
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0224396 A1

US 2016.0224396A1

Brock et al. (43) Pub. Date: Aug. 4, 2016

(54) ASSOCIATING ENERGY CONSUMPTION G06F 9/455 (2006.01)
WITH AVIRTUAL MACHINE G06F II/34 (2006.01)

(71) Applicant: International Business Machines G06F I/32 (2006.01)
Corporation, Armonk, NY (US) (52) U.S. Cl.

CPC G06F 9/5094 (2013.01); G06F II/3476
(72) Inventors: Bishop Brock, Coupland, TX (US); (2013.01); G06F I/3206 (2013.01); G06F

Tilman Gloekler, Gaertringen (DE): 9/45558 (2013.01); G06F II/301 (2013.01);
Charles R. Lefurgy, Austin, TX (US); G06F II/3017 (2013.01); G06F 2009/45583
Karthick Rajamani, Austin, TX (US); (2013.01); G06F 2009/45591 (2013.01) Gregory S. Still, Raleigh, NC (US);
Malcolm S. Allen-Ware, Austin, TX
US (US) (57) ABSTRACT

(21) Appl. No.: 15/095,939

(22) Filed: Apr. 11, 2016 Associating processor and processor core energy consump
Related U.S. Application Data tion with a task Such as a virtual machine is disclosed. Various

events cause a trace record to be written to a trace buffer for a
farrol f filed (63) Stylis apply N 4 15, filed on processor. An identifier associated with a task using a proces

OV. Z. f. , now Pat. No. 9,311,209. Sor core of the processor is read. In addition, one or more
Publication Classification values associated with an energy consumption of the proces

Sor core are read. In response to the event, the one or more
51) Int. Cl. values associated with the energ V consumption of the proces (51) rgy p p

G06F 9/50 (2006.01) sor core and the identifier are written to the trace buffer
G06F II/30 (2006.01) memory.

A 100

PROCESSOR is 102

CHIPLETO - 104A CHIPLET - 104B CHIPLETN ... 104C ENERGY MGMT is 150

106 108 106 108 106 108 UNIT

POWERTASK POWER TASK POWER TASK
ROXY I ROXY I PROXY D
UNIT REG UNIT REG UNIT REG

S- ... 140 HYPERWISOR

TRACE MEMORY
14 S.

CHIPLETO ... x 112A
CUU S. 130

ci VII is 112B 5. OUEU MEMORY

\ //N-1 132 134
CEN / is 112C Egy

A

MANAGEMENT UNIT
POWEr

US 2016/0224396 A1 Aug. 4, 2016 Sheet 1 of 6 Patent Application Publication

0 | | JOE

5DERH_LINTI ?HOSSE OORHæ!

Patent Application Publication Aug. 4, 2016 Sheet 2 of 6 US 2016/0224396 A1

CHIPLET rs 104

2O2 204 2O6
/ -) C

PROCESSOR
CORE L2 L3

208 210 212

ACTIVITY ACTIVITY ACTIVITY
SENSE SENSE SENSE
POINT(S) POINT(s) POINT(S)

106 216 21 4. 108 218
(C - -
^ -

POWER PROXY EVENT ACTIVITY Task EE
UNIT COUNTERS WEIGHTS REG REG

220

ACTIVITY
COUNTERS

FIG. 2

Patent Application Publication Aug. 4, 2016 Sheet 3 of 6 US 2016/0224396 A1

A 114

INTERVAL TIMER in 302

Y 304
TASKID

is 306
DLE STATE

V ACTIVITY COUNTER

V ACTIVITY COUNTER
308

VN ACTIVITY COUNTER

MEMORY ACTIVITY i? 310
COUNTER

AVERAGE in 312
FREOUENCY COUNT

INTERNAL VRM is 314
VOLTAGE

EXTERNAL VRM in 316
VOLTAGE

EVENT D in 318

TEMP i? 320

SEOUENCE NUMBER 322

FIG. 3

Patent Application Publication Aug. 4, 2016

DETERMINE OCCURRENCE OF
EVENT

READ TASKIDENTIFIER

ASSOCIATED WITH PROCESSOR in 404
CORE :

DETERMINE ENERGY USAGE
VALUES OF PROCESSOR CORE
SINCE LAST TRACE BUFFER

WRITE

WRITE ENERGY USAGE VALUES
AND TASKIDENTIFIER TO TRACE i? 408

BUFFER :

