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BRANCH PREDICTION USING BRANCH TARGET BUFFER

The present technique relates to the field of data processing. More particularly, it
relates to branch prediction.

A data processing apparatus may have branch prediction circuitry for predicting
outcomes of branch instructions before they are actually executed. By predicting branch
outcomes before the branch Instruction Is actually executed, subsequent instructions
following the branch can start to be fetched and speculatively executed before execution of
the branch instruction is complete, so that if the prediction is correct then performance is
saved because the subsequent instructions can be executed sooner than if they were only
fetched once the outcome of the branch is actually known.

At least some examples provide branch prediction circuitry comprising: a return
address prediction structure to store at least one predicted return address; a branch target
buffer (BTB) structure comprising a plurality of entries for specifying predicted branch
Information for a corresponding block of instructions; and BTB lookup circuitry to look up
whether the BTB structure comprises a corresponding entry for a given block of instructions,
and when the BTB structure comprises the corresponding entry, to determine, based on the
predicted branch information specified in the corresponding entry: a prediction of whether
the given block of instructions includes a return branch instruction for which a predicted
target address Is to be predicted based on a predicted return address obtained from the
return address prediction structure; a prediction of whether the given block of instructions
INncludes at least one other type of branch instruction other than the return branch instruction;
and when the given block of instructions Is predicted to include the at least one other type of
branch instruction, a predicted target address of the at least one other type of branch
iInstruction; In which: within at least a subset of entries of the BTB structure, each entry
specifies the predicted branch information with an encoding capable of indicating that the
corresponding block of Instructions Is predicted to include the return branch instruction but
Incapable of indicating the predicted target address for the return branch instruction.

At least some examples provide a data processing apparatus comprising the branch
prediction circuitry described above.

At least some examples provide a branch prediction method comprising: looking up
whether a branch target buffer (BTB) structure, which comprises a plurality of entries each
for specifying predicted branch information for a corresponding block of instructions,
comprises a corresponding entry for a given block of instructions; and when the BTB
structure comprises the corresponding entry, determining based on the predicted branch
Information specified in the corresponding entry: a prediction of whether the given block of

Instructions includes a return branch instruction for which a predicted target address is to be
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predicted based on a predicted return address obtained from a return address prediction
structure; a prediction of whether the given block of instructions includes at least one other
type of branch instruction other than the return branch instruction; and when the given block
of instructions Is predicted to include the at least one other type of branch instruction, a
predicted target address of the at least one other type of branch instruction; in which: within
at least a subset of entries of the BTB structure, each entry specifies the predicted branch
InNformation with an encoding capable of Indicating that the corresponding block of
Instructions includes the return branch instruction but incapable of indicating the predicted
target address for the return branch instruction.

Further aspects, features and advantages of the present technigue will be apparent
from the following description of examples, which is to be read Iin conjunction with the
accompanying drawings; in which:

Figure 1 schematically illustrates an example of a data processing apparatus having
branch prediction circuitry;

Figure 2 schematically illustrates an example of multiple branch instructions within
the same fetch block of instructions, where a fetch block Is a block of instructions for which
branch information is looked up In a single lookup In a branch prediction structure;

Figure 3 shows an example where the fetch block includes a conditional branch

Instruction and a return branch instruction:;
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Figure 4 shows an example of components of the branch predictor including a branch
direction predictor, branch target buffer and a call-return stack;

Figure 5 shows an example of nested procedure calls;

Figure 6 shows an example of tracking return addresses of procedure calls on a call-
return stack;

Figure 7 shows a comparative example of branch target buffer entries in which each
entry has an encoding capable of simultaneously indicating both that the corresponding
block of instructions includes a return branch instruction and the predicted target address for
the return branch instruction:

Figure 8 shows a first embodiment in which the branch target address field is omitted
for the return branch instruction so that the branch target buffer entry 1s incapable of
simultaneously indicating both the presence of a return branch instruction and the predicted
target address for the return branch instruction;

Figure 9 shows a second embodiment in which a portion of the entries of the branch
target buffer are reserved for return branches;

Figure 10 shows a third embodiment in which a portion of the entries of the branch
target buffer are reserved for return branches, and the entries Iin the reserved portion also
support predictions for non-return branch instructions; and

Figure 11 is a flow diagram illustrating a method of looking up the BTB.

A branch predictor may have a branch target buffer (BTB) structure which has a
number of entries, each for specifying predicted branch information for a corresponding
block of instructions. For example, the predicted branch information may include a prediction
of whether the block of instructions iIs predicted to include any branch instructions, and if so,
the Instruction offsets of those branches relative to the address identifying the block of
Instructions, and a predicted branch target address for any predicted branch locations. Also,
other information such as branch type could be predicted by the BTB structure.

One type of branch instruction for which the BTB structure may indicate a prediction
IS a return branch instruction, which is used after processing of a function call or procedure
call, to return program flow to the processing which was being performed before the function
or procedure was called. In a typical BTB, the return branch may be represented in a given
BTB entry In the same way as any other type of branch, including an indication of the
predicted branch type and a predicted return address for the return instruction.

However, the inventors recognised that often the branch prediction circuitry may also
INclude a return address prediction structure used for predicting return addresses of return
branch instructions. A BTB may typically be designed to provide a single predicted target
address for any given branch instruction, so may provide greater prediction accuracy for

pbranch instructions where the target address is relatively stable. In contrast, for a return
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branch instruction, since the target address of the return branch may depend on the location
IN the code from which the corresponding function call or procedure call was made, the
target address of a return branch may have much greater variation for a given return branch
Instruction at a given instruction address. Therefore, often a separate return address
prediction structure may be used to predict the target address of a branch instruction
predicted by the BTB structure as being a return branch instruction. The Iinventors
recognised that this means that separately encoding in the BTB itself both a prediction that a
given block of Instructions I1s expected to include a return branch instruction and the
predicted target address for the return branch instruction may waste storage resource. A
separate indication of the predicted target address for the return branch instruction in the
BTB structure may be redundant information, because when the branch is predicted to be a
return branch instruction then the return address would be obtained from the return address
prediction structure instead of from the BTB structure.

