Office de la Proprieté Canadian
Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2483287 A1 2003/11/20

(21) 2 483 287

12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION

(13) A1

(86) Date de depot PCT/PCT Filing Date: 2003/05/08
(87) Date publication PCT/PCT Publication Date: 2003/11/20
(85) Entree phase nationale/National Entry: 2004/10/22

(86) N° demande PCT/PCT Application N

(87) N° publication PCT/PCT Publication No.: 2003/096191
(30) Priorité/Priority: 2002/05/11 (60/379,934) US

0.. E

ACCENTU

5 2003/004904 (72) Inventeurs/Inventors:

(74) Agent: SMA

(51) ClL.Int.”/Int.Cl." GOB6F 11/36

(71) Demandeur/Applicant:

RE GLOBAL SERVICES GMBH, CH

BARRY, MARGARET MOYA, US;
MCEVOY, JOHN CHARLES, US;
STEWART, MATTHEW PHILLIP, US;
BOWMAN, CHRISTINE ANN, US

RT & BIGGAR

(54) Titre : SYSTEME ET PROCEDE POUR L'ESSAI AUTOMATIQUE DE LOGICIEL
54) Title: AUTOMATED SOFTWARE TESTING SYSTEM AND METHOD

TERMINAL

o WP ¢ Bk bbp—

USER INTERFACE | /

TEST
APPLICATION

UNDI

| -

| APPLICATION l/
|

|

— — ek — a4 — — L1

TEST APPLICATION
DATABASE

k___———" ______,_,..J

(57) Abréegée/Abstract:

A system and method for testing an application Incl
providing the data as input to the application. The inp
Input data for each test case. The system also Incl

100

116

112

(108

CONTROLLER

4

MODULE 1

A

120

MODULE N

— — | 124
B Amm———
MODULE 2 |

US!

=ST

122

TEST REPORTING
ER INTERFACE

CONFIGURATION
DATABASE

e

\l FLOW TABLE

MODULE INPUT
TABLES

— —

126

\-1 RESULTS TABLE ‘

C ana dg http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca O P

OPIC - CIPO 191

MAPPING
INTERFACE

Udes modules capable of reading data from one or more data tables and
Ut data Is correlated by test case, so that each module may provide different
udes a controller that executes the modules. The controller Is capable of

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

[C

CA 2483287 A1 2003/11/20

(21) 2 483 287
(13) A1

(57) Abrege(suite)/Abstract(continued):

determining an execution order for the modules by reading a flow table. The flow table correlates each test case with one or more
modules, and further correlates each module within the test case with an execution order. The system may read results that the
application generates in response to the input data, and correlate the results with the test case and module in a results table. The

results table may also contain expected results, and the system may compare the actual results with the expected results to
determine whether the application is functioning properly.

CA 02483287 2004-10-22

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2003/096191 A3

(51) International Patent Classification’: GOOF 11/36 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
. L . AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(21) International Application Number}.)CT/EPZO(B/OOA904 CZ. DE. DK. DM. DZ. EC. EE. ES. FI. GB. GD. GE. GH.
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,

(22) International Filing Date: 8 May 2003 (08.05.2003) LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ., NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,

(43) International Publication Date

20 November 2003 (20.11.2003)

(25) Filing Language: English SE. SG, SK, SL, TJ, TM. TN, TR, TT, TZ, UA, UG, UZ

(26) Publication Language: English VC, VN, YU, ZA, ZM, ZW.

(30) Priority Data: (84) Designated States (regional): ARIPO patent (GH, GM,
60/379,934 11 May 2002 (11.05.2002) US KE, LS, MW, MZ SD, SL. SZ TZ UG, ZM, ZW),

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (Al, BE, BG, CH, CY, CZ, DE, DK, EL,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
(72) Inventors: BARRY, Margaret, Moya; 1422 South GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Halsted 2 A, Chicago, IL 60607 (US). MCEVOY, John,

Charles; 6 Lake Drive Court, Algonquin, IL. 60102 (US). Published:

(71) Applicant: ACCENTURE GLOBAL SERVICES
GMBH [CH/CH]; Geschiftshaus Herrenacker 15,
CH-8200 Schaffhausen (CH).

