«» UK Patent Application «GB 2 382 174 .. A

(43) Date of A Publication 21.05.2003

{21) Application No 0127722.7 (61) INTCL?
GO6F 17/30 17/21
(22) Date of Filing 20.11.2001
(62} UK CL (Edition V)
G4A AMX AUDB
(71) Applicant(s)
Hewlett-Packard Company (56) Documents Cited
{Incorporated in USA - Delaware) WO 2001/090873 A1 WO 20017063481 A2
3000 Hanover Street, Palo Alto, WO 2000/023912 A1 WO 2000/003332 A1
California 94304, United States of America US 6101513 A
http://www.oasis-open.org/cover/rml.html, "The
{72) Inventf)r(s)_ . XML Voer Pages. Relational Markup Language
Fabio Giannetti {RML)", R Cover, Last modified 2 June 2001
(74) Agent and/or Address for Service {68) Field of Search
Richard Anthony Lawrence UK CL {Edition T) G4A AMX AUDB
Hewlett-Packard Limited, IP Section, INT CL7 GOSF 17/21 17/30
Filton Road, Stoke Gifford, BRISTOL, Other: Online: WP, EPODOC, PAJ, INSPEC, XPESP,
BS34 8QZ, United Kingdom IBM TDB, COMPUTER, Selected Internet sites

(54) Abstract Title
Data formatting in a platform independent manner

(67) A method of generating data suitable for transmission to at least one data-receiving device, said method
comprising the following steps: specifying said data in a first and a second portion, said first portion being
substantially independent of any formatting, and said second portion containing said formatting for said first
portion specified in a platform independent manner; transforming said second portion, using a first transform,
to generate a platform dependent portion containing said formatting specified in a platform dependent
manner; and combining said first portion with said platform dependent portion using a second transform to
generate said data suitable for transmission to said at least one data-receiving device. This method may be
suitable for generating data suitable for transmission to a variety of platforms including WML, HTML, XSL-FO,
etc. based devices, for use, for example, with the World Wide Web.

00 310
308
Content Deliverable
content
7
Format Format
independent dependent
properties propertics Fig. 3
304
302 306

VY v/[1LZ8EC 9D

172

30

Fig. 2

— 6

—~22

Fig. 1

14

ST G B

<=:>1§C:

~t|

2/2

/00 /310

Deliverable
content

Content

Y~

Format Format
independent dependent
properties properties

Fig.3

304
302 306

10

15

20

25

30

2382174

1
IMPROVEMENTS RELATING TO DATA PROCESSING

This invention relates to a method of generating data, an improved
apparatus for performing such generation, together with an improved data

structure facilitating said method.

Many documents are now published electronically, and can be intended
for publication on a number of different mediums. For example the same
document can be published upon a variety of devices including any of the
following: a web page, a WAP (wireless application protocol) telephone,
a web enabled television, a personal digital assistant (PDA) (whether
landscape, or portrait versions), a printer, etc. Each of these devices has

considerably different display capabilities and as such the same document

‘cannot be displayed on each of the devices without modification.

Data can be presented in any number of ways and still convey the same
information to a reader. Thus, the content of a set of data is separate
from the presentation of the document. Page description languages such
as HTML are well known and allow a user to write a content document
specifying how they wish the data to be display when the content
document is rendered. However, this single content document therefore

contains both the data content and also its format.

It is an object of the present invention to overcome, or at least reduce, the

problems with the prior art.

According to a first aspect of the invention there is provided a method of
generating data suitable for transmission to at least one data-receiving

device, said method comprising the following steps:

10

15

20

25

30

2
i. specifying said data in a first and a second portion, said first
portion being substantially independent of any formatting,
and said second portion containing said formatting for said

first portion specified in a platform independent manner;

ii. transforming said second portion, using a first transform, to
generate a platform dependent portion containing said

formatting specified in a platform dependent manner;

iii. = combining said first portion with said platform dependent
portion using a second transform to generate said data
suitable for transmission to said at least one data-receiving
device.

An advantage of such a method is that it allows a single first portion to be
written, which will be can be combined with a plurality of second
portions to make it suitable for transmitting to a number of different data-
receiving devices. This is especially advantageous for first portions that
are lengthy, and it is desired to display said first portion in substantially
the same style throughout. (The skilled person will appreciate that the
style comprises the formatting for the data at any one point; for example
the font that is used, the justification, the line spacing, etc.) In such
circumstances it is likely that the first portion will be substantially longer
than the second portion and that therefore, much storage space will be
saved because only a single copy of the first portion will be required,
rather than a copy for each platform to which it is desired to transmit, as
in the prior art. The method will still be advantageous in instances where
there is less of a marked difference in the size of the first and second
portions due to the space saving and time saved in being able to generate
suitable for transmission to a number of platforms from a single first

portion.

