5/116830 A1 | IV Y0 000 0000 O

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
8 December 2005 (08.12.2005)

(10) International Publication Number

WO 2005/116830 Al

(51) International Patent Classification’: GOOF 9/46
(21) International Application Number:
PCT/IB2005/0516438

(22) International Filing Date: 20 May 2005 (20.05.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

04102350.8 27 May 2004 (27.05.2004) EP
(71) Applicant (for all designated States except US): KONIN-
KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL];

Groenewoudseweg 1, NL.-5621 BA Eindhoven (NL).

(72) Inventor; and

(75) Inventor/Applicant (for US only): BEKOOLJ, Marco, J.,
G. [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eind-
hoven (NL).

(74) Agents: ELEVELD, Koop, J. et al.; Prof. Holstlaan 6,
NL-5656 AA Eindhoven (NL).

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T1, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SL, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,

[Continued on next page]

(54) Title: SIGNAL PROCESSING APPARATUS

52

(57) Abstract: Signal stream processing jobs contain tasks (100), each task (100) to be performed by repeated execution of an
operation that processes a chunk of data from a stream. Each job comprises a plurality of the tasks (100) in stream communication
with one another. A plurality of processing units (10), which are mutually coupled for the communication of signal streams execute
that tasks. A preliminary computation is performed for each job individually, to determine execution parameters required for the job
to support a required minimum stream throughput rate if each task of the job is executed in a respective context wherein opportunities
& to start execution of the task occur separated at most by a cycle time T defined for the task. Atrun time combination of jobs is selected
& for execution. Groups of the tasks of the selected combination of jobs are assigned to respective ones of the processing units (10),
o checking that for each particular processing unit (10) a sum of worst case execution times for the tasks assigned to that particular
processing unit (10) does not exceed the defined cycle time T defined for any of the tasks (100) assigned to the particular processing
unit (10). The processing unit (10) execute the selected combination of jobs concurrently, each processing unit (10) time multiplexing
execution of the group of tasks (100) assigned to that processing unit (10).

WO 2005/116830 Al

00 000 O O

EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, 1S,
JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU,
ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW,
MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB,
GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI patent (BE, BJ, CF, CG, CI, CM, GA, GN,
GO, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2005/116830 PCT/IB2005/051648

Signal processing apparatus

The invention relates to apparatus for processing signal streams, a method of
operating such an apparatus and a method of manufacturing such an apparatus.

Signal stream processing is required in equipment for media access, such as
television/internet access equipment, graphics processors, camera's, audio equipment etc.
Modern equipment requires increasingly vast numbers of stream processing computations to
be performed. Stream processing involves processing successive signal units of an (at least in
principle) endless stream of such signal units concurrently with atrival of the signal units.

In this type of equipment the implementation of stream processing
computations preferably has to meet several demands: it must satisfy real-time signal stream
processing constraints, it must be possible to execute flexible combinations of jobs-and it has
to be able execute a vast amount of computations per second. The real-time stream -
processing requirement is needed for example to avoid hick-ups in audio rendering, frozen
display images, or discarded input audio or video data due to buffer overflow. The flexibility
requirement is needed because users must be able to select at run time which arbitrary
combination of signal processing jobs that should be executed concurrently, always satisfying
the real time constraints. The requirement of a vast amount of computations usually implies
that all this should be realized in a system of a plurality of processors that operate in parallel,
performing different tasks that are part of the signal processing jobs.

In such a flexible and distributed system it can be extremely difficult to
guarantee that real time constraints will be met. The time needed to produce data depends not
only on the actual computation time, but also on waiting time spent by processors waiting for
input data, waiting for buffer space to become available to write output data, waiting until a
processor is available etc. Unpredictable waiting can make real time performance
unpredictable. Waiting can even lead to deadlock if processes wait for each other to proceed
to produce data and or free resources.

Even if waiting does not seem to hinder real-time performance under normal
circumstances, a failure to meet real time constraints may surface only under special
circumstances, when the signal data causes some computation task to complete in unusually

(but not erroneously) short or long time for a chunk of the stream. Of course, one may simply

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

2

leave the user to try whether the equipment will be able to support a combination of jobs at
all times. But this may have the effect that the user may have to discover afterwards that, say,
part of a video signal has not been recorded, or that the system crashes at unpredictable times.
Although in some systems consumers have been forced to accept this kind of performance,
this is of course highly unsatisfactory.

The use of a theoretical framework called Synchronous Data Flow graphs
(SDF) has provided a solution to this problem for individual jobs. The theory behind SDF
graphs makes it possible to compute in advance whether it can be guaranteed that real-time
constraints or other throughput requirements will be met under all circumstances when tasks
of a stream-processing job are implemented distributed over a plurality of processors. The
basic approach of SDF graph theory is that an execution time is computed for a set of
theoretical processors that execute all tasks in parallel. The SDF graph theory provides a
proof that, under certain conditions, the throughput speed (time needed between production
of successive parts of a stream) that is computed in for this set of theoretical processors is
always slower than the throughput speed of a practical implementation of the tasks. Hence, if
a combination of task has been proven to work in real time for the theoretical set of
processors, real-time performance can be guaranteed for the practical implementation.

An SDF graph is constructed by splitting a job that must be executed into
tasks. The tasks correspond to nodes in the SDF graphs. Typically, each task is performed by
repeatedly performing an operation that inputs and/or outputs chunks of one or more streams
of input data from or to other tasks. Edges between the nodes of the SDF graph represent
communication of streams between tasks. In the set of theoretical processors the operation of
each task is executed by a respective one of the processors. The theoretical processors wait
for sufficient data before starting execution of the operation. In the SDF model, each stream
is assumed to be made up of a succession of "tokens", each of which corresponds to a
respective chunk of the data from the stream. When a specified number of tokens is available
at its inputs a processor is assumed to start processing immediately, inputting (removing) the
tokens from its inputs, and taking a predetermined time interval before producing a resulting
token at its output. For this theoretical model the time points at which the tokens will be
output can be computed.

To be able to convert these computed theoretical time points to worst case
time points for a practical set processors first of all the duration of the predetermined time
intervals required by the theoretical processors must be selected equal to (or larger than) the

worst case time intervals needed by the practical processors.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

3

Secondly, the theoretical model has to be "made aware" of a number of
limitations of the practical processors. For example, in practice a processor cannot start
execution of an operation if it is still processing the operation for a previous token. This
limitation can be expressed in the SDF graph by adding a "self edge" from a node back to
itself. The processor that corresponds to the node is modelled to require a token from this
self-edge before starting execution and to output a token at the end of execution. Of course,
during each execution a token from the regular input of the processor is processed as well.
The self-edge is initialized to contain one token. In this way, the theoretical set of processors
is given the practical property that the start of execution of a task for one token has to wait
until completion of executidn for the previous token. Similarly the SDF graph can be made
aware of practical limitations due to buffer capacity, which may cause a processor to wait
when no space is available in an output buffer.