— STEWART, Matthew, Phillip; 168 N Myrtle Ave, Villa ~— Wwith international search report |
— Park, IL 60181 (US). BOWMAN, Christine, Ann; 1743 before the expiration of the time limit for amending the
— Aspen Drive, Crown Point, IN 46307 (US). claims and to be republished in the event of receipt of
— amendments
=== (74) Agents: McLEISH, Nicholas, Alistair, Maxwell, et al.;
— Boult Wade Tennant, Verulam Gardens, 70 Gray's Inn (88) Date of publication of the international search report:
— Road, London WC1X 8BT (GB). 24 June 2004
— [Continued on next page]
m (34) Title: AUTOMATED SOFTWARE TESTING SYSTEM AND METHOD
— 100
E— 102 (| 16
S — USER INTERFACE % . TEST REPORTING
E— TERMINAL USER INTERFACE
— 112 i
E— I 104 (‘108 \ ‘
—— 4 \@NFIG®
— TEST > CONTROLLER ——— DATABASE
E— APPLICATION
— t 110 122
— L MODULE - — N~ FLOW TABLE
= oo L | DU . gV
— | UNDER TEST | \K MODULE 2 o6 ABLES
| |
0 N \ PV “J ResuLTs TaBLE
< A K'IOG \ /
- T
v - 114
TES
N Eﬁ}z&c&nom — e — | MAPPING | /
o INTERFACE
\& — —
N
& 57) Abstract: A system and method for testing an application includes modules capable of reading data from one or more data
~— y g PP P g
¢f, tables and providing the data as input to the application. The input data is correlated by test case, so that each module may provide
& different input data for each test case. The system also includes a controller that executes the modules. The controller is capable
g of determining an execution order for the modules by reading a flow table. The flow table correlates each test case with one or

more modules, and further correlates each module within the test case with an execution order. The system may read results that
o the application generates in response to the input data, and correlate the results with the test case and module in a results table. The
a results table may also contain expected results, and the system may compare the actual results with the expected results to determine
whether the application is functioning properly.

CA 02483287 2004-10-22

WO 2003/096191 A3 |IHIHHVA!H HARO AL R 10 A ARRRA R VAW O A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

23

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

AUTOMATED SOFTWARE TESTING SYSTEM AND METHOD

FIELD OF THE INVENTION

The present invention relates generally to a system for testing software and

particularly to methods and systems for automatically testing software using relational tables.

BACKGROUND OF THE INVENTION

Software development requires extensive repetitive testing both of the first
version and of each new version of the software that 1s produced throughout the development
process. With each new version comes a repetitive series of tests to determine if the changes
made to create the version have affected the software in an unintended manner. This testing
is usually accomplished by a testing organization, which is separate from the software
development organization, for example, in a different department.

In addition, software development 1s usually accomplished in modules that

require complete testing as each new module is added to the software product. Thus,

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

repetitive testing 1s also required to ensure that each new module, besides adding the
functions 1t was designed to accomplish, will not detrimentally affect the functionality of the

integrated software product. Software tests may be organized into test cases, so that different
test cases test the functionality of different modules or sets of modules, or of different
functionalities of the software.

Advances in technology have made 1t possible to record the keystroke mput of
an operator as the first version of software is tested. Subsequent versions are tested by
playing back the previously recorded session. A system of this type 1s disclosed by Kerr et
al. in U.S. Pat. No. 4,696,003, 1ssued Sep. 22, 1987. Another relevant keystroke recording
and playback system is the Advanced Test System For Software Test as disclosed in IBM
Technical Disclosuré Bulletin, Vol. 30, No. 9, Feb. 9, 1988. Still another recording and
playback system is disclosed by Pope, et al. 1n U.S. Pat. No. 5,335,342, 1ssued Aug. 2, 1994.
In this system, a first version of interactive software 1s executed and all input signals, such as
mouse activity and keystrokes, and output screens are recorded. When a new version of the
software 1s created, the recorded input signals may be introduced to the software, and the new
output screens compared to the recorded output screens.

Generally, software testing organizations use some type of record and
playback functionality of input and/or output to produce one automated test script per test
case. Each test script contains the data, execution logic and expected results for the test case.
Within each script there may be common application functionality and logic.

Software testing organizations often use commercially available automated
testing tools to test software. Record and playback test script generation is the most

commonly demonstrated feature of commercially available automated testing tools. Record

\W 2

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

and playback functionality i1s one of the most intuitive methods to test software. Merely
recording software input and playing 1t back tends to make the process of test automation
appear very straightforward and easy. As the software application under test changes,
however, 1t may also be necessary to change one or more of the test scripts. Maintaining a
large number of test scripts that require frequent modification may become time consuming

to the point of being overwhelming.