Hence, In the technigue discussed below, for at least a subset of entries of the BTB
structure, each entry may specify the predicted branch information with an encoding
Incapable of simultaneously indicating both (i) that the corresponding block of instructions Is
predicted to include the return branch instruction and (ii) the predicted target address for the
return branch instruction. Hence, within that subset, either entries are able to predict the
presence of return branch instructions, but do not specify a corresponding predicted target
address, or the entries that can specify a predicted target address may not predict that the
corresponding branch is a return branch instruction.

As the return branch’s target address may require a relatively large number of bits of
encoding space, compared to the indication of the prediction that the block of instructions
INncludes the return branch, this approach can make the entries which predict the presence of
a return branch instruction much more efficient in terms of circuit area and power. Also, this
may be achieved without sacrificing performance since in the case when the return branch is
predicted to be present then the target address iIs still obtained from the return address
prediction structure instead of from the BTB. This approach can help to reduce the number
of bits required per entry of the BTB to achieve a given amount of branch prediction
performance. This can either enable the performance of the BTB to be enhanced with little
additional area or power consumption, or enable the area/power cost of the BTB to be
reduced while keeping almost the same performance. Either way, for a given level of
performance the area and power cost may be reduced.

Hence, with the approach discussed above, when BTB lookup circuitry looks up the
BTB structure to determine whether the BTB structure includes a corresponding entry for a
given block of instructions, and there is a hit showing that the BTB structure does comprise

the corresponding entry, then based on the predicted branch information specified In the
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corresponding entry, the BTB lookup circuitry may determine a prediction of whether the
given block of instructions includes a return branch instruction and a prediction of whether
the given block of instructions includes at least one other type of branch instruction other
than the return branch instruction. In some embodiments, If there iIs a hit in an entry
corresponding to a return branch instruction, then it may be implicit that there is no predicted
branch instruction of another type, while in other embodiments the same entry may specify
both return branches and other types of branch and so it may be possible for a simultaneous
prediction of the presence of both the return branch and the branch of another type. When
the given block of instructions Is predicted to include at least one other type of branch
Instruction, then the corresponding entry may also provide a predicted target address of the
at least one other type of branch instruction. However, when the corresponding entry Is In
the subset of entries having the more limited encoding discussed above, and specifies that
there Is a prediction that the given block of instructions iIs predicted to include the return
branch of instruction, then no indication of a predicted target address may be provided by
the BTB structure for the return branch instruction, and instead the predicted return address
for the return branch instruction may be derived from the return address prediction structure.

The more limited encoding of the BTB entries (in which a given BTB entry cannot
encode both the presence of a predicted return branch and that return branch’s predicted
target address) may be used for only a subset of entries of the BTB structure in some
Implementations. Hence in some examples there may be other entries which are capable of
Indicating both the presence of the return branch and the corresponding predicted target
address of the return branch.

However, the area and power savings may be greatest If this more limited encoding
IS used for all entries of the BTB structure (i.e. all entries are either return branch supporting
entries, or non-return branch supporting entries which are incapable of indicating a return
branch presence prediction). Hence, In this case the “subset” of entries mentioned above
may comprise all entries of the BTB structure, and there may be no entries which can
Indicate both the presence of the return branch and the return branch’s target address. That
IS, In some Implementations for every entry of the BTB structure, that entry may be incapable
of simultaneously indicating both the predicted presence of the return branch instruction and
that return branch instruction’s target address.

The BTB structure may include at least one return-branch-supporting entry which
specifies predicted branch information with an encoding capable of indicating that the
corresponding block of instructions 1s predicted to include the return branch instruction. In
some examples all BTB entries could be return-branch-supporting entries (these could be

either entries which only support return branch predictions with no predictions for branches
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other than return branches, or entries which support both return branch predictions and non-
return-branch predictions).

Alternatively Iin other implementations only a portion of the BTB structure could
INnclude return-branch-supporting entries which are capable of indicating a prediction that the
corresponding block of instructions includes a return branch instruction.

In one example, for each return-branch-supporting entry, a field for specifying the
predicted target address for the return branch instruction may be omitted from the predicted
branch information specified in the return-branch-supporting entry. This can help to save
area and power.

In addition to the prediction that the block of instructions i1s predicted to include the
return branch instruction, the return-branch-supporting entry could also specify an offset
value identifying an offset of an address of the instruction predicted to be the return branch
Instruction, relative to an address identifying the corresponding block of instructions. This
can enable an instruction fetch unit to determine which earlier instructions still need to be
fetched prior to the return branch in cases where the return branch is the first taken branch
of the fetch block.

In some Implementations, the return-branch-supporting entry may only indicate
prediction information for return branch instructions, and may not indicate any predicted
Information for any other type of branch other than a return branch. In this case the at least
one return-branch-supporting entry may be reserved for those blocks of instructions which
are predicted not to Include any other branch instructions prior to the return branch
Instruction. In this case, the return-branch-supporting entries may not have any field at all for
specifying any target address, which can greatly help to reduce the area and power costs of
the return-branch-supporting entries.

However, In other examples each return-branch-supporting entry could also specify
Information relating to at least one further branch instruction of at least one other type (other
than the return branch instruction) that is within the same block of instructions as the return
branch instruction. For each further branch instruction of the other type, the predicted branch
iInformation in the return-branch-supporting entry may still include a predicted target address
for that further branch instruction. However, the field used to specify the predicted target
address for that further branch instruction may not be used for indicating the target address
predicted for the return branch instruction itself. Similarly, for each further branch instruction
of the other type, the predicted branch information could include a predicted branch type,
however this may be represented by an encoding which is incapable of identifying that the
predicted branch type of the further branch instruction is a return branch instruction.

With this approach a single entry may encode both some predicted branch

Information for non-return branches and additionally encode a prediction of whether the
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corresponding block of instructions is expected to include a return branch instruction, without
a corresponding indication of a predicted target address for the return branch instruction.
This approach can be particularly useful because it has been observed that in many
processing algorithms it is common for a block of instructions to include a conditional branch
Jjust before a return branch instruction, because some architectures may require that any
return branch instruction is unconditional, and so If a conditional end of a function/procedure
IS required then this may be encoded using two separate branches In the program code,
(first a conditional branch instruction evaluating the condition and then an unconditional
return instruction).

