
INI
US 20200097135A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0097135 A1

Fard et al . (43) Pub . Date : Mar. 26 , 2020

(54) USER INTERFACE SPACES Publication Classification

(71) Applicant : Apple Inc. , Cupertino , CA (US)

(72) Inventors : Assana Fard , Sunnyvale , CA (US) ;
John O. Louch , San Luis Obispo , CA
(US) ; Ralph Brunner , Cupertino , CA
(US) ; Haroon Sheikh , Campbell , CA
(US) ; Eric Steven Peyton , Lisle , IL
(US) ; Christopher Hynes , Mountain
View , CA (US)

(51) Int . Ci .
G06F 3/0481 (2006.01)
G06T 13/80 (2006.01)
G06F 3/0488 (2006.01)
GO6F 3/0484 (2006.01)

(52) U.S. CI .
CPC G06F 3/0481 (2013.01) ; G06T 13/80

(2013.01) ; G06F 3704886 (2013.01) ; G06T
2200/24 (2013.01) ; G06F 3704845 (2013.01) ;

G06F 3/04842 (2013.01) ; G06F 3/04847
(2013.01) (21) Appl . No .: 16 / 695,656

(22) Filed : Nov. 26 , 2019
(57) ABSTRACT

A user interface can have one or more spaces presented
therein . A space is a grouping of one or more program
windows in relation to windows of other application pro
grams , such that the program (s) of only a single space is
visible when the space is active . A view can be generated of
all spaces and their contents .

Related U.S. Application Data
(63) Continuation of application No. 11 / 462,623 , filed on

Aug. 4 , 2006 , now Pat . No. 10,503,342 .

Terminal File Scrollback Font Window Help Thu 8:25 AM

316 318

Application D
Application A

326
320 Application C

Application F
332

Application G
334

324
Sticky Application E

330
Sticky

1302 Application B
328

1302

304 306

Application I
350

Application J
352 Application H

340

Sticky Sticky

1302 1302

Application K
354

308 310

Architecture 100 Computer 102

Patent Application Publication

Processor 103

Memory 105

Local Storage 106

Graphics Module

Network Interface 116

Input Device (s) 114

Output Device (s)

Space Management Component 118

115

Mar. 26 , 2020 Sheet 1 of 21

Network Connection 108 Remote Server 107

US 2020/0097135 A1

FIG . 1

200 2017

Application Server

Patent Application Publication

Space Management Component
2187

2087

210

Application

Space Management Engine
Space Preferences Engine

Space Presentation Engine

202

Space

Space Identification Engine

Space Animation Engine

Operating System

Edit Engine

204

212

Mar. 26 , 2020 Sheet 2 of 21

216

-214

Application Deactivation Engine

Exposé Component

220

-206

118

FIG . 2

US 2020/0097135 A1

3147

312 302 { | Terminal File Scrollback Font Window Help

0 $ = Thu 8:25 AM | so 316 318

Application D

Application A

326

320 Application C

Application G
334

Patent Application Publication

Application F
332

324

Application E
330

Application B
328

304

306

Mar. 26 , 2020 Sheet 3 of 21

Application

Application J
352

Application H
340

350
Application K

354

308

310

US 2020/0097135 A1

FIG . 3

Terminal File Scrollback Font Window Help

OS Thu 8:25 AM

Application A 320

Application D 326

Application C 324

Application G 334

Patent Application Publication

Application F 332 330

Application B 328

304

306

Application H
340

Mar. 26 , 2020 Sheet 4 of 21

Application 1 350

Application
352

Application K 354

308

310

US 2020/0097135 A1

FIG . 4

Terminal File Scrollback Font Window Help

0 $ = Thu 8:25 AM |

Application G 334

Patent Application Publication

Application F
332

Application A 320

Application D 326

Application C 324

Application E 330

Application B
328

306

304

Mar. 26 , 2020 Sheet 5 of 21

Application ! 350

Application
352

Application H
340

Application K
354

308

310

US 2020/0097135 A1

FIG . 5

Non - space mode -space disabled

View mode - all spaces shown

Patent Application Publication

602

604 -608

606

Space Edit Mode

Zoom - in mode - selected space shown

Move application within space

Mar. 26 , 2020 Sheet 6 of 21

610

Move application to another space

Switch to another space

Work in applications

Edit space

Move space

612

620

616

618

614

US 2020/0097135 A1

FIG . 6

Terminal File Scrollback Font Window Help

0 $ = Thu 8:25 AM

Q5712

OS 714

0-706

Application D

Application A

326

Application G
334

Patent Application Publication

Application F
332

320 Application C
324

Application E
330

716

Application B
328

304

306

Application |

Application J

Mar. 26 , 2020 Sheet 7 of 21

Application H

350

352

340

718

Application K
354

308

310

7083

- 702

US 2020/0097135 A1

704

710

FIG . 7

Terminal File Scrollback Font Window Help

Thu 8:25 AM |

712

714

7067

804

Patent Application Publication

Application A 320

Application D 326
Application C 324

Application F 332

Application G 334

Application E 330

716

Application B 328

304

306

803

Application H 340

Application ! 350

Application J 352

Mar. 26 , 2020 Sheet 8 of 21

7187

Application K 354

308

310

805

7087

702

802

710

704

806

US 2020/0097135 A1

FIG . 8

Terminal File Scrollback Font Window Help

OCS Thu 8:25 AM

ar 712

O 714

706

Application A

Application D 326

Application F 332

Application G 334

320 kpplication C

Patent Application Publication

324

Application E 330

716

Application B 328
304

306

Application ! 350

Application J 352

Application H 340

7187 7107

Application K
354

Mar. 26 , 2020 Sheet 9 of 21

308

310

-906

9047

902

903

905

7087

702

710

US 2020/0097135 A1

704

FIG . 9

Terminal File Scrollback Font Window Help

03 5 Khu 8:25 AI |

Application A

Application D

Application F

320

326

Patent Application Publication

332

Application C
324

Application
334

Application E 330

Application B
322

304

306

Application

Application J 354

Mar. 26 , 2020 Sheet 10 of 21

350

Application H
340

Application K 352

310

US 2020/0097135 A1

FIG . 10A

Terminal File Scrollback Font Window Help

O

Th? 8:25 AM |

Application A

Application D

Application F

320

326

332

Application C
324

Patent Application Publication

Application E 330

Application G 334

Application 8
322

304

306

Application

Application 354

Mar. 26 , 2020 Sheet 11 of 21

350

Application H
340

Application K 352

308

310

US 2020/0097135 A1

FIG . 10B

Terminal File Scrollback Font Window Help

0 : 5 Thu 8:25 AM |

O O O Icon A Icon B Icon C

icon D icon E

Application
OSE

Icon F Icon G

Application H
340

Patent Application Publication

11027

Mar. 26 , 2020 Sheet 12 of 21

Application K 354

0 Icon H Icon |

US 2020/0097135 A1

FIG . 11

302 | Terminal File Scrollback Font Window Help

3 Th? 8:25 AM |

Application G

334

Application E
330

F

Application HD
332 m 2

1202
on G

Patent Application Publication

-1204

11027

Mar. 26 , 2020 Sheet 13 of 21

Application

Application
352

350

Icon H

Applicat

U Icon

354

US 2020/0097135 A1

FIG . 12

Terminal File Scrollback Font Window Help

OS Thu 8:25 AM
316

318

Application D

Application A

326

Application G
334

Application F
332

Patent Application Publication

320 Application C
324

Sticky

Application E
330

FE
Sticky

1302

Application B
328

1302

304

306

Mar. 26 , 2020 Sheet 14 of 21

Application ! 350

Application
352

Application H
340

Sticky

Sticky

13021

1302

Application K
354

308

310

US 2020/0097135 A1

FIG . 13

Patent Application Publication Mar. 26 , 2020 Sheet 15 of 21 US 2020/0097135 A1

1400

Exposé & Spaces

Show All

Exposé allows you to temporarily see all your open windows at once so you can
easily click on any window to bring it to the front . You can set a Dashboard
shortcut to show or hide the Dashboard
Active Screen Corners

Desktop } 1408 1410 { Application Wind ...
1414 All Windows Dashboard } 1412 N

Keyboard Shortcuts

All windows : F9

Application windows : F10
1404

} 1416
} 1418
} 1420
} 1422

Desktop : F11

Dashboard : F12

Spaces
Enable Spaces

Spaces F12
1424 } 1426

Spaces Preferences ...

1428

FIG . 14

Patent Application Publication Mar. 26 , 2020 Sheet 16 of 21 US 2020/0097135 A1

7500

Spaces
Show All

ROW
s 1522

Add
1 2

Remove 1514 1516

Column Z 526
3 Add 1528 1.518 1520

Remove

Bindings 15302
Application / Window

Mail 1532 1534
Space
Every Space
Space 2
Work - related spaces

Chat 1536 7.548
1504 O Document Editor 1542

Add Application Remove Application Add Window Remove Window
1.550 I552 1554 1.556 Navigation

1.506
To switch between spaces :

To switch directly to a spaçe :
A Arrow Keys
A Number Keys

} 1558
} 1560

Advanced Preferences .. Back to Exposé Preferences ..
2 1510 1 508

FIG . 15 1.527

Patent Application Publication Mar. 26 , 2020 Sheet 17 of 21 US 2020/0097135 A1

Advanced Preferences

Show All

Use Hot Edges } 1602
7606 Bindings

Application / Window Son 76.78
1620 Mail

Group
Group 1
Group 2

1622 1 Chat 1616 1604

Add Application Remove Application Add Window Remove Window

7670 1672 161 1608
Spaces

Activate Group Moving } 1624
Assign Based on Type } 1626

1605

Assign Based on Use } 1628
D Captured View Mode } 1630

Back to Spaces ...

© 1601

FIG . 16

Patent Application Publication Mar. 26 , 2020 Sheet 18 of 21 US 2020/0097135 A1

1700

1704

1710 1712 27
PiP

F 1706
1708

1702

FIG . 17

Patent Application Publication Mar. 26 , 2020 Sheet 19 of 21 US 2020/0097135 A1

1814 2
1816

3
1818

(Space 4) 1808

sze 8 *
1808 1820 1810

1804 7
1822 7822 Command Bar

A B C

FIG . 18A FIG . 18B

(Space 6) (Space 8) 1872

1802

Command Bar Command Bar
ABC AB C

FIG . 18C FIG . 18D

Patent Application Publication Mar. 26 , 2020 Sheet 20 of 21 US 2020/0097135 A1

Application I
350

Application J
352

Application K
354

310

FIG . 19A

Application J Application !
350 352

11022

Application H Application K
354 2 340

FIG . 19B

Application |

350 Application H
340

308

FIG . 190

Patent Application Publication Mar. 26 , 2020 Sheet 21 of 21 US 2020/0097135 A1

2002

T
2004

Window

20005
2006

2008 15

FIG . 20

US 2020/0097135 A1 Mar. 26 , 2020

USER INTERFACE SPACES

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. patent
application Ser . No. 11 / 462,623 filed on Aug. 4 , 2006 , which
is hereby incorporated by reference in its entirety .

