PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/36505
GOGF 9/46 Al

(43) International Publication Date: 22 June 2000 (22.06.00)

(21) International Application Number: PCT/GB99/03988 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,

(22) International Filing Date: 30 November 1999 (30.11.99) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
(30) Priority Data: SE, SG, SI, SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN,

09/213,998 17 December 1998 (17.12.98) US YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD,
SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG,
KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY,

(71) Applicant: INTERNATIONAL BUSINESS MACHINES DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
CORPORATION [US/US]; New Orchard Road, Armonk, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW,
Armonk, NY 10504 (US). ML, MR, NE, SN, TD, TG).

(71) Applicant (for MC only): IBM UNITED KINGDOM LIMITED
[GB/GB]; P.O. Box 41, North Harbour, Portsmouth, Hamp- | Published

shire PO6 3AU (GB). With international search report.
Before the expiration of the time limit for amending the
(72) Inventors: CARPENTER, Gary, Dale; 1241 Rochy Creek claims and to be republished in the event of the receipt of
Drive, Pflugerville, TX 78660 (US). DEBACKER, Philippe, amendments.

Louis; 7705 Chimney Corners, Austin, TX 78731 (US).
DEAN, Mark, Edward; 3610 Ranch Creek Drive, Austin,
TX 78730 (US). GLASCO, David, Brian; 10337 Ember
Glen Drive, Austin, TX 78726 (US). ROCKHOLD, Ronald,
Lynn; 11104 Sheba Cove, Austin, TX 78759 (US).

(74) Agent: LING, Christopher, John; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester,
Hampshire SO21 2JN (GB).

(54) Title: INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY ACCESS (NUMA) DATA PROCESSING SYSTEM

.« " 0
15 L q° 36 Locat
< 9] INTERCONNECT
| i i 1 el 1
NOD! 20 24 26 17
R | coNTROLLER _l l ARBITER _’l MEZZANINE by] Mc —
o _ BUS BRIDGE "
° B i SYSTEM 18
2 ! 28a MEMORY
PROCESSING | 3\5@” ’@3\: 8 b3 \
I M V" Q 2, MEZZANINE
i BUS
NODE v 32 34
0 STORAGE
INTERCONNECT Y ones STORAG
==]

(57) Abstract

A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at
least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an
external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs. Although each
external interrupt domain typically includes only a single node, interrupt channelling or interrupt funnelling may be implemented to route
external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software
may then execute on any processor to service the external interrupt. Servicing external interrupts is expedited by reducing the size of the
interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present
invention supports inter—processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the
NUMA computer system.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI

CN
Ccu

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY
ACCESS (NUMA) DATA PROCESSING SYSTEM

Field of the Invention

The present invention relates in general to data processing and, in
particular, to data processing in a non-uniform memory access (NUMA) data
processing system. Still more particularly, the present invention relates

to an interrupt architecture for a NUMA data processing system.

Background of the Invention

In computer systems, interrupts are often utilized to alert a
processor to the occurrence of an event that requires special handling.
Interrupts may be utilized, for example, to request service from a
recipient processor, report an error condition, or simply communicate
information between devices. 1In uniprocessor computer systems, interrupt
support is relatively straightforward since all interrupts are handled by
the single processor. In multiprocessor computer systems, however, an
additional level of complexity is introduced because some mechanism must
be utilized to route interrupts to a particular processor or processors

for handling.

In conventional symmetric multiprocessor (SMP) computer
systems, interrupts have been handled in a variety of ways, utilizing both
hardware and software mechanisms. An SMP computer system typically
employs a global interrupt controller to select a processor to service an
interrupt based upon the priority of the interrupt and the priority of the
process, if any, being executed by each processor. Thus, the interrupt
controller compares the priority of the interrupt to the priorities of the
processes being executed by the processors and selects as the servicing
processor a processor that is executing a process having a lower priority
than the interrupt. Because the processors in an SMP are relatively
tightly coupled, the determination of the process priorities and the
routing of the interrupt to the servicing processor can be accomplished
with a facility utilizing either the shared system interconnect or

dedicated interrupt lines.

Recently, a multiprocessor computer system topology known as
non-uniform memory access (NUMA) has emerged. A typical NUMA computer
system may include a high latency node interconnect to which are coupled
several multi-processor nodes that each contain a local system memory.
Because the multiple processors in a NUMA computer system are not tightly
coupled, conventional SMP interrupt servicing and communication mechanisms

cannot be directly applied in a NUMA computer system. As should thus be

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GBY9/03988

apparent, there is a need for an interrupt handling mechanism in a NUMA
computer system that provides efficient mechanisms for interrupt routing

and communication.

Disclosure of the Invention

A non-uniform memory access (NUMA) computer system includes at
least two nodes coupled by a node interconnect, where at least one of the
nodes includes a processor for servicing interrupts. In accordance with
the present invention, the interrupt architecture of the NUMA computer
system, which includes both hardware and software components, partitions
the NUMA computer system into external interrupt domains so that an
external interrupt is always presented to a processor within the external
interrupt domain in which the interrupt occurs. Although each such
external interrupt domain typically includes only a single node, interrupt
channelling or interrupt funnelling may be implemented to route external

interrupts across node boundaries for presentation to a processor.

Once presented to a processor, interrupt handling software may
then execute on any processor within the system to service the external
interrupt. Advantageously, the interrupt architecture of the present
invention enables interrupt handling software to expeditiously service
external interrupts by reducing the size of the interrupt handler polling

chain (tree) as compared to prior art methods.

In addition to external interrupts, the interrupt architecture
of the present invention supports inter-processor interrupts (IPIs) by
which any processor may interrupt itself or one or more other processors
in the NUMA computer system. IPIs are triggered by writing to memory
mapped registers in global system memory, which facilitates the
transmission of IPIs across node boundaries and permits multicast IPIs to
be triggered simply by transmitting one write transaction to each node

containing a processor to be interrupted.

The interrupt architecture of the present invention scales
well from small NUMA computer systems containing a few nodes to large
systems containing hundreds of nodes. The interrupt hardware within each
node is also distributed for scalability, with the hardware components
communicating via interrupt transactions conveyed across shared

communication paths (i.e., local buses and interconnects).

Brief Description of the Drawings

The invention will now be described, by way of example only, with

reference to the accompanying drawings, in which:

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

Figure 1 depicts an illustrative embodiment of a NUMA computer
system with which the present invention may advantageously be utilized;

FPigure 2 illustrates an exemplary embodiment of a physical
memory map that may be utilized by the NUMA computer system depicted in
Figure 1;

Figures 3A and 3B respectively depict illustrative embodiments
of an interrupt source configuration register and a pending interrupt
register within an interrupt source unit (ISU) in accordance with the

present invention;

Figure 4 illustrates a more detailed block diagram of an

interrupt destination unit (IDU) in accordance with the present invention;

Figure 5 is a high level logical flowchart of the operation of

an ISU in accordance with the present invention;

Figure 6 is a high level logical flowchart of the operation of

an IDU in accordance with the present invention;

Figure 7 is a high level logical flowchart of an illustrative
embodiment of a configuration routine that configures interrupt resources

in accordance with the present invention; and
Figure 8 is a high level logical flowchart depicting the
operation of first level interrupt handler (FLIH) software in accordance

with the present invention.

Detailed Description of the Invention

1.0 NUMA Computer System Overview

With reference now to the figures and in particular with
reference to Figure 1, there is depicted an illustrative embodiment of a
NUMA computer system in accordance with the present invention. The
depicted embodiment can be realized, for example, as a workstation,
server, or mainframe computer. As illustrated, NUMA computer system 6
includes a number (N22) of processing nodes 8a-8n, which are
interconnected by node interconnect 22. Processing nodes 8a-8n each
include M (M20) processors 10. Processors 10a-10m, if present within a
processing node, are preferably identical and may comprise a processor
within the PowerPC line of processors available from International
Business Machines (IBM) Corporation of Armonk, New York (PowerPC is a

trade mark of IBM Corporation). In addition to the registers, instruction

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

flow logic and execution units utilized to execute program instructions,
which are collectively designated as processor core 12, each of processors
10a-10m also includes an on-chip cache hierarchy 14 that is utilized to
stage data to the associated processor core 12 from system memories 18.
Each cache hierarchy 14 may include, for example, a level one (L1l) cache
and a level two (L2) cache having storage capacities of between 8-32
kilobytes (kB) and 1-16 megabytes (MB), respectively. Because data stored
within each system memory 18 can be requested, accessed, and modified by
any processor 10 within NUMA computer system 6, NUMA computer system 6
preferably implements a cache coherency protocol (e.g., Modified,
Exclusive, Shared, Invalid (MESI) or a variant thereof) to maintain
coherency both between caches in the same processing node and between

caches in different processing nodes.