Hence, with the approach where the return branch supporting entry includes both a
prediction of the return branch and information relating to other branches, this means that for
a given BTB entry encoding full predictions (including predicted target address) for a certain
number N of non-return branch instructions, increased performance can be achieved without
the addition of much additional hardware, by providing a further field encoding a prediction of
whether a return branch instruction 1s predicted to be present in the same block, without
needing to provide a further target address field for the return branch instruction prediction.
Hence this can enhance the performance of the BTB with very little additional area or power
consumption. In some examples, the further field encoding a prediction of the presence of
the return branch instruction could be the offset field encoding the address offset for the
return branch instruction.

Alternatively, as return branch instructions can be predicted relatively cheaply as the
target address of the return branch does not need to be Indicated, then If each entry (Iin
addition to the return branch) specified predictions for a given number N of non-return
branch instructions, then as it is no longer necessary to use one of those N branch fields to
represent the return branch instruction itself, effectively each BTB may be able to provide
predictions for a greater number of branches per block of instructions. As the branch
prediction performance achieved per entry can therefore be improved, then In examples
where the BTB Is partitioned into return-branch supporting entries and non-return-branch
supporting entries, another approach can be to reduce the total number of non-return-branch
supporting entries of the BTB while maintaining an approximately similar level of
performance, In order to save power and area and also enhance the timing of the design
because the critical path length for looking up the BTB typically depends on the total number
of entries. For example, If to provide a given level of performance, a BTB had 100 entries
with each entry capable of indicating return branch presence predictions and also indicating
the return branch's target address, with the approach discussed above this could be mapped
to 70 non-return-branch-supporting entries which do not support return branch predictions at

all, and 30 return-branch-supporting entries which are more area efficient because they do
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not need to indicate target address for the return branch. Hence, the area/power/timing
budget required for a given level of performance can be improved.

There may be one embodiment where some dedicated entries are provided for
encoding return branch instructions which do not have any indication of a target address of
the branch (and also do not encode any information about return branches).

Also, there may be another embodiment where a BTB entry which encodes
predictions for non-return branches is provided with additional fields to indicate a prediction
of the presence of a return branch instruction and the offset address of the return branch.
The number of additional bits needed may be limited by re-encoding the branch type for the
non-return branches so as to exclude any need to encode the possibility of those non-return
branches being a return branch instruction.

In some examples, In addition to the return-branch-supporting entries, there could
also be at least one non-return-branch-supporting entry which specifies predicted branch
Information with an encoding incapable of indicating that the corresponding block of
Instructions Is predicted to include the return branch instruction. Hence, for a given lookup If
the corresponding entry 1s one of the non-return-branch-supporting entries then the BTB
lookup circuitry may determine that the given block of instructions is not predicted to include
the return branch instruction. For each branch instruction identified by a non-return branch
supporting entry, the encoding of a predicted branch type may be incapable of identifying
that the predicted branch type is the return branch instruction.

In some cases, the number of return-branch-supporting entries provided may be less
than the number of non-return-branch-supporting entries. In other examples the number of
return-branch-supporting entries could be greater than or equal to the number of non-return-
branch-supporting entries. The number of each type of entry may be determined for a
particular architecture based on the relative frequency of return and non-return branches
expected In the code to be executed.

In some examples, the BTB lookup circuitry may exclusively reserve the at least one
return-branch-supporting-entry for storing predicted branch information for blocks of
iInstructions that include a branch instruction predicted to be a return-branch instruction. This
helps to maintain prediction accuracy by conserving those entries which support the
prediction of a return-branch instruction for those blocks of instructions that can actually use
that prediction. Hence, In an example where a return-branch-supporting entry can also
specify predictions for further branches of a type other than the return-branch instruction,
such entries may not be used for blocks of instructions which only contain non-return-branch
Instructions. This can reduce the number of return-branch-supporting entries needed to

support a given level of performance.
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The return address prediction structure may comprise a last-in first-out (LIFO) data
structure. For example, the return address prediction structure may comprise a call-return
stack. The BTB lookup circuitry may push a return address onto the LIFO data structure in
response to a determination that the corresponding entry of the BTB structure provides a
prediction that the given block of instructions comprises a procedure call instruction when
there I1s no earlier branch instruction predicted taken in the given block of instructions being
looked up In the BTB. The procedure call instruction could call either a procedure or a
function (a function is a specific form of procedure where a return data value generated by
the function is passed back to the code which called the function). On the other hand, when
the given block of Instructions Is predicted based on one of the return-branch-supporting
entries to include a return branch instruction, then the address at the top of the LIFO data
structure may be popped from the data structure and the popped address may be used as
the predicted target address of the return branch instruction.

A selector may be provided to select, based on a number of different branch
prediction structures (including the return branch prediction structure and the BTB structure),
a next instruction fetch block address identifying a next block of instructions to be fetched.
When the BTB structure provides a prediction that the given block of instructions includes
the return branch instruction, and no earlier branch instruction of the given block of
Instructions Is predicted taken (for example the taken prediction may be generated by a
separate branch direction predictor) then the selector may select the return branch address
provided by the return branch prediction structure as a predicted target address for the
return branch instruction in preference to a predicted target address provided by at least one
other prediction structure of the branch prediction circuitry.

Figure 1 schematically illustrates an example of a data processing apparatus 2
having a processing pipeline comprising a number of pipeline stages. The pipeline includes
a branch predictor 4 for predicting outcomes of branch instructions. A fetch stage 6
generates a series of fetch addresses based on the predictions made by the branch
predictor 4. The fetch stage 6 fetches the instructions identified by the fetch addresses from
an instruction cache 8. A decode stage 10 decodes the fetched instructions to generate
control information for controlling the subsequent stages of the pipeline. Optionally, a
rename stage 12 may be provided to perform register renaming to map architectural register
specifiers identified by the Instructions to physical register specifiers identifying registers 14
provided In hardware. Register renaming can be useful for supporting out-of-order execution
as this can allow hazards between instructions specifying the same architectural register to
be eliminated by mapping them to different physical registers in the hardware register file, to
iIncrease the likelihood that the instructions can be executed in a different order from their

program order in which they were fetched from the cache 8, which can improve performance
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by allowing a later instruction to execute while an earlier instruction is waiting for an operand
to become available. The ability to map architectural registers to different physical registers
can also facilitate the rolling back of architectural state in the event of a branch
misprediction. In an in-order pipeline however, the rename stage may not be provided.

An Issue stage 16 queues instructions awaiting execution until the required operands
for processing those instructions are available in the registers 14. An execute stage 18
executes the instructions to carry out corresponding processing operations. A writeback
stage 20 writes results of the executed instructions back to the registers 14.