Other limitations of the practical processors are often due to the fact that each
processor typically executes operations of a plurality of different tasks in time-multiplexing
fashion. This means that in practice the start of execution of operations must wait not only for
the availability of tokens, but also for the completion of operations for other tasks that are
executed by the same processor. Under certain conditions this limitation can be represented
in the SDF graph. In particular, when there is a predetermined order in which the multiplexed
tasks will be executed, this can be represented by adding a loop of edges to the SDF graph,
from one multiplexed task to the next according to the predetermined order, and by adding
one initial token on the first edge of this loop. In this way, the theoretical set of processors is
given the practical property that the start of execution of each task in the loop waits for
completion of the previous task.

It should be noted that this way of making the SDF graph model "aware" of
limitations of practical implementations is not applicable to all possible limitations. For
example, if the order in which time-multiplexed tasks are executed by a processor is not
predetermined, the consequences for timing cannot be expressed in an SDF graph. Thus, for
example, if a processor is arranged to skip a particular task (proceeding to the next task) if

there are insufficient tokens to start the particular task, the effect cannot be expressed in the

. SDF graph. In practical terms this means that it is not possible to guarantee real time

throughput in this case. Consequently the real time guarantees comes at a price: only certain
implementations can be used. In general it can be said that, in order to fit into SDF graph
theory, the implementation must satisfy a "monotonicity condition": faster execution of a task

should never lead to later execution of any other task.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

4
Moreover, it should be noted that it is difficult to apply SDF graph theory to

execution of a flexible combination of a plurality of jobs in parallel. In principle this would
require the tasks of all different jobs that are executed in parallel to be included in the same
SDF graph. This is needed to express the mutual effect of the tasks on each others' timing.
However, if the input and/or output data rate of different jobs is not synchronized it becomes
impossible to provide real time guarantees in this way. Moreover, performing a new
computation of throughput times every time when a job is added or removed from the set of
jobs that has to be executed in parallel, presents a considerable overhead.

Among others, it is an object of the invention to provide for real-time
guarantees using SDF graph theory techniques which can be applied at run-time with little
overhead.

Among others, it is an object of the invention to reduce the amount of
computations needed to provide real-time guarantees using SDF graph theory techniques, - -
when flexible combinations of jobs.must be executed with a set of processors.

Among others, it is an object of the invention to provide for real-time
guarantees when flexible combinations of unsynchronized jobs must be executed with a set
of processors.

Among others, it is an object of the invention to make it possible to provide
for real-time guarantees in a multi-processor circuit wherein a processor executes a plurality
tasks on a round robin basis, proceeding with a next task in the round robin sequence if
insufficient input data is available for a previous task.

Among others, it is an object of the invention to provide for real-time
guarantees using SDF graph theory techniques with less waste of resources.

The invention provides for a device according to Claim 1 and a method
according to Claim 4. According to the invention real time throughput for a plurality of
concurrently executed stream processing jobs is guaranteed by using a two-stage process. In a
first stage the individual jobs are considered in isolation and the execution parameters for
these jobs, such as for example the buffer sizes for buffering data from the streams between
tasks, are selected for an assumed context wherein opportunities to start execution of the task
occur separated at most by a cycle time T defined for the task. Preferably, it also checked
whether the job can be executed according to the required real time requirements, i.e.
whether it will produce successive chunks of data with at most a specified delay. In the first
stage it need not be known which combination of stream processing jobs must be executed

concurrently.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

5

In a second stage, the combination of concurrently executed processing jobs is
considered. At this stage each of a plurality of processing units is assigned a group of the
tasks from the selected combination of jobs. During assignment it is checked that for each
particular processing unit a sum of worst case execution times for the tasks assigned to the
particular processing unit does not exceed the defined cycle time T defined for any of the
tasks assigned to the particular processing unit. The sum reflects how the worst case
execution times affect the maximum possible delay between successive opportunities to
excecute, given the scheduling algorithm used by the processing unit for the tasks (e.g.
Round Robin scheduling). Finally the selected combination of jobs is executed concurrently,
time multiplexing execution of the cycles of tasks on the respective processing units.
Typically, it is not needed that the processing units wait until a task can be executed. If the
invented process for guaranteeing real time performance is used, the processing unit may skip
to the next task if a task cannot proceed due to lack of input and/or output buffer space. This -
is particularly advantageous to facilitate the performance of different jobs that process
mutually unsynchronized data streams.

The cycle times T are preferably selected the same for all tasks. This
simplifies operation in the second stage. However, according to a second embodiment the
cycle times of selected tasks are adjusted when the real time requirements cannot be met. By
reducing a cycle time for a particular task one effectively allows fewer tasks to be executed
on the same processing unit as the particular task, to improve performance. Adjustment of the
cycle times makes it possible to search for a possible real time implementation in the first
stage, i.e. when the combination of tasks that must be executed in parallel may not yet be
known.

The required minimum buffer sizes in the assumed context may be computed
using SDF graph techniques. In one embodiment the buffer sizes are computed by adding
virtual nodes to the SDF graph of a process in front of nodes for real tasks. The worst case
execution times of these virtual nodes are set to represent the worst case delay due to waiting
until a processing unit reaches a task when a cycle of tasks is executed. Next the buffer sizes
are determined by considering all paths through the SDF graph from one node that produces
a data stream to another node that consumes that data stream and determining the sum of the
worst case execution times of the nodes along each path. The highest of these sums is used to
determine the buffer size, by dividing it by the maximum allowable time between successive

tokens, as determined by the real time throughput requirement.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

These and other objects and advantageous aspects of the invention will be
described in more detail using the following figures, which illustrate non-limitative examples
of embodiments.

Figure 1 shows an example of a multi-processor circuit

Figure la-c show SDF graphs of a simple job

Figure 2 shows a flow chart of a process for guaranteeing real time
performance

Figure 3 shows a flow chart of a two-stage process for guaranteeing real time
performance

Figure 4 shows a flow chart of a step in a two-stage process for guaranteeing
real time performance

Figure 5 shows an elaborated SDF graph of a simple job

Figure 6 shows a typical system for implementing the invention

Figure 1 shows an example of a multi-processor circuit. The circuit contains a
plurality of processing units 10 interconnected via an interconnection circuit 12. Although
only three processing units 10 are shown it should be understood that a greater or smaller
number of processing units may be provided. Each processing unit contains a processor 14,
an instruction memory 15, a buffer memory 16 and an interconnection interface 17. It should
be understood that, although not shown, processing units 10 may contain other elements,
such as data memory, cache memory etc. In each processing unit, processor 14 is coupled to
instruction memory 15 and to interconnection circuit 12, the latter via buffer memory 16 and
interconnection interface 17. Interconnection circuit 12 contains for example a bus, or a
network etc. for transmitting data between the processing units 10.

In operation, the multiprocessor circuit is capable of executing a plurality of
signal processing jobs in parallel. A signal processing job involves a respective plurality of
tasks, different tasks of a job may be executed by different processing units 10. An example
of a signal processing application is an application which involves MPEG decoding of two
MPEG streams and mixing of data from the video part of the streams. Such an application
can be divided into jobs, such as two MPEG video decoding jobs, an audio decoding job, a

video mixing job and a contrast correction job. Each job in turn involves one ore more

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

7
repeatedly executed tasks. An MPEG decoding job, for example includes a variable length
decoding task, a cosine block transform task etc.