As shown, processing nodes 8a-8n further include a respective
node controller 20 coupled between local interconnect 16 and node
interconnect 22. Each node controller 20 serves as a local agent for
remote processing nodes 8 by performing at least two functions. First,
each node controller 20 snoops the associated local interconnect 16 and
facilitates the transmission of local communication transactions to remote
processing nodes 8. Second, each node controller 20 snoops communication
transactions on node interconnect 22 and masters relevant communication
transactions on the associated local interconnect 16. Communication on
each local interconnect 16 is controlled by an arbiter 24. Arbiters 24
regulate access to local interconnects 16 based on bus request signals
generated by processors 10 and compile coherency responses for snooped

communication transactions on local interconnects 16.

Access to each system memory 18 of NUMA computer system 6 is
regulated by a respective memory controller (MC) 17. In addition to
circuitry that receives and services read and write requests generated by
processors 10a-10m, node controller 20, and other devices in its
processing node 8, each memory controller 17 contains an interrupt
destination unit (IDU) 19, which, as described below, contains a number of
registers and associated logic that facilitate the routing and handling of

interrupts.

Local interconnect 16 is coupled, via mezzanine bus bridge 26,
to a mezzanine bus 30, which may be implemented as a Peripheral Component
Interconnect (PCI) local bus, for example. Mezzanine bus bridge 26
provides both a low latency path through which processors 10 may directly
access devices among I/0 devices 32 and storage devices 34 that are mapped
to bus memory and/or I/0 address spaces and a high bandwidth path through
which I/0 devices 32 and storage devices 34 may access system memory 18.

I/0 devices 32 may include, for example, a display device, a keyboard, a

10

15

20

25

30

35

40

WO 00/36505 PCT/GB99/03988

graphical pointer, and serial and parallel ports for connection to
external networks or attached devices. Storage devices 34, on the other
hand, may include optical or magnetic disks that provide non-volatile

storage for operating system and application software.

Both I/0 devices 32 and storage devices 34 (as well as other
non-processor components of NUMA computer system 6) may generate
interrupts for any number of purposes, including signalling receipt of an
input, reporting an error condition, etc., via interrupt request lines 35.
These interrupts, which are referred to hereinafter as external interrupts
to indicate that the interrupts are generated by a component other than a
processor 10, are collected by one or more interrupt source units (ISUs)
28a, 28b. Although illustrated separately for clarity, ISUs 28a and 28b
may alternatively be integrated into the chipset forming mezzanine bus
bridge 26. As described in detail below, ISUs 28 route the external
interrupts to an IDU 19, which in turn presents external and other
interrupts to local processors 10 for servicing via an interrupt request
line 36.

Local interconnects 16 and node interconnect 22 can each be
implemented with any bus-based broadcast fabric, switch-based broadcast
fabric, switch-based non-broadcast fabric, or hybrid interconnect
architecture including both bus and switched-based components. Regardless
of which interconnect architecture is employed, local interconnects 16 and
node interconnect 22 preferably support split transactions, meaning that
the timings of the address and data portions of communication transactions
are independent. In order to permit identification of which address and
data tenures belong to each communication transaction, the address and
data packets that together form a transaction are preferably both marked

with the same transaction tag.

Each processor 10 and each other device coupled to a local
interconnect 16 is preferably uniquely identified throughout NUMA computer
system 6 by a system-wide device ID formed by concatenating the node ID of
the processing node 8 within which the device resides with the device’s
local ID. For example, in an embodiment in which there are a maximum of
four processing nodes 8 and at most 8 devices may be coupled to each local
interconnect 16, a five bit device ID can be utilized, two high order bits
for the node ID and the three low order bits for the device’s local ID.
Each node ID is preferably maintained in a register within the associated
node controller 20, and the local IDs are preferably maintained in device.
identification registers within each device connected to a local
interconnect 16. Each such system-wide device ID may advantageously be

utilized as the high order bit portion of each transaction tag generated

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

by the associated device so that the uniqueness of transaction tags
throughout NUMA computer system 6 is guaranteed.

1.1 Physical Memory Map

With reference now to Pigure 2, there is illustrated an
exemplary physical memory map that may be utilized by an embodiment of
NUMA computer system 6 having four processing nodes 8 that each contain a
system memory 18. 1In the embodiment illustrated in Figure 2, all devices
in NUMA computer system 6 share a single 16 gigabyte (GB) physical address
space 50 including both a general purpose memory area 52 and system
control and peripheral areas 54. Each physical address in general purpose
memory area 52 is associated with only a single physical location in one
of system memories 18. Thus, the overall contents of the general purpose
memory area 52, which can generally be accessed by any processor 10 in
NUMA computer system 6, can be viewed as partitioned between all the
system memories 18. In the illustrative embodiment, general purpose
memory area 52 is divided into 512 MB segments, with each of the four
processing nodes 8 being allocated every fourth segment. The processing
node 8 that stores a particular datum in its system memory 18 is said to
be the home node for that datum; conversely, others of processing nodes

8a-8n are said to be remote nodes with respect to the particular datum.

Still referring to Figure 2, system control and peripheral
areas 54, which contain 2 GB of physical addresses in the illustrated
embodiment, include a 256 MB system control area 56, a 0.5 GB peripheral
I/0 space 58, a 1 GB peripheral memory space 60, and an initial program
load (IPL) area 62. IPL area 62 contains addresses reserved for
assignment to up to 256 MB of IPL (i.e., boot) code, which is typically
stored in a read-only memory (ROM). The IPL code will include a loader
for an operating system, such as Advanced Interactive Executive (AIX),
which is available from IBM Corporation. As illustrated, the 0.5 GB in
peripheral I/0 space 58 is divided into equally sized segments 62 that are
each allocated to a respective one of processing nodes 8. Peripheral
memory space 60 is similarly partitioned into equally sized 256 MB

segments 66 that are each allocated to a particular processing node 8.

Like peripheral I/O space 58 and peripheral memory space 60, the
physical memory space in system control area 56 includes a number of
segments 70 that are each associated with a respective processing node 8.
In the illustrated embodiment, each segment 70 contains 64 MB of address
space. In addition to addresses intended for storing other per-node
control information, each system control area segment 70 includes physical
addresses assigned to interrupt registers within the IDU 19 and ISU 28 at

the associated processing node 8. As discussed further below, it is these

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

memory-mapped registers that are employed by the present invention to
receive and route external interrupts, invoke interprocessor interrupts,

and route interrupts between processing nodes 8.

2.0 Interrupt Architecture Overview

The interrupt architecture of the present invention provides for at
least three distinct classes of interrupts. First, there are internal
interrupts that are triggered by the internal operation of a processor.
Internal interrupts may be triggered, for example, by an program exception
or overflow/underflow of an internal processor register. Second, as noted
above, external interrupts may be generated by devices, such as I/0
devices and system timers, that are external to the processors. Third,
the present invention also supports inter-processor interrupts (IPIs)
which are generated by a first processor in order to interrupt a second

processor.

In a preferred embodiment of the present invention, NUMA processing
system 6 provides interrupt support for external and IPIs through an
interrupt architecture that is compliant with and an extension of the
OpenPIC (Open Processor Interrupt Controller) standard. OpenPIC is
described, for example, in Open Programmable Interrupt Controller (PIC)

Register Interface Specification Revision 1.2, October 1995, published

jointly by Advanced Micro Devices, Inc. and Cyrix, Inc. and incorporated
herein by reference. Although OpenPIC compatibility is preferred, the
present invention can be applied to any system having memory mapped

interrupt control registers that are unique throughout the system.

The interrupt architecture of the present invention includes both

hardware and software components, which are each described below.

2.1 Interrupt Architecture Hardware

In contrast to conventional OpenPIC and other SMP interrupt
implementations, which typically utilize a global interrupt controller
serving a single interrupt domain, each processing node 8 of NUMA computer
system 6 preferably forms its own external interrupt domain, where each
external interrupt domain has its own respective IDU 19 and one or more
ISUs 28, as shown in Pigure 1. 1ISUs 28 provide an interface to the
interrupt system for interrupt sources, and IDUs 19 provide an interface
between the interrupt system and processors 10. 1In order to promote
efficient handling of interrupts and minimize communication of interrupts
between interrupt domains, external interrupts received by an ISU 28 are
communicated utilizing interrupt packets transmitted across local
interconnect 16 (and depending upon implementation, mezzanine bus 30) to

10

15

20

25

30

35

40

WO 00/36505 PCT/GBY99/03988

only the IDU 19 within the same interrupt domain (i.e., processing node 8)
if the processing node 8 is equipped with a processor 10 configured to
service interrupts. Communication of configuration information,
interprocessor interrupts, interrupt acknowledgements, end of interrupt
commands, and other interrupt-related information between interrupt
domains is supported, however, via memory mapped registers in IDU 19,
thereby permitting the system-wide utilization of interrupt resources at

each processing node 8.

