
(19) United States
US 20050O21836A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0021836A1
Reed et al. (43) Pub. Date: Jan. 27, 2005

(54) SYSTEM AND METHOD FOR MESSAGE (52) U.S. Cl. .. 709/238; 709/204
PROCESSING AND ROUTING

(76) Inventors: Carl J. Reed, Hoboken, NJ (US); (57) ABSTRACT
Michael R. Marzo, Millington, NJ
(US); Tomozumi Kanayama, New
York, NY (US); Konstantin A.
Krasheninnikov, Union City, NJ (US);
Julien George Beguin, New York, NY
(US)

Correspondence Address:
John F. Letchford
Klehr, Harrison, Harvey, Branzburg & Ellers
260 South Broad Street
Philadelphia, PA 19102 (US)

(21) Appl. No.: 10/427,516

(22) Filed: May 1, 2003

Publication Classification

(51) Int. Cl." G06F 15/16; G06F 15/173

640-NRELAY
REQUEST

600

co
PRIMARY

PUBLISHER TOPC ROUTER
MESSAGE

TOPIC TOPIC 1
TOPIC 2 TOPIC 2'
TOPICN TOPICN

630 REPLAY
SERVER

A message routing System that allows applications at either
end of the system to run as-is without modification. The
System functions in a multithreaded environment and is
capable of handling complex routing rules and message
transformation. It is also capable of learning and executing
new routing rules and message transformations in formats
previously unrecognized by the System. The System enables
precise and reliable logging of messages throughout pro
cessing and Supports publication of enterprise-wide broad
cast messages. The System further preferably employs coop
erating inbound and outbound transport processes for
consuming, routing, processing, Safely storing and publish
ing messages in batches of logical units of work to ensure
that the logical units of work are not lost in System trans
actions. The System also preferably utilizes a replay Server
for preserving and replaying messages that might otherwise
fail to reach their intended destinations.

TOPIC

CONSUMER

TOPIC "

CONSUMER 2

t-TOPICN
CONSUMERN

TOPICN'

US 2005/0021836A1

OXXOI XHOÅ MEN

e02 1–2 || XHOÅ MEN0 || ||

Patent Application Publication Jan. 27, 2005 Sheet 1 of 13

US 2005/0021836A1 Patent Application Publication Jan. 27, 2005 Sheet 3 of 13

009

Patent Application Publication Jan. 27, 2005 Sheet 4 of 13 US 2005/0021836A1

410
400 414

412
INBOUND
MESSAGE ROUTER 1 OUTEOUND

(RULE 1) MESSAGE CONSUMER 1

NBOUND -400
MESSAGE

420 424

42
ROUTER 2 OUTEOUND
(RULE 2) SS CONSUMER 2

NBOUND - 400
MESSAGE

ROUTERN OUTEOUND
(RULEN) MESSAGE CONSUMERN

(Prior Art)

US 2005/0021836A1 Patent Application Publication Jan. 27, 2005 Sheet 5 of 13

?209

||SETTOEH Xylaeae JT079

US 2005/0021836A1

299
?

, ! OldOl | OldO|

| HEVNT SNOO
029

Patent Application Publication Jan. 27, 2005 Sheet 7 of 13

Patent Application Publication Jan. 27, 2005 Sheet 8 of 13 US 2005/0021836A1

700

702 -710
NBOUND CONSUME
MESSAGE MESSAGE

PERFORM
WORKON
MESSAGE

| 720
7141N r

PUBLISH OUTEOUND
MESSAGE MESSAGE

MESSAGE ID
730 N-1

S
DATABASE O

732

FIG. 7

Patent Application Publication Jan. 27, 2005 Sheet 9 of 13 US 2005/0021836A1

808
FILE SYSTEM

SAVESTORE FILE

WRITE FROM END
802

804
CONSUMER
PROCESS
FG. 9

CONSUMER
PROCESS

FIG. 10

START READ

810

DEDICATED
INBOUND
NODE

DEDICATED
OUTEOUND
NODE

FILE SYSTEM

(See above)

FIG. 8

Patent Application Publication Jan. 27, 2005 Sheet 10 of 13 US 2005/0021836A1

1. ETX COMSUMER DEDICATED THREAD CONSUMING ON TOPIC A
SOURCE
TOPICA

D BEGINDISTRIBUTEDTRANSACTION RESOURES-MESSAGEBUSRDBMS)
DEDICATED
NBOUND TERATEMSGS) DRIVENBYBATCHSIZEITIMEOUTI SAVESTORE FILESIZE
NODE

EXT NODE

2. ROUTINGAGENT 3. SAVE STORE
800 BUILD OUTBOUNDMSGSIENDPOINTS PERSIST OUTBOUNDMSGSIENDPOINTS

ITERATE (MSGHANDLERS) ITERATE (ENDPOINTS t
ENDPOINT TRANSFORMATIONSYIN) WRITE OUTBOUND

MESSAGESUPDATE
EXECUTEMSG HANDLER END OFFSET

-EXCUTEPRE TRANSFORMATIONYIN IDENTIFYENDPOINT
.EXTRACTMSGKEYSAUTOICUSTOM)
-KEYMAPPINGLOOKUPYIN) TRANSPORT
-POST TRANSFORMATIONYIN)

CREATE UNIQUESAVESTORESFOR
. ACORE OUBOUNDENDPINIS SOURCE ENDPOINT, TRANSPORTP*

4. COMMIT DISTRIBUTEDTRANSACTION (MESSAGE BATCH. SAVESTORE END OFFSETS)

DATABASE

INDEX
SAVESTORE FILES AETXTMSTAMP

TT)
SAVESTORE REFERENCES
START OFFSET END OFFSETS

FIG. 9

Patent Application Publication Jan. 27, 2005 Sheet 11 of 13 US 2005/0021836A1

1. ETX PUBLISHER: DEDICATED THREAD TO READ SAVESTORE FILES

2. START SAVESTORE FILE ACCESS

- RETRIEVE FIRSTUNPUBLISHED SAVESTORE FILE WITHSTARTIEND OFFSETS
-PROVIDECBTOUPDATE LOCAL START OFFSETUPPER BOUND) r
-MAINTAINSTART OFFSET PERSISTENCE

|
3. OPENSAVESTORE FILE

-SEEKSTART OFFSET

BEGINTRANSACTION
BATCHPUBLISHFROMSAVESTORE BATCHSIZE, START-END OFFSET, EOF
OPEN OUTBOUND TOPICS ON DEMAND

TOPICB

810
TOPCON DEDICATED

INBOUND NODE
EXT NODE

812
DATABASE

SAVESTORE FILES SAVESTORE REFERENCES
START OFFSETEND OFFSETS

FIG 10

US 2005/0021836A1

vm

H

CD

f

STV/NH TOTXLE ‘SECIWEL 'Z-

\

Patent Application Publication Jan. 27, 2005 Sheet 12 of 13

US 2005/0021836A1

HETC]NWH E5DWSSEWN

Patent Application Publication Jan. 27, 2005 Sheet 13 of 13

US 2005/0021836A1

SYSTEMAND METHOD FOR MESSAGE
PROCESSING AND ROUTING

FIELD OF THE INVENTION

0001. The present invention relates to a messaging sys
tem and method for processing and routing messages in a
computer network environment.

BACKGROUND OF THE INVENTION

0002. In a computing environment where large amounts
of data are moved between various locations, for example in
connection with Stock trading, it is desirable to move the
data as efficiently as possible. One early method for doing
So, as illustrated in FIG. 1, was to transfer the data from a
main data source 100 as a whole data file 102 via File
Transfer Protocol (FTP) to routers 110, 112, 114 located in
different areas where the data would need to be distributed.
(The geographic locations noted in FIG. 1 are for illustrative
purposes only, to show how widely dispersed the data
destinations may be.)
0003) Each of the routers 110, 112, 114 contains a local
network file server that parses the data file 102 and generates
a plurality of smaller data files 116, which are distributed to
local destinations 120a, 120b, 122a, 122b, 124a, 124b. The
number of local destinations shown in FIG. 1 can be any
number of destinations that need to access data from the file
102.

0004. There are two major disadvantages to the arrange
ment shown in FIG. 1. First, the data is not sent in real time,
leading to an undesired delay in processing the data. Second,
the entire data file 102 had to be sent to multiple locations
110, 112, 114 in order to be distributed to the ultimate
destinations 120a-124b, resulting in large amounts of unnec
essary computer network traffic. Because of these disadvan
tages, the data file 102 was actually parsed and divided
multiple times, as opposed to as few as once, thereby
creating a process that was inefficient, processor intensive,
and not in real time.

0005. In a setting like stock trading, access to data in real
time is critical in order to be able to make the best possible
trades at a given point in time. In an effort to overcome the
inefficiencies using an FTP-based data transfer, a similar
arrangement was used on top of a messaging platform which
could distribute the data in real time, as shown in FIG. 2.
0006 Modern computer networks are rarely homoge
neously constructed; they are often a collection of old and
new Systems from a variety of Vendors and operate on a
variety of platforms. Across an enterprise, it is critical that
the disparate parts of a computer network communicate with
each other in some form. One solution to this problem is to
utilize a messaging platform that runs acroSS Various SyS
tems while providing a common message format. A common
messaging platform typically involves a publish-Subscribe
metaphor, in which information is published to a particular
Subject or topic, and any party interested in receiving that
information Subscribes to that Subject (this may also be
referred to as consuming off a particular Subject). In this
environment, a consumer only receives information that is
of interest; any other, non-relevant information is not pub
lished to the Subject. Examples of Such a messaging platform
include ETX from TIBCO Software, Inc. and as MO Series
from International Business Machines Corporation.

Jan. 27, 2005

0007 To route the data to its final destination, it must be
published to a subject that the destination subscribes to.
Since there is Some overhead in terms of time in determining
the proper Subject on which to publish a message, a message
can be published to a "general” Subject and the Specific
Subject of the message can be determined thereafter. One
Solution to this problem is to use a router to examine the
message and to determine the Specific topic on which the
message should be published.
0008. As shown in FIG. 2, a data source 200 publishes
messageS 202, all of which are consumed by a general data
router (GDR) 210. The router 210 parses the messages 202
and publishes the parsed messages on new Subjects 212,
214, 216, which are destined for second-level routers 220,
222, 224, respectively. The second-level routers 220, 222,
224 examine the message a Second time, and republish the
message on a specific Subject 226 for a particular end
destination 230a, 230b, 232a, 232b, 234a, 234b.
0009. The router 210 parses a message 202 by examining
the contents of the message 202, evaluating a particular key
contained within the message 202, and based upon the value
of the key, determines the proper Second-level router 220,
222, 224 to which it should publish the message 202. The
Second-level routerS 220, 222, 224 examine the message in
the same manner as the router 210, but with a finer level of
granularity, in order to determine the Specific destination
230a-234b for the message. Simply stated, the message 202,
when published, does not have a destination address asso
ciated with it, but that address can be built dynamically by
the routers 210 and 220, 222, or 224, by looking up what is
in the message 202, building the address for the message
202, and publishing the message 202 to its final destination
230a-234b.

