»UK Patent Application «GB 2354349 A

{43) Date of A Publication 21.03.2001

{21) Application No 9921776.2 (51) INTCL’
GO6F 9/46
{22) Date of Filing 16.09.1999

(52) UK CL (Edition S)

) G4A AUDB
(71) Applicant(s)
International Business Machines Corporation {56) Documents Cited
{Incorporated in USA - New York)} GB 2336920 A US 5721825 A

Armonk, New York 10504, United States of America
(58} Field of Search

{72} Inventor(s) UK CL (Edition R) G4A APX AUDB AUXF
Peter A Lambros INT CL7 GOGF 9/46
Stephen James Paul Todd ONLINE WPI EPODOC PAJ TDB

{74) Agent and/or Address for Service
IBM United Kingdom Limited
Intellectual Property Department, Mail Point 110,
Hursley Park, WINCHESTER, Hampshire, S021 2JN,
United Kingdom

(54) Abstract Title
Event notification data processing with command and command notification combined into a single event

(567) When command issuing application 402 determines (501 fig 5) that a command is to be sent to
command receiving application 403, it 402 publishes a message {encircled numeral 1) to a publish/subscribe
broker system 404 on a stream cailed “command issuance”. The broker system 404 then forwards on the
published message to both the command receiving application 403 and a system management tool 401
{encircled numeral 2), because both 403 and 401 have previously registered subscriptions on the stream
*command issuance" with the broker system 404. Upon receiving the published message, the command
receiving application 403 interprets the command as a command. Upon receiving the same published
message the management tool 401 interprets the message as notification of command issuance and logs the
message in local memory for informational purposes. When the application 403 has finished carrying out the
work instructed by the command it publishes a message on the stream "work completed® {encircled numeral
3) to the broker system 404 which in turn forward the message to the management tool which iogs the
message and is informed that the command has been acted upon. There may be multiple command issuing
and receiving applications. The publish/subscribe broker system may be combined with any of the other
applications 401, 402, 403. The command issuing application may be a world wide web (WWW) browser and
the command receiving application could be a data base containing stock market data.

Systems management tool |—£401

) T@ O 0

Publish /subscribe broker system o/ Command receiving application
‘|‘® Toe @

Command issuing application }~ 402

Vv evEVSEC 9O

113

/
e i dnaliesin Nttt = = ="

Publish / Subscribe
Broker

21 Network

Root
Distribution

Agent

{

1

{

{

l

!

i

{
Distribution !
Agent |
i

[

|

l

|

|

!

1

|

Distribution
Agent

Distribution } { Distribution
Agent Agent

2/3

Publisher
Application

B
€201

Broker 11 Broker 12

Broker 111 Broker 112 - (Broker 121 Broker 122

Broker 111 (Broker 112) (Broker 1121 @ker 1220)

203
!

202 '2

Subscriber

Subscriber

3/3

Systems management tool }—301

®T I® 304

Publish / subscribe broker system ®

T@ 302 303

Command issuing application }|———* Command receiving application

®
FIG. 3

Systems management tool —401

®T T@ €)) _— 403

Publish/-subscribe broker system M o (ommand receiving application

T@ L 404 @

Command issuing application |~ 402

| 502

Publish message on “command issuance” stream

(_ST0P)

FIG. 5

10

15

20

25

30

35

40

45

2354349

U. /9074 1

EVENT NOTIFICATION DATA PROCESSING WITH COMMAND AND COMMAND
NOTIFICATION COMBINED INTO A SINGLE EVENT

Field of the Invention

The present invention relates to the field of data processing and
more specifically to event notification data processing which distributes
event messages from suppliers (called, hereinafter, "publishers®") of data
messages to consumers (called, hereinafter nsubscribers") of such
messages. While there are many different types of known event
notification systems, the subsequent discussion will describe the
publish/subscribe event notification system as it is one of the most

CcOommorI.

