wo 20097152180 A2 I 10KV OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Tntcletua Property Organizaion. /753 1N OO O AR
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
17 December 2009 (17.12.2009) PCT WO 2009/152180 A2
(51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GO6F 9/44 (2006.01) GO6F 15/16 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. o HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR. KZ. LA. LC. LK. LR. LS. LT. LU. LY. MA. MD
PCT/US2009/046791 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL
(22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
9 June 2009 (09.06.2009) SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English
L.) (84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,
(30) Priority Data: GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
61/060,318 10 June 2008 (10.06.2008) Us %‘1\’/‘[’) EEufaSIan (Q%A»B%Zé BY, HKG»Y KZ»Z N][)%]f;g» ETEJ
61/095,527 9 September 2008 (09.09.2008) US o)i:I ulg%peng(R ?I»UC I],ECIS, % e DI B,
(71) Applicant (for all designated States except US): D- Mé, I\;IK, f\/[T, i\IL, f\IO, iDL, IST, i{O,, SEZ SI:SK,,TR):
WAVE SYSTEMS INC. [CA/CA]; #100 - 4401 Still OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
Creek Drive, Burnaby, BC V5C 6G9 (CA). MR, NE, SN, TD, TG).
(72) Inventors; and Declarations under Rule 4.17:
(75) Inventors/Applicants (for US only): AMIN, Mohammad . , .
[CA/CAJ; #100 - 4401 Still Creek Drive, Burnaby, BC o ZOZQ‘ZP(ZZ‘]’:;S ;’Zgﬁemem to apply for and be granted
V5C 6G9 (CA). COURY, Michael [CA/CA]; 1708 East p ’
36th Avenue, Vancouver, BC V5P 1C5 (CA). — as fto the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))
(74) Agent: ABRAMONTE, Frank; Seed Intellectual Proper-) i ;
ty Law Group PLLC, Suite 5400, 701 Fifth Avenue, Seat- — of inventorship (Rule 4.17(1v))
tle, WA 98104-7064 (US). Published:
(81) Designated States (unless otherwise indicated, for every — \yithout international search report and to be republished

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

upon receipt of that report (Rule 48.2(g))

(54) Title: PARAMETER LEARNING SYSTEM FOR SOLVERS

1036

1008
\ 1000
CPU 1006 BI(;S b~ 1012
- : ' 71010 Gperafing System 1018
1090 Client Computing System 1048 End User Application Interfaces -——1020
1042 | | Server b 1022
- Client Program ,04§4D]~/ Solver —~—1024
Parameter Learning —~—1026
1044~ R Translater 1028
1070 1038
/ (0 1016 | | ygran 1034
Database LAN/WAN m Controller etworking —
System 1040
o M

Solver Computing %‘
Systems(s) !
1

FiG. 18

(57) Abstract: A computer receives information indicative of a problem (e.g., a computationally complex problem). A set of fea-
tures associated with the problem is then determined, and that set of features is compared with previously determined sets of fea-
tures associated with other problems. Finally, a set of parameters for a solver is generated based at least in part on the comparing
the set of features with the previously determined sets of features. The problem may then be solved using the set of parameters
(e.g., using an analog computing system) in order to generate a solution to the problem.

10

15

20

25

WO 2009/152180 PCT/US2009/046791

PARAMETER LEARNING SYSTEM FOR SOLVERS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims benefit under 35 U.S.C. 119(e) of US
Provisional Patent Application Serial No. 61/060,318, filed June 10, 2008 and
entitled “PARAMETER LEARNING SYSTEM FOR SOLVERS”, and US
Provisional Patent Application Serial No. 61/095,527, filed September 9, 2008
and entitled “METHODS AND APPARATUS FOR SOLVING
COMPUTATIONAL PROBLEMS,” both of which are incorporated herein by

reference in their entirety.

BACKGROUND OF THE DISCLOSURE

Field of the Disclosure

This disclosure generally relates to solvers, and, more particularly,

to solvers for computationally complex problems.

Description of the Related Art

A Turing machine is a theoretical computing system, described in
1936 by Alan Turing. A Turing machine that can efficiently simulate any other
Turing machine is called a Universal Turing Machine (UTM). The Church-
Turing thesis states that any practical computing model has either the
equivalent of or a subset of the capabilities of a UTM.

A quantum computer is any physical system that harnesses one
or more quantum effects to perform a computation. A quantum computer that
can efficiently simulate any other quantum computer is called a Universal
Quantum Computer (UQC).

In 1981 Richard P. Feynman proposed that quantum computers
could be used to solve certain computational problems more efficiently than a
UTM and therefore invalidate the Church-Turing thesis. See, e.g., Feynman R.

P., “Simulating Physics with Computers”, International Journal of Theoretical

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

Physics, Vol. 21 (1982) pp. 467-488. For example, Mr. Feynman noted that a
quantum computer could be used to simulate certain other quantum systems,
allowing exponentially faster calculation of certain properties of the simulated

quantum systems than is possible using a UTM.

Complex Problems

In complexity theory, a first problem class P is defined as the set
of decision problems that can be solved in polynomial time on a deterministic
Turing machine. These problems are generally considered tractable; i.e., they
are problems that can be solved in reasonable computation time on a Turing
machine.

In contrast, a second problem class NP is defined as the set of
decision problems that can be solved in polynomial time on a nondeterministic
Turing machine. This means that solutions to problems in the NP problem
class can be verified in polynomial time on a deterministic Turing machine, but
this does not imply that these problems can be solved in polynomial time on a
deterministic Turing machine. All problems in P are also in NP. However, it is
not yet known if there are problems in NP that are not in P.

A subset of the class NP is the NP-complete class of problems.
The NP-complete class of problems includes all problems that are in NP and
that have been identified as NP-hard. The NP-hard class of problems, in turn,

includes all problems that are at least as hard as any other problem in the class

NP. That is, a problem R is NP-hard if there is an NP-complete problem that
can be “reformulated” into an instance of the problem R in deterministic
polynomial time.

Some examples of NP-hard problems are: the traveling salesman
problem (given a number of cities and the costs of travelling between the cities,
what is the least-cost round-trip route that visits each city exactly once and then
returns to the starting city?); the maximum satisfiability (‘MAX-SAT”) problem
(given a series of Boolean expressions, what assignment of TRUE and FALSE

values to the variables in the expressions will make the maximum number of

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

expressions true?); the Hamiltonian path / circuit problem (does a graph G
define a path that travels through all nodes exactly once?); and the graph
coloring problem (what is the minimum number of colors needed to color the
vertices of a given graph such that no two adjacent vertices have the same
color?).

Another problem class BQP relating specifically to quantum
computers is defined as the set of decision problems that can be solved in
polynomial time by a quantum computer, with an error probability between 0
and 1/2 for all instances. It'is believed that BQP is a superset of P that does
not include the NP-complete
problems (P ¢ BOP ¢ PSPACE ; P — NP — PSPACE). However, it should be
noted that many believe that the problems within NP-complete might be solved

using a quantum computer much more quickly than using a UTM.

Heuristic Solvers for Complex Problems

A number of algorithms have been developed to find the exact,
optimal solutions to the above-described NP-hard problems. However, even
when employing quantum computation, these algorithms are not guaranteed to
find the optimal solution in polynomial time. As a result, heuristic algorithms are
typically used in order to find at least a locally optimal solution in a relatively
small amount of computation time.

A number of heuristic solvers have been developed to find locally
optimal solutions to computationally complex problems (e.g., NP-hard
problems) using both classical / digital computers and quantum computers.
Many of these heuristic solvers function by searching through the landscape of
potential solutions in order to find a locally optimal solution. Although these
heuristic solvers are not guaranteed to find the global optimal solution to these
problems, they may find close to the global optimal solution with sufficient run
time. Such heuristic solvers include: genetic algorithms (in which good
solutions evolve in a process designed to mimic natural selection); tabu search

methods (a local search algorithm that permits non-improving moves and

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

prevents cycling back to previously visited solutions by using “tabu lists” to
record a recent solution history); and simulated annealing algorithms (another
local search algorithm that permits non-improving moves with decreasing
probability as the search comes to an end). More information regarding such
solvers may be found, for example, in the text, Search Methodologies:
Introductory Tutorials in Optimization and Design Support Techniques, edited
by Edmund Burke and Graham Kendall, 2005, ISBN-10: 0-387-23460-8.

Unfortunately, the ability of such heuristic solvers to find a good
solution relatively quickly is often highly dependent upon the particular values
chosen for a number of parameters associated with each solver. Optimal
parameters for the heuristic solvers may vary greatly from problem to problem,
and typically an expert user determines these parameters empirically through
extensive experimentation. Such work by experts has been detailed in Hutter,
F., et al., Automatic Algorithm Configuration based on Local Search, In
Proceedings of the Twenty-First Conference on Artificial Intelligence,
http://www.cs.ubc.ca/~hutter/papers/aaai07_param_ils.pdf, (2007). Indeed, a
problem may be more amenable to solution by a certain type of heuristic solver,
and even the choice of which solver to employ may require significant

experimentation by an expert user.

Approaches to Quantum Computation

There are several general approaches to the design and
operation of quantum computers. One such approach is the “circuit model” of
quantum computation. In this approach, qubits are acted upon by sequences of
logical gates that are the compiled representation of an algorithm. Circuit
model quantum computers have several serious barriers to practical
implementation. In the circuit model, it is required that qubits remain coherent
over time periods much longer than the single-gate time. This requirement
arises because circuit model quantum computers require operations that are
collectively called quantum error correction in order to operate. Quantum error

correction cannot be performed without the circuit model quantum computer’s

10

15

20

25

WO 2009/152180 PCT/US2009/046791

qubits being capable of maintaining quantum coherence over time periods on
the order of 1,000 times the single-gate time. Much research has been focused
on developing qubits with coherence sufficient to form the basic information
units of circuit model quantum computers. See, e.g., Shor, P. W. “Introduction
to Quantum Algorithms,” arXiv.org:quant-ph/0005003 (2001), pp. 1-27. The art
is still hampered by an inability to increase the coherence of qubits to
acceptable levels for designing and operating practical circuit model quarntum
computers.

Another approach to quantum computation, involves using the
natural physical evolution of a system of coupled quantum systems as a
computational system. This approach does not make critical use of quantum
gates and circuits. Instead, starting from a known initial Hamiltonian, it relies
upon the guided physical evolution of a system of coupled quantum systems
wherein the problem to be solved has been encoded in the terms of the
system’s Hamiltonian, so that the final state of the system of coupled quantum
systems contains information relating to the answer to the problem to be
solved. This approach does not require long qubit coherence times. Examples
of this type of approach include adiabatic quantum computation, cluster-state
quantum computation, one-way quantum computation, quantum annealing and
classical annealing, and are described, for example, in Farhi, E. et al.,
“*Quantum Adiabatic Evolution Algorithms versus Simulated Annealing,”

arXiv.org:quant-ph/0201031 (2002), pp 1-16.

Qubits
As mentioned previously, qubits can be used as fundamental
units of information for a quantum computer. As with bits in UTMs, qubits can
refer to at least two distinct quantities; a qubit can refer to the actual physical
device in which information is stored, and it can also refer to the unit of
information itself, abstracted away from its physical device. Examples of qubits

include quantum particles, atoms, electrons, photons, ions, and the like.

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

Qubits generalize the concept of a classical digital bit. A classical
information storage device can encode two discrete states, typically labeled “0”
and “1”. Physically these two discrete states are represented by two different
and distinguishable physical states of the classical information storage device,
such as direction or magnitude of magnetic field, current, or voltage, where the
quantity encoding the bit state behaves according to the laws of classical
physics. A qubit also contains two discrete physical states, which can also be
labeled “0” and “1”. Physically these two discrete states are represented by two
different and distinguishable physical states of the quantum information storage
device, such as direction or magnitude of magnetic field, current, or voltage,
where the quantity encoding the bit state behaves according to the laws of
quantum physics. If the physical quantity that stores these states behaves
quantum mechanically, the device can additionally be placed in a superposition
of 0 and 1. That s, the qubit can exist in both a “0” and “1” state at the same
time, and so can perform a computation on both states simultaneously. In
general, N qubits can be in a superposition of 2N states. Quantum algorithms
make use of the superposition property to speed up some computations.

In standard notation, the basis states of a qubit are referred to as
the |0) and |1) states. During quantum computation, the state of a qubit, in
general, is a superposition of basis states so that the qubit has a nonzero
probability of occupying the |0) basis state and a simultaneous nonzero
probability of occupying the |1) basis state. Mathematically, a superposition of
basis states means that the overall state of the qubit, which is denoted |¥), has
the form |¥) = a|0) + 3|1}, where a and b are coefficients corresponding to the
probabilities |a|* and |b|?, respectively. The coefficients a and b each have real
and imaginary components, which allows the phase of the qubit to be
characterized. The quantum nature of a qubit is largely derived from its ability
to exist in a coherent superposition of basis states and for the state of the qubit
to have a phase. A qubit will retain this ability to exist as a coherent
superposition of basis states when the qubit is sufficiently isolated from sources

of decoherence.

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

To complete a computation using a qubit, the state of the qubit is
measured (i.e., read out). Typically, when a measurement of the qubit is
performed, the quantum nature of the qubit is temporarily lost, and the
superposition of basis states collapses to either the |0) basis state or the |1)
basis state. The qubit thus regains its similarity o a conventional bit. The
actual state of the qubit after it has collapsed depends on the probabilities lal2

and |b|2 immediately prior to the readout operation.

Superconducting Qubits

There are many different hardware and software approaches
under consideration for use in quantum computers. One hardware approach
uses integrated circuits formed of superconducting materials, such as aluminum
or niobium. Some of the technologies and processes involved in designing and
fabricating superconducting integrated circuits are similar in some respects to
those used for conventional integrated circuits.

Superconducting qubits are a type of superconducting device that
can be included in a superconducting integrated circuit. Typical
superconducting qubits, for example, have the advantage of scalability and are
generally classified depending on the physical properties used to encode
information including, for example, charge and phase devices, phase or flux
devices, hybrid devices, and the like. Superconducting qubits can be separated
into several categories depending on the physical property used to encode
information. For example, they may be separated into charge, flux and phase
devices, as discussed in, for example, Makhlin et al., 2001, Reviews of Modern
Physics 73, pp. 357—-400.

Charge devices store and manipulate information in the charge
states of the device, where elementary charges consist of pairs of electrons
called Cooper pairs. A Cooper pair has a charge of 2e and consists of two
electrons bound together by, for example, a phonon interaction. See, e.g.,
Nielsen and Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, Cambridge (2000), pp. 343-345. Flux devices

10

15

20

25

WO 2009/152180 PCT/US2009/046791

store information in a variable related to the magnetic flux through some part of
the device. Phase devices store information in a variable related to the
difference in superconducting phase between two regions of the phase device.
Recently, hybrid devices using two or more of charge, flux and phase degrees
of freedom have been developed. See, e.g., U.S. Patent No. 6,838,694 and
U.S. Patent No. 7,335,909.

Examples of flux qubits that may be used include rf-SQUIDs,
which include a superconducting loop interrupted by one Josephson junction, or
a compound junction (where a single Josephson junction is replaced by two
parallel Josephson junctions), or persistent current qubits, which include a
superconducting loop interrupted by three Josephson junctions, and the like.
See, e.g., Mooij et al., 1999, Science 285, 1036; and Orlando et al., 1999,
Phys. Rev. B 60, 15398. Other examples of superconducting qubits can be
found, for example, in I'ichev et al., 2003, Phys. Rev. Lett. 91, 097906; Blatter
et al., 2001, Phys. Rev. B 63, 174511, and Friedman et al., 2000, Nature 406,
43. In addition, hybrid charge-phase qubits may also be used.

The qubits may include a corresponding local bias device. The
local bias devices may include a metal loop in proximity to a superconducting
qubit that provides an external flux bias to the qubit. The local bias device may
also include a plurality of Josephson junctions. Each superconducting qubit in
the quantum processor may have a corresponding local bias device or there
may be fewer local bias devices than qubits. In some embodiments, charge-
based readout and local bias devices may be used. The readout device(s) may
include a plurality of dc-SQUID magnetometers, each inductively connected to
a different qubit within a topology. The readout device may produce a voltage
or current. DC-SQUID magnetometers including a loop of superconducting
material interrupted by at least one Josephson junction are well known in the
art.

10

15

20

25

WO 2009/152180 PCT/US2009/046791

Quantum Processor

A computer processor may take the form of an analog processor.
For instance, a quantum processor, such as a superconducting quantum
processor, may be used. A quantum processor may include a number of qubits
and associated local bias devices, such as two or more superconducting qubits.
Further detail and embodiments of exemplary quantum processors that may be
used in conjunction with the present systems, methods, and apparatus are
described in US Patent Publication No. 2006-0225165, US Patent Publication
2008-0176750, US Patent Application Publication No. 2009-0121215, and PCT
Patent Application Serial No. PCT/US09/37984.