The different tasks of a job are executed in parallel by different processing
units 10. This is done for example to realize sufficient throughput. Another reason for
executing tasks with different processing units may be that some of the processing units 10
may be specialized to perform certain tasks efficiently while other processing units are
specialized to perform other tasks efficiently. Each task inputs and/or outputs one or more
streams of signal data. The stream of signal data is grouped in chunks of a predetermined
maximum size (typically representing signal data for a predetermined time interval, or
predetermined part of an image and preferably of predetermined size), which consist for
example of a transmission packet, data for a single pixel, or for a line of pixels, an 8x8 block
of pixels, a frame of pixels, an audio sample, a set of audio samples for a time interval etc.

During execution of a job, for each task an operation that corresponds to the
task is executed repeatedly, each time using a predetermined number of chunks of the stream
(e.g. one chunk) as input and/or producing a predetermined number of chunks as output. The
input data chunks of a task are generally produced by other tasks and the output data chunks
are generally used by other tasks. When a first task outputs stream chunks that are used by a
second task, the stream chunks are buffered in buffer memory 16 after output and before use.
If the first and second task are executed by different processing units 10, the stream chunks
are transmitted via interconnection circuit 12 to the buffer memory 16 of the processing unit

10 that uses the stream chunks as input.

SDF graph theory

The performance of the multi-processor circuit is managed on the basis of
SDF (Synchronous Data Flow) graph theory. SDF graph theory is largely known per se from
the prior art.

Figure 1a shows an example of an SDF graph. Conceptually SDF graph theory
pictures an application as a graph with "nodes" 100 that correspond to different tasks. The
nodes are linked by directed "edges" 102 that link pairs of nodes and represent that stream
chunks are output by a task that corresponds to a first node of the pair and used by a task that
corresponds to a second node of the pair. The stream chunks are symbolized by "tokens". For
each node it is defined how many tokens should be present on its incoming links before the
corresponding task can execute and how many tokens the task will output when it executes.

After production of a stream chunk and before it is used a token is said to be present on an

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

8

edge. This corresponds to storage of the stream chunk in a buffer memory 16. The presence
or absence of tokens on the edges defines a state of the SDF graph. The state changes when a
node "consumes" one or more tokens and/or produces one or more tokens.

Fundamentally an SDF graph depicts data flow and processing operations
during execution of a job, tokens corresponding to chunks of the data streams that can be
processed in one operation. However, various aspects such as bus access arbitration,
limitations on the amount of execution parallelism, limitations on buffer size etc. can also be
expressed in the SDF graph.

For example, transmission via a bus or a network can be modelled by adding a
node that represents a transmission task (assuming that a bus or network access mechanisms
is used that guarantees access within a predetermined time). As another example, in principle

any node in the graph is assumed to start execution of a task as soon as sufficient input tokens

. are available. This implies an assumption that previous executions of the task do not hinder

the start of execution. This could be ensured by providing an unlimited number of processors
for the same task in parallel. In reality the number of processors is of course limited, often to

no more than one, which means that a next execution of a task cannot start before a previous

. execution is finished. Figure 1b shows how this can be modelled by adding "self edges" 104

to the SDF graph, each from a node back to itself, with initially a number of tokens 106 on
the self edge that corresponds to the number of executions that can be performed in parallel,
e.g. one token 106. This expresses that the task can start initially by consuming the token, but
that it cannot start again until the task has finished and thereby replacing the token. In
practice, it may suffice to add such self-edges only to selected nodes, since limited starting
possibilities of the task of one node often automatically imply limitations on the number of
times that tasks of linked nodes will be started.

Figure 1c shows an example, wherein limitations on the size of a buffer for
communication from a first task to a second task are expressed by adding a back edge 108
back from the node for the second task to the node for the first task, and by initially placing a
number of tokens 110 on this back edge 108, the number of tokens 110 corresponding to the
number of stream chunks that can be stored in the buffer. This expresses that the first task can
initially execute the number of times that corresponds to the initial tokens, and that
subsequent executions are only possible if the second task has finished executions and
thereby replaced the tokens.

The SDF graph is a representation of data communication between tasks that

has been abstracted from any specific implementation. For the sake of visualization each

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

9
node can be thought to correspond to a processor that is dedicated to execute the
corresponding task and each edge can be thought to correspond to a communication
connection, including a FIFO buffer between a pair of processor. However, the SDF graph
abstracts from this: it also represents the case where different tasks are executed by the same
processor and stream chunks for different tasks are communicated via a shared connection
such as a bus or a network.

One of the main attractions of SDF graph theory is that it supports predictions
of worst case throughput through the processors that implement the SDF graph. The starting
point for this prediction is a theoretical implementation of the SDF graph with self-timed
processing units, each dedicated to a specific task, and each arranged to start an execution of
the task immediately once it has received sufficient input tokens to execute the task. In this
theoretical implementation it is assumed that each processing unit requires a predetermined
execution time for each execution of its corresponding task.

For this implementation the start times s(v,k) of respective executions
(distinguished by different values of the label k=0,1,2..) of a task (distinguished by the label
"v") can be readily computed. With a finite amount of computation the start times s(v,k) for
an infinite number of k values can be determined, because the prior art has proven with SDF

graph theory that this implementation leads to a repetitive pattern of start times s(v,k):

s(v,k+N) = s(v,k) + A N

Herein N is the number of executions after which the pattern repeats and A is
the average delay between two successive executions in the period. i.e. 1/A is the average
throughput rate, the average number of stream chunks produced per unit time.

Prior art SDF graph theory has shown that A can be determined by identifying
simple cycles in the SDF graph (a simple cycle is a closed loop along the edges that contain
nodes at most once). For each such cycle "c" a nominal mean execution time CM(c) can be
computed, which is the sum of the execution times of the nodes in the cycle, divided by the
number of tokens that are initially on the edges in the cycle. A is the mean execution time
CM(Cmax) of the cycle cmax that has the longest mean execution time. Similarly, prior art SDF
graph theory has provided a method of computing N, the number of executions in a period. It
may be noted that in realistic circumstances the graph will contain at least one cycle, because

otherwise the graph would correspond to an infinite number of processors that are capable of

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

10

executing tasks an infinite number of times in parallel, which would lead to an infinite
throughput rate.

The results obtained for the theoretical implementation can be used to
determine a minimum throughput rate for practical implementations of an SDF graph. The
basic idea is that one determines the worst case execution time for each task in the practical
implementation. This worst case execution time is then assigned as execution time to the
node that corresponds to the task in the theoretical implementation. SDF graph theory is used
to compute the start times syp(v,k) for the theoretical implementation with the worst case
execution times. Under certain conditions it is ensured that these worst case start times are

always at least as late as the start of execution simp(Vv,k) in the actual implementation:

Simp(V:k) < su(Vv,k)

This makes it possible to guarantee a worst-case throughput rate and a
maximum delay before data is available. However, this guarantee can only be provided if all
implementation details that can delay execution of tasks are modelled in the SDF graph. This
limits the implementations to implementations wherein the unmodelled aspects have
monotonous effects: where a reduction of the execution time of a task can never lead to a

delay of the start time of any task.