Background of the Invention

Publish/subscribe data processing systems (and event notification
systems in general) have become very popular in recent years as a way of
distributing data messages (events) from publishing computers to
subscribing computers. The increasing popularity of the Internet, which
has connected a wide variety of computers all over the world, has helped
to make such publish/subscribe systems even more popular. Using the
Internet, a World Wide Web browser application (the term "application®" or
vprocess" refers to a software program, Or portion thereof, running on a
computer) can be used in conjunction with the publisher or subscriber in
order to graphically display messages. Such systems are especially
useful where data supplied by a publisher is constantly changing and a
large number of subscribers needs to be quickly updated with the latest
data. Perhaps the best example of where this is useful is in the
distribution of stock market data.

In such systems, publisher applications of data messages do not
need to know the identity or location of the subscriber applications
which will receive the messages. The publishers need only connect to a
publish/subscribe distribution agent process, which is included in a
group of such processes making up a broker network, and send messages to
the distribution agent process, specifying the subject of the message to
the distribution agent process. The distribution agent process then
distributes the published messages to subscriber applications which have
previously indicated to the broker network that they would like to
receive data messages on particular subjects. Thus, the subscribers also
do not need to know the identity or location of the publishers. The
subscribers need only connect to a distribution agent process.

10

15

20

25

30

35

40

45

U. 39074 2

One such publish/subscribe system which is currently in use, and
which has been developed by the Transarc Corp. (a wholly owned subsidiary
of the assignee of the present patent application, IBM Corp.) is shown in
Fig. 1. Publishers 11 and 12 connect to the publish/subscribe broker
network 2 and send published messages to broker network 2 which
distributes the messages to subscribers 31, 32, 33, 34. Publishers 11
and 12, which are data processing applications which ocutput data
messages, connect to broker network 2 using the well known
inter-application data connection protocol known as remote procedure call
(or RPC) (other well known protocols, such as asynchronous message queuing
protocols, can also be used). Each publisher application could be
running on a separate machine, alternatively, a single machine could be
running a plurality of publisher applications. The broker network 2 is
made up of a plurality of distribution agents (21 through 27) which are
connected in a hierarchical fashion which will be described below as a
"tree structure". These distribution agents, each of which could be
running on a separate machine, are data processing applications which
distribute data messages through the broker network 2 from publishers to
subscribers. Subscriber applications 31, 32, 33 and 34 connect to the
broker network 2 via RPC in order to receive published messages.

Publishers 11 and 12 first connect via RPC directly to a root
distribution agent 21 which in turn connects via RPC to second level
distribution agents 22 and 23 which in turn connect via RPC to third
level distribution agents 24, 25, 26 and 27 ({(also known as "leaf
distribution agents" since they are the final distribution agents in the
tree structure). Each distribution agent could be running on its own
machine, or alternatively, groups of distribution agents could be running
on the same machine. The leaf distribution agents connect via RPC to
subscriber applications 31 through 34, each of which could be running on
its own machine.

In corder to allow the broker network 2 to determine which published
messages should be sent to which subscribers, publishers provide the root
distribution agent 21 with the name of a distribution stream for each
published message. A distribution stream (called hereinafter a "stream")
is an ordered sequence of messages having a name (e.g., "stock" for a
stream of stock market quotes) to distinguish the stream from other
streams (this is known as "topic based" publish/subscribe, another well
known model is called "content based publish/subscribe which involves
matching publishers and subscribers by the content of the messages rather
than by the topic). Likewise, subscribers provide the leaf distribution
agents 31 through 34 with the name of the streams to which they would
like to subscribe. 1In this way, the broker network 2 keeps track of
which subscribers are interested in which streams so that when publishers
publish messages to such streams, the messages can be distributed to the

10

15

20

25

30

35

40

45

D. ..39074 3

corresponding subscribers. Subscribers are also allowed to provide
filter expressions to the broker network in order to limit the messages
which will be received on a particular stream (e.g., a subscriber 31
interested in only IBM stock quotes could subscribe to the stream "stock"
by making an RPC call to leaf distribution agent 24 and include a filter
expression stating that only messages on the "stock" stream relating to
IBM stock should be sent to subscriber 31).

The above-described publish/subscribe architecture provides the
advantage of central co-ordination of all published messages, since all
publishers must connect to the same distribution agent (the root) in
order to publish a message to the broker network. For example, total
ordering of published messages throughout the broker network is greatly
facilitated, since the root can easily assign sequence numbers to each
published message on a stream. However, this architecture also has the
disadvantage of publisher inflexibility, since each publisher is
constrained to publishing from the single root distribution agent, even
when it would be much easier for a publisher to connect to a closer
distribution agent.