TECHNICAL FIELD

[0002] The disclosed implementations relate generally to
graphical user interfaces .

BACKGROUND

[0003] A hallmark of modern graphical user interfaces is
that they allow a large number of graphical objects or items
to be displayed on a display screen at the same time . Leading
personal computer operating systems , such as Apple Mac
OS® , provide user interfaces in which a number of windows
can be displayed , overlapped , resized , moved , configured ,
and reformatted according to the needs of the user or
application . Taskbars , menus , virtual buttons and other user
interface elements provide mechanisms for accessing and
activating windows even when they are hidden behind other
windows .
[0004] As a result , most computers today are capable of
running a great number of different programs . This can be
done by the computer executing software code locally
available to the computer or by connecting the computer to
a remote application server , for example over the internet .
Examples of application programs include mainly business
related software such as records management programs and
meeting organization programs , software that is used alter
natively for business or personal use , such as word proces
sors or email applications , and software that is mainly
intended for personal use such as online chat or music file
management programs .
[0005] With the large number of different applications
available , users are encouraged to work with a multitude of
items in their computers . Some categories of items , such as
files of a certain type , can be limited to use by a particular
application program , while other item categories can be
compatible with several programs . Depending on the user's
needs , he or she can need to use several different programs
in a limited period of time as part of a daily work routine or
to accomplish a particular goal . This is one reason why users
sometimes have several windows open on the computer
display at the same time .
[0006] However , with too many windows open at once ,
the desktop can become cluttered and difficult to overview .
As a result , it can be difficult for the user to find a particular
application when needed .

[0009] Implementations can include any or all of the
following features . The contents of the user interface can
include at least one selected from the group consisting of : an
application and a window . The method can further include
monitoring whether the first content portion is visible in the
first space and , upon detecting that the first content portion
is not visible , showing an indication associated with the first
content portion in the first space . The indication can be at
least one selected from the group consisting of : a control tool
for the first content portion , a heads - up display image for the
first content portion , a branding associated with the first
content portion , and combinations thereof . A user can move
the indication from the first space to the second space , and
the method can further include reassigning the first content
portion to the second space . The method can further include
assigning a second content portion to multiple ones of the
several spaces , and the second content portion can be visible
when any of the multiple spaces are active . The method can
further include registering that the first content portion is
moved . The first content portion can be moved within the
first space . The first content portion can be moved from the
first space to a second one of the several spaces , and the first
content portion can be visible when the second space is
active , and the first content portion can be visible when the
first space is active . The first content portion can be assigned
to a second one of the spaces before the assignment , and the
assignment can be performed upon registering an input
made with a pointing device at a location in the second space
associated with reassigning content to another space , and the
first space can be identified as a target for the reassignment
based on the location . The assignment can include several
content portions from the second space , and the location can
be configured for performing reassignments of multiple
content portions . The multiple content portions can be
defined as at least one category from the group consisting of :
portions that have a common type , portions that belong to a
common application , and combinations thereof . The assign
ment can be registered upon the first content portion being
brought , in a currently active second space , to a location
associated with reassigning content to another space , and the
first space can be identified as a target for the reassignment
based on the location . The location can be a corner of the
second space . An order of the several spaces can be defined ,
and the assignment can be made to the first space because it
is a next space in the order . The several spaces can be
defined in a geometrical relationship to each other , and the
corner can indicate a direction of the assignment in the
geometrical relationship . The first content portion can be
associated with an application program that is being initi
ated , and the first space can be generated in response to the
initiation . The first content portion can be assigned to the
first space together with at least another content portion . The
first and second content portions can be reassigned together
because they have previously been grouped . The first and
second content portions can be reassigned together because
they have a common type . The several spaces can be
presented in a grid format in the view , the grid format
including at least one row and at least one column for the
several spaces . The method can further include altering the
grid format , in response to a user input , to add or remove at
least one space . The method can further include relocating at
least one space in the grid format in response to a user input .
The first content portion can be automatically assigned to the
first space because the first portion has a type that has

SUMMARY

[0007] The invention relates to user interfaces .
[0008] In a first general aspect , a method for managing
content in a user interface includes enabling several spaces
for assigning thereto contents of a user interface such that
the assigned contents are visible when any of the spaces is
active . The user interface is configured to generate a view
where all the several spaces are presented separate from each
other and having their assigned contents visible . The method
includes registering an assignment of a first content portion
to a first one of the spaces .

US 2020/0097135 A1 Mar. 26 , 2020
2

previously been assigned as belonging in the first space . The
assignment of the type as belonging in the first space can be
done based on tracking use of contents in the user interface .
The assignment can be done at a configuration screen that
includes visual representations of at least one space and an
assignment area where content portions can be defined as
belonging to at least one of the spaces . The assignment can
be done upon a user dragging the first content portion to one
of the visual representations that corresponds to the first
space . The first content portion can be dragged to the
corresponding visual representation from a screen location
outside the configuration screen . The first content portion
can be dragged to the corresponding visual representation
from the assignment area , and an earlier assignment that the
first content portion had in the assignment area can be
replaced with the assignment being registered . When the
view where all the several spaces are presented separate
from each other is displayed , the user can move one of the
spaces to a new location in the view , and the method can
further include animating the move .
[0010] In a second general aspect , a method for managing
content in a user interface includes displaying , in a user
interface , a first subset of current user interface contents that
is assigned to a first space . A second subset of the current
user interface contents that is assigned to a second space is
currently not displayed . The method further includes per
forming a transition , in response to an event , from the first
space to the second space . The transition includes ceasing to
display the first subset and displaying the second subset in
the user interface .
[0011] Implementations can include any or all of the
following features . The current user interface contents can
include at least one selected from the group consisting of : an
application and a window . The event can be a user input that
requests the transition by identifying the second space . The
event can be a user input that requests the transition by
identifying a content portion and not by identifying the
second space , and the method can further include determin
ing which of the first and second spaces the identified
content portion is assigned to , wherein the second subset is
displayed following a determination that the identified con
tent portion is assigned to the second space . The event can
be a user input made with a pointing device at a location in
the first space associated with transitioning to the second
space . An order of the first and second spaces can be defined ,
and the transition can be made to the second space because
it is a next space in the order . The transition can be made to
the second space because it is a most recently activated
space before the first space . The location can be a corner of
the first space . The second subset can be associated with an
application program that is being initiated , and the transition
can be performed in response to the initiation . The transition
can be conditioned on the application program meeting a
criterion . The criterion can be that the application program
has a type that implies user interface action . The method can
further include animating the transition to show the first
subset being moved out of a viewable area and the second
subset being moved into the viewable area . The first and
second spaces can be defined based on a matrix that is larger
than a viewable area of the user interface , and the transition
can include selecting a portion of the matrix for display that
includes the second space . The method can further include
displaying an input control upon displaying the first subset ,
the input control can illustrate the matrix and also be visible

when the second subset is displayed , and the event can be a
user input that is made using the input control . The method
can further include receiving an Exposé command when the
first subset or the second subset is being displayed , and the
first or second subset can be rearranged in response to the
Exposé command . There can also be displayed an inset pane
representing the second space , the inset screen can show the
second subset , and the event can be received upon user
activation of the inset pane . Several spaces , including the
first and second spaces and also additional spaces , can be
defined , and the inset pane can present contents from any of
the several spaces while any of the several spaces is active .
The transition can be done as part of reassigning a content
portion of the first space to the second space . An indication
of the content portion can be presented in the first space
because it is detected that the content portion is currently not
visible in the first space , and the reassignment can be
registered upon the indication being brought , in the first
space , to a location associated with reassigning content to
the second space . The reassignment can be registered upon
the content portion being brought , in the first space , to a
location associated with reassigning content to the second
space . The reassignment can be defined to include any
contents having a particular type . The transition can be
performed upon an application or window being initiated ,
the application or window being assigned to the second
space and not to the first space . Several spaces , including the
first and second spaces and also additional spaces , can be
defined , and the application or window can be assigned also
to at least one of the additional spaces , and the method can
further include sequentially activating the spaces to which
the application or window is assigned , upon receiving
repeated inputs with an activation control for the application
or window . The first and second subsets can correspond to
respective first and second entries on a process list , and the
method can further include rearranging at least one of the
first and second entries in response to the event to generate
a rearranged process list . The method can further include
displaying a representation of the rearranged process list .
[0012] In a third general aspect , a computer program
product is tangibly embodied in an information carrier and
includes instructions that , when executed , generate on a
display device a graphical user interface for managing user
interface content . The graphical user interface includes a
first view displayed in a non - space mode . The first view
presents current user interface contents wherein first and
second subsets of the current user interface contents have
been assigned to first and second spaces , respectively . The
graphical user interface includes a second view displayed in
a space view mode . The second view presents the first and
second work spaces separately , each space including the
respective assigned subset of the current user interface
contents .

[0013] Implementations can include any or all of the
following features . The current user interface contents can
include at least one selected from the group consisting of an
application and a window . Several spaces , including the first
and second spaces and also additional spaces , can be pre
sented in the space view mode , and additional subsets of the
current user interface contents can be assigned to the addi
tional spaces . The several spaces can be presented in a grid
format in the space view mode , and the grid format can
include at least one row and at least one column for the
several spaces . A first content portion can be been assigned

US 2020/0097135 A1 Mar. 26 , 2020
3

to both the first and second spaces , and , in the space view
mode , the first content portion can be presented in the first
space and also in the second space . A transition in the user
interface to deactivate the first space and to activate the
second work space can be animated . The transition can be
animated to show the first subset of the current user interface
contents being moved out of a viewable area and the second
subset being moved into the viewable area . The graphical
user interface can further include a third view displayed
when the first space is active and the second space is not
active . The third view can present the first subset of the
current user interface contents and not the second subset .
The third view can include an input control that is associated
with transitioning from the first space to the second space .
The third view can include a location associated with
reassigning content to another space , and a user can initiate
the reassignment by moving a subset to the location . An
order of the first and second spaces can be defined , and the
reassignment can be made to the second space because it is
a next space in the order . The location can be configured to
be highlighted to indicate that the subset can be automati
cally moved to the other space . In the second view displayed
in the space view mode , the first and second spaces can be
presented in a grid format , and the location in the third view
can correspond to a direction from the first space to the other
space in the grid format . Several spaces can be defined ,
including the first and second spaces , and the third view can
include several locations corresponding to the several
spaces . The third view can include a location where a
pointing device can be brought to switch from the first space
to the second space . The location can be configured for
performing reassignments of multiple subsets . The multiple
subsets can be defined as at least one category from the
group consisting of : subsets that have a common type ,
subsets that belong to a common application , and combina
tions thereof A user can move one of the first and second
spaces to a new location in the second view , and the move
can be animated .