FIG. 4

Sheet 4 of 6 US 2016/0224396 A1

ACCUMULATE ENERGY

VALUES ON A PERTASKID
BASIS AND ADD

ACCUMULATED ENERGY
VALUES TO PREVIOUS
VALUES FORTASK IN
ENERGY ARRAY

Patent Application Publication Aug. 4, 2016 Sheet 5 of 6 US 2016/0224396 A1

DETERMINE MEMORY ENERGY
CONSUMPTION AT PROCESSOR IDLE 502

STATE

RECEIVE ENERGY CONSUMPTION VALUES r 504
ASSOCIATED WITH TASK

DETERMINE TASK ENERGY

CONSUMPTION ACCORDING TO ENERGY
CONSUMPTION VALUES, MEMORY is 506

ENERGY CONSUMPTION, AND MEMORY
ALLOCATED TO TASK

FIG. 5

Patent Application Publication Aug. 4, 2016 Sheet 6 of 6 US 2016/0224396 A1

READ ESTIMATED ENERGY

CONSUMPTION VALUES FOR PROCESSOR i? 602
CORES

AGGREGATE ESTIMATED VALUESTO
ESTIMATED PROCESSOR ENERGY i? 604

CONSUMPTION

READ ACTUAL PROCESSOR ENERGY i? 606
CONSUMPTION r

DETERMINE SCALING FACTOR

ACCORDING TO ESTIMATED PROCESSOR ENERGY CONSUMPTION AND ACTUAL ''
PROCESSOR ENERGY CONSUMPTION

SCALE ESTIMATED PROCESSOR CORE
ENERGY VALUES BASED ON SCALING r 610

FACTOR

FIG. 6

US 2016/0224396 A1

ASSOCATING ENERGY CONSUMIPTION
WITH AVIRTUAL MACHINE

RELATED APPLICATIONS

0001. This application is a Continuation of, and claims the
priority benefit of U.S. application Ser. No. 13/686,415 filed
Nov. 27, 2012. This application is related to U.S. application
Ser. No. 13/772,673 filed Feb. 21, 2013.

BACKGROUND

0002 Embodiments of the inventive subject matter gener
ally relate to the field of computers, and, more particularly, to
associating energy consumption of a virtual machine or other
task running on a computer.
0003) A significant portion of the operating cost for large
data centers and cloud computing environments is related to
the energy costs associated with the data center or cloud
servers. In Such environments, virtual machines may be
assigned to run tasks on behalf of a user. The virtual machines
are typically assigned to run on one or more cores of a mul
ticore system. A data center or cloud operator may desire to
billa user for the energy consumed by a virtual machine when
running on a processor core. However, there is currently no
way to directly measure the energy consumed by a processor
core. As a result, previous systems have used various models
to estimate power consumption of a virtual machine. How
ever, such models typically use performance based values that
do not necessarily correlate well with energy consumption.

SUMMARY

0004 Various embodiments are disclosed in which energy
consumption for a task Such as a virtual machine is deter
mined. Various events cause a trace record to be written to a
trace buffer for a processor. An identifier associated with a
task using a processor core of the processor is read. In addi
tion, one or more values associated with an energy consump
tion of the processor core are read. In response to the event,
the one or more values associated with the energy consump
tion of the processor core and the identifier are written to the
trace buffer memory.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. The present embodiments may be better under
stood, and numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the accom
panying drawings.
0006 FIG. 1 depicts a system for associating energy con
Sumption with a task according to embodiments.
0007 FIG. 2 depicts a chiplet according to embodiments.
0008 FIG. 3 depicts a trace buffer record used in some
embodiments

0009 FIG. 4 is a flowchart illustrating a method for asso
ciated energy consumption with a virtual machine.
0010 FIG. 5 is a flowchart illustrating a method for deter
mining an energy consumption for a task Such as a virtual
machine.

0011 FIG. 6 is a flowchart illustrating a method for adjust
ing an energy consumption value according to a scaling fac
tOr.