2.1.1 Interrupt Source Unit (ISU) components

With reference now to Figures 3A and 3B, illustrative embodiments of
an interrupt source configuration register and an interrupt pending
register in each interrupt source unit (ISU) 28 are respectively depicted.
Each ISU 28 preferably includes at least one such interrupt source
configuration register 723 per interrupt source and one interrupt pending

register 82 for all interrupt sources supported by that ISU 28.

Referring first to Pigure 3A, each interrupt source
configuration register 72 includes a vector field 73 identifying an
interrupt vector for the associated interrupt source, an interrupt vector
reserved field 74 that may store additional bits for identifying the
interrupt vector, and a priority field 75 that indicates the priority of
the interrupt generated by the associated interrupt source. In the
illustrated embodiment, interrupt priorities range from 0, which is the
lowest priority, to 15, which is the highest priority. Interrupt
resources are preferably unique within each interrupt domain. Thus, each
interrupt domain preferably has only one level 1 interrupt, but there may
be up to N level 1 interrupts in NUMA computer system 6. Of course, prior
art techniques may be employed to permit interrupt sharing such that
multiple interrupt sources within a single processing node 8 share the

same interrupt level.

Interrupt source configuration register 72 further includes
two reserved fields 76 and 79, a sense bit 77 for indicating whether the
interrupt signal is edge or level triggered, a polarity bit 78 for
indicating whether the interrupt is active low (or negative edge) or
active high (or positive edge), an activity (ACT) bit 80 indicating
whether vector field 73 and priority field 75 are in use and cannot be
modified, and a mask (MSK) field 73 that enables and disables the receipt
by ISU 28 of interrupts generated by the associated interrupt source.
Thus, in response to receipt of an interrupt from a particular interrupt
source via an interrupt request line, an ISU 28 can determine by reference

to the appropriate interrupt source configuration register 72 the

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

enablement and priority of interrupts for the interrupt source, as well as

an identifier for the interrupt vector associated with the interrupt.

Once an external interrupt has been received and qualified by
ISU 28, ISU 28 sets a bit in pending register 82 of Figure 3B. The bit,
which is uniquely associated with the interrupt source, signifies that the
interrupt source has a pending interrupt. Thus, in the embodiment shown

in Pigure 3B, each ISU 28 can support a maximum of 16 interrupt sources.

2.1.2 Interrupt Destination Unit (IDU) components

Referring now to Figure 4, there is depicted a more detailed block
diagram representation of IDU 19 in the memory controller 17 of a
processing node 8. The depicted embodiment of IDU 19 is OpenPIC-compliant
and includes three distinct register spaces, global registers 90, per-
processor registers 92, and inter-processor interrupt (IPI) command
registers 133, which are each located within the processing nodes’s system
control area segment 70 at OpenPIC-defined offsets from base addresses
specified in global configuration register 102. In order to simplify
addressing, the offset between the base address and the beginning of the
processing node’s system control area segment 70 is preferably the same
for all IDUs 19. For example, in an illustrative embodiment of NUMA
computer system 6 including four processing nodes 8 that each contain four
processors 10 that all share a 16 GB physical memory space, address bits
30-63 may be defined by the range 000000000h-3FFFFFFFFh, with system
control area 56 residing at A30..A63 0E0000000h-OEFFFFFFFh. If the node
number assigned to a processing node 8 is defined by A36..A37, with node
numbers ranging between b00-bll, system control area segment 70 of the
processing node 8 having node number b0l will be located at A30..A63
0E4000000h-0E4FFFFFFh. Within all system control area segments 70, the
base address of the registers in the IDU 19 will be located at a common
arbitrary offset, such as 000C0000h. Thus, the base address of the
registers of IDU 19 within node number b0l can be obtained by adding
0E4000000h to 000C00000h to yield 0E4C00000h. The individual register
spaces and registers within the IDU 19 of node number b0l can then be

addressed utilizing OpenPIC-defined offsets as follows:

220000h = OpenPIC architected offset from the base
address specified by global configuration
register 102 to per-processor registers 120
of processor bl0 at node b0l

base physical address of registers in IDU 19
of node number b0l

+ 0E4C00000h

i

0E4C220000h

physical address of per-processor registers
120 of processor bl0 at node number b0l

10

15

20

25

30

35

40

45

50

WO 00/36505 PCT/GB99/03988

10
0040h = OpenPIC architected offset from the per-
processor registers 120 to IPI command port

0
physical address of per-processor registers
120 of processor bl0 at node number b0l

+ 0E4C220000h

0E4C220040h

i

physical address of per-processor registers
120 of processor bl0 at node number b0l

As shown in Figure 4, the global registers 90 in each IDU 19
include a read-and-write feature reporting register 100, a read-and-write
global configuration register 102, a read-only vendor identification
register 104, one read-and-write interprocessor interrupt (IPI) vector
register 106 for each IPI command port (described below), a read-and-write
spurious vector register 108, and a read-and-write processor
initialization register 110. Global registers 90 are OpenPIC-defined and

contain the following information:

Feature reporting register 100: total number of interrupt sources detected
by IPL code in the processing node and the total number of supported
processors for that processing node.

Global configuration register 102: base address of global register space
for the processing node.

Vendor identification register 104: identifies the vendor of the
integrated circuit chip containing IDU 19 and the revision level.

IPI vector registers 106: vector and priority information for each
respective IPI register in the processing node.

Spurious vector register 108: vector that is returned when an interrupt
acknowledge is received from a processor and there is no pending interrupt
for the processor.

Processor initialization register 110: software reset signals for each
processor supported in the processing node.

Because global registers 90 are shared by all processors 10 in NUMA
computer system 6, software interrupt setup and handling routines in the
PAL layer of the AIX operating system are utilized to maintain consistency
between the global registers 90 in all of processing nodes Ba-8n. Updates
to write-enabled registers other than processor initialization register
110 are performed by a processor 10 initiating N separate write
transactions on its local interconnect 16. The write transaction
targeting the local IDU 19 are received and serviced by the local memory
controller 17. The remainder of the write transactions are forwarded by
the local node controller 20 to the node controllers 20 of other
processing nodes 8, which in turn source the write transactions to their
associated IDU 19 via local interconnect 16. Access to global registers
90 is regulated by a global software lock to ensure that only one
processor 10 is updating global registers 90 at any one time. During
updates to global registers 90, all interrupts are masked until the

updates have been performed at each processing node 8 in order to avoid

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

11

interrupts being issued with stale settings. A load of a value from
global registers 90 entails simply performing a read to the local copy of

global registers 90 since all global registers 90 are synchronized.

Still referring to Pigure 4, per-processor registers 92 include M
register sets 120, one for each processor 10 that may be supported by a
processing node 8. Per-processor registers 92 are also OpenPIC-defined,
and each register set 120 includes a read-and-write current task priority
register 122, a read-only interrupt acknowledge register 124, and a read-
only end of interrupt (EOI) register 126. The register set 120 for a
particular processor can be located utilizing the base address contained
in global configuration register 102, the processor ID, and the OpenPIC
architected offset, as described above. Per-processor registers 120 serve

the following functions:

Current task priority register 122: indicates the relative task priority
of the current task when no interrupts are being serviced. For an
interrupt to issue to a processor, the interrupt priority must be higher
than the current task priority for that processor.

Interrupt acknowledge register 124: when read by software to acknowledge
an interrupt, the hardware supplies the interrupt vector of the pending
interrupt for the associated processor; if no interrupt is pending, the
spurious interrupt vector will be supplied.

End of interrupt (EOI) register 126: written by software to issue an EOI
to the highest in service interrupt for the processor that issued the EOI
command. Writing the EOI register for an external interrupt causes memory
controller 17 to issue an EOI interrupt transaction on local interconnect
16.