A quantum processor may also include a number of coupling
devices operable to selectively couple respective pairs of qubits. Examples of
superconducting coupling devices include rf-SQUIDs and dc-SQUIDs, which
may couple qubits together by flux. SQUIDs include a superconducting loop
interrupted by one Josephson junction (an rf-SQUID) or two Josephson
junctions (a dc-SQUID). The coupling devices may be capable of both
ferromagnetic and anti-ferromagnetic coupling, depending on how the coupling
device is being utilized within the interconnected topology. In the case of flux
coupling, ferromagnetic coupling implies that parallel fluxes are energetically
favorable, and anti-ferromagnetic coupling implies that anti-parallel fluxes are
energetically favorable. Alternatively, charge-based coupling devices may also
be used. Other coupling devices can be found, for example, in U.S. Patent
Application Publication No. 2006-0147154, U.S. Patent Application Publication
No. 2008-0238531, U.S. Patent Application Publication No. 2008-0274898and
US Patent Application Publication No. 2009-0078932. Respective coupling
strengths of the coupling devices may be tuned between zero and a maximum
value, for example, to provide ferromagnetic or anti-ferromagnetic coupling

between qubits.

10

15

20

25

WO 2009/152180 PCT/US2009/046791

Adiabatic Quantum Computation

Adiabatic quantum computation typically involves evolving a
system from a known initial Hamiltonian (the Hamiltonian being an operator
whose eigenvalues are the allowed energies of the system) to a final
Hamiltonian by gradually changing the Hamiltonian. A simple example of an

adiabatic evolution is:
H,=(1-9s)H, +st

where H; is the initial Hamiltonian, His the final Hamiltonian, H, is the evolution
or instantaneous Hamiltonian, and s is an evolution coefficient which controls
the rate of evolution. As the system evolves, the coefficient s goes from 0 to 1
such that at the beginning (i.e., s = 0) the evolution Hamiltonian H, is equal to
the initial Hamiltonian H; and at the end (i.e., s = 1) the evolution Hamiltonian H,
is equal to the final Hamiltonian H;. Before the evolution begins, the system is
typically initialized in a ground state of the initial Hamiltonian H; and the goal is
to evolve the system in such a way that the system ends up in a ground state of
the final Hamiltonian H; at the end of the evolution. If the evolution is too fast,
then the system can be excited to a higher energy state, such as the first
excited state. In the present systems, methods, and apparatus, an “adiabatic”

evolution is considered to be an evolution that satisfies the adiabatic condition:
$|(11dH,/ds|0)|= &g*(s)

where § is the time derivative of s, g(s) is the difference in energy between the
ground state and first excited state of the system (also referred to herein as the
“gap size”) as a function of s, and & is a coefficient much less than 1.

The evolution process in adiabatic quantum computing may
sometimes be referred to as annealing. The rate that s changes, sometimes
referred to as an evolution or annealing schedule, is normally slow enough that
the system is always in the instantaneous ground state of the evolution
Hamiltonian during the evolution, and transitions at anti-crossings (i.e., when

the gap size is smallest) are avoided. Further details on adiabatic quantum

10

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

computing systems, methods, and apparatus are described in US Patent No.
7,135,701.

Quantum Annealing

Quantum annealing is a computation method that may be used to
find a low-energy state, typically preferably the ground state, of a system.
Similar in concept to classical annealing, the method relies on the underlying
principle that natural systems tend towards lower energy states because lower
energy states are more stable. However, while classical annealing uses
classical thermal fluctuations to guide a system to its global energy minimum,
quantum annealing may use quantum effects, such as quantum tunneling, to
reach a global energy minimum more accurately and/or more quickly. It is
known that the solution to a hard problem, such as a combinatorial optimization
problem, may be encoded in the ground state of a system Hamiltonian and
therefore quantum annealing may be used to find the solution to such hard
problems. Adiabatic quantum computation is a special case of quantum
annealing for which the system, ideally, begins and remains in its ground state
throughout an adiabatic evolution. Thus, those of skill in the art will appreciate
that quantum annealing systems and methods may generally be implemented
on an adiabatic quantum computer, and vice versa. Throughout this
specification and the appended claims, any reference to quantum annealing is
intended to encompass adiabatic quantum computation unless the context
requires otherwise.

Quantum annealing is an algorithm that uses quantum mechanics
as a source of disorder during the annealing process. The optimization
problem is encoded in a Hamiltonian Hp, and the algorithm introduces strong
quantum fluctuations by adding a disordering Hamiltonian Hp, that does not

commute with Hp. An example case is:
H,=H,+TH,,

where T" changes from a large value to substantially zero during the evolution

and Heg may be thought of as an evolution Hamiltonian similar to H. described in

11

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

the context of adiabatic quantum computation above. The disorder is slowly
removed by removing Hp (i.e., reducing I'). Thus, quantum annealing is similar
to adiabatic quantum computation in that the system starts with an initial
Hamiltonian and evolves through an evolution Hamiltonian to a final “problem”
Hamiltonian Hp whose ground state encodes a solution to the problem. If the
evolution is slow enough, the system will typically settle in a local minimum
close to the exact solution; the slower the evolution, the better the solution that
will be achieved. The performance of the computation may be assessed via the
residual energy (distance from exact solution using the objective function)
versus evolution time. The computation time is the time required to generate a
residual energy below some acceptable threshold value. In quantum
annealing, Hp may encode an optimization problem and therefore Hp may be
diagonal in the subspace of the qubits that encode the solution, but the system
does not necessarily stay in the ground state at all times. The energy
landscape of Hp may be crafted so that its global minimum is the answer to the
problem to be solved, and low-lying local minima are good approximations.
The gradual reduction of T" in quantum annealing may follow a
defined schedule known as an annealing schedule. Unlike traditional forms of
adiabatic quantum computation where the system begins and remains in its
ground state throughout the evolution, in quantum annealing the system may
not remain in its ground state throughout the entire annealing schedule. As
such, quantum annealing may be implemented as a heuristic technique, where
low-energy states with energy near that of the ground state may provide

approximate solutions to the problem.

Adiabatic Quantum Computing and Quantum Annealing Algorithms

Typically, an adiabatic quantum computing algorithm may be
directed towards producing an exact solution to a given problem. This
underlying goal may lead to many complications in the implementation of the
algorithm. For instance, in order to achieve an exact solution it is typically

necessary to prevent transitions at all anti-crossings in the evolution of the

12

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

system Hamiltonian. Since some anti-crossings may correspond to very small
energy gaps, an algorithm focused on achieving an exact solution may require
an impractically long evolution schedule. As previously discussed, adiabatic
guantum computing may be considered to be a special case of quantum
annealing, and quantum annealing is well-suited to be implemented as a
heuristic technique. Accordingly, the various embodiments described herein
provide methods for improving the final solution of a quantum computation
achieved by either adiabatic quantum computing and/or by quantum annealing.
In some embodiments, this is achieved by using a classical algorithm to
improve the approximate solution obtained by adiabatic quantum computation

and/or quantum annealing.

SUMMARY

A computer-implemented method of determining parameters for
solving problems may be summarized as including receiving information
indicative of a problem; determining a set of features associated with the
problem; comparing the set of features with previously determined sets of
features associated with other problems; generating a set of parameters for a
solver based at least in part on the comparing the set of features with the
previously determined sets of features; and solving the problem using the set of
parameters to generate a solution.

Receiving the information indicative of the problem may include
receiving the information indicative of the problem via a user interface.
Determining the set of features may includes generating a matrix representation
of the problem, and determining at least one characteristic of the matrix
representation as at least one feature of the set of features. The at least one
characteristic of the matrix representation may be at least one of diagonal
dominance, positivity, an average of matrix values, a range of matrix values and
sparsity. Determining the set of features may include generating a graphical
representation of the problem, and determining at least one characteristic of the

graphical representation as at least one feature of the set of features. The at

13

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

least one characteristic of the graphical representation may be at least one of
eccentricity, radius, circumference, and a characteristic of a plurality of random
measurements of the graphical representation. Determining the set of features
may include performing a plurality of walks through a solution space of the
problem, and determining at least one characteristic of the plurality of walks as
at least one feature of the set of features. The plurality of walks may include a
plurality of stochastic hill climbs, and wherein the at least one characteristic of
the plurality of walks may be an average of a number of steps to complete each
hill climb. The problem may be one of an NP-hard or NP-complete problem.
Determining the set of features may include determining the set of features in
the computer. Determining the set of features may include generating a
problem vector indicative of the set of features in an n-dimensional feature
space, wherein each dimension of the feature space corresponds to a
respective feature. Comparing the set of features with the previously
determined sets of features may include comparing the problem vector with
other vectors indicative of the previously determined sets of features in the n-
dimensional feature space. Generating the set of parameters for the solver
may include selecting at least one proximate vector from among the other
vectors, the at least one proximate vector being relatively proximate the
problem vector in the n-dimensional space, and generating the set of
parameters based at least in part on a prior set of parameters used to solve at
least one problem associated with the at least one proximate vector.
Generating the set of parameters based at least in part on the prior set of
parameters may include setting the set of parameters equal to the prior set of
parameters. The method may further include selecting the solver from among a
plurality of solvers based at least in part on the comparing the set of features
with the previously determined sets of features. The method may further
include determining a training set of features associated with a training problem
having a previously determined answer, generating an initial set of parameters
for the solver, varying at least one parameter of the initial set of parameters to

generate a revised set of parameters, solving the training problem using the

14

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

revised set of parameters to generate a revised solution, comparing the revised
solution with the previously determined answer, storing the revised set of
parameters as a training set of parameters based at least in part on the
comparing the revised solution with the previously determined answer, logically
associating the training set of features with the training set of parameters, and
saving information indicative of the training set of features as one of the
previously determined sets of features. The method may include repeatedly
varying at least one parameter of the revised set of parameters to generate a
second revised set of parameters, solving the problem using the second
revised set of parameters to generate a second revised solution, comparing the
second revised solution with the previously determined answer, and storing the
second revised set of parameters as the training set of parameters based at
least in part on the comparing the second revised solution with the previously
determined answer. The previously determined answer may comprises a high
quality answer. The method may include storing the set of parameters used to
solve the problem, varying at least one parameter of the set of parameters to
generate a revised set of parameters, solving the problem using the revised set
of parameters to generate a revised solution, comparing the revised solution
with the solution, and storing the revised set of parameters if the revised
solution is of a higher quality than the solution. The acts of varying the at least
one parameter, solving the problem using the revised set of parameters,
comparing the revised solution with the solution, and storing the revised set of
parameters may be performed during otherwise idle cycles of the computer.
The method may include storing the set of parameters used to solve the
problem, identifying an undetermined characteristic of the solver associated
with the problem, varying at least one parameter of the set of parameters to
generate a revised set of parameters, solving the problem using the revised set
of parameters, and generating information associated with the undetermined
characteristic based at least in part on solving the problem using the revised set
of parameters. Generating the information associated with the undetermined

characteristic may include determining a timing associated with solving the

15

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

problem using the revised set of parameters. Solving the problem using the set
of parameters may include solving the problem on a quantum computer. The
computer may be a classical computer. The computer may be a quantum
computer.

A computer-implemented method of determining parameters for
solving problems may be summarized as including receiving information
indicative of a problem; determining a set of features associated with the
problem; comparing the set of features with previously determined sets of
features associated with other problems; and generating a set of parameters for
a solver based at least in part on the comparing the set of features with the
previously determined sets of features.

The method may include providing the set of parameters to the
solver for use in solving the problem. Receiving the information indicative of
the problem may include receiving the information indicative of the problem via
a user interface. Determining the set of features may include generating a
matrix representation of the problem, and determining at least one
characteristic of the matrix representation as at least one feature of the set of
features. The at least one characteristic of the matrix representation may be at
least one of diagonal dominance, positivity, an average of matrix values, a
range of matrix values and sparsity. Determining the set of features may
includes generating a graphical representation of the problem, and determining
at least one characteristic of the graphical representation as at least one feature
of the set of features. The at least one characteristic of the graphical
representation may be at least one of eccentricity, radius, circumference, and a
characteristic of a plurality of random measurements of the graphical
representation. Determining the set of features may include performing a
plurality of walks through a solution space of the problem, and determining at
least one characteristic of the plurality of walks as at least one feature of the set
of features. The plurality of walks may include a plurality of stochastic hill
climbs, and the at least one characteristic of the plurality of walks may be an

average of a number of steps to complete each hill climb. The problem may be

16

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

one of a NP-hard or NP-complete problem. Determining the set of features
may include generating a problem vector indicative of the set of features in an
n-dimensional feature space wherein each dimension of the feature space
corresponds to a respective feature. Comparing the set of features with the
previously determined sets of features may include comparing the problem
vector with other vectors indicative of the previously determined sets of features
in the n-dimensional feature space. Generating the set of parameters for the
solver may include selecting at least one proximate vector from among the
other vectors, the at least one proximate vector being relatively proximate the
problem vector in the n-dimensional space, and generating the set of
parameters based at least in part on a prior set of parameters used to solve at
least one problem associated with the at least one proximate vector.
Generating the set of parameters based at least in part on the prior set of
parameters may include setting the set of parameters equal to the prior set of
parameters. The method may include selecting the solver from among a
plurality of solvers based at least in part on the comparing the set of features
with the previously determined sets of features. The method may include
determining a training set of features associated with a training problem having
a previously determined answer, generating an initial set of parameters for the
solver, varying at least one parameter of the initial set of parameters to
generate a revised set of parameters, receiving a revised solution to the training
problem from the solver, the revised solution associated with the revised set of
parameters, comparing the revised solution with the previously determined
answer, storing the revised set of parameters as a training set of parameters
based at least in part on the comparing the revised solution with the previously
determined answer, logically associating the training set of features with the
training set of parameters, and saving information indicative of the training set
of features as one of the previously determined sets of features. The method
may include repeatedly varying at least one parameter of the revised set of
parameters to generate a second revised set of parameters, receiving a second

revised solution to the training problem from the solver, the second revised

17

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

solution associated with the second revised set of parameters, comparing the
second revised solution with the previously determined answer, and storing the
second revised set of parameters as the training set of parameters based at
least in part on the comparing the second revised solution with the previously
determined answer. The method may include receiving a solution to the
problem from the solver, the solution associated with the set of parameters,
storing the set of parameters, varying at least one parameter of the set of
parameters to generate a revised set of parameters, receiving a revised
solution to the problem from the solver, the revised solution associated with the
revised set of parameters, comparing the revised solution with the solution, and
storing the revised set of parameters if the revised solution is of higher quality
than the solution. The method may include storing the set of parameters,
identifying an undetermined characteristic of the solver associated with the
problem, varying at least one parameter of the set of parameters to generate a
revised set of parameters, providing the revised set of parameters to the solver
for use in solving the problem, causing the solver to solve the problem using the
revised set of parameters, and generating information associated with the
undetermined characteristic based at least in part on the solver solving the
problem using the revised set of parameters. Generating the information
associated with the undetermined characteristic may include determining a
timing associated with the solver solving the problem using the revised set of
parameters. The solver may comprise a quantum computer.

A classical computer for determining parameters for solving
problems may be summarized as including a processor that executes
instructions and a computer-readable memory that stores instructions, and the
instructions stored on the computer-readable memory may cause the processor
to determine parameters for solving problems by receiving information
indicative of a problem, determining a set of features associated with the
problem, comparing the set of features with previously determined sets of

features associated with other problems, and generating a set of parameters for

18

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

a solver based at least in part on the comparing the set of features with the
previously determined sets of features.

The computer-readable memory may store further instructions
that cause the processor to provide the set of parameters to the solver for use
in solving the problem. Receiving the information indicative of the problem may
include receiving the information indicative of the problem via a user interface.
Determining the set of features may include generating a matrix representation
of the problem, and determining at least one characteristic of the matrix
representation as at least one feature of the set of features. The at least one
characteristic of the matrix representation may be at least one of diagonal
dominance, positivity, an average of matrix values, a range of matrix values and
sparsity. Determining the set of features may include generating a graphical
representation of the problem, and determining at least one characteristic of the
graphical representation as at least one feature of the set of features. The at
least one characteristic of the graphical representation may be at least one of
eccentricity, radius, circumference, and a characteristic of a plurality of random
measurements of the graphical representation. Determining the set of features
may include performing a plurality of walks through a solution space of the
problem, and determining at least one characteristic of the plurality of walks as
at least one feature of the set of features. The plurality of walks may include a
plurality of stochastic hill climbs, and the at least one characteristic of the
plurality of walks may be an average of a number of steps to complete each hill
climb. The problem may be one of a NP-hard or NP-complete problem.
Determining the set of features may include generating a problem vector
indicative of the set of features in an n-dimensional feature space wherein each
dimension of the feature space corresponds to a respective feature.

Comparing the set of features with the previously determined sets of features
may include comparing the problem vector with other vectors indicative of the
previously determined sets of features in the n-dimensional feature space.