To help minimize the maintenance of test scripts, testing organizations have
begun to use the record and playback functionality in conjunction with parameterized data 1n
an effort to create more robust recorded scripts. Data 1s said to be “parameterized” when the
automated test scripts read the test data values ﬁ‘om.an external source, such as a file, rather
than having the values hard coded into the scripts. For example, pointer movements and
selections that navigate through a series of screens may be “hard coded™ into a script, while
keyboard strokes (text data) may be read from a data structure or a data file. This method
allows a varlety of data scenarios to be tested by a single test script.

Nevertheless, even when using parameterized data with recorded scripts, many
test cases have to be created to cover all of the target test cases. For example, one test script
may be needed for each test case. Therefore, with each of the above methods 1t may become
more difficult to maintain existing automated scripts as more test cases are automated.
Maintenance of these scripts may become more complicated both during initial testing and
later in regression testing. It would be desirable to provide an automated test system that

allowed a single script to be used with many different test cases.

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

SUMMARY OF THE INVENTION

A system for testing an application is provided that includes a flow table that
relates test case identifiers to order identifiers and module identifiers, and an input table that
relates the test case identifiers to input values. The system also includes a module that
corresponds to one of the module identifiers, which may read an input value from the input
table and provide the input value to the application. The system may also include a controller
that reads the flow table and determines the module identifier based on one of the test case

identifiers. The controller may execute the identified module.

The system may also include a results table. If so, then the controller may
receive an output value from the application, and relate the output value to the test case
identifier and the module identifier in the results table. Each of the tables in the system may
be stored 1n a database.

A method for testing an application is also provided, which includes a step of
relating module identifiers to test case identifiers and order 1dentifiers in a flow table, and a
step of relating the test case identifiers to input values 1n an input table. The method also
includes the step of reading a module 1dentifier that corresponds to a test case identifier and
an order identifier from the flow table, and executing a module that corresponds to the
rhodule identifier. The method further includes reading from the input table, via the module,
an input value that corresponds to the test case identifier and providing the input value to the
application.

The method may also include the steps of recetving an output value from the
application and relating the test case identifier and the module 1dentifier to the first output

value in a results table. Additionally, the method may include the steps of receiving a second

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

output value from the application and relating the second output value to the test case
identifier and the module identifier in the results table. Where the method includes receiving
the first and second output values, the method may also include the step of determining

whether the first output value is equal to the second output value.

Other systems, methods, features and advantages of the inveqtion will be, or
will become apparent to one with skill in the art upon examination of the following figures
and detailed description. It is intended that all such additional systems, methods, features and

advantages be included within this description, be within the scope of the invention, and be

protected by the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a system-level data flow diagram of a testing system.
FIG. 2 illustrates a database of relational tables.

FIG. 3 illustrates relational tables of input data.

FIG. 4 illustrates a relational table of test data results.

FIG. 5 illustrates relational tables of flow information for modules.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

Referring to Fig. 1, a system-level data flow diagram of a testing system 100 1s
oenerally illustrated. The testing system 100 includes a user interface terminal 102, a test
application 104, a test application database 100, a controller 108, modules 110, a test

configuration database 112, a mapping interface 114, and a test reporting user interface 116.

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

The test configuration database 112 includes a flow data table 122, module 1nput tables 124,
and a results data table 126.

Also shown in Fig. 1 is an application under test 118, which is to be tested by
testing system 100. The term “application” is used herein to refer to any combination of
hardware and software that accepts one or more electromagnetic (including optical) signals as
an input and produces one or more electromagnetic signals as an output. One example ot an
application is an internet hyper-text transfer protocol (HTTP) chient and/or server program
running on one or more computer systems. Another example of an application 1s an
embedded control program running on a microprocessor inside a wireless telephone or
terminal. A further example of an application is a software program running on a personal
computer having a graphical user interface (GUI). The systems and methods for practicing
the present invention function equally well with any type of application under test 118, and
the illustrative embodiments herein are not intended to limit the claimed invention in any
way.

The modules 110 may each be a software module 120 that 1s capable of
stimulating the application under test 118 by proving input signals to the application. For
example, each module 120 may be a C shell script on a UNIX system. Alternatively, each
module 120 may be a stand-alone executable program. In a preferred embodiment, each
module 120 is a script for use with test software, for example the test application 104. The
test application 104 may be a commercially available package, such as WinRunner test
software provided by Mercury Interactive of Sunnyvale, California, SQA Robot supplied by
SQA, Inc. of Wobum, Massachusetts, or MS Test, which is supplied by Microsoft

Corporation of Redmond, Washington, or any other type of package.