Aug. 4, 2016

DESCRIPTION OF EMBODIMENT(S)
0012. The description that follows includes exemplary
systems, methods, techniques, instruction sequences and
computer program products that embody techniques of the
present inventive subject matter. However, it is understood
that the described embodiments may be practiced without
these specific details. For instance, although examples refer to
associating energy consumption of processor cores with Vir
tual machines, energy consumption of processor cores may
be associated with other tasks or groups of tasks. In other
instances, well-known instruction instances, protocols, struc
tures and techniques have not been shown in detail in order
not to obfuscate the description.
0013. In general, the embodiments provide a means for
associating energy consumption of processor cores with tasks
running on the processor cores, for example virtual machines.
Various sensor points detect or measure activity associated
with energy consumption of processor cores that execute
instructions and access memory on behalf of virtual machines
running on a system. An identifier for a virtual machine
running on a processor core is provided to the core. A variety
of events may trigger a trace buffer record to be written to a
memory, where the trace buffer includes data associated with
the energy consumption of the core and the virtual machine
that was running on the core at the time the trace buffer record
was written. The records in the trace buffer can be aggregated
and analyzed to determine energy consumption associated
with the virtual machines running on the system.
0014 FIG. 1 depicts a system 100 for associating energy
consumption with a task according to embodiments. In some
embodiments, system 100 includes processor 102, memory
130, and hypervisor 140 and may optionally include energy
management unit 150.
00.15 Processor 102 is a multicore processor where the
processor cores are provided in chiplets 104. Although three
chiplets (e.g., chiplets 104A, 104B and 104C) are illustrated
in FIG. 1, those of skill in the art having the benefit of the
disclosure will appreciate that a processor 102 may have more
or fewer chiplets 104. In addition to chiplets 104, processor
102 includes trace memory 110 and power management unit
120.
0016. A chiplet 104 includes a processor core, memory
(e.g., L2 and L3 cache) and Supporting logic units for the
processor core. Chiplet 104 also includes a power proxy unit
106 (“power proxy 106') and task identification (ID) register
108. Task ID register 108 is a special purpose register that
stores an identifier for a task executing on the processor core
of chiplet 104. Power proxy 106 collects and generates data
associated with energy consumption of the processor core of
chiplet 104. Certain events such as timer expiration, Voltage
changes etc. cause power proxy 106 to write a trace buffer
record 114 to a chiplet queue 112 associated with the chiplet
in trace memory 110 of processor 102. Trace memory 110
contains a chiplet queue 112 for each chiplet on processor
102. Trace buffer record 114 includes various data elements
related to energy consumption associated with the chiplet.
Further details on the data elements of a trace buffer record
114 are provided below with reference to FIG. 3. In some
embodiments, chiplet queue 112 is a circular queue config
ured to store eight trace buffer records 114. The number of
trace buffer records 114 that are maintained in a chiplet queue
112 may be a function of the size of trace memory 110 and the
number of chiplets on processor 102. It is desirable that the
number of trace buffer records be large enough to avoid data

US 2016/0224396 A1

being overwritten before it is processed by power manage
ment unit 120. Trace memory 110 may be part of processor
102 as illustrated in FIG.1. Those of skill in the art having the
benefit of the disclosure will appreciate that trace memory
110 may be located on other components accessible to pro
cessor 102.

0017 Power management unit 120 periodically reads the
trace records 114 from chiplet queues 112 and processes the
data Such that data from trace records 114 that are associated
with the same task ID are aggregated together. In some
embodiments, power management unit reads and processes
trace records every 32 milliseconds. It is desirable to choose
an interval that avoids data being overwritten in a trace record
in queue 112 before power management unit 120 can process
the trace record. As trace records are processed, power man
agement unit increments a queue pointer for the queue to
point to the next trace record. Power management unit 120
then adds the data aggregated by task ID to an energy array
132 in a memory 130 accessible by hypervisor 140. Energy
array 132 maintains energy consumption data for tasks and in
Some embodiments is indexed according to the task identifier.
For example, in Some embodiments, energy array 132 may be
indexed by a task ID comprising a virtual machine identifier.
Power management unit 120 accumulates energy consump
tion values by adding currently processed energy consump
tion values for tasks to values already stored in energy array
132, using the task identifier as an index into the energy array.
0018. Hypervisor 140 manages a virtualized operating
environment and provides virtualized resources (e.g., virtu
alized hardware resources) for system 100. Hypervisor 140
manages virtual machines (also referred to as partitions)
executing on various computers of system 100. A virtual
machine runs an operating system and applications within the
virtual machine. The operating system and applications run
ning on one virtual machine may be completely different
from the operating system and applications running on other
virtual machines. For example, one virtual machine may be
running an accounting system on the AIX operating system
while another virtual machine may run file server applica
tions on a Linux operating system. Alternatively, a virtual
machine may run the same operating system and applications
as another virtual machine and serve as a backup in case of a
failure or overload in the other virtual machine. From the
point of view of a virtual machine, the virtual machine
appears to be an independent computer that controls the
underlying hardware when in reality, each virtual machine is
sharing hardware resource with other virtual machines.
0019. In some implementations, when hypervisor 140
schedules a virtual machine to run on a processor core, hyper
visor 140 writes the virtual machine identifier associated with
the virtual machine to task ID register 108 of the chiplet 104
for the processor core that is to execute the virtual machine.
Power proxy 106 reads the virtual machine identifier from
task ID register 108 and stores the virtual machine identifier
in trace buffer records 114 as energy consumption values for
the chiplet 104 are written to the chiplet queue 112 in trace
memory 110.
0020. As illustrated in FIG. 1, in some embodiments,
power management unit 120 is an on-chip controller that is
provided on processor 102. In alternative embodiments,
power management unit 120 may be separate from processor
102. In further alternative embodiments, the functions pro
vided by power management unit 120 related to processing
trace records 114 in trace memory 110 may be performed by