[0022] FIG . 9 depicts a screenshot of a computer display
of FIG . 7 in space edit mode with an additional row of
spaces .
[0023] FIG . 10A depicts a screenshot of a computer dis
play showing an example of the display in FIG . 3 after the
Exposé component 206 was invoked .
[0024] FIG . 10B depicts the contents of FIG . 10A after
moving a program window from one space to another .
[0025] FIG . 11 depicts a screenshot of a computer display
in zoom - in mode 608 as the current space is replaced with
another space using an animation technique .
[0026] FIG . 12 depicts a screenshot of a computer display
in zoomed - in mode as the viewable space is exchanged for
a vertically adjacent space using an animation technique .
[0027] FIG . 13 depicts a screenshot of a computer display
showing an application or window that is visible in multiple
spaces .
[0028] FIG . 14 depicts a configuration window for speci
fying preferences related to Exposé and spaces .
[0029] FIG . 15 depicts a window that can be used for
configuring spaces .
[0030] FIG . 16 depicts an example of an advanced pref
erences window which can be used for specifying advanced
preferences in a user interface .
[0031] FIG . 17 depicts an example screenshot of display
1700 showing a space 1702 .
[0032] FIGS . 18A - D illustrates how a command bar can
be used to facilitate moving a window among a group of
spaces .
[0033] FIGS . 19A - C depict example screenshots of a user
interface showing the use of “ hot edges ” .
[0034] FIG . 20 depicts a screenshot of a space which
visually indicates the positions of adjacent spaces .

DETAILED DESCRIPTION

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG . 1 is a block diagram of an architecture for
presenting a user interface that includes one or more spaces
containing program windows .
[0015] FIG . 2 is a block diagram of an example of an
architecture for generation and use of spaces in a display
environment .
[0016] FIG . 3 depicts a screenshot of a computer display
showing spaces being presented in a desktop view .
[0017] FIG . 4 depicts a screenshot of a computer display
showing an application window as it is being transferred
from one space to another space in a space management
system .
[0018] FIG . 5 depicts a screenshot of a computer display
showing a space being rearranged .
[0019] FIG . 6 schematically shows exemplary modes of
operation for managing spaces .
[0020] FIG . 7 depicts a screenshot of a computer display
in space edit mode showing controls for adding or removing
spaces .
[0021] FIG . 8 depicts a screenshot of a computer display
of FIG . 7 in space edit mode with an additional column of
spaces .

[0035] FIG . 1 is a block diagram of an architecture 100
(e.g. , a hardware architecture) for presenting a user interface
that includes one or more spaces containing program win
dows . As used herein , a space is a grouping of one or more
applications , or windows , in relation to other applications or
windows , such that the program (s) / applications of a single
space is visible when the space is active , and so that a view
can be generated of all spaces and their contents . An
application program can have more than one window in a
space , or an application can have windows in more than one
space , to name a few examples .
[0036] The architecture 100 includes a personal computer
102 coupled to a remote server 107 via a network interface
116 and a network 108 (e.g. , local area network , wireless
network , Internet , intranet , etc.) . The computer 102 gener
ally includes a processor 103 , memory 105 , one or more
input devices 114 (e.g. , keyboard , mouse , etc.) and one or
more output devices 115 (e.g. , a display device) . A user
interacts with the architecture 100 via the input and output
devices 114 , 115. Architecture 100 as disclosed includes
various hardware elements . Architecture 100 can include
hardware , software , and combinations of the two .
[0037] The computer 102 also includes a local storage
device 106 and a graphics module 113 (e.g. , graphics card)
for storing information and generating graphical objects ,
respectively . The local storage device 106 can be a com
puter - readable medium . The term “ computer - readable
medium ” refers to any medium that participates in providing
instructions to a processor for execution , including without

US 2020/0097135 A1 Mar. 26 , 2020
4

serve

limitation , non - volatile media (e.g. , optical or magnetic
disks) , volatile media (e.g. , memory) and transmission
media . Transmission media includes , without limitation ,
coaxial cables , copper wire , fiber optics , and computer
buses . Transmission media can also take the form of acous
tic , light or radio frequency waves .
[0038] Systems and methods are provided for generation
and use of spaces . The systems and methods can be stand
alone , or otherwise integrated into a more comprehensive
application . In the materials presented below , an integrated
system for generating and using spaces is disclosed .
[0039] While generation and use of spaces are described
herein with respect to a personal computer 102 , it should be
apparent that the disclosed implementations can be incor
porated in , or integrated with , any electronic device , e.g. , a
device that has a visual user interface , including without
limitation , portable and desktop computers , servers , elec
tronics , media players , game devices , mobile phones , email
devices , personal digital assistants (PDAs) , embedded
devices , televisions , etc.
[0040] One of ordinary skill in the art will recognize that
the engines , methods , processes and the like that are
described can themselves be an individual process or appli
cation , part of an operating system , a plug - in , an application
or the like . In one implementation , the system and methods
can be implemented as one or more plug - ins that are
installed and run on the personal computer 102. The plug - ins
are configured to interact with an operating system (e.g. ,
MAC OS® X , WINDOWS XP , LINUX , etc.) and to perform
the various functions , as described with respect to the
Figures . A system and method for generation and use of
spaces can also be implemented as one or more software
applications running on the computer 102. Such a system
and method can be characterized as a framework or model
that can be implemented on various platforms and / or net
works (e.g. , client / server networks , stand - alone computers ,
portable electronic devices , mobile phones , etc.) , and / or
embedded or bundled with one or more software applica
tions (e.g. , email , media player , browser , etc.) . The archi
tecture 100 includes a space component 118 that is config
ured to generate and use spaces , for example by presenting
them on the display device 113 .
[0041] FIG . 2 is a block diagram of an example of an
architecture for generation and use of spaces in a display
environment . The space management component 118 is here
shown as interfacing with an application server 202 , an
operating system 204 and an Exposé component 206 .
Examples of these interactions will be described . In other
implementations , other units can interact with the compo
nent 118 .
[0042] The space management component 118 can have
engines for handling tasks such as space management ,
preferences , presentation , identification animation and edit
ing , as well as application deactivation . A space manage
ment engine 208 can manage the other engines in the
component 118 or components thereof . A space presentation
engine 210 can handle how spaces are presented on a
computer display . A space identification engine 212 can
handle identification of the application program (s) associ
ated with each space . A space edit engine 214 can handle
tasks which involve reordering , adding , or removing spaces
within a space group or moving application windows within
or among workgroups . A space animation engine 216 can be
used , for example , to handle fade in / out transitions or

movement of spaces and application windows . A space
preferences engine 218 can handle information about user
preferences for matters such as the assignment of programs
to spaces , space editing , transition details , etc. An applica
tion deactivation engine 225 can handle deactivating appli
cations ; for example , the engine 225 can be used for turning
off streaming video when the corresponding space is not
active on the user interface .
[0043] In the example shown in FIG . 2 , the operating
system 204 provides resources to the space management
component 118 such as task execution , memory , application
window IDs , etc. The component 118 uses these resources ,
as applicable , in generating and using spaces . The applica
tion server 202 can communicate with the space manage
ment component 118 and the Exposé component . The appli
cation server can one or more applications for
presentation in windows on the display device . Certain
operations can be performed on these windows using the
space management component 118 or the Exposé compo
nent 206 .
[0044] The Exposé component 206 is a well - known fea
ture available from Apple Computer in Cupertino , Calif . For
example , the Exposé component 206 provides that a user can
trigger tiling , scaling or arrangement of open windows to
increase usability . For these or other purposes , the Exposé
component 206 can communicate with the space manage
ment component 118 and the application server 206 to
coordinate application window presentation .
[0045] A number of discrete portions of the space man
agement component 118 have been described in this
example . Fewer than all of the portions can be used in an
implementation . Also , two or more of the components can
be combined into a single unit .
[0046] FIG . 3 depicts a screenshot of a of a computer
display showing spaces being presented in a desktop view .
The depiction includes elements which can be found in a
display 300 of a graphical user interface and space elements ,
here a toolbar 302 and several spaces (304 , 306 , 308 , 310) .
[0047] Toolbars provided by applications or the operating
system can be shown on the display 115. The toolbar 302 can
include items such as menus , icons , and informative objects .
Some menus can be general and not specific to a particular
application , such as a file menu 312. Other menus can be
application dependent , such as a terminal menu 314 , in
which case they can be added to or removed from the toolbar
depending on whether a corresponding application window
is active . Icons 316 can be used to present information to the
user , such as status information , and / or can be used to access
functions via , for instance , popup menus or commands for
opening another application window . Informative objects
present in the toolbar can display items such as the time or
day of the week 318 .
[0048] A computer display with multiple spaces is shown
in space view mode , including a first space 304 , a second
space 306 , a third space 308 , and a fourth space 310. The
spaces in the matrix show portions of a larger desktop which
may be zoomed , for instance , to show more detail . In zoom
mode , a single space can be active and presented with a
larger size , with the other spaces not being visible . The
spaces represent a desktop surface larger than what can be
shown on display at once . Thus , application windows are
depicted in reduced size to be able to show all .
[0049] In one implementation , the spaces are defined in an
addressable NxM matrix of screen content . For example , the

US 2020/0097135 A1 Mar. 26 , 2020
5

matrix can be N spaces tall by M spaces wide ; if the matrix
of content were displayed at full resolution as a single
image , the image would have a pixel height larger than the
pixel height of the computer screen and a pixel width larger
than the pixel width of the computer screen . All or some of
the matrix can have content assigned to it , and a correspond
ing portion of the matrix can be rendered as screen output
when that space is active . Thus , the content assigned to one
space is presented within the screen ranges of height and
width , but this content could be merely a fraction of the
windows that are currently open and distributed in the NxM
matrix . In FIG . 3 , there is shown an overview of the spaces
304-310 where they are rendered in sizes that allow them to
be displayed all at once .
[0050] A desktop larger than what can be simultaneously
be displayed on the screen , as mentioned above , is one
example of how the space component 118 can implement
and handle spaces . In such an implementation , any indi
vidual space that is active and presented on the screen can
correspond to a portion of that large desktop being selected
for display . Another example of how the space component
118 can operate is that there is defined layers for the
individual spaces such that any or all layers can be activated
to generate a desired output . For example , the switching
from one space to another can then correspond to deacti
vating one layer and activating another . In such an imple
mentation , the available desktop area can nominally be of
the same or similar size as the displayable area , but the
respective layers can be individually addressed and dis
played .
[0051] Each space can have one or more application
windows associated with it . Applications can be local or
served from an application server and correspond to one or
more associated application windows which appear on the
display 318. For example , the first space 304 has a program
window 320 corresponding to an application A , a program
window 322 corresponding to an application B , a program
window 324 corresponding to an application C , and a
program window 326 corresponding to an application D. A
second space 306 has a program window 330 corresponding
to an application E , a program window 332 corresponding to
an application F , and a program window 334 corresponding
to an application G. A third work space has a program
window 340 corresponding to an application H. A fourth
space has a program window 350 corresponding to an
application I , a program window 352 corresponding to an
application J , and a program window 354 corresponding to
an application K. The assignment of one or more application
windows to each space can be handled by the space iden
tification engine 212. The distribution of the spaces (304 ,
306 , 308 , 310) can be governed by the space presentation
engine 210. An application may have a default space speci
fied using preferences engine 218 such that the application's
program windows initially appear in the default space . Once
program windows appear , they may be reorganized , such as
by placement into a different space . Below , there will be
described an example showing that a window or application
can be defined as “ sticky ” , meaning that it is automatically
assigned to all of the spaces and will appear when each of
them is active . Programs or windows can be automatically
made sticky by default ; as one example , a program window
for a chat application can be automatically made sticky so
that it is visible in all spaces .