0010. One of the goals in using a messaging platform and
the multiple routerS is to extract Some of the complexity
from both the publisher and the consumer and placing that
logic into a centralized layer, Such that it is essentially
considered by both end publishers and end consumers to be
part of the messaging platform. This is one of the focus
points of enterprise application integration (EAI), making it
easier for disparate Systems to communicate with one
another. By placing the routing logic in a centralized loca
tion, the administration of the logic is simplified, Since only
one location needs to be updated when changes are made.
0011. In order to simplify what a particular second-level
router 220, 222, 224 needs to understand, it can be specified
what is unique about an instance of the application that can
be found in the message. But there is still the problem, from
the publisher's (200) perspective, of how to identify which
specific destination 230a-234b to send the message. In a
publish-subscribe environment, this problem is solved by
publishing to a Subject Subscribed to by the Specific desti
nation. If the router 210 was not present, each of the
Second-level routers 220, 222, 224 would need to discard
any messages that were not intended for them; this would
merely replicate one of the disadvantages of using FTP as
noted above, but in connection with a messaging platform.
The router 210 helps to reduce the amount of unnecessary
data traffic by reducing the number of messages that need to
be sent. Ideally, no message is duplicated, nor is a message
Sent to more than one location.

0012 One disadvantage of this use of the messaging
platform is that there are multiple instances of routers

US 2005/0021836A1

operating at the same time, which creates management
issueS of having to coordinate Several pieces of Software.
While the routers are executing the same code base, each
router is applying different routing rules, depending upon the
router's location in the message flowpath. Furthermore, each
router is only able to apply one routing rule. To apply
multiple routing rules to one message, multiple routers need
to be arranged in Sequence, necessarily creating a compli
cated network design. The design shown in FIG. 2 is also a
Single thread of execution, which limits the throughput of
the routing System to about 35 messages per Second (assum
ing an average message size of two kilobytes). In the
example noted above of a large Stock trading System, a
real-time flow of data easily exceeds 35 messages per
Second.

0013. It is desirable to create a routing system that
utilizes a Single application to execute multiple routing rules
on a single message, that is multithreaded in order to
increase the throughput of the System, and is messaging
platform agnostic Such that disparate messaging platforms
can be used on either side of a publish-Subscribe or a
point-to-point transaction.

0.014 FIG. 3 shows how a single router of the prior art
operates while processing a message. A router 300 accepts
an inbound message 302, processes the inbound message
302 and outputs an outbound message 304. The contents of
the inbound message 302 and the outbound message 304 are
going to be identical. The goal of the router 300 is to
examine the contents of the inbound message 302, which is
published to a general Subject, and from those contents
determine the Specific Subject on which the outbound mes
sage 304 should be published for consumption by the
ultimate recipient of the outbound message 304.

0.015 The inbound message 302 is first examined at
block 310, where an introspection module is called. The
particular introspection module to be called is dependent
upon the subject of the inbound message 302 and is retrieved
from an introspection module library 312. An introspection
module (a/k/a key extraction routine) is a customized routine
that complies with a particular interface. It can be loaded
dynamically according to a configuration of a particular
routing instance and it contains the logic for examining a
Specific type of message. This code will read the inbound
message 302 and extract the information needed to deter
mine how to route the message 302 to the proper specific
Subject, namely a routing key. The information to be
extracted and used as the routing key is defined in the
introspection module, which is why a different introspection
module is required for each different routing rule to be
applied. For example, in the Stock trade example, the
account number associated with the trade can be used as the
routing key.

0016. At block 320, the routing key is extracted from the
inbound message 302 and the value of the routing key is
evaluated. This value is matched against a key map table 322
to determine the routing tag or target for the inbound
message 302. The keymap table 322 is a two column table
that lists the values of the routing key in one column and the
matching routing tags for those values in another column.
Because the router 300 can only operate on one routing rule,
the keymap table 322 will be the same for all inbound
messages 302. The data in the key map table 322 can be

Jan. 27, 2005

cached locally within the router 300 for rapid access to the
data. During the initialization of the router 300, the keymap
table 322 is loaded into the router's memory from an
external routing information database 324.
0017. Once the routing tag of the inbound message 302
has been identified, at block 330, the routing tag is used to
access an outbound routing table 332 to identify the out
bound subject for the inbound message 302. The outbound
routing table 332 is a two column table that lists the values
of the routing tag in one column and the outbound Subjects
for those values in another column. AS with the key map
table 322, the outbound routing table 332 can be cached in
local memory during the initialization of the router 300 by
loading the outbound routing table 322 from the routing
information database 324. In block 340, the inbound mes
sage 302 is published to the new subject as outbound
message 304.

0018 FIG. 4 shows how the prior art applied multiple
routing rules to a single inbound message 400. Because each
router of the prior art was only capable of applying a single
rule, it was necessary to String multiple routers together to
be able to apply multiple rules to a single message. (The
concept of multiple routing rules will be discussed below in
connection with FIG. 5.) As shown in FIG. 4, an inbound
message 400 is examined by a first router 410, which applies
a first rule to the inbound message 400 and then, if the
inbound message 400 meets the criteria of the first rule,
publishes the inbound message 400 as an outbound message
412 for a first consumer 414. The inbound message 400 is
then passed to a Second router 420, which applies a Second
rule to the inbound message 400 and then, if the inbound
message meets the criteria of the Second rule, publishes the
inbound message 400 as an outbound message 422 for a
Second consumer 424, and So on.

0019. Some solutions to the general problems posed by
the complexities of enterprise application integration have
been proposed by various U.S. patents. For example, U.S.
Pat. No. 6,256,676 to Taylor et al. relates to a system for
integrating a plurality of computer applications, including an
adapter configured for each of the applications, the adapter
controlling the communication to and from the associated
application. The System of Taylor et al. permits communi
cation across a variety of different messaging modes, includ
ing point-to-point, publish-Subscribe, and request-reply
messaging, utilizing message definitions for each type of
object to be passed through the System. A number of
different types of adapters are required for each application,
and for each message definition. While the architecture of
this System permits flexibility in System construction, it
requires a Significant amount of work by the user to properly
construct the System. This System adapts to the applications
to be connected, rather than requiring the applications to
adapt themselves to the System.

0020 U.S. Pat. No. 5,680,551 to Martino, II describes a
System for connecting distributed applications acroSS a vari
ety of computing platforms and transport facilities. To
implement this System, it is necessary to modify each of the
applications to be connected to include the basic operating
core (i.e., the application programming interface) of the
System. This System does not Support a publish-Subscribe
messaging platform, and any application desiring to receive
messages must actively Seek out new messages. In order to

US 2005/0021836A1

use this System, a messaging user interface to each appli
cation is designed, then the messaging System is integrated
into each application to be connected, and finally the System
is configured and tested. Following these steps for each
application to be connected is both labor-intensive and
time-intensive.

0021. In regard to content processing and routing, U.S.
Pat. No. 6,216,173 to Jones et al. discloses a method and
apparatus for incorporating Such intelligence into networkS.
The System of Jones et al. associates attributes with each
Service request which allows the System to obtain knowl
edge about the content and requirements of the request.
Using this knowledge, along with knowledge of the avail
able Services, the System can route the request to a Suitable
Service for processing. This System also permits communi
cation acroSS disparate networks, by converting the data for
transmission acroSS each type of network. The conversion
proceSS occurs while the data is being Sent from, for
example, Node A to Node C. An intermediate Stop is made
at Node B to convert the data from the format at Node A to
the format at Node C. The data conversion occurs during the
routing process, not once routing is completed.
0022 While these patents address various problems
existing in the prior art, none contemplate use of a single
application to handle all of the routing, allowing the appli
cations at either end of a publish-Subscribe or a point-to
point messaging System to run as-is without modification,
and to run in any messaging environment regardless of the
specifics of the messaging platform (i.e., to be messaging
System agnostic).

SUMMARY OF THE INVENTION

0023 The present invention provides an efficient routing
System and method that runs in any publish-Subscribe or
point-to-point messaging environment regardless of the Spe
cifics of the messaging platform and that allows applications
at either end of the routing System to run as-is without
modification. The System functions in a multithreaded envi
ronment and is capable of handling complex routing rules
and message transformation. It is also capable of learning
and executing new routing rules and message transforma
tions that may be required by new users of the System whose
message consumption requirements may be in formats pre
viously unrecognized by the System. The System enables
precise and reliable logging of messages throughout pro
cessing and Supports publication of enterprise-wide broad
cast messages. The System further preferably employs coop
erating inbound and outbound transport processes for
consuming, routing, processing, Safely storing and publish
ing messages in batches of logical units of work to ensure
that the logical units of work are not lost in System trans
actions. The System also preferably utilizes a replay Server
for preserving and replaying messages that might otherwise
fail to reach their intended destinations because of router or
application error or failure.

BRIEF DESCRIPTION OF THE DRAWINGS

0024. For a better understanding of the present invention,
reference is made to the following detailed description of an
exemplary embodiment considered in conjunction with the
accompanying drawings, in which:
0.025 FIG. 1 is a diagram showing a prior art data
transfer system operating under File Transfer Protocol;

Jan. 27, 2005

0026 FIG. 2 is a diagram showing a prior art data
transfer System operating as a Single-threaded application on
a messaging platform;

0027 FIG. 3 is a flow diagram of a prior art router,
showing how the router processes a message;

0028 FIG. 4 is a block diagram showing how the prior
art applied multiple routing rules to a Single message;

0029 FIG. 5 is a flow diagram of a routing system
constructed in accordance with the present invention;

0030 FIG. 6A is a diagram of a first embodiment of a
message replay Scheme of the routing System according to
the present invention;

0031 FIG. 6B is a diagram of a further embodiment of
a message replay Scheme of the routing System according to
the present invention;

0032 FIG. 7 is a diagram of a first embodiment of a
message transaction management Scheme of the routing
System according to the present invention;

0033 FIG. 8 is a diagram of a further embodiment of a
message transaction management Scheme of the routing
System according to the present invention;

0034 FIG. 9 is a diagram of a first portion of the further
embodiment of a message transaction management Scheme
of FIG. 8, in particular, a preferred multithreaded process
for each inbound transport capable of running a consuming
thread for each inbound topic/queue;

0035 FIG. 10 is a diagram of a second portion of the
further embodiment of a message transaction management
scheme of FIG. 8, in particular, a preferred multithreaded
process for each outbound transport capable of running a
publishing thread for each Source topic/queue,

0036 FIG. 11 is a simplified schematic diagram depict
ing the manner by which the routing System according to the
present invention achieves fully Scalable multithreaded,
multi-topic message consumption, processing and publica
tion; and

0037 FIG. 12 is an overview of the message routing and
transformation functions of the of the routing System accord
ing to the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0038) Referring now to FIG. 5, the routing system of the
present invention comprises a router 500 that accepts or
consumes an inbound message 502, processes the inbound
message 502 and outputs one or more outbound messages
504. The router 500 examines the contents of the inbound
message 502, which is published to a general Subject, and
from those contents determines the specific Subject(s) on
which the outbound message(s) 504 should be published for
consumption by the ultimate recipient(s) of the outbound
message(s) 504. Although described herein as it might be
used in connection in a publish-Subscribe messaging envi
ronment, the routing System and method of the present
invention also finds beneficial application in a point-to-point
messaging environment.