The execute stage 18 may include a number of execution units such as a branch unit
21 for evaluating whether branch instructions have been correctly predicted, an ALU
(arithmetic logic unit) 22 for performing arithmetic or logical operations, a floating-point unit
24 for performing operations using floating-point operands and a load/store unit 26 for
performing load operations to load data from a memory system to the registers 14 or store
operations to store data from the registers 14 to the memory system. In this example the
memory system includes a level one instruction cache 8, a level one data cache 30, a level
two cache 32 which Is shared between data and instructions, and main memory 34, but it will
be appreciated that this 1s just one example of a possible memory hierarchy and other
Implementations can have further levels of cache or a different arrangement (e.g. the level
two cache 32 may not be shared, but instead separate L2 instruction and data caches could
be provided). Access to memory may be controlled using a memory management unit
(MMU) 35 for controlling address translation and/or memory protection. The load/store unit
26 may use a translation lookaside buffer (TLB) 36 of the MMU 35 to map virtual addresses
generated by the pipeline to physical addresses identifying locations within the memory
system. It will be appreciated that the pipeline shown Iin Figure 1 is just one example and
other examples may have different sets of pipeline stages or execution units. For example,
an In-order processor may not have a rename stage 12.

As shown In Figures 2 and 3, the branch predictor 4 may use a block-based lookup
method to perform branch prediction for a block of program instructions to be fetched. VWhile
In alternative implementations it may be possible for the branch predictor to provide
iIndividual branch prediction entries for each Instruction and separately look up each
Instruction In a storage structure storing the predictions, this may involve a large number of
lookups to the storage structure which can consume a lot of power and be slow In terms of
performance. By performing branch prediction lookups In units of blocks of instructions, this
enables the branch predictor to traverse the code faster than the decoder and execution
units, which can help with enabling the branch predictor to “look ahead” of the point of
execution reached by the execution units so that the required instructions can be fetched

earlier. In practice, it is relatively unlikely that a block of instructions of a given size (e.g. 8 or
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16 Instructions) will have more than a certain number of branches and so it iIs possible to
provide branch state storage entries which represent predictions for a block of instructions
as a whole, and may provide predictions as to whether there are any branches in that block
of instructions, and If so, the locations of the branches within the block. For example, as
shown In Figure 2, within a given block 50 of instructions identified by a fetch block address
52 (which indicates the instruction address of the first instruction in the fetch block 50), there
may only be two branch instructions B1, B2 and the branch predictor 4 may provide a
prediction of the branch offsets 54-1, 54-2 representing the offset of the instruction
addresses of branches B1, B2 relative to the fetch block address 52. For area and timing
reasons, the number of branches that may be predicted Iin a fetch block may be lower than
the number of instructions In the fetch block, e.g. a fetch block may comprise 8 instructions
but the branch prediction can store and predict up to 4 branches within the fetch block.

The branch predictor 4 may also provide a prediction of the particular type of branch
Instruction that may be encountered within a given fetch block, such as whether the branch
IS a conditional branch for which a taken or not-taken prediction is required to be made by a
branch direction predictor, whether the branch 1s a function/procedure calling branch
Instruction for which a return address may need to be saved, or a return branch instruction
for returning to earlier processing after the processing of a function/procedure call.

In some architectures, all return branch Instructions may be unconditional
Instructions. Hence, as shown In Figure 3 it may be relatively common for a return branch
Instruction 56 to be preceded by a conditional branch instruction 58 evaluating whether
some test condition Is satisfied, which conditionally branches to a certain branch target
address depending on the outcome of the test condition. Hence, If the conditional branch 58
IS taken then processing does not continue to the return branch 56, but If the conditional
branch 58 Is not taken then the return branch 56 is executed. As discussed below, this
property that a return branch 56 may relatively often follow an earlier conditional branch
within the same fetch block 50 can be exploited to provide a more efficient encoding of BTB
entries.

Figure 4 shows an example of components of the branch predictor 4, including a
branch target buffer (BTB) 60, a branch direction predictor (BDP) 62 and a call-return stack
(CRS) 64. In each cycle of branch prediction, the fetch block address X (52) representing the
address of the next instruction to be fetched by the fetch stage 6 Is input to the BTB 60, BDP
62 and CRS 64. The BTB 60 and BDP 62 both include a storage structure for storing various
branch prediction state entries. In the case of the BDP 62, the branch prediction state entries
provide a prediction of whether (if there i1s any conditional branch instruction within the block

of instructions represented by the fetch block address X), those instructions should be taken
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or not taken. The BDP 62 can be implemented according to any known type of branch
predictor, such as TAGE, perceptron, gskew, etc. (this list is not exhaustive).

The BTB 60 includes a number of entries which provide predictions of one or more
of: whether there are any branches expected to be Iincluded in the block of instructions
identified by the fetch block address X, the offsets of those branches relative to the fetch
block address X, the types of the predicted branches, and for at least some branch types, a

predicted target address for the branch. Here, the target address refers to the address to

which program flow Is to be directed if the branch is taken.

Hence, for branches other than return branch instructions, the BTB 60 may provide a
prediction of the branch type, offset and target address of the predicted branches, and If any
of the branches are conditional branches, then the BDP 62 provides predictions of whether
those branches are taken or not taken. Based on the predictions provided by the BTB 60
and the BDP 62, a selector 66 selects which program instruction address is to be used as
the next fetch block address X' In the next branch prediction cycle. Also, based on the
offsets of any taken branches, the selector 66 determines how many instructions of the
current fetch block identified by fetch block address X will need to be fetched, and provides a
signal to a fetch queue 68 which queues addresses of instructions to be fetched by the fetch
stage 6, to ensure that all instructions up to the first taken branch within the current fetch
block will be fetched by the fetch stage 6. The fetch queue 68 Is used to control fetching
iInstructions from the instruction cache 8 by the fetch stage 6. The fetched instructions are
decoded by the decode stage 10.