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

Where the test application 104 is a commercially available package, a
controller 108 may be used to provide an interface between the test application 104 and the
modules 110. For example, the controller 108 may appear to be one or more test scripts from
the perspective of the test application 104, and may appear to be the test application 104 to
the modules 110. Where the test application 104 is specifically designed to work with the
modules 110 described herein, the controller 108 may be unnecessary. In this case, the
functionality attributed to the test application 104 and the controller 108 may all be

preformed by an integrated testing application.

The modules 110 may be created by manually entering the code of each
module 120 into a text editor or a similar software program. In a preferred embodiment,
however, the modules 110 are recorded using the record/playback functionality of the test
application 104. The recording of the modules 110 may be performed by the standard
method inherent in the test application 104. Alternatively, the modules 110 may be recorded
using the test application 104, and then modified as desired with a text editor or a sumilar
software program capable of editing source code. For example, the modules 110 may be
modified in order to parameterize the input data provided to the application under test 113, so
that the input data may vary from one test case to the next test case.

The flow data table 122, the module input tables 124, the results data table
126, and the test application database 106 may each be a relational table. 'The terms “table”,
“relational table”, and “database” are used interchangeably herein to refer to a data structure
capable of relating one set of data elements to one or more other sets of data elements. For

example, a relational table may relate a set of names to a set of telephone numbers.

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

A relational table containing other tables 1s referred to herein as a “‘database”

g

for clarity, but the use of this term 1s not intended to limit the claimed invention in any way.
A database may contain one or more tables that may or may not be related. In a preferred
embodiment, relational tables are created and maintained via database software, such as
Microsoft Access supplied by Microsoft Corporation, MySQL supplied as open source
software at Attp://www.mysqgl.com/ and elsewhere, Sybase supplied by Sybase, Incorporated,

Oracle supplied by Oracle Corporation, or some other type of database software.

The claimed invention, however, 1s not limited to the use of commercially
available database software, and other methods of creating the tables described herein may be
used. For example, the tables may be implemented as data structures in the test application
104, the controller 108, and/or the modules 110. The creation of data tables'using arrays,
linked lists, or other data structures and/or data classes with our without file structures 1s well
known by those skilled in the art of software engineering.

The flow data table 122, the module input tables 124, the results data table 126
and the test application database 106 may each exist in a separate database, or other data
structures. In a preferred embodiment, however, the flow data table 122, the module mput
tables 124, and the results data table 126 all exist 1n a te‘st configuration database 112. The
test application database 106 may comprise a single table, and exist as a separate database.
The test configuration database 112 and the test application database 106 may exist on one or
more database servers separate from the other components of the testing system 100. Where
one or more database servers are utilized, communications between the test configuration
database 112 and the other components of testing system 100 may be camied out via a

computer network or some other communications medium.

10

15

20

CA 02483287 2004-10-22
WO 03/096191 PCT/EP03/04904

In a preferred embodiment, the test conﬁguratioh database 112 includes one or
more data entry forms capable of acting in conjunction with the test reporting user interface
116 as a high-level user interface for the flow data table 122, the module input tables 124,
and the results data table 126. Alternatively, the flow data table 122, the module input tables
124, and the results data table 230 may be directly modified by a user via the test reporting
user interface 116 or some other user interface, without the use of forms.

The user interface terminal 102 and the test reporting user interface 116 may
each be either a physical terminal, or an interface capable of recelving input and providing
visual and/or audio output. In a preferred embodiment the user interface terminal 102 and the
test reporting user interface 116 are each a computer terminal having a keyboard, a pomting
device, a display, and a graphical user interface. Altematively, user interface terminal 102
and the test reporting user interface 116 may each be an interface, such as a window,
accessed through a remote terminal. The user interface terminal 102 and the test reporting
user interface 116 may be either directly connected to the other components of testing system
100, or each may communicate with testing system 100 via a network.

To summarize the operation of testing system 100, a user creates the modules
110, for example by using the recording functionality of the test application 104. The user
then parameterizes each module 120 as desired. The run order of the modules 110 within
each test case is then entered into the flow data table 122. The parameters (input values) for
each module 120 are entered into the module input tables 124. Once each of the above set-up
steps has been completed, not necessarily in the above order, the testing system 100 1s

prepared to test the application under test 118.

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
10

During testing, the controller 108 reads the flow data table 122, and executes,

via the test application 104 to execute, each module 120 in sequence according to the flow
data table 122. As each module 120 1s being executed by the test application 104, the module
120 reads input values from the module input tables 124. The test application 104 provides
these input values to the application under test 118. Also, the test application 104 reads the
output values (results) from the application under test 118, and stores the output values 1n the
test application database 106. These “actual results” may be stored as “expected results”
where the application under test 118 1s a baseline version, or compared to previously stored
“expected results” where the application under test‘ 118 1s a new or updated version.