Scheduling of a predetermined combination of tasks

Figure 2 shows a flow-chart of a process to schedule a combination of tasks on
a processing circuit as shown in figure 1 using SDF graph theory. In a first step 21, the
process receives a specification of the combination of tasks and the communication between
the tasks. In a second step 22 the process assigns the execution of the specified task to
different processing units 10. Because the number of processing units in practical circuit is
typically much smaller than the number of tasks, at least one of the processing units 10 is
assigned a plurality of tasks.

In a third step 23 the process schedules a sequence and a relative frequency in
which the tasks will be executed (execution of the sequence being indefinitely repeated at run
time). This sequence must ensure the absence of deadlock: it any particular task in the
sequence of a processing unit 10 directly or indirectly requires stream chunks from another

task executed by the processing unit 10, the other task should be scheduled so often before

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

11

the particular task that it produces sufficient stream chunks to start the particular task. This
should hold for all processors.

In a fourth step 24 the process selects the buffer sizes for storing stream
chunks. For tasks that are implemented on the same processing unit 10 minimum values for
the buffer sizes follow from the schedule, in that it must be possible to store the data
produced by a task before another task uses the data or before the schedule is repeated.
Buffer sizes between tasks that can be executed on different processing unit can be selected
arbitrarily, subject to the outcome of sixth and seventh step 26, 27, as will be discussed
below.

In a fifth step 25 the process effectively makes a representation of an SDF
graph, using the specified tasks and their dependencies to generate nodes and edges.
Although it will be said colloquially that the process makes an SDF graph and modifies this
graph in certain ways, this should be understood to mean that data is generated that represents
information that is at least equivalent to an SDF graph, i.e. from which the relevant properties
of this SDF graph can be unambiguously derived.

The process adds "communication processor" nodes on edges between nodes
for tasks that have been scheduled on different processing units 10 and additional edges that
express limitations on the buffer size and the number of executions of tasks can be performed
in parallel. Also the process associates a respective execution time ET with each particular
node, which corresponds to the sum of the worst-case execution times WCET of the tasks
that are scheduled in the same sequence on the same processing unit 10 with the particular
task that corresponds to the particular node. This corresponds to the worst case waiting time
from possible arrival of input data until completion of execution.

In a sixth step 26 the process performs an analysis of the SDF graph to
compute the worst case start times s(v,k) for the SDF graph, typically including
computation of the average throughput delay A and the repetition frequency N described
above. In a seventh step 27 the process tests whether the computed worst case start times
sm(v,k) meet real time requirements specified for the combination of tasks (that is, that these
start time lie before or at specified time points at which stream chunks must be available,
which are typically periodically repeating time points, such as time points for outputting
video frames). If so, the process executes an eight step 28 loading the program code for the
tasks and information to enforce the schedule onto the processing units 10 where the tasks are
scheduled, or at least outputting information that will be used for this loading later on. If the

seventh step shows that the schedule does not meet the real time requirements the process

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

12

repeats from the second step 22 with a different assignment of tasks to processing units 10
and/or different buffer sizes between tasks that are executed on different processing units 10.

During execution of the scheduled tasks, when it is the turn of a task in the
schedule, the relevant processing unit 10 waits until sufficient input data and output buffer
space is available to execute the task (or equivalently the task itself waits once it has been
started). That is, deviations from the schedule are not permitted, even if it is clear that a task
cannot yet execute and subsequent tasks in the schedule can execute. The reason for this is

that such deviations from the schedule could lead to violations of the real time constraints.

Flexible run time combinations of tasks

Figure 3 shows a flow chart of an alternative process for dynamically
assigning tasks of a plurality of jobs to processing units 10. This process contains a first step
31 in which the process receives a specification of a plurality of jobs. It is not yet necessarily
specified in this first step 31 which of the jobs must be executed in combination. Each job

may contain a plurality of communicating tasks that will be executed in combination. In a

. second step 32 the process performs a preliminary buffer size selection for each job

individually. First and second step may be performed off-line, prior to actual run time
operation.

At run time, the process schedules combinations of jobs dynamically.
Typically jobs are added one by one and the process executes a third step 33 in which the
process receives a request to add a job to the jobs, if any, executed by the multi-processor
circuit. In a fourth step 34, at run-time, the process assigns tasks to the processing units 10. In
a fifth step 35 the tasks of the additional job are loaded into the processing units 10 and
started (or merely started if they have been loaded in advance).

Preferably, the assignment selected in fourth step 34 specifies respective
sequences of tasks for respective processing units 10. During execution of the specified tasks
non-blocking execution is used. That is, although the processing units 10 test whether
sufficient tokens are available for the tasks in the selected sequence for the processing unit
10, the processing unit 10 may skip execution of a task if insufficient tokens are available and
execute a next task in the selected sequence for which sufficient tokens are available. In this
way the sequence of execution need not correspond to the selected sequence that is used to
test for the availability of tokens. This makes it possible to execute jobs for which the signal

streams are not synchronized.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

13

The preliminary buffer size selection step 32 computes an input buffer size for
each task. This computation is based on SDF graph theory computations for individual jobs,
under the assumption of a worst-case time to execute other jobs on the same processing unit
10.

Figure 4 shows a detailed flow chart of the preliminary buffer size selection
step 32 of figure 3. In a first step 41 the process selects a job. In a second step 42 a
representation of an initial SDF of the job is constructed including the tasks that are involved
in the job. In a third step 43 the process adds nodes and edges to represent practical
implementation properties under that assumption that each task will be executed by a
processing unit 10 in time multiplexing fashion with as yet unknown other tasks, whose
combined worst case execution time does not exceed a predetermined value.

In a fourth step 44 the process performs an analysis of the SDF graph to
compute the buffer sizes required between tasks. Optionally the process also computes the .
worst case start times sq(v,k) for the SDF graph, typically including computation of the
average throughput delay A and the repetition frequency N described above. In a fifth step 45
the process tests whether the computed worst case start times sy (v,k) meet real time
requirements specified for the combination of tasks (that is, that these start time lie before or
at specified time points at which stream chunks must be available, which are typically
periodically repeating time points, such as time points for outputting video frames). If so, the
process executes a sixth step 46, outputting information including the selected buffer sizes
and reserved times that will be used for loading later on. The process then repeats from the
first step 41 for another job.

Figure 5 shows an example of a virtual SDF graph that may be used for this
purpose. The virtual SDF graph has been obtained from the graph shown in figure 1b by
adding nodes for virtual tasks 50 in front of each particular task 100. The virtual tasks 50 do
not correspond to any real task during execution, but represent the delay due to the (as yet
unknown) other tasks that will be assigned to the same processing unit as the particular task
100 that follows the virtual task 50. In addition, first additional edges 54 have been added
from each original node 100 back to its preceding node for a virtual task 50. In the initial
state of the graph these first additional each edges contain one token. These first additional
edges 54 represent that completion of a task corresponding to a particular node 100 starts the
delay time interval represented by the nodes for virtual tasks 50.