Generating the set of parameters for the solver may include selecting at least

one proximate vector from among the other vectors, the at least one proximate

19

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

vector being relatively proximate the problem vector in the n-dimensional
space, and generating the set of parameters based at least in part on a prior set
of parameters used to solve at least one problem associated with the at least
one proximate vector. Generating the set of parameters based at least in part
on the prior set of pérameters may include setting the set of parameters equal
to the prior set of parameters. The computer-readable memory may store
further instructions that cause the processor to select the solver from among a
plurality of solvers based at least in part on the comparing the set of features
with the previously determined sets of features. The computer-readable
memory may store further instructions that cause the processor to determine
parameters for solving problems by determining a training set of features
associated with a training problem having a previously determined answer,
generating an initial set of parameters for the solver, varying at least one
parameter of the initial set of parameters to generate a revised set of
parameters, receiving a revised solution to the training problem from the solver,
the revised solution associated with the revised set of parameters, comparing
the revised solution with the previously determined answer, storing the revised
set of parameters as a training set of parameters based at least in part on the
comparing the revised solution with the previously determined answer, logically
associating the training set of features with the training set of parameters, and
saving information indicative of the training set of features as one of the
previously determined sets of features. The computer-readable memory may
store further instructions that cause the processor to determine parameters for
solving problems by, repeatedly, varying at least one parameter of the revised
set of parameters to generate a second revised set of parameters, receiving a
second revised solution to the training problem from the solver, the second
revised solution associated with the second revised set of parameters,
comparing the second revised solution with the previously determined answer,
and storing the second revised set of parameters as the training set of
parameters based at least in part on the comparing the second revised solution

with the previously determined answer. The computer-readable memory may

20

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

store further instructions that cause the processor to determine parameters for
solving problems by receiving a solution to the problem from the solver, the
solution associated with the set of parameters, storing the set of parameters,
varying at least one parameter of the set of parameters to generate a revised
set of parameters, receiving a revised solution to the problem from the solver,
the revised solution associated with the revised set of parameters, comparing
the revised solution with the solution, and storing the revised set of parameters
if the revised solution is of higher quality than the solution. The computer-
readable memory may store further instructions that cause the processor to
determine parameters for solving problems by storing the set of parameters,
identifying an undetermined characteristic of the solver associated with the
problem, varying at least one parameter of the set of parameters to generate a
revised set of parameters, providing the revised set of parameters to the solver
for use in solving the problem, causing the solver to solve the problem using the
revised set of parameters, and generating information associated with the
undetermined characteristic based at least in part on the solver solving the
problem using the revised set of parameters. Generating the information
associated with the undetermined characteristic may include determining a
timing associated with the solver solving the problem using the revised set of
parameters.

A computer-readable medium that stores instructions may cause
a processor to determine parameters for solving problems and may be
summarized by receiving information indicative of a problem, determining a set
of features associated with the problem, comparing the set of features with
previously determined sets of features associated with other problems, and
generating a set of parameters for a solver based at least in part on the
comparing the set of features with the previously determined sets of features.

The computer-readable medium may store further instructions
that cause a processor to provide the set of parameters to the solver for use in
solving the problem. Receiving the information indicative of the problem may

include receiving the information indicative of the problem via a user interface.

21

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

Determining the set of features may include generating a matrix representation
of the problem, and determining at least one characteristic of the matrix
representation as at least one feature of the set of features. The at least one
characteristic of the matrix representation may be at least one of diagonal
dominance, positivity, an average of matrix values, a range of matrix values and
sparsity. Determining the set of features may include generating a graphical
representation of the problem, and determining at least one characteristic of the
graphical representation as at least one feature of the set of features. The at
least one characteristic of the graphical representation may be at least one of
eccentricity, radius, circumference, and a characteristic of a plurality of random
measurements of the graphical representation. Determining the set of features
may include performing a plurality of walks through a solution space of the
problem, and determining at least one characteristic of the plurality of walks as
at least one feature of the set of features. The plurality of walks may include a
plurality of stochastic hill climbs, and the at least one characteristic of the
plurality of walks may be an average of a number of steps to complete each hill
climb. The problem may be one of a NP-hard or NP-complete problem.
Determining the set of features may include generating a problem vector
indicative of the set of features in an n-dimensional feature space wherein each
dimension of the feature space corresponds to a respective feature.

Comparing the set of features with the previously determined sets of features
may include comparing the problem vector with other vectors indicative of the
previously determined sets of features in the n-dimensional feature space.
Generating the set of parameters for the solver may include selecting at least
one proximate vector from among the other vectors, the at least one proximate
vector being relatively proximate the problem vector in the n-dimensional
space, and generating the set of parameters based at least in part on a prior set
of parameters used to solve at least one problem associated with the at least
one proximate vector. Generating the set of parameters based at least in part
on the prior set of parameters may include setting the set of parameters equal

to the prior set of parameters. The computer-readable medium may store

22

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

further instructions that cause a processor to select the solver from among a
plurality of solvers based at least in part on the comparing the set of features
with the previously determined sets of features. The computer-readable
medium may store further instructions that cause a processor to determine
parameters for solving problems by determining a training set of features
associated with a training problem having a previously determined answer,
generating an initial set of parameters for the solver, varying at least one
parameter of the initial set of parameters to generate a revised set of
parameters, receiving a revised solution to the training problem from the solver,
the revised solution associated with the revised set of parameters, comparing
the revised solution with the previously determined answer, storing the revised
set of parameters as a training set of parameters based at least in part on the
comparing the revised solution with the previously determined answer, logically
associating the training set of features with the training set of parameters, and
saving information indicative of the training set of features as one of the
previously determined sets of features. The computer-readable medium may
store further instructions that cause a processor to determine parameters for
solving problems by, repeatedly, varying at least one parameter of the revised
set of parameters to generate a second revised set of parameters, receiving a
second revised solution to the training problem from the solver, the second
revised solution associated with the second revised set of parameters,
comparing the second revised solution with the previously determined answer,
and storing the second revised set of parameters as the training set of
parameters based at least in part on the comparing the second revised solution
with the previously determined answer. The computer-readable medium may
store further instructions that cause a processor to determine parameters for
solving problems by receiving a solution to the problem from the solver, the
solution associated with the set of parameters, storing the set of parameters,
varying at least one parameter of the set of parameters to generate a revised
set of parameters, receiving a revised solution to the problem from the solver,

the revised solution associated with the revised set of parameters, comparing

23

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

the revised solution with the solution, and storing the revised set of parameters
if the revised solution is of higher quality than the solution. The computer-
readable medium may store further instructions that cause a processor to
determine parameters for solving problems by storing the set of parameters,
identifying an undetermined characteristic of the solver associated with the
problem, varying at least one parameter of the set of parameters to generate a
revised set of parameters, providing the revised set of parameters to the solver
for use in solving the problem, causing the solver to solve the problem using the
revised set of parameters, and generating information associated with the
undetermined characteristic based at least in part on the solver solving the
problem using the revised set of parameters. Generating the information
associated with the undetermined characteristic may include determining a
timing associated with the solver solving the problem using the revised set of
parameters.

A method of solving problems may be summarized as including
guantum computationally determining a first solution to a problem; and
computationally refining the first solution to the problem via an optimization
algorithm. The quantum computationally determining a first solution to a
problem may include performing at least one adiabatic quantum computation.
The quantum computationally determining a first solution to a problem may
include performing at least one quantum annealing computation.
Computationally refining the first solution to the problem via an optimization
algorithm may include computationally executing a classical algorithm.
Computationally executing a classical algorithm may include computationally
executing a local search algorithm. Computationally executing a classical
algorithm may include computationally executing a simulated annealing
algorithm. Computationally refining the first solution to the problem may include
using the first solution as a starting point for the optimization algorithm. Using
the first solution as a starting point for the optimization algorithm may include
using the first solution as an initial guess for the optimization algorithm. The

first solution to the problem may be an approximate solution and

24

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

computationally refining the first solution includes producing a second solution
to the problem that is at least as good as the first solution to the problem.

A method of solving problems may be summarized as quantum
computationally determining a first solution to a problem; casting the first
solution to the problem as the starting point for an optimization; and
computationally performing an optimization to determine a second solution to
the problem. Quantum computationally determining a first solution to a problem
may include performing at least one of adiabatic quantum computation.
Quantum computationally determining a first solution to a problem may include
performing a quantum annealing. Computationally performing an optimization
may include performing a classical optimization. Performing a classical
optimization may include performing at least one local search. Performing a
classical optimization may include performing at least one local simulated
annealing.

A system to solve problems may be summarized as including at
least one quantum processor configured to quantum computationally determine
a first solution to a problem; and the system configured to computationally
refine the first solution to the problem via an optimization algorithm. The
system may, for example, include a classical processor configured to execute
the optimization algorithm to refine the first solution to the problem.

A system to solve problems may be summarized as including at
least one quantum processor configured to quantum computationally determine
a first solution to a problem and at least one classical digital processor
configured to perform an optimization to determine a second solution to the
problem based on the first solution to the problem as a starting point for the

optimization.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, identical reference numbers identify similar

elements or acts. The sizes and relative positions of elements in the drawings

are not necessarily drawn to scale. For example, the shapes of various

25

10

15

20

25

WO 2009/152180 PCT/US2009/046791

elements and angles are not drawn to scale, and some of these elements are
arbitrarily enlarged and positioned to improve drawing legibility. Further, the
particular shapes of the elements as drawn, are not intended to convey any
information regarding the actual shape of the particular elements, and have
been solely selected for ease of recognition in the drawings.

Figure 1A is a high-level block diagram showing a computing
system for solving complex problems employing at least one analog processor,
according to one illustrated embodiment.

Figure 1B is a high-level block diagram showing a computing
system for solving complex problems employing at least one solver system,
according to one illustrated embodiment.

Figure 2 is a flow diagram illustrating a method of determining
parameters for solving problems, according to one illustrated embodiment.

Figure 3 is a flow diagram illustrating a method of revising the
parameters determined in accordance with the method of Figure 2, according to
one illustrated embodiment.

Figure 4 is a flow diagram illustrating a method of training a
computing system to determine parameters for solving problems, according to
one illustrated embodiment.

Figure 5 is a flow diagram illustrating a method of determining
undetermined characteristics of a solver used to solve problems, according to
one illustrated embodiment.

Figure 6 is an illustrative diagram of an exemplary energy
landscape of a problem Hamiltonian.

Figure 7 is a flow diagram of an embodiment of a method for
determining a solution to a computational problem.

Figure 8 is a schematic diagram of a portion of a conventional
superconducting quantum processor generally designed for quantum annealing

and/or adiabatic quantum computation.

26

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

DETAILED DESCRIPTION

In the following description, certain specific details are set forth in

order to provide a thorough understanding of various disclosed embodiments.
However, one skilled in the art will understand that the present systems,
methods and articles may be practiced without these details, or with other
methods, components, computing systems, etc. In other instances, well-known
structures and methods associated with classical, analog and quantum
computers, computationally complex problems, and heuristic solvers have not
been shown or described in detail to avoid unnecessarily obscuring descriptions
of the embodiments of the present systems, methods and articles.

In addition, various heuristic solvers are described herein with
reference to certain exemplary complex problems. Of course, heuristic and
other types of solvers may be used to generate solutions for a variety of
problems, such as optimization problems (e.g., logistics, planning, network
utilization, etc.), as well as constraint satisfaction problems (e.g., scheduling,
configuration management, etc.). Accordingly, the techniques and systems
described herein may be utilized to solve, or to construct systems that solve, a
wide range of problems.

Unless the context requires otherwise, throughout the
specification and claims which follow, the words “comprise” and “include” and
variations thereof, such as, “comprises”, “comprising”, “includes” and “including”
are to be construed in an open, inclusive sense, that is, as “including, but not
limited to.”

Reference throughout this specification to “one embodiment”, “an
embodiment”, “one alternative”, “an alternative” or similar phrases means that a
particular feature, structure or characteristic described is included in at least
one embodiment of the present systems, methods and articles. Thus, the
appearances of such phrases in various places throughout this specification are
not necessarily all referring to the same embodiment. Furthermore, the
particular features, structures, or characteristics may be combined in any

suitable manner in one or more embodiments.

27

10

15

20

25

WO 2009/152180 PCT/US2009/046791

As used in this specification and the appended claims, the

RN {3

singular forms “a,” “an,” and “the” include plural referents unless the context
clearly dictates otherwise. It should also be noted that the term “or” is generally
employed in its sense including “and/or” unless the context clearly dictates
otherwise.

The headings and Abstract of the Disclosure provided herein are
for convenience only and do not interpret the scope or meaning of the

embodiments.

Description of Exemplary Computing Systems

Figures 1A and 1B illustrate two exemplary computing systems
100, 1000 incorporating parameter learning modules 126, 1026. Although not
required, these embodiments will be described in the general context of
computer-executable instructions, such as program application modules,
objects or macros being executed by computing systems. Those skilled in the
relevant art will appreciate that the present systems, methods and apparatus
can be practiced with other computing system configurations, including hand-
held devices, multiprocessor systems, microprocessor-based or programmable
consumer electronics, personal computers ("PCs"), network PCs, mini-
computers, mainframe computers, and the like. The embodiments can also be
practiced in distributed computing environments, where tasks or modules are
performed by remote processing devices, which are linked through a
communications network. In a distributed computing environment, program
modules may be located in both local and remote memory storage devices.

Figure 1A shows a computing system 100 operable to solve
complex problems using at least one analog processor, according to one
illustrated embodiment. As will be described in greater detail below, computing
system 100 may further include a parameter learning module 126 operable to

determine parameters for solving the complex problems.

28

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

In one embodiment, computing system 100 includes a digital /
classical computing subsystem 102 and an analog computing subsystem 104
communicatively coupled to digital computing subsystem 102.

Digital computing subsystem 102 may include at least one
processing unit 106, at least one system memory 108, and at least one system
bus 110 that couples various subsystem components, including system
memory 108 to processing unit 106. Digital computing subsystem 102 will at
times be referred to in the singular herein, but this is not intended to limit the
application to a single digital computing subsystem 102. In many
embodiments, there will be more than one digital computing subsystem 102 or
other classical computing device involved.

Processing unit 106 may be any logic processing unit, such as
one or more central processing units ("CPUs"), digital signal processors
("DSPs"), application-specific integrated circuits ("ASICs"), etc. Unless
described otherwise, the construction and operation of the various blocks
shown in Figure 1A are of conventional design. As a result, such blocks need
not be described in further detail herein, as they will be understood by those
skilled in the relevant art.

System bus 110 can employ any known bus structures or
architectures, including a memory bus with a memory controller, a peripheral
bus, and a local bus. System memory 108 may include read-only memory
("ROM") and random access memory ("RAM") (not shown). A basic
input/output system ("BIOS") 112, which can form part of the ROM, contains
basic routines that help transfer information between elements within digital
computing subsystem 102, such as during startup.

Digital computing subsystem 102 may also include non-volatile
memory 114. Non-volatile memory 114 may take a variety of forms, including:
a hard disk drive for reading from and writing to a hard disk, an optical disk
drive for reading from and writing to removable optical disks, and/or a magnetic
disk drive for reading from and writing to magnetic disks. The optical disk can

be a CD-ROM or DVD, while the magnetic disk can be a magnetic floppy disk

29

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

or diskette. Non-volatile memory 114 may communicate with processing unit
106 via system bus 110 and may include appropriate interfaces or controllers
116 coupled between non-volatile memory 114 and system bus 110. Non-
volatile memory 114 may serve as long-term storage for computer-readable
instructions, data structures, program modules and other data for digital
computing subsystem 102. Although digital computing subsystem 102 has
been described as employing hard disks, optical disks and/or magnetic disks,
those skilled in the relevant art will appreciate that other types of non-volatile
computer-readable media may be employed, such a magnetic cassettes, flash
memory cards, Bernoulli cartridges, RAMs, ROMs, smart cards, etc.

_ Various program modules, application programs and/or data can
be stored in system memory 108. For example, system memory 108 may store
an operating system 118, end user application interfaces 120, server
applications 122, at least one solver module 124, a parameter learning module
126 and a translator module 128. In addition, system memory 108 may store at
least one analog processor interface module 132. The operation and function
of these modules are discussed in detail below.

System memory 108 may also include one or more networking
applications 134, for example, a Web server application and/or Web client or
browser application for permitting digital computing subsystem 102 to exchange
data with sources via the Internet, corporate Intranets, or other networks, as
well as with other server applications executing on server computers.
Networking application 134 in the depicted embodiment may be markup
language based, such as hypertext markup language ("HTML"), extensible
hypertext markup language (“XHTML?"), extensible markup language ("XML") or
wireless markup language ("WML"), and may operate with markup languages
that use syntactically delimited characters added to the data of a document to
represent the structure of the document. A number of Web server applications
and Web client or browser applications are commercially available, such as

those available from Mozilla and Microsoft.

30

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

While shown in Figure 1A as being stored in system memory 108,
operating system 118 and various applications/modules 120, 122, 124, 126,
128, 132, 134 and other data can also be stored in nonvolatile memory 114.