US 2005/0021836A1

0039) Multithreaded Execution
0040. The router 500 preferably operates in a multi
threaded environment. For a router to be able to operate as
a multithreaded application, the underlying messaging plat
form must also be multithreaded. In the prior art, as dis
cussed above in connection with FIG. 3, the messaging
platform was operating on only a single thread of execution.
In Such circumstances, in order to achieve a higher through
put of messages, it was necessary to instantiate a plurality of
routers, each running as a separate application, i.e., thread
ing by instance. However, as the number of instances of the
router application concurrently executing increases, the
overhead associated with managing all of those instances
becomes complicated, and ultimately, the performance of
the overall system will suffer due to the excessive overhead.
0041. It would be preferable to thread the router in a
multithreaded architecture, whereby multiple threads would
be operating in the same process Space, lowering the over
head required to manage multiple concurrently executing
threads. The messaging platform on which the present
invention executes should be a multithreaded and at least the
client library of the messaging platform multithread-Safe.
But, having a multithreaded architecture does not necessar
ily mean that the System cannot be also threaded by instance
to increase the overall throughput.
0042. The router 500 may operate, for example, on an
ETX 3.2 or other ETX messaging platform from Tibco
Software. However, at this juncture it should be made clear
that while the present invention is described in connection
with an ETX messaging platform it may also find beneficial
use with other multithreaded messaging platforms as well,
including, without limitation, the IBM MQ Series messag
ing platform. Indeed, as will be described in greater detail
later herein, the present System is capable of accommodating
messages that are published and consumed by disparate
messaging platforms.

0.043 Continuing, when the client library of a messaging
platform (the actual portion that communicates with a bro
ker/node) reaches maximum throughput capacity of
approximately ten threads, the performance of the router
eventually begins to slow down due to the thread manage
ment overhead. When Such a condition is reached, it may be
necessary to create another instance of the router 500 in
order to handle the message traffic. Once the new instance of
the router 500 is created, the message traffic can be distrib
uted between the multiple instances of router 500 to maxi
mize the throughput of all of the instances presently running.
0044) The maximum throughput of an ETX node is
approximately 200 messages per second (again, assuming an
average message size of two kilobytes). When that threshold
is reached, it would be necessary to have more than one
node/broker running. On the other hand, if maximum
throughput of a routing instance has been reached, e.g.,
multiple nodes operating at or near capacity on a Single
routing instance, it would be necessary to instantiate addi
tional instances of the router. In this manner, layers of
transport brokerS/nodes and routing instances can be added
to reach a desired performance quota, which is then only
limited by physical limitations Such as machine, hardware,
or network bottlenecks that cannot be circumvented without
buying new equipment. In a preferred embodiment, the
desired throughput for the System is approximately 150

Jan. 27, 2005

messages per Second (again, assuming an average message
size of two kilobytes), which should sufficiently perform on
one ETX node.

0045 An additional problem encountered when dealing
with a Singly-threaded router is that each instance of that
router operates in the same manner. By definition, this is
what would occur if multiple instances of the same appli
cation were used; each instance would be expected to
operate in the Same manner. The key issue with that is, apart
from the fact that there are Several different application
processes to manage, that all of the proceSS are essentially
performing the same operations. Each process is potentially
caching the same routing data and each process is, again by
definition, applying the same busineSS logic for routing
messages. This becomes problematic when the user wants to
change an aspect of the routing, because there are Several
processes that need to be changed in order to do So.
0046) The real difficulty arises in coordinating those
changes acroSS all of the different processes, because all of
the processes need to be in a consistent State at all times to
avoid an error condition. In other words, if a message is in
the middle of being processed and the router that is per
forming the processing is updated, a routing error may
occur. Because multiple applications may be involved and/
or dependent upon a Single message being processed in a
particular way, it is necessary to ensure that all of the
applications relying on that message operate in a consistent
manner. Attempting to coordinate Several disparate applica
tions can be difficult on its own because there needs to be
Some Sort of management protocol involved in the commu
nication between the applications. Even though each differ
ent process Space is executing the same application, there is
nothing that binds those proceSS spaces together.

0047. By utilizing a multithreaded architecture, the
method of making changes to the System is simplified by
having only one location where the changes need to be
made, and those changes can be propagated to the other
threads of execution. Furthermore, the overall System archi
tecture is neater in the context of managing multiple
instances of the Same routing logic, and perhaps more
importantly, not having to manage multiple instances of the
routing data. For example, if there is a large cache associated
with the routing logic in each instance of the router, the
cache would need to be instantiated the Same number of
times as there are routers, because each router would be
operating in a separate process Space. However, if the router
were multithreaded, the cache would only need to be instan
tiated once for each router, thereby minimizing the overhead
asSociated with managing multiple instances of the cache.

0048 Referring back to FIG. 5, the inbound message 502
is first examined at block 510, where an introspection
module or key extraction routine is called. The particular
introspection module to be called is dependent upon the
Source of the inbound message 502 and is retrieved from an
introspection module library 512 and dynamically loaded
based upon the routing configuration of a particular routing
instance. AS mentioned previously, an introspection module
is a is a customized routine that contains the logic for
handling a specific type of message. This code will read a
message and extract the information needed to determine
how to route the inbound message 502 to the proper specific
subject, namely a routing key. When the router 500 is

US 2005/0021836A1

applying multiple routing rules to a single inbound message
502, different key extraction routines might be evoked
multiple times in Sequence. The implementation of how the
router 500 handles multiple routing rules will be discussed
in greater detail below.
0049. At block 520, a routing key is extracted from the
inbound message 502, and the value of the routing key is
evaluated. This value is matched against a key map table 522
to determine a routing tag for the inbound message 502. The
keymap table 522 is a two column table that lists the values
of the routing key in one column and the matching routing
tags for those values in another column. The data in the
keymap table 522 is cached locally within the router 500 for
rapid access to the data. When the introspection module is
loaded from the introspection module library 512, the key
map table 522 is loaded into the memory of the router 500
from an external routing information database 524.
0050. Once a routing tag for the inbound message 502
has been identified, at block 530, the routing tag is evaluated
at block 540 to determine whether the routing tag is bound
to a publication/outbound subject, another rule or both. If the
tag is bound to a subject, then control is passed to block 550,
where the Subject is used to access an outbound routing table
552 to identify the outbound subject for the inbound mes
sage 502. The outbound routing table 552 is a two column
table that lists the values of the routing tag in one column
and the outbound Subjects for those values in another
column. As with the key map table 522, the outbound routing
table 552 is cached in local memory when the introspection
module is loaded from the introspection module library 512
by loading the outbound routing table 552 from the routing
information database 524. Once the outbound subject has
been retrieved at block 550, the inbound message 502 is
published to the new subject as an outbound message 504.
0051) If the routing tag evaluated at block 540 is not a
Subject, it must be another routing rule to be applied to the
inbound message 502. Control is then passed back to block
520, where the inbound message is evaluated against the
next rule in a similar manner as previously described. It is
through this type of evaluation mechanism that multiple
routing rules can be applied to a single inbound message
502, and thereby produce one or more outbound messages
504. The process from block 520 through block 540 is
repeated for each routing rule that is contained in the
introspection module. The router 500 is designed to be
flexible, in that an end user of the router 500 has great
latitude in configuring how the routing rules operate and
how they are applied. Cascading routing of this Sort over
comes the problem of the prior art, which would have
required the use of multiple routers to apply multiple rules
to a Single message.
0.052 It is possible to build additional functionality into
the router 500 that would permit the router 500 to automati
cally extract the necessary routing keys from the inbound
message 502. For instance, an inbound message 502 could
be in a pre-defined format supported by router 500. Thus, an
introspection module for that pre-defined format would not
be necessary, since the router 500 would have the logic
built-in to be able to parse that type of inbound message 502.
In these circumstances, a publisher of a message in the
pre-defined format would need to provide the routing tags
used within the message format to represent the key values
for that publisher's messages.

Jan. 27, 2005

0053. The router of the present invention assumes that the
System designer has architected the enterprise network in
Such a way as to make the best use of the router and the
system bandwidth. While the router has sufficient intelli
gence to route messages to various destinations, it cannot
determine if there is a more efficient method of doing so. The
router is reinforcing an underlying premise in the content
based routing arena, which is that a publisher does not Send
any information that is not required to any one consumer. So
a publisher wants to be completely abstracted from who the
consumers are, but a consumer does not want to have to
throw away messages that it is not interested in.

0054 The consumer only wants to receive messages that
are of interest to it, without having to worry about any other
messages. By definition, this means that when a message is
published to a particular Subject, that message is of complete
interest to a consumer of that Subject. Therefore, it is
imperative upon the System architect to properly design the
System to make the most efficient use of the available
bandwidth. The router is completely agnostic to the archi
tecture, in that it will function in the same manner regardless
of the system it is utilized in.

0055 From a general perspective, it is desirable to place
the message routing as close to the publisher and as far from
the consumer as possible. In Such circumstances, message
introspection becomes important, because a message can be
initially published to a general Subject, and then after the
introspection occurs, can be published to the Specific Subject
desired by a consumer. The driving concept behind placing
the routing logic close to the publisher is to dispatch the
message to its final destination as quickly as possible,
thereby maximizing the efficiency of the overall network.
The fewer times a Single message is published to Somewhere
that is not its final destination, the less network traffic there
is, and therefore, the network becomes more efficient.

0056 Routing Example

0057 The following example illustrates how the router of
the present invention handles complex routing rules. In this
example, the consuming topic is called US AUTOMO
BILES, and all messages in this topic are formatted using
Extensible Markup Language (XML). The content of each
message describes different makes, models, and character
istics of Some common U.S.-produced automobiles and
light trucks. The content of the messages shown in Table 1
below is provided to show the flexibility of the router of the
present invention, and in no way reflects the actual attributes
of any vehicle produced.