For example, If a given BTB entry specifies non-return branches in offsets 2, 3, and 7
and a return branch in offset 5, and the BDP 62 specifies a prediction of not-taken for offsets
2 and 3, taken for offset 7 (with the return branch being either unconditionally taken or
predicted taken if the architecture supports conditional return branches), then the first taken
branch would be the return branch at offset 5, and so the offset selected by the selector 66
would be the offset 5. The Instruction addresses allocated to the fetch queue would
correspond to instructions at offsets 0-5 from the fetch block address X. In contrast, If the
non-return branch at offset 2 had been predicted taken by the BDP 62, then the fetched
Instructions would comprise the instructions at offsets 0-2 from the fetch block address X, as
Instructions beyond the first taken branch in the block would not be fetched.

The next fetch block address X' selected by selector 66 Is provided to an address
selector /0 which selects which address iIs used as the fetch block address X Iin the next
branch prediction cycle. For most cycles, the next fetch block address X' from one branch
prediction cycle I1s used as the fetch block address X for the following cycle. However, If
there I1s a system reset, interrupt or branch misprediction, then the program counter may be

set to a new value (e.g. a reset value, interrupt handler address or misprediction address),
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and the new program counter value may be supplied as the fetch block address X for the
first branch prediction cycle after processing restarted following the reset, interrupt or
misprediction.

The call-return stack 64 is provided to improve prediction accuracy when function or
procedure calls and returns are made within the code being executed. A procedure or
function call refers to the calling of a certain sequence of instructions from a particular
location within the program code being executed, where it is Intended that once the function
or procedure has finished, then processing returns to the instruction after the calling
iInstruction which called the function or procedure. The same function or procedure may be
called from a number of different locations in the code, and so often the target address of
return branch instructions may differ depending on the location from which the function or
procedure was called. This can make It difficult to predict the target address of the return
branch Instruction using the BTB 60, which i1s why a dedicated return branch address
prediction structure may be provided In the form of a call-return stack 64. In the examples
below, the term “procedure” is used for conciseness, but Is intended to encompass either a
procedure or a function.

Figure 5 shows an example of a nested set of procedure calls. A branch with link
(BL) Instruction at an address #add1 calls a certain procedure (fn A). In response to the BL
Instruction at address #add1 the pipeline stores the return address of function A to the link
register within the register file 14. The return address is the address of the next sequential
Instruction after the BL instruction, e.g. address #add1+4. |In response to the BL instruction
the program flow branches to the address of an instruction at the start of the code
corresponding to fn A, and then execution continues sequentially within that function. Within
fn A, a further procedure (fn B) Is called by a BL instruction at address #add2. As the BL
iInstruction would overwrite the previous contents of the link register (LR), the value In the
link register which provides the return address for fn A Is saved to a stack data structure
within the memory system 30, 32, 34 before executing the second BL instruction at address
#add2. Note that this stack in the memory system iIs not the same as the call return stack
64, but Is a stack data structure allocated by software iIn memory. Hence, in response to the
second BL instruction at address #add2, the return address of fn B (#add2+4) is saved to the
link register and then program flow branches to the program code corresponding to fn B.
Once the fn B completes, a return branch is executed which triggers the branch unit 21 to
read the return address previously saved to the link register and cause program flow to
branch to the instruction at the return address #add2+4. The remaining part of the code In fn
A then restores the previous contents of the link register (i.e. return address #add1+4) from

the stack in memory to the link register in the register file 14 and then flow continues within
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fn A until a second return branch is reached which then triggers the branch back to the
Instruction at address #add1+4.

Figure 6 shows an example of the call return stack 64 updated with the addresses of
the respective function calls. Figure 6 shows the state of the call return stack 64 at the point
when the processing is within fn B in the example of Figure 5. The call return stack (CRS)
may be a last in first out (LIFO) structure, which can be maintained as a circular buffer for
example with a pointer 71 indicating the entry corresponding to the top of the stack. The top
of the stack i1s the most recently allocated entry on the stack (and also the entry which will be
popped from the stack the next time a return branch is encountered by the fetch stage ©6).
The branch predictor 4 uses the call return stack to predict the return address of a return
Instruction earlier than the timing when the return address actually becomes known when the
branch Is executed by the branch unit 21 later in the pipeline.

Hence, when the BTB 60 Is looked up for the fetch block address 52 and provides a
prediction that the corresponding block of instructions 1s predicted to include a procedure
calling branch instruction (e.g. the BL Instruction shown in Figure 5) then the address of the
Instruction following the procedure calling branch instruction is pushed onto the call-return
stack as a return address to be used for predicting the target address of a later return
iInstruction.

On the other hand, when the BTB 60 provides a prediction that the current fetch
block Is predicted to include a return branch instruction and there are no earlier predicted
taken branches In the same block, then the return address at the top of the stack 51 iIs
popped from the CRS 64 and this return address is then used as the predicted target
address for the return branch instruction. Hence, the selector 66 always predicts the return
address popped from the CRS 64 in preference to any alternative target address available
from the BTB 60, in cases where the first taken branch is predicted to be a return branch
Instruction.

Figure 7 shows, for comparison, a typical way of representing branch prediction state
Information in the BTB 60. The BTB 60 may include a number of entries 80 in a storage
structure, which may be implemented similar to a cache. Although not shown In Figure 7, In
some cases the cache may be implemented as a set-associative cache organised in ways
(way 0O, way 1, etc.). In general, the storage structure of the BTB 60 is indexed by an index
value 82 which Is determined as a function of the fetch block address X. Each entry 80 of the
BTB may include for example a valid field 84 which specifies whether the entry contains a
valid prediction entry, and a tag field 86 for storing part of the address of the corresponding
block of instructions. The tag 86 can be compared with part of the fetch block address X on
looking up the BTB to determine whether there is a hit. The entry 80 may then also include

prediction Iinformation for a certain number N of branch instructions. For each branch
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Instruction, the BTB entry 80 includes a set of fields 88. Each set of branch information fields
388 Includes a type field 90 providing a prediction of the type of branch, an offset field 92
providing a prediction of the offset of the instruction address of the branch instruction relative
to the fetch block address, and a target address field 94 providing a prediction of the target
address of the corresponding branch.