An 1llustrative flow data table 122 1s shown 1n detail in FIG. 2, illustrative
module input tables 124 are shown 1n detail in FIG. 3, and an illustrative test application
database 1s shown in detail in FIG. 4. Using these detailed exemplary tables, the operation of
the testing system 100 will now be explained in greater detail. The form and content of the
tables 1n FIGS. 2-4 will vary greatly depending on the nature of the application under test
118. The following description of the testing system 100, and the tables in FIGS. 2-4 are
merely illustrative, and are not intended to limit the claimed invention in any way.

The process of testing the application under test 118 begins when a user
activates the test application 104 by the use of user interface terminal 102. The test
application 104 may execute the controller 108, or, 1f the controller 108 is already running,
then the test application 104 may signal the controller 108 to begin one or more test cases. In
response, the controller 108 may read data from the flow data table 122 to determine the

execution order of the modules 110 within the one or more test cases.

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
11

As shown in FIG. 2, the flow data table 122 relates a test case identifier and a
run order value to a module identifier. Each module 1dentifier is associated with one of the
modules 110. Each test case identifier 1s associated with a particular test case. The run order
values indicate the flow control for the modules within a test case.

Consider a flow control example where a first test case 1s associated with test
case identifier “1”, a second test case is associated with test case identifier “2”, a first module
120 is associated with module identifier “1”°, a second module 120 is associated with module
identifier “2”. and so on. As shown in FIG. 2, for the first test case, the run order value of
“1” is associated with the second module 120. Therefore, for the first test case, the second
module 120 will be executed first. Likewise, for the first test case the run order value of “2”
is associated with module identifier “10”, so the tenth module 120 will be executed second.
In this fashion, the controller 108 reads a module flow order for a test case from the tlow data
table 122, and executes modules 110 in turn via the test application 104.

Upon execution, each module 120 may read input values from the module
input tables 124 shown generally in FIG. 2, and in detail in FIG. 3. In FIG. 3, four illustrative
module input tables 124 are shown. In this illustrative example, the module input tables 124
include a user table 202, an address table 204, a coverage table 206, and an insurer table 208.

Each medule 120 may be provided with a test case identifier by, for example,
the controller 108 or the test application 104. Upon execution, a module 120 may read input
values based on the provided test case identifier. For example, the first module 120 may
simulate a login sequence of the application under test 118. Given a test case identifier of
“1” the first module 120 may read the values “ALBERT”, “BUNDY” and “SHOES” from

the user table 202.

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
12

Based on the column identifiers, the first module 120 may associate the value
“ALBERT” with a parameter representing a user’s first name, the value “BUNDY” with a
parameter representing a user’s last name, and the value “SHOES” with a parameter
representing a user’s password. In this illustrative embodiment, the columns of the module
input tables 124 aré designated descriptively to improve legibility, but any designations may
be used. The first module 120 may then provide, via the test application 104, these values
from the user table 202 as inputs into the application under test 118.

Each module 120 may also cause the application under test 118 to generate
one or more output values that may be read by the test application 104. For example, 1n
response to the input values “ALBERT”, “BUNDY" and “SHOES”, the application under
test 118 may generate the output “WELCOME”. The test application 104 may relate the
senerated output values to corresponding test case identifiers and module identifiers 1n the
test application database 106, shown in FIG. 4.

For a further example, when the tenth module 120 executes with a provided
test case identifier “2”, it may read the values “110 RUSH ST”, “CHICAGO”, “IL”, and
“TONES” from the address table 204. These input values may then be provided as mnputs into
the application under test 118. In response to the mput values “110 RUSH ST7,
“CHICAGO”, “IL”, and “JONES”, the application under test 118 may generate the output
“INVALID ADDRESS”. The test application 104 may relate the generated output value
“TNVALID ADDRESS” to test case identifier “2” and module identifier “10” in the test
application database 106.

Likewise, when the third module 120 executes with a provided test case

identifier “17, it may read the value “ALLSTATE” from the insurer table 208, and cause the

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
13

application under test 118 to generate the result “ALLSTATE”. The test application 104 may
relate the generated output value “ALLSTATE” to test case identifier “1” and module
identifier “3” in the test application database 106. Finally, when the fourth module 120
executes with a provided test case identifier “17, it may read the value “YES” from the
coverage table 206, and cause the application under test 118 to generate the result “NO”. (As

will be explained below, the result “NO” 1s incorrect, and indicates that the application under

test 118 is not functioning properly.)