10

15

20

25

30

3

It will be appreciated that a transform may be any process that combines

two or more items.

Preferably, the first portion comprises a portion of text, preferably
containing at least one marker allowing said text to be identified. Ideally,
said marker identifies a paragraph, or other section, such that paragraph,
or section, specific formatting can be applied to said paragraph, or
section. An advantage of such an arrangement is that it allows a variety
of different formats to be applied to the data contained in the first
portion. There may be a plurality of markers contained in the first

portion.

Conveniently, the second portion contains at least one of the following
items of formatting information: font type, font size, font colour, font
weight (i.e. whether the font is to be displayed in italic, bold, normal, ,
etc.), justification, line spacing, character spacing, or any other item of

formatting information.

Preferably, the first and second portions are held in separate files. Such
an arrangement is convenient because it makes finding and editing the

data more convenient.

Alternatively, it would be possible for the first and second portions to be

held in the same file.

Preferably, the first transform accesses the file in which the second
portion is stored and generates a third file. Further, the second transform
may access both the file in which the first portion is stored and the third
file in order to generate said data suitable for transmissions to said at
least one data-receiving device, which may in turn be stored in a fourth

file.

10

15

20

25

30

4

Conveniently, the first portion and/or the second portion are written in
adevice independent language. In the most preferred embodiment the first
and second portions are written in XML. An advantage of using XML is
that it is a platform independent language, which is provided with a

dedicated transform language.

The first and/or the second transform may be written in XSL. Use of
XSL is particularly advantageous if the first and /or the second portions

are written in XML due to the close ties between XSL and XML.

The method may comprise holding the data on a server and arranging said
server to perform the method upon receipt of a request for said data. The
request may be from a data-receiving device for data to be sent thereto,
or may be from a first data-receiving device requesting that data should

be sent to a second.

The method may comprise generating the said data suitable for
transmission to said at least one data-receiving device when a request for
said data is received. As such a fourth file containing said data suitable
for transmission to said at least one data-receiving device may not be
created, or one may be created when the request is received. Such an
arrangement is advantageous because it reduces the amount of storage

space that is required to store the data.

However, in an alternative embodiment said data suitable for transmission
to said at least one data-receiving device may be generated in advance and
stored for transmission to a data-receiving device. Therefore, should a
fourth file containing the data suitable for transmission to said at least on
data-receiving device be created it may be held on the server. Such an

arrangement is itself advantageous because it is less intensive and

10

15

20

25

30

5

therefore, will require less processing power and may therefore run on

less powerful hardware,

The method may be capable of generating said data suitable for
transmission to any of the following data-receiving devices: a WAP
enabled telephone, a("\WF znabled television, a printer, a browseili{ T(for
example MICROSOFTpEX LORER, or NETSCAPE NAVIGATO n, a
PDA, etc.

According to a second aspect of the invention there is provided a
computer readable medium holding a program arranged to run the method

of the first aspect of the invention.

A computer readable medium may comprise any one of the following: a
floppy disk, a CDROM, a DVD ROM/RAM, a ZIP disk, LS120 disk, any
other suitable physical format, a transmitted signal, an internet download,

etc.

According to a third aspect of the invention there is provided a data
structure accessible by a processing apparatus for processing and
subsequent transmission to a data-receiving device, comprising in

combination:

a first portion containing data that it is desired to send to said data-
receiving devices, held in a platform independent form, and being

substantially free of any formatting information;

a second portion specifying how the first portion should be
displayed on said data-receiving device, said second portion
containing said formatting information for said first portion

specified in a plaform independent manner.

10

15

20

25

30

6

Preferably, the first and/or second portions is written in a mark-up
language. The mark-up language may be any language defined by one of
the following: XML, SGML, or any other suitable mark-up language

specification.

Conveniently, the first and second portions are held as separate files.
The skilled person will appreciate that the first and second portions could
be held as separate portions within the same file, but this is likely to be

less convenient.

According to a fourth aspect of the invention there is provided a
processing apparatus arranged to hold data intended for transmission to at
least one data-receiving device, said data being held in at least a first,
data-receiving device independent portion substantially independent of
any formatting, and a second portion containing said formatting for said
first portion specifying how said first portion should be displayed on a
data-receiving device, said apparatus comprising processing circuitry
including a transmitter and receiver, the receiver arranged to receive a
data request and pass said request to said processing circuitry, on receipt
of said data request said processing circuitry being arranged to combine
an appropriate second portion for said data-receiving device to which data
is to be sent with said first portion to generate a data-receiving device
specific portion, and further being arranged to send said data-receiving
device specific portion to said transmitter for transmission to said data-

receiving device.