The third register space within each IDU 19 is a set of IPI command
registers 133 that includes one IPI command register for each level of IPI
interrupt, which in OpenPIC-compliant systems is 4. Each IPI command
register 133 contains at least M bits, where each bit position corresponds
to a processor ID of one of the M local processors 10. Thus, writing a
b'l’ to a particular bit position within an IPI command register 133
causes an IPI of the appropriate level to be issued to the specified
processor 10, as discussed further below. The status of the N sets of IPI
command registers 133 is collectively maintained in a master set of IPI
command registers in the general purpose memory space by interrupt
handling software. For example, if each of four processing nodes 8 in an
exemplary NUMA computer system supports a maximum of 8 processors, the
master set of 4 IPI command registers maintained can each have 32 bits,
where bits 0-7 correspond to processors 0-7 of processing node 0, bits 8-

15 correspond to processors 0-7 of processing node 1, etc.

In addition to the global registers 90, per-processor registers 92,

and IPI command registers 133 described above, each IDU 19 may also

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

12

contain global timer interrupt sources and other OpenPIC-defined or other

registers.

2.1.3 Interrupt Source Unit (ISU) operation

With reference now to Figure 5, there is depicted a high level
logical flowchart of the operation of an ISU 28 in accordance with the
present invention. As illustrated, the process begins at block 140 in
response to receipt of an input by ISU 28 and thereafter proceeds to block
142. If the input is an interrupt packet received from the bus (i.e.,
local interconnect 16 or mezzanine bus 30), the process passes to block
152, which is described below. If, however, the input is an external
interrupt (i.e., assertion of an interrupt request line by an interrupt
source), the process proceeds from block 142 to block 144, which
illustrates ISU 28 accessing the appropriate interrupt source
configuration register 72 to assign the interrupt a level. ISU 28 then
determines at block 146 whether or not interrupts at the level of the
received external interrupt are currently masked by reference to interrupt
source configuration registers 72. As noted above, in a preferred
embodiment of the present invention, at most one interrupt of any given
level is active within each processing node 8 at any given time. If
interrupts at the level of the received external interrupt are masked, ISU
28 takes no further action at the present time, and the interrupt source
must continue to assert the interrupt request line 35 or reassert it at a
later time. The process then returns to block 142. If, however, a
determination is made at block 146 that interrupts at the level of the
received interrupt are not masked, ISU 28 issues an interrupt packet to
the local IDU 19 via local interconnect 16 (and possibly mezzanine bus 80)
indicating the level of the interrupt and the interrupt vector, as shown
at block 150. 1In addition, ISU 28 masks interrupts at the level of the
received interrupt. The process then returns from block 150 to block 142,
which has been described. Thus, unless interrupt channelling is enabled
as described below, all external interrupts are presented to software by
hardware within the processing node 8 in which the external interrupts

occur.

Referring now to block 152, in response to receipt of an interrupt
packet on the bus, ISU 28 determines if it has an interrupt pending at the
level specified in the interrupt packet. If not, the interrupt packet,
which will be processed by a different ISU 28, is ignored, and the process
returns to block 142. If a determination is made at block 152 that the
ISU 28 has an interrupt pending at the interrupt level specified in the
interrupt packet, the process proceeds to block 160. Block 160 depicts a
determination of whether or not the bus interrupt transaction that was

received by ISU 28 is an EOI or cancel interrupt transaction. If so, the

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988
13

process passes to block 162, which illustrates ISU 28 clearing the mask of
interrupts for the interrupt level specified in the bus interrupt
transaction. The process then returns to block 142, which was described

above.

If, on the other hand, ISU 28 determines at block 160 that the
received bus interrupt transaction is not an EOI or cancel interrupt
transaction, the process passes to block 170, which depicts a
determination of whether or not the bus interrupt transaction is a reissue
transaction that requests ISU 28 to reissue an interrupt at the specified
level at a later time. If the bus interrupt packet is not a reissue
transaction or other defined interrupt packet, the process passes to block
172, which illustrates ISU 28 performing an appropriate error handling
function. If, however, the bus interrupt transaction is a reissue
transaction, the process passes to block 174. Block 174 depicts ISU 28
waiting an implementation-dependent interval of time (e.g., a
predetermined number of clock cycles) before reissuing the interrupt

packet to IDU 19, as shown at block 150.

2.1.4 Interrupt Destination Unit (IDU) operation

With reference now to Pigure 6, there is depicted a high level
logical flowchart of operation of IDU 19 when processing its inputs. As
indicated, the process begins at block 180 in response to receipt of an
input by an IDU 19 and thereafter proceeds to block 182. Block 182
illustrates IDU 19 determining whether the input is an interrupt request
packet issued by an ISU 28. If not, the process passes to block 200,
which is described below. However, if the input received by IDU 19 is an
interrupt request packet issued by an ISU 28, the process proceeds to
block 184, which depicts a determination of whether or not the interrupt
level specified in the interrupt request packet is (1) greater than the
priority level specified in the current task priority register 122 of any
processor 10 in the local processing node 8 not currently servicing an
interrupt, or (2) high enough to obtain an entry in the pending queue 130
of a processor 10. If not, the process passes to block 186. Block 186
depicts IDU 19 transmitting a reissue interrupt packet on local
interconnect 16, which is received and processed by an ISU 28 as described
above with respect to Pigure 5. A similar reissue interrupt packet may
also have to be sent, as depicted at block 188, if an interrupt in the
pending queue 130 has a lower level than the newly received interrupt and
the pending queue 130 is full, causing the pending interrupt to be evicted

from pending queue 130 in favour of the new interrupt.

Following blocks 184 and 188, the process proceeds to block 180,
which illustrates IDU 19 asserting the interrupt request line 36 of the

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988
14

processor 10 to which the interrupt was queued at block 184. In addition,
as illustrated at block 192, IDU 19 sets a pending flag for the level of
the interrupt and sets an active flag for the interrupted processor within
the associated current task priority register 122. The process then
returns to block 182, which has been described.

Returning to block 182, if an input received by IDU 19 is not an
interrupt request packet, IDU 19 determines at block 200 whether or not
the received input transaction is an interrupt acknowledge (ACK)
transaction transmitted on local interconnect 16 by a local processor 10
to acknowledge receipt of an interrupt. If not, the process proceeds to
block 220, which is described below. However, if the input received by
IDU 19 is an interrupt acknowledge transaction, the process passes to
block 202, which depicts IDU 19 deasserting the interrupt request line 36
and advancing the pending interrupt from pending queue 130 into the
processor's service queue 132 by storing at least the interrupt level in a
service queue entry. As illustrated at block 204, IDU 19 then transmits
an interrupt transaction containing the interrupt level and the interrupt
vector to the servicing processor 10 via local interconnect 16. If for
some reason, an interrupt ACK transaction is received by IDU 19 when there
is no pending interrupt for the transmitting processor 10, the spurious
interrupt vector contained in the spurious vector register 108 is supplied

to the processor 10. The process then returns to block 182.

Following servicing of an interrupt, the servicing processor 10 will
issue to IDU 19 an end of interrupt (EOI) write transaction, as depicted
in Figure 6 by the process passing from block 182 to block 200 to block
220 and then to block 222. Block 222 illustrates IDU 19 clearing the
pending flag for the level of interrupt contained in the EOI write
transaction. As shown at block 228, IDU 19 also issues an EOI transaction
to local interconnect 16 to clear the bit set for the interrupt in pending
register B2 of the source ISU 28, as discussed above with respect to
blocks 160 and 162 of Pigure 5. As depicted at block 224, if another
interrupt is present in the pending queue 130 of the interrupted processor
10, the processor 10 is notified of the queued interrupt, as indicated by
the process passing to block 190, which has been described.

Alternatively, if no further interrupts are pending for the interrupted
processor 10, IDU 19 clears the active flag for the interrupted processor
10 at IDU 19, as illustrated at block 226. The process thereafter returns
to block 182.

Still referring to Figure 6, if the input transaction received by
IDU 19 is not an interrupt request, an ACK transaction, or an EOI
transaction, IDU 19 determines at block 240 if the input transaction is a

write transaction targeting an IPI command register 133. If not, the

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988
15

process passes to blocks 260-264, which illustrate IDU 19 performing other
processing if the received input is valid and otherwise performing
appropriate error recovery activity. If, however, the received input is a
write transaction targeting an IPI command register 133, then ISU 19

recognizes the input as a trigger for an IPI.