TABLE 1.

Sample Messages.

Inbound
Message
Sequence Message Content

1. <msgClass>cars<makes chevrolet-style>sportUtility
<modelsblazer-colors blue <driveTrains 4wd-engines V6 . . .

2 <msgClass>cars<makes chevrolet-style>sportUtility
<modelsblazer-colors red-driveTrains 2wd-engines V6 . . .

3 <msgClass>cars<makes dodge<style>sportUtility
<models durango.<colors red-driveTrains 4wd-engines V8 . . .

US 2005/0021836A1

TABLE 1-continued

Sample Messages.

>1500<colors silver<driveTrains 4wd-engines V6 . . .
ass>cars<makes chevrolet <style>roadster
>corvette<coloregreen<driveTrain-2wd-engines

11 <msg

Inbound
Message
Sequence Message Content

4 <msgClass>cars<makes dodge<style>sportUtility
<models durango.<coloregreen<driveTrain-2wd<engines
V6 . . .

5 <msgClass>cars<makesford<style>sport Utility
<models explorer-color-blue <driveTrains 2wd-engines
V6 . . .

6 <msgClass>cars<makesford<style>sportUtility
<models explorer-coloregreen<driveTrains 4wd-engines
V8 . . .

7 <msgClass>cars<makesford<style>pickup
<modelsf250<colors red-driveTrains 4wd-engines V8 . . .

8 <msgClass>cars<makes dodge<style>roadster
<modelsviper.<colors blue <driveTrains 2wd-engines V10 . . .

9 <msgClass>cars<makes chevrolet-style>gt
<modelsz28<colors white<driveTrains 2wd-engines V8 . . .

1O <msgClass>cars<makes chevrolet-style>pickup
e

C
e

0.058 Table 2 below depicts the various routing scenarios
in this example that are to be applied to the messages shown
above in Table 1.

TABLE 2

Routing Scenarios.

Number Scenario

Destination. A wants V8 powered vehicles
Destination B wants pickups with 4wd
Destination C wants gt cars and roadsters
Destination D wants green sport utility vehicles
with 4wd and V8 engines
Destination E wants red vehicles with 2wd 5

0059 Based upon the routing scenarios shown in Table 2,
the following table shows the routing rules that exist in the
router to be able to Satisfy each Scenario.

TABLE 3

Routing Rules.

Engine Style DriveTrain Color
Destination tag tag tag tag

A. V8
B pickup 4wd
C gt OR

roadster
D V8 Sport 4wd green

Utility
E 2wd red

0060. When applying each of the rules, all of the condi
tions specified by the rule must be satisfied in order for a
message to be sent to a particular destination. This is an
example of nested routing. Applying these rules to the
inbound messages shown in Table 1 leads to the following
results.

Jan. 27, 2005

TABLE 4

Routing Results.

Destination Messages Received

1 1.

0061. When each rule shown in Table 3 is applied to a
message in Table 1, the message is evaluated on a tag-by-tag
basis to determine if there is a match. When the rules are
nested (AS they are for all destinations except Destination
A), all of the conditions specified by the rule must be met in
order for a message to be published to the destination. AS
shown in Table 4, it is possible for the same message to be
published to multiple destinations (i.e., Messages 6, 7, 9, and
11) and it is also possible that Some messages may not be
published at all (i.e., Messages 1, 4, and 5).
0062 Message Replay

0063 Large national and international businesses may
publish and consume millions of electronic messages per
day. In many businesses (such as, for example, brokerages
involved in electronic financial and equities transactions), it
is imperative that the transactions be processed on a first-in,
first-out (FIFO) basis. According to a preferred embodiment,
the routing System according to the present invention can
provide Such FIFO transaction processing. AS reflected in
FIGS. 6A and 6B, this can be done in two ways.

0064 FIGS. 6A and 6B show overviews of preferred
embodiments of message replay procedures that may be
executed by the routing System according to the invention.
As seen in each if those figures, at least one publisher 600
publishes “primary topic' messages 602 to a router 610. The
router 610 processes the messages 602 and publishes the
messages to a first topic (Topic 1), a Second topic (Topic 2),
up to an Nth topic (Topic N), the total number of topics
being flexible, as in any messaging System. The topics are
subscribed to by a first consumer 620, a second consumer
622, up an Nth consumer 624, with the total number of
consumers also being flexible. It will be understood that
there may not necessarily be a one-to-one correspondence
between topics and consumers, although it is illustrated
herein as Such for simplicity of illustration and description.
As used herein, the terms “consumer(s)" and “subscriber(s)"
are interchangeable and refer to the destinations to which
outbound messages are published by the routing System of
the present invention.

0065. The system illustrated in FIGS. 6A and 6B addi
tionally includes a replay server 630. The replay server is a
“Super consumer that acts as a Source of data capture. It
receives and Stores all “primary topic' messages on Topic 1,
Topic 2, ..., Topic N that are published by the router 610
and it may be prompted from time-to-time to replay certain
ones of those messages. Thus, if Something happens down
stream between the router 610 and a consumer 620, 622
and/or 624 that causes message delivery problems (for
example, if the routing logic is flawed or if another appli
cation drops messages), the System according to the inven

US 2005/0021836A1

tion enables the lost messages to be recovered and redeliv
ered to their proper destinations Such that the recovered or
“recovery topic' messages can be processed in FIFO fashion
by their intended consumers. As depicted in FIGS. 6A and
6B, the recovery topic messages are preferably encoded by
either the router 610 or the replay server 630 in such a way
that interested consumer(s) recognize them as recovery topic
messages rather than as original publications of primary
topic messages. This encoding is reflected in FIGS. 6A and
6B by the addition of a prime symbol () to the primary
topics Topic 1, Topic 2, . . . , Topic N, i.e., recovery topic
messages comprise the messages on Topic 1, Topic 2", . . .
, Topic N'.
0.066. It is important to note that in addition to allowing
a user of the System to get messages re-published to it, the
replay Server 630 actually Strips certain metadata tags,
defined by the user, from the messages. This metadata is
Stored in the replay database as columnar data along with an
image column that represents the message. This allows the
users to make So called "Smart’ queries against a replay
graphical user interface (“GUI”) to determine what part
(Subset) of a message flow they want to be re-sent.
0067. A first message recovery scenario is shown in FIG.
6A and may be generally referred to as “router recovery.” As
described below, router recovery might be deployed on a
large Scale to recover large amounts of data that might be
lost because of harm to the communications infrastructure of
a business unit of a distributed enterprise. Alternatively,
when a consumer is an end user application, router recovery
might also be used to recover on all topics Subscribed to by
that application. As depicted in FIG. 6A, when router
recovery is desired, a consumer 620, 622 and/or 624 sends
a replay request 640 to router 610. Once that request is made
the replay Server 630 picks up the user request and the data
from the replay data Store and republishes the data on the
desired recovery topic through the router 610. In order to
consume the desired messages republished through router
610, the user Switches off consumption on the topic from the
router (i.e., Switches off consumption of primary topic
messages) while Switching on consumption on the topic
being published by replay server through the router (i.e.,
Switches on consumption of recovery topic messages) until
the queue of desired messages is drained from the replay
Server. After having consumed the desired recovery topic
messages from the recovery server 630 through router 610,
the consumer Switches back to router consumption on the
primary topic and consumes from the router as it did prior
to the recovery request. It will be understood that while a
consumer is requesting and consuming recovery topic mes
Sages, the router otherwise continues to process primary
topic messages in the order that they were published by a
publisher or publishers 600. This methodology allows a
preservation of FIFO ordering.

0068. As far as router 610 is concerned, replay is simply
an injection point. That is, the router can publish multiple
targets. From the router's perspective, replay is simply
another target (although replay has a dedicated adapter in the
routing infrastructure that allows direct Java database con
nectivity ("JDBC) injection of message images and meta
data So that the two are very tightly linked). Simply stated,
the user requests re-transmission, either full or partial based
on the replay GUI while the router facilitates the replay data
injection.

Jan. 27, 2005

0069. A second message recovery scenario is shown in
FIG. 6B and may be generally referred to as “replay server
recovery.” In replay Server recovery, an application instance
of a consumer 620, 622 and/or 624 submits a replay request
640 directly to the replay server 630 requesting messages on
a recovery topic. The requesting consumer application
instance is then Switched to listen for messages from the
replay server 630 on the desired recovery topic Topic 1",
Topic 2", . . . , Topic N'. During this time the requesting
consumer(s) do not consume primary topic messages on
primary topics Topic 1, Topic 2, ..., Topic N published by
the router 610. When the requesting consumer(s) consume
the recovery topic messages requested from the replay
Server 630, the application instance of the requesting con
Sumer(s) is Switched to primary topic mode whereby it again
listens for messages published by the router 610 on the
desired primary topic. Replay Server recovery consumes leSS
System resources than router recovery Since it does not
involve the router in the recovery process. For this reason,
replay Server recovery is a preferred message recovery
method in instances where fine-grained message recovery is
Sought, i.e., recovery of a relatively limited Scope or range
of messages.
0070. In addition to assuring FIFO transaction process
ing, the replay Server according to the present invention
offers other significant benefits to distributed businesses that
have facilities in more than one location. For Such busi
nesses, the System according to the invention may be advan
tageously employed in a peer model wherein the peers of the
enterprise are connected by a wide area network (WAN) and
wherein each peer is Symmetrically equipped with a router
610 and a replay server 630.
0071 Consider, for instance, a brokerage house having a
New York peer which primarily brokers transactions on
North American Stock exchanges, a London peer which
primarily brokerStransactions on European Stock exchanges
and a Tokyo peer which primarily brokerS transactions on
Asian Stock exchanges. With the present routing System,
there is no need for a centralized router through which all of
the messages of the enterprise would have to be routed
before being published to their intended consumers. Under
normal operating conditions, the general data router of the
New York peer would primarily handle the business trans
actions conducted by the North American busineSS units, the
general data router of the London peer would primarily
handle the busineSS transactions conducted by the European
busineSS units, and the general data router of the Tokyo peer
would primarily handle the busineSS transactions conducted
by the Asian business units. In this way, WAN massage
traffic is significantly reduced and transactions are Settled
more quickly than they would be if they all had to be first
routed through a centralized router.
0072 Additionally, in the peer model herein described,
no Single router would represent a potential global point of
System failure. In this regard, consider a situation where a
division, plant, office or other business unit of a distributed
enterprise Suffers debilitating harm by an act of God, an act
of terrorism or war, or other catastrophe. In that event, the
replay Server of the peer which includes the damaged
busineSS unit preserves messages published by the damaged
busineSS unit prior to occurrence of the damage. Those
messages can be replayed by the replay Server to the general
data routers of other peers in the network. Thus, the pre