There now follows by way of example only a detailed description of the

present invention with reference to the accompanying drawings of which:

Figure 1 schematically shows the architecture of a computer

capable of acting as a server for this invention;

10

15

20

25

7

Figure 2 schematically shows how a document can be sent to a

number of different devices; and

Figure 3 schematically shows the processes of the present

invention.

This particular invention is applicable to distribute data electronically,
and in particular via the World Wide Web, or in short the web. Such
technology is well known. Generally the data to be distributed is held on
a processing apparatus, or server 2, as shown in Figure 1, and can be
requested by any number of devices that are capable of communicating
with the server 2. Indeed, a first device can make a request for data to be

sent to a second device.

In this embodiment the processing apparatus, or server 2, comprises a
display 4, processing circuitry 6, a keyboard 8, and mouse 10. The
processing circuitry 6 further comprises a processing unit 12, a hard
drive 14, a video driver 16, memory 18 (RAM and ROM) and an I/O
subsystem 20 which all communicate with one another, as is known in the
art, via a system bus 22. The processing unit 12 comprises an INTEL
PENTIUM series processor, running at typically between 900MHz and
1.7GHz.

As is known in the art the ROM portion of the memory 18 contains the
Basic Input Output System (BIOS) that controls basic hardware
functionality. The RAM portion of memory 18 is a volatile memory used
to hold instructions that are being executed, such as program code, etc.

The hard drive 14 is used as mass storage for programs and other data.

10

15

20

25

30

8
Other devices such as CDROMS, DVD ROMS, network cards, etc. could
be coupled to the system bus 22 and allow for storage of data,

communication with other computers over a network, etc.

The server 2 could have the architecture known as a PC, originally based
on the IBM specification, butlco%ld qually have other architectures. The

server could may be an APPLE or may be a RISC SX tem, and may run a

R 3y-tr) Rt (g3

variety of operjatmg systems (perhaps HP- X LINUX UNIX
MICROSOFT NT, AIX™, or the like).

In this embodiment data, in this case data is held on the server 2, which
stores the data and distributes it on request to a requesting data-receiving
device. The requesting data-receiving device can be any device that is
capable of communicating with the server 2. When the server 2 receives
a request from a data-receiving device or another device it will forward
the requested data onto the appropriate data-receiving device, after
generating data suitable for transmission to said at least one data-
receiving device as described hereinafter. (The server 2 may generate the
data suitable for transmission to said at least one data-receiving device in
advance, or when the request for data is received). This arrangement is
schematically represented in Figure 2, which shows a WAP enabled
telephone 24, a printer 26 and a PC 28 in communication with the server

via a network connection 30.

Data suitable for transmission to said at least one data-receiving device
may be capable of being displayed on a variety of devices. For example a
PC 28 may be programmed so that it can receive and correctly process
data presented in WML format, which would generally be used for WAP
enabled telephones. As such, reference to platform is intended to cover
any device that is capable of receiving said data suitable for transmission

to said at least one data-receiving device in any one particular format.

10

15

20

25

30

9

The code shown in appendix I is written in XML (eXtensible Mark-up
Language), but could be equally stored using other suitable mark-up
languages. XML requires pairs of tags to be placed within a document.
Theses tags do not specify how the information should be presented, but
specify the content of the information between the pairs of tags. The
skilled person will fully understand XML, but a full description can be

found at http://www.w3.org, and the brief description below will aid

his/her understanding.

The skilled person will appreciate how an XML document is structured:
written in words, or data sub-items, which are collected into data sub-
item groups. The data sub-item groups can comprise sentences,
paragraphs, or simply collections of words. The data sub-item groups, or

even just data sub-items, are placed between pairs of tags.

The tags appear as follows: <variable>, and < /variable>, with
variable being any word, or character string acceptable according to the
XML recommendation. Further, each data sub item group can be itself
broken down into a number of sub-items. This structure is convenient

and allows for easy manipulation and searching of the complete data item.

The code shown in appendicesIl and IV is written as an XSL
transformation (XSLT). The skilled person will appreciate that XSL is a
language for expressing stylesheets consisting of three parts: i. the XSL
language for expressing XSL transformation of XML documents: ii. an
XPATH language used by the XSL language for referring to parts of a

document; and a vocabulary for specifying formatting semantics.

An XSL stylesheet specifies the presentation of a class of XML
documents by describing how an instance of the class is transformed into

an XML document that uses the formatting vocabulary. A fuller

10

15

20

25

30

10
description of XSL can be viewed on the web site of the World Wide Web

consortium (http://www.w3.org).

