(19) **日本国特許庁(JP)**

(51) Int.Cl.

(86) 国際出願番号

(87) 国際公開番号

審査請求日

(87) 国際公開日

(12)特許公報(B2)

(11)特許番号

特許第4156795号 (P4156795)

(全 17 頁) 最終頁に続く

ヨン69008 リュー・サ

(45) 発行日 平成20年9月24日(2008.9.24)

(24) 登録日 平成20年7月18日 (2008.7.18)

(,				
CO7C 309/15	(2006.01)	CO7C	309/15	
A 6 1 K 31/185	(2006.01)	A 6 1 K	31/185	
A 6 1 K 31/662	(2006.01)	A 6 1 K	31/662	
A61P 25/32	(2006.01)	A 6 1 P	25/32	
CO7C 309/24	(2006.01)	CO7C	309/24	
			İ	請求項の数 4
(21) 出願番号	特願2000-528530	(P2000-528530)	(73) 特許権者	500007037
(86) (22) 出願日	平成10年1月27日	(1998. 1. 27)		メルク、サン
(65) 公表番号	特表2002-501040	(P2002-501040A)		フランス国リ
(43) 公表日	平成14年1月15日	(2002, 1, 15)		ン・ロマン

PCT/FR1998/000147

平成11年7月29日 (1999.7.29)

平成16年7月13日 (2004.7.13)

W01999/037606

FL

||(74)代理人 100062144

弁理士 青山 葆

(74)代理人 100067035

弁理士 岩崎 光隆

|(72) 発明者 ジャン-ジャック・ベルテロン

フランス、エフー69005リヨン、リュ

37番

・デュ・パノラマ8番

|(72) 発明者 フィリップ・デュルバン

フランス、エフ-69100ヴィルールバ ンヌ、リュ・ポール・ヴェルレーヌ83番

最終頁に続く

(54) 【発明の名称】アミノアルカンスルホン酸、ホスホン酸およびホスフィン酸の新たな誘導体、それらの製造、並びに薬物としてのそれらの使用

(57)【特許請求の範囲】

【請求項1】

式:

【化1】

$$\begin{bmatrix} O & R_2 & R_1 \\ N & A & X & (O^{-})_m \\ R_3 & & & \end{bmatrix}_p M_q$$
 (I)

10

[式中、

Χは、

【化2】


```
であり;
```

 R_1 、 R_2 、および R_3 は、水素および C_1 - C_7 アルキル基から選択され; A は、式:

 $(R_5 および R_6 は互いに独立して、水素および C_1 - C_7 アルキル基から選択される。)$ 10 の基であり;

R 』は、水素およびC 』 - C ュアルキル基から選択され;

Mは、二価の金属(Ca、Mg、Sr、Zn)であり;

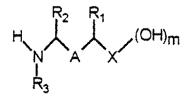
m = 1 であり;

p = 2 および q = 1 であり、 p および q は、塩の電気的中性を確実にするものである。

(ただし、R₁、R₂およびR₃が水素である場合、R₄はメチル基ではない。) の化合物。

【請求項2】

次の化合物:


20

- 3 (2 (メチル)プロパノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (2 (メチル)プロパノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (ブタノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (ブタノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (ペンタノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (2 (メチル)プロパノイルアミノ)プロパンスルホン酸亜鉛;
- 3 (2 (メチル)プロパノイルアミノ)プロパンスルホン酸ストロンチウム;
- 3-(3-(メチル)ブタノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (3 (メチル)ブタノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (2 2 (ジメチル)プロパノイルアミノ)プロパンスルホン酸カルシウム; 30
- 3 (2 2 (ジメチル)プロパノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (アセチルアミノ) 2 メチルプロパンスルホン酸カルシウム;
- 3 (アセチルアミノ) 3 メチルプロパンスルホン酸カルシウム;
- 3 (アセチルアミノ) 3 メチルプロパンスルホン酸マグネシウム;
- 3 (アセチルアミノ) 1 メチルプロパンスルホン酸カルシウム;
- N-メチル-3-(アセチルアミノ)プロパンスルホン酸カルシウム;
- 3 (アセチルアミノ) 2 2 ジメチルプロパンスルホン酸カルシウム;
- 3 (トリフルオロメチルカルボニル)プロパンスルホン酸カルシウム;