In a preferred embodiment, the testing system 100 operates in three modes. In
a first mode, referred to herein as the “test mode”, testing system 100 compares actual results
from the application under test 118 against a stored set of expected results. For example, the
test mode may be used to debug the application under test 118 during creation of a baseline
version of the application under test 118, or during regression testing of an updated version of
the application under test 118.

In the test mode, the mapping interface 114 reads one or more sets of the
output values (actual results), test case identifiers and module 1dentifiers from the test
application database 106. The mapping interface 114 then relates these output values to
previously stored expected output values in the results data table 126. The mapping iterface
114 accomplishes this “mapping” by using the test case identifiers and module i1dentifiers as
indices into the test application database 106. Once a test case has been at least partially
completed, the user may view the test results via the test reporting user interface 116.

In a second operational mode, referred to herein as the “baseline mode”, the
mapping interface 114 reads one or more sets of the output values, test case identifiers and

module identifiers from the test application database 106 after tests have been run on a

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
14

baseline (known working version) of the application under test 118. In the baseline mode,
the mapping interface 114 stores these output values from the baseline of the application
under test 118 as “expected results” in the results data table 126. The mapping interface 114
relates these expected results to test case identifiers and module identifiers. In this manner,
expected output values may be automatically generated and stored by simply testing a

known-working baseline of the application under test 118,

In a third operational mode, referred to herein as the “manual mode™, the user
may manually enter expected results for each test case identifier and module identifier pair.
In manual mode, the test reporting user interface 116 may utilize a user interface, such as a
database entry form, to facilitate the manual entry or modification of expected results in the
results data table 126. Furthermore, the manual mode may also be used to enter information
into the flow data table 122, the module input tables 124, and the results data table 126.
Again, forms may be used to facilitate the entry of data into the test configuration database
112, or data may be entered directly into the test configuration database 112.

In the exemplary embodiment .described herein, the expected results
“WELCOME”, “VALID ADDRESS”, “ALLSTATE”, and “YES” were related in the result
table 126 to test case identifier 17 and module identifiers “2”, “107, “3”. and “4”,
respectively. The actual results, however, differ because test case i1dentifier “1” and module
identifier “2” actually produced an output of “NO” rather than the expected output of “YES”.
By using the test reporting user interface 116, the user may either manually compare the
expected results and the actual results, or utilize a comparison script to indicate whether a test

case executed successfully.

10

15

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
13

In the embodiment described above, the run orders of the modules 110 are
indicated separately for each test case. In an alternate embodiment, run orders of the modules
110 are categorized into flow types, and each test case 1s associated with a flow type. An
exemplary flow table 122 illustrating this altemate embodiment 1s shown 1in FIG. 5. A flow

order table 502 relates each test case with a tlow type.
For example, a first test case is associated with a flow type “NORMAL” 1n
flow order table 502. A flow type table 504 associates each flow type with run order values

and module 1dentifiers. In this example, each test case associated with the tlow type
“NORMAL” will execute the modules 110 associated with module 1dentifiers “2”°, “107, “37,
“qr <17 oc6”, 57 97 “8” and ““7”, in that order. In this manner, an additional degree of
flexibility may be incorporated into the testing system 100.

While various embodiments of the mvention have been described, it will be
apparent to those of ordinary skill in the art that many more embodiments and
implementations are possible that are within the scope of this invention. Accordingly, the

invention is not to be restricted except in light of the attached claims and their equivalents.

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
16

What 1s claimed 1s:
1. A system for testing an application, the system comprising:

a first relational table operable to relate a plurality of test case identifiers to a plurality

of order 1dentifiers and a plurality of module 1dentifiers;

a second relational table operable to relate the plurality of test case identifiers to a

plurality of input values;

a module that corresponds to a module 1dentifier of the plurality of module i1dentifiers,

wherein the module 1s operable to read an input value from the plurality of input values and

provide the mput value to the application; and

a controller operable to read the first relational table, determine the module identifier

based on a test case 1dentifier of the plurality of test case i1dentifiers, and to cause the module

{0 exXecute.

2. The system of claim 1, further compnsing a test application operable to execute the

module.

3. The system of claim 2, wherein the test application includes the controller.

4. The system of claim 1, further comprising a third relational table, wherein the
controller 1s further operable receive a output value from the application, and to relate, in a

third relational table, the test case 1dentifier and the module identifier to the output value.