Unlike the external interrupts discussed above, an IPI can be
generated by any processor 10 in NUMA computer system 6 and can target
itself and/or one or more other processors 10 in NUMA computer system 6.
Such IPIs are typically employed in order to asynchronously pass messages
between the processes running on different processors 10. For IPIs to be
supported, setup software executed at system startup first initializes the
level of each of the four supported IPIs. Then, during operation of NUMA
computer system 6, a source processor 10 selects a target processor or
processors 10 as recipients of a message, where the threshold IPI level of
each target processor 10 is indicated in that processor’s current task
priority register 122. The source processor 10 determines by reference to
the configuration information and the threshold IPI levels of each target
processor 10 what IPI interrupt to utilize to interrupt the selected
target processor(s) 10. The source processor 10 then stores the message
in a shared memory location that can be accessed utilizing the IPI vector
register 106 associated with the chosen IPI. The source processor 10
finally issues a write transaction to each processing node 8 containing a
target processor 8, where each such write transaction targets the

appropriate IPI command register 133.

As discussed above, it is this write transaction that is decoded by
an IDU 19 at block 240 of Figure 6. From block 240, the process passes to
block 242, which illustrates IDU 19 determining what priority (level) is
associated with the targeted IPI command register 133 and determining what
local processors 10 are accepting interrupts of that level, for example,
by reference to IPI vector registers 106. Once the local target
processor(s) 10 are determined, IDU 19 asserts the interrupt request
line(s) of the target processor(s) 10, sets the pending flag for the
interrupt level of the IPI, and sets the active flag for the target
processor(s) 10, as shown at blocks 244 and 246. Thereafter, the process
returns to block 182.

2.1.5 Interrupt Channelling

For some applications of NUMA computer system 6, it may be
advantageous to augment certain resources, such as system memory 18, I/0
devices 32, or storage devices 34, without increasing the processing
resources of NUMA computer system 6. In such cases, it 1is desirable to

include one or more nodes 8 containing no processors 10. However, in view

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GBY99/03988

16

of the above-described partitioning of NUMA computer system 6 into per-
node interrupt domains, some mechanism is required to handle external
interrupts generated by interrupt sources in processorless nodes 8. 1In
accordance with a preferred embodiment of the present invention, the
handling of external interrupts generated by processorless nodes 8 is
accomplished by interrupt channelling.

To effect interrupt channelling, the local IDU 19 (if present) is
disabled, and the node controller 20 of each processorless node 8 is set
to a forwarding mode in which the node controller 20 of the processorless
node 8 accepts interrupt packets sourced by local ISUs 28 and forwards the
interrupt packets to a designated "foster" node 8 that includes at least
one processor 10 and one IDU 19. This forwarding mode may be controlled,
for example, by a mode register in the processorless node'’s system control
area segment 70 that is written by configuration software at system
startup, where the mode register includes a mode control bit and a foster

node identifier.

In response to receipt of the interrupt transactions forwarded
across node interconnect 22, the node controller 20 of the foster node 8
runs the interrupt transactions on its local interconnect 16. The IDU 19
at the foster node 8 then claims the interrupt packets and presents the
interrupts to the local processors 10 for servicing, as described above.
Any interrupt packets generated by the IDU 19 at the foster node 8 are
also transmitted to the source ISUs 28 at the processorless node 8. Thus,
using interrupt channelling, the interrupt sources and ISUs of remote
processorless nodes 8 are included within the interrupt domain of a
designated foster node 8, and external interrupts are handled utilizing
the same types of interrupt transactions as are used to handle external
interrupts generated at the foster node 8. Advantageously, by utilizing
the point-to-point communication capabilities of node interconnect 22,
multiple "foster node"-"child node" relationships can concurrently exist

without violating domain independence.

A special case of interrupt channelling during system startup is
called interrupt funnelling. In interrupt funnelling, all external
interrupts in a NUMA computer system are temporarily all directed to a
master processor that is the first to be configured. After the remainder
of the processors have been configured and are therefore able to service

interrupts, the partitioning of interrupt domains is enforced.

2.2 Interrupt Software

Referring now to Figure 7, a high level logical flowchart is given

that illustrates a portion of a configuration routine for configuring

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

17

interrupt resources in accordance with the present invention. As
depicted, the portion of the configuration routine shown in Figure 7
begins at block 300, preferably after initial power on self test (POST)
and other low-level hardware initialization code has run, and then
proceeds to block 302. Block 302 illustrates the configuration routine
identifying which nodes 8 of NUMA computer system 6 contain devices that
are capable of generating external interrupts. Next, at block 304, the
configuration routine interrogates each device capable of generating
external interrupts to determine the level of interrupt that each such
device wishes to use. The configuration routine resolves conflicts, if
any, between the devices and assigns levels to each of the devices’
interrupts. The process proceeds from block 304 to block 310, which
depicts the configuration routine creating, for each respective interrupt
level, a data structure in general purpose memory that lists all the
devices that could generate an external interrupt of that interrupt level,
the node ID of each device, and the physical addresses of each device’s
registers. Depending upon implementation-specific details, other
information useful in handling interrupts may also be stored within each

data structure.

The configuration routine then configures the hardware within each
node 8, as depicted at blocks 312-334. After the configuration routine
selects a node 8 at block 312, the configuration routine determines if the
selected node 8 contains a processor 10. If not, the configuration
routine implements interrupt channelling by disabling IDU 19 within the
selected node 8, as depicted at block 330, and appropriately configuring
the ISU(s) 28 and node controller 20, for example, by writing values to
memory-mapped registers. As described above, the configuration of node
controller 20 includes setting a forwarding mode bit and specifying a
foster node 8 within a forwarding mode register. 1In addition, the
configuration register preferably writes the node ID of the selected node
8 into a node ID register within node controller 20. The process then
passes to block 334, which depicts the configuration routine determining
if additional nodes 8 remain to be configured. If so, the process returns
to block 312, at which the configuration register selects a next node 8 to

be processed.

Referring again to block 320, if the configuration routine
determines that the node 8 selected at block 312 contains a processor 10,
the process passes to block 322. Block 322 depicts the configuration
routine configuring processor(s) 10, IDU 19, ISU(s) 28 and node controller
20 within the selected node 8. As indicated, the configuration preferably
includes writing the node ID into a node ID register within node
controller 20 and writing each processor’s own ID into an internal

processor ID register. The process then proceeds to block 334, and if

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988
18

further nodes 8 remain to be processed, continues with other setup and

configuration activities at block 336.

With reference now to Figure 8, a high level logical flowchart
illustrates the manner in which first level interrupt handler (FLIH)
software facilitate the servicing of an interrupt presented to a processor
10 by IDU 19. As depicted, the process begins at block 400 in response to
assertion of an interrupt request line by IDU 19, as discussed above with
respect to Figure 6. 1In response to assertion of the interrupt request
line, processor 10 takes an exception and jumps to the first level
interrupt handler, which begins at block 402. Block 402 illustrates the
processor 10, operating under control of the FLIH, transmitting an
interrupt acknowledge (ACK) transaction to IDU 19 in order to obtain the
interrupt level and interrupt vector of the interrupt to be serviced. The
FLIH also determines at block 403 whether the interrupt is an IPI or an
external interrupt. If the interrupt is an IPI, the process passes to
block 405, which illustrates the servicing processor 10 reading a message
from the interrupting processor 10 from the shared memory location for the
specified IPI level. The process then passes to block 410, which is

described below.

Returning to block 403, in response to a determination that the
interrupt presented to the processor 10 is an external interrupt, the
process passes to block 404. At block 404, the FLIH masks interrupts from
IDU 19, if required by the implementation, and obtains a software lock on
any exclusive interrupt resources required to service the interrupt. The
FLIH then passes the interrupt level and a pointer to that interrupt
level’s associated data structure to a second level interrupt handler
(SLIH), as shown at block 406.

As will be appreciated by those skilled in the art, a SLIH is an
interrupt handling routine that performs the operations required to
service an interrupt generated by a particular device. Because multiple
interrupt sources may generate the same level of interrupt, such SLIHs are
typically chained together to form a polling chain so that when the
polling chain of SLIHs is processed, each SLIH in the chain polls its
associated device (or devices) to determine if the device is the interrupt
source, and if so, performs the operations required to service the
interrupt. The present invention recognizes that interrupt handling
latency is heavily dependent upon the length of the polling chain, which
is in turn dependent upon the number of levels of external interrupts and
the number of potential interrupt sources in a NUMA computer system.

Thus, if NUMA computer system 6 has only 16 levels of external interrupts
and the number of potential interrupt sources within NUMA computer system

6 is large, interrupt handling latency will be high. In order to provide

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

19

improved interrupt handling latency, the present invention reduces the
number of SLIHs in the polling chain by eliminating devices in one or more

nodes as candidates for the interrupt source.