Aug. 4, 2016

hypervisor 140. In such embodiments, hypervisor 140
accesses trace memory 110 directly to process the records.
0021 Energy management unit 150 provides energy man
agement functions across a number of computing systems.
For example, energy management unit 150 may provide
energy management functions for a data center or for com
puting systems that Support a cloud computing environment.
An example of an energy management unit is the IBM Sys
tems Director Active Energy Manager from IBM Corpora
tion. In some embodiments, energy management unit 150
periodically queries hypervisor 140 to obtain energy con
Sumption data associated with tasks (e.g., virtual machines)
managed by the hypervisor.
0022 FIG. 2 provides further details regarding a chiplet
104 according to embodiments. Chiplet 104 includes a pro
cessor core 202, L2 cache memory 204 and L3 cache memory
206. Processor core 202, L2 cache memory 204 and L3 cache
memory 206 each include one or more activity sense points
208, 210 and 212. An activity sense point detects events that
may be correlated with energy consumption of a component.
For example, activity sense points 208 may detect events
associated with processor core functions such as load and
store operations, instruction dispatch, fixed point operations,
floating point operations and other processor core functions.
Activity sense points 210 and 212 may detect events associ
ated with L2 and L3 cache reads and writes. Each of these
events has an associated energy consumption value. As events
are detected at the activity sense points 208, 210 and 212,
event counters 216 associated with the events may be incre
mented by power proxy 106. In some embodiments, power
proxy 106 may also weight the various activities detected at
sense points 208,210 and 212 using activity weights 214. The
activity weights 214 adjust the event counters 216 according
to the energy consumption associated with a particular event
relative to other events. For example, counters associated
with floating point events may be weighted higher than
counters associated with cachelookup events on the basis that
floating point operations use more power than cache lookups.
0023 Activity weights 214 may be configurable. For
example, activity weights 214 may be maintained in memory
or registers that may be written by hypervisor 140 or by a
configuration utility.
0024 Generally speaking, the events that are counted in
event counters 216 and specific values for activity weights
214 may be determined by modeling differing workloads and
regression testing to determine the combination of activities
and weightings that provide the strongest correlation with
actual energy consumption of the system being tested. In
Some embodiments, event counters may be associated with
various combinations of one or more of instructions dis
patched, instructions completed, execution register file
accesses, execution pipeline issue types, instruction fetch unit
events, load-store unit cache events, load-store unit D-ERAT
(effective-to-real data address translation) events, load-store
unit prefetch events, L2 cache reads/writes and L3 cache
reads/writes. Those of skill in the art having the benefit of the
disclosure will appreciate that other events could be counted.
0025. The above-described events may be associated with
various Voltage domains depending on a Voltage source. For
example, in some embodiments, a Vdd Voltage domain
includes events associated with a Voltage rail feeding core and
cache logic, while a Vcs Voltage domain includes events
associated with a Vcs rail feeding the L2 and L3 cache. Both
the Vdd and Vcs voltage may be controlled by VRMs (Voltage

US 2016/0224396 A1

Regulator Modules) and may vary over time. Those of skill in
the art having the benefit of the disclosure will appreciate that
the number and types of Voltage domains present may vary
and may be implementation specific.
0026 Activity counters 220 represent a weighted sum of
the events associated with a particular Voltage domain. Thus
for a Vdd Voltage domain:

