desired interaction using at
least one of programmatic and declarative markup
language content.

22. The method as set forth in claim 20 further compris
1ng:

identifying the at least one desired interaction using
extensible application markup language (XAML) con
tent.

23. The method as set forth in claim 20 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

24. A system for enabling content to be hosted in a
selected hosting environment, the system comprising:

a host-environment interaction system that identifies at
least one desired interaction involving the content and
any one of a plurality of hosting environments without
providing at least one interaction implementation detail
that is specific to any one of the plurality of hosting
environments including the selected hosting environ
ment; and

a host-environment instruction system that references at
least one host-environment abstraction instruction
which invokes at least one host-environment interac
tion implementation instruction that is specific to the
Selected hosting environment for implementing the at
least one desired interaction.

25. The system as set forth in claim 24 wherein the
host-environment interaction system uses at least one of
programmatic and declarative markup language content to
identify the at least one desired interaction.

26. The system as set forth in claim 24 wherein the
host-environment interaction system uses extensible appli
cation markup language (XAML) content to identify the at
least one desired interaction.

27. The system as set forth in claim 24 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

28. At least one computer-readable medium having at
least one instruction associated with content stored thereon,
which when executed by at least one processing system,
enables the content to be hosted in a selected hosting
environment, the at least one medium comprising:

at least one host-environment interaction instruction that
identifies at least one desired interaction involving the
content and any one of a plurality of hosting environ
ments without providing at least one interaction imple
mentation detail that is specific to any one of the

May 11, 2006

plurality of hosting environments including the
Selected hosting environment; and

at least one host-environment abstraction instruction that
invokes at least one host-environment interaction
implementation instruction that is specific to the
selected hosting environment on behalf of the at least
one host-environment interaction instruction for imple
menting the at least one desired interaction.

29. The medium as set forth in claim 28 wherein the at
least one host-environment abstraction instruction com
prises at least one reference to the at least one host
environment interaction implementation instruction that is
on a host-environment object associated with the selected
hosting environment.

30. The medium as set forth in claim 29 wherein the
host-environment object comprises a representation of a
browser or a window in which the content is hosted.

31. The medium as set forth in claim 28 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

32. A method for enabling content to be hosted in a
selected hosting environment, the method comprising:

identifying at least one desired interaction involving the
content and any one of a plurality of hosting environ
ments without providing at least one interaction imple
mentation detail that is specific to any one of the
plurality of hosting environments including the
Selected hosting environment; and

invoking at least one host-environment interaction imple
mentation instruction that is specific to the selected
hosting environment on behalf of at least one host
environment interaction instruction that identifies the at
least one desired interaction for implementing the at
least one desired interaction.

33. The method as set forth in claim 32 wherein invoking
the at least one host-environment interaction implementa
tion instruction further comprises:

referencing the at least one host-environment interaction
implementation instruction that is on a host-environ
ment object associated with the selected hosting envi
rOnment.

34. The method as set forth in claim 33 wherein the
host-environment object comprises a representation of a
browser or a window in which the content is hosted.

35. The method as set forth in claim 32 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

36. A system for enabling content to be hosted in a
selected hosting environment, the system comprising:

a host-environment interaction system that identifies at
least one desired interaction involving the content and
any one of a plurality of hosting environments without
providing at least one interaction implementation detail
that is specific to any one of the plurality of hosting
environments including the selected hosting environ
ment; and

a host-environment abstraction system that invokes at
least one host-environment interaction implementation
instruction that is specific to the selected hosting envi

US 2006/0101436A1

ronment on behalf of the host-environment interaction
system for implementing the at least one desired inter
action.

37. The system as set forth in claim 36 wherein the
host-environment abstraction system references the at least
one host-environment interaction implementation instruc
tion that is on a host-environment object associated with the
selected hosting environment.

May 11, 2006

38. The system as set forth in claim 37 wherein the
host-environment object comprises a representation of a
browser or a window in which the content is hosted.

39. The system as set forth in claim 36 wherein the
selected hosting environment comprises at least one of a
browser environment and a window environment.