[0052] One or more application windows can be arranged
in multiple ways within a space . Application windows can
be positioned such that they can fully or partially overlap
one another . They can be resized or moved around in spaces
to accommodate the user . Particularly , while many windows
can be open at once and distributed among the spaces , in
some implementations only the application window (s) in a
particular space will be visible when that space is active . In
some instances , programs or windows from another space
can be visible ; for instance , a small representation of another
space can be visible on the display to achieve a “ picture
in - picture ” effect . In some cases , an application or window
can briefly appear even if its space is not being displayed ; for
example , some events such as finishing a task can cause a
program window to appear for a limited time or until a user
dismisses the window .
[0053] Within a given space , a program window can be
designated as an active program window . The term “ active
program window ” refers to a program window which is
currently designated as the primary recipient of user input
for input devices such as a keyboard . The user , or a com
ponent such as the operating system , can cause a different
program window to be designated as the active program
window within a given space . Each space can have one
program window that is active when the space is being
displayed ; in some implementations , when a different space
is displayed , its designated program window becomes
active . For example , if the program window 320 associated
with application A is designated as the active program
window for the first space 304 and the program window 330
associated with application E is designated as the active
program window for the second space 306 , the program
window 320 can be active when the first space 304 is active
and the program window 330 can be active when the second
space 306 is active . In one implementation , the activeness
can be independent of the space that is being presented .
[0054] In one implementation , the active window for each
space is defined as the window that the user most recently
interacted with (e.g. , clicked on) . To save system resources ,
the application deactivation engine 220 (FIG . 2) can deac
tivate one or more of the applications in the application
server 202 when the respective applications are not active .
This can , for example , reduce or eliminate the consumption
of network bandwidth and processor capacity by a streaming
video application while it is not being displayed . Some
implementations can prevent switching to a different space
when the currently active application becomes inactive . A
process list is a list of all applications , program windows ,
processes , etc. , currently running on the computer that kept
by the operating system . In some implementations , the order
of the list can be reshuffled so that higher - priority items
appear near the beginning of the list , with the active appli
cation appearing first . Events , for instance the closing of the
active application , can cause the operating system to desig
nate the next application in the list as active and place it at
the beginning of the process list . The list of currently
running applications can be reordered when a space is
viewed so that applications associated with program win
dows in the space are placed near the beginning of the
process list and chosen first when switching to a new
running application . Applications that can show the process
list to the user can be updated with the reshuffled list . For
example , the application that is initiated with the command
tab keys can reflect the reshuffled list .

US 2020/0097135 A1 Mar. 26 , 2020
6

[0055] The view mode shown in FIG . 3 allows the user to
see what applications / programs are in each space and choose
which space to use . When in view mode , applications can
continue to run and program windows can be displayed in a
normal fashion , for example on a smaller scale . Program
windows continue to update , for example , displaying ani
mations , refreshing their contents , etc. In a sense , the view
mode shows the real windows of all spaces . Users can
navigate between spaces with appropriate user input , such as
by mouse , keyboard hot keys , key combinations , gestures , or
other mechanisms . Other devices can also be used for input ,
such as those for providing alternate input capability for
physically handicapped users . It can be possible for the user
to zoom in on a subset of spaces . In one implementation , the
system can automatically switch from one space to another
based on a predefined event , such as when a specific
application is launched or an application makes a particular
output .

[0056] FIG . 4 depicts a screenshot of a computer display
showing an application window as it is being transferred
from one space to another space in a space management
system . This change can be initiated by the user , for example
because the application is to be used in connection with the
applications (s) already present in that other space . FIG . 4
continues the example introduced in FIG . 3 by showing the
program window 340 corresponding to application H being
moved from third space 308 , in the bottom left , to the second
space 306 , located in the top the right . In this example , the
user starts by opening edit mode , such as by holding a mouse
button while pointing to the program window 340 corre
sponding to application H , or pressing a hot key . The user
selects the program window 340 corresponding to applica
tion H with the mouse , drags it from the third space 308 and
releases it in the second space 306. When finished , the user
can resume working by exiting edit mode via another hot
key or mouse gesture , or perform other application window
moves . In some implementations , the component 118 exits
edit mode automatically upon the move being completed .
While the above example describes a single window being
moved , other moves are also possible in some implementa
tions . For example , it can be possible to move all windows
of a type , all windows of a single application , or a selection
of windows . In some implementations , some changes to
spaces , such as moving content from one space to another ,
can be done in view mode or a zoom - in mode ; that is ,
without formally entering edit mode .
[0057] The user can signal his or her intentions to transfer
an application window using a menu , icon , popup menu ,
gesture , hot - key or key combinations , to name some
examples . The application window to be moved can be
selected , in some implementations , via mouse clicks or
gestures , combinations of button presses such as tabs or
arrows , or combinations thereof . Various methods of moving
the application windows can be used , such as by using a
mouse to drag the application window from the originating
space and drop it into the destination space , or using
keyboard commands to reposition the application window
into the destination space . The space presentation engine
210 can register the relocation of the application window
and alert the space identification engine 212 about this
change . For example , the space identification engine 212 can
make sure that this change is preserved for the next time the
display 300 is initiated .

[0058] FIG . 5 depicts a screenshot of a computer display
showing a space being rearranged . The figure shows an
example of using a space edit mode to move the first space
304 depicted in FIG . 3 to a new position . In this example , the
first space 304 is being moved from the top - left position of
the space group to the bottom - right position .
[0059] While in space edit mode , spaces can be arranged
in a plurality of ways to suit the user . The process of
arranging spaces can be done in a similar fashion to the
process used for moving program windows . For example ,
the user can signal his or her intention to move a space via
a menu , an icon , a popup menu , a mouse gesture , a hot - key ,
etc. The space to be moved can be selected , in some
implementations , via mouse clicks or gestures , combina
tions of button presses such as tabs or arrows , or combina
tions thereof . Various methods for moving application win
dows can be used , such as using keyboard commands or
using a mouse for dragging the application window from
one space and dropping it in another space .
[0060] When a space is moved to a new position the space
presentation engine 210 determines whether that position is
already occupied by another space . If so , that other space can
be relocated to make room for the moved space . Also , the
relocated space or one or more other spaces can be adjusted
to fill the vacated space position . In some implementations ,
the space being displaced is moved to the position of the one
taking its place ; for example , when the first space 304 is
moved to the bottom - right position of the space group , the
fourth space 310 moves to the vacated position in the top - left
position . In some implementations , other repositioning
schemes can be used , such as sliding a bordering or adjacent
space vertically or horizontally to fill the void or shuffling
the spaces in a clockwise or counter - clockwise direction . For
example , in implementations where the multiple spaces are
defined in a desktop area that is larger than the displayable
area , the relocation of one or more spaces can correspond to
a corresponding reorganization of the desktop area .
[0061] In some implementations , a user can specify a
preferred way to handle space movements . For instance , in
the preceding example , the space preferences engine 218
depicted in FIG . 2 can be used to specify moving details
such as whether swapping , sliding , or shuffling occurs to fill
a vacancy . The space animation engine 216 can provide
animated motion of one or more spaces during editing .
[0062] FIG . 6 schematically shows exemplary modes of
operation for managing spaces . The space management
system can be in one of several modes to perform various
space - related functions . Users can switch between the
modes to access various types of associated functionality
and some transitions can be automatic .
[0063] The system can include modes such as a non - space
mode 602 , a view mode 604 , space edit mode 606 , and a
zoom - in mode 608. The various modes (602 , 604 , 606 , 608)
can provide a user with one or more associated functions for
managing spaces . The various modes (602 , 604 , 606 , 608)
and associated functions can be activated using input
devices such as a keyboard or mouse to change from one
mode to another .
[0064] While in the non - space mode 602 , spaces are
disabled and the system provides access to one or more
application programs without displaying spaces , e.g. , all
non - minimized program windows are displayed . Following
the above example of FIG . 3 , non - space mode 602 can cause
the program windows (320-354) corresponding to all of the

US 2020/0097135 A1 Mar. 26 , 2020
7

applications A - K to be shown simultaneously on the display .
Depending on the screen size , this may require stacking
some or all of the program windows (320-354) on top of
each other . If so desired , a user can signal to the space
management engine via , for instance , a hot key or toolbar
icon to change from the non - space mode 602 to view mode
604 or to space edit mode 606 .
[0065] When the system is in view mode 604 , all config
ured spaces are displayed by the system , for example in a
grid of spaces . View mode functionality can be considered
a " zoom - out ” perspective compared to the zoom - in mode
608 , where a single space is shown . From the view mode
604 , the system can enter the non - space mode 602 , the space
edit mode 606 , or the zoom - in mode 608 .
[0066] The space edit mode 606 provides space editing
functionality . One edit function 610 can provide the user
with a capability to move an application window within a
space . A second edit function 612 can provide the user with
a capability to move an application window from one space
to another space . A third edit function 614 can provide the
user with a capability to rearrange spaces . A fourth edit
function 616 can provide the user with a capability to edit a
space , for example to add a new application window to the
space or to remove an existing one . The space management
engine 208 can add more spaces when requested by the user .
A plurality of edit functions can be performed while in the
space edit mode . From the space edit mode 606 , the system
can enter the non - space mode 602 , the view mode 604 , or
the zoom - in mode 608. The space edit engine 214 can
provide these or other functionalities in the edit mode . As
noted above , some edits or changes can be done also when
not in edit mode .