Vdd Activity Count=event counter1*event weight1+
... +event counterN*eventweightN

where the event counters included in the calculation are those
events associated with a Vdd voltage. Similar activity counts
may be calculated for events associated with other Voltage
domains, for example a Vcs Voltage domain.
0027. In some embodiments, chiplet 104 includes a
P-state (Power State) change register 218. P-state change
register 218 provides a mechanism for hypervisor 140 to
signal Voltage change points. Such changes may cause power
proxy 106 to write a new trace buffer record element 114 to
the chiplet queue 112 associated with the chiplet in trace
memory 110.
0028 FIG.3 depicts an example data structure for a trace
buffer record 114. In some embodiments, the fields in trace
buffer record 114 include an interval timer 302, task ID 304,
idle state 306, one or more activity counters 308, memory
activity counter 310, average frequency count 312, internal
VRM (Voltage Regulator Module) voltage 314, external
VRM voltage 316, event ID 318, core temperature 320 and
sequence number 322.
0029 Interval timer 302 stores a value that represents a
time interval since the last write of a trace buffer record 114 by
the power proxy.
0030 Task ID 304 is the task ID of the task running on the
core at the time the trace buffer record 114 is written. This
value can be obtained from task ID register 108.
0031) Idle state 306 is a value representing the idle state of
the processor core at the time the trace buffer record 114 is
written. In some embodiments, the idle state 306 value indi
cates one of a non-idle state, a nap state, a sleep state, a
“winkle” state (i.e., a deeper sleep), or a wakeup state for the
processor core.

0032) Activity counters 308 store values for one or more
activity counters 220 maintained by a power proxy 106. As
described above, in some embodiments, counters associated
with particular Voltage domains may be summed into one
element. The calculated and weighted sums for the various
activity counters associated with the Voltage domains may be
written to activity counters 308. Memory activity counter 310
is a counter associated with memory reads and writes per
formed by a processor core.
0033 Average frequency count 312 is a value representing
the average frequency of the processor core over the time
interval being measured. Both Voltage and frequency can be
changed by various components of the system. For example,
a performance Supervisor or a safety Supervisor on chiplet
104 may requesta Voltage or frequency change. Additionally,
hypervisor 140 can request a Voltage or frequency change.
Using the average frequency count can provide for a more
accurate measure of energy consumption over the time inter
Val when compared to the instantaneous or current frequency
if the frequency has changed over the interval being mea
Sured.

Aug. 4, 2016

0034 Internal VRM (Voltage Regulator Module) voltage
314 is a voltage value for an internal VRM for the processor
102. An internal VRM controls voltage for components on a
processor 102.
0035 External VRM voltage 316 is a voltage value for an
external VRM. An external VRM controls voltage supplied to
a processor 102.
0036) Event ID 318 is a value representing the event that
triggered the power proxy unit 106 to write the trace record
114. In some embodiments, the events may include a timer
expiration, a change in the value of the task ID register indi
cating that the task being executed by the processor core has
changed, entering an idle state, exiting an idle state, changes
in the internal or external Voltage, or changes in an internal or
external VRM status. Those of skill in the art having the
benefit of the disclosure will appreciate that other events can
cause the power proxy unit 106 to write a new trace buffer
record 114 to a chiplet queue 112. In cases where the event
indicates a value has changed (e.g., task ID change, Voltage
change, etc.), the trace record 114 will be written using the
value before the change occurred.
0037 Core temperature 320 is a value that represents the
temperature provided by a temperature sensor for the proces
Sor core. Temperature correlates well with energy consump
tion of a processor and related components and can be used as
an input to determine estimated power consumption.
0038 Sequence number 322 is a value indicating the
sequence number of the trace buffer record 114 and can be
used by the power management unit to detect data loss or
invalid records. In some embodiments, sequence number 322
includes a valid bit indicating whether the record in the queue
contains valid data or is available for writing.
0039. The trace buffer record elements described above
are examples of elements included in an example embodi
ment. Those of skill in the art having the benefit of the dis
closure will appreciate that not all of the elements above will
be present in every embodiment and that other elements may
be included in the trace buffer record in alternative embodi
mentS.