It will be appreciated that Figure 7 does not illustrate all of the information that could
be recorded for each branch. For example the branch information 88 could also include an
Indication of a confidence level in the corresponding prediction, and could also include a
branch presence indicator which indicates whether that branch is expected to be present at
all, or alternatively the presence or absence of branches could be recorded as part of the
type field 90. The type field may specify one of a number of branch types, Including
unconditional branches whose taken or not taken outcome does not depend on a condition
evaluated based on results of earlier instructions, a conditional branch for which the taken or
not taken outcome depends on a condition which depends on architectural state resulting
from earlier instructions, a procedure calling branch or return branch as discussed above, or
other types of branches such as polymorphic branches which may provide different target
addresses on different instances of executing the same branch, for which a separate
dedicated polymorphic branch prediction structure could be provided for example. It will be
appreciated that this i1s not an exhaustive list of branch types.

Note that within the BTB entry, it iIs not necessary to arrange the prediction
Information for the different branches in the same search block according to the order of their
offsets 92. For example, If N = 4 and so the entry can specify information for up to 4
different branches, and the corresponding fetch block includes two branches B1 and B2 as
IN the example of Figure 2, the iInformation for branches B1 and B2 could be allocated to any
of the positions 0 to N-1 shown In Figure 7, e.g. B1 could be in position O but B2 in position
N-1, or B1 In position 2 and B2 in position 0. It is not necessary that the allocations to the N
sets of branch fields 88 are done In the order O to N-1, or that the selection of the set of
branch fields 83 Is In order of the branch offsets within the fetch block.

In the approach shown in Figure 7, each of the branches 88 represented Iin a given
BTB entry 80 has the branch type field 90 which supports indicating the branch as a return
branch instruction (RET). In addition, each of the branch fields 88 also enable prediction of a
target address 94 for the corresponding branch. Hence, this encoding Is capable of defining
both that the block of instructions iIs predicted to include a return branch instruction and
capable of indicating the predicted target address for the return branch.

However, the inventors recognised that as shown In Figure 4, in practice the call-
return stack 64 is often provided for providing a prediction of the return address of a return

pbranch Instruction, and so In cases where the branch type 90 Indicates a return branch
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Instruction, the corresponding target address 94 is not used by the selector 66, and so
recording this information in the BTB wastes storage capacity. Figures 8 and 9 show two
examples of alternative BTB structures which provide entries with an encoding incapable of
simultaneously encoding both that the block of instructions Is predicted to include a return
branch instruction and a prediction of the corresponding target address of the return branch
Instruction.

In the example of Figure 8, a given BTB entry 80 of the BTB 60 may, in addition to
the valid field 84, tag field 86 and N sets 88 of branch information for non-return branch
Instructions, include an additional return branch presence field 96 and return branch offset
fleld 98. With this approach, the type field 90 indicated for each non-return branch 88 may
encode only types of branches other than the return branch instruction. Hence, no encoding
of the type field 90 Is allocated to indicating return branches. The target address field 94 is
omitted for the return branch indicated in fields 96, 98. This type of BTB entry therefore
eliminates some of the bit cells needed for each entry because there is no need to provide a
separate indication of the target address for the return branch. If the total number of non-
return branches N Is the same as in Figure 7, the approach of Figure 8 enables an increase
INn performance with relatively little additional area and power cost, because the number of
bits needed to indicate the return branch presence 96 and return branch offset 98 Is
relatively small iIn comparison to indicating the target address 94. This enables a
performance improvement because it means that the probability of correctly predicting the
outcomes of branches In a given block of instructions 1s higher, as there Is now more
Information available about a return branch in addition to N different other types of branches.
As the branch prediction performance per entry is higher, this can allow the total number of
entries to be reduced to save circuit area and power and improve lookup timing while
maintaining a given level of performance. Alternatively, if N in the example of Figure 8 Is less
than N In the example of Figure 7 (e.g. one fewer branch field 88 is provided in comparison
to Figure 7) then this still enables fetch blocks 50 including a return branch to be predicted
the same as In Figure 7, but with a BTB entry 80 having fewer bits to save circuit area and
power. The approach shown in Figure 8 can be particularly useful because as shown In
Figure 3 1t 1s relatively common for the return branch to appear in the same block of
Instructions as another conditional branch, in which case having an entry able to represent
both the presence and offset of the return branch and the target address, type and offset for
a non-return branch in the same block can be useful.

Figure 9 shows another alternative way of representing the BTB entries. In this
example, the BTB entries are divided into a first portion 100 which includes entries 80 which
are Incapable of predicting the presence of a return branch Instruction within the

corresponding fetch block of instructions. For example the entries 80 In the first portion 100
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of the BTB may be similar to those shown In Figure 7/, except that the branch type 90 for
each predicted branch 88 may not have any encoding allocated for indicating a return
branch instruction.

On the other hand, in a second portion 102 of the BTB 60, each entry 80 may be
reserved for fetch blocks which include a return branch instruction. For example, each entry
380 In the second portion 102 could simply comprise, in addition to valid and tag fields 84, 86
or any other information for locating whether the BTB includes an entry corresponding to the
current fetch block X, an indication of return branch presence 96 and offset 98, without
providing any predictions for any non-return branch instructions. That is the fields 88 shown
IN Figure 8 could be omitted from each return branch predicting entry 80 within portion 102.
For example portion 102 could be a dedicated way of a set-associative cache which Is
reserved for fetch blocks including the return branch. In some cases, the number of return
branch supporting entries within portion 102 may be less than the total number of other
entries within portion 100. BTB lookup circuitry 104 may be provided to lookup both portions
100, 102 of the BTB to determine whether, for a given fetch address X, there Is a
corresponding entry 80 which matches that block of instructions.

With this approach, some dedicated entries are reserved for return branches in the
BTB. These entries may store the program counter address of the return branch, but not any
target address of the return branch as this would be redundant in view of the CRS 64. As the
return stack has space for a limited number of return addresses, the number of entries 80 In
portion 102 can remain limited. This enables return branch presence predictions to be
provided with much less bit storage In the BTB, so that performance can be increased
without adding much extra hardware. Hence the performance boost per-bit of data storage
can be increased.

It will be appreciated that Figures 8 and 9 are just two approaches which could be
used to provide BTB entries which prohibit any encoding of both the presence and target
address for a return branch instruction. Another approach as shown in Figure 10 could be to
have a reserved portion 102 for return branches as shown in Figure 9, but where each entry
30 In the reserved portion 102 can have a format similar to that of Figure 8 where at least
one set 88 of fields for a further branch of a type other than the return branch is also
provided within the same entry as the return branch prediction itself. Note that the valid bit
34 and tag value 86 are not shown in Figure 10 for conciseness, but would still be provided.