[0067] When in the zoom - in mode 608 , one or more
selected spaces can be shown on the display . When the space
306 (FIG . 3) is active , for example , the program windows
330-334 are shown on the screen . In some implementations ,
the appearance of the program window (s) in the zoom - in
mode is very similar or identical to how they look in the
non - space mode 602. One difference , however , is that in the
zoom - in mode any windows kept inactive in
the other spaces can be considered as resting outside the
currently visible area of the desktop . This contrasts with the
non - space mode 602 , where any currently running applica
tion has its program window (s) shown (either in a mini
mized or non - minimized form) . In some implementations ,
the use of spaces is a way of dividing a large view so that
it can be viewed and accessed in smaller portions .
[0068] From the zoom - in mode 608 , several associated
functions can be used . A first function 618 can provide the
user with a capability to work with their application win
dows . For example , the user interacts with the currently
active program window . A second function 620 can provide
the user with a capability to switch to another space .
Because the spaces collectively correspond to more screen
space than can be presented at once , the switching function
620 provides a convenient management of contents when
there are several open program windows . From the zoom - in
mode 608 , the system can enter the non - space mode 602 , the
view mode 604 , or the space edit mode 606 .
[0069] In some implementations , such as depicted in FIG .
14 (described later in more detail) , the choice of which mode
to begin with , after a restart for example , can be configu
rable . User preferences can be tracked by the space prefer

ences engine 218 to determine , for instance , which mode to
use when the system is initialized .
[0070] In the space edit mode 606 , a user can change the
number of spaces available for use in the system . In some
implementations , the number of available spaces may be
changed by adding or removing rows or columns of spaces .
FIG . 7 depicts a screenshot of a computer display in space
edit mode showing controls for adding or removing spaces .
Icons and placeholder spaces are used to control and indicate
adding or removing rows or columns in the group of spaces
depicted in the example of FIG . 3. The user may add or
remove columns or rows of spaces , for example by clicking
on an icon or using a hotkey . Space (s) remaining after a
deletion can be shifted horizontally or vertically to fill the
void left by the deleted space (s) .
[0071] In FIG . 7 , a column 702 is located on the right side
and a row 704 is located at the bottom of the spaces (304 ,
306 , 308 , 310) depicted in FIG . 3. Each of the column 702
and the row 704 includes placeholder spaces representing
the possibility of adding spaces in the respective directions .
An icon 706 above the column 702 can be used to add one
or more columns of spaces . An icon 708 next to the row 704
can be used to add one or more rows of spaces . An insertion
icon 710 located in the bottom - right corner of the space
group can be used to simultaneously add a row and a column
of spaces to the space group . Column deletion icons (712 ,
714) located above the spaces (304 , 306 , 308 , 310) can be
used to delete a column of spaces e.g. clicking on the left
column deletion icon 712 causes the spaces (304 , 308) in the
left column to be deleted . Row deletion icons (716 , 718)
located to the left of the spaces (304 , 306 , 308 , 310) can be
used to delete a row of spaces e.g. clicking on the bottom
row deletion icon 718 causes the spaces (308 , 310) in the
bottom row to be deleted . When the closed space (s) contains
one or more program windows , the associated application (s)
can be closed by the application deactivation engine 220 or
transferred to another space . Such settings can be managed
by the space preferences engine 218. Other techniques can
be used for arranging spaces , such as arbitrary placement ,
for example , or arranging three spaces in one row and a
single space in another , accompanied by appropriate mecha
nisms for moving , deleting , and adding spaces .
[0072] FIG . 8 depicts a screenshot of the computer display
shown in FIG . 7 in space edit mode with an additional
column of spaces . Starting with the group of spaces (304 ,
306 , 308 , 310) , a third column 802 of spaces (803 , 805) has
been inserted to the right if the existing spaces (304 , 306 ,
308 , 310) by clicking on the insertion icon 706 above the
column 702. An associated removal icon 804 and place
holder space 806 in the placeholder row 704 have also been
added . The previously existing spaces (304 , 306 , 308 , 310)
have been scaled and shifted to allow viewing of the full
group of spaces . The user can now relocate any or all of the
currently open program windows to any of the spaces (803 ,
805) .
[0073] If the user wishes to remove the third column 802 ,
he or she can click on the removal icon 804 above the
column to delete the spaces in that column . When the
column is deleted , the remaining spaces can be shifted and
zoomed to fill the available space resulting in the original
layout depicted in FIG . 7 .

other program

US 2020/0097135 A1 Mar. 26 , 2020
8

[0074] Input controls other than the icons described above
(e.g. , icons 706 , 804) can be used . For example , keystrokes ,
mouse gestures or menu commands can be used to add or
remove spaces .
[0075] FIG.9 depicts a screenshot of the computer display
in space edit mode shown in FIG . 7 with an additional row
of spaces . A third row 902 of spaces (903 , 905) , as well as
an associated removal icon 904 and placeholder space 906
have been added by clicking on the addition icon 708 located
next to the bottom row of spaces shown in FIG . 7. Similar
to the above example of FIG . 8 , the preexisting spaces (304 ,
306 , 308 , 310) were scaled and shifted to accommodate the
added row 902 of spaces . If the user were to choose to delete
the third row 902 of spaces , such as by clicking on its
adjacent deletion icon 904 , the remaining spaces (304 , 306 ,
308 , 310) would be zoomed and shifted downward , resulting
in the original layout shown in FIG . 7 .
[0076] The exemplary operations described with reference
to FIGS . 8 and 9 can be registered by the space edit engine
214 and forwarded to the space identification engine 212 to
establish the newly created spaces , and to the space presen
tation engine 210 to generate the updated display , to name
one example . It may be noted that the space layouts depicted
in FIG . 8 and FIG . 9 could also have been generated upon
the user clicking on the insertion icon 710 to add both a row
and a column , then deleting either a column or row as appropriate .
[0077] In some implementations , the space management
component 118 can have the capability to add or subtract
single spaces at a time , where the group of spaces can be
automatically organized and sized in an aesthetically pleas
ing manner or to allow viewing of the full group of spaces .
[0078] FIG . 10A depicts a screenshot of a computer dis
play showing an example of the display in FIG . 3 after the
Exposé component 206 was invoked . The user can , for
instance , use a hot key or key combination to command the
Exposé component 206 to automatically rearrange , scale , or
resize program windows to increase usability . In FIG . 10A ,
Exposé was used to rearrange the user's program windows
to maximize viewability in all spaces at the same time . It is
seen that the windows now overlap less than in FIG . 3. In
some implementations , Exposé functionality can be applied
to a single space or to multiple spaces .
[0079] Exposé components can be automatically invoked
when certain events occur . For example , assume that the
user , while watching the display of either FIG . 10A or FIG .
3 , decides to move the window 324. FIG . 10B depicts the
contents after moving a program window from one space to
another . In this case , the program window 324 correspond
ing to Application C was moved from the first space 304 to
the second space 306 , after the move occurred , the Exposé
component 206 was automatically invoked to rearrange the
program windows 324 , 332 , 330 , 334 within the space 306 .
There can also be performed a rearrangement of the win
dows in space 304 ; that is , in the space from which the
window was removed . These exemplary operations can be
performed as a default upon the move , or based on a
preference setting to invoke the Exposé component .
[0080] It has been described above that the user can switch
between spaces , for example to see a window in another
space . As another example , the system can automatically
switch to a new space upon a predefined event , such as a new
window being opened or an existing window moving to the
front of the screen . In some implementations , the switch to

a new space can be conditioned on one or more criteria . For
example , when some windows are initiated they do not
imply that a user interface action will occur . The condition
(s) can be configured so that such new windows do not
automatically cause a switch to a new space . In one imple
mentation , a condition can be set so that windows of one
application type trigger a switch while windows of another
type do not (e.g. in some implementations , error notifica
tions can cause a switch , where email or chat notifications do
not) . For example , these operations can be done by the space
management component 118 .
[0081] In some implementations , the switch is done sub
stantially without animation , for example , the system ceases
to display the contents of the previous space and simulta
neously , or shortly thereafter , begins displaying the contents
of the new space . In another implementation , the switch can
include some animation , for example as will now be
described
[0082] FIG . 11 depicts a screenshot of a computer display
in zoom - in mode 608 as the current space is replaced with
another space using an animation technique . With reference
briefly to FIG . 3 , the animation technique shown in the
current example is performed from the bottom left space 308
to the bottom right space 310. In some implementations , the
user makes an input (e.g. , with a hot key or a link) that
identifies another application window that is to be activated .
If the system determines that the sought window is located
in the same space that is currently active , there is no need to
switch spaces . If , on the other hand , the system determines
that the window of the sought application is located in
another space , the system can initiate that space , for example
using the animation technique .
[0083] While viewing one space , the user can change to
another space without first changing to view mode . In some
implementations , a user can change to an application resid
ing in a space other than the current space , causing the other
space to becomes the active space . When a command , such
as a hotkey , is issued , the program windows of the space
which is currently displayed are gradually removed ,
replaced by program windows of another space . The tran
sition can be done using an animation technique that moves
the contents of the current space out of view while moving
the contents of the new space .
[0084] In some implementations , the user can use a hot
key , etc. to select a space different than the currently active
space and thereby trigger the animation technique . For
instance , a hotkey may be associated with each defined
space or hotkeys can exist that cause an animated move to
the next space in the space group . In one implementation , the
animation technique can involve the use of an icon 1102
which represents the contents of the respective spaces . Here ,
the icon 1102 has four sectors for the spaces 304-310 . The
user can initiate a move to a new space , optionally involving
the animation technique , by clicking on the icon correspond
ing to the desired space .
[0085] After a new space is chosen , in one implementa
tion , the application windows of the previously active space
gradually disappear and are replaced by the application
windows of the newly active space . The transitions can be
made in such a manner that the application windows of the
previously active space appear to slide toward the edge of
the display and the application windows of the newly active
space appear to slide into the display . The direction of slide
can be indicative as to the relative placement of the spaces