Furthermore, second additional edges 52 have been added from each particular

original node 100 to the nodes for virtual tasks 50 that precede supplying nodes 100 that have

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

14

edges toward the particular original node 100. Each of the second additional edges 52 is
considered to be initialized with a respective number of tokens N1, N2, N3 that has yet to be
determined. The second additional edges 52 represent the effect of buffer capacity between
the tasks involved. The number of tokens N1, N2, N3 on the second additional edges 52
represent the number of signal stream chunks that can at least be stored in these buffers. The
second additional edges 52 are coupled back to the nodes for virtual tasks 50 to express the
fact that waiting times of a full cycle of tasks on a processing unit 10 may occur if a task has
to be skipped because the buffer memory for supplying signal data to a downstream task is
full.

It has been found that it can be proven that the capacity of the buffers may be
computed from the virtual graphs of the type shown in figure 5, using the nearest integer

equal to or above the value of the expression
(> WCET;) MCM

Herein MCM is the required real time throughput time (the maximum time between
production of successive stream chunks) and WCET; is the worst case execution time of tasks
(labelled by i). The tasks involved in the sum depend on the buffer for which the capacity is
computed, or, in terms of the SDF graph, on the nodes 100, 50 that occur between the starting
node and end node of the second additional edge 52 that represents the buffer. The sum is
taken over a selected number of tasks i that occur in a worst case path through the SDF graph
from the end node to the starting node. Only "simple" paths should be considered: if the
graph contains cycles, only paths should be considered that pass no more than once through
any node.

For example, in the example shown in figure 5, consider the second additional
edge 52 back from task A3 to virtual task W1. N3 (a number which is as yet unknown)
tokens are initially present on this edge, representing a buffer size of N3 stream chunks for
transmission of a data stream from task A1 to task A3. Now the buffer size N3 is computed
by looking for paths through the graph from W1 (the end point of the edge with N3 tokens) to
A3 (the starting point of this edge). There are two such paths: W1-A1-W2-A2-W3-A3, W1-
A1-W3-A3. Due to loops, other paths also exist, for example W1-A1-W2-A2-W1-A2 (etc)-
W3-A3, or W1-A1-W2-A2-W1-A21-W3-A2, but these should not be considered, because
these paths pass twice through certain nodes. Nevertheless, in a more complicated graph,

paths through back edges may contribute, as long as they are simple paths. For each of the

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

15
two simple paths: W1-A1-W2-A2-W3-A3, W1-A1-W3-A3, the sum of the worst case
execution times of the tasks represented by the nodes 100, 50 along the paths has to be
determined, and the largest of those sums is used to compute the number of tokens N3.

Herein, worst-case execution times are associated with the virtual tasks 50.
These worst-case execution times are set to T-T;. Herein T is a cycle time. The cycle time T
of a particular task corresponds to 2 maximum allowable sum of the worst-case execution
time of tasks that will be assigned to the same processing unit 10 together with the particular
task (the execution time of the particular task being included in the sum). Preferably the same
predetermined cycle time T is assigned to each task.

The worst case waiting time before a particular task can be executed anew is
T-T;, where T; is the worst-case execution time of the particular task.

Similar computations are performed for the other buffer sizes, computing the
numbers N1 and N2 in the example of the figure, using paths W1-A1-W2-A2 and W1-Al-
W3-A3-W2-A2 for computing N1 and paths W2-A2-W3-A3 and W2-A2-W1-A1-W3-A3 for
computing N2.

In this way, the minimum buffer capacity for buffering between tasks can be
determined for the case wherein each task is executed by a processing unit 10 together with
as yet unknown other tasks, provided that the tasks are given the opportunity to the be
executed in cyclical fashion, if sufficient data and output buffer capacity are available.

In the fourth step 34 of figure 3, at run-time, when the process assigns tasks to
the processing units 10, it tests for each processing unit whether the sum of the worst-case
execution times of the tasks that are assigned to the same processor does not exceed the cycle
time T assumed for any of the assigned tasks during off-line computation of the buffer sizes.
If the assigned tasks exceed this cycle time, a different assignment of tasks to processing
units is selected until an assignment has been found that does not exceed the assumed cycle
times T. If no such assignment can be found the process reports that no real-time guarantee
can be given.

If the fifth step 45 of figure 4 shows already off-line that the real time
requirements cannot be met, the cycle times T assumed for some of the nodes 100 may
optionally be reduced. On one hand this has the effect that delays introduced by
corresponding nodes for a virtual task 50 is reduced, making it easier to meet the real time
requirements. On the other hand this has the effect that less room exists for scheduling tasks
together with such a task with a reduced assumed cycle time T during fourth step 34 of figure
3.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

16

Figure 6 shows a typical system for implementing the invention. A computer
60 is provided for performing the preliminary step 32 of figure 3. Computer 60 has an input
for receiving information about the task structure of jobs and worst case execution times. A
run time control computer 62 is provided for combining jobs. A user interface 64 is provided
to enable a user to add or remove jobs (typically this is done implicitly by activating and
deactivating functions of an apparatus such as a home video system). The user interface 64 is
coupled to run time control computer 62, which has an input coupled to computer 60 for
receiving execution parameters of the jobs that have been selected by computer 60. Run time
control computer 62 is coupled to processing units 10 to control in which of processing units
10 which tasks will be activated and which execution parameters, such as buffer sizes, will be
used on the processing units 10.

Computer 60 and run time control computer 62 may be the same computer.
Alternatively, computer 60 may be a separate computer which is only nominally coupled to
run time control computer 62 because parameters computed by computer 60 are stored or
programmed in run time control computer 62, without requiring a permanent link between
computers 60, 62. Run time control computer 62 may be integrated with processing units 10
in the same integrated circuit, or separate circuits may be provided for run time control
computer 62 and processing units 10. As an alternative, one of processing units 10 may

function as run time control computer 62.

Further embodiments

By now it will be realized that the invention makes it possible to provide real
time guarantees for concurrent execution of a combination of jobs that process potentially
endless streams of signal data. This is done by a two-stage process. A first stage computes
execution parameters such as buffer sizes and verifies real time capability for an individual
job. This is done under the assumption that the tasks of the job are executed by processing
units 10 that execute other, as yet unspecified task in series with the tasks of the job, using
time multiplexing, provided that the total cycle time for that tasks executed by the processing
unit does not exceed an assumed cycle time T. A second stage combines the jobs and sees to
it that the worst case execution times of tasks that are assigned to the same processing unit 10
does not exceed the assumed cycle time T for any of these tasks.