Figure 3 shows one embodiment of how the present invention can be
realised. A content document 300, or first portion of data, is written
such that it contains the data content and does not contain any formatting
information. The content document 300 contains a number of markers

that identify paragraphs therein, and is held in a first file on the server 2.

A second, format independent properties, document 302, or second
portion of data, contains the desired formatting for the content document
written in a format (or device) independent manner. This format
independent properties document 302 is held in a second file on the
server 2. An example of such a document is provided in appendix I, and
in this embodiment is written in XML. This format independent
properties document 302 specifies the following parameters: fontfamily,
i.e. the font in which the content will appear (serif); fontsize i.e. the size
of the font in which the content will appear (medium); the font style, in
this case normal; the weight of the font, in this case normal; the colour of
the font, in this case black; the alignment of the font, in this case
justified; and the spacing of the font, in this case 2em (a relative

dimension that a renderer will calculate according to other parameters).

It will be apparent to the skilled person that any other property of a font
could be specified by the format independent properties document 302.
For example whether or not the font is italic, in bold, underlined, etc.

could all be specified.

Further, although the format independent properties document shown in
appendix II shows only one particular set of formatting, it would be

possible for it to contain a number of different sets. As such, different

10

15

20

25

30

11
paragraphs, or other sections, within the content document 300 could
have a different set of formatting applied thereto. The markers provided
in the content document 300 allow the correct set of formatting to be

applied to the correct paragraph, or other section.

A first transform process 302 processes the format independent properties
document 304 to generate a format dependent properties document 306
therefrom, which is stored in a third file on the server 2. This format
dependent properties document 306 is device dependent and a separate
document must be generated for each device, or set of devices, on which
it is desired to display information. In the present example the format
independent properties document 302 is transformed into three separate
format dependent property documents 306. Appendix II shows the
following documents: an XSL stylesheet suitable for transforming into a
WML document for transmission to a WAP enabled telephone 24, an XSL
stylesheet suitable for transforming into an HTML document for
transmission to a browser running on a computer 28; and an XSL
stylesheet suitable for transforming into a XSL-FO document suitable to

be rendered into a page description language and to be printed on a

printer 26. Appendix III shows the results of these transform processes.

Once the format dependent properties document 306 has been generated
for a particular platform it must be combined with the content
document 300 before a deliverable content document 310 can be obtained,

suitable for transmission to a data-receiving device.

This combining of the format dependent properties document 306 with the
content document 300 is performed by a second process 308 that is
defined by an appropriate XSL stylesheet. The resulting deliverable
content is held in a fourth file on the server 2. Examples of such

stylesheets are shown in appendix IV. Again, because in this embodiment

10

15

20

25

30

12

a document is being generated for a WAP telephone 24, a printer 26, and
a browser running on a PC 28 three separate style sheets are required,

and an example of each of these is shown in appendix IV.

The second process applies an appropriate set of formatting as defined in
the format dependent properties document 306 with the appropriate
paragraph, or section, defined by the markers in the content

document 300.

Looking at the XSL stylesheet that generates the XSL code in appendix II,
a portion 400 switches on the <FontFamily > tags provided in the format
independent properties document 302 to generate a line of code 500 in the
HTML format dependent properties document 306 specifying that the

“serif” font should be used.

Next a portion 402 of the stylesheet for the first process switches on the
<FontSize > tags within the XML format independent properties
document 302 to determine the size of the font that should be used to
display the document. The result of this portion can be seen at 502 in
appendix III, in the XSL code for the format dependent properties

document 306.

A portion of the code 404 within the XSL stylesheet determines the colour
of the text in which the text will be displayed by using the < colour > tag
within the format independent properties document 302, and generates the
line 504 in appendix III. Thus, the colour that will be specified in the
HTML deliverable content document 310 when it is generated will be
black.

Further, a portion of the code 406 switches on the <FontWeight> tag

within the format independent properties document 302 to generate a line

10

15

20

25

13
within the format dependent properties document 306 specifying whether
the text should be bold, italic, underlined, etc. Because the format
independent properties document 302 specifies that the FontWeight should
be normal, no line is generated in the format dependent properties

document 306.

Once the format dependent properties document 306 has been generated,
as described above, it is combined with the content document 300, by the
style sheet 308 shown in appendix IV. Looking at the XSL stylesheet to
generate the HTML version, the line 550 imports the file
“CurrentTextElementHTMLPropertyInstance. XSL”, which is the format
dependent properties document 306 generated by the first transform

process.