から選択される、請求項1に記載の化合物。

【請求項3】

請求項1に記載した式Iの化合物の製造方法であって、式II:

(II)

30

の化合物を、式III:

【化6】

 $M(OH)_z$ (III)

[z は、金属 Mの原子価である。]

の化合物と反応させた後、式IV:

【化7】

の化合物と反応させることからなる方法。

【請求項4】

請求項1~2のいずれかに記載した化合物を含んでなる医薬組成物。

【発明の詳細な説明】

[0001]

本発明は、アルコールおよび他の物質に対する依存の処置を意図するスルホン酸、ホスホ 20 ン酸およびホスフィン酸誘導体に関する。

[0002]

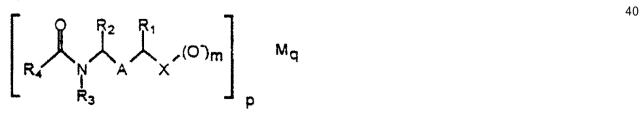
日本国特許JP第7612093号は、式:

【化9】

の化合物をコレステロール低下剤として開示している。

[0003]

日本国特許 J P 第 6 3 2 0 1 6 4 3 号は、写真基板におけるアジュバントとしての 4 - パルミチルスルホン酸カリウムの使用を開示している。


[0004]

FA-A-2,457,281は、アセチルホモタウリン塩を膜安定剤として開示している。 <u>アセチルホモタウリンのカルシウム塩(商品名:acamprosate)は、アルコール中毒の</u>処置に用いられる。

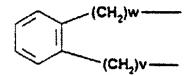
[0005]

本発明の主題は、式(I):

【化10】

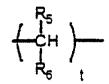
[式中、

Χは、


【化11】

であり;

 R_1 、 R_2 、および R_3 は、水素および C_1 - C_7 アルキル基から選択され;


A は、式:

【化12】

の基、または式:

【化13】

(R₅ およびR₆ は互いに独立して、水素、C₁ - C₇ アルキル基、6個~14個の炭素原子を有するアリール基、並びにフリル、チエニルおよびチアゾリルより選択されるヘテロアリール基から選択され、アリールおよびヘテロアリール基の場合には、C₁ - C₇ アルキル基、ハロゲンまたはトリフルオロメチル基から選択される1つ~3つの置換基を持つことが可能であり、および t = 1~3 である。)

の基であり;

R $_4$ は、水素、 C $_1$ - C $_7$ アルキル基、 C F $_3$ 基、 6 個 $_7$ 1 4 個の炭素原子を有するアリール基、並びにフリル、チェニルおよびチアゾリルより選択されるヘテロアリール基から選択され、アリールおよびヘテロアリール基の場合には、 C $_1$ - C $_7$ アルキル基、ハロゲンまたはトリフルオロメチル基から選択される 1 つ $_7$ 3 つの置換基を持つことが可能であり:

Mは、一価の金属(Na, K, Li)または二価の金属(Ca, Mg, Sr, Zn)であり;m=1または 2 であり;

 $p=1\sim2$ および $q=1\sim2$ であり、p および q は、塩の電気的中性を確実にするものである。]

(ただし、 R_1 、 R_2 および R_3 が水素である場合、 R_4 はメチル基ではない。) で表わされる新規スルホン酸、ホスホン酸およびホスフィン酸誘導体である。

[0006]

本発明の化合物は、キラル中心を含んでなり得る。光学異性体、ラセミ体、鏡像異性体およびジアステレオ異性体型は、本発明の一部である。

[0007]

出願人の会社は、このファミリーの製品がアルコール依存を示すラットにおけるアルコール消費を減少させることを可能にすることを示している。それらの治療適用はとりわけ、アルコール、および例えば、アヘン剤、ニコチン誘導体、カフェイン誘導体、アンフェタミン、カンナビノイドまたはトランキライザーといったような、習慣性をもたらし得る他の物質に対する依存の分野に関する。

[00008]

本発明はまた、場合により1つ以上の薬学的に許容され得る賦形剤またはビヒクルと組み

10

20

30

40

20

30

40

50

合わせて、式(I)の化合物の1つを活性成分として含んでなる医薬組成物にも適用する

[0009]