For example, the approach shown in Figure 10 could be used In a system where the
BTB iIs divided Iinto a main BTB structure which stores a larger number of entries and a
micro-BTB (u-BTB) structure which caches a smaller number of entries selected from the
main BTB, with fetch block address lookups being performed first in the u-BTB, and a lookup
to the main BTB being performed only If there is a miss Iin the u-BTB. With this approach,
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allocations are made in the u-BTB when there is a hit in the main BTB. No deallocations are
made In the u-BTB. Instead, entries of the u-BTB are replaced with an allocation policy such
as round-robin or a random scheme. The u-BTB may be fully associative, so all entries of
the u-BTB may be looked up simultaneously.

Hence, the structure shown Iin Figure 10 may be used for the u-BTB, to divide the
u-BTB Into non-return-branch-supporting (non-RET) entries 100 and return-branch-
supporting (RET) entries 102. The main BTB structure may be implemented with entries
similar to Figure 8 for example. On a miss in the u-BTB and a hit in the main BTB, if the hit
BTB entry predicts presence of the return branch, the hit entry may be allocated to one of
the RET entries 102 of the u-BTB, while If the hit BTB entry predicts absence of any return
branch, it may be allocated to one of the non-RET entries 100 of the u-BTB. On a lookup In
the u-BTB for a particular fetch block address X, both the non-RET entries 100 and the RET
entries 102 are looked up, with the tag values 86 in each non-RET entry 100 and each RET
entry 102 being compared with the fetch address to determine whether there is a hit or miss.
As In the previous examples, by eliminating the target address field for the return branch
Instruction from the BTB structure, this can improve area efficiency and timing.

Also, while the examples of Figures 8 to 10 show cases where the entire BTB
structure I1s such that there are no entries capable of indicating both a prediction of the
presence of a return branch in the looked up block of instructions and a prediction of the
return branch’s target address, this i1s not essential. In some cases, only a portion of entries
30 of the BTB may have an encoding which is incapable of simultaneously encoding both
return branch presence and the corresponding target address. In this case there may still
also be some entries 80 of the type shown In Figure /7 which provide a full prediction of
branch type and branch targets 90, 94 which permit the target to be indicated by the target
fleld 94 even for return branches. However, the provision of such entries may provide
redundant information in view of the CRS 64, and so it may be more efficient if the entire
BTB structure 60 includes entries for which every entry Is incapable of specifying both return
branch presence and return branch target address (i.e. it Is only possible for return branch
presence to be indicated in an entry where there is not a corresponding indication of the
target address for the return branch, while those entries which do permit the indication of a
target address only provide that target address prediction for non-return branches).

Figure 11 1s a flow diagram showing a method of looking up a BTB, for example
using the BTB lookup circuitry 104. At step 120 the BTB 60 Is looked up for a block of
Instructions identified by the fetch block address X. The index value for looking up the BTB is
computed based on the fetch block address and this indexes into a certain set of entries 80
of the BTB, and then any tags 86 of the Indexed set of entries are compared with

corresponding portions of the fetch block address X to determine whether any of the indexed
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entries match the fetch block address. At step 122 the BTB lookup circuitry 104 determines
whether there was a hit in the BTB (1.e. whether there was an indexed entry for which the tag
matched). If not, then no branches are predicted to be present within the current fetch block
and so at step 124 the next fetch address X' Is set to the address of the next block of
Instructions which follows sequentially from the current block. At step 126 the current fetch
address X and addresses of any subsequent instructions in the same fetch block are added
to the fetch queue 68 and then the next fetch address X' becomes the fetch block address X
for the next cycle of branch prediction, and then the method proceeds back to step 120.

If there was a hit in the BTB at step 122, then at step 128 the selector 66 determines,
pased on the outputs of the BTB 60 and the BDP 62, whether the current fetch block of
Instructions Is predicted to Include any taken branch instruction (either conditional or
unconditional, including return or procedure calling branches). If there is no branch predicted
to be taken then again the method proceeds to step 124 where the next fetch address Is the
address of the next block of instructions following on sequentially in the program flow.

If at step 128 the selector 66 determines that there 1s at least one taken branch
predicted, then at step 130, the selector 66 determines whether the first taken branch in the
block Is predicted to be a return branch instruction. If so, then at step 132 the next fetch
address X' Is predicted to be the return address which is popped from the top of the call-
return stack 64. Hence the pointer which points to the top of the stack is updated so that the
next most recently pushed address onto the CRS becomes the top of the stack. Hence, the
prediction made by the CRS 64 is used in preference to any indication of the target address
provided by the BTB 60 (although with the encoding shown In Figures 8 and 9, the BTB will
not provide any target address prediction when the branch Is predicted to be a return
branch). After step 132 the method returns to step 126 again to update the fetch queue with
address X and the addresses of subsequent instructions up to the taken branch, and then
the next fetch address becomes the current fetch address for the next branch prediction
cycle.

If at step 130, the first taken branch is not predicted to be a return branch then at
step 134 the selector 66 determines whether the first taken branch is predicted to be a
procedure calling branch. If so then at step 136 the address of the next sequential instruction
after the calling instruction is pushed onto the call return stack 64, and at step 138 the next
fetch address X' Is the predicted target address specified by the BTB for the first taken
pbranch. The method then proceeds to back to step 126 where the current fetch address X
and any addresses of instructions up to the first taken branch are added to the fetch queue,
and the method continues to step 120 for the next branch prediction cycle with the next fetch
address X' from the previous cycle becoming the fetch block address X for the current cycle.

If at step 134 the first taken branch was not predicted to be a procedure calling branch then
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step 136 Is omitted, and the next fetch address X' is predicted based on the output of the
BTB at step 138 as described above.

While Figure 11 shows the target address predictions being made based on the BTB
and CRS, some examples of branch predictors could also have additional prediction
structures for predicting branch target addresses for specific types of branches, such as
polymorphic branches. Hence, If another branch prediction structure predicts a target
address with a certain level of confidence, or If the branch type predicted by the BTB for the
first taken branch indicates that the branch type iIs better predicted using another branch
prediction structure, then the target address predicted by this other branch prediction
structure could be used instead of the target address provided by the BTB at step 138.

by

In the present application, the words “configured to...” are used to mean that an
element of an apparatus has a configuration able to carry out the defined operation. In this
context, a “configuration® means an arrangement or manner of interconnection of hardware
or software. For example, the apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device may be programmed to perform
the function. “Configured to” does not imply that the apparatus element needs to be
changed Iin any way In order to provide the defined operation.