Although not discussed in detail, the WML, and XSL-FO versions of the
code shown in the appendices function in a similar manner. The skilled
person will also appreciate that other transforms, and languages are
possible, and that the three page description languages used herein are

provided merely as examples.

In its broadest concept the invention may be considered as a method of
generating data suitable for transmission to at least one data receiving
device said method comprising the following steps: specifying the data in
at least a first and a second portion, said first portion containing said data
and being data-receiving device independent, and said second portion
specifying how said first portion should be displayed on a data-receiving
device; and combining said first and second portions into a data-receiving
device specific document before generating said device specific data

suitable for transmission to said data-receiving device.

10

15

20

14
APPENDIX I

Example format independent properties document 302

< ?xml version="1.0" 7>
< TextElement >
< PropertySets >
<FontSet >
< FontFamily > serif < /FontFamily >
< FontSize > medium < /FontSize >
< FontStyle > normal < /FontStyle >
< FontWeight > normal < /FontWeight >
< /FontSet > '
< ColourSet >
< Colour > black < /Colour >
< /ColourSet >
< AlignmentSet >
< Align > justify < /Align >
< /AlignmentSet >
< SpacingSet >
< SpaceBefore > 2em < /SpaceBefore >
< /SpacingSet >
< /PropertySets >
< /TextElement >

10

15

20

25

30

35

40

45

50

35

15

Appendix II

XSL stylesheets for first transform process 304

HTML version

< xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >

< xsl:import href = " ColourPropertySet.xsl"/ >
< xsl:template match = "FontSet" >
< xsl:element name = "xsl:template" >
<xsl:attribute name = "match" > Content < /xsl:attribute >
<xsl:apply-templates select = "//FontSet/FontFamily"/ >
</xsl:element >
< /xsl:template >

Selects font in
which, text will
be displayed. In

this case “serif”

< xsl:template match = "FontSet/FontFamily" > \'

< xsl:element name="FONT" >
< xsl:attribute name = "face" >
< xsl:value-of select="."/>
< Ixsl:attribute > J
< xsl:apply-templates select="//FontSet/FontSize"/ >
< [xsl:element >
</xsl:template >
< xsl:template match = "FontSet/FontSize" >
< xsl:variable name = "fontsize" >
< xsl:value-of select="."/>
< /xsl:variable >
< xsl:element name = "FONT" >
< xsl:attribute name = "size" >
< xsl:choose >
<xsl:when test="$fontsize = 'xx-large’" > + 6 </xsl:when >
<xsl:when test= "$fontsize = 'x-large’" > + 4 < /xsl:when >
<xsl:when test="$fontsize = 'large’" > + 2 < /xsl: when >
< xsl:when test="$fontsize = 'normal’" > + 0 < /xsl:when >
< xsl:when test= "$fontsize = 'small’" > -2 < /xsl:when >
< xsl:when test= "$fontsize = 'x-small’" > -4 < /xsl:when >
< xsl:when test = "$fontsize = 'xx-small’" > -6 < /xsl:when >
< xsl:otherwise />
< /xsl:choose >
< /xsl:attribute >
< xsl:apply-templates select="//ColourSet/Colour"/ >
< /xsl:element >
< /xsl:template >
< xsl:template match = "FontSet/FontStyle" >
<xsl:variable name ="style" >
< xsl:value-of select=","/>
< /xsl:variable >
< xsl:choose >
<xsl:when test= "$style="italic’" >
< xsl:element name="1">
<xsl:apply-templates select= "//FontSet/FontWeight"/ >
< /xsl:element >
< /xsl:when >

400

Selects size of font
in which, text will

be displayed. In
this case “+4”

402

Selects colour in

which, text will

be displayed. In

this case “black”

404

10

15

20

25

30

35

40

45

50

55

16

< xsl:when test= "$style="'oblique’" >
< xsl:element name="1" >
< xsl:apply-templates select = "//FontSet/FontWeight"/ >
< /xsl:element >
< /xsl:when >
< xsl:when test= "$style="normal'” >
< xsl:apply-templates select= "//FontSet/FontWeight"/ >
< /xsl:when >
< xsl:otherwise/ >
< /xsl:choose >
< /xsl:template >
< xsl:template match = "FontSet/FontWeight" >
< xsl:variable name = "weight" select="."/>
< xsl:choose >
< xsl:when test="$weight="bold’" >
< xsl:element name="B" >
< xsl:element name = "xsl:apply-templates"/>
< /xsl:element >
< /xsl:when >
< xsl:otherwise >
< xsl:element name = "xsl:apply-templates"/ >
< /xsl:otherwise >
< /xsl:choose >
< [xsl:template >

< Ixsl:stylesheet >

WML version

xsl:stylesheet version="1.0" ‘
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" >
< xsl:template match ="FontSet" >