US 2005/0021836A1

damage transactions may be Successfully processed by the
other peer(s) in the network. With a messaging System
architected as Such, the integrity of all messages published
by the damaged busineSS unit prior to the occurrence of the
damage can be retained and processed by the System.
0073 Broadcast Messages
0.074 Any general data router of the routing system of the
present invention may publish a broadcast message from any
publisher who publishes messages to that router. Abroadcast
message may be any message that may be of interest to one
or more units or one or more peers of a distributed enterprise
or even the entire enterprise itself. Abroadcast message may
be merely informational in nature or it may, as discussed
below, Serve as an automatic trigger event that that causes
Some other event(s) to be undertaken by the recipients of the
broadcast message. In any case, the router applies a busineSS
rule to the broadcast message which identifies the message
as a broadcast message whereby the broadcast message is
published to all registered listeners on the System.
0075) When a general data router in the routing system
according to the present invention is used in a Worldwide
Securities trading environment, for example, that router may
be processing trading data twenty four hours a day, Seven
days a week. In order to properly process messages through
out the System, there needs to be Some logical Separator that
Signifies when the end of a business day has been reached.
This type of message is called an “end of day” (“EOD')
message and is treated as an enterprise-wide event. For
example, in the aforementioned peer model of a brokerage
house having peers in New York, London and Tokyo, EOD
messages are Sent daily from the those peers indicating the
ends of business days in New York, London and Tokyo,
respectively. These EOD events are of interest to every
potential consumer connected to the System (i.e., all Sub
scribers on all subjects). The router of the present invention
does not route an EOD message like any other message, e.g.,
to a particular busineSS unit. Instead, the router broadcasts
the EOD message to every possible potential pre-registered
consumer that the router can publish to.
0.076 An EOD message is sent by a publisher signifying
that any non-EOD message, e.g., a trade-related message,
received by a consumer after the EOD message should be
processed on the next business day. This does not mean that
the processing of non-EOD messages is delayed until the
next calendar day; however the EOD message Serves as a
logical Separator between business days. In that way, the
EOD message Signifies to its recipients to begin various
batch processes or other end of day Summaries or tasks that
need to be performed at the conclusion of a business day. In
a Worldwide Securities trading environment, an EOD mes
Sage is necessary because if the System is constantly receiv
ing and processing trading messages, there is no mechanism
for the system to be able to determine when the end of a
business day has been reached. The EOD message can also
be used to shut down certain parts of the system if no further
messages will be received by those parts.
0077 Logging
0078. As a message is being processed, there are different
levels of logging that can be used. Basically, a user can
configure the amount of logging desired. In other words, as
a message comes into the routing Software, every time it

Jan. 27, 2005

takes a hop (i.e., comes into the message bus application and
gets consumed), it gets handed off from there to the routing
logic, and from the routing logic it may be handed into Some
content transformation module. There is the ability to make
the log entries more granular, meaning that each Step of the
progreSS of a message can be logged. For example, a log
entry could read, “ Applying Rule #1. Rule #1 has been
evaluated and the result is Such and Such a routing tag.”
0079 The reasons for having different levels of granu
larity is for use in a debugging Scenario. If a user has set up
Some routing logic and is not getting the expected end result,
then there is an error in the routing logic. However, it is
fairly difficult to debug a piece of multithreaded application
Software. It is helpful if the user can read a log that basically
shows: “The message came in here and went this way and
a decision was made at this point and the message went left,
not right,” So the user knows that that is the decision point
that he or she needs to change. It is possible that a particular
rule did not evaluate the way the user expected, because
Some key that was returned was not what was expected.
However, in a deployed release, the logging level should be
Set fairly coarse because of the performance overhead from
logging a large number of events. In a Scenario where a user
is testing or if the user is actually in a failure Scenario where
and trying to determine what went wrong, the logging
should be as granular as possible. Therefore, the user should
have the ability to configure logging with high or low
granularity.

0080 Logging can be handled in two ways: as a function
of a unit of work Synchronously or as a function of a unit of
work asynchronously. In a preferred embodiment, an asyn
chronous approach is used, wherein the logging messages
are Sent to a logger program that is responsible for Synchro
nously logging them through to a file which is ultimately
Visible by a human being.
0081. It is possible to insert user logic between where the
logging messages are generated and where they are written
to a logging file that would permit the user to map on a
certain pattern for a specified type of error message. It is also
possible for the logger program to Send an e-mail or a
lifeline alert which pages. Someone. It is possible to associate
a profile of errors with an associated action or reaction to the
logging process to trigger an alert if a Serious error comes
through. Using a notification System of this type allows
errors to be acted on in a timely fashion, instead of attempt
ing to trace through a log file to determine why an error
occurred.

0082 Transaction Integration
0083. When working in an EAI environment, it is impor
tant to be able to determine whether a transaction has been
Successfully completed or if the transaction has failed. In the
case of a transaction failure, it is often necessary to redo the
transaction in order to complete the work involved. Some
difficulty arises when dealing with multiple applications,
because a transaction needs to be viewed from a System
wide level in order to be considered to be “complete.” In
Some instances, each application in a System may consider
its work to be complete when it finishes its portion of the
work and hands the work off to the next application. While
this is true, the System as a whole needs to be aware of
whether the entire transaction, from Start to finish, has been
completed.

US 2005/0021836A1

0084. If there is a transaction failure on a system-wide
level (i.e., a failure of a logical unit of work or “LUW”), it
is necessary to roll back to the beginning of the transaction
So all of the data involved in the transaction can be recovered
and the transaction can be restarted. It is irrelevant in the
context of an LUW what percentage of the unit of work has
failed because it is not possible to recover a percentage of a
unit of work. For example, if a message is consumed
Successfully, but not processed Successfully, that message is
lost (i.e., it cannot be retrieved from the messaging bus
because the messaging bus discarded the message once it
was Successfully consumed) and cannot be re-evaluated.
Being able to recover the lost message is significant, and that
is why the control point for the transaction needs to be where
the LUW begins. If anything fails between the control point
and the commit point for the unit of work (which is
guaranteed Success of the performance of the unit of work),
it is necessary to roll back the entire transaction to the
control point So the transaction can be restarted. Placing the
control point anywhere other than where the unit of work
begins would not permit the unit of work to be restarted in
the event of a failure during processing of the unit of work.
0085. In the present invention, an LUW begins when an
inbound message is consumed by the router, and ends
(commits) when the outbound message is Successfully pub
lished. Any action taken on the message in between those
two points, whether it is routing the message or transforming
the message, is part of the LUW. If any of those actions fail,
the entire unit of work fails, and the process is restarted from
message consumption by the router. By defining the unit of
work in this manner, messages will not be lost if a portion
of the unit of work fails. From an EAI perspective, this
definition is important because it would be counterintuitive
to the entire EAI paradigm to have components of the
enterprise Software losing messages by not Successfully
publishing and consuming them.
0086) However, when interacting with disparate messag
ing Systems, transaction management is difficult to do
because each messaging System has its own mechanism for
knowing when a transaction has been Successfully com
pleted. For example, if an inbound message is coming from
an ETX messaging bus, and will be published to an IBM MQ
Series messaging bus, it is not possible to take the transac
tion “begin” from ETX and automatically have the ETX
transaction “commit” triggered off of the IBM MQ Series
“commit.” AS discussed below, the present invention addi
tionally provides a guaranteed message transaction manage
ment System wherein a transaction begins when a message
is consumed off a messaging bus (e.g., either an ETX or IBM
MQ Series bus) and the whole transaction is committed
when that message is Successfully published to another bus
(either an ETX or IBM MQ Series bus).
0087. Referring now to FIG. 7, there is illustrated a
Simplified guaranteed message transaction management Sys
tem according to the present invention. AS shown in that
figure, a router 700 consumes an inbound message 702 at
step 710. At this point a “begin” for the transaction relating
to the inbound message 702 is created. Work is performed on
the message 702 at step 712, and the message is published
at step 714 as an outbound message 720. Work may be
performed on the message by routing, transformation or
both. AS the outbound message 720 is published, a message
identifier 730, preferably a sequence number, is put into a

Jan. 27, 2005

database 732. Preferably, the outbound messages 720 are
temporarily cached and are not published immediately. The
messages 720 will be published to the outbound messaging
buS in a batch, and the batch Size can be determined either
by a certain number of messages in the batch or after a
certain delay between messages being published.

0088. The LUW will be committed when all of the
outbound messages 720 in a batch have been published to
the outbound messaging bus, and the database 732 will have
the message identifier of the last message published. If,
between the time that the “commit” is issued on the out
bound messages 720 and the time the “commit” is issued for
the inbound messages 702 (and thereby completing the unit
of work), there is an error or failure and the inbound
messages 702 are not committed, then the entire unit of work
rolls back to the first inbound message 702 of the unit of
work. In the event of an error or a failure, when the router
700 is restarted, the inbound messages 702 will be consumed
a Second time, beginning with the first message. When the
inbound message 702 is to be published as an outbound
message 720, the message identifier 730 of the current
message is compared to the list of message identifiers Stored
in the database 732. If the current message was previously
published, as indicated by the same message identifier 730
already existing in the database 732, the reconsumed mes
Sage is discarded and is not published a Second time.
0089 Although described as useful for communicating
with ETX and IBM messaging buses, the system according
to the present invention may accommodate all types of
messaging platforms and buses. That is, the client library of
a particular messaging platform may provide its own trans
action manager or it may use an industry Standard known as
XA Protocol, which relates to distributed transactions and
the coordination of those transactions. In this way the
guaranteed message transaction System according to FIGS.
7-10 can Successfully execute transactions regardless of the
messaging platforms used by the publishers and consumers
connected to the System.
0090 FIG. 8 generally illustrates a further embodiment
of a message transaction management Scheme according to
the present invention and FIGS. 9 and 10 provide specific
details thereof. The transactional model of FIG. 8 differs
from that of FIG. 7 in that the work performed on a message
is divided between a consumer process 802 and a publisher
process 804 (which processes are described in greater detail
in FIGS. 9 and 10, respectively) in such a way as to assure
that messages processed by the System are neither lost nor
duplicated by either the consumer proceSS or the publisher
process when message recovery or replay is required. AS
shown in FIG. 8, inbound messages are consumed by
consumer proceSS 802 from the messaging bus of a dedi
cated inbound messaging node 800 (e.g., an ETX node). As
generally shown in FIG. 8 the messages consumed by the
consumer process 802 are worked on by the consumer
process and passed to a file system 808 which is in com
munication with the consumer process 802 and publisher
process 804. File system 808 includes a relational database
management system (“RDBMS") 806 which may be an
RDBMS from Sybase Inc. or other RDBMS vendor.
Through file system 808, persistent message files, referred to
herein as “Save Store files,” are created and write and read
offsets are maintained for message batches that are written
to the Save Store files by the consumer process and that are

US 2005/0021836A1

read from the save store files by the publisher process. The
details and advantages of Such save Store files and message
batch offsets are set forth below. As shown in FIGS. 9 and
10, save store files are stored in a database 812 of file system
808 that is managed by RDBMS 806. When a batch of
messages has been committed to a Save Store file, the
publisher process 804 reads the messages that have been
Stored on the database pursuant to batch offsets that have
been defined by publisher process and the consumer process.
Upon reading of the messages from the appropriate Save
store file, the publisher process 804 performs certain work
on the messages and thereafter publishes those messages to
the messaging bus of a dedicated outbound messaging node
810 (e.g., an ETX node) whereby they may be consumed by
their intended consumers.