本発明による組成物のうち、実施例として、黙示の限定なしに、錠剤、硬ゼラチンカプセル剤を含め、カプセル剤、または経口で服用すべき溶液剤の言及をなし得る。

[0010]

本発明の化合物は、0.01g~1gの用量で1日1回~3回投与することができる。

[0011]

式(I)の好ましい化合物のうち、例えば:

- 3-(2-(メチル)プロパノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (2 (メチル)プロパノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (ブタノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (ブタノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (ペンタノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (ベンゾイルアミノ)プロパンスルホン酸カルシウム;
- 3 (ベンゾイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (2 (メチル)プロパノイルアミノ)プロパンスルホン酸亜鉛;
- 3 (2 (メチル)プロパノイルアミノ)プロパンスルホン酸ストロンチウム;
- 3 (3 (メチル)ブタノイルアミノ)プロパンスルホン酸カルシウム;
- 3-(3-(メチル)ブタノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (2 2 (ジメチル)プロパノイルアミノ)プロパンスルホン酸カルシウム;
- 3 (2 2 (ジメチル)プロパノイルアミノ)プロパンスルホン酸マグネシウム;
- 3 (アセチルアミノ) 2 メチルプロパンスルホン酸カルシウム;
- 3 (アセチルアミノ) 3 メチルプロパンスルホン酸カルシウム;
- 3 (アセチルアミノ) 3 メチルプロパンスルホン酸マグネシウム;
- 3 (アセチルアミノ) 1 メチルプロパンスルホン酸カルシウム;
- 3 (アセチルアミノ) 2 フェニルプロパンスルホン酸カルシウム;
- 2 (2 アセチルアミノメチル)フェニルメタンスルホン酸カルシウム;
- N-メチル-3-(アセチルアミノ)プロパンスルホン酸カルシウム;
- 3 (アセチルアミノ) 2 2 ジメチルプロパンスルホン酸カルシウム;
- 3 (トリフルオロメチルカルボノイル)プロパンスルホン酸カルシウム;

の言及をなし得る。

[0012]

 R_4 が C_2 - C_7 アルキル基であって、特に分枝鎖状の基である式(I)の化合物に非常に詳しく記すものが好ましい。

[0013]

次の化合物:

- 3 ((2 メチル)プロパノイルアミノ)プロパンスルホン酸;
- 3 (ブタノイルアミノ)プロパンスルホン酸;
- 3 (ペンタノイルアミノ)プロパンスルホン酸;
- 3 (ベンゾイルアミノ)プロパンスルホン酸;
- 3 (アセチルアミノ)プロパンホスホン酸; N - メチル - 3 - (アセチルアミノ)プロパンスルホン酸;
- 3 ((3 メチル)ブタノイルアミノ)プロパンスルホン酸;
- 3 ((2 2 ジメチル)プロパノイルアミノ)プロパンスルホン酸;
- 3 (アセチルアミノ) 2 メチルプロパンスルホン酸;
- 3 (アセチルアミノ) 3 メチルプロパンスルホン酸;
- 3 (アセチルアミノ) 1 メチルプロパンスルホン酸;
- 3 (アセチルアミノ) 2 フェニルプロパンスルホン酸;
- 2 (2 アセチルアミノメチル)フェニルメタンスルホン酸;

3 - (アセチルアミノ) - 2 - 2 - ジメチルプロパンスルホン酸;

3 - (トリフルオロメチルカルボノイル)プロパンスルホン酸;

もまた、本発明の一部を構成する。

[0014]

本発明はまた、本発明の化合物の製造方法も目標とする。後者をスキーム1に要約する。

[0015]

スキーム1:

【化14】

[0016]

その反応は、式(II)の化合物を塩基 $M(OH)_z$ (ここで、z は、金属 Mの原子価である。)と反応させた後、1.5 ~ 2.0 の温度で維持しながら、式(IV)の無水物を加えることにより行うことができる。反応を一晩行って、処理した後、式(I)の化合物を得る。

[0017]

本発明を説明する次の実施例のリストは、限定するものではない。プロトン核磁気共鳴(1HNMR)データにおいては、次の略語を使用した。

·ppm ... 100万分の1;

(l)

・s ... シングレット;