In a first embodiment, the number of SLIHs in the polling chain is
reduced by the FLIH mapping the interrupt level to a node-specific (or
superset) interrupt level formed by concatenating (or otherwise combining)
the node ID on which the interrupt occurred, which is known to the
processor 10 receiving the interrupt, with the conventional interrupt
level. Each such node-specific interrupt level would have an associated
interrupt data structure created in memory by the configuration routine,
where the data structure would list only the devices within the associated
node (i.e., interrupt domain) that could generate an external interrupt of
the given level. Thus, the interrupt level passed to the first SLIH in
the polling chain at block 406 would be the node-specific interrupt level,
the pointer provided to the SLIH at block 406 would point to the node-
specific interrupt data structure, and the polling chain would include
only the SLIHs associated with devices listed in the node-specific
interrupt data structure. This first embodiment is advantageous in that
multiple interrupt handlers at the same level could run concurrently on
processors 10 in different nodes 8 without conflicting over (or having to
obtain locks for) interrupt servicing resources, but requires that the

FLIH and SLIHs recognize the node-specific interrupt levels.

The number of SLIHs in the polling chain may alternatively be
reduced according to a second embodiment in which the FLIH itself passes a
subset of the interrupt data structure to the SLIH, where the subset
interrupt data structure lists only devices having the same node ID as the
processor to which the external interrupt is presented. With devices at
other nodes being eliminated from consideration, the polling tree of SLIHs
is likely to be shorter. Either of these embodiments may be employed
together with interrupt channelling as described above, in which case, the
data structure for constructed by the configuration routine for an
interrupt domain will contain the devices within both the foster node and
the child node.

In any event, once control has been passed to the first SLIH in the
polling chain, the FLIH waits for interrupt servicing to complete, as
shown at block 408. Importantly, once the interrupt has been passed to
the polling chain of SLIHs, the operating system can schedule these SLIHs
to execute on any processor 10 in NUMA computer system 6, and may select a
different processor 10 to execute the SLIHs in response to load balancing,
data affinity, or other criteria. Upon completion of the SLIH associated
with the interrupt source, control is returned to the FLIH at the
processor 10 that originally received the interrupt, which issues an EOI

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988

20

transaction to IDU 19 specifying the level of the serviced interrupt, as
shown at block 410 and as discussed above with respect to block 220 of
Figure 6. Thereafter, the FLIH terminates at block 412.

As has been described, the present invention provides an interrupt
architecture for a NUMA computer system. The interrupt architecture,
which includes both hardware and software components, can be generally
described as partitioning the NUMA computer system into external interrupt
domains so that an external interrupt is always presented to a processor
within the external interrupt domain in which the interrupt occurs.
Although each such external interrupt domain typically includes only a
single node, interrupt channelling or interrupt funnelling may be
implemented to route external interrupts across node boundaries for
presentation to a processor. Once presented to a processor, software may
then execute on any processor within the system to service the external
interrupt. Advantageously, the interrupt architecture of the present
invention enables interrupt handling software to expeditiously service
external interrupts by reducing the size of the interrupt handler polling
chain (tree) as compared to prior art methods. In addition to external
interrupts, the interrupt architecture of the present invention supports
inter-processor interrupts (IPIs) by which any processor may interrupt
itself or one or more other processors in the system. The present
invention utilizes memory mapped registers to trigger IPIs, which
facilitates the transmission of IPIs across node boundaries and permits
multicast IPIs to be triggered simply by transmitting one write
transaction to each node containing a processor to be interrupted.
Importantly, the interrupt architecture of the present invention scales
well from small NUMA computer systems containing a few nodes to large
systems containing hundreds of nodes. The interrupt hardware within each
node is also distributed for scalability, with the hardware components
communicating via interrupt transactions conveyed across shared

communication paths (i.e., local buses and interconnects).

Although the present invention has been described with respect to an
OpenPIC-compliant embodiment, it should be understood that the present
invention is not limited to OpenPIC-compliant systems. Furthermore,
although aspects of the present invention have been described with respect
to a computer system executing software that directs the method of the
present invention, it should be understood that present invention may
alternatively be implemented as a computer program product for use with a
computer system. Programs defining the functions of the present invention
can be delivered to a computer system via a variety of signal-bearing
media, which include, without limitation, non-writable storage media
(e.g., CD-ROM), writable storage media (e.g., a floppy diskette, hard disk

drive, EEPROM), and communication media, such as computer and telephone

WO 00/36505 PCT/GB99/03988
21

networks. It should be understood, therefore, that such signal-bearing
media, when carrying or encoding computer readable instructions that
direct the functions of the present invention, represent alternative

embodiments of the present invention.

10

15

20

25

30

35

40

WO 00/36505 PCT/GB99/03988

22

CLAIMS

1. A data processing system, comprising:

a plurality of interrupt domains that each include at least
one of a plurality of interconnected processing nodes, wherein each
interrupt domain includes at least one processor capable of receiving an
external interrupt and at least one interrupt source capable of generating
an external interrupt, each of said plurality of interrupt domains having
respective interrupt hardware that receives external interrupts generated
by said at least one interrupt source and presents said external
interrupts to said at least one processor, wherein said at least one
processor executes interrupt handling software that can service interrupts
presented to both a processor in a same interrupt domain as said at least
one processor and a processor within a different interrupt domain than

said at least one processor.

2. The data processing system of Claim 1, said interrupt hardware
within each of said plurality of interrupt domains including an interrupt
destination unit that presents interrupts to processors only within its
interrupt domain and at least one interrupt source unit that receives

interrupts from interrupt sources.

3. The data processing system of Claim 2, wherein said interrupt
destination unit and said interrupt source unit communicate interrupt

information via a shared interconnect.

4. The data processing system of Claim 2, wherein for at least one
interrupt domain among said plurality of interrupt domains, at least one
interrupt source unit and said interrupt destination unit are located in

different ones of said plurality of interconnected processing nodes.

5. The data processing system of Claim 4, wherein said one of said
plurality of interconnected processing nodes containing said at least one
interrupt source unit contains no processors for receiving external

interrupts.

6. The data processing system of Claim 2, wherein at least one of said
plurality of interrupt domains includes a plurality of interrupt source

units.

7. The data processing system of Claim 1, said interrupt hardware
within each interrupt domain including a globally-accessible memory mapped

register utilized to communicate interrupts between interrupt domains.

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988
23

8. The data processing system of Claim 7, wherein said globally-
accessible memory mapped register is utilized to communicate inter-

processor interrupts.

9. The data processing system of Claim 7, wherein said globally-
accessible memory mapped register of each of said interrupt domains is
assigned a respective physical address, and wherein the physical address
of the globally-accessible memory mapped register of each interrupt domain
has a uniform offset from a memory area allocated to a processing node
containing said globally-accessible memory mapped register.

10. A method for handling an external interrupt in a data processing
system, said method comprising:

establishing a plurality of interrupt domains that each include at
least one of a plurality of interconnected processing nodes, wherein each
interrupt domain includes at least one processor capable of receiving an
external interrupt and at least one interrupt source capable of generating
an external interrupt, each of said plurality of interrupt domains having
respective interrupt hardware;

within a particular interrupt domain among said plurality of
interrupt domains, receiving an external interrupt generated by said at
least one interrupt source at said interrupt hardware and presenting said
external interrupt to said at least one processor by said interrupt
hardware;

executing, with said at least one processor of said particular
interrupt domain, interrupt handling software that can service said
external interrupt presented to said at least one processor and an
external interrupt presented to a processor within a different one of said

plurality of interrupt domains than said particular interrupt domain.

11. The method of Claim 10, said interrupt hardware within each of said
plurality of interrupt domains including an interrupt destination unit and
at least one interrupt source unit, wherein receiving an external
interrupt comprises receiving said external interrupt at said at least one
interrupt source unit, and wherein presenting said external interrupt
comprises presenting said external interrupt to said at least one

processor utilizing said interrupt destination unit.

12. The method of Claim 11, and further comprising communicating
interrupt information between said interrupt destination unit and said

interrupt source unit via a shared interconnect.

13. The method of Claim 12, wherein for at least one interrupt domain
among said plurality of interrupt domains, communicating interrupt

information via a shared interconnect comprises communicating interrupt

10

15

20

25

30

35

40

45

WO 00/36505 PCT/GB99/03988
24

information via a shared interconnect interconnecting at least two of said

plurality of processing nodes.

14. The method of Claim 13, wherein establishing a plurality of
interrupt domains includes establishing at least one interrupt domain in
which one of said plurality of interconnected processing nodes contains at
least one interrupt source unit and no processors for receiving external

interrupts.

15. The method of Claim 11, establishing a plurality of interrupt
domains comprises establishing at least one of said plurality of interrupt

domains including a plurality of interrupt source units.