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
17

5. The system of claim 4, wherein the controller 1s further operable relate, in the third

relational table, the test case 1dentifier and the module identifier to an expected output value.

6. The system of claim 5, wherein the controller is further operable determine whether

the expected output value 1s equal to the output value.

7. The system of claim 1, further comprising a third relational table, wherein the
controller 1s further operable receive a first output value from the application and a second
output value from the application, and to relate, in a third relational table, the test case

identifier and the module identifier to the first output value and to the second output value.

8. The system of claim 7, wherein the controller 1s further operable to determine whether

the first output value 1s equal to the second output value.

9. The system of claim 1, further including a database, whefein the database includes the

first and second relational tables.

10. The system of claim 1, further comprising a database, the database including a third
relational table, wherein the controller is further operable receive a output value from the

application, and to relate, in the third relational table, the test case identifier and the module

identifier to the output value.

11. A method for testing an application, the method comprising the steps of:

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
18

relating, in a first data structure, a plurality of module i1dentifiers to a plurality of test

case identifiers and a plurality of order identifiers:

relating, in a second data structure, the plurahty of test case identifiers to a plurahty ot

input values;

reading, from the first data structure, a module 1dentifier that corresponds to a test

case identifier of the plurality of test case identifiers and an order identifier of the plurality of

order 1dentifiers;

executing a module that corresponds to the module 1dentifier;
reading, via the module from the second data structure, an input value of the plurality
of input values that corresponds to the test case 1dentifier; and

providing, via the module, the input value to an application.

12. The method of claim 11, further comprising the steps of receiving an output value

from the application, and relating, in a third data structure, the test case 1dentifier and the

module identifier to the output value.

13. The method of claim 12, further comprising the step of relating, in the third data

structure, the test case identifier and the module 1dentifier to an expected output value.

14. The method of claim 13, further compnsing the step of determining whether the

expected output value 1s equal to the output value.

15. The method of claim 11, further comprising the steps of:

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
19

recelving a first output value from the application;

relating, in a third data structure, the test case identifier and the module identifier to
the first output value;
recerving a second output value from the application; and

S relating, 1n the third data structure, the test case identifier and the module identifier to

the second output value.

16. The method of claim 15, further comprising the step of determining whether the first

output value 1s equal to the second output value.
10
17. The method of claim 11, wherein the step of relating, in the first data structure, the

plurality of module 1dentifiers includes the step of creating a relational table in a database.

18. The method of claim 11, wherein the step of relating, in the second data structure, the

15 plurality of test case 1dentifiers includes the step of creating a relational table in a database.

19. The method of claim 11, further comprising the steps of receiving an output value

from the application, and relating, in the second data structure, the test case identifier and the

module 1dentifier to the output value.

20

20. The method of claim 11, further comprising the steps of:

recerving a first output value from the application;

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
20

relating, in the second data structure, the test case i1dentifier and the module 1dentifier

to the first output value;

receiving a second output value from the application; and

relating, in the second data structure, the test case identifier and the module 1dentifier

to the second output value.

21. A computer program for testing a computer application, the program comprising:
computer readable program code for relating, 1n a first data structure, a plurality of

module identifiers to a plurality of test case identifiers and a plurality of order identifiers;
computer readable program code for relating, in a second data structure, the plurality
of test case 1dentifiers to a plurality of input values;
computer readable program code for reading, from the first data structure, a module
identifier that corresponds to a test case identifier of the plurality of test case identifiers and

an order identifier of the plurality of order i1dentifiers;

computer readable program code for executing a module that corresponds to the

module 1dentifier;

computer readable program code for reading, via the module from the second data

structure, an input value of the plurality of input values that corresponds to the test case

identifier; and

computer readable program code for providing, via the module, the input value to a

computer application.

10

15

20

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
21

22. The computer program of claim 21, further comprising computer readable program
code for receiving an output value from the application, and relating, in a third data structure,

the test case identifier and the module 1dentifier to the output value.

23. The computer program of claim 22, further comprising computer readable program

code for relating, in the third data structure, the test case identifier and the module identifier

to an expected output value.

24, The computer program of claim 21, further comprising computer readable program
code for receiving an output value from the application, and relating, in the second data

structure, the test case identifier and the module identifier to the output value.