0.091 The notion of message batch offsets is graphically
depicted in the enlarged “file system” box 808 situated, for
clarity of illustration, between the consumer process 802 and
the publisher process 804. As instructed by the consumer
and publisher processes 802, 804, the file system 808
establishes save store file references including START off
sets and END offsets for the Save store files committed to the
database 812 managed by RDBMS 806. The consumer
process 802 establishes the END offset and moves the END
offset along until a certain batch of messages has been
written to a save store file. The consumer process 802 writes
an end offset to the RDBMS 806 after the last message in a
batch has been committed to a save store file. Similarly, the
publisher process 804 writes a START offset to the RDBMS
806 for each message batch that it reads from a save store
file. The publisher process never reads any data before the
START offset or after the END offset. Thus, a data “persist”
is maintained at all times in the file system 808 whereby
everything that is read by the publisher process 804 is
transactionally guaranteed by the consumer process 802. It
will be understood that a message batch may consist of as
few as one message to as many as 1000 or more messages,
although a typical batch range according to the present
invention is contemplated to be from about 50-100 mes
SageS.

0092. As noted above, a routing system occasionally goes
down for whatever reason and messages published to the
system must be replayed. Without the existence of the
START and END offsets shown in FIG. 8, if messages are
written by the consumer process 802 to the database 812 and
the messaging System is placed into recovery mode, the data
placed in the database at the time of recovery would be
recognized by the consumer process 802 as being compro
mised. Accordingly, the consumer proceSS would republish
all messages previously written in a batch to the database
which would produce duplication of messages previously
written by the consumer process to the database. However,
if the END offset is properly recorded in the file system 808,
then the messages written to the database are transactionally
committed by the inbound node 800 and duplicates of those
messages will not be resent by the consumer process 802 to
the database upon recovery.

0.093 Similar to the manner in which the consumer
process 802 moves the END offset along before writing the
END offset, the publisher process 804 moves the START
offset along before writing the START offset. That is, as it
reads a batch of messages from a Save Store file, the
publisher process 804 moves the START offset and writes a

Jan. 27, 2005

START offset to the RDBMS 806 for the last message read
from the batch. If the START offset is properly recorded in
the database, then the publisher process will know where to
begin reading messages from the Save Store file in recovery
mode and will not publish duplicate messages.

0094) Referring to FIG. 9, there is shown a detailed
Schematic of the consumer-Side work proceSS performed by
a consumer process (such as the consumer process 802 of
FIG. 8) in accordance with the further embodiment of the
message transaction management Scheme of the present
invention. The consumer-Side work proceSS performs work
on messages it consumes from the message bus of a dedi
cated inbound node 800. Again, for purpose of illustration
but not limitation, inbound node 800 is embodied as an ETX
node, although it may be a communications node of any
presently known or hereinafter developed messaging Sys
tem.

0.095 AS generally reflected by Step 1 of FIG. 9, mes
sages from node 800 may be published on a source topic
(e.g., Source Topic A) whereby they are consumed by a
consumer process via a dedicated ETX thread consuming on
Topic A. This marks the beginning of a distributed transac
tion involving the resources of an RDBMS 806, database
812 and the inbound node message bus. Together, RDBMS
806 and the associated database 812 manifest the file system
symbolized by reference numeral 808 of FIG.8. That is, the
RDBMS 906 is a configurational database that manages the
Save Store file references, including the START and END
offsets, for the Save Store files that are Stored on database
812. It will be understood, especially by reference to FIG.
10 discussed below, that Source Topic A may comprise
messages on Several topics, e.g., Topic B, Topic C, Topic D,
etc., that are of interest to end consumers that have Sub
Scribed to consume messages on one or more of those topics.

0096] At Step 2 of FIG. 9, after the messages are con
Sumed from the inbound node 800, they are passed to a
routing agent which builds the outbound messages and
identifies their endpoints. This proceSS involves the execu
tion of one or more message handlers (described in greater
detail in connection with FIG. 12) which may perform one
or more of pre-routing transformation, key extraction, key
mapping lookup and post-routing transformation. Outbound
message endpoints are then acquired and any requisite
endpoint transformations (again described in greater detail
in connection with FIG. 12) are performed. Depending on
the work to be performed on the messages, the Steps of
building outbound messages and identifying their endpoints
are iterated as necessary by the message handlers.

0097. At Step 3 of FIG. 9, the outbound messages, their
END offsets and their endpoint destinations are persisted in
the Save store files and the Save store references of the file
system 808 comprised of the database 812 and the RDBMS
806. This process initially involves the identification of the
appropriate endpoint transport for a message. This is fol
lowed by creation of unique Save store file(s) for the Source
topic, the endpoint and the transport primary key (“PK”). At
this time an index, preferably a timestamp representing the
time of creation of a Save Store file, is created for each Save
Store file and Stored in database 812. An example of Such an
index is shown in FIG. 9 Superimposed upon database 812
and identified as “A.ETX.TmStamp.P.” Following this, the
outbound messages are written to the Save store file(s) while

US 2005/0021836A1

the END offsets for the messages are correspondingly
updated in order to persist this information in the file System.
Persistence of outbound messages is iterated as necessary
for each of the endpoints for the messages.

0098. The consumer process iterates each of the forego
ing Steps for each message consumed from the message bus
of the inbound node 800 depending on the batch size,
timeout range and Save store file size(s).
0099. At Step 4 of FIG.9, the consumer process commits
the distributed transaction. It does this by Storing the pro
cessed message batch in the database 812 and by instructing
the RDBMS to save the message END offsets for the batch.
AS mentioned in connection with the discussion of FIG. 8,
proper Storage of the END offsets for the messages in a
particular batch assures that no messages are republished by
the consumer proceSS in the event message replay becomes
neceSSary.

0100 Referring to FIG. 10, there is shown a detailed
Schematic of the publisher-Side work proceSS performed by
a publisher process (such as the publisher process 804 of
FIG. 8) in accordance with the further embodiment of the
message transaction management Scheme of the present
invention. At Step 1 of FIG. 10, the publisher process begins
to read the save store file(s) stored in database 812 via a
dedicated ETX thread. At Step 2 of FIG. 10, the publisher
proceSS begins a Save Store file access process for the Save
Store file(s). This process involves retrieving the first unpub
lished save store file and its associated START/END offsets,
executing a callback (“CB”) routine to update the local
START offset (upper bound) and maintaining START offset
persistence.

0101. At Step 3 of FIG. 10, the publisher process opens
the save store file by seeking lowest START offset for the file
and then begins the publishing transaction. The publishing
transaction is begun by batch publishing from the Save Store
file. Batch publishing is a function of the batch size, main
tenance of a START offset prior to the END offset for the file
and the end of file (“EOF") command associated with the
file. The publisher process then opens the topics (e.g., Topic
B, Topic C, Topic D) on demand and publishes them to the
dedicated outbound node 810 (e.g., an ETX node). It also
publishes the outbound messages to an unillustrated replay
server having a database similar to database 732 of FIG. 7.
Again, for purpose of illustration but not limitation, out
bound node 810 is embodied as an ETX node, although it
may be a communications node of any presently known or
hereinafter developed messaging System.

0102) At Step 4 of FIG. 10, the publisher process com
mits the distributed transaction. It does this by notifying the
RDBMS 806 of the transmission of the message batch to the
message bus of the outbound node 810 and by instructing the
RDBMS to save the highest START offset for the transmit
ted batch. AS mentioned in connection with the discussion of
FIG. 8, storage of the highest START offset for a particular
batch assures that no messages are republished by the
publisher process in the event message replay becomes
neceSSary.

0103 FIG. 11 is a simplified schematic diagram depict
ing the manner by which the routing System according to the
present invention achieves fully Scalable multithreaded,
multi-topic message consumption, processing and publica

Jan. 27, 2005

tion. FIG. 11 reflects one of many possible implementations
of the present routing System within an equities trading
business enterprise. It will also be understood that the
System may be advantageously deployed in any busineSS or
other enterprise that uses a messaging Scheme over a com
puter network.

0104. In FIG. 11, reference numeral 1100 generally indi
cates an instance of the routing System wherein a Single
consumer process C1 (corresponding to consumer process
802 of FIG. 8) communicates with two publisher processes
P1 and P2 (each corresponding to publisher process 804 of
FIG. 8). According to the present invention, however, any
number of consumer processes may communicate with any
number of publisher processes. AS illustrated, messages are
consumed by consumer proceSS C1 from a messaging bus of
a mainframe (“MF") computer operating on an IBM MQ
Series messaging platform. After routing and other proceSS
ing, those messages are ultimately published by publisher
processes P1 and P2. As shown, publisher process P1 is a
distributed user that publishes the messages on an ETX
Series messaging platform and publisher proceSS P2 is a
distributed user that publishes the messages on an MQSeries
messaging platform. It will be understood that consumer
process C1 may be a distributed user and it may operate on
a different messaging platform Such as ETX. Similarly,
publisher processes P1 and P2 may both publish on the same
type of messaging platform.

0105. According to the invention, each consumer process
deals with only one messaging transport and each publisher
process deals with only one messaging transport. That is, the
number of consumer processes equals the number of
inbound transports, and the number of publisher processes
equals the number of outbound transports. An advantage of
equating the number of consumer processes and publisher
processes with their respective inbound and outbound trans
ports is that the routing System does not have to be con
cerned with transactionally coordinating work acroSS trans
ports. Also, according to a preferred embodiment of the
invention, a formula exists for naming files whereby a part
of the file name includes the associated transport for a file.
In So doing, a clear Separation is maintained between trans
ports and the files in which the transport data resides. It
would be more complex if a Single publisher process were
to read one file and then have to publish a given message
from that file to two different transports. Without a one-to
one correspondence between a publisher proceSS and an
outbound transport, publication to two or more disparate
transactional transports would have to be coordinated with a
single row of navigational data in the RDBMS 806. Such a
Situation can become quite complicated and requires mes
Saging vendors to architect their products to be compatible
with one another under XA Protocol, which is an industry
Standard relating to distributed transactions and the coordi
nation of those transactions.