In the Fig. 1, a publisher application 11, running on one computer,
is, for example, a supplier of live stock market data quotes. That is,
publisher application 11 provides frequent messages stating the present
value of share prices. 1In this example, publisher application 11 is
publishing messages on a stream called nstock" which has already been
configured in the broker network 2. As is well known, when publisher 11
wishes to publish a stock quote message to stream "stock", publisher 11
makes an RPC call to the root distribution agent 11 which is at the top
level of the broker network tree structure. 1In this example, subscriber
application 32, running on another computer, has sent a subscription
request via an RPC call to leaf distribution agent 24, which is at the
bottom level of the tree structure, indicating that subscriber 32 would
like to subscribe to stream "stock".

Thus, whenever publisher 11 publishes a data message to stream
wgtock" the distribution tree structure of broker network 2 channels the
message down through the root distribution agent 21, through any
intermediary distribution agents (e.g., 22 in the example of Fig. 1) and
through the leaf distribution agent 24 to the subscriber 32. This
involves a series of RPC calls being made between each successive circle
in the diagram of Fig. 1 connecting publisher 11 and subscriber 32 (i.e.,
11 to 21, 21 to 22, 22 to 24 and 24 to 32).

Figure 2 shows a different publish/subscribe architecture where
publisher applications can publish messages to the broker network by
directly communicating with any one of a plurality of distribution agents

10

15

20

25

30

35

40

45

G 39074 4

(brokers) . For example, publisher application 201 is shown communicating
directly with Broker 12. There is no requirement in this architecture
that all publisher applications communicate directly with a top (or root)
distribution agent. Publisher application 201 can potentially
communicate directly with any of the distribution agents shown in Fig 2,
in the described examples below it will be shown communicating directly
with Broker 12. '

Subscriber applications 202 and 203 would like to receive messages
on the stream/topic that publisher application 201 is publishing on.
Thus, subscriber applications 202 and 203 communicate directly with
Brokers 1112 and 1221, respectively, to provide subscription data thereto
informing the broker hierarchy of their desire to receive such published
messages. Since the publisher application 201 is allowed to communicate
directly with any of a plurality of distribution agents, the subscription
data entered by the subscriber applications must be propagated throughout
the broker network to each Broker shown in Fig. 2. This way, no matter
which distribution agent the publisher application 201 happens to
communicate directly with, the published messages will be able to be
routed to the subscriber applications 202 and 203.

Such event notification system architectures, as described above,
can be used to notify interested parties (e.g., subscribers) of a wide
range of different events. For example, a systems management tool may be
interested in receiving information on commands which have been sent from
any command issuing application (e.g., a client) to any other command
receiving application (e.g., a server). This would allow the management
tool to determine what work has been requested but has not yet completed,
and thus to gain a good overall view of what is happening in a
distributed system such as a client/server system where a client process
is issuing commands to a server process.

One possible way in which this could be carried out will now be
described with reference to Fig. 3. In Fig. 3 systems management tool
301 subscribes to a stream called "command issuance" and thus receives
notification of events published to the publish/subscribe broker system
304 by command issuer application 302 (publish/subscribe broker system
304 can be configured either as in Fig.l or Fig. 2 or in any other known
architecture). That is, whenever command issuer application 302 sends a
command (along line with encircled numeral 1, these encircled numerals
indicate a time sequence) to command receiving application 303 (to ask
command receiving application 303 to do some work), command issuer
application 302 also publishes an event to the publish/subscribe broker
system 304 on stream "command issuance" (arrow with encircled numeral 2)
which is then sent (encircled numeral 3) to management tool 301 (which
had previously entered a subscription to stream "command issuance").

t0

15

20

25

30

35

40

45

0. 49074 5

Command receiving application 303 then performs the commanded work, and
when finished, publishes a message on stream "work completed" to the
broker system 303 (encircled numeral 4) which is then sent (encircled
numeral 5) to management tool 301 (which had previously entered a
subscription to stream “work completed"). Command receiving application
303 could, if appropriate, send a reply to command issuing application
302 to inform the latter that the reguested work has been completed.