25. A system tor testing a computer application, the program comprising:

means for relating, in a first data structure, a plurality of module identifiers to a
plurality of test case identifiers and a plurality of order identifiers;

means for relating, in a second data structure, the plurality of test case identifiers to a
plurality of input values;

means for reading, from the first data structure, a module identifier that corresponds
to a test case identifier of the plurality of test case identifiers and an order identifier of the
plurality of order identifiers;

means for executing a module that corresponds to the module identifier;

means for reading, via the module from the second data structure, an input value of

the plurality of input values that corresponds to the test case identifier; and

CA 02483287 2004-10-22

WO 03/096191 PCT/EP03/04904
22

means for providing, via the module, the input value to a computer application.

CA 02483287 2004-10-22

PCT/EP03/04904

WO 03/096191

1/5

d40Vdd4LNI

ONIddVIN

vLl

41dVv.L S11NS3d _
9¢

Sd1dVv.Ll
LNdNI A TNAON

144*
341dVvV1L MO 14
¢cl

4Svdv.ivd
NOILVHANOIANOD 154

r

JOV4ddLNI 945N

ONILHOddd 1541

9

chl

L1

| Old

N 3TNAOWN
Z I1NCAOWN
0zl
L ITINAON

d341T1041LNODO .
Q0L 140)°

¢0l

001

4SVavivd

NOILVYOllddV 1541

1SdL d3dNN
NOILVOIl 1ddV

|
|
|
— e —

NOILVYOl'lddV
1S41

TVNINGGL
A0V4dd 1INl ad5Sh

CA 02483287 2004-10-22

PCT/EP03/04904

WO 03/096191

2/5

¢ Ol

418V.1L d34aNSNI /J

30¢C

318V.L FOVHINOD J
90¢C
S31dvL LOdNI FT1NAON

 ON_ | s3aA |y
31VISTIV JivisTwvy | e | b
SSaYAAY arvaA 1ss3ayaavarval oL | L

JNODTIAM JNODTEAM | ¢ | L

1INSTY TYNLOY LINS3E qaq0n wwmw

d4.10dd X4

418V1L L'1NSdd .

9ct

4189V1 5534ddv J

14014

J18V.1 Jd450 J

c0c¢

d3dd0O

3 1NUOWN NN

41dV.L MO'1

ASVYO
1541

¢él

A%’

CA 02483287 2004-10-22

PCT/EP03/04904

WO 03/096191

3/5

CIMIHSYYFg | v
e
NILIL oz

JIVISTIY | L
3SVD
HIHNSNI e
3719V1L ¥IHNSNI ,
802

d18V1 d9VHINQOD

90¢

£ Old

2l2/v | NI | ITUAA3SOd | adldvizis | v
0229% | NI | SIMOJVYNVIANI | ¥a31dvNel | €
SINOF| 1 | O9VOIHO | ISHSnYoLL | ¢
802 | NI | ITUASNVAT | ISNIVW LIO |+

ASVO
H 41V1S ALIO 14341S 18931

4 1dVL SS44Aav

YAHOINI(VAINAIHD VYNIHd 1V

AJHOCZ ADdV(d ADHVIN

0O1lVv.10d JdIANVN 1JHVOHVIN

STOHS AANNS INECR)
SNVN SAYN 35V
(dOMSSYd 1SV 1Y 1831

4 18V.1L 445N

I

14014

¢0¢

vcl

CA 02483287 2004-10-22

PCT/EP03/04904

WO 03/096191

4/5

o s3A Ty
o NWML e
SS3I™AAYAIVYANL | oL
o oAwooIam 7
- ON Ty
o oFdwistvy. e
_ss3¥aavanvaA | ok
Ao oram oz

34SVEV.LVU NOILVOIlddV 1S3l

001

45VO
1S4l

l

CA 02483287 2004-10-22

WO 03/096191

122

502
FLOW ORDER TABLE
TEST
CASE FLOW TYPE

6

FAST
NORMAL
NORMAL

5/

N

PCT/EP03/04904

~504

RUN
—NORMAL | 6 | 6
—NORMAL | 8 | 9
— NORMAL | 9 | 8§ _
—EXTENDED | 6 | 6
—EXTENDED | 8 | 9
—EXTENDED | 9 | 8

FIG. 5

100

— 102 116
USER INTERFACE 'J TEST REPORTING
TERMINAL USER INTERFACE
108 e
.J £ [- EST CONFIGURATION
TEST - CONTROLLER - DATABASE

APPLICATION

- i ‘___J _.___.jo 122
- —_— \‘ FLOW TABLE

; /T MODULE 1

_—_t . 124 — -
B | 20 l—_—] MODULE INPUT
APPLICATION l/ | TABLES

| —

\J RESULTS TABLE ‘

- -

TEST APPLICATION
DATABASE e W -

MAPPING
INTERFACE

k____—-——-" e

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