16. The method of Claim 10, and further comprising communicating
interrupts between interrupt domains utilizing a globally-accessible

memory mapped register within said interrupt hardware.

17. The method of Claim 16, wherein communicating interrupts between
interrupt domains comprises communicating inter-processor interrupts

between interrupt domains.

18. The method of Claim 16, and further comprising:

assigning said globally-accessible memory mapped register of each of
said interrupt domains a respective physical address, wherein the physical
address of the globally-accessible memory mapped register of each
interrupt domain has a uniform offset from a memory area allocated to a
processing node containing said globally-accessible memory mapped

register.

1s. A method of processing an interrupt within a data processing system
including a plurality of interconnected nodes, wherein each of said
plurality of interconnected nodes includes a device that generates
interrupts and devices in multiple nodes may generate interrupts of the
same level, said method comprising:

in response to presentation of an interrupt to a processor for
servicing, said interrupt having a level, obtaining a list of devices
capable of generating an interrupt of said level; and

polling only devices within said list located within a same
interrupt domain as said processor in order to identify which device

within said list generated said interrupt.

20. The method of Claim 19, and further comprising thereafter executing

an interrupt handler associated with said identified device.

21. The method of Claim 19, and further comprising:

10

15

20

25

30

35

40

WO 00/36505 PCT/GB99/03988

25

prior to presentation of said interrupt, creating and storing said
list in a global memory space accessible to all of said plurality of

interconnected nodes.

22. The method of Claim 21, wherein said list contains only devices

within a single interrupt domain.

23. A data processing system, comprising:

a plurality of interconnected nodes, wherein each of said plurality
of interconnected nodes includes a device that generates interrupts and
devices in multiple nodes may generate interrupts of the same level,
wherein at least one of said plurality of interconnected nodes includes a
processor; and

interrupt handler software stored within said data processing system
and executable by said processor, wherein said interrupt handler software,
in response to presentation of an interrupt having a level to said
processor, obtains a list of devices capable of generating an interrupt of
said level and polls only devices within said list located within a same
interrupt domain as said processor in order to identify which device

within said list generated said interrupt.

24. The data processing system of Claim 23, wherein said interrupt
handler software is a first level interrupt handler, said data processing
system further comprising a second level interrupt handler stored within
said data processing system and executable by said processor, wherein said
second level interrupt handler is associated with said device, and wherein
said first level interrupt handler calls said second level interrupt

handler to service said identified device.

25. The data processing system of Claim 23, and further comprising a
global memory space accessible to all of said plurality of interconnected
nodes, wherein said list is stored in said global memory space prior to

presentation of said interrupt.

26. The data processing system of Claim 25, wherein said list contains

only devices within a single interrupt domain.

27. A program product for use by a data processing system including a
plurality of interconnected nodes, wherein each of said plurality of
interconnected nodes includes a device that generates interrupts and
devices in multiple nodes may generate interrupts of the same level,
wherein at least one of said plurality of interconnected nodes includes a
processor, said program product comprising:

a computer usable medium; and

10

15

20

WO 00/36505 PCT/GB99/03988
26

interrupt handler software encoded within said computer usable
medium and executable by the data processing system, wherein said
interrupt handler software, in response to presentation of an interrupt
having a level to said processor, obtains a list of devices capable of
generating an interrupt of said level and polls only devices within said
list located within a same interrupt domain as said processor in order to

identify which device within said list generated said interrupt.

28. The program product of Claim 27, wherein said interrupt handler
software is a first level interrupt handler, said program product further
comprising a second level interrupt handler encoded within said computer
usable medium, wherein said second level interrupt handler is associated
with said device, and wherein said first level interrupt handler calls

said second level interrupt handler to service said identified device.

29. The program product of Claim 27, and further comprising a
configuration routine, encoded with said computer usable medium, that
creates said list in global memory space accessible to all of said

plurality of nodes prior to presentation of said interrupt.

30. The program product of Claim 29, wherein said configuration routine

includes within said list only devices within a single interrupt domain.

PCT/GB99/03988

WO 00/36505

1/9

]] omﬁ
| S30IA3Q S30IA3Q | [DL] LOINNOSHALNI
| , ¢ 39VHOLS o/l e | N
_ SN 0 _ _ 0 S _ >
| INNVZZINST T |
| 08 g ﬁ_./m e | 3I0ON
ONISSID0Hd

_ AALAN vy nsi _ o
| — AHOW3IW e8¢ _ ug
! 81 WIISAS _ .
| G _U oquasng | T Tt 1,

— ___3NINVZZIW — ___ HITIOHINOD |
| ry oW L nd 92 g H3LiEdv 0z 3goN | T
S | | ——
| annoowain H o H |
| AHOHVHIIH AHOUVHIIH | 5 2r
| JHIVD IHOVD _
| v 0 e v 0 | /V
_ 3400 3609 |

HOSSIDOHd HOSSID0Yd
N\z1 Nz |

. wo) 20} _

WO 00/36505 PCT/GB95/03988

2/9

TFig. 2

o
<« N~
2 N
SEE5iT 7 7 ANN
8 1 X/ N
F < 1 <></< <<\
-U- UX/U O\
T IKND G DA DN
T o] N:/-— o
ngm-- oy o @3
-FE-E AT N-N
[©] Ox/o O\
FZRE Y Z N Z
| VAN
o
=
ﬂ-
((o]

‘_f62

A 66
gééj

<
wH
mnnn NN N RKNNN 7S N Y,
N g B N N A 5(\8 ‘ 7
i S P EY SR E ZN\
i HH N 1 J 1 LEL]
SR R AL N TN <R I 72 I NI
mit T WLO RO VYOO H o 8WRs 8P 5 8 N 8
S MR RSV RS ES SRS SIS S ANS 8
g Jis e lBsl RS ESSHKEH ;-%:%5§-%8§
< polSPrSYOoP I ES > > L > ANE 2
= MO MmN EaL e} el ke HFm oKX - 8 N S N
e B e NS T E P s o E R0 EY o ERN®EN
:::mm :::”\Q_:\Q_ ‘/Q_'\Q_’-—-c [F) - o o2 No O N\
i 2 e G- RO PO R HBSIBVSF 85 N3
w0 KN = hNO H =z = %z N2
i ik @ hoYele 7 N
iR S L2 Y2 2 2Z€)§§S§
MRS 82 V2 A2 R N
m m o m
g 2 2 S
("5\
f———; >l \/ »]
o (o o] o
wn ©
w
N % N~ | TR
Lz 2\ i §§ é%ﬁﬁ%%f N
uns i1 - e
NI\ N Fg N
Z\ HISON AN B 2 AN
L e =) olaf—|lo ol o]l £ < iela]lo
ol ol ol ® ol o ol © ool ot § @ 1 o] 9| @l ©
olojo|o] @ @ ¢ |[TlolvjT| @ ¢ e |TioiTiT|IN v il o|o
ol alole =1R=1R=] K<) =1 K=1K=] B=] (AT X1 RS X1 K=
zz/zz zz}zz zzzz:;;;;E.g_;;:;zziz
AN TN N 8 = A AN
HRZN il é§ g§m§&WE AN
H H iy i
E’Z§ i %§ %§mmww: §§
AR Z\ AN RN
) O 5] G
N o] © o

14GB
10GB

T
52{

52<

PCT/GB99/03988

WO 00/36505

3/9

D Pup

o [] []
0 Nmu Gl
ve
€49 vy Siy 915 L1581y 6Ly 085l85
NOISNVdX3 HO193A . 1 11
HOLD3IA MO4 GaAu3s3y | [ALMONd|'s3uf S m a3AgISIY m _\m,_
0 L 8 Gl 91 6L0zlzee €2 ve 62 0 LE

70t

PCT/GB99/03988

WO 00/36505

4/9

v D

¢t

0¢

Sanano w € 43151934 ONVINWOD Id1[Z ¥31SID3H GNVINWOD IdI

H0SS3004d V4 | 43151934 ANVIWWOD IdI]0 HILSIDIH ANVIWWOD IdI

SH31S1934 ANVNNOD Idl

V] W 13S ¥31SI93Y HOSSII0Hd-Had . P
3N3ND IDIAYIS ¢

. 26< H31SID3Y 1dNHYILNI 40 ON3 .