40

30

- ・d ... ダブレット;
- ・t ... トリプレット;
- · q ... カルテット;
- ・m … マルチプレット、分離不能ピーク;
- ・ j … ヘルツ単位で表わした結合定数;
- ・dd ... 二重ダブレット。

[0018]

実施例1

3 - (2 - 2 - (ジメチル)プロパノイルアミノ)プロパンスルホン酸カルシウム 【化 1 5 】

C $_{1\,6}$ H $_{3\,2}$ C a N $_2$ O $_8$ S $_2$

W = 484.65

[0019]

十分な量の蒸留水中のアミノプロパンスルホン酸 2 2 . 3 g (0 . 1 mol) の溶液に、 C a (O H) $_2$ 8 . 1 g (0 . 1 1 mol) を加える。白色の縣濁液を得、この縣濁液を 1 5 分間撹拌しておく。

[0020]

その縣濁液を15 まで冷却して、温度を15 から20 に維持しながら、(2-2-ジメチル)無水プロパン酸35.2g(0.2 mol)を滴加する。その後、その混合物を一晩撹拌したまま室温にする。その後、得られた溶液を減圧下に蒸発させて、残留物を適量の蒸留水にとって、それを溶解する。(2-2-ジメチル)無水プロパン酸17.6g(0.1 mol)を15 ~20 で再び加えた後、その反応混合物を再び撹拌したまま室温で一晩放置する。その混合物を減圧下に蒸発乾固する。残留物を、濃塩酸1.5 mlを含んでなる無水エタノール300 mlにとる。得られた沈殿を濾過して取り出し、乾燥させる。その後、それを溶解するのに必要な量の蒸留水にとる。エーテルで洗浄した後、持続性の混濁が得られるまで、アセトンを水相に少しずつ加える。沈殿が完了するまで、撹拌し続けて、生成物を濾過して取り出し、乾燥させる。

得られた重量: 4.5 g(収率: 3 7 %)。

 $MP_{G}: 300$.

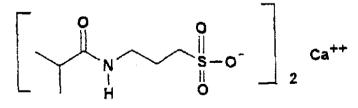
IR $_{C=0}$: 1 6 2 3 cm⁻¹ °

 1 H NMR (D_2O) ppm単位での $\,$: 0 . 8 3 (s , 3 C H_3)、 1 . 5 9 (m , C H_2)、 2 . 5 6 (m , C H_2)、 2 . 9 7 (m , C H_2)。

重量による分析: (C₁₆H₃₂CaN₂O₈S₃・0.25H₂O)

C % H % Ca % N % S % 3 9.65 6.66 8.27 5.78 1 3.23. 3 8.72 6.61 8.49 5.87 1 3.33.

[0021]


実施例2

計算値

実測値

3 - (2 - (メチル)プロパノイルアミノ)プロパンスルホン酸カルシウム

【化16】

C 14 H 28 C a N 2 O 8 S 2

MW = 456.60

 $MP_G > 360$.

IR $_{C=O}$: 1 6 4 4 cm⁻¹.

重量による分析:

C % Ca % S % H % N % 39.83 6.18 8.78 6.1414.04. 計算値 36.96 6.278.70 6.27 14.25. 実測値

50

10

20

30

[0022]

実施例3

3 - (2 - (メチル)プロパノイルアミノ)プロパンスルホン酸マグネシウム

【化17】

$$\begin{bmatrix} 0 & 0 & 0 \\ N & S & 0 \end{bmatrix} \xrightarrow{\text{Mg}}$$

C $_{1\,4}$ H $_{2\,8}$ M g N $_2$ O $_8$ S $_2$

MW = 440.83

 $MP_{G}: 270-273$. IR $_{C=O}$: 1 6 4 4 cm⁻¹.

¹H NMR(D₂O)ppm単位での :0.95(d,2CH₃)、1.78(m,CH₂)、2. 3 4 (m, CH₂), 2.76 (m, CH₂), 3.14 (t, CH₂).

重量による分析:

C % Н% Mg % N % S % 計算値 36.65 6.59 5.30 6.1113.97. 実測値 36.56 6.60 5.52 6.15 13.57.

[0023]

実施例4

3 - (ブタノイルアミノ)プロパンスルホン酸カルシウム

【化18】

C 14 H 28 C a N 2 O 8 S 2

MW = 456.60

30

10

20

 $MP_{G} > 360$.