< xsl:element name = "xsl:template" >
< xsl:attribute name = "match" > Content < /xsl:attribute >
< xsi:apply-templates select="// FontSet/FontFamily" />
< /xsl:element >

< Ixsl:template >
< xsl:template match= "FontSet/FontFamily" >

< xsl:apply-templates select= "//FontSet/FontSize" />

< /xsl :template >
< xsl:template match =" FontSet/FontSize" >

< xsl:variable name= "fontsize" >
< xsl:value-of select="."/>
< /xsl:variable >
< xsl:choose >
< xsl:when test= "$fontsize = 'xx-large'” >
< xsl:element name = "big" >
< xsl:apply-templates select= "//FontSet/FontStyle" />
< /xsl:element >
< /xsl:when >
< xsl:when test= "$fontsize ='x-large"' >
< xsl:element name = "big" >
< xsl:apply-templates select= "//FontSet/FontStyle" />
< /xsl:element >
< /xsl:when >

Selects font weight in
which, text will be
displayed. In this

case “normal”

406

10

15

20

25

30

35

40

45

50

55

17

< xsl:when test= "$fontsize ="'large""' >
<xsl:element name = "big" >
< xsl:apply-templates select= "//FontSet/FontStyle" /> _ </xsl:element>
< /xsl:when >
< xsl:when test= "$fontsize = 'medium"*' >
< xsl:apply-templates select= "//FontSet/FontStyle" />
< /xsl:when >
< xsl:when test= "$fontsize ='small"' >
< xsl:element name = "small” >
< xsl:apply-templates select= "//FontSet/FontStyle" />
< /xsl:element >
< /xsl:when >
< xsl:when test= "$fontsize='x-small"'>
< xsl:element name = "small” >
< xsl:apply-templates select= "//FontSet/FontStyle" />
< /xsl:element >
< /xsl :when >
< xsl:when test= "$fontsize = 'xx-small"' >
< xsl:element name = "small" >
< xsl:apply-templates select= "//FontSet/FontStyle" />
</xsl : element >
< /xsl:when >
< xsl:otherwise / >
< /xsl:choose >
</xsl:template >
< xsl:template match=" FontSet/FontStyle" >
< xsl:variable name = "style" >
< xsl:value-of select="." />
< /xsl:variable >
< xsl:choose >
< xsl:when test= "$style ="italic"' >
< xsl:element name="i" >
< xsl:apply-templates select="// FontSet/FontWeight" />
< /xsl:element >
< /xsl:when >
<xsl:when test= "$style='oblique"’ >
< xsl:element name="i" >
< xsl:apply-templates select= "//FontSet/FontWeight" />
< /xsl:element >
< /xsl:when >
< xsl:when test= "$style="normal'” >
< xsl:apply-templates select= "//FontSet/FontWeight" / >
</xsl:when >
< xsl:otherwise />
< /xsl:choose >
</xsl:template >
<xsl:template match= "FontSet/FontWeight" >
< xsl:variable name = "weight" select="." />
< xsl:choose >
< xsl:when test= "$weight="'bold"' >
< xsl:element name="b" >
<xsl:element name= "xsl:apply-templates" />
< /xsl:element >
< /xsl:when >
<xsl:when test= "$weight="normal"' >

10

15

20

25

30

35

40

18

< xsl:element name = "xsl:apply-templates" />
< /xsl:when >
< xsl:otherwise / >
< Ixsl:choose >
< /xsl:template >
< /xsl:stylesheet >

xsl - fo version

xsl:stylesheet version="1.0"
xmins:xsl = "http://www.w3.0rg/1999/XSL/Transform" >
< xsl:template match=" FontSet" >
< xsl:apply-templates / >
< /xsl :template >
< xsl:template match=" FontSet/FontFamily" >
< xsl:element name = "xsl:attribute" >
< xsl:attribute name= "name" > font-family < /xsl:attribute >
< xsl:apply-templates / >
< /xsl:element >
< /xsl:template >
< xsl:template match=" FontSet/FontSize" >
< xsl:element name = "xsl:attribute" >
< xsl:attribute name= "name" > font-size < /xsl:attribute >
< xsl:apply-templates / >
< /xsl:element >
< /xsl:template >
< xsl:template match=" FontSet/FontStyle" >
< xsl:element name = "xsl:attribute" >
< xsl:attribute name= "name" > font-style < /xsl:attribute >
< xsl:apply-templates / >
< /xsl:element >
< [xsl:template >
< xsl:template match=" FontWeight" >
< xsl:element name= "xsl:attribute” >
< xsl:attribute name = "name" > font-weight < /xsi:attribute >
< xsl:apply-templates / >
< /xsl:element >
< /xsl:template >
< Ixsl:stylesheet >