In comparison with conventional SDF graph techniques there are a number of
differences: (a) a two stage process is used (b) real time guarantees are first computed for

individual jobs (c) for the executed combination of jobs no complete computation of real time

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

17
guarantees is needed: it suffices to compute whether the sum of the worst case execution
times of a sequence of tasks that is assigned to a processing unit 10 does not exceed any of
the assumed cycle times of the assigned tasks and (d) the processing units 10 may skip
execution of a task in a cycle of assigned tasks rather than waiting for sufficient input data
and output buffer space, as is required for conventional SDF graph techniques.

This has a number of advantages: real time guarantees can be given for
combinations of unrelated jobs, scheduling of such combinations requires less overhead and
data supply and production of the jobs need not be synchronized.

It should be appreciated that the invention is not limited to the disclosed
embodiment. First of all, although the invention has been explained using SDF graphs, no
explicit graphs need of course be produced when the process is executed by a machine. It
suffices that data that represents the essential properties of those graphs is generated and
processed. Many alternative representations may be used for this purpose. In this context, it
will be appreciated that the addition of waiting tasks to the graph has also been described
merely as a convenient metaphor. No real tasks are added and many practical ways exist to
account for effects that are equivalent to the effect of such conceptual waiting tasks.

Secondly, although the preliminary stage of selecting buffer sizes for
individual jobs is preferably performed off-line, it may of course also be performed on-line,
j.e. for a job just before the job is added to the jobs that are executed. The computation of
buffer size is only one example of computation of execution parameters that may be
computed. As has been explained the cycle times used for tasks themselves are another
parameter that may be computed that may be determined in the first stage. As another
example, the number of processing units that may perform the same task for successive
chunks of a stream is another execution parameter that may be determined at the first stage in
order to ensure real time capability. This may be realized for example by adding a task to the
SDF graph to distribute chunks of a stream periodically over successive processors, adding
copies of the task to process different chunks of the distributed stream and adding a
combining task to combine the results of the copies into a combined output stream.
Dependent on the number of copies compliance with the real time throughput condition can
be assured in the assumed context.

Furthermore, more elaborate forms of assignment to processing units 10 may
be used. For example, in one embodiment the preliminary stage may also involve imposition
of the constraint that a group of tasks of a job should be executed by the same processing unit

10. In this case, fewer virtual tasks 50 for waiting time need be added (if the tasks in the

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

18
groups are scheduled consecutively), or the virtual tasks 50 for waiting times may have
smaller waiting times, representing the worst case execution time of part of the (as yet
known) other tasks that may later be scheduled between tasks from the group. Effectively, the
combined waiting times of virtual tasks 50 in front of the tasks in the group need only
corresponds to one cycle time T, instead of n cycle times T which would be required when n
tasks are considered without constraint to execution by the same processing unit 10. This
may make it easier to guarantee that the real time constraints can be met. Furthermore the
size of some of the required buffers can be reduced in this way.

Furthermore, if some form of synchronization of the data streams of the
different jobs is possible, it is not necessary to use skipping of tasks during execution. This
synchronization can be expressed in the SDF graphs.

Furthermore, although the invention has been explained for general purpose
processing units 10, which can execute any task, instead, some of the processing units may be
dedicated units, which are able to execute only selected tasks. As will be appreciated, this
does not affect the principle of the invention, but only implies a restriction on the final
possibilities of assignment of tasks to processing units. Also it will be appreciated that,
although for the sake of clarity communication tasks have been omitted from the graphs (or
are considered to be incorporated in the tasks), in practice communication tasks with
corresponding timing and waiting relations may be added.

Furthermore, although the invention has been explained for an embodiment
wherein each processing unit 10 uses a Round Robin scheduling scheme, in which tasks are
given the opportunity to execute in a fixed sequence, it should be understood that any
scheduling scheme may be used, as long as a maximum waiting time before a task gets the
opportunity to execute can be computed for this scheduling scheme given a predefined
constraint on the worst case execution time of (unspecified) tasks that are executed by the
processing unit 10. Clearly, the type of sum of worst case execution times that is used to
determine whether a task gets sufficient opportunities to execute depends on the type of
scheduling.

Preferably, the jobs are executed with a processing system wherein jobs can be
added and/or removed flexibly at run time. In this case, program code for the tasks of the jobs
may be supplied in combination with computed information about the required buffer sizes
and the assumed cycle times T. The information may be supplied from another processing
system, or it may be produced locally in the processing system that executes the joBs. This

information can then be used at run time to add jobs. Alternatively, the information required

10

WO 2005/116830 PCT/IB2005/051648

19
for scheduling execution of the jobs may be permanently stored in a signal processing
integrated circuit with multiple processing units for executing the jobs. It may even be
applied to an integrated circuit that is programmed to execute a predetermined combination
of jobs statically. In the latter case, the assignment of tasks to processors need not be
performed dynamically at run-time.

Hence, dependent on the implementation, the actual apparatus that executes
the combination of jobs may be provided with full capabilities to determine buffer sizes and
to assign tasks to processing units at run time, or only with capabilities to assign tasks to
processing units at run time, or even only with a predetermined assignment. These
capabilities may be implemented by programming the apparatus with a suitable program, the
program being either resident or supplied from a computer program product such as a disk or
an Internet signal representing the program. Alternatively, a dedicated hard-wired circuit may

be used to support these capabilities.

10

15

20

25

WO 2005/116830 PCT/IB2005/051648

20
CLAIMS:

1. A system for executing a combination of signal stream processing jobs,
wherein the jobs contain tasks (100), each task (100) to be performed by repeated execution
of an operation that processes a chunk of data from a stream that the task (100) receives
and/or outputs a chunk from a stream that the task (100) produces, each job comprising a
plurality of the tasks (100) in stream communication with one another, the system being
arranged to perform a check to determine whether a real-time requiremént will be met, the
system comprising

- a plurality of processing units (10) mutually coupled for the communication of
signal streams;

- a preliminary computation unit (60) that is arranged to perform a preliminary
determination for each job individually, to determine execution parameters required for the
job to support a required minimum stream throughput rate if each task of the job is executed
in a respective context wherein opportunities to start execution of the task occur separated at
most by a cycle time T defined for the task;

- a control unit (62) for run time selection a combination of jobs that should be
executed in parallel;

- an assignment unit (62) arranged to assign groups of the tasks of the selected
combination of jobs to respective ones of the processing units (10), checking that for each
particular processing unit (10) a sum of worst case execution times for the tasks assigned to
that particular processing unit (10) does not exceed the defined cycle time T defined for any
of the tasks (100) assigned to the particular processing unit (10); the processing unit (10)
executing the selected combination of jobs concurrently, each processing unit (10) time

multiplexing execution of the group of tasks (100) assigned to that processing unit (10).

2. A system according to Claim 1, wherein the preliminary computation unit (62)
is arranged to compute buffer memory sizes of buffers for buffering the chunks between
respective pairs of tasks (100), so that the buffer sizes are sufficient to ensure that the
throughput rate will be met, buffer memory space of at least the computed size being

reserved for buffering between the pair of tasks (100) during execution.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

21

3. A system according to Claim 1, wherein at least one of the processing units
(10) is arranged to skip execution of a task of the group assigned to that processing unit (10)
if insufficient chunks are available to perform the operation of the task (100) and/or

insufficient buffer space is available to write a result chunk of the operation.