I R $_{C=O}$: 1 6 3 3 cm⁻¹.

¹ H NMR (D₂O) ppm単位での : 0.81(t,CH₃)、1.49(m,CH₂)、1.8 4 (m, CH₂), 2.12 (t, CH₂), 2.83 (m, CH₂), 3.21 (t, CH₂).

重量による分析:

C % H % Ca % N % S % 36.83 6.18 8.78 6.14 14.04. 36.84 6.23 8.79 6.30 14.29.

[0024]

実施例5

計算値 実測値

40

3 - (ブタノイルアミノ)プロパンスルホン酸マグネシウム

【化19】

C $_{1\,4}$ H $_{2\,8}$ M g N $_{2}$ O $_{8}$ S $_{2}$ $MP_G: 325$.

MW = 440.83

IR $_{C=0}$: 1 6 3 5 cm⁻¹.

重量による分析: (C₁₄H₂₈MgN₂O₈S₂・2H₂O)

C % Н% Mg % N % S % 計算値 35.26 6.76 5.10 5.38 13.45. 実測値 35.11 6.62 5.35 5.90 13.10.

[0025]

実施例6

5 - (アセチルアミノ)ペンタンスルホン酸カルシウム

【化20】

C 14 H 28 C a N 2 O 8 S 2

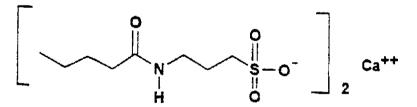
MW = 456.60

 $MP_{G}: 325 - 330$.

IR $_{C=O}$: 1 6 3 7 cm⁻¹.

 1 H NMR (D_2O) ppm単位での : 1 . 3 8 - 1 . 5 8 (m , 2 C H_2)、 1 . 7 4 (m , C H_2)、 1 . 9 7 (s , C H_2)、 2 . 9 3 (t , C H_2)、 3 . 1 7 (t , C H_2)。

重量による分析:


C % H % Ca % N % S % 36.83 6.18 8.78 計算値 6.14 14.04. 実測値 36.53 6.25 8.44 6.29 13.95.

[0026]

実施例7

3 - (ペンタノイルアミノ)プロパンスルホン酸カルシウム

【化21】

 $C_{16}H_{32}CaN_2O_8S_2$

MW = 484.65

 $MP_{G} > 360$.

IR $_{C=0}$: 1 6 3 3 cm⁻¹.

重量による分析:

H % N % C % Ca % S % 8.27 計算値 39.65 6.66 5.78 13.23. 39.75 6.75 8.33 5.54 13.23. 実測値

[0027]

実施例8

3 - (ベンゾイルアミノ)プロパンスルホン酸カルシウム

【化22】

50

10

20

 $C_{20}H_{24}CaN_2O_8S_2$

MW = 524.63

 $MP_{G} > 360$.

IR $_{C=0}$: 1 6 3 7 cm⁻¹.

 1 H NMR (D_2O) ppm単位での : 1 . 7 8 (m , C H_2)、 2 . 7 2 (m , C H_2)、 3 . 2 10 1 (t , C H_2)、 7 . 2 - 7 . 4 5 (m , 5 A R)。

重量による分析: (C₂₀H₂₄CaN₂O₈S₂・1H₂O)

C % H % N % S % 計算値 44.27 4.83 7.39 5.16 11.82. 実測値 43.98 4.75 7.23 5.11 11.42.

[0028]

実施例9

3 - (ベンゾイルアミノ)プロパンスルホン酸マグネシウム

【化23】

0 N S S O 2 Mg⁺⁺

C $_{2\,0}$ H $_{2\,4}$ M g N $_{2}$ O $_{8}$ S $_{2}$

MW = 508.86

 $MP_{G}: 350$.

IR $_{C=0}$: 1 6 4 0 cm⁻¹.

¹ H NMR(D₂O)ppm単位での : 1.9(m,CH₂)、2.83(m,CH₂)、3.33(t,CH₂)、7.32-7.68(m,5AR)。

重量による分析: (C₂₀H₂₄MgN₂O₈S₂・2H₂O)

C % H % Mg % N % S %

計算値 44.08 5.18 4.46 5.14 11.77。 実測値 44.49 5.18 4.48 5.16 11.42。

[0029]

実施例10

3 - (アセチルアミノ)プロパンスルホン酸ストロンチウム

【化24】

 $C_{10}H_{20}N_{2}O_{8}S_{2}Sr$

MW = 448.03

 $MP_{G}: 305 - 308$.