Although Illustrative embodiments of the invention have been described Iin detall
herein with reference to the accompanying drawings, it is to be understood that the invention
IS not limited to those precise embodiments, and that various changes and modifications can
be effected therein by one skilled in the art without departing from the scope and spirit of the

Invention as defined by the appended claims.
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CLAIMS:

1. Branch prediction circuitry comprising:
a return address prediction structure to store at least one predicted return address;
a branch target buffer (BTB) structure comprising a plurality of entries for specifying
predicted branch information for a corresponding block of instructions; and
BTB lookup circuitry to look up whether the BTB structure comprises a corresponding
entry for a given block of instructions, and when the BTB structure comprises the
corresponding entry, to determine, based on the predicted branch information specified In
the corresponding entry:
a prediction of whether the given block of instructions includes a return
branch instruction for which a predicted target address Is to be predicted based on a
predicted return address obtained from the return address prediction structure;
a prediction of whether the given block of instructions includes at least one
other type of branch instruction other than the return branch instruction; and
when the given block of instructions 1s predicted to include the at least one
other type of branch instruction, a predicted target address of the at least one other
type of branch instruction; in which:
within at least a subset of entries of the BTB structure, each entry specifies the
predicted branch information with an encoding capable of indicating that the corresponding
block of instructions Is predicted to include the return branch instruction but incapable of

iIndicating the predicted target address for the return branch instruction.

2. The branch prediction circuitry according to claim 1, in which the BTB structure
comprises at least one return-branch-supporting entry to specify predicted branch
Information with an encoding capable of Iindicating that the corresponding block of

Instructions Is predicted to include the return branch instruction.

3. The branch prediction circuitry according to claim 2, in which, for each return-branch-
supporting entry, a field for specifying the predicted target address for the return branch
Instruction i1s omitted from the predicted branch information specified in the return-branch-

supporting entry.

4. The branch prediction circuitry according to any of claims 2 and 3, in which, for each
return-branch-supporting entry, the predicted branch information specifies an offset value
identifying an offset of an address of an instruction predicted to be the return branch

Instruction relative to an address identifying the corresponding block of instructions.
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5. The branch prediction circuitry according to any of claims 2 to 4, in which, for each
return-branch supporting entry, the predicted branch information also specifies information
relating to at least one further branch instruction of the at least one other type that is within

the same block of instructions as the return branch instruction.

O. The branch prediction circuitry according to claim 5, in which, for each further branch
Instruction of the other type, the predicted branch information comprises a predicted target

address for that further branch instruction.

/. The branch prediction circuitry according to any of claims 5 and 6, in which, for each
further branch instruction of the other type, the predicted branch information comprises a
predicted branch type represented by an encoding incapable of identifying that the predicted

branch type Is the return branch instruction.

3. The branch prediction circuitry according to any of claims 2 to 7, in which the BTB
lookup circuitry i1s configured to exclusively reserve the at least one return-branch-supporting

entry for storing predicted branch information for blocks of instructions that include a branch

Instruction predicted to be a return branch instruction.

9. The branch prediction circuitry according to any of claims 2 to 8, in which the BTB
structure also comprises at least one non-return-branch-supporting entry to specify predicted

branch information with an encoding incapable of indicating that the corresponding block of

Instructions Is predicted to include the return branch instruction.

10. The branch prediction circuitry according to claim 9, in which when the corresponding
entry 1s one of the at least one non-return-branch-supporting entry, the BTB lookup circuitry
IS configured to determine that the given block of instructions is not predicted to include the

return branch instruction.

11. The branch prediction circuitry according to any of claims 9 and 10, in which, for each
branch instruction identified by a non-return-branch-supporting entry, the predicted branch
InNformation comprises a predicted branch type represented by an encoding incapable of

identifying that the predicted branch type is the return branch instruction.
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12. The branch prediction circuitry according to any of claims 9 to 11, in which the
number of return-branch-supporting entries is less than the number of non-return-branch-

supporting entries.

13. The branch prediction circuitry according to any preceding claim, in which the return

address prediction structure comprises a last-in-first-out data structure.

14. The branch prediction circuitry according to claim 13, in which the BTB lookup
circuitry 1s configured to push a return address onto the last-in-first-out data structure In
response to a determination that the corresponding entry of the BTB structure provides a
prediction that the given block of instructions comprises a procedure call instruction with no

earlier branch instruction of the given block of instructions being predicted taken.

15. The branch prediction circuitry according to any preceding claim, comprising a
selector configured to select, based on a plurality of branch prediction structures including
the return branch prediction structure and the BTB structure, a next instruction fetch block
address identifying a next block of instructions to be fetched; in which:

when the BTB structure provides a prediction that the given block of instructions
Includes the return branch instruction and no earlier branch instruction of the given block of
INnstructions is predicted taken, the selector is configured to select the return branch address
provided by the return branch prediction structure as a predicted target address for the
return branch instruction in preference to a predicted target address provided by at least one

other branch prediction structure of the plurality of branch prediction structures.

10. The branch prediction circuitry according to any preceding claim, in which the subset

of entries comprises all entries of the BTB structure.

17. A data processing apparatus comprising the branch prediction circuitry of any

preceding claim.

18. A branch prediction method comprising:

looking up whether a branch target buffer (BTB) structure, which comprises a
plurality of entries each for specifying predicted branch information for a corresponding block
of Instructions, comprises a corresponding entry for a given block of instructions; and

when the BTB structure comprises the corresponding entry, determining based on

the predicted branch information specified in the corresponding entry:
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a prediction of whether the given block of instructions includes a return
branch instruction for which a predicted target address is to be predicted based on a
predicted return address obtained from a return address prediction structure;
a prediction of whether the given block of instructions includes at least one
other type of branch instruction other than the return branch instruction; and
when the given block of instructions 1s predicted to include the at least one
other type of branch instruction, a predicted target address of the at least one other
type of branch instruction; in which:
within at least a subset of entries of the BTB structure, each entry specifies the
predicted branch information with an encoding capable of indicating that the corresponding
block of Instructions includes the return branch instruction but incapable of indicating the

predicted target address for the return branch instruction.
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