4, A method of processing a combination of signal stream processing jobs, the
method comprising performing a check to determine whether a real-time requirement will be
met, the method comprising the steps of

- defining processing tasks (100), each to be performed by repeated execution of
an operation that processes a chunk of data from a stream that the task (100) receives and/or
outputs a chunk from a stream that the task (100) produces;

- defining a plurality of jobs, each comprising a plurality of the processing tasks
(100) in stream communication with one another;

- performing a preliminary determination for each job individually, to determine
execution parameters required for the joB to support a required minimum stream throughput
rate if each task (100) of the job is executed in a respective context wherein opportunities to
start execution of the task occur separated at most by a cycle time T defined for the task;

- selecting a combination of jobs for parallel execution;

- assigning groups of the tasks (100) of the selected combination of jobs to
respective processing units (10), checking that for each particular processing unit (10) a sum
of worst case execution times for the tasks assigned to the particular processing unit (10)
does not exceed the defined cycle time T defined for any of the tasks (100) assigned to the .
particular processing unit (10);

- executing the selected combination of jobs concurrently with the processing

units (10), time multiplexing execution of the groups of tasks.

5. A method according to Claim 4, wherein said performing of the preliminary
determination comprises computing buffer memory sizes of buffers for buffering the chunks
between respective pairs of tasks (100), so that the buffer sizes are sufficient to ensure that
the throughput rate will be met, buffer memory space of at least the computes size being

reserved for buffering between the pair of tasks (100) during execution.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

22

6. A method according to Claim 5, wherein at least one of the buffer sizes for
buffering data between a first and second task is computed by

- identifying paths of successive tasks (100) of the job, wherein in each path
each successive tasks (100) in the path depends on performance of a preceding task (100) in
the path to start operation, each path starting from the first task (100) and ending at the
second task (100

- computing, for each identified path, information about a sum of worst case
execution times of the tasks (100) along the path, plus maximum waiting times before the
tasks (100) are given the opportunity to execute when executed in a respective context
wherein opportunities to start execution of the task (100) occur separated at most by a cycle
time T defined for the task (100);

- determining buffer size from a ratio of a largest of said sums for any of the

identified paths and the required maximum throughput time between successive chunks.

7. A method according to Claim 4, wherein said performing of the preliminary
determination comprises selecting a sub-group of the tasks (100) of the job for execution in
time multiplexing by a common one of the processing units, it being determined whether the
execution parameters required support thelrequired minimum stream throughput rate if each
task (100) of the job is executed in a respective context wherein opportunities to start -
execution of the sub-group of tasks (100) occur separated at most by a cycle time T defined

for the sub-group.

8. A method according to Claim 4, wherein execution of a task (100) in said
groups is skipped if insufficient chunks are available to perform the operation of the task

and/or insufficient buffer space is available to write a result chunk of the operation.

9. A method according to Claim 4, wherein said performing of the preliminary
computation comprises performing determining whether it is possible to guarantee that

throughput rate will always be met in said context.

10. A method according to Claim 9, comprising reducing the cycle time T defined
for at least one of the tasks (100) if it cannot be guaranteed that the throughput rate will
always be met and repeating said performing of the preliminary computation with the

reduced cycle time.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

23

11. A method according to Claim 4, comprising generating information that is
equivalent to a representation of a Synchronous Data Flow (SDF) graph, and computing the

barameters using graph analysis equivalent techniques.

12. A device for executing a combination of signal stream processing jobs,
wherein the jobs contain tasks (100), each to be performed by repeated execution of an
operation that processes a chunk of data from a stream that the task (100) receives and/or
outputs a chunk from a stream that the task (100) produces, each job comprising a plurality of
the processing tasks (100) in stream communication with one another, the device being
arranged to perform a check to determine whether a real-time requirement will be met, the
device comprising

- a plurality of processing units (10) coupled for the communication of signal
streams;

- . a control unit (62) for run time selection a combination of jobs that should be
executed in parallel;

- a circuit (62) arranged to assign groups of the tasks of the selected
combination of jobs to respective ones of the processing units (10), checking that for each
particular processing unit (10) a sum of worst case execution times for the tasks assigned to
that particular processing unit does not exceed a defined cycle time T defined for any of the
tasks assigned to the particular processing unit (10); the processing unit (10) executing the
selected combination of jobs concurrently, each processing unit (10) time multiplexing

execution of the group of task assigned to that processing unit (10).

13. An apparatus for computing execution parameters required for jobs, wherein
the jobs contain tasks (100), each to be performed by repeated execution of an operation that
processes a chunk of data from a stream that the task (100) receives and/or outputs a chunk
from a stream that the task (100) produces, each job comprising a plurality of the processing
tasks (100) in stream communication with one another, the apparatus being arranged to
perform a preliminary computation for each job individually, to determine execution
parameters required for the job to support a required minimum stream throughput rate if each
task of the job is executed in a respective context wherein opportunities to start execution of

the task are separated at most by a cycle time T defined for the task.

10

15

20

25

30

WO 2005/116830 PCT/IB2005/051648

24
14. An apparatus according to Claim 13, wherein said performing of the
preliminary computation comprises computing buffer memory sizes of buffers for buffering
the chunks between respective pairs of tasks (100), so that the buffer sizes are sufficient to
ensure that the throughput rate will be met, buffer memory space of at least the computes size

being reserved for buffering between the pair of tasks during execution.

15. An apparatus according to Claim 14, wherein at least one of the buffer sizes is
for buffering data between a first and second task is computed by

- identifying paths of successive tasks (100) of the job, wherein in each path
each successive task (100) depends on performance of a preceding task (100) in the path to
start operation, each path starting from the first task (100) and ending at the second task
(100);

- computing, for each identified path, information about a sum of worst case
execution times of the tasks (100) along the path, plus maximum waiting times before the
tasks (100) are given the opportunity to execute when executed in a respective context
wherein opportunities to start execution of the task occur separated at most by a cycle time T
defined for the task (100);

- determining buffer size by from a ratio of a largest of said sums for any of the

identified paths and the required maximum throughput time between successive chunks.

16. An apparatus according to Claim 14, wherein said performing of the
preliminary computation comprises performing determining whether it is possible to
guarantee that throughput rate will always be met in said context, and reducing the cycle time
defined for at least one of the tasks (100) if it cannot be guaranteed that the throughput rate
will always be met and repeating said performing of the preliminary computation with the

reduced cycle time.

17. A method of processing a combination of signal stream processing jobs, the
method comprising performing a check to determine whether a real-time requirement will be
met, the method comprising the steps of

- defining processing tasks (100), each to be performed by repeated execution of
an operation that processes a chunk of data from a stream that the task (100) receives and/or
outputs a chunk from a stream that the task (100) produces;

- defining a plurality of jobs, each comprising a plurality of the processing tasks

10

15

20

25

WO 2005/116830 PCT/IB2005/051648

25

(100) in stream communication with one another;

- selecting a combination of jobs for parallel execution;

- assigning groups of the tasks (100) of the selected combination of jobs to
respective processing units (10), checking that for each particular processing unit a sum of
worst case execution times for the tasks (100) assigned to the particular processing unit (10)
does not exceed predetermined cycle time T defined for any of the tasks (100) assigned to the
particular processing unit (10);

- executing the selected combination of jobs concurrently, time multiplexing

execution of the groups of tasks.