IR $_{C=0}$: 1 6 3 2 cm⁻¹.

 1 H NMR (D_2O) ppm単位での : 1 . 6 (m , C H_2)、 1 . 6 6 (s , C H_3)、 2 . 6 1 (m , C H_2)、 2 . 9 7 (t , C H_2)。

重量による分析:

H % C % N % S % Sr % 計算値 26.81 4.50 6.25 14.31 19.56. 実測値 20.77 4.57 6.16 13.77 19.53.

[0030]

実施例11

3 - (2 - (メチル)プロパノイルアミノ)プロパンスルホン酸亜鉛

【化25】

 $C_{14}H_{28}N_{2}O_{8}S_{2}Zn$

MW = 481.89

 $MP_{G}: 114$.

I R $_{C=O}$: 1 6 3 7 cm⁻¹.

 1 H NMR (D_2O) ppm単位での : 0.77(d , $C\,H_3)$ 、 1.6(m , $C\,H_2)$ 、 2.17(m , $C\,H)$ 、 2.58(m , $C\,H_2)$ 、 2.97(t , $C\,H_2)$ 。

重量による分析: $(C_{14}H_{28}N_2O_8S_2Zn \cdot 2H_2O)$

20

40

 C%
 H%
 N%
 S%
 Zn%

 計算値
 32.46
 6.27
 5.41
 12.38
 12.62。

実測値 32.46 6.27 5.30 12.38 12.44。

[0031]

実施例12

3 - (2 - (メチル)プロパノイルアミノ)プロパンスルホン酸ストロンチウム

【化26】

 $C_{14}H_{28}N_{2}O_{8}S_{2}Sr$

MW = 504.14

 $MP_G: 345-350$.

IR $_{C=0}$: 1 6 4 2 cm⁻¹.

 1 H NMR (D_2O) ppm単位での : 1 (d , CH_3)、 1 . 8 3 (m , CH_2)、 2 . 3 9 (m , CH)、 2 . 8 (m , CH_2)、 3 . 1 9 (t , CH_2)。

重量による分析:

C % H % N % S % Sr %

計算値 33.36 5.60 5.56 12.72 17.38。 実測値 33.12 5.62 5.24 12.24 17.85。

[0032]

実施例13

3 - (3 - (メチル)ブタノイルアミノ)プロパンスルホン酸カルシウム

【化27】

30

 $C_{16}H_{32}CaN_2O_8S_2$

MW = 484.65

 $MP_{G} > 350$.

IR $_{C=0}$: 1 6 3 3 cm⁻¹.

39.07

 1 H NMR (D_2 O) ppm単位での : 0 . 9 1 (d , 2 C H_3)、 1 . 8 9 - 2 . 1 2 (m , 2 $\,$ 10 C H_2 + C H)、 2 . 9 2 (m , C H_2)、 3 . 3 (t , C H_2)。

13.08

5.83

重量による分析:

 C %
 H %
 Ca %
 N %
 S %

 計算値
 39.65
 6.66
 8.27
 5.78
 13.23。

[0033]

実施例14

実測値

3 - (3 - (メチル)ブタノイルアミノ)プロパンスルホン酸マグネシウム

8.37

【化28】

6.41

C $_{1\,6}$ H $_{3\,2}$ M g N $_2$ O $_8$ S $_2$

MW = 468.88

M P_G: 2 8 0 - 2 8 7 . I R $_{G=O}$: 1 6 4 4 cm⁻¹.

¹ H NMR (D₂O) ppm単位での : 0.66(d,2CH₃)、1.63-1.87(m,2 CH₂+CH)、2.67(m,CH₂)、3.05(t,CH₂)。

重量による分析: (C₁₆H₃₂MgN₂O₈S₂・2H₂O)

C % Н% N % Mg % S % 38.05 7.18 4.81 5.55 計算値 12.70. 実測値 38.40 7.10 5.53 5.67 13.13.