0040 FIG. 4 is a flowchart illustrating a method 400 for
associating energy consumption with a task Such as a virtual
machine. The method begins at block 402, where a system or
component executing the method determines that an event
has occurred. As noted above, the event can be any of a timer
expiration, a change in the value of the task ID register indi
cating that the task being executed by the processor core has
changed, entering an idle state, exiting an idle state, changes
in the internal or external Voltage, or changes in an internal or
external VRM status.
0041 Blocks 404–408 may be executed in response to
detecting the event at block 402. The event may be a timer
expiration, a change in the value of the task ID associated with
a task running on a processor core thus indicating that the task
being executed by the processor core has changed, entering
an idle state, exiting an idle State, changes in the internal or
external Voltage, or changes in an internal or external VRM
status. Those of skill in the art having the benefit of the
disclosure will appreciate that other may be detected.
0042. At block 404, a task identifier associated with a task
executing on a processor core is read. In some embodiments,
the task identifier is read from a register that is written by a
hypervisor or operating system when a task is assigned to the
processor core. The task identifier may be a task specific
identifier Such as a virtual machine identifier or a process

US 2016/0224396 A1

identifier. Alternatively, the task identifier may be associated
with a group of tasks that are to be grouped together for
purposes of determining energy consumption.
0043. At block 406 energy usage values representing
energy use since the last trace record written by the power
proxy unit are determined. As discussed above, such values
may include activity counters representing energy consuming
events, Voltage values, and frequency values may also be
determined.
0044. At block 408, the energy usage values determined at
block 406 are written to a chiplet queue in a trace buffer. In
some embodiments, a trace buffer record 114 (FIGS. 1 and 3)
is written. A pointer for the chiplet queue in the trace buffer is
advancedinanticipation of the next write to the chiplet queue.
0045 Block 410 may be executed independently of blocks
402-408. In some embodiments, block 410 may be executed
at periodic intervals. For example, block 410 may be executed
every 250 microseconds. At block 410, one or more records
are read from the trace buffer. In some embodiments, each
available record is processed to determine the total energy
consumption represented by the record according to the data
in the record. For example, an energy consumption for each of
the activity counters associated with the particular Voltage
domains in the record may be Summed to determine a total
energy consumption associated with the record. The contri
butions of each Voltage domain activity counter to the total
energy consumption represented by the record may be
adjusted based on Voltage, temperature, and frequency values
in the record. For example, in some embodiments, the trace
recordenergy for a Voltage domain Vdom may be determined
according to:

Vdom voltage | --
Energy Vdom = as Vdom Activity Counter-(NE Wdom reference

Vdom voltage -- f c: Irequency: (Wdom reference

Vdom voltage
Pref: (+ e8 (temperence - tempecord): (NE

where Vdom Voltage is the measured Voltage for the domain,
Vdom reference is a reference Voltage determined during
manufacturing testing performed on a reference chip, fre
quency is the average frequency from the trace record, tem
p, is the processor core temperature from the trace record,
temp, is the temperature of a core of the reference chip
measured during manufacturing testing of the chip at an oper
ating Voltage of Vdom reference. Pref is the leakage power
measured from the reference chip during manufacturing test
ing. Pref may be measured when the chip is operating at
Vdom reference and tempt. Parameters a, b, c, d, e.
and fare fitting parameters determined during regression
testing the reference chip. The fitting parameters and refer
ence values may be stored in a data area for the chip, for
example a Vital Product Data (VPD) area. The calculation
above may be performed for each of the voltage domains in
the record (e.g., Vdd, Vcs Voltages etc.) The energy values for
each domain as calculated according to the formula above
may be Summed to produce a total energy consumption asso
ciated with the record.
0046. The formula above includes parameters that corre
late with leakage power and clock power, and thus the energy
consumption associated with leakage power and clock power