18. A method of computing execution parameters for executing a combination of
signal stream processing jobs, the method comprising

- defining processing tasks (100), each to be performed by repeated execution of
an operation that processes a chunk of data from a stream that the task (100) receives and/or
outputs a chunk from a stream that the task (100) produces;

- defining a plurality of jobs, each comprising a plurality of the processing tasks
(100) in stream communication with one another;

- performing a preliminary computation for each job individually, to determine
execution parameters required for the job to support a required minimum stream throughput :
rate if each task (100) of the job is executed in a respective context wherein opportunities to

start execution of the task (100) are separated at most by a cycle time T defined for the task.

19. A computer program product containing instructions to make a programmable

processor perform the method of Claim 17.

20. A computer program product containing instructions to make a programmable

processor perform the method of Claim 18.

WO 2005/116830

PCT/IB2005/051648
1/6
15 10 14 10 10
LN \ \
))
16] - =
17 —]

FIG. 1

WO 2005/116830 PCT/IB2005/051648

2/6

100 100 100

102 102
A1

100 100 100

100 108 110 100 100
102

1(?2 FIG. 1¢

WO 2005/116830

21 —

3/6

PCT/IB2005/051648

22 —

28—

24 —

FIG. 2

25 ——

26 ——

27

28 ——|

WO 2005/116830

31

32

33

34

35

4

4/6

42

43

45

46

PCT/IB2005/051648

FIG. 3

FIG. 4

WO 2005/116830 PCT/IB2005/051648

FIG. 5

WO 2005/116830 PCT/IB2005/051648

6/6

‘(}_]_/—'
Sf
i
2| 2| =2 =
©
- o

INTERNATIONAL SEARCH REPORT

International Aoolication No

PCT/I 35/051648

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F9/46

According to International Patent Classification (IPC) or to both national classification and IPC”

B, FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulited during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

pages 63-72, XP002339955
page 63 - page 71

INTERNATIONAL CONFERENCE ON COMPILERS,
ARCHITECTURE AND SYNTHESIS FOR EMBEDDED
SYSTEMS, 30 October 2003 (2003-10-30),

Category ° Cltétlon of document, with indication, wheare appropnate, of the relevant passages Relevant to claim No.

X POPLAVKO P ET AL: "Task-level Timing 1,2,4-7,
Models for Guaranteed Performance in 9,11-15,
Multiprocessor Networks-on-Chip" 17-20

Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which 1s not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the pnority date claimed

"T" later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

" document of particular relevance; the claimed nvention

cannot be considered novel or cannot be considered to
involve an inventive step when the document s taken alone

" document of particular relevance; the claimed invention

cannot be considerad to involve an inventive step when the
document ts combined with ane or more other such docu-
ments, such combination being obvious to a person skilled
inthe art

" document member of the same patent farmily

Date of the actual completion of the international search

24 August 2005

Date of mailing of the international search report

10. 1. 05

Name and mailing address of the ISA

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx 31 651 eponl,

Fax: (+31-70) 340-3016

Autharized officer

Kalejs, E

Form PCT/AISA/210 (second sheet) (January 2004)

page 1 of 2

Inter~~*~nal application No.

T/1B2005/051648
INTERNATIONAL SEARCH REPORT

Box Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. l—_—] Claims Nos.:

because they relate to parts of the International Application that do not comply with the prescnbed requirements to such
an extent that no meaningful International Search can be carried out, specifically:

3. D Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6 4(a).

Box Il Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. Dx As all required additional search fees were timely paid by the applicant, this International Search Report covers all
searchable claims.

2. D As all searchable claims could be searched without effort justifying an additional fee, this Authonty did not invite payment
of any additional fee.

«

As only some of the required additional search fees were timely paid by the applicant, this International Search Report
covers only those claims for which fees were paid, specifically claims Nos.-

4. [X_—] Nao required additional search fees were timely paid by the applicant. Consequently, this International Search Report is
restricted to the invention first mentioned in the claims; it Is covered by claims Nos.:

1, 2, 4-7, 9, 11-15, 17-20

Remark on Protest D The additional search fees were accompanied by the applicant's protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)

international Appiication No. PCT/ I1B2005/ 051648

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1,2,4-7,9,11-15,17-20

Calculating necessary buffer sizes

2. claims: 3,8

Skipping execution of unready tasks in a cyclic schedule

3, claims: 10,16

Adjusting cycle time of a task schedule

INTERNATIONAL SEARCH REPORT

International Application No

PCT/.)05/051648

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

P,X MOREIRA O ET AL: "Multiprocessor Resource
Allocation for Hard-Real-Time Streaming
with a Dynamic Job-Mix"

REAL TIME AND EMBEDDED TECHNOLOGY AND
APPLICATIONS SYMPOSIUM, 2005. RTAS 2005.
11TH TEEE SAN FRANCISCO, CA, USA 07-10
MARCH 2005, PISCATAWAY, NJ, USA,IEEE,

7 March 2005 (2005-03-07), pages 332-341,
XP010779558

ISBN: 0-7695-2302-1

page 332 - page 341

A LIANG-FANG CHAO ET AL: "Rate-optimal
scheduling for cyclo-static and periodic
schedules"

ACOUSTICS, SPEECH, AND SIGNAL PROCESSING,
1995. ICASSP-95., 1995 INTERNATIONAL
CONFERENCE ON DETROIT, MI, USA 9-12 MAY
1995, NEW YORK, NY, USA,IEEE, US,

vol. 5, 9 May 1995 (1995-05-09), pages
3231-3234, XP010152033

ISBN; 0-7803-2431-5

page 3231 - page 3234

A HOANG P D ET AL: "SCHEDULING OF DSP
PROGRAMS ONTO MULTIPROCESSORS FOR MAXIMUM
THROUGHPUT"

1EEE TRANSACTIONS ON SIGNAL PROCESSING,
TEEE, INC. NEW YORK, US,

vol. 41, no. 6, 1 June 1993 (1993-06-01),
pages 2225-2235, XP00G377601

1SSN: 1053-587X

page 2226 - page 2233

A QI ZHU ET AL: "Co-optimization of buffer
requirement and response time for SDF
graph"

COMPUTER SUPPORTED COOPERATIVE WORK IN
DESIGN, 2004. PROCEEDINGS. THE 8TH
INTERNATIONAL CONFERENCE ON XIAMEN, CHINA
MAY 26-28, 2004, PISCATAWAY, NJ, USA,IEEE,
vol. 2, 26 May 2004 (2004-05-26), pages
369-372, XP010737118

ISBN: 0-7803-7941-1

page 333 - page 336

1,2,4-7,
9,11-15,
17-20

Form PCT/ISA/210 {continuatton of second sheel) (January 2004)

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