v H3USI934 I9QTIMONNOY LNUAINE o

H3LSIDIH ALIHOIY SV INIHHND S

/ _
ININD ONIAN3d 02 U

SH31S1934 HOSSIIO0Hd-H3id

H31S1934 NOILVZITVILINI HOSS3O0Hd

8017 =

H31S1934 HOLJ3A SNOIHNS

£ H31S1934 HOLJ3A Idl | ¢ H31SI93H HOLI3A IdI

90 P.\/_. H31S1934 HO1J3A Idl | 0 H31SID3H HOLD3IA IdI

y01

43151934 NOILVIIdILNIAl HOANIA

201 =

43151934 NOILVHNDIINOD 1vE019

001 =

H3.1S1934 ONILHOd3IY 34N LV

SH31SI1934 Tvd019

(NA1) LINN NOILYNILS3A LdNHYILNI

PCT/GB99/03988

WO 00/36505

5/9

13A37 LdNYYILNI
JHL HO4 XSV 13S
ANV 1dNYY3ILINI 3HL 40

13A37 3HL S3LVIIANI
1VH1 Ndl OL 13XJvd
1dNYYIINI 3NSSI

NOILOVSNVHL

| S3A INSSI3H

TVAHILNI 0}
(3NIWY313034d V LIVM

om_,J

11

¢ O3NSV
13AIN .rm:mmm._.z_
i

¢ 3AI13034

§ by

zo_5<mz<E
J3DNVI ¥O 103~ S3A

«

13A3
1dNYYILINI 313103dS
04 ASVIN HVI1D

91

oy PREEI IR
Q314193dS IHL IV~
N3d LdNYY3LINI
T3ATTV LdNHYILNI oz_oz<m_ mw<m::m_ ON
NDISSY OL H31S93Y SIHL
NOILVHNOHNOD D
304NOS LdNYYILNI
S$S300V
AREINERED
2 U t = 1dNHYIINI
IVNH3LX3

cvi

oi\ﬁ NID3g)

PCT/GB99/03988

WO 00/36505

6/9

v0Z,
HOSSIDO0Hd OL

1

HOLJ3A 1dNYYILNI ANV
T3A3T LdNYYILNI AN3S

A

o — e — e —— e —— e ———————

\§/

N3N0 3DIAH3S

Ol LdNUYILINI 3ONVAQY
ANV 3N 1S3N03Y

1dNYY3LNI LHISSYIY

NoNJ

S3A

¢ G3AI3034
NOILOVSNVHL
AV

g9 'bi4

00¢

v9 by

¥9 ‘bup

g 'bi4

gg S

LdNYYILNI ONIONId V
NVHL ALIHOIYd H3IHOIH V
SVH 1dNYY3LNI Q3AIF03YH

ANV 11Nn4 SI 3N3N0
41 ‘LdNYYILNI ONIGNId
404 NSI Ol 13INOVd
1dNYYILINI 3NSSIFH AN3S

¢ 30IAH3S
NIvig0 Ol
HONON3 HOIH 713ATT
1dNYYILNI

¢ NSl

WOYd d3AI3034

NOILOVSNVHL 1S3n03Y
1dNYYIINI

c8l

—y
-

HOSS3004d
404 DV1d 3AILOV
ANV 13A3T 1dNYYILNI
404 9V1d DNIAN3d 13S

i

HOSS3004d 3123138
HOd4 3NN 1S3N03Y
1dNYYILINI 1HISSY

061

L1dNYYU3LINI 3AI1303Y
404 NSI 01 13X%0vd
1dNYYIINI INSSITH ANIS

wmv

0g, s _Nio3s)

PCT/GB99/03988

WO 00/36505

7/9

H0SS300Hd
404 OV14 JAILOV
ANV 13A37 LdNYYILNI
404 OV14 ONION3d 13S

gygS
1

(S)H0SS3J0Hd
11VIHdOHddV
40 S3NIT 1S3N03Y
1dNYYILNI LHISSV

99 by

2224
1

Idl 3HL
ONIAIZI3Y 40 3719VdVD
JYV/SI (S)HOSSIO0Hd
HOIHM ANV IdI 3HL
40 T3A3T JHL ININY3L3Q

ONISS300Hd

¢9¢ H3H10

vz’
sl _

¢ 43181934

ONVIANOD

IdI NV ONILIDHVL

NOILOVSNVYHL
3LIEM

¢ NOILOVSNVHL
aInvA H3HLO

09¢

poz s Howss)

i

NAl LV H0SS300Hd SIHL
404 OV1d JAILOV HV3TD

9zz/

Cr— - o — - — e W0 Sdv—

¢ H0SS300Hd
SIHL 404 @3n3no
1dNYY3LNI

NSI 304N0S OL
NOILOVSNVYHL
103 LINSNVHL

J
A *

1dNYY3LNI @314103dS
H04 OV1d ONIAN3d HV31D

¢ Q3AI3034
NOILJVSNVHL
103

WO 00/36505

8/9

PCT/GB99/03988

300\{ BEGIN) Tlg. V4
302 U { ‘ S 310
IDENTIFY WHICH NODES FOR EACH INTERRUPT
INCLUDE DEVICES THAT LEVEL, CREATE A DATA
CAN GENERATE STRUCTURE INCLUDING

EXTERNAL INTERRUPTS

304 ‘
> INTERROGATE EACH

DEVICE TO DETERMINE
THE LEVEL OF INTERRUPT

A LIST OF ALL DEVICES
THAT COULD GENERATE
AN EXTERNAL INTERRUPT
OF THAT LEVEL, THE
NODE ID OF EACH
DEVICE, THE REGISTER

ADDRESSES OF EACH
TO BE ASSIGNED TO
B ol DD DEVICE, ETC.
i< _ 312
SELECT A NEXT NODE
| NODE
YES CONTAINS A
322+ { PROCESSOR ?
CONFIGURE
PROCESSOR(S), IDU,
ISU(S) AND NODE 330
CONTROLLER, INCLUDING
PROCESSOR ID AND DISABLE IDU
NODE ID REGISTERS
* vs 332
CONFIGURE ISU(S) AND
NODE CONTROLLER,
INCLUDING NODE
CONTROLLER'S
FORWARDING NODE
REGISTER
334
ADDITIONAL
NO~" NODESTOBE >YES

336 CONTINUE

SETUP

PROCESSED ?

WO 00/36505

405

PCT/GB99/03988

9/9

(' BEGIN)1400

!

ISSUE INTERRUPT
ACKNOWLEDGE
TRANSACTION TO IDU
TO OBTAIN INTERRUPT
LEVEL AND INTERRUPT
VECTOR

403

YES

'

READ MESSAGE FROM
IPl MEMORY LOCATION

IP1?

NO

MASK INTERRUPTS
FOR PROCESSOR
(IF REQUIRED)
AND OBTAIN LOCK ON
INTERRUPT RESOURCES

!

PASS INTERRUPT LEVEL
AND POINTER TO DATA
STRUCTURE ASSOCIATED
WITH INTERRUPT LEVEL

TO SLIH

402

/406

INTERRUPT
SERVICE ROUTINES
COMPLETE ?

Fig. &8

ISSUE END OF
INTERRUPT TO IDU
SPECIFYING LEVEL OF
SERVICED INTERRUPT

Y

C END)f412

410

INTERNATIONAL SEARCH REPORT

srnational Application No

PCT/GB 99/03988

A._CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F9/46

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Electronic data base consutted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

CHIP ISOLATION"

CORP. NEW YORK,
vol. 29, no. 11,

5079-5080, XP000714410
ISSN: 0018-8689
the whole document

CORP. NEW YORK,
vol. 29, no. 5,

1891-1895, XP002010805
ISSN: 0018-8689
the whole document

IBM TECHNICAL DISCLOSURE BULLETIN,US,IBM

1 April 1987 (1987-04-01), pages

A "VIRTUAL INTERRUPT MECHANISM"
IBM TECHNICAL DISCLOSURE BULLETIN,US, IBM

1 October 1986 (1986-10-01), pages

-/==

A "SOFTWARE DIAGNOSTIC ROUTINE FOR FAILING 1-30

1-30

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents °

"A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the intemational filing date but
later than the priority date ciaimed

“T" later docurnent published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novsl or cannot be considered to
involve an inventive step when the document is taken alone

“Y* document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

15 May 2000

Date of mailing of the international search report

23/05/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31~70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Brandt, J

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

erpational Application No

PCT/GB 99/03988

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to ctaim No.

A

US 5 568 644 A (NELSON MATTHEW R ET AL)
22 October 1996 (1996-10-22)
column 1, line 1 -column 2, line 44

1-30

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

arnationat Application No

PCT/GB 99/03988

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5568644 A 22-10-1996 AU 5726496 A 21-11-1996
EP 0826174 A 04-03-1998
Wo 9635168 A 07-11-1996

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