Aug. 4, 2016

may be included with the power consumption associated with
a task. Those of skill in the art having the benefit of the
disclosure will appreciate that other means of accounting for
leakage power and clock power may be used and are within
the scope of the inventive subject matter.
0047. The total energy consumption for the record repre
sents the total energy consumption associated with the task
associated with the record during the interval of time repre
sented by the record. In some embodiments, a total value in
millijoules is calculated. This computed total energy con
Sumption may be accumulated in the energy array 132 value
that is indexed by the task identifier in the record, thereby
providing a running total of energy consumption for the task.
0048 FIG. 5 is a flowchart illustrating a method 500 for
determining an energy consumption for a task Such as a
virtual machine. Method 500 begins at block 502 by deter
mining memory energy consumption at an idle state. Deter
mining memory energy consumption at an idle State allows
for allocating energy use associated with memory to tasks
even if the task is currently idle on the basis that a task such as
a virtual machine occupies and uses memory even if the task
is idle. The operations performed by block 502 may be per
formed once when a system boots and not repeated until a
later reboot or memory size change.
0049. At block 504, energy values associated with a task
are received. In some embodiments, an energy array contain
ing records of counter values associated with energy use of a
task may be read using the task ID as an index into the array.
0050. At block 506, a task energy consumption is deter
mined using the values determined at block 504. The energy
consumption for the task may be determined by reading the
current energy consumption for the task from energy array
132. In addition, idle memory energy consumption may be
allocated to the task. In addition, the amount of memory
allocated to the task may be used to determine the energy
consumed by the task related to memory.
0051 FIG. 6 is a flowchart illustrating a method 600 for
adjusting an energy consumption Value according to a scaling
factor. The method begins at block 602 by reading energy
consumption counter, Voltages and frequencies from an
energy array.
0.052 At block 604, an estimated energy consumption
value across all tasks and processor cores of the processor is
determined by Summing or averaging the values across all of
the tasks executing on the processor cores of a processor.
0053 At block 606, an actual energy consumption value
for the processor is read. The actual energy consumption
value may be determined from sensors measuring energy
delivered to the processor.
0054. At block 608, a scaling factor is determined accord
ing to the estimated energy consumption for the processor and
the actual energy consumption value.
0055. At block 610, the scaling factor may be applied to
future energy values determined according to methods 400 or
500 described above. In some embodiments, method 600 may
be repeated at periodic intervals to adjust the Scaling factor.
0056. As will be appreciated by one skilled in the art,
aspects of the present inventive Subject matter may be embod
ied as a system, method or computer program product.
Accordingly, aspects of the present inventive subject matter
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
Software, micro-code, etc.) or an embodiment combining
Software and hardware aspects that may all generally be

US 2016/0224396 A1

referred to herein as a “circuit,” “module’ or “system.” Fur
thermore, aspects of the present inventive Subject matter may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read
able program code embodied thereon.
0057. Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0058. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0059 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0060 Computer program code for carrying out operations
for aspects of the present inventive subject matter may be
written in any combination of one or more programming
languages, including an object oriented programming lan
guage Such as Java, Smalltalk, C++ or the like and conven
tional procedural programming languages. Such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user's com
puter, partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro
vider).
0061 Aspects of the present inventive subject matter are
described with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems) and com
puter program products according to embodiments of the
inventive subject matter. It will be understood that each block
of the flowchart illustrations and/or block diagrams, and com

Aug. 4, 2016

binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.
0062. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0063. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0064. While the embodiments are described with refer
ence to various implementations and exploitations, it will be
understood that these embodiments are illustrative and that
the scope of the inventive subject matter is not limited to
them. In general, techniques for associating energy consump
tion of a processor core with a task Such as a virtual machine
as described herein may be implemented with facilities con
sistent with any hardware system or hardware systems. Many
variations, modifications, additions, and improvements are
possible.
0065 Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera
tions are illustrated in the context of specific illustrative con
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the inventive subject matter.
In general, structures and functionality presented as separate
components in the exemplary configurations may be imple
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improvements
may fall within the scope of the inventive subject matter.
What is claimed is:
1. A method for execution on a processor having a plurality

of chiplets, the method comprising:
in response to detecting, by an activity sense point of a

chiplet, a first event:
determining data associated with energy consumption of

the chiplet,
reading a task identifier from a first register of the chip

let, and
writing the data associated with the energy consumption

of the chiplet and the task identifier to the first
memory; and

US 2016/0224396 A1

in response to detection of a second event:
reading the data associated with energy consumption

and associated task identifiers from the first memory,
for each task identifier read from the first memory, writ

ing the data associated with the energy consumption
of the chiplet and the task identifier to a second
memory.

2. The method of claim 1, wherein the task identifier com
prises an identifier associated with a task to be executed on a
processor core of the chiplet, wherein the method further
comprises receiving, into the first register from a hypervisor,
the task identifier.

3. The method of claim 1, further comprising:
aggregating data associate with energy consumption of the

chiplets according to the task identifiers;
wherein writing the data associated with the energy con

sumption of the chiplet and the task identifier to the
second memory comprises writing the aggregated data
to the second memory.

4. The method of claim 1, wherein each task identifier
identifies a virtual machine, wherein the second memory is
accessible by a hypervisor.