Digital computing subsystem 102 can operate in a networking
environment using logical connections to at least one client computing system
136 and at least one database system 170. These logical connections may be
formed using any means of digital communication, for example, through a
network 138, such as a local area network ("LAN") or a wide area network
("WAN") including, for example, the Internet. The networking environment may
include wired or wireless enterprise-wide computer networks, intranets,
extranets, and/or the Internet. Other embodiments may include other types of
communication networks such as telecommunications networks, cellular
networks, paging networks, and other mobile networks. The information sent or
received via the logical connections may or may not be encrypted. When used
in a LAN networking environment, digital computing subsystem 102 may be
connected to the LAN through an adapter or network interface card (“NIC”) 140
(communicatively linked to system bus 110). When used in a WAN networking
environment, digital computing subsystem 102 may include an interface and
modem (not shown), or a device such as NIC 140, for establishing
communications over the WAN.

In a networked environment, program modules, application
programs, data, or portions thereof can be stored outside of digital computing
subsystem 102. Those skilled in the relevant art will recognize that the logical
connections shown in Figure 1A are only some examples of establishing
communications between computers, and other connections may also be used.

While digital computing subsystem 102 may generally operate
automatically, an end user application interface 120 may also be provided such
that an operator can interact with digital computing subsystem 102 through
different user interfaces 148, including output devices, such as a monitor 142,
and input devices, such as a keyboard 144 and a pointing device (e.g., mouse

146). Monitor 142 may be coupled to system bus 110 via a video interface,

31

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

such as a video adapter (not shown). Digital computing subsystem 102 can
also include other output devices, such as speakers, printers, etc. Other input
devices can also be used, including a microphone, joystick, scanner, etc.
These input devices may be coupled to processing unit 106 via a serial port
interface that couples to system bus 110, a parallel port, a game port, a
wireless interface, a universal serial bus ("USB") interface, or via other
interfaces.

Analog computing subsystem 104 may include at least one
analog processor, such as quantum processor 150. Quantum processor 150
may comprise multiple qubit nodes 152a-152n (collectively 152) and multiple
coupling devices 154a-154m (collectively 154).

Analog computing subsystem 104 may further include a readout
device 156 for reading out one or more of qubit nodes 152. For example,
readout device 156 may include multiple dc-SQUID magnetometers, with each
dc-SQUID magnetometer being inductively connected to a respective qubit
node 152. NIC 140 may then be communicatively coupled to readout device
156 in order to receive a voltage or current indicative of a reading from readout
device 156. The dc-SQUID magnetometers may each comprise a loop of
superconducting material interrupted by two Josephson junctions and are well
known in the art.

Analog computing subsystem 104 may also include a qubit control
system 158 including at least one controller for controlling or setting one or
more parameters for some or all of qubit nodes 152. Analog computing
subsystem 104 may further include a coupling device control system 160
including at least one coupling controller for coupling devices 154. For
example, each coupling controller in coupling device control system 160 may
be operable to tune a coupling strength of a coupling device 154 between a
minimum and a maximum value. Coupling devices 154 may also be tunable to
provide ferromagnetic or anti-ferromagnetic coupling between qubit nodes 152.

Referring again to certain components of digital computing

subsystem 102 in greater detail, in one embodiment, NIC 140 may include

32

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

appropriate hardware and/or software for interfacing with qubit nodes 152 and
coupling devices 154, either directly or indirectly through readout device 156,
qubit control system 158, and/or coupling device control system 160. In other
embodiments, different hardware may be used to facilitate communications
between digital computing subsystem 102 and analog computing subsystem
104.

| The functionality of NIC 140 when interfacing with analog
computing subsystem 104 may be divided into two classes: data acquisition
and control. Different types of chips may be used to handle each of these
discrete tasks. When acquiring data, NIC 140 may measure the physical
properties of qubit nodes 152 after quantum processor 150 has completed a
computation. These physical properties can be measured using any number of
customized or commercially available data acquisition micro-controllers
including, for example, data acquisition cards manufactured by Eian Digital
Systems (Fareham, UK), including the AD132, AD136, MF232, MF236, AD142,
AD218 and CF241 cards. In other embodiments, both data acquisition and
control may be handled by a single microprocessor, such as the Elan D403C or
D480C. Digital computing subsystem 102 may also include multiple NICs 140
in other embodiments, in order to provide sufficient control over qubit nodes
152 and coupling devices 154 and in order to efficiently measure the results of
a computation conducted using quantum processor 150.

In one embodiment, analog processor interface module 132 of
digital computing subsystem 102 may include run-time instructions for
coordinating the solution of computationally complex problems using quantum
processor 150. For instance, analog processor interface module 132 may
cause quantum processor 150 to begin solving an embedded graph problem
that is representative of, or equivalent to, a constraint satisfaction problem
received by server application 122. This may include, e.g., setting initial
coupling values and local bias values for coupling devices 154 and qubit nodes
152, respectively. Qubit nodes 152 and associated local bias values may

represent vertices of an embedded graph, while coupling devices 154 and

33

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

associated coupling values may represent edges of the embedded graph. For
example, a vertex in a graph may be embedded in quantum processor 150 as a
set of qubit nodes 152 coupled to each other ferromagnetically, and an edge in
the graph may be embedded as a ferromagnetic or anti-ferromagnetic coupling
between sets of coupled qubit nodes 152. Further information regarding this
form of quantum computation may be found in U.S. Patent No. 7,418,283, U.S.
Patent Application Publication No. 2005/0250651, and U.S. Patent No.
7,135,701, each entitled “Adiabatic Quantum Computation with
Superconducting Qubits,” the contents of which applications and patent are
hereby incorporated by reference herein in their entirety. Analog processor
interface module 132 may also include instructions for reading out the states of
one or more qubit nodes 152 at the end of an evolution via readout device 156.
This readout may represent a solution to the problem.

In one embodiment, server application 122 on digital computing
subsystem 102 may receive and at least partially process various types of
problems, including computationally complex problems. In particular, server
application 122 may be configured to receive a digital representation of a
problem from a local problem source or from a client computing system 136. In
one embodiment, the problem may be expressed in a data query language.
Server application 122 may then decipher the problem to determine whether
the problem may be solved using solver module 124. If the received data
represents such a problem, server application 122 may then interact with solver
module 124 in order to obtain a solution to the problem. In one embodiment,
translator module 128 may be used to translate the problem into a form usable
by solver module 124. For example, translator module 128 may convert the
received expression into an intermediate problem expression, and a grounder
module may convert the intermediate problem expression into a primitive
problem expression that is usable by solver module 124. In other
embodiments, server application 122 may interact with other modules, such as
parameter learning module 126, before the problem is passed on to solver
module 124.

34

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

Solver module 124 méy carry out various tasks in order to
facilitate the solution of a problem received via server application 122. In one
embodiment, solver module 124 may interact with analog processor interface
132 in order to cause quantum processor 150 to provide a solution to the
problem. In another embodiment, solver module 124 may instead, or in
addition, interact with other solver applications executing on digital processing
subsystem 102 in order to solve a problem. In still another embodiment, solver
module 124 may solve the problem itself, without interacting with other
computing systems or software applications. The solution may then be
translated into a response that may be forwarded (e.g., by the server
application) back to a requesting entity. Details of an example software design
for solving problems using such an architecture may be found in co-pending
and co-owned U.S. Patent Publication No. 2009-0077001, the content of which
is hereby incorporated by reference herein in its entirety.

As used herein, the term “solver” may refer to any combination of
hardware and/or software components that generates a solution corresponding
to a problem. Such solvers may comprise solvers designed to calculate an
exact, optimal solution to the problem (e.g., by exhaustive enumeration) or may
comprise heuristic solvers configured to calculate a solution in a reasonable
time period. As described above, in one embodiment, solver module 124 in
combination with quantum processor 150 may comprise a solver for certain
types of problems. In another embodiment, solver module 124 in conjunction
with other software applications executing in digital processing subsystem 102
may comprise a solver for other problems. It may be understood that the
solutions calculated by such solvers may be approximate, imperfect and/or only
locally optimal.

As discussed in greater detail below, each solver within
computing subsystem 100 may be associated with a variety of parameters. For
example, if the solver comprises a heuristic algorithm for searching through a
solution space of a problem, the set of parameters may include variables

related to the duration, scope, starting point and other characteristics of the

35

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

search. As another example, if the problem is an optimization problem, the set
of parameters may include variables defining a range of acceptable solutions.

In one embodiment, parameter learning module 126 of digital
computing subsystem 102 may be configured to automatically generate at least
some of the parameters for a solver based at least in part upon particular
features of a problem. In order to facilitate this process, server application 122
or solver module 124 may be operable to send at least some information
indicative of a new problem on to parameter learning module 126, and
parameter learning module 126 may, in turn, generate parameters that may be
forwarded to solver module 124. In some embodiments, parameter learning
module 126 may be further configured to select a solver from among a plurality
of solvers in computing system 100 based at least in part upon the features of
the problem. Exemplary methods by which parameter learning module 126
may determine solvers and/or parameters for solvers are described in greater
detail below with reference to Figures 2-5.

Although illustrated as a separate module, parameter learning
module 126 may, of course, be packaged with solver module 124 as a single
application in some embodiments. In other embodiments, parameter learning
module 126 may execute on a computing system that is logically separate from
digital computing subsystem 102.

Client computing system 136 may comprise any of a variety of
computing devices communicatively coupled to computing sysfem 100, and
may include a client program 190 configured to properly format and send
problems directly or indirectly to server application 122. Once computing
system 100 has determined a solution, server application 122 may be
configured to send information indicative of this solution back to client program
190.

Figure 1B illustrates a computing system 1000 operable to solve
complex problems by interacting with one or more solver computing systems,
according to one illustrated embodiment. Computing system 1000, like

computing system 100, may further include a parameter learning module 1026

36

10

15

20

25

WO 2009/152180 PCT/US2009/046791

operable to determine parameters for solving the complex problems.
Computing system 1000 may be configured generally similarly to computing
system 100 described above, except as set forth below.

Computing system 1000 lacks analog processing subsystem 104
illustrated in Figure 1A. As a result, computing system 1000 may also lack
analog processor interface 132 of Figure 1A. Instead, in one embodiment,
computing system 1000 may be communicatively coupled to one or more solver
computing systems 1050. Solver computing systems 1050 may comprise one
or more logically separate computing systems that provide solver components
for assisting in the solution of various problems, such as computationally
complex constraint satisfaction and optimization problems. In one embodiment,
solver computing systems 1050 may comprise classical / digital processors
executing solver components that may be communicatively coupled to solver
module 1024 executing on computing system 1000. For example, solver
computing systems 1050 may form a distributed computing network configured
to assist in the solution of computationally complex problems under the
direction of solver module 1024. In other embodiments, solver computing
systems 1050 may include one or more analog processors as well.

Of course, in other embodiments, computing system 1000 may
not be communicatively coupled to solver computing systems 1050. instead,
solver module 1024 (or other solver applications executed by computing system
1000) may be operable to solve the problems independently of any other

computing systems.

Description of an Exemplary Method for Determining Parameters

Figure 2 illustrates a flow diagram for a method 200 of
determining parameters for solving problems, according to one embodiment.
This method 200 will be discussed in the context of computing system 100 of
Figure 1A. However, it may be understood that the acts disclosed herein may

be executed in a variety of computing systems and computing devices (e.g., in

37

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

computing system 1000 of Figure 1B) and may involve different types of

solvers, in accordance with the described method.
Method begins at 202, when information indicative of a problem is

received. As described above, the problem may comprise any of a variety of
problems formatted for solution by a computer. In one embodiment, the
problem may comprise a computationally complex problem. For example, the
problem may comprise an NP-hard or NP-complete problem. In another
embodiment, the problem may be expressed as an optimization or constraint
satisfaction problem.

Some examples of NP-hard problems are: the traveling salesman
problem (given a number of cities and the costs of travelling between the cities,
what is the least-cost round-trip route that visits each city exactly once and then
returns to the starting city?); the MAX-SAT problem (given a series of Boolean
expressions, what assignment of TRUE and FALSE values to the variables in
the expressions will make the maximum number of expressions true?); the
Hamiltonian path / circuit problem (does a graph G define a path that travels
through all nodes exactly once?); and the graph coloring problem (what is the
minimum number of colors needed to color the vertices of a graph such that no
two adjacent vertices have the same color?).

In one embodiment, the problem may be generated by a client
computing system 136, and information indicative of the problem may be sent
via network 138 to computing system 100. The problem may be generated
automatically or by a user of client computing system 136, and the
corresponding information may be sent via any of a variety of protocols. In one
embodiment, information indicative of the problem may be sent from client
computing system 136 via hypertext transfer protocol (“HTTP”) or secure
hypertext transfer protocol (“HTTPS”) over the Internet.

In another embodiment, the problem may be generated
automatically by computing system 100. For example, the problem may be
generated by a problem generator (not shown) executing on digital computing

subsystem 102, and information indicative of the problem may be sent to server

38

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

application 122 or to solver module 124. In yet another embodiment, a user of
computing system 100 may interact with user interfaces 148 (e.g., keyboard
144) of digital computing subsystem 102 and thereby enter information
indicative of the problem.

The information indicative of the problem may comprise any of a
variety of computer-readable representations of the problem. In one
embodiment, the problem may be received as a data query language (“DQL")
expression. This DQL expression may represent, for example, a search
problem. In another embodiment, a logical statement of the problem or a
graphical representation of the problem may be used.

As described herein, the information indicative of the problem may
be received at a classical computer, such as digital computing subsystem 102,
and, more particularly, at a server application 122. In one embodiment, digital
computing subsystem 102 may store this information in database system 170.
In another embodiment, digital computing subsystem 102 may store the
information locally, for example, in nonvolatile memory 114. Of course, in other
embodiments, the information indicative of the problem may be received at an
analog or other computing device.

In one embodiment, an original problem may be translated or
reduced to a new problem that is more easily solved by a particular solver in a
translator module 128. For example, a graph coloring problem received at
digital computing subsystem 102 may be reduced to a SAT problem for solution
by a SAT problem solver. In such an embodiment, this translation or reduction
may be performed by any of a variety of components. The new information
indicative of the new problem may then be received, and the acts described
below may also be performed with reference to the new problem.

At act 204, a set of features associated with the problem is
determined. This set of features may comprise one or more characteristics
associated with the problem. In one embodiment, the set of features may be
associated with particular representations of the problem. In another

embodiment, the set of features may include information associated with the

39

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

type of problem or may comprise other intrinsic characteristics associated with
the problem.

In one embodiment, at least one feature of the set of features may
be associated with a matrix representation of the problem. In such an
embodiment, a matrix representation of the problem may be generated, and a
characteristic of the matrix representation may be determined as the at least
one feature. As would be well understood by those skilled in the art, for many
NP-complete and NP-hard problems, a matrix representation may be relatively
easily generated. For example, for a traveling salesman problem involving n
cities, an n x n matrix may be generated, wherein each element of the matrix
denotes a distance between a respective pair of cities. As another example, for
a graph coloring problem involving n vertices, an n x n adjacency matrix may be
generated, wherein each non-diagonal element of the matrix denotes a number
of edges between a respective pair of vertices, and each diagonal element
corresponds to a number of loops at a respective vertex.

A variety of characteristics of the matrix representation may be
determined as at least one feature of the set of features. In one embodiment, a
diagonal dominance of the matrix may be used. In another embodiment, a
positivity of the matrix may be used. In yet another embodiment, an average of
the values of the matrix elements may be used. In another embodiment, a
range of the values of the matrix elements may be used. In still another
embodiment, a sparsity of the matrix may be used. Any or all of these
characteristics of the matrix representation may comprise features in the set of
features associated with the problem.

In another embodiment, at least one feature of the set of features
may be associated with a graphical representation of the problem. In such an
embodiment, a graphical representation of the problem may be generated, and
a characteristic of the graphical representation may be determined as the at
least one feature. As would be well understood by those skilled in the art, for
many NP-complete and NP-hard problems, a graphical representation may be

relatively easily generated. For example, for a traveling salesman problem, a

40

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

weighted graph may be generated, wherein each vertex of the graph represents
a city, and edges joining the vertices of the graph represent distances between
respective cities. For other problems, such as the graph coloring problem, a
definition of the problem may itself define a graphical representation.

A variety of characteristics of the graphical representation may be
determined as at least one feature of the set of features. In one embodiment,
an eccentricity of the graph may be used. In another embodiment, a radius or
circumference of the graph may be used. In yet another embodiment, a
plurality of random measurements of the graph may be taken (e.g., for a large
number of random vertices of the graph, find an average number of vertices
located within 3 edges of that vertex; or start a random walk at a random initial
vertex and walk to a random vertex adjacent to the random initial vertex and
continue for a number of steps and determine various characteristics, such as
eccentricity, girth, radius, and diameter, of the induced subgraph).
Characteristics of such random measurements may then be used as features of
the set of features. Any or all of these characteristics of the graphical
representation may comprise features in the set of features associated with the
problem.