10

15

20

25

30

35

19

Appendix III
Format dependent properties document 306
HTML

<xsl:stylesheet xmlns:xsl= "http://www.w3.0rg/1999/XSL/Transform" >
< xsl:template match="Content" >

< xsl:apply-templates />

< /FONT >
< /xsl:template >
< xsl:attribute-set name = "text-style" >
<xsl:attribute name = "align" > justify < /xsl:attribute >
< /xsl:attribute-set >
< Ixsl:stylesheet >

XSL-FO version

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >
< xsl:attribute-set name = "text-style" >
< xsl:attribute name = "font-family" > serif < /xsl:attribute >
< xsl:attribute name = "font-size" > medium < /xsl:attribute >
< xsl:attribute name = "font-style"” > normal < /xsl:attribute >
< xsl:attribute name = "font-weight" > normal < /xsl:attribute >
< xsl:attribute name = "color" > black < /xsl:attribute >
< xsl:attribute name = "text-align" > justify < /xsl:attribute >
< xsl:attribute name = "space-before.optimum" > 2em < /xsl:attribute >
</xsl:attribute-set >
< /xsl:stylesheet >

5

10

15

20

WML version

< xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
< xsl:template match="Content" >
< xsl:apply-templates / >
< /xsl:template >
< xsl:attribute-set name = "text-style" >
< xsl:attribute name = "align" > left </xsl:attribute >
</xsl:attribute-set >
< /xsl : stylesheet >

21

Appendix IV
5 XSL style sheet for process 2 combining format dependent properties document 306 with the
content document 300
HTML version
10

<Txml version="1.0" 7>
< xsl:stylesheet version="1.0"

xmlns:xst="http://www.w3.0rg/1999/XSL/Transform" >
<!-- Imports all property sets descriptions -- > 550
< xsl:import

15 href="file:///C:/SysArch/Instances/ CurrentTextElementHTMLPropertylns
tance.xSL” >

<!-- end of imports -- >

<xsl:output method = "xml" indent = "yes" media-type = "text/xsl"/ >
<xsl:template match = "TextElement/Content" >

20 <P xsl:use-attribute-sets = "text-style” >

< xsl:apply-imports/ >
</P>
</xsl:template >
< /xsl:stylesheet >

25
WML version
< ?xml version="1.0"? >
30 <xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >
<xsl:output method = "xml" indent = "yes" media-type = "text/xsl"/ >
<! -- Imports all property sets descriptions -->
< xsl: import
35
href="file:///C:/SysArch/Instances/ CurrentTextElementWMLPropertyInstance
xs1” >
<!-- end of imports -- >
<xsl:template match= "TextElement" >
40 < xsl:apply-templates />
</xsl:template >
<xsl:template match ="Content" >
<p xsl:use-attribute-sets = "text-style" >
< xsl:apply-imports / >
45 </p>
</xsl:template >
</xsl:stylesheet >
50

XSL - FO version

<?xml version="1.0" 7>
< xsl:stylesheet version="1.0"

22

xmlns:xsl = "http://www.w3.0rg/1999/XSL/Transform”
xmins:fo = "http://www.w3.0rg/1999/XSL/Format" >
< !-- Imports all property sets descriptions -- >
< xsl: import
5 href = "file:///C:/SysArch/Instances/CurrentTextElementFOPropertyInstance.
xst"
< !1-- end of imports -- >
< xsl:output method = "xml" indent="yes" media -type = "text/xsl"/ >
< xsl:template match= "Content" >
10 <fo:block xsl:use-attribute-sets = "text-style" >
< xsl:apply-templates /> -
< /fo: block >
</xsl :template >
< /xsl:stylesheet >

15

10

15

20

25

30

23
CLAIMS

1. A method of generating data suitable for transmission to at least one

data-receiving device, said method comprising the following steps:

i. specifying said data in a first and a second portion, said first
portion being substantially independent of any formatting,
and said second portion containing said formatting for said

first portion specified in a platform independent manner;

ii. transforming said second portion, using a first transform, to
generate a platform dependent portion containing said

formatting specified in a platform dependent manner;

iii. combining said first portion with said platform dependent
portion using a second transform to generate said data
suitable for transmission to said at least one data-receiving

device.

2. A method according to claim 1 wherein the first portion comprises a

portion of text.

3. A method according to claim 2 wherein the method is arranged such
that the first portion contains at least one marker allowing said text to be

identified.

4. A method according to claim 3 wherein said marker identifies a
paragraph such that said paragraph specific formatting can be applied to

said paragraph.