[0034]

実施例15

3 - (2,2 - (ジメチル)プロパノイルアミノ)プロパンスルホン酸マグネシウム

【化29】

C 16 H 32 M g N 2 O 8 S 2

MW = 468.88

 1 H NMR ($\rm D_2O$) ppm単位での $\,$: 1 . 2 8 (s , 3 C $\rm H_3)$ 、 2 . 0 4 (m , C $\rm H_2)$ 、 3 . 0 2 (m , C $\rm H_2)$ 、 3 . 4 2 (t , C $\rm H_2)$ 。

20

30

40

重量による分析: (C₁₆H₃₂MgN₂O₈S₂・5H₂O)

C % H % Mg % N % S %

計算値 34.42 7.57 4.35 5.04 11.49。 実測値 33.94 7.48 4.35 5.38 11.68。

[0035]

実施例16

3 - (アセチルアミノ) - 2 - メチルプロパンスルホン酸カルシウム

【化30】

C 12 H 24 C a N 2 O 8 S 2

MW = 428.54

 $MP_{G}: 270$.

IR $_{C=O}$: 1 6 3 8 cm⁻¹ °

 1 H NMR (D_{2} O) ppm単位での : 1 . 1 5 (d , C H_{3})、 2 . 0 7 (s , C H_{3})、 2 . 2 5 (m , C H)、 2 . 8 3 (m , C H)、 3 . 0 2 (m , C H)、 3 . 2 4 (n , C H_{2})。

重量による分析: $(C_{12}H_{24}CaN_2O_8S_2 \cdot 0.5H_2O)$

C % H % Ca % N % S %

計算値 33.63 5.65 9.35 6.54 14.96。 実測値 32.41 5.74 9.28 6.27 14.47。

[0036]

実施例17

3 - (アセチルアミノ) - 3 - メチルプロパンスルホン酸カルシウム

【化31】

C $_{1\,2}$ H $_{2\,4}$ C a N $_2$ O $_8$ S $_2$

MW = 428.54

 $M\ P_G$: 2 7 5 - 2 8 5 .

IR $_{C=0}$: 1 3 6 4 cm⁻¹.

 1 H NMR (D_2O) ppm単位での : 1 . 1 5 (d , $C\,H_3$)、 1 . 8 5 (m , $C\,H_2$)、 1 . 9 8 (s , $C\,H_2$)、 2 . 9 1 (t , $C\,H_2$)、 3 . 9 4 (m , $C\,H$)。

重量による分析: $(C_{12}H_{24}CaN_2O_8S_2 \cdot 0.5H_2O)$

C % H % Ca % N % S %

計算値 32.96 5.76 9.17 6.41 14.66。 実測値 32.61 5.79 8.95 6.34 14.29。

[0037]

実施例18

3 - (アセチルアミノ) - 3 - メチルプロパンスルホン酸マグネシウム

【化32】

C ₁₂ H ₂₄ M g N ₂ O ₈ S ₂

MW = 428.54

 1 H NMR (D_2O) ppm単位での : 1 . 1 (d , C H_3)、 1 . 7 8 (m , C H_2)、 1 . 9 (s , C H_3)、 2 . 8 4 (t , C H_2)、 3 . 8 5 (m , C H)。

(14)


[0038]

10

実施例19

3 - (アセチルアミノ) - 1 - メチルプロパンスルホン酸カルシウム

【化33】

C 12 H 24 C a N 2 O 8 S 2

MW = 428.54

20

 $MP_{G} > 360$

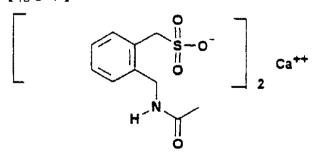
IR $_{C=0}$: 1 6 7 0 cm⁻¹.

重量による分析:

C % H % Ca % N % S %

計算値 33.63 5.65 9.35 6.54 14.96。

実測値 33.34 5.67 9.35 6.50 15.06。


[0039]

実施例20

30

2 - (2 - アセチルアミノメチル)フェニルメタンスルホン酸カルシウム

【化34】

40

 $C_{20}H_{24}CaN_2O_8S_2$

MW = 524.63

 $MP_G: 260 - 265$

IR $_{C=O}$: 1 6 4 0 cm⁻¹.