In still another embodiment, at least one feature of the set of
features may be associated with a plurality of walks through a solution space of
the problem. In such an embodiment, a plurality of walks through the solution
space may be performed, and a characteristic of the plurality of walks may be
determined as the at least one feature. Each walk of the plurality of walks may
be performed by any of a variety of algorithms operable to navigate along a
number of solutions through the solution space. For example, a simple hill
climbing search algorithm may be used. As would be well understood by those
skilled in the art, such an algorithm begins with an initial solution and then
iteratively improves the solution at each step by applying a minor change to a
preceding solution. A simple hill climbing algorithm will then stop when a local
optimal solution is found. In one embodiment, the plurality of walks may include

a plurality of random hill climbs, or simple hill climbs beginning at random

41

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

solutions within the solution space. Of course, in other embodiments, other
techniques for walking through the solution space may be used.

A variety of characteristics of the plurality of walks may be
determined as at least one feature within the set of features. In the random hill
climb example described above, an average of a number of steps required to
complete each hill climb may be used. In other embodiments, other
characteristics of the plurality of walks may be used.

In one embodiment, characteristics of all of the above
representations may comprise features in the set of features. In other
embodiments, characteristics of one or more of the above representations may
comprise features in the set of features. Of course, in other embodiments, still
other characteristics of a problem may comprise the set of features.

In one embodiment, digital computing subsystem 102, and, in
particular, parameter learning module 126, may determine the set of features
associated with the problem. Parameter learning module 126 may also take
advantage of other available computing resources when determining the set of
features. For example, in order to obtain characteristics concerning the plurality
of walks, parameter learning module 126 may request that analog processing
subsystem 104 perform the walks under the direction of parameter learning
module 126. As another example, parameter learning module 126 may
leverage the computing resources of a plurality of networked computers (e.g.,
solver computing systems 1050) in order to perform tasks necessary to
determine the set of features associated with the problem. Of course, in other
embodiments, other modules and other computing devices may be used in
order to determine the set of features.

In one embodiment, a set of features may be represented by a
vector in an n-dimensional feature space, wherein each dimension of the
feature space corresponds to a respective feature. In such an embodiment,
determining the set of features may further include generating a vector
indicative of the set of features. Such a vector may be digitally represented in a

variety of ways, and, in one embodiment, the vector may be represented by a

42

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

set of numerical values corresponding to the set of features. In one
embodiment, the numerical values may be normalized in some manner, such
that features associated with relatively large numbers do not skew a shape the
importance of vector components.

Once determined, the set of features may be stored at a variety of
locations. In one embodiment, the set of features may be stored in database
system 170. In another embodiment, the set of features may be locally stored
in nonvolatile memory 114.

At act 206, the set of features is compared with previously
determined sets of features associated with other problems. In one
embodiment, a number of sets of features may have been previously
determined for a variety of other problems in a manner similar to that described
above with reference to act 204. These sets of features may be stored in
database system 170, or may be locally stored in nonvolatile memory 114.

In one embodiment, the previously determined sets of features
may have been determined by digital computing subsystem 102 and then
stored. However, in other embodiments, the sets of features may have been
determined by other computing devices, and information indicative of these sets
of features may have been made available to digital computing subsystem 102.

In one embodiment, each of the previously determined sets of
features may be represented by a corresponding vector in an n-dimensional
feature space, as described above with reference to act 204. In such an
embodiment, each of these vectors may be represented by a set of numerical
values corresponding to the previously determined sets of features. The above
comparison may then be performed by comparing a vector associated with the
current problem with other vectors indicative of the previously determined sets
of features. In other embodiments, a variety of other methods may be used to
compare the set of features with the previously determined sets of features.

In one embodiment, digital computing subsystem 102, and, in
particular, parameter learning module 126, may perform this comparison.

However, in other embodiments, other modules or components may be used.

43

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

At act 208, a set of parameters for a solver is generated based at
least in part on the comparing the set of features with the previously determined
sets of features. As described above, the solver may comprise any
combination of hardware and/or software components that may generate a
solution corresponding to the problem. The solver may comprise a solver
operable to calculate an exact, optimal solution to the problem (e.g., by
exhaustive enumeration) or may comprise a solver implementing a heuristic
algorithm configured to calculate a solution in a reasonable time period. In one
embodiment, the solver may include an analog computer, such as analog
computing subsystem 104.

The set of parameters may comprise one or more variables
associated with the solver. In one embodiment, the set of parameters may be
associated with physical characteristics of the solver (e.g., the settings used by
analog computing subsystem 104). In another embodiment, the set of
parameters may comprise parameters that describe a heuristic algorithm used
by the solver.

In one embodiment, if a tabu search solver is used, the
parameters may include: a definition of a search space associated with the
problem (e.g., a search space may be defined to include infeasible solutions); a
definition of a neighboring solution; characteristics of the tabu list (e.g., length
and type); termination criteria (e.g., the number of permissible iterations, the
number of consecutive iterations without improvement, a termination threshold
value); and/or restart diversification characteristics. In another embodiment, if a
simulated annealing solver is used, the parameters may include: an initial value
of a control parameter; a decrement function for lowering a value of the control
parameter; and/or termination criteria (e.g., a termination value of the control
parameter). It may be understood that a variety of parameters may be
generated for the above and other types of solvers.

In one embodiment, sets of parameters associated with previously
solved problems may be available to parameter learning module 126. For

example, for each previously solved problem, database system 170 or

44

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

nonvolatile memory 114 may have stored therein: a vector indicative of a
previously determined set of features, and at least one set of parameters used
to solve the problem by at least one solver. As described above, this data may
have been generated by computing system 100 or may be shared among a
plurality of computing systems.

Based upon this stored data, the set of parameters for the current
problem may be generated by first selecting at least one vector from among the
previously determined vectors in the n-dimensional feature space that is near
the vector associated with the current problem. In one embodiment, the at least
one proximate vector may be selected from among the previously determined
vectors by determining a single vector separated by a shortest distance from
the vector associated with the current problem in the n-dimensional feature
space. In another embodiment, a plurality of proximate vectors may be
selected as a predetermined number of vectors that are closest to the vector
associated with the current problem. In still another embodiment, a plurality of
proximate vectors may be selected based upon whichever vectors are within a
predetermined distance from the vector associated with the current problem.

Of course, other methods may also be used to select the at least one proximate
vector.

Once the at least one proximate vector has been selected, the set
of parameters may be generated based at least in part on a prior set of
parameters used to solve at least one problem associated with the at least one
proximate vector. That is, once the at least one proximate vector is selected,
the parameter learning module 126 may access the prior set of parameters
associated with the at least one proximate vector and the solver. In one
embodiment, if a single proximate vector is selected, the set of parameters may
simply be set equal to the prior set of parameters used to solve that earlier
problem. In another embodiment, if a plurality of proximate vectors are
selected, the set of parameters may be set equal to an average or a weighted
average of prior sets of parameters associated the plurality of proximate

vectors. In still other embodiments, the set of parameters may be extrapolated

45

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

based upon the prior set of parameters associated with the at least one
proximate vector. In other embodiments, of course, even more complex
methods of generating the set of parameters may be used.

In one embodiment, parameter learning module 126 may
generate the set of parameters. Of course, in other embodiments, other
modules or components may be used.

This method of generating the set of parameters may, of course,
be extended in order to select the solver from among a plurality of solvers
based at least in part on the comparing the set of features with the previously
determined sets of features. In one embodiment, a variety of different solvers
may be available to digital computing subsystem 102. Moreover, information
indicative of optimal solvers associated with previously solved problems may be
available to parameter learning module 126. For example, for each previously
solved problem, database system 170 or nonvolatile memory 114 may have
stored therein: a vector indicative of a previously determined set of features, at
least one optimal solver from among a plurality of solvers, and at least one set
of parameters used to solve the problem by the at least one solver.

Thus, in a manner similar to that described above, the solver used
to solve the current problem may be selected based at least in part on the
solver used to solve at least one problem associated with at least one vector
that is relatively proximate the vector associated with the current problem. That
is, once the at least one proximate vector is selected, parameter learning
module 126 may determine the solver associated with the at least one
proximate vector. In one embodiment, the solver for the current problem may
simply be selected to be the same as the prior solver used to solve that earlier
problem.

At act 210, the problem may be solved using the set of
parameters to generate a solution. As described above, the solver may
comprise any combination of hardware and/or software components that may

generate a solution corresponding to the problem.

46

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

In one embodiment, parameter learning module 126 may pass the
set of parameters generated at act 208 on to solver module 124. Solver
module 124 may then employ the set of parameters itself and/or may use the
set of parameters in order to control analog computing subsystem 104. In one
embodiment, the problem may be solved on quantum processor 150. In such
an embodiment, the set of parameters may be associated with respective
parameters that control qubit control system 158 and/or the coupling device
control system 160.

Figure 3 illustrates a flow diagram for a method 300 of revising the
set of parameters determined in accordance with method 200 of Figure 2. This
method begins at act 302, when the set of parameters used to solve the
problem is stored. As described above, this set of parameters may be stored in
database system 170 or in nonvolatile memory 114 associated with digital
computing subsystem 102. In another embodiment, the set of parameters may
simply be temporarily stored in system memory 108.

In one embodiment, the set of parameters may be stored such
that they are logically associated with the set of features associated with the
problem. In such an embodiment, this set of parameters and corresponding
features may be used to solve future problems as described in method 200.
Parameter learning module 126 may store the set of parameters. Of course, in
other embodiments, other modules or components may also be used.

At act 304, at least one parameter of the set of parameters is
varied to generate a revised set of parameters. In one embodiment, parameter
learning module 126 may vary a single parameter. However, in other
embodiments, multiple parameters may be varied at once.

The variation of the set of parameters may be intelligent. For
example, parameter learning module 126 may determine that variations in
particular parameters may be more likely to lead to optimal solutions. Indeed,
some problems may be more sensitive to variations in certain parameters.
Parameter learning module 126 may also determine that variations in a certain

direction are leading to improved solutions and may therefore vary the

47

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

parameters in that direction. In another embodiment, parameter learning
module 126 may maintain a history of prior variation of the set of parameters
and may take this history into account when varying the parameters. Other
intelligent computer learning techniques for varying the parameters may also be
used. In another embodiment, the variation in the set of parameters may be at
least partially guided by a user of digital computing subsystem 102.

At act 306, the problem is solved using the revised set of
parameters to generate a revised solution. As described above, the solver may
comprise any combination of hardware and/or software components that may
generate a revised solution to the problem. In one embodiment, parameter
learning module 126 may pass the revised set of parameters generated at act
304 on to solver module 124. Solver module 124 may then employ the revised
set of parameters itself and/or may use the revised set of parameters in order to
control the analog computing subsystem 104.

At act 308, the revised solution is compared with the solution
generated at act 210. In one embodiment, parameter learning module 126
performs the comparison between the revised solution and the solution. In
other embodiments, other modules or components may be used.

At act 310, the revised set of parameters is stored if the revised
solution is of a higher quality than the solution. In one embodiment, the revised
set of parameters may be stored such that they replace the original set of
parameters used to solve the problem. In another embodiment, the original set
of parameters may also be kept in order to maintain a history of the variation of
the set of parameters. The revised set of parameters may be stored such that
they may be used to solve future problems as described in method 200.

A variety of methods may be used in order to determine whether
or not the revised solution is of a higher quality than the original solution. In
one embodiment, the revised solution may be of higher quality if it has a higher
or lower value than the original solution (e.qg., if the problem is to find a global
maximum or minimum respectively). In another embodiment, the revised

solution may be of higher quality if it comprises a narrower range of values than

48

10

15

20

25

WO 2009/152180 PCT/US2009/046791

the original solution, which may be indicative of greater accuracy. In yet
another embodiment, the revised solution may be of higher quality if it is arrived
at in less time than the original solution with substantially similar values. In still
other embodiments, other characteristics of the two solutions may be
compared, as would be well understood by those skilled in the art.

In one embodiment, these acts of varying the at least one
parameter (act 304), solving the problem using the revised set of parameters
(act 306), comparing the revised solution with the previous solution (act 308),
and storing the revised set of parameters (act 310) may be performed during
otherwise idle computing cycles of digital computing subsystem 102. In one
embodiment, these acts may further take advantage of otherwise idle time of
the solver, such as idle time associated with analog computing subsystem 104.
Thus, these computationally intensive acts may be performed when computing
system 100 is not otherwise needed. In another embodiment, these acts may
be performed by a plurality of computers in a distributed computing network,
such that these computationally intensive acts may be performed using the
computing resources of many networked computers.

In one embodiment, these acts 304-310 may be continuously
executed in order to determine more and more improved sets of parameters for
each of the problems in a problem database associated with computing system
100. Thus, future problems directed to computing system 100 for solution may
be associated with improved sets of parameters, and more optimal solutions

may be achieved in less time.

Description of an Exemplary Method for Training a Computing System

Figure 4 illustrates a flow diagram for a method 400 of training a
computing system to determine parameters for solving problems, according to
one embodiment. This method 400 will be discussed in the context of
computing system 100 of Figure 1A. However, it may be understood that the

acts disclosed herein may be executed in a variety of computing systems and

49

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

computing devices (e.g., in computing system 1000 of Figure 1B) and may
involve different types of solvers, in accordance with the described method.
The method begins at 402, when a training set of features

associated with a training problem having a previously determined answer are
determined. The training problem may comprise any of a variety of problems
formatted for solution by a computer. In one embodiment, the previously
determined answer may comprise a high quality answer to the training problem.
For example, the training problem may comprise a computationally complex
problem for which a brute force solution has already been calculated. This
brute force, exact solution may comprise the previously determined answer. In
another embodiment, the training problem may comprise a problem for which
extensive solutions have been determined using heuristic solvers, such that a
high quality answer has been determined. In still other embodiments, other
mechanisms for determining an answer for the training problem may have been
employed.

In one embodiment, the training problem may be initially selected
by computing system 100. For example, the training problem may be
automatically selected by parameter learning module 126 from a database of
problems for which high quality answers are known. In another embodiment, a
user of computing system 100 may interact with user interfaces 148 (e.g.,
keyboard 144) and thereby enter information indicative of the training problem.

The training set of features may comprise one or more
characteristics associated with the training problem, as described above with
reference to act 204. In one embodiment, parameter learning module 126 may
determine the training set of features associated with the training problem with
or without additional components. Of course, in other embodiments, other
modules and other computing devices may be used in order to determine the
training set of features.

At act 404, an initial set of parameters is generated for a solver.

The solver may comprise any combination of hardware and/or software

50

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

components that may generate a solution corresponding to the training
problem, as described in greater detail above.

The initial set of parameters may be generated by any of a variety
of methods. In one embodiment, a random set of parameters may be
generated by parameter learning module 126. In another embodiment, the
initial set of parameters may be entered by a user using user interfaces 148. In
yet another embodiment, the initial set of parameters may be generated as
described above with reference to method 200, by comparing the training set of
features with previously determined sets of features.

After generating the initial set of parameters, the training problem
may be solved using the initial set of parameters. In such an embodiment, the
training problem may be solved as described above with reference to act 210.

At act 406, at least one parameter of the initial set of parameters
is varied to generate a revised set of parameters. In one embodiment,
parameter learning module 126 may vary only a single parameter. However, in
other embodiments, multiple parameters may be varied at once. As described
above with reference to act 304, the variation of the initial set of parameters
may be more or less intelligent in certain embodiments.

At act 408, the problem is solved using the revised set of
parameters to generate a revised solution. In one embodiment, parameter
learning module 126 may pass the revised set of parameters generated at act
406 on to solver module 124. Solver module 124 may then employ the revised
set of parameters itself and/or may use the revised set of parameters in order to
control analog computing subsystem 104.

At act 410, the revised solution is compared with the previously
determined answer. In one embodiment, parameter learning module 126
performs the comparison between the revised solution and the previously
determined answer. In other embodiments, other modules or components may
be used.

At act 412, the revised set of parameters is stored as a training

set of parameters based at least in part on the comparing the revised solution

51

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

with the previously determined answer. In one embodiment, the revised set of
parameters may be stored such that they replace another set of parameters
previously used as the training set of parameters.

In one embodiment, the revised set of parameters is stored as the
training set of parameters if the revised solution is sufficiently similar to the
previously determined answer. For example, a solution error margin may be
set, such that if the revised solution is within the solution error margin from the
previously determined answer, then the revised set of parameters is stored. In
another embodiment, the revised solution may be compared with a previously
revised solution as well as the previously determined answer, and if the revised
solution is better than the previously revised solution, the revised set of
parameters may replace a previous training set of parameters. In one
embodiment, if the revised solution is not sufficiently similar to the previously
determined answer, acts of 406, 408 and 410 may be repeated until a revised
set of features is finally stored.

At act 414, the training set of features is logically associated with
the training set of parameters. In one embodiment, the training set of features
may be stored such that they are logically associated with the training set of
parameters in database system 170.

At act 416, information indicative of the training set of features is
saved as one of the previously determined sets of features referred to in
method 200. In one embodiment, the training set of features may thus be
compared with sets of features associated with future problems, and, if
sufficiently similar, the training set of parameters may be used to determine a
set of parameters for a future problem.