In this way, the management tool 301 is kept updated not only of
when requested work has been completed but also of what work has been
requested but has not yet been completed. This provides a very complete
view of what is happening in the system to the management tool which can
then make decisions based on this information to thus improve the overall
quality of the system.

The above-described system has a number of inefficiencies, however,
that would prevent it from being very useful in a modern data processing
environment. Specifically, as described above the command issuer
application 302 must send out two different items of information to two
different parties: first, a command is sent to command receiving
application 303 and then an event is published on stream "command
issuance". There is a significant chance that the command issuer
application 302 might fail to publish the event or might publish the
wrong event. The required two different items of information also adds
significantly to the amount of coding involved at the command issuer
application 302 and further adds to the escalation of runtime costs for
the entire system.

The example given above in Fig. 3 has been given in the management
tool environment. However, the problem exists in any event notification
system where a command issuer application must, in addition to issuing a
command to a command receiving application, also produce an event to be
sent via the event notification system to interested parties.

Summary of the Invention

According to one aspect, the present invention provides

a data processing apparatus including a unit for determining that a
command is to be sent from a command issuing application to a command
receiving application; and a unit for forwarding an event to an event
notification system which in turn forwards the event to both the command
receiving application and a third data processing application; where the
command receiving application interprets the event as a command and the
third data processing application interprets the event as a notification
of command issuance.

10

15

20

25

30

35

40

45

U 49074 6

According to a second aspect, the present invention provides a data
processing method having method steps corresponding to the functionality
described above with respect to the first aspect.

According to a third aspect, the present invention provides a
computer readable storage medium having a computer program stored on it
which, when executed on a computer, carries out the functionality of data
processing method of the second aspect of the invention.

Thus, the present invention provides a highly efficient way to keep
a third data processing application informed of the status of commands
which are sent between a first data processing application which sends a
command and a second data processing apparatus which receives the
command. The amount of coding at the command issuing data processing
application is reduced since the command issuing application need only
publish a single message which is then forwarded via the
publish/subscribe broker system to both the command receiving application
and the third data processing application. Also due to the use of only a
single piece of data that needs to be sent, there is a greatly reduced
risk that the command sending application will send out data in error.
The runtime costs for the overall system are also reduced.

Brief Description of the Drawings

The invention will be better understood by referring to the
detailed description of the preferred embodiments which will now be
described in conjunction with the following drawing figures:

Figure 1 is a block diagram showing a first architecture of a
publish/subscribe data processing system to which the preferred
embodiment of the present invention can be advantageously applied;

Figure 2 is a block diagram showing a second architecture of a
publish/subscribe data processing system to which the preferred
embodiment of the present invention can be advantageously applied;

Fig. 3 is a block diagram showing a systems management tool used in
a publish/subscribe data processing system, according to an alternative
arrangement which is much less efficient than the preferred embodiment of
the present invention;

Fig. 4 is a block diagram showing a systems management tool used in
a publish/subscribe data processing system according to a preferred
embodiment of the present invention; and

10

15

20

25

30

35

40

45

i 29074 7

Fig. 5 is a flowchart showing the steps carried out within a
command issuing application in the block diagram of Fig. 4.

Detailed Description of the Preferred Embodiments

In Fig. 4, systems management tool 401 is provided for managing the
data processing system which is represented in Fig. 4 by command issuing
application 402 and command receiving application 403 (but would normally
have many other participants which are not directly involved in the below
discussion and are thus not illustrated in Fig. 4). 401, 402 and 403 are
applications which may be running on separate data processing machines
(in which case, a network, such as the Internet, is required to provide
communication between the machines) or may all be running on the same
machine. 401, 402 and 403 use a publish/subscribe system 404 (such as
that of Figs. 1 or 2) in order to communicate with each other, in the
preferred embodiment.

When command issuing application 402 determines (step 501 of Fig.
5) that a command is to be sent to command receiving application 403,
command issuing application 402 publishes (step 502) a message (encircled
numeral 1) to the publish/subscribe broker system 404 on a stream called
ncommand issuance". The broker system 404 then forwards on the published
message to both the command receiving application 403 and the systems
management tool 401 (see lines with encircled numeral 2), because both
the command receiving application 403 and the systems management tool 401
have previously registered subscriptions on stream "command issuance”
with the broker system 404.

Upon receiving the published message, the command receiving
application 403 interprets the message as a command and carries out the
work that has been requested in the command. Upon receiving the same
published message, the systems management tool 401 logs the message in
local memory for informational purposes, but does not interpret the
message as a command. That is, while the command receiving application
403 interprets the published message as a command, the management tool
401 interprets the same published message as a notification that a
command has been sent.

Once the command receiving application 403 is finished carrying out
the work instructed by the command, the command receiving application 403
publishes a message on stream swork completed" (encircled numeral 3) to
the broker system 404 which in turn forwards on the published message to
the systems management tool 401 (encircled numeral 4) since tool 401 had
previously registered a subscription to stream nwork completed" with the
broker system 404. When the tool 401 receives this message, the tool
logs the information in local storage and thus is informed that the

10

15

20

25

th 49074 8

command received along the line with encircled number 2 has now been
completely executed. Command issuing application 402 could also
subscribe to stream "work completed" and thus be informed that command
receiving application 403 has finished the work.

Because of the flexibility of the publish/subscribe broker system
404, it is, of course, possible that there could be multiple command
receiving applications 403 all of which receive the same command from a
command issuing application 402. Each command receiving application
would then subscribe to the stream "command issuance” in order to receive
the command, and each command receiving application would also publish to
the stream "work completed" to notify interested parties that the work
for that particular command receiving application is now done. Further,
there could also be multiple instances of the systems management tool
401, each of which would subscribe to the stream "work completed". Still
further, there could be multiple command issuing applications 402 each of
which publishes on the stream "command issuance".

Further, although the publish/subscribe broker system 404 is
illustrated in Fig. 4 as separate and distinct from the other three
applications 401, 402 and 403, the system 404 could be combined with any
of these other three applications 401, 402 and 403.

10

15

20

25

30

35

40

45

L 29074 9

CLAIMS

1. 2 data processing apparatus comprising:

means for determining that a command is to be sent from a command
issuing application to a command receiving application; and

means for forwarding an event to an event notification system which
in turn forwards the event to both the command receiving application and
a third data processing application;

wherein the command receiving application interprets the event as a
command and the third data processing application interprets the event as
a notification of command issuance.

2. The apparatus of claim 1 wherein:
the event notification system is a publish/subscribe system;

the command issuing application is a publisher; and

the command receiving application and third data processing
application are subscribers.

3. The apparatus of claim 1 wherein the third data processing
application is a systems management tool.

4. The apparatus of claim 2 wherein said publish/subscribe system
operates over the Internet and wherein at least one of the subscribers
and the publisher runs in conjunction with a World Wide Web browser.

5. A data processing method comprising steps of:

determining that a command is to be sent from a command issuing
application to a command receiving application; and

forwarding an event to an event notification system which in turn
forwards the event to both the command receiving application and a third
data processing application;

wherein the command receiving application interprets the event as a
command and the third data processing application interprets the event as
a notification of command issuance.

10

15

20

L 39074 10

6. The method of claim 5 wherein:
the event notification system is a publish/subscribe system;
the command issuing application is a publisher: and

the command receiving application and third data processing

application are subscribers.

7. The method of claim 5 wherein the third data processing application
is a systems management tool.

8. The method of claim 6 wherein said publish/subscribe system
operates over the Internet and wherein at least one of the subscribers
and the publisher runs in conjunction with a World Wide Web browser.

9. A computer program product stored on a computer readable storage
medium for, when run on a computer, instructing the computer to carry out
the method steps recited in claim 5.

‘1he v N,
Patent Y\, ¢

Ofth ons
C INVESTOR IN PEOPLE

Application No: GB 9921776.2 Examiner: Russell Maurice
Claims searched: ALL Date of search: 7 April 2000
Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.R): G4A (AUDB, AUXF, APX)
Int Cl (Ed.7): GOGF (9/46)
Other: Online WPI EPODOC PAJ TDB

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims

A GB 2336920 A IBM (see eg the abstract)
A US 5721825 A Lawson (see eg the abstract)

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on or afler the declared priority date butbefore the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