 1 H NMR (D_2O) ppm単位での : 2 (s , CH_3)、 4 . 2 6 (m , CH_2)、 7 . 3 - 7 . 4 (m , 4 A R)。

重量による分析: (C₂₀H₂₄CaN₂O₈S₂・1H₂O)

C % H % Ca % N % S %

計算値 44.26 4.83 7.38 5.16 11.81。

実測値 44.45 4.80 7.63 5.23 11.25。

[0040]

実施例21

N-メチル-3-(アセチルアミノ)プロパンスルホン酸カルシウム

【化35】

C 12 H 24 C a N 2 O 8 S 2

MW = 428.54

10

IR $_{C=0}$: 1 6 1 1 cm⁻¹.

 1 H NMR (D_{2} O) ppm単位での : 2 (m , CH_{2})、 2 . 1 (s , CH_{3})、 2 . 9 (m , CH_{2})、 3 . 0 6 (s , CH_{3})、 3 . 4 8 (n , CH_{2})。

[0042]

実施例23

3 - (アセチルアミノ) - 2 - フェニルプロパンスルホン酸カルシウム

【化37】

 $C_{22}H_{28}CaN_2O_8S_2$

MW = 552.69

 $M P_G : 2 4 0 - 2 5 0$. $I R_{G=0} : 1 6 3 6 cm^{-1}$.

¹ H N M R (D₂O) ppm単位での : 1.88(s, C H₃)、3.28-3.48(m, 2 C H₂)、3.59-3.66(m, C H)、7.33-7.46(m, 5 A R)。

30

重量による分析: (C₂₂H₂₈CaN₂O₈S₂・1H₂O)

C % H % Ca % N % S % 46.33 5.30 7.02 4.91 11.24.

実測値 46.66 5.04 7.23 4.96 10.36。

[0043]

計算値

本発明の化合物に対する薬理学試験の結果を以下に記す。

[0044]

依存症ラットにおけるアルコール消費

試験開始時の体重が200gである Long - E vans種のラットを個々のケージ<u>に</u>隔離する。アルコール依存を確立するために、ラットに10%(V/V) アルコール水溶液を<u>唯</u> 一の飲料とし<u>て3</u>週間与える。ラットに無制限に給餌する。

[0045]

この3週間の期間の終わりに、ラットに水か水/アルコール溶液かを勝手に2週間選ばせる。1日あたり3g/kgより多くのアルコールを消費するラットのみ、試験を継続し続ける。

[0046]

この期間の終わりに、試験すべき生成物を 5 匹~ 8 匹のラット群に 1 0 0 mg / kg / 日の用量で 2 週間腹腔内投与する。対照群には生理食塩水を腹腔内投与する。ラットには全て、水か水 / アルコール溶液かを自由に選択させて、無制限に給餌する。

[0047]

処置前および処置中の水および水 / アルコール溶液の消費を記録し、ラットの体重で調整する。

[0048]

アルコール消費に対する実施例1の化合物の効果を例として図1に示す。

[0049]

インビトロでの試験において、これらの化合物は、脳切片の<u>試料</u>からトリチウム化アセチルホモタウリン酸カルシウム(calcium acetylhomotaurinate)を置き換える能力を有することがさらにまた示された。

[0050]

【表1】

実施例	I C 5 0 (μ M)
1	46.9
3	28.9
1 4	4 2
1 5	49.5
1 7	9 3

【図面の簡単な説明】

【図1】 アルコール消費に対する実施例1の化合物の効果。

【図1】

1/1

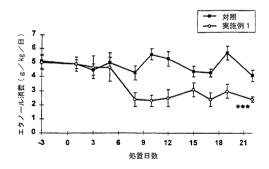


FIGURE 1

10

フロントページの続き

(51)Int.CI. F I

C 0 7 F 9/30 (2006.01) C 0 7 F 9/30

審査官 前田 憲彦

(56)参考文献 特開昭56-025146(JP,A)

特開昭53-149928(JP,A)

特公昭51-042093(JP,B1)

Actualites de Chimie Therapeutique , 1 9 8 8 年 , 15 , p.169-189

Methods and Findings in Experimental and Clinical Pharmacology , 1 9 8 8 年 , 10(7) , p.4 $\,$

37-447

Revue de l'Alcoolisme , 1 9 8 7 年 , 32(4) , p.241-247

(58)調査した分野(Int.CI., DB名)

CO7C 309/00

A61K 31/00

C07F 9/00

CAplus(STN)

REGISTRY(STN)