In one embodiment, these acts of varying the at least one
parameter (act 406), solving the training problem using a revised set of
parameters (act 408), comparing a revised solution with the previously
determined answer (act 410), and storing the revised set of parameters (act
412) may be performed during otherwise idle computing cycles of digital

computing subsystem 102. In one embodiment, these acts may further take

52

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

advantage of otherwise idle time of the solver. Thus, these computationally
intensive acts may be performed when computing system 100 is not otherwise
needed. In another embodiment, these acts 406-412 may be repeatedly
executed in order to determine more and more improved sets of parameters for
training problems in a problem database associated with computing system
100. In still another embodiment, computing system 100 may dedicate some
time before an initial use of parameter learning module 126 in order to generate

a population of these training problems in the n-dimensional feature space.

Description of an Exemplary Method for Determining Undetermined

Characteristics of a Solver

Figure 5 illustrates a flow diagram for a method 500 of
determining undetermined characteristics of a solver. The method begins at act
502, when an undetermined characteristic of a solver associated with a problem
is identified. This undetermined characteristic may comprise any of a variety of
characteristics of the solver. In one embodiment, characteristics of the solver
employing different sets of parameters may not be determined. For example, it
may not be known whether or not a solution to the problem will improve or
worsen as a certain parameter is increased, decreased or otherwise changed.
In another embodiment, a timing associated with solution of the problem
employing different sets of parameters may not be determined.

In one embodiment, a user of digital computing subsystem 102
may determine which characteristics of the solver are currently undetermined.
Information indicative of these undetermined characteristics may then be
entered via user interfaces 148. In another embodiment, parameter learning
module 126 or other software within digital computing subsystem 102 may
develop a knowledge base and may be configured to recognize undetermined
characteristics automatically.

At act 504, at least one parameter of a set of parameters is varied
to generate a revised set of parameters. In one embodiment, parameter

learning module 126 may vary only a single parameter. However, in other

53

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

embodiments, multiple parameters may be varied at once. In one embodiment,
the varied parameters may be selected based at least in part on the
undetermined characteristic.

At act 506, the problem is solved using the revised set of
parameters. In one embodiment, parameter learning module 126 may pass the
revised set of parameters generated at act 504 on to solver module 124.

Solver module 124 may then employ the revised set of parameters itself and/or
may use the revised set of parameters in order to control analog computing
subsystem 104.

At act 508, information associated with the undetermined
characteristic is generated based at least in part on solving the problem. In one
embodiment, parameter learning module 126 may monitor characteristics of the
solving act 506. For example, if the undetermined characteristic includes a
timing associated with solution of the problem using the revised set of
parameters, then parameter learning module 126 may time the solver. In other
embodiments, other characteristics of the solving process or of the solution
itself may be used in order to generate information associated with the
undetermined characteristic. In one embodiment, the information associated
with the undetermined characteristic may then be used to supplement a
knowledge base maintained by digital computing subsystem 102.

As described above, the acts of method 500 may be performed
during otherwise idle computing cycles of digital computing subsystem 102.
Thus, these computationally intensive acts may be performed when computing
system 100 is not otherwise needed. Method 500 may also be repeatedly
executed in order to help complete a knowledge base maintained by computing

system 100.

Description of an Exemplary Solver

Once a revised the set of parameters are determined for a
problem, the problem may be solved by a solver. The problem may translated

into a problem Hamiltonian and may be transmitted to a solver which may be

54

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

capable of completing adiabatic quantum computation (“AQC”) or quantum
annealing ("QA”).

In theory, AQC and QA may both be used to find the global
minimum of a problem Hamiltonian, and the problem Hamiltonian may be
structured such that this global minimum corresponds to an optimal solution to
a computational problem. The problem Hamiltonian defines an energy
landscape which may, according to quantum mechanics, include a number of
energy levels. The global minimum of a problem Hamiltonian is typically
referred to as the ground state and corresponds to the lowest energy level in
this energy landscape, though many higher energy levels may also exist. The
global minimum typically corresponds to the bottom of the deepest energy well
in the energy landscape of the problem Hamiltonian. Other energy levels that
are present within the energy well of the global minimum are said to be in the
“neighborhood” of the global minimum. However, the energy landscape may
also include additional energy wells, the base of each of which is typically
known as a local minimum. Each local minimum typically corresponds to an
energy level that is higher in energy than the global minimum. Other energy
levels that are present within the well of a local minimum are said to be in the
“neighborhood” of the local minimum.

Figure 6 is an illustrative diagram of an exemplary energy
landscape 600 of a problem Hamiltonian. Energy landscape 600 includes
global minimum 610, which is the lowest energy level in energy landscape 600
and corresponds to the ground state of the probiem Hamiltonian. A group of
energy levels 615 is illustrated as being present in the energy well that
corresponds to the global minimum 610. Thus, each energy level in group of
energy levels 615 is said to be in the neighborhood of the global minimum 610.
Energy landscape 600 also includes a plurality of local minima, only one of
which (local minimum 620) is called out in the Figure. Local minimum 620
corresponds to the base of an energy well in energy landscape 600, but is
higher in energy than global minimum 610. A group of energy levels 625 is

illustrated as being present in the energy well that corresponds to local

55

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

minimum 620. Thus, each energy level in group of energy levels 625 is said to
be in the neighborhood of local minimum 620.

During AQC or QA, the evolution of the state of the system can be
influenced by the sizes of the gaps that separate energy levels. For instance, in
some applications it can be difficult to evolve a system to the ground state if this
evolution passes through a set of energy levels that are particularly close
together (e.g., energy levels that are separated by an energy that is smaller
than the temperature of the system or smaller than the error size due to energy
level broadening). The adiabatic theorem stipulates that evolution through a set
of closely packed states may be achieved by driving the evolution
proportionately slowly. However, this can necessitate impractically long
evolution times and, furthermore, very slow evolution may increase the
likelihood of experiencing an undesirable thermal transition from a lower to a
higher energy state. In order to reduce the likelihood of such a thermal
transition, it may be desirable to reduce the system temperature and/or reduce
the magnitude of noise in the system.

In practice, there are limitations on how much the system
temperature can be reduced (i.e., how cold the system can be made to be) and
how much system noise can be reduced. Furthermore, there are limitations on
how long the computation time can be before the computation itself becomes
impractical. A balance may be sought, and some compromise may be
necessary. For example, the system may be evolved to a low energy state that
is not the lowest energy state (i.e., not the ground state). In some cases, a low
energy state that is not the ground state may still correspond to an acceptable
approximate solution to the problem. Throughout this specification and the
appended claims, the term “approximate solution” is generally used to refer to
any solution that corresponds to an energy state that is not a ground state.

It can be difficult to evolve to and remain in the ground state if the
neighborhood of the global minimum includes a set of one or more higher
energy states that are closely packed together. In some implementations,

impractical parameters (e.g., overly long computation time) or conditions (e.g.,

56

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

unrealistically cold system temperature) may be required in order to evolve from
a state in the neighborhood of a minimum to the actual minimum itself. In
accordance with the present methods and apparatus, implementations of AQC
and QA where the ground state is not practically attainable may be improved
upon by settling for a higher energy state (i.e., an approximate solution) as the
outcome of the AQC or QA and then using this energy state as the starting
point for an optimization algorithm, for example a classical algorithm such as
local search or simulated annealing.

For a given system temperature and level of noise, the
computation time of an implementation of AQC or QA may be reduced by
settling for an approximate solution as opposed to an exact solution to the
computational problem. That is, the computation time may be reduced by
permitting the system to evolve to a low energy state (i.e., an approximate
solution) that is not quite the lowest energy state (i.e., the exact solution). The
gap that separates the exact solution from any number of approximate solutions
may be so small that an impractical extension of the computation time is
required to evolve from the approximate solution to the final solution. Higher
energy states that are packed near the ground state in the neighborhood of the
global minimum usually differ from the ground state by a finite number of bit
flips. In accordance with the present methods and apparatus, the effectiveness
of AQC or QA may be improved by using an optimization algorithm to reveal a
lower energy state (such as the global minimum) when the AQC or QA itself
returns an excited state. To do this, the outcome of the AQC or QA may be
used as an initial guess for an optimization algorithm, for example a classical
algorithm such as local search or simulated annealing. If the initial guess is
close enough to the global answer, the optimization algorithm may reveal the
global minimum in polynomial time. In implementations where the AQC or QA
produces a state that is in the neighborhood of a local minimum which is far
away from the global minimum, the subsequent application of an optimization
algorithm may still yield the actual local minimum. Thus, vetting the outcome of

an implementation of AQC or QA through an optimization algorithm such as

57

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

local search or simulated annealing may generally provide a new solution that
is at least as good as, and often better than, the outcome of the AQC or QA.

Figure 2 is a flow diagram of an embodiment of a method 700 for
determining a solution to a computational problem. Method 700 includes three
acts, 701-703, though any number of acts may be included before, after, or in
between acts 701-703. At 701, a first solution to the problem is determined by
AQC or QA. At 702, the first solution to the problem is cast as the starting point
for an optimization algorithm. At 703, a second solution to the problem is
determined using the optimization algorithm.

In some embodiments, the first solution to the problem that is
determined at 701 may be an approximate solution corresponding to a first
energy state that is not the ground state. Since, in some instances, using AQC
or QA to evolve from the first energy state to the ground state can extend the
computation time by an impractical amount, it can be advantageous to settle for
a “good” approximate solution that is readily attainable by AQC or QA. This
“good” approximate solution may then be improved upon by implementing an
optimization algorithm.

At 702, the first solution that is determined at 701 is cast as the
starting point for an optimization algorithm. In some embodiments, the first
solution may be used as an initial guess in a local search algorithm or in an
implementation of simulated annealing. At 703, the optimization algorithm is
performed to determine a second solution to the problem, where the second
solution is at least as good as the first solution. If the initial guess is in the
neighborhood of the global minimum, then the optimization algorithm may
reveal the global minimum in polynomial time. Even if the initial guess is in the
neighborhood of a local minimum, the optimization algorithm may vyield the
actual local minimum in polynomial time, which is still an improvement over the
first solution.

A further aspect of the present methods and apparatus
incorporates the concept of statistical averaging. AQC and QA may generally

be used as statistical approaches to problem solving whereby multiple iterations

58

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

are executed very quickly and the probability distribution of the results is
analyzed. Statistical averaging may be incorporated into some embodiments of
the present methods and apparatus by taking the average of multiple iterations
of method 700. That is, method 700 may be executed multiple times, with each
iteration producing a respective second solution. The statistical average or
median of the second solutions may then be determined.

In some implementations, AQC and QA are particularly well-
suited to quickly evolve to an energy state in the neighborhood of the global
minimum. That is, AQC and QA are generally able to evolve to the
neighborhood of a global minimum more quickly than alternative (e.g., classical)
approaches. However, in some implementations of AQC and QA, evolving
from the neighborhood of the global minimum to the actual global minimum may
necessitate impractically long computation time in order to avoid unwanted
transitions to higher energy states (due to thermal transitions, Landau-Zener
transitions, noise, etc.). On the other hand, some optimization algorithms (e.g.
local search and simulated annealing) are particularly well-suited to quickly
evolve to a minimum from within the neighborhood of that minimum. That is, an
optimization algorithm, for example a classical algorithm such as local search or
simulated annealing, may generally be able to evolve to a ground state more
quickly than AQC or QA if the evolution begins within the neighborhood of the
global minimum. The present methods and apparatus combine quantum and
classical techniques of problem solving to take advantage of the merits of each.

QA and/or AQC may be implemented in a variety of different
ways, but the end goal is generally the same: find a low-energy state, such as a
ground state, of a system Hamiltonian that encodes a computational problem
where the low-energy state represents a solution to the computational problem.
The system Hamiltonian may therefore be referred to as a “problem
Hamiltonian.” The exact form of the problem Hamiltonian may vary depending
on the hardware upon which it is being implemented. As an illustrative

example, a quantum processor comprising superconducting flux qubits may be

59

10

15

20

25

WO 2009/152180 PCT/US2009/046791

used to embody a problem Hamiltonian in the form of a 2-local Ising

Hamiltonian given in equation 1:

H,= ghiaf +> J,0i00 (1)

i,j=1

Here, n represents the number of qubits, T is the Pauli Z-matrix
for the ™ qubit, and h; and Jijare local fields coupled to each qubit. The h;
terms in equation 1 may be physically realized by coupling signals or fields ®x
to the qubit loop of each i qubit. The Jjj terms in equation 1 may be physically
realized by coupling the qubit loops of pairs of qubits (qubits / and j,
respectively) together with a coupling strength that is at least partially governed
by an applied coupler flux bias ®,. Determining a low-energy state, such as the
ground state, of the 2-local Ising Hamiltonian in equation 1 is known to be
computationally difficult. Other problems may be mapped to the 2-local Ising
Hamiltonian; thus, this Hamiltonian may be used as the problem Hamiltonian in
an implementation of AQC or QA. To anneal the Hamiltonian described by
equation 1, a disorder term may be added as previously described, thereby

realizing an evolution Hamiltonian given by equation 2:

H, = ;hl.af +ZJU-O'I.ZO']Z. +Z}Ai(7f , 2)

i,j=l
where 0, is the Pauli X-matrix for the " qubit and 4; is the single qubit tunnel
splitting. During annealing, the tunnel splitting 4; is gradually removed until only
the problem Hamiltonian given by equation 1 remains. A brief description of
how QA of the 2-local Ising Hamiltonian may be realized using a quantum
processor comprising superconducting flux qubits is now provided.

Figure 8 is a schematic diagram of a portion of a conventional
superconducting quantum processor 800 generally designed for QA (and/or
AQC). The portion of superconducting quantum processor 800 shown in Figure
8 includes two superconducting flux qubits 801, 802 and a tunable ZZ-coupler
811 coupling information therebetween. While the portion of quantum

processor 800 shown in Figure 8 includes only two qubits 801, 802 and one

60

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

coupler 811, those of skill in the art will appreciate that quantum processor 800
may include any number of qubits, and any number of coupling devices
coupling information therebetween.

The portion of quantum processor 800 shown in Figure 8 may be
implemented to physically realize the Hamiltonians described by equation 1 and
equation 2. In order to provide the 0 and ¢* terms, quantum processor 800
includes programming interfaces 821-825 that are used to configure and control
the state of quantum processor 800. Each of programming interfaces 821-825
may be realized, for example, by a respective inductive coupling structure to a
programming system (not shown).

In the operation of quantum processor 800, programming
interfaces 821 and 824 may each be used to couple a flux signal ®¢,, into a
respective compound Josephson junction 831, 832 of qubits 801 and 802,
thereby realizing the A; terms in the system Hamiltonian. This coupling can
modulate the ¢ terms of equation 2. Similarly, programming interfaces 822
and 823 may each be used to couple a flux signal ®x into a respective qubit
loop of qubits 801 and 802, thereby realizing the h; terms in the system
Hamiltonian. This coupling provides the o” terms of equations 1 and 2.
Furthermore, programming interface 825 may be used to control the coupling
between qubits 801 and 802 through coupler 811, thereby realizing the Jj; terms
in the system Hamiltonian. This coupling provides the 0°c” terms of equations
1 and 2. In Figure 8, the contribution of each of programming interfaces 821-
825 to the system Hamiltonian is indicated in boxes 821a-825a, respectively.

A small-scale, two-qubit QA computation may generally be
performed using the portion of quantum processor 800 shown in Figure 8. The
problem Hamiltonian described by equation 1 may be realized by using
programming interfaces 822 and 823 to establish the h,o” terms and coupler
811, as controlled by programming interface 825, to establish the Jjo“c” term.
During annealing, the disorder term T'H, may be realized by using
programming interfaces 821 and 824 to establish the A0" terms. This induces

tunnel splitting in qubits 801 and 802. As the system evolves, the A;g* terms

61

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

established by programming interfaces 821 and 824 may be gradually removed
such that, at the end of the annealing process, only the terms that define
equation 1 remain.

The above description of a superconducting quantum processor is
intended for illustrative purposes only. Those of skill in the art will appreciate
that the present methods and apparatus may be implemented using any form of
guantum computing hardware (e.g., quantum computer designs that implement
any of quantum dots, ion traps, nuclear magnetic resonance, electronic spins,
optical devices, and the like) and are not limited to implementations of
superconducting devices alone.

In some embodiments, the present methods and apparatus
incorporate the implementation of a classical algorithm run on classical
computer hardware. As used herein, a classical computer is a computer that
represents information by numerical binary digits known as “bits,” where each
bit has a value of “0” or “1” such as in a binary digital computer. Throughout
this specification and the appended claims, the term “classical algorithm” is
used to refer to a computer algorithm that is suitable to be implemented on a
classical computer.

The above description of illustrated embodiments, including what
is described in the Abstract, is not intended to be exhaustive or to limit the
embodiments to the precise forms disclosed. Although specific embodiments of
and examples are described herein for illustrative purposes, various equivalent
modifications can be made without departing from the spirit and scope of the
disclosure, as will be recognized by those skilled in the relevant art. The
teachings provided herein of the various embodiments can be applied to other
systems, methods and apparatus of quantum computation, not necessarily the
exemplary systems, methods and apparatus for quantum computation generally
described above.