10

15

20

25

30

24
5. A method according to claim 1 wherein the method arranges said
second portion such that it contains at least one of the following items of
formatting information: font type, font size, font colour, font weight
(i.e. whether the font is to be displayed in italic, bold, normal,),

justification, line spacing, character spacing.

6. A method according to clam 1 wherein the first and second portions

are held in separate files.

7. A method according to claim 1 wherein said first portion is written

in a device independent language.

8. A method according to claim 7 wherein said device independent

language is XML.

9. A method according to claim 1 wherein said second portion is a

device independent language.

10. A method according to claim 9 wherein said device independent

language is XML.

11. A method according to claim 1 wherein said first transform is

written in XSL.

12. A method according to claim 1 wherein said second transform is

written in XSL.

13. A method according to claim 1 comprising holding said data on a
server and arranging said server to perform the method upon receipt of a

request for said data.

10

15

20

25

30

25
14. A method according to claim 13 wherein said request is from a data-

receiving device for data to be sent thereto.

15. A method according to claim 13 wherein said request is from a first

data-receiving device requesting that data should be sent to a second.

16. A method according to said data suitable for transmission to said at
least one data-receiving device is generated in advance and stored for

transmission to a data-receiving device.

17. A method according to claim 1 comprising generating said data
suitable for transmission to any of the following data-receiving devices: a

WAP enabled telephone, a web enal:(olﬁd_ %Sljzvision, a printer, a browser
-7 .M

(0T&)

(for example MICROSOFT EXPLORERA or NETSCAPE NAVIGATOI%),
a PDA.

18. A computer readable medium holding a program arranged to run the

method of claim 1.

19. A data structure accessible by a processing apparatus for processing
and subsequent transmission to a data-receiving device, comprising in

combination:

a first portion containing data that it is desired to send to said data-
receiving devices, held in a platform independent form, and being

substantially free of any formatting information;

a second portion specifying how the first portion should be
displayed on said data-receiving device, said second portion
containing said formatting information for said first portion

specified in a plaform independent manner.

10

15

20

25

30

26
20. A structure according to claim 19 comprising writing said first

portion in a mark-up language.

21. A structure according to claim 20 wherein said mark-up language is
XML.

22. A structure according to claim 21 comprising writing said second

portion in a mark-up language.

23. A structure according to claim 22 wherein said mark-up language is

XML.

24. A structure according to claim 19 comprising arranging said first

and second portions in separate files.

25. A structure according to claim 19 comprising writing the first

transform in XSL.

26. A structure according to claim 19 comprising writing the second

transform in XSL.

27. A processing apparatus arranged to hold data intended for
transmission to at least one data-receiving device, said data being held in
at least a first, data-receiving device independent portion substantially
independent of any formatting, and a second portion containing said
formatting for said first portion specifying how said first portion should
be displayed on a data-receiving device, said apparatus comprising
processing circuitry including a transmitter and receiver, the receiver
arranged to receive a data request and pass said request to said processing
circuitry, on receipt of said data request said processing circuitry being

arranged to combine an appropriate second portion for said data-receiving

27
device to which data is to be sent with said first portion to generate a
data-receiving device specific portion, and further being arranged to send
said data-receiving device specific portion to said transmitter for

transmission to said data-receiving device.

i (Y

@ * y

e} [} <L

0 6 5 ".\,\’."

‘?L'p/ Ce § INVESTOR IN PEOPLE
IYT . T‘LPSS%_

Application No: GB 0127722.7 o2& Examiner: Ben Micklewright

Claims searched: 1-27 Date of search: 18 June 2002

Patents Act 1977
Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK CI (Ed.T): G4A (AUDB, AMX)
Int CI (Ed.7): GOG6F (17/21 17/30)

Other:

Online: WPI, EPODOC, PAJ, INSPEC, XPESP, IBM TDB, COMPUTER,

Selected Internet sites

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
X,P | WO 01/90873 Al (2ROAM) See e.g. pages 12-15 127
A WO 01/63481 A2 (SUN)
X | WO 0023912 A1 (OCE-USA) Seee.g. pages 2,9 lféﬁigﬁ,
18,2427
X | WO 00/03332 A1 (NETPOST) See e.g. page 4 1-27
X | US 6101513 (SHAKIB) See e.g. column 2 141156%9,
18,2427
X | http://www.oasis-open.org/cover/rml.html, "The XML Voer Pages.
Relational Markup Language (RML)", R Cover, Last modified 2 June 1-27
2001 -
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art,
Y Document indicating lack of inventive step if combined P Documentpublished on or after the declared priority date butbefore the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