US 2020/0097135 A1 Mar. 26 , 2020
9

when viewed in editing mode . For example , FIG . 11 depicts
an animation performed from the bottom - left space to the
bottom - right space shown in FIG . 3 .
[0086] FIG . 11 depicts a an animation technique in prog
ress as the third space 308 is replaced by the fourth space
310. Initially , the program window 340 is shown on the
display in a location corresponding to the situation in FIG .
3 (centered in the display area) . When a hotkey is pressed ,
the program window 340 is slid toward the left edge of the
display and replaced by the program windows 350 , 352
corresponding to applications I and J as the fourth space
slides into view (the program window 354 corresponding to
application K is not yet in view in FIG . 11) . When the
animated move is done , the windows 350-354 may be
located as indicated in FIG . 3 (window 354 placed in the
center , somewhat lower than the others , and the windows
350 and 352 side - by - side on top of , and somewhat higher
than , the window 354) . Animated move operations can be
performed between any two spaces in the current example
and in any other space configuration .
[0087] FIG . 12 depicts a screenshot of a computer display
in zoomed - in mode 608 as a viewable space is exchanged for
a vertically adjacent space using an animation technique . In
FIG . 12 , the animation technique is shown starting zoomed
in on the fourth space 310 (FIG . 3) and transitioning to the
second space 306 (FIG . 3) .
[0088] In this example , the icon 1102 shows that the
animation technique is performed from the space in the
bottom - right position to the top - right position space of the
space group . The program windows 350 , 352 , 354 corre
sponding to applications I , J , and K of the fourth space 310
are shown sliding toward the bottom edge of the display
while the program windows 330 , 332 , 334 corresponding to
applications E , F and G of the second space 306 are shown
sliding down from the top of the display .
[0089] In some implementations , the sliding effect may
give the illusion of layers , such as by having the transition
ing program windows slide “ over ” the top of some desktop
components while sliding “ under ” other desktop compo
nents . For example , desktop icons 1202 , 1204 and the
toolbar 302 are not part of the space configuration and the
program windows of the second space 306 can be shown
sliding on top of these items .
[0090] It has been mentioned above that contents can be
selectively assigned to any or all of the spaces . A space that
has no contents assigned to it can be considered an empty
space , but can nevertheless exist together with the other
spaces , for example as a placeholder for receiving content at
some future time . When activating this space , the user will
see that it is empty because there are no windows or
applications associated with it . In some implementations , a
notification can be generated that the currently presented
space is empty . For example , a message such as “ Empty
Space 5 ” can be shown on the screen . By contrast , if the user
switches to a space that has contents , the user can see the
contents of that space , for example as they are brought
onscreen using an animation .
[0091] Another situation when the space can seem empty
to the user is when the content that is assigned to the space
is not currently visible . While the appearance may be similar
to the “ empty space ” described in the previous example ,
there is a significant difference in that the space here actually
has content , although that content is currently not shown .

[0092] As a first example , the content can be non - dis
played because the application associated with the space is
not currently running . A second example is that the appli
cation is running but is not currently generating any output
(e.g. , the application does not have a window open in the
user interface) . A third example is that the window generated
by the application has been minimized or closed . Such
non - visible content can be a problem for the user in some
situations , because the user can mistakenly believe that the
space does not have any contents .
[0093] Any of several approaches can be used with spaces
that have content but where the contents are currently not
displayed . First , the space management component 118 can
provide that a command bar associated with the application
(s) is nevertheless displayed . For example , in a Mac oper
ating system the Dock tiles for the associated application (s)
can be shown . Second , there can be presented a heads - up
display image , such as a floating control window , associated
with the application (s) . Particularly , assume that the contents
of the space 308 shown in FIG . 3 were not currently
displayed . Upon detecting this , a heads - up display for the
application H could be displayed , which can appear similar
to the here schematically illustrated window 340 that is
currently visible . Third , the background of the space can be
branded with the application (s) . For example , this can be
done using recognizable elements associated with the appli
cation , such as a logo , an audio track , or an advertising
theme . Particularly , the branding can for example appear
similar to the here schematically illustrated window 340 that
is currently visible . Combinations of the above can be used .
The above exemplary approaches , and other approaches as
well , can be done by the space presentation engine 210 ,
optionally in association with the space animation engine
216 .

[0094] In some implementations , the indications of non
displayed content can be moved between spaces . For
example , a user can select the indication in one space and
drag it to another space . This can be done in any context
where the indication is present , including in an Exposé - style
display of spaces , such as the one shown in FIG . 10B . For
example , the indication can be dragged to a “ hot edge ” , a
feature that will be described below with reference to FIGS .
19A - C . The relocation of the indication triggers the associ
ated application (s) to be reassigned to the other space . The
moving and reassignment can be handled by the space
presentation engine 210 in connection with the space iden
tification engine 212 .
[0095] Some program windows can be more important to
the user than others and the user may want to have such
window presented in all of the spaces . FIG . 13 depicts a
screenshot of a computer display showing an application or
window (“ sticky ”) 1302 that is visible in multiple spaces .
The sticky 1302 can be moved within the spaces like all
other space contents . Generally , space contents can be
marked as sticky to ensure that they are viewable , regardless
of which space (s) is currently being shown on the display .
[0096] In some implementations , if an application has
been marked as sticky , its corresponding program window
(s) can appear in all spaces . For instance , it may be useful to
always have a program window for a chat application visible
regardless of which space is currently active . Users can use
the space preferences engine 218 to choose whether an
application or program window is sticky . If desired , the user

US 2020/0097135 A1 Mar. 26 , 2020
10

be added automatically in some implementations . For
example , one or more windows for a newly launched
application (s) can automatically be opened in a new space .
In one implementation , such an arrangement could be used
to self - organize useable space as windows for new applica
tions are opened .
[0103] The middle binding section 1504 has a table 1530
with space content bound to named groups of spaces . In this
example , a mail application 1532 is assigned to a first group
“ Every Space ” 1534 , a chat application 1536 is assigned to
a second group “ Space 2 ” 1538 , and a document editor
application 1540 is assigned to a third group “ Work - related
Spaces ” 1542. A user can change which space group an
application is bound to by clicking on the icons 1544-1548
next to the selected group , or by selecting the group and
using the arrow keys to scroll through a list of available
groups . Buttons 1550-1556 can be used for adding or
removing applications or windows from the table 1530. In
some implementations , a window from anywhere on the
screen can be bound to a space by selecting it with the mouse
and dragging it to one of the numbered icons 1514-1520 in
the top section 1502. For example , this can cause a new
binding to appear in the table 1530. In some implementa
tions , one or more spaces to which an application or window
is bound can be changed by dragging the corresponding icon
or field in table 1530 to a destination space depicted in the
top section 1502. The entry in the table 1530 corresponding
to the application can be updated to show the application or
window bound to the destination space . For example , if an
entry for the chat application 1536 in the table 1530 was
dragged to the icon 1518 for space 3 , the table 1530 can be
updated to show that the chat application is now bound to

can un - mark a sticky application or program window so that
it only appears in a single space .
[0097] In FIG . 13 , the program window 1302 corresponds
to a sticky application . The program window 1302 appears
in each of the spaces (304 , 306 , 308 , 310) shown on the
display so that the program window 1302 is viewable
regardless of which space is being shown . In some imple
mentations , space contents can be made sticky for spaces
belonging to a certain group . This means that the application
or window can occur in more than one but fewer than all
spaces . For example , a chat application could appear in all
spaces belonging to a “ home ” group and an email applica
tion could appear in all spaces belonging to a “ work ” group .
Applications or windows can be sticky in more than one
group of spaces , i.e. groups associated with different work
groups can be overlapping so that they share members .
[0098] FIG . 14 depicts a configuration window 1400 for
specifying preferences related to Exposé and spaces . A top
section 1402 can be used for specifying actions to take based
on mouse gestures . A middle section 1404 can be used to
specify keyboard shortcuts related to Exposé functionality .
A bottom section 1406 can be used to specify keyboard
shortcuts related to using spaces .
[0099] Users can use the configuration window shown in
FIG . 14 to specify responses to mouse gestures . Fields
1408-1414 can be used to specify an action to take when the
mouse pointer is positioned in one of the screen corners . For
example , field 1414 indicates that all the program windows
will have active corners . In some implementations , actions
can be specified for active corners , such as switching to the
next or previous space in the list , or switching to the last
space that was viewed . For example , moving the mouse to
one active corner could cause a switch to the next space in
the list of spaces , moving the mouse to a second active
corner could cause a switch to the previous space in the list ,
and moving the mouse to a third active corner could cause
the display to switch to another space that was most recently
displayed . In the middle section 1404 , keyboard shortcuts
(1416-1422) can be specified for changing the mode to
display all windows , program windows associated with an
application , or a dashboard respectively . For example , dash
board refers to the Dashboard function that is available in the
Apple OS X® operating system to perform tasks or access
information . In the bottom section 1406 , a user can choose
to enable spaces via a checkbox 1424 , specify a keyboard
shortcut 1426 for spaces , or click on a button 1428 to open
another configuration window such as the one shown in FIG .
15 .
[0100] FIG . 15 depicts a window 1500 that can be used for
configuring spaces . A top section 1502 can be used to add or
removing spaces . A middle section 1504 can be used for
binding applications or windows to spaces or groups of
spaces . A bottom section 1506 can be used for specifying
hotkeys used for navigating among spaces . Buttons 1508 ,
1510 or 1511 located at the bottom of the window 1500 can
be used to open windows with additional content .
[0101] The top section 1502 includes an area 1512 with
numbered icons 1514-1520 depicting spaces . A user can use
buttons 1522-1528 to add or remove spaces , for example
clicking on the add row button 1522 to add a new row of
space icons in the area 1512. As has been mentioned ,
non - symmetric patterns of spaces can be used .
[0102] In contrast to adding a new space with an input
control (such as the add row button 1522) , spaces can also

space 3 .
[0104] The bottom navigation section 1506 has fields for
assigning keyboard shortcuts to navigation actions . The top
field 1558 specifies which keyboard shortcuts trigger a
switch between spaces , i.e. switching to a space positioned
relative to the space currently being viewed . In the example
shown , holding down the control key on the keyboard
(signified by the caret character , “ * ”) while pressing an arrow
key causes a switch to the space in the direction correspond
ing to the arrow key .
[0105] The bottom field 1560 of the navigation section
1506 specifies which keyboard shortcuts trigger a switch to
a specific space , i.e. regardless of the currently viewed
space . In the example shown , holding down the control key
on the keyboard (signified by the caret character , “ * ”) while
pressing a number key causes a switch to the space corre
sponding to the key number . Similar shortcuts can be defined
for other spaces - related operations , such as moving space
content from one space to another or rearranging two or
more spaces .
[0106] Buttons located at the bottom of the window 1500
can be used to open windows with additional content . An
advanced preferences button 1508 can be used to open an
advanced preferences window shown in FIG . 16 (described
below) . An Exposé preferences button 1510 can be used to
return to the Exposé preferences window 1400. A help
button 1511 can be used to access help related to the window
1500 .
[0107] FIG . 16 depicts an example of an advanced pref
erences window 1600 which can be used for specifying
advanced preferences in a user interface . A user can specify
preferences to the space preferences engine 218 using the

US 2020/0097135 A1 Mar. 26 , 2020
11

advanced preferences window 1600. A button 1601 can be
used to close the window 1600 and return the user to the
spaces window 1500 depicted in FIG . 15 .
[0108] A first check box 1602 can be used for specifying
whether to use hot edges (described below in further detail) ;
if the box 1602 is checked , hot edges are enabled , otherwise
hot edges are disabled . A bindings section 1604 can be used
for assigning applications or windows to groups . A spaces
section 1605 can be used for specifying group preferences .
[0109] The bindings section 1604 can be used to associ
ated an application (s) or program window (s) to a group .
Groups can be used to perform operations on a set of
applications or windows at the same time . For example , in
FIG . 15 the “ Document Editor ” was assigned to the group
“ Work - related spaces ” . In some implementations , if an
application is bound to a group , all of its associated program
windows are bound to the same group .
[0110] A table 1606 can be used to associate content with
groups . Groups can be managed , for example , by using
buttons 1608 , 1610 , 1612 , 1614 to add and remove appli
cations and program windows to or from the table 1606. For
example , a chat application 1616 could be removed by
clicking on the remove application button 1610. Groups that
are assigned to an application or program window can be
changed by using a selector icon 1618 , 1620 located next to
the entries in the table 1606 which could , for instance ,
provide a popup list from which a group could be selected .
For example , a mail program window could be assigned to
Group 2 by clicking on the its selector icon 1618 and
choosing the corresponding entry . In some implementations ,
all applications or windows having the same type can be
transferred with a single command from one space to a
different space . For example , this applies when the applica
tions of a common type have previously been grouped
together , or the common type can be detected when execut
ing the command . The command can be made using a hot
key , a mouse operation , or any other kind of input .
[0111] The spaces section 1605 can be used to specify
preferences related to groups . A first checkbox 1624 can be
used to specify whether group moving should be enabled .
The term " group moving ” refers to moving all members of
a group from one space to another at one time using a single
command . For example , a user can use a single keyboard or
mouse command to move all the applications and windows
associated with Group 1 to a new space .
[0112] A second checkbox 1626 can be used to specify
whether new applications or program windows should be
assigned to one or more groups based on type . That is ,
program windows or applications associated with the oper
ating system that share a common feature or are to be used
similarly can be assigned to one group and other program
windows or applications can be assigned to another group .
For example , it can be predefined that an iTunes application ,
available from Apple Computer in Cupertino , Calif . , should
be assigned to a particular space , and similarly for other
applications .
[0113] A third checkbox 1628 can be used to specify
whether new applications or windows should be assigned to
a group (s) based on how they are used . In some implemen
tations , use can be determined based on what type of actions
the computer 102 performs associated with an application or
program window . For example , applications or program
windows used for editing content , such as a text editor or
image editor , could be assigned to a first group , applications

or program windows assigned used for internet or network
access could be assigned to a second group , and applications
or program windows used for playing content , such as video
players or music players , could be assigned to a third group .
In some implementations , use can be determined based on
heuristics or pattern matching , e.g. if the user may normally
put certain applications and program windows in the same
space , those applications and program windows could be
assigned to a common group . These use - based determina
tions can be done by the space management component 118 .
[0114] In some implementations , applications or program
windows can be assigned to multiple groups . For instance ,
if both the second checkbox 1626 and third checkbox 1628
are selected , a new application or program window can be
assigned to a group A and a group B. In some implemen
tations , an application (s) or program window (s) can be
assigned to a single group ; in this case , priority can be given
to one or the other checkbox . In some implementations , the
checkboxes which are mutually exclusive can be replaced
with radio selectors that only allow a single selection to be
made at a time .
[0115] A fourth checkbox 1630 can be used to specify that
the view mode display (see , e.g. , FIG . 3) can include
captured content . That is , in some situations , the space
management component 118 can capture the contents of one
or more spaces at a given moment and present this static
content in the view mode .
[0116] FIG . 17 depicts an example screenshot of display
1700 showing a space 1702. Here , the contents of the space
1702 include a window 1704. There is also presented an
inset window 1706 showing the contents of anther space
1708. That is , the contents of the first space 1702 are
displayed spread out over the display at normal size and the
contents of the second space 1708 are scaled to fit in the inset
window . A user can interact with and use the contents of
either space .
[0117] In some implementations , a display can show a
space , such as 1702 , at full size and display a second space ,
such as 1708 , in an inset window 1706 , whose contents are
scaled to fit the window . In some implementations , the inset
window 1706 can always be displayed “ over ” the contents
of the first space 1702 such that the region of the display
containing the inset window 1706 displays the inset window
1706 and the contents of the second space 1708 wherever
overlap occurs with content in the first space 1702. The
spaces 1702 and 1706 can be presented using the space
presentation engine 210 .
[0118] A user can choose to change the space that is
displayed in the inset window 1706 , for example , by click
ing on buttons 1710 , 1712 to cycle through the available
spaces . For example , clicking on the first button 1710 could
cause the inset window to display the space preceding the
current space 1708 in a list or matrix such as that shown in
FIG . 3. In some implementations , mouse gestures or key
board shortcuts could be used to cause a change of spaces in
the inset window 1706. In some implementations , a user can
swap the space 1702 zoomed out on the display 1700 and the
space 1708 in the inset window 1706 , such as through the
use of mouse or keyboard command .
[0119] FIGS . 18A - D illustrate how a command bar can be
used to facilitate moving among a group of spaces . FIG . 18A
depicts a group of spaces shown in view mode . FIGS . 18B - C
show several depictions of some of the spaces shown in FIG .
18A expanded to view mode . A user can provide input via

US 2020/0097135 A1 Mar. 26 , 2020
12

a mouse or keyboard to navigate to any of the spaces .
Particularly , as will now be described , the user can navigate
to each of the spaces that contains a specific window or
application .
[0120] In some instances , an application or program win
dow can be assigned to multiple spaces . In the example
depicted in FIGS . 18A - C , an application associated with a
program window 1802 is launched from an icon 1804 in a
command bar 1806. The same command bar 1806 can be
present when a space is shown in view mode , as shown in
FIGS . 18B - D . The application can be bound to several
spaces , such as by using the spaces preferences window
described above and shown in FIG . 15 .
[0121] Application A is bound to space 1 (1814) , space 6
(1810) and space 8 (1812) , as indicated with an asterisk * in
FIG . 18A ; application A is not associated with spaces 2 , 3 ,
4 , 5 , or 7 (1816 , 1808 , 1820 , 1822) .
[0122] In FIG . 18B , the application A is not presently
shown because it is not part of the space 4 that is currently
open . FIGS . 18B - D show that the user can launch applica
tion A by , in some implementations , clicking on icon 1804
in the command bar 1806. Clicking on the icon 1804
launches the window for the application , as illustrated in
FIG . 18C . This can also activate the space 6 , which is the
next space in the sequence (1-8) that contains application A.
For example , this functionality can be turned on or off with
a preference setting . If the user again clicks on the icon
1804 , this will open the next space that contains application
A , here the space 8 , as shown in FIG . 18D . While this
example involves the application being initiated by the user ,
other possibilities can exist . For example , a similar cycling
around the relevant spaces can be done after an application
is automatically launched by the system .
[0123] FIGS . 19A - C depict example screenshots of a user
interface showing the use of “ hot edges ” . Hot edges is a term
used to describe a predefined location of the display where
an application or window can be dragged to automatically
place it into another space . A hot edge can be defined in any
or all location on the screen . For example , a corner can be
defined as a hot edge so that dragging a program window
within a certain area , such as within 100 pixels of a display
edge , can cause the program window to be moved to a space
associated with that area . For example , if two spaces are
horizontally adjacent , a program window can be transferred
from one to the other by dragging it with the mouse until it
touches the edge of their common border . The spaces can
then be shifted “ underneath ” the dragged window to effec
tuate the transfer . Edges of the display can be divided into
segments corresponding to different spaces , for example if
there are more spaces than edges . In another example , by
dragging a window to a corner , the window can be moved
from one space to another space that is “ diagonal ” from the
first one when observed in view mode . In some implemen
tations , for example where there is no geometric relationship
between spaces in the view mode , the corner hot edge can
cause a switch to a next one of the multiple spaces .
[0124] FIG . 19A shows the fourth space 310 of FIG . 3. A
user wishes to move the program window 350 to another
space . The user therefore moves the program window 350 to
the edge of the space . This triggers an action to move the
current space out of the screen and move in another (e.g.
adjacent) space . FIG . 19B depicts a screenshot of an ani
mated transition as the program window 350 is held in place
while the remaining contents of the fourth space 310 , i.e. the

program windows 352 , 354 , are sliding toward the right side
of the display and the contents of the third space 308 , i.e. the
program window 340 , is sliding in from the left side . This
sliding of the spaces is done to facilitate the move of the
window 350 to another space . FIG . 19C depicts the display
after the transition is complete ; the third space 308 is now in
view with the moved program window 350 positioned on the
left side of the display along with the other contents of the
third space 308 , i.e. the program window 340. In some
implementations , an icon 1102 such as the one used in FIG .
11 can be displayed while the transition is in progress that
graphically depicts the transfer . As another example , the user
can drag the window toward any portion of the icon 1102 to
initiate a move of the window to the space corresponding to
that portion . Thus , hot edges can be located elsewhere than
at the perimeter of the screen or space . In some implemen
tations , a user can change spaces via hot keys or gestures
while dragging a program window to place the program
window in a different space , such as by holding down a
control (Ctrl) key and pressing one of the arrow keys . It can
also be possible to switch to another space while dragging a
window by hitting any of the space movement keys , e.g. , hot
keys , or by making mouse gestures , to name a few examples .
Relocations of content between spaces can be managed by
the space identification engine 212 , and the resulting display
can be generated by the space presentation engine 210 .
[0125] FIG . 20 depicts a screenshot of a space 2000 which
visually indicates the positions of adjacent spaces . In some
implementations , borders of a space are colored to indicate
the presence of an adjacent space . A user wishing to move
a program window from the currently space to another space
can use the visual indication to determine where the program
window can be moved .

[0126] In example shown in FIG . 20 , visual indicators can
be displayed along the edges of a space 2000 to indicate the
presence of adjacent spaces . A top indicator 2002 indicates
that a space is located “ above ” the current space and an
indicator on the right side 2004 indicates that a space is
located “ to the right ” of the current space . These spatial
concepts can be based on the distribution of spaces that can
be seen in view mode . See , for example , FIG . 3 , where some
windows are located above or to the right of another
window . The top and side indicators 2002 , 2004 signify to
the user that the window 2006 can be moved to spaces in the
corresponding positions (as described above) ; the lack of an
indicator on the left and bottom indicate that spaces are not
available to the left and bottom side . A corner 2008 can be
defined as a hot edge , for example to operate as in the
examples described above .
[0127] In some implementations , the spaces in the view
mode are ordered , so that they define a sequence . Then , the
hot edge on the right side of the screen , for example , can
initiate a transition to the next space in the sequence .
Similarly , another hot edge on , say , the left side can effec
tuate a transition to the previous space in the sequence . As
another example , more than one hot edge can be located on
a single screen edge . That is , several separate hot edges can
be defined at any edge of the screen , such as the right one ,
so that the user has more than one option for choosing the
target space when dragging the window toward that screen
edge .
[0128] Other screen portions than edges can be used as
“ hot edges ” . For example , the corners of the screen , or of a

US 2020/0097135 A1 Mar. 26 , 2020
13

particular window or application , can be used as a pre
defined location for initiating a move between spaces .
[0129] Any of the areas 2002 , 2004 and 2006 can be used
for a gesture definition in one implementation . For example ,
a gesture performed in the bottom left corner 2008 of the
screen can cause some or all contents to be moved to another
space .
[0130] In some implementations , a window being moved
can have indicators on the edges instead of or in addition to
indicators on the edges of the space . Indicators can be
combined with other concepts described above , such as
applying indicators to inset windows or highlighting edges
in view mode . In some implementations , indicators can be
depicted by use of color , boarder thickness , patterns , ani
mations , icons or any combination thereof . For example , one
or more hot edges can be configured to “ glow ” when a
window is picked for dragging , or is brought close to the
edge (s) . This can be done by the space animation engine
216 .
[0131] In some implementations , gestures could be used to
pick up multiple windows , such as windows of the same
type or all windows of an application , and move them to
other spaces using the “ hot edges ” technique described
above . For example , using a keyboard shortcut or mouse
gesture , a user could pick up all the windows for an image
editing application and move them to an adjacent space .
0132] In the above description , for purposes of explana

tion , numerous specific details are set forth in order to
provide a thorough understanding . It will be apparent ,
however , to one skilled in the art that implementations can
be practiced without these specific details . In other
instances , structures and devices are shown in block diagram
form in order to avoid obscuring the disclosure .
[0133] In particular , one skilled in the art will recognize
that other architectures and graphics environments can be used , and that the examples can be implemented using
graphics tools and products other than those described
above . In particular , the client / server approach is merely one
example of an architecture for providing the functionality
described one skilled in the art will recognize that
other , non - client / server approaches can also be used . Some
portions of the detailed description are presented in terms of
algorithms and symbolic representations of operations on
data bits within a computer memory . These algorithmic
descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art . An
algorithm is here , and generally , conceived to be a self
consistent sequence of steps leading to a desired result . The
steps are those requiring physical manipulations of physical
quantities . Usually , though not necessarily , these quantities
take the form of electrical or magnetic signals capable of
being stored , transferred , combined , compared , and other
wise manipulated . It has proven convenient at times , prin
cipally for reasons of common usage , to refer to these
signals as bits , values , elements , symbols , characters , terms ,
numbers , or the like .
[0134] It should be borne in mind , however , that all of
these and similar terms are to be associated with the appro
priate physical quantities and are merely convenient labels
applied to these quantities . Unless specifically stated other
wise as apparent from the discussion , it is appreciated that
throughout the description , discussions utilizing terms such
as “ processing ” or “ computing ” or “ calculating ” or “ deter

mining " or " displaying " or the like , refer to the action and
processes of a computer system , or similar electronic com
puting device , that manipulates and transforms data repre
sented as physical (electronic) quantities within the com
puter system's registers and memories into other data
similarly represented as physical quantities within the com
puter system memories or registers or other such informa
tion storage , transmission or display devices .
[0135] An apparatus for performing the operations herein
can be specially constructed for the required purposes , or it
can comprise a general - purpose computer selectively acti
vated or reconfigured by a computer program stored in the
computer . Such a computer program can be stored in a
computer readable storage medium , such as , but is not
limited to , any type of disk including floppy disks , optical
disks , CD - ROMs , and magnetic - optical disks , read - only
memories (ROMs) , random access memories (RAMs) ,
EPROMs , EEPROMs , magnetic or optical cards , or any type
of media suitable for storing electronic instructions , and
each coupled to a computer system bus .
[0136] The algorithms and modules presented herein are
not inherently related to any particular computer or other
apparatus . Various general - purpose systems can be used
with programs in accordance with the teachings herein , or it
can prove convenient to construct more specialized appara
tuses to perform the method steps . The required structure for
a variety of these systems will appear from the description .
In addition , the present examples are not described with
reference to any particular programming language . It will be
appreciated that a variety of programming languages can be
used to implement the teachings as described herein . Fur
thermore , as will be apparent to one of ordinary skill in the
relevant art , the modules , features , attributes , methodolo
gies , and other aspects can be implemented as software ,
hardware , firmware or any combination of the three . Of
course , wherever a component is implemented as software ,
the component can be implemented as a standalone pro
gram , as part of a larger program , as a plurality of separate
programs , as a statically or dynamically linked library , as a
kernel loadable module , as a device driver , and / or in every

other way known now or in the future to those of
skill in the art of computer programming . Additionally , the
present description is in no way limited to implementation in
any specific operating system or environment .
[0137] It will be understood by those skilled in the rel
evant art that the above - described implementations are
merely exemplary , and many changes can be made without
departing from the true spirit and scope of the present
invention . Therefore , it is intended by the appended claims
to cover all such changes and modifications that come within
the true spirit and scope of this invention .
What is claimed is :
1. A method comprising :
at an electronic device with one or more input devices and

a display :
displaying , on the display , representations of a plurality
of spaces in an arrangement of spaces including a
representation of a first space at a first position in the
arrangement of spaces and a representation of a
second space at a second position in the arrangement
of spaces , wherein the first space includes first
plurality of windows , and wherein the second space
includes a second plurality of windows ;

and any

US 2020/0097135 A1 Mar. 26 , 2020
14

while displaying the representations of the plurality of
spaces , receiving , via the one or more input devices ,
an input that corresponds to a request to move the
representation of the first space ; and

in response to receiving the input :
moving the representation of the first space from the

first position to a different position within the
arrangement of spaces ; and

moving the representation of the second space from
the second position to a different position within
the arrangement of spaces .

2. The method of claim 1 , wherein the first plurality of
windows includes a first window of a first application and a
second window of a second application that is different from
the first application , and wherein the second plurality of
windows includes a third window of a third application and
a fourth window of a fourth application that is different from
the third application .

3. The method of claim 2 , wherein the first window
includes respective content associated with the first appli
cation , wherein the second window includes respective
content associated with the second application , wherein the
third window includes respective content associated with the
third application , and wherein the fourth window includes
respective content associated with the fourth application .

4. The method of claim 1 , wherein moving the represen
tation of the second space from the second position to the
different position corresponds to moving the representation
of the second space to the first position in the arrangement

spaces ; and

of spaces .
5. The method of claim 4 , wherein moving the represen

tation of the first space from the first position to the different
position corresponds to moving the representation of the first
space to the second position in the arrangement of spaces .
6. The method of claim 1 , further comprising :
while displaying the representations of the plurality of

spaces , displaying , on the display , a space deletion
icon ; and

in response to receiving , via the one or more input
devices , an input directed to the space deletion icon ,
ceasing to display a portion of the representations of the
plurality of spaces in the arrangement of spaces .

7. The method of claim 1 , further comprising , while
displaying the representations of the plurality of spaces :

displaying , on the display , a space insertion icon ; and
in response to receiving , via the one or more input
devices , an input directed to the space insertion icon ,
adding , to the display , one or more additional repre
sentations of spaces in the arrangement of spaces .

8. The method of claim 1 , wherein the representations of
the plurality of spaces are displayed in a space edit mode .

9. The method of claim 1 , wherein the input that corre
sponds to the request to move the representation of the first
space includes an input dragging the representation of the
first space to a position that is already occupied by a
representation of another space .

10. The method of claim 9 , wherein during the dragging
input the representation of the first space at least partially
overlaps with a representation of another space .

11. A non - transitory computer readable storage medium
storing one or more programs , the one or more programs
comprising instructions , which , when executed by an elec
tronic device with one or more processors , one or more input
devices , and a display , cause the electronic device to :

display , on the display , representations of a plurality of
spaces in an arrangement of spaces including a repre
sentation of a first space at a first position in the
arrangement of spaces and a representation of a second
space at a second position in the arrangement of spaces ,
wherein the first space includes a first plurality of
windows , and wherein the second space includes a
second plurality of windows ;

while displaying the representations of the plurality of
spaces , receive , via the one or more input devices , an
input that corresponds to a request to move the repre
sentation of the first space ; and
in response to receiving the input :
move the representation of the first space from the

first position to a different position within the
arrangement of

move the representation of the second space from the
second position to a different position within the
arrangement of spaces .

12. The non - transitory computer readable storage medium
of claim 11 , wherein the first plurality of windows includes
a first window of a first application and a second window of
a second application that different from the first applica
tion , and wherein the second plurality of windows includes
a third window of a third application and a fourth window
of a fourth application that is different from the third
application .

13. The non - transitory computer readable storage medium
of claim 12 , wherein the first window includes respective
content associated with the first application , wherein the
second window includes respective content associated with
the second application , wherein the third window includes
respective content associated with the third application , and
wherein the fourth window includes respective content
associated with the fourth application .

14. The non - transitory computer readable storage medium
of claim 11 , wherein the instructions further cause the
electronic device to :
while displaying the representations of the plurality of

spaces , display , on the display , a space deletion icon ;
and

in response to receiving , via the one or more input
devices , an input directed to the space deletion icon ,
cease to display a portion of the representations of the
plurality of spaces in the arrangement of spaces .

15. The non - transitory computer readable storage medium
of claim 11 , wherein the instructions further cause the
electronic device to :
while displaying the representations of the plurality of

spaces :
display , on the display , a space insertion icon ; and
in response to receiving , via the one or more input
devices , an input directed to the space insertion icon ,
add , to the display , one or more additional represen
tations of spaces in the arrangement of spaces .

16. A system comprising :
an electronic device with one or more input devices and

a display ; and
a non - transitory computer - readable medium storing

instructions executable by the electronic device to
perform operations comprising :
displaying , on the display , representations of a plurality
of spaces in an arrangement of spaces including a
representation of a first space at a first position in the

US 2020/0097135 A1 Mar. 26 , 2020
15

arrangement of spaces and a representation of a
second space at a second position in the arrangement
of spaces , wherein the first space includes a first
plurality of windows , and wherein the second space
includes a second plurality of windows ;

while displaying the representations of the plurality of
spaces , receiving , via the one or more input devices ,
an input that corresponds to a request to move the
representation of the first space ; and

in response to receiving the input :
moving the representation of the first space from the

first position to a different position within the
arrangement of spaces ; and

moving the representation of the second space from
the second position to a different position within
the arrangement of spaces .

17. The system of claim 16 , wherein the first plurality of
windows includes a first window of a first application and a
second window of a second application that is different from
the first application , and wherein the second plurality of
windows includes a