The various embodiments described above can be combined to
provide further embodiments. All of the U.S. patents, U.S. patent application

publications, U.S. patent applications, foreign patents, foreign patent

62

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

applications and non-patent publications referred to in this specification and/or
listed in the Application Data Sheet, including but not limited to: U.S. Patent No.
6,838,694, U.S. Patent No. 7,335,909, US Patent Publication No. 2006-
0225165, US Patent Application Serial No. 12/013,192, US Provisional Patent
Application Serial No. 60/986,554 filed November 8, 2007 and entitled
“Systems, Devices and Methods for Analog Processing”, US Provisional Patent
Application Serial No. 61/039,710, filed March 26, 2008 and entitled “Systems,
Devices, And Methods For Analog Processing”, US Patent Publication No.
2006-0147154, US Patent Application Serial No. 12/017,995, and US Patent
No. 7,135,701 are incorporated herein by reference, in their entirety. Aspects
of the embodiments can be modified, if necessary, to employ systems, circuits
and concepts of the various patents, applications and publications to provide
yet further embodiments.

These and other changes can be made to the embodiments in
light of the above-detailed description. In general, in the following claims, the
terms used should not be construed to limit the claims to the specific
embodiments disclosed in the specification and the claims, but should be
construed to include all possible embodiments along with the full scope of
equivalents to which such claims are entitled. Accordingly, the claims are not
limited by the disclosure.

As will be apparent to those skilled in the art, the various
embodiments described above can be combined to provide further
embodiments. Aspects of the present systems, methods and articles can be
modified, if necessary, to employ systems, methods, articles and concepts of
the various patents, applications and publications to provide yet further
embodiments of the present systems, methods and apparatus. For example,
the various methods described above may omit some acts, include other acts,
and/or execute acts in a different order than set out in the illustrated
embodiments.

The present methods, systems and articles may be implemented

as a computer program product that comprises a computer program

63

10

15

20

25

30

WO 2009/152180 PCT/US2009/046791

mechanism embedded in a computer-readable storage medium. For instance,
the computer program product could contain program modules. These program
modules may be stored on CD-ROM, DVD, magnetic disk storage product,
flash media or any other computer-readable data or program storage product.
The software modules in the computer program product may also be distributed
electronically, via the Internel or olherwise, by lransmission of a data signal (in
which the software modules are embedded) such as embodied in a carrier
wave.

The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of block diagrams,
schematics, and examples. Insofar as such block diagrams, schematics, and
examples contain one or more functions and/or operations, it will be understood
by those skilled in the art that each function and/or operation within such block
diagrams, flowcharts, or examples can be implemented, individually and/or
collectively, by a wide range of hardware, software, firmware, or virtually any
combination thereof. In one embodiment, the present subject matter may be
implemented via Application Specific Integrated Circuits (ASICs). However,
those skilled in the art will recognize that the embodiments disclosed herein, in
whole or in part, can be equivalently implemented in standard integrated
circuits, as one or more computer programs running on one or more computers
(e.g., as one or more programs running on one or more computer systems), as
one or more programs running on one or more controllers (e.g.,
microcontrollers) as one or more programs running on one or more processors
(e.g., microprocessors), as firmware, or as virtually any combination thereof,
and that designing the circuitry and/or writing the code for the software and or
firmware would be well within the skill of one of ordinary skill in the art in light of
this disclosure.

In addition, those skilled in the art will appreciate that the
mechanisms taught herein are capable of being distributed as a program
product in a variety of forms, and that an illustrative embodiment applies equally

regardless of the particular type of signal bearing media used to actually carry

64

10

WO 2009/152180 PCT/US2009/046791

out the distribution. Examples of signal bearing media include, but are not
limited to, the following: recordable type media such as floppy disks, hard disk
drives, CD ROMs, digital tape, flash drives and computer memory; and
transmission type media such as digital and analog communication links using
TDM or IP based communication links (e.g., packet links).

In general, in the following claims, the terms used should not be
construed to limit the present systems, methods and apparatuses to the specific
embodiments disclosed in the specification, but should be construed to include
all possible embodiments along with the full scope of equivalents to which such
claims are entitled. Accordingly, the present systems, methods and
apparatuses are not limited by the disclosure, but instead their scope is to be

determined entirely by the claims.

65

WO 2009/152180 PCT/US2009/046791

CLAIMS

We/l claim:

1. A computer-implemented method of determining
parameters for solving problems, the method comprising:

receiving information indicative of a problem by at least one
computer system having at least one processor and at least one storage
medium that stores executable instructions;

determining a set of features associated with the problem by the
at least one computer system;

comparing the set of features with previously determined sets of
features associated with other problems by the at least one computer system;

generating a set of parameters for a solver by the at least one
computer system based at least in part on the comparing the set of features
with the previously determined sets of features; and

solving the problem using the set of parameters by at least one

analog processor, to generate a solution.

2. The method of claim 1 wherein receiving the information
indicative of the problem by the at least one a computer system includes
receiving the information indicative of the problem via a user interface of the at

least one computer system.

3. The method of claim 1 wherein determining the set of
features includes:

generating a matrix representation of the problem by the at least
one computer system; and

determining at least one characteristic of the matrix representation

as at least one feature of the set of features.

66

WO 2009/152180 PCT/US2009/046791

4. The method of claim 3 wherein the at least one
characteristic of the matrix representation is at least one of diagonal
dominance, positivity, an average of matrix values, a range of matrix values and

sparsity.

5. The method of claim 1 wherein determining the set of
features includes:

generating a graphical representation of the problem by the at
least one computer system; and

determining at least one characteristic of the graphical

representation as at least one feature of the set of features.

6. The method of claim 5 wherein the at least one
characteristic of the graphical representation is at least one of eccentricity,
radius, circumference, and a characteristic of a plurality of random

measurements of the graphical representation.

7. The method of claim 1 wherein determining the set of
features includes:

performing a plurality of walks through a solution space of the
problem on the at least one computer system; and

determining at least one characteristic of the plurality of walks as

at least one feature of the set of features.

67

WO 2009/152180 PCT/US2009/046791

8. The method of claim 7 wherein the plurality of walks
include a plurality of stochastic hill climbs, and wherein the at least one
characteristic of the plurality of walks is an average of a number of steps to

complete each hill climb.

9. The method of claim 1 wherein the problem is one of an

NP-hard or NP-complete problem.

10. The method of claim 1 wherein determining the set of
features includes generating a problem vector indicative of the set of features in
an n-dimensional feature space by the at least one computer system, wherein

each dimension of the feature space corresponds to a respective feature.

11. The method of claim 10 wherein comparing the set of
features with the previously determined sets of features includes comparing the
problem vector with other vectors indicative of the previously determined sets of

features in the n-dimensional feature space.

12. The method of claim 11 wherein generating the set of
parameters for the solver by the at least one computer system includes
selecting at least one proximate vector from among the other vectors, the at
least one proximate vector being relatively proximate the problem vector in the
n-dimensional space, and generating the set of parameters by the at least one
computer system based at least in part on a prior set of parameters used to

solve at least one problem associated with the at least one proximate vector.
13. The method of claim 12 wherein generating the set of

parameters based at least in part on the prior set of parameters includes setting

the set of parameters equal to the prior set of parameters.

638

WO 2009/152180 PCT/US2009/046791

14. The method of claim 1, further comprising:
selecting the solver by the at least one computer system from
among a plurality of solvers based at least in part on the comparing the set of

features with the previously determined sets of features.

15. The method of claim 1, further comprising:

determining a training set of features associated with a training
problem having a previously determined answer;

generating an initial set of parameters for the solver by the at least
one computer system;

varying at least one parameter of the initial set of parameters to
generate a revised set of parameters;

solving the training problem by the at least one computer system
using the revised set of parameters to generate a revised solution;

comparing the revised solution with the previously determined
answer;

storing the revised set of parameters by the at least one computer
system as a training set of parameters based at least in part on the comparing
the revised solution with the previously determined answer;

logically associating the training set of features with the training
set of parameters by the at least one computer system; and

saving information indicative of the training set of features as one
of the previously determined sets of features by the at least one computer

system.

16. The method of claim 15, further comprising, repeatedly:

varying at least one parameter of the revised set of parameters to
generate a second revised set of parameters;

solving the problem by the at least one analog processor using

the second revised set of parameters to generate a second revised solution;

69

WO 2009/152180 PCT/US2009/046791

comparing the second revised solution with the previously
determined answer; and

storing the second revised set of parameters by the at least one
computer system as the training set of parameters based at least in part on the

comparing the second revised solution with the previously determined answer.

17. The method of claim 1, further comprising:

storing the set of parameters used to solve the problem by the at
least one computer system;

varying at least one parameter of the set of parameters to
generate a revised set of parameters;

solving the problem by the at least one analog processor using
the revised set of parameters to generate a revised solution;

comparing the revised solution with the solution; and

storing the revised set of parameters by the at least one computer

system if the revised solution is of a higher quality than the solution.

18. The method of claim 17 wherein the acts of varying the at
least one parameter, solving the problem using the revised set of parameters,
comparing the revised solution with the solution, and storing the revised set of
parameters are performed during otherwise idle cycles of the at least one

computer system.

19. The method of claim 1, further comprising:

storing the set of parameters used to solve the problem by the at
least one computer system,;

identifying an undetermined characteristic of the solver associated
with the problem;

varying at least one parameter of the set of parameters to

generate a revised set of parameters;

70

WO 2009/152180 PCT/US2009/046791

solving the problem by the at least one analog processor using
the revised set of parameters; and

generating information associated with the undetermined
characteristic based at least in part on solving the problem using the revised set
of parameters by at least one of by the at least one computer system or the at

least one analog processor.

20. The method of claim 19 wherein generating the information
associated with the undetermined characteristic includes determining a timing

associated with solving the problem using the revised set of parameters.

21. The method of claim 1 wherein solving the problem using
the set of parameters by at least one analog processor includes solving the

problem on a quantum computer having at least one quantum processor.

22. The method of claim 1 wherein the at least one computer

system is a classical computer system.

23. The method of claim 1 wherein the at least one computer
system is a quantum computer system that includes the at least one analog

processor.

24. A computer-implemented method of determining
parameters for solving problems, the method comprising:

receiving information indicative of a problem by at least one
computer system;

determining a set of features associated with the problem by the
at least one computer system;

comparing the set of features with previously determined sets of
features associated with other problems by the at least one computer system;

and

71

WO 2009/152180 PCT/US2009/046791

generating a set of parameters for a solver based at least in part
on the comparing the set of features with the previously determined sets of

features by the at least one computer system.

25. The method of claim 24, further comprising providing the
set of parameters by the at least one computer system to the solver for use in

solving the problem.

26. The method of claim 24 wherein receiving the information
indicative of the problem by the at least one computer system includes
receiving the information indicative of the problem via a user interface of the at

least one computer system.

27. The method of claim 24 wherein determining the set of
features includes:

generating a matrix representation of the problem by the at least
one computer system; and

determining at least one characteristic of the matrix representation

as at least one feature of the set of features.

28. The method of claim 27 wherein the at least one
characteristic of the matrix representation is at least one of diagonal
dominance, positivity, an average of matrix values, a range of matrix values and

sparsity.

29. The method of claim 24 wherein determining the set of
features includes:

generating a graphical representation of the problem by the at
least one computer system; and

determining at least one characteristic of the graphical

representation as at least one feature of the set of features.

72

WO 2009/152180 PCT/US2009/046791

30. The method of claim 29 wherein the at least one
characteristic of the graphical representation is at least one of eccentricity,
radius, circumference, and a characteristic of a plurality of random

measurements of the graphical representation.

31. The method of claim 30 wherein determining the set of
features includes:

performing a plurality of walks through a solution space of the
problem by the at least one computer system; and

determining at least one characteristic of the plurality of walks as

at least one feature of the set of features.

32. The method of claim 31 wherein the plurality of walks
include a plurality of stochastic hill climbs, and wherein the at least one
characteristic of the plurality of walks is an average of a number of steps to

complete each hill climb.

33. The method of claim 24 wherein the problem is one of a

NP-hard or NP-complete problem.

34. The method of claim 24 wherein determining the set of
features includes generating a problem vector indicative of the set of features in
an n-dimensional feature space by the at least one computer system wherein

each dimension of the feature space corresponds to a respective feature.

35. The method of claim 34 wherein comparing the set of
features with the previously determined sets of features includes comparing the
problem vector with other vectors indicative of the previously determined sets of

features in the n-dimensional feature space.

73

WO 2009/152180 PCT/US2009/046791

36. The method of claim 35 wherein generating the set of
parameters for the solver includes selecting at least one proximate vector from
among the other vectors, the at least one proximate vector being relatively
proximate the problem vector in the n-dimensional space, and generating the
set of parameters based at least in part on a prior set of parameters used to

solve at least one problem associated with the at least one proximate vector.

37. The method of claim 36 wherein generating the set of
parameters based at least in part on the prior set of parameters includes setting

the set of parameters equal to the prior set of parameters.

38. The method of claim 24, further comprising:
selecting the solver from among a plurality of solvers via the at
least one computer system based at least in part on the comparing the set of

features with the previously determined sets of features.

39. The method of claim 24, further comprising:

determining a training set of features associated with a training
problem having a previously determined answer;

generating an initial set of parameters for the solver by the at least
one computer system;

varying at least one parameter of the initial set of parameters to
generate a revised set of parameters;

receiving a revised solution to the training problem from the
solver, the revised solution associated with the revised set of parameters;

comparing the revised solution with the previously determined
answer;

storing the revised set of parameters as a training set of
parameters by the at least one computer system based at least in part on the

comparing the revised solution with the previously determined answer;

74

WO 2009/152180 PCT/US2009/046791

logically associating the training set of features with the training
set of parameters by the at least one computer system; and

saving information indicative of the training set of features as one
of the previously determined sets of features by the at least one computer

system.

40. The method of claim 39, further comprising, repeatedly:

varying at least one parameter of the revised set of parameters to
generate a second revised set of parameters;

receiving a second revised solution to the training problem from
the solver, the second revised solution associated with the second revised set
of parameters;

comparing the second revised solution with the previously
determined answer; and

storing the second revised set of parameters as the training set of
parameters by the at least one computer system based at least in part on the

comparing the second revised solution with the previously determined answer.

41. The method of claim 24, further comprising:

receiving a solution to the problem from the solver, the solution
associated with the set of parameters;

storing the set of parameters by the at least one computer
system;

varying at least one parameter of the set of parameters to
generate a revised set of parameters;

receiving a revised solution to the problem from the solver, the
revised solution associated with the revised set of parameters;

comparing the revised solution with the solution; and

storing the revised set of parameters by the at least one computer

system if the revised solution is of higher quality than the solution.

75

WO 2009/152180 PCT/US2009/046791

42. The method of claim 24, further comprising:

storing the set of parameters by the at least one computer
system;

identifying an undetermined characteristic of the solver associated
with the problem;

varying at least one parameter of the set of parameters to
generate a revised set of parameters;

providing the revised set of parameters to the solver for use in
solving the problem;

causing the solver to solve the problem using the revised set of
parameters; and

generating information associated with the undetermined
characteristic by the at least one computer system based at least in part on the

solver solving the problem using the revised set of parameters.

43. The method of claim 42 wherein generating the information
associated with the undetermined characteristic by the at least one computer
system includes determining a timing associated with the solver solving the

problem using the revised set of parameters.

44. The method of claim 24 wherein generating a set of
parameters for a solver based at least in part on the comparing the set of
features with the previously determined sets of features by the at least one
computer system includes generating the set of parameters for a quantum

computer solver.

45. A classical computer for determining parameters for solving
problems, comprising:

a processor that executes instructions; and

a computer-readable memory that stores instructions that cause

the processor to determine parameters for solving problems by:

76

WO 2009/152180 PCT/US2009/046791

receiving information indicative of a problem;

determining a set of features associated with the problem;

comparing the set of features with previously determined
sets of features associated with other problems; and

generating a set of parameters for a solver based at least
in part on the comparing the set of features with the previously determined sets

of features.

46. The computer of claim 45 wherein the computer-readable
memory stores further instructions that cause the processor to provide the set

of parameters to the solver for use in solving the problem.

47. The computer of claim 45 wherein receiving the information
indicative of the problem includes receiving the information indicative of the

problem via a user interface.

48. The computer of claim 45 wherein determining the set of
features includes:

generating a matrix representation of the problem; and

determining at least one characteristic of the matrix representation

as at least one feature of the set of features.

49. The computer of claim 48 wherein the at least one
characteristic of the matrix representation is at least one of diagonal
dominance, positivity, an average of matrix values, a range of matrix values and

sparsity.
50. The computer of claim 45 wherein determining the set of

features includes:

generating a graphical representation of the problem; and

77

WO 2009/152180 PCT/US2009/046791

determining at least one characteristic of the graphical

representation as at least one feature of the set of features.