5. The method of claim 1, wherein the second event is
selected from a group consisting of one or more of an expi
ration of a timer, a change in internal or external Voltage for at
least one of the plurality of processor cores, a change in
frequency for at least one of the plurality of processor cores,
a change in a Voltage regulator module, a change in a power
state for at least one of the plurality of processor cores, or a
change in the task identifier indicated in the first register of at
least one of the plurality of processor cores.

6. The method of claim 1, wherein the data associated with
energy consumption of the chipletis further associated with at
least one of a plurality of Voltage domains of the chiplet.

7. The method of claim 1, wherein the first event is selected
from a group consisting of at least one of load and store
operations, instruction dispatch, fixed point operations, float
ing point operations, cache reads, and cache writes.

8. A computer program product for associating energy
consumption with a task, the computer program product com
prising:

a computer readable storage medium having computer
usable program code embodied therewith, the computer
usable program code comprising a computerusable pro
gram code configured to:
in response to detection of a first event by an activity

sense point of a chiplet of a plurality of chiplets:
determine data associated with energy consumption

of the chiplet,
read a task identifier from a first register of the chiplet,

and
write the data associated with the energy consumption

of the chiplet and the task identifier to the first
memory; and

in response to detection of a second event:
read the data associated with energy consumption and

associated task identifiers from the first memory,
for each task identifier read from the first memory,

write the data associated with the energy consump
tion of the chiplet and the task identifier to a second
memory.

9. The computer program product of claim 8, wherein the
task identifier comprises an identifier associated with a task to
be executed on a processor core of the chiplet, and wherein

Aug. 4, 2016

the computerusable program code further includes computer
usable program code configured to receive, into the first reg
ister from a hypervisor, the task identifier.

10. The computer program product of claim 8, wherein the
computer usable program code further includes computer
usable program code configured to:

aggregate data associate with energy consumption of the
plurality of chiplets according to the task identifiers;

wherein computerusable program code configured to write
the data associated with the energy consumption of the
chiplet and the task identifier to the second memory
comprises computer usable program code configured to
write the aggregated data to the second memory.

11. The computer program product of claim 8, wherein the
second event is selected from a group consisting of one or
more of an expiration of a timer, a change in internal or
external Voltage for at least one of the plurality of processor
cores, a change in frequency for at least one of the plurality of
processor cores, a change in a Voltage regulator module, a
change in a power state for at least one of the plurality of
processor cores, or a change in the task identifier indicated in
the first register of at least one of the plurality of processor
COCS.

12. The computer program product of claim 8, wherein the
data associated with energy consumption of the chiplet is
further associated with at least one of a plurality of voltage
domains of the chiplet.

13. The computer program product of claim 8, wherein the
first event is selected from a group consisting of at least one
of load and store operations, instruction dispatch, fixed point
operations, floating point operations, cache reads, and cache
writes.

14. A processor comprising:
a first memory; and
a plurality of chiplets, wherein each chiplet comprises:

a processor core;
a first register to store a task identifier;
a plurality of activity sense points;

wherein each chiplet is configured to:
in response to a first event:

determine data associated with energy consumption
of the chiplet,

read the task identifier from the first register, and
write the data associated with energy consumption of

the chiplet and the task identifier to the first
memory; and

wherein the processor is configured to:
in response to detection of a second event:

read the data associated with energy consumption of
the chiplet and associated identifiers from the first
memory,

for each identifier read from the first memory, write
the data associated with the energy consumption
and the task identifier to a second memory.

15. The processor of claim 14, wherein the second event
comprises at least one of a change in an identifier in the first
register or a change in power state indicated in a second
register.

16. The processor of claim 14, wherein the first event is
selected from a group consisting of an expiration of a timer,
a change in internal or external Voltage of the chiplet, a
change in frequency of the chiplet, a change in a power state
of the chiplet, or a change in an identifier indicated in the first
register, or a change in a Voltage regulator module.

US 2016/0224396 A1

17. The processor of claim 14, wherein each chiplet further
includes:

one or more activity counters updated in response to detec
tion of the first event; and

one or more activity weight registers to store weightings
associated with the one or more activity counters;

wherein the processor is further configured to apply the
weightings to values of the one or more activity counters
associated with an energy consumption of the processor
COC.

18. The processor of claim 17, further comprising:
a plurality of activity sense points, the plurality of activity

sense points configured to maintain the one or more
activity counters.

19. The processor of claim 14, wherein the processor is
further configured to aggregate the data associated with
energy consumption according to the task identifiers.

k k k k k

Aug. 4, 2016