0106 Further, each consumer process can run a consumer
thread and each publisher process can run a publisher thread
for each inbound topic/queue. That is, the maximum number
of consumer threads equals the number of inbound topicS/
queues and the maximum number of publisher threads
equals the number of inbound topicS/queues. For simplicity,
two such inbound topics/queues are shown in FIG. 11 and
are identified as T1 and T2 (although any number of inbound

US 2005/0021836A1

topics/queues may be accommodated). By way of example,
topic/queue T1 relates to trade messages and topic/queue T2
relates to journal messages.

0107 AS described in greater detail in regard to FIGS.
8-10 and 12, consumer proceSS C1 includes a message
handler that performs routing and message transformation
that may be necessary to cause it to write the inbound
messages to the publisher processes P1 and P2 via Save Store
files. According to the invention, the number of Save Store
files equals the number of inbound topicS/queues times the
number of outbound transports. In the present example,
therefore, four Save Store files are created, i.e., files
F1.Trades. MO, F2.Trades.ETX, F3.Journals.MO and
F4.Journals.ETX, because two topics/queues T1 and T2 are
handled by the two outbound messaging transports that
service the publisher processes P1 and P2.

0108. The real-time message processing demands of
large geographically-distributed businesses are Substantial
and continuously growing. In global Securities trading busi
nesses these demands are immense. AS mentioned previ
ously, presently available Single-threaded messaging Sys
tems can accommodate a real-time data flow of about 35
messages per Second (assuming an average message size of
two kilobytes). in a large Stock trading System, a real-time
flow of data easily exceeds 35 messages per Second. Using
the present routing System, multiple threads of the System
can be instantiated on Single or multiple machines whereby
topics/queues may be split among the multiple threads to
optimize the number of threads needed to accommodate
high Volume message throughput in real time. Indeed, the
present multithreaded System is capable of processing at
least 100 logical units of work per second and therefore finds
beneficial application in enterprises where real-time mes
Sage processing demands are greatest.

0109 Message Transformation and Transport Transfor
mation

0110. The message handler of the routing system of the
present invention is an extensible piece of code, and plug-ins
can be utilized to expand its functionality. This concept is
particularly relevant when dealing with a variety of message
formats. Because a router is only as intelligent as it is
programmed to be, it needs to be able to process messages
that enter and exit the router in different and changing
formats.

0111. Through cooperative efforts of publishers and con
Sumers in the intended communication Space, busineSS logic
is programmed into the router of the present invention by
configuring the routing rules and introspection module. The
Specific information the router is looking for in a message is
provided by the introspection module (a part of a logical unit
of work which also does optional mapping of the routing
keys to routing target(s) using a mapping table and makes
routing decisions based on the routing target(s)).
0112 A message can also be transformed as part of the
application of complex routing logic. In Such circumstances,
the router may pass the message to a customer plug-in that
transforms the message and returns the message to the router
in the new format. Because Such transformation is called for
by the user, the user's routing logic needs to be aware of the
format of the message to be processed. It is possible for a
message to be evaluated against a first rule in one format,

Jan. 27, 2005

and evaluated against a Second rule in a different format. To
guard against an error condition, the explosion module of the
Second rule would need to be aware that the message is in
a different format than that used in applying the first rule.
0113 FIG. 12 provides an overview of the message
routing and transformation functions of the routing System
according to the present invention. AS Seen in that figure, a
message handler performs routing and message transforma
tion. AS described above, routing typically includes key
extraction and key mapping lookup. Message transformation
may involve pre-routing transformation and post-routing
transformation. In pre-routing transformation, a message is
transformed or rules are applied to the message before
routing in order to, for example, transform the message into
a desired format that is understandable by the endpoint
consumer(s) of the message. The consumer, in turn, Supplies
the tags necessary to enable the router to then perform
routing of the transformed message. In post-routing trans
formation, a message is first routed and then is transformed
by the router prior to consumption by the end consumer.
Endpoint transformations are transformations that hereto
fore have been performed by endpoint Subscribers in order
to consume outbound messages following routing.

0114 Endpoint subscribers may instruct the routing sys
tem of the present invention to perform message transfor
mation based on a certain publishing topic name. According
to the present invention, once the message transformation
requirements for Such a transformation are made known to
the present routing System, the message handler can perform
the necessary transformation as part of its message handling
procedure.

0.115. It also possible for endpoint users of the system that
desire to consume messages in formats previously unrecog
nized by the routing System of the present invention to
instruct the System to perform message transformation on
messages So that they can be consumed by the endpoint
users in the new formats. AS reflected in FIG. 12, Such
message transformation may generally be referred to as
endpoint transformation. For example, a producer or pub
lisher of information may be publishing information in a
proprietary format and two target Systems may be listening
to the router, wherein one of the listenerS may be a legacy
System that can consume the information in the proprietary
format and the other listener may be a new System that can
consume information only in a different or new format. With
the concept of endpoint transformation, an end user or target
listening to the router in a previously unrecognized format
can cause the present routing System to perform post-routing
transformation on future messages based on the needs of the
new listener System.
0116. The foregoing is especially useful for migrating the
endpoint transformations of new listeners into message
transformations that can be performed directly by the mes
Sage handler. That is, when the common endpoint transfor
mation procedures of a new group of target instances or
endpoint Subscribers are identified, the endpoint transfor
mations formerly performed by those new target instances
become post-routing transformations that can be automati
cally performed by the message handler when all new users
that consume messages in the new format(s) have made the
System aware of their need to consume messages in the new
format(s).

US 2005/0021836A1

0117 Conversely, similar to the way in which the present
routing System may migrate new endpoint transformations
into the routing System as post-routing transformations, it
may also be used to migrate from old, obsolete or otherwise
undesirable publisher and listener messaging formats. That
is, when a messaging format falls into disfavor as a Standard
messaging format or is used by a decreasing number of
listeners in a messaging System that employs the present
routing System, the routing System may be easily configured
to migrate from the unwanted messaging format.
0118. The present routing system also caches and main
tains metadata on a rule-by-rule basis whereby end appli
cations may continuously revise the metadata. For example,
a mapping operation may be configured to be part of a
particular message handler. Accordingly, the mapping table
information will be loaded (cached) into process memory at
the process initialization State. If an end application indi
cates to the System that the data associated with a particular
key map is Stale, the end application can instruct the System
to update that data. In order to handle the data update request
all routing will be paused and a special routine (usually
provided by the end user) will be called to reload the
mapping information from Some resource external to the end
user Source (e.g., a file or a database).
0119) The present routing system is thus able to readily
update its existing routing functions, incorporate new mes
Sage transformations and message formats, and migrate
from undesirable message transformations and message
formats. Consequently, the present System is capable of
performing highly complex routing/transformation func
tions and is extremely adaptable to an enterprise's evolving
messaging needs.
0120. It will be understood that the embodiments of the
invention described herein are merely exemplary and that a
perSon Skilled in the art may make many variations and
modifications without departing from the Spirit and Scope of
the present invention. All Such variations and modifications
are intended to be included within the scope of the invention
as defined in the appended claims.

What is claimed is:
1. A computerized message routing System comprising:

(a) router means, said router means including means for
consuming messages from a publisher, means for pub
lishing the messages to at least one Subscriber, and
means for publishing the messages to a replay Server;
and

(b) a replay server for storing all messages published by
Said router means and for republishing certain ones of
the messages to a Subscriber on demand of the Sub
Scriber.

2. The System of claim 1 wherein Said replay Server
republishes messages directly to the Subscriber.

3. The system of claim 1 wherein said replay server
republishes messages to Said router means for delivery by
Said router means to the Subscriber.

4. A method for recovering messages that fail to reach
their intended destinations in a computerized message rout
ing System, the method comprising the Steps of

(a) storing all messages published by a router on a replay
Server; and

Jan. 27, 2005

(b) republishing certain ones of the messages from the
replay Server to a Subscriber on demand of the Sub
Scriber.

5. The method of claim 4 wherein step (b) comprises
republishing certain ones of the messages by the replay
server directly to a subscriber.

6. The method of claim 4 wherein step (b) comprises
republishing certain ones of the messages by the replay
server to the router for delivery by the router to the Sub
scriber.

7. The method of claim 4 further comprising encoding the
messages republished by the replay Server Such that the
Subscriber recognizes the messages as republished rather
than originally published messages.

8. A computerized message routing System comprising:
consumer process means for consuming meSSageS from a

publisher and for writing the messages to at least one
file;

publisher process means for reading messages that have
been written by Said consumer process means to Said at
least one file and for publishing the messages to at least
one Subscriber; and

a file System in communication with Said consumer pro
ceSS means and Said publisher proceSS means, Said file
System comprising:

Said at least one file, wherein Said at least one file Stores
messages written from said consumer process means
in batches, and

means for maintaining write and read offsets for mes
Sage batches that are written to Said at least one file
by Said consumer proceSS means and that are read
from Said at least one file by Said publisher process
means, whereby the write and read offsets enable
data to be persisted in Said at least one file Such that
duplicate messages are not written by Said consumer
proceSS means to Said at least one file or published by
Said publisher proceSS means to the at least one
Subscriber in the event message recovery is required.

9. The system of claim 8 wherein the write and read
offsets include:

an END offset written by said consumer process means to
Said means for maintaining offsets for a batch of
messages Stored in Said at least one file; and

a START offset written by said publisher process means
to Said means for maintaining offsets for a batch of
messages read from Said at least one file.

10. The system of claim 9 wherein said START offset
precedes said END offset for a batch of messages.

11. A method for preventing duplicate publication of data
in a computerized message routing System comprising:

consuming messages from a publisher and writing the
messages in batches to at least one file;

reading messages from the at least one file and publishing
the messages to at least one Subscriber; and

maintaining write and read offsets for message batches
that are written to and read from the at least one file,
whereby the write and read offsets enable data to be
persisted in the at least one file Such that duplicate
messages cannot be written to the at least one file or

US 2005/0021836A1

published to the at least one subscriber in the event
message recovery is required.

12. The method of claim 11 wherein the step of main
taining write and read offsets includes:

writing an END offset for a batch of messages stored in
Said at least one file, and

writing a START offset for a batch of messages read from
Said at least one file.

13. The method of claim 11 wherein the said START
offset precedes said END offset for a batch of messages.

14. A method for expanding the messaging processing
capability of a computerized message routing System com
prising a message handler that performs routing of messages
from a publisher to endpoint Subscribers, pre-routing trans
formation of the messages prior to routing of the messages
to the endpoint Subscribers and post-routing transformation
of the messages after routing of the messages to the endpoint
Subscribers, Said method comprising the Steps of:

providing the message handler with endpoint message
transformation procedures performed by a new group
of endpoint Subscribers that desire to receive messages
in a format previously unrecognized by the message
handler; and

when all members of the new group of endpoint Subscrib
erS have made their endpoint message transformation
procedures known to the message handler, automati
cally performing by the message handler the endpoint
message transformation procedures formerly per
formed by the new group of endpoint Subscribers as
post-routing message transformation and delivering
messages to the new group of endpoint Subscribers in
the format previously unrecognized by the message
handler.

15. A computerized message routing System comprising;

at least one inbound transport in communication with at
least one consumer process that is operable to run at
least one consumer thread for each inbound message
topic, and

at least one outbound transport in communication with at
least one publisher process that is operable to run at
least one publisher thread for each inbound message
topic,

wherein the at least one consumer process communicates
with the at least one publisher process via at least one
message file,

wherein the number of consumer processes equals the
number of inbound transports,

wherein the number of publisher processes equals the
number of outbound transports,

wherein the maximum number of consumer threads
equals the number of inbound message topics,

wherein the maximum number of publisher threads equals
the number of inbound message topics, and

wherein the number of message files equals the number of
inbound topics times the number of outbound trans
ports.

16. A method for operating a computerized message
routing System, said method comprising the Steps of:

Jan. 27, 2005

providing at least one inbound transport in communica
tion with at least one consumer process that is operable
to run at least one consumer thread for each inbound
message topic;

providing at least one outbound transport in communica
tion with at least one publisher process that is operable
to run at least one publisher thread for each inbound
message topic, and

communicating the at least one consumer process with the
at least one publisher process via at least one message
file,

wherein the number of consumer processes equals the
number of inbound message transports,

wherein the number of publisher processes equals the
number of outbound message transports,

wherein the maximum number of consumer threads
equals the number of inbound message topics,

wherein the maximum number of publisher threads equals
the number of inbound message topics, and

wherein the number of message files equals the number of
inbound topics times the number of outbound trans
ports.

17. A method for operating a computerized message
routing System, said method comprising the Steps of:

(a) consuming a message from a message bus of an
inbound messaging node,

(b) invoking an introspection module based on a Subject
on which the message has been published to the
inbound node,

(c) examining the contents of the message;
(d) extracting at least one routing key from the message

based on the contents of the message,
(e) examining the at least one routing key;
(f) identifying a routing tag based on the at least one

routing key;

(g) evaluating the routing tag to determine whether the
routing tag is bound to one or both of an outbound
Subject and a routing rule; and, either

(h) if the routing tag is bound to an outbound Subject, then
publishing the message to a message bus of an out
bound messaging node, or

(i) if the routing tag is bound to a routing rule or a routing
rule and an outbound Subject, then extracting at least
one routing key based on the routing rule and repeating
Steps (g), (h) and (i) until the message is published to
a message bus of an outbound messaging node.

18. A computerized message routing System comprising:

(a) router means, said router means including:
(i) consumer process means for consuming messages

from a publisher and for writing the messages to at
least one file, and

(ii) publisher process means for reading messages from
said at least one file that have been written by said
consumer process means to Said at least one file, for

US 2005/0021836A1

publishing the messages to at least one Subscriber
and for publishing the messages to a replay Server,

(iii) a file System in communication with Said consumer
proceSS means and Said publisher proceSS means,
Said file System comprising:

Said at least one file, wherein Said at least one file Stores
messages written from Said consumer process means
in batches, and

means for maintaining write and read offsets for mes
Sage batches that are written to Said at least one file
by Said consumer proceSS means and that are read
from Said at least one file by Said publisher process
means, whereby the write and read offsets enable
data to be persisted in Said at least one file Such that
duplicate messages are not written by Said consumer
proceSS means to Said at least one file or published by
Said publisher process means to the at least one
Subscriber in the event message recovery is required;
and

(b) a replay server for storing all messages published by
Said publisher proceSS means and for republishing
certain ones of the messages to a Subscriber on demand
of the Subscriber.

19. The system of claim 18 wherein said replay server
republishes messages directly to the Subscriber.

20. The system of claim 18 wherein said replay server
republishes messages to said router means for delivery by
Said router means to the Subscriber.

21. The system of claim 18 wherein the write and read
offsets include:

an END offset written by said consumer process means to
Said means for maintaining offsets for a batch of
messages Stored in Said at least one file; and

a START offset written by said publisher process means
to Said means for maintaining offsets for a batch of
messages read from Said at least one file.

22. The system of claim 21 wherein said START offset
precedes said END offset for a batch of messages.

23. A computerized message routing System comprising:

(a) router means, said router means including:
(i) at least one consumer process means for consuming

messages from a publisher and for writing the mes
Sages to at least one file,

(ii) at least one publisher process means for reading
messages from Said at least one file, for publishing
the messages to at least one Subscriber, and for
publishing the messages to a replay Server;

(iii) a file System in communication with said at least
one consumer process means and Said at least one
publisher process means, Said file System compris
ing:

Said at least one file, wherein Said at least one file Stores
messages written from Said at least one consumer
proceSS means in batches, and

(b) means for maintaining write and read offsets for
message batches that are written to Said at least one file
by Said at least one consumer process means and that
are read from Said at least one file by Said at least one

Jan. 27, 2005

publisher process means, whereby the write and read
offsets enable data to be persisted in Said at least one
file Such that duplicate messages are not written by Said
at least one consumer process means to Said at least one
file or published by Said at least one publisher process
means to the at least one Subscriber in the event
message recovery is required;

(c) at least one inbound transport in communication with
Said at least one consumer process means, wherein Said
at least one consumer process means is operable to run
at least one consumer thread for each inbound message
topic, and

(d) at least one outbound transport in communication with
Said at least one Said publisher process means wherein
Said at least one publisher proceSS means is operable to
run at least one publisher thread for each inbound
message topic,

wherein Said at least one consumer proceSS means com
municates with Said at least one publisher process
means via Said at least one file,

wherein the number of consumer processes means equals
the number of inbound transports,

wherein the number of publisher processes means equals
the number of outbound transports,

wherein the maximum number of consumer threads
equals the number of inbound message topics,

wherein the maximum number of publisher threads equals
the number of inbound message topics, and

wherein the number of Said at least one file equals the
number of inbound topics times the number of out
bound transports.

24. The system of claim 23 wherein the write and read
offsets include:

an END offset written by said at least one consumer
process means to Said means for maintaining offsets for
a batch of messages Stored in Said at least one file, and

a START offset written by said at least one publisher
process means to Said means for maintaining offsets for
a batch of messages read from Said at least one file.

25. The system of claim 24 wherein said START offset
precedes said END offset for a batch of messages.

26. A computerized message routing System comprising,

(a) at least one inbound transport in communication with
at least one consumer process that is operable to run at
least one consumer thread for each inbound message
topic, and

(b) at least one outbound transport in communication with
at least one publisher process, Said at least one pub
lisher process being operable to run at least one pub
lisher thread for each inbound message topic and to
publish messages to at least one Subscriber and to a
replay Server,

wherein the at least one consumer process communicates
with the at least one publisher process via at least one
message file,

wherein the number of consumer processes equals the
number of inbound transports,

US 2005/0021836A1

wherein the number of publisher processes equals the
number of outbound transports,

wherein the maximum number of consumer threads
equals the number of inbound message topics,

wherein the maximum number of publisher threads equals
the number of inbound message topics, and

wherein the number of message files equals the number of
inbound topics times the number of outbound trans
ports, and

(c) a replay server for storing all messages published by
Said at least one publisher proceSS and for republishing
certain ones of the messages to a Subscriber on demand
of the Subscriber.

27. The system of claim 26 wherein said replay server
republishes messages directly to the Subscriber.

28. The system of claim 26 wherein said replay server
republishes messages to Said router means for delivery by
Said router means to the Subscriber.

29. A computerized message routing System comprising:

(a) router means, said router means including:
(i) at least one consumer process means for consuming

messages from a publisher and for writing the mes
Sages to at least one file, and

(ii) at least one publisher process means for reading
messages from Said at least one file that have been
written by said consumer process means to said at
least one file, for publishing the messages to at least
one Subscriber and for publishing the messages to a
replay Server;

(iii) a file System in communication with said at least
one consumer process means and Said at least one
publisher process means, Said file System compris
ing:

Said at least one file, wherein Said at least one file Stores
messages written from Said at least one consumer
proceSS means in batches, and

means for maintaining write and read offsets for mes
Sage batches that are written to Said at least one file
by Said at least one consumer proceSS means and that
are read from Said at least one file by Said at least one
publisher proceSS means, whereby the write and read
offsets enable data to be persisted in Said at least one
file Such that duplicate messages are not written by
Said at least one consumer process means to Said at
least one file or published by Said at least one
publisher proceSS means to the at least one Subscriber
in the event message recovery is required;

Jan. 27, 2005

(b) at least one inbound transport in communication with
Said at least one consumer process means, wherein Said
at least one consumer process means is operable to run
at least one consumer thread for each inbound message
topic;

(c) at least one outbound transport in communication with
Said at least one Said publisher process means wherein
Said at least one publisher proceSS means is operable to
run at least one publisher thread for each inbound
message topic,

wherein Said at least one consumer proceSS means com
municates with Said at least one publisher process
means via Said at least one file,

wherein the number of consumer processes means equals
the number of inbound transports,

wherein the number of publisher processes means equals
the number of outbound transports,

wherein the maximum number of consumer threads
equals the number of inbound message topics,

wherein the maximum number of publisher threads equals
the number of inbound message topics, and

wherein the number of Said at least one file equals the
number of inbound topics times the number of out
bound transports, and

(d) a replay server for Storing all messages published by
Said at least one publisher proceSS means and for
republishing certain ones of the messages to a Sub
Scriber on demand of the Subscriber.

30. The system of claim 29 wherein the write and read
offsets include:

an END offset written by said at least one consumer
process means to Said means for maintaining offsets for
a batch of messages Stored in Said at least one file, and

a START offset written by said at least one publisher
process means to Said means for maintaining offsets for
a batch of messages read from Said at least one file.

31. The system of claim 30 wherein said START offset
precedes said END offset for a batch of messages.

32. The system of claim 29 wherein said replay server
republishes messages directly to the Subscriber.

33. The system of claim 29 wherein said replay server
republishes messages to Said router means for delivery by
Said router means to the Subscriber.