51. The computer of claim 50 wherein the at least one
characteristic of the graphical representation is at least one of eccentricity,
radius, circumference, and a characteristic of a plurality of random

measurements of the graphical representation.

52. The computer of claim 45 wherein determining the set of
features includes:

performing a plurality of walks through a solution space of the
problem; and

determining at least one characteristic of the plurality of walks as

at least one feature of the set of features.

53. The computer of claim 52 wherein the plurality of walks
include a plurality of stochastic hill climbs, and wherein the at least one
characteristic of the plurality of walks is an average of a number of steps to

complete each hill climb.

54. The computer of claim 45 wherein the problem is one of a

NP-hard or NP-complete problem.

55. The computer of claim 45 wherein determining the set of
features includes generating a problem vector indicative of the set of features in
an n-dimensional feature space wherein each dimension of the feature space

corresponds to a respective feature.

56. The computer of claim 55 wherein comparing the set of

features with the previously determined sets of features includes comparing the

78

WO 2009/152180 PCT/US2009/046791

problem vector with other vectors indicative of the previously determined sets of

features in the n-dimensional feature space.

57. The computer of claim 56 wherein generating the set of
parameters for the solver includes selecting at least one proximate vector from
among the other vectors, the at least one proximate vector being relatively
proximate the problem vector in the n-dimensional space, and generating the
set of parameters based at least in part on a prior set of parameters used to

solve at least one problem associated with the at least one proximate vector.

58. The computer of claim 57 wherein generating the set of
parameters based at least in part on the prior set of parameters includes setting

the set of parameters equal to the prior set of parameters.

59. The computer of claim 45 wherein the computer-readable
memory stores further instructions that cause the processor to select the solver
from among a plurality of solvers based at least in part on the comparing the set

of features with the previously determined sets of features.

60. The computer of claim 45 wherein the computer-readable
memory stores further instructions that cause the processor to determine
parameters for solving problems by:

determining a training set of features associated with a training
problem having a previously determined answer;

generating an initial set of parameters for the solver;

varying at least one parameter of the initial set of parameters to
generate a revised set of parameters;

receiving a revised solution to the training problem from the
solver, the revised solution associated with the revised set of parameters;

comparing the revised solution with the previously determined

answer;

79

WO 2009/152180 PCT/US2009/046791

storing the revised set of parameters as a training set of
parameters based at least in part on the comparing the revised solution with the
previously determined answer;

logically associating the training set of features with the training
set of parameters; and

saving information indicative of the training set of features as one

of the previously determined sets of features.

61. The computer of claim 60 wherein the computer-readable
memory stores further instructions that cause the processor to determine
parameters for solving problems by, repeatedly:

varying at least one parameter of the revised set of parameters to
generate a second revised set of parameters;

receiving a second revised solution to the training problem from
the solver, the second revised solution associated with the second revised set
of parameters;

comparing the second revised solution with the previously
determined answer; and

storing the second revised set of parameters as the training set of
parameters based at least in part on the comparing the second revised solution

with the previously determined answer.

62. The computer of claim 45 wherein the computer-readable
memory stores further instructions that cause the processor to determine
parameters for solving problems by:

receiving a solution to the problem from the solver, the solution
associated with the set of parameters;

storing the set of parameters;

varying at least one parameter of the set of parameters to

generate a revised set of parameters;

80

WO 2009/152180 PCT/US2009/046791

receiving a revised solution to the problem from the solver, the
revised solution associated with the revised set of parameters;

comparing the revised solution with the solution; and

storing the revised set of parameters if the revised solution is of

higher quality than the solution.

63. The computer of claim 45 wherein the computer-readable
memory stores further instructions that cause the processor to determine
parameters for solving problems by:

storing the set of parameters;

identifying an undetermined characteristic of the solver associated
with the problem;

varying at least one parameter of the set of parameters to
generate a revised set of parameters;

providing the revised set of parameters to the solver for use in
solving the problem;

causing the solver to solve the problem using the revised set of
parameters; and

generating information associated with the undetermined
characteristic based at least in part on the solver solving the problem using the

revised set of parameters.

64. The computer of claim 63 wherein generating the
information associated with the undetermined characteristic includes
determining a timing associated with the solver solving the problem using the

revised set of parameters.

65. A computer-readable medium that stores instructions that
cause a processor to determine parameters for solving problems by:
receiving information indicative of a problem;

determining a set of features associated with the problem;

81

WO 2009/152180 PCT/US2009/046791

comparing the set of features with previously determined sets of
features associated with other problems; and

generating a set of parameters for a solver based at least in part
on the comparing the set of features with the previously determined sets of

features.

66. The computer-readable medium of claim 65 wherein the
computer-readable medium stores further instructions that cause a processor to

provide the set of parameters to the solver for use in solving the problem.

67. The computer-readable medium of claim 65 wherein
receiving the information indicative of the problem includes receiving the

information indicative of the problem via a user interface.

68. The computer-readable medium of claim 65 wherein
determining the set of features includes:

generating a matrix representation of the problem; and

determining at least one characteristic of the matrix representation

as at least one feature of the set of features.

69. The computer-readable medium of claim 68 wherein the at
least one characteristic of the matrix representation is at least one of diagonal
dominance, positivity, an average of matrix values, a range of matrix values and

sparsity.

70. The computer-readable medium of claim 65 wherein
determining the set of features includes:

generating a graphical representation of the problem; and

determining at least one characteristic of the graphical

representation as at least one feature of the set of features.

82

WO 2009/152180 PCT/US2009/046791

71. The computer-readable medium of claim 70 wherein the at
least one characteristic of the graphical representation is at least one of
eccentricity, radius, circumference, and a characteristic of a plurality of random

measurements of the graphical representation.

72. The computer-readable medium of claim 65 wherein
determining the set of features includes:

performing a plurality of walks through a solution space of the
problem; and

determining at least one characteristic of the plurality of walks as

at least one feature of the set of features.

73. The computer-readable medium of claim 72 wherein the
plurality of walks include a plurality of stochastic hill climbs, and wherein the at
least one characteristic of the plurality of walks is an average of a number of

steps to complete each hill climb.

74. The computer-readable medium of claim 65 wherein the

problem is one of a NP-hard or NP-complete problem.

75. The computer-readable medium of claim 65 wherein
determining the set of features includes generating a problem vector indicative
of the set of features in an n-dimensional feature space wherein each

dimension of the feature space corresponds to a respective feature.

76. The computer-readable medium of claim 75 wherein
comparing the set of features with the previously determined sets of features
includes comparing the problem vector with other vectors indicative of the

previously determined sets of features in the n-dimensional feature space.

83

WO 2009/152180 PCT/US2009/046791

77. The computer-readable medium of claim 76 wherein
generating the set of parameters for the solver includes selecting at least one
proximate vector from among the other vectors, the at least one proximate
vector being relatively proximate the problem vector in the n-dimensional
space, and generating the set of parameters based at least in part on a prior set
of parameters used to solve at least one problem associated with the at least

one proximate vector.

78. The computer-readable medium of claim 77 wherein
generating the set of parameters based at least in part on the prior set of
parameters includes setting the set of parameters equal to the prior set of

parameters.

79. The computer-readable medium of claim 65 wherein the
computer-readable medium stores further instructions that cause a processor to
select the solver from among a plurality of solvers based at least in part on the

comparing the set of features with the previously determined sets of features.

80. The computer-readable medium of claim 65 wherein the
computer-readable medium stores further instructions that cause a processor to
determine parameters for solving problems by:

determining a training set of features associated with a training
problem having a previously determined answer;

generating an initial set of parameters for the solver;

varying at least one parameter of the initial set of parameters to
generate a revised set of parameters;

receiving a revised solution to the training problem from the
solver, the revised solution associated with the revised set of parameters;

comparing the revised solution with the previously determined

answer,;

84

WO 2009/152180 PCT/US2009/046791

storing the revised set of parameters as a training set of
parameters based at least in part on the comparing the revised solution with the
previously determined answer;

logically associating the training set of features with the training
set of parameters; and

saving information indicative of the training set of features as one

of the previously determined sets of features.

81. The computer-readable medium of claim 80 wherein the
computer-readable medium stores further instructions that cause a processor to
determine parameters for solving problems by, repeatedly:

varying at least one parameter of the revised set of parameters to
generate a second revised set of parameters;

receiving a second revised solution to the training problem from
the solver, the second revised solution associated with the second revised set
of parameters;

comparing the second revised solution with the previously
determined answer; and

storing the second revised set of parameters as the training set of
parameters based at least in part on the comparing the second revised solution

with the previously determined answer.

82. The computer-readable medium of claim 65 wherein the
computer-readable medium stores further instructions that cause a processor to
determine parameters for solving problems by:

receiving a solution to the problem from the solver, the solution
associated with the set of parameters;

storing the set of parameters;

varying at least one parameter of the set of parameters to

generate a revised set of parameters;

85

WO 2009/152180 PCT/US2009/046791

receiving a revised solution to the problem from the solver, the
revised solution associated with the revised set of parameters;

comparing the revised solution with the solution; and

storing the revised set of parameters if the revised solution is of

higher quality than the solution.

83. The computer-readable medium of claim 65 wherein the
computer-readable medium stores further instructions that cause a processor to
determine parameters for solving problems by:

storing the set of parameters;

identifying an undetermined characteristic of the solver associated
with the problem;

varying at least one parameter of the set of parameters to
generate a revised set of parameters;

providing the revised set of parameters to the solver for use in
solving the problem;

causing the solver to solve the problem using the revised set of
parameters; and

generating information associated with the undetermined
characteristic based at least in part on the solver solving the problem using the

revised set of parameters.

84. The computer-readable medium of claim 83 wherein
generating the information associated with the undetermined characteristic
includes determining a timing associated with the solver solving the problem

using the revised set of parameters.
85. A method of solving a problem, the method comprising:

determining a first solution to the problem via a quantum

computation performed by a quantum processor; and

86

WO 2009/152180 PCT/US2009/046791

refining the first solution to the problem via an optimization

algorithm performed by a digital processor.

86. The method of claim 85 wherein the quantum computation

includes an adiabatic quantum computation.

87. The method of claim 85 wherein the quantum computation

includes an implementation of quantum annealing.

88. The method of claim 85 wherein refining the first solution to
the problem via an optimization algorithm includes computationally executing a

classical algorithm.

89. The method of claim 88 wherein computationally executing
a classical algorithm includes computationally executing a local search

algorithm.

90. The method of claim 88 wherein computationally executing
a classical algorithm includes computationally executing a simulated annealing

algorithm.

91. The method of claim 85 wherein refining the first solution to
the problem includes using the first solution as a starting point for the

optimization algorithm.
92. The method of claim 91 wherein using the first solution as
a starting point for the optimization algorithm includes using the first solution as

an initial guess for the optimization algorithm.

93. The method of claim 85 wherein the first solution to the

problem is an approximate solution and refining the first solution includes

87

WO 2009/152180 PCT/US2009/046791

producing a second solution to the problem that is at least as good as the first

solution to the problem.

94. A method of solving problems, the method comprising:

quantum computationally determining a first solution to a problem
via a quantum processor;

casting the first solution to the problem as the starting point for an
optimization; and

computationally performing an optimization to determine a second

solution to the problem via a digital processor.

95. The method of claim 94 wherein quantum computationally
determining a first solution to a problem includes performing an adiabatic

quantum computation.

96. The method of claim 94 wherein quantum computationally
determining a first solution to a problem includes performing a quantum

annealing computation.

97. The method of claim 94 wherein computationally

performing an optimization includes performing a classical optimization.

98. The method of claim 97 wherein performing a classical

optimization includes performing a local search.

99. The method of claim 97 wherein performing a classical

optimization includes performing simulated annealing.
100. A system to solve problems, the system comprising:

a quantum processor configured to quantum computationally

determine a first solution to a problem; and

88

WO 2009/152180 PCT/US2009/046791

the system configured to computationally refine the first solution to

the problem via an optimization algorithm.

101. The system of claim 100, further comprising:
a classical processor configured to execute the optimization

algorithm to refine the first solution to the problem.

102. A system to solve problems, the system comprising:

at least one quantum processor configured to quantum
computationally determine a first solution to a problem;

at least one classical digital processor configured to perform an
optimization to determine a second solution to the problem based on the first

solution to the problem as a starting point for the optimization.

89

PCT/US2009/046791

WO 2009/152180

vi"old

0s!
uzsi (
waysAS [04u0)| wpe)— W bujdnoy “w u_!um/l%oz G 4__\
CRILEN] . T “ Weyshg 044u0) ! 1. i 991A9(]
: .l . i Hgnd u P R
bujjdnoy owﬁ\/m\ ¢ buydno m QNE\/“\ ¢ 8poN HgnDd .ml Sonoow
094" gre)-=H 2 bundnoy |1 ge;/ 976/-==H 7 opoN WanD_—{| |9/
oyGlt= | buydnoy || 0zg/-==f 1 9PON H4nD |,
w&\
& 29 ke BuyiomjaN wajshg
= asDqpip(]
~ 76— 90D }Jaju| 10ssado.d Bojpuy
. . -
79! 0/1
97]—— Jojpjsupi}
97— bujuipa] JajawiniDg
A 18A|0S woiboig jualy M
44 M 48MB8S //
07]——1 s300iaju} uoypdjjddy Jasp pu3 gyl waisks Buindwoy jusi) 06!
\\ 81— waysAg buypiadp % _ : :
00! i mm_m g0, Ndd
201~ N

PCT/US2009/046791

WO 2009/152180

2/9

a7

A

m (s)swoyshs
i” m::za&oos\,_om

501 Bupiomjan
8201 J1ojD|SuD.4]
9201—— mc__.tcm._ J19]aWDIDy
veol—— IENGIS
A4/ JEISERS

waysAg
8spqD}D(

8501

7
0401

woubo.id uai)

]

woaysAg Buyndwoy jusin

060!

0701 —— $990}484u| uoypoijddy Jas(pu3

8101 wajsig buypiadg

Z2I01—1 mw_m

0001 N
8001

9501

WO 2009/152180

PCT/US2009/046791

3/9

/200

/202

Receive information indicative of a problem

/204

Determining a set of features associated with
the problem

/206

Compare the set of features with previously
determined sets of features associated with
other problems

/208

Generate a set of parameters for a solver
based at least in part on the comparing the
set of features with the previously determined

sets of features

/270

Solve the problem using the set of
parameters to generate a solution

HG. 2

WO 2009/152180

PCT/US2009/046791

4/9

300

;-

/302

Store the set of parameters used fo solve
the problem

/504

Vary ot least one parameter of the set of
parameters to generate a revised set of
parameters

/305

Solve the problem using the revised set of
parameters to generate a revised solution

/308

Compare the revised solution with the solution

/570

Store the revised set of parameters if the
revised solution is of a higher quality
than the solution

FG. 3

WO 2009/152180 PCT/US2009/046791

/ 400

/402
Determine a training set of features
associated with a training problem having o
previously determined answer

5/9

04
/4
Generate an initial set of parameters for a
solver
406
-

Vary at least one parameter of the initial set
of parameters to generate a revised set of
parameters

/408

Solve the training problem using the revised
set of parameters to generate a revised

solution
| /470
Compare the revised solution with the
previously determined answer
/412

Store the revised set of parameters as a
training set of parameters based at least in
part on the comparing the revised solution
with the previously determined answer

/474
Logically associate the training set of
features with the training set of parameters

l 416

Save information indicative of the training
set of features as one of the previously
determined sefs of features

FIG. 4

WO 2009/152180 PCT/US2009/046791

6/9

/500

/502

Identify an undetermined characteristic of a
solver associated with a problem

/504

Vary at least one parameter of a set of
parameters to generate a revised set of
parameters

/506

Solve the problem using the revised
set of parameters

/508
Generate information associated with the
undetermined characteristic based at least in
part on the solving the problem

FIG. 5

WO 2009/152180

G(Q

7/9

PCT/US2009/046791

610

FIG. 6

PCT/US2009/046791

WO 2009/152180

8/9

€0.

4 A

"Wojqosd ay} 0] UONNIOS PUODSS B SUILLISISP 0] WYlIoBIe [eoIsselo oy} wiopad

¢0.

-

‘wyyioBie |eoisse|o e Joy juiod Burers ay) se wajqosd sy} 0] UoRN|OS 1SIY 8y} ISeD

104

‘wia|goud ayj 0} uonnjos
1841 B suLISiap 0} Buliesuue wnjuenb Jo uonemdwod wnjuenb siegeipe Wiopuad

00L

PCT/US2009/046791

WO 2009/152180

9/9

(1 do1d)
§ Ild

mmwwd
[(;20%) |

mﬁNw/J | R
1 AXNOANV . cz8

I\mNNw

1 (;'0My) !
te = e1z8

28 I AX«.OQV !

\:w

]

AAA

YYY

1 4]

c08

mw.mmww
628 |m - b= =—

128

108

| (0 o) | N

=== 008

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - claims
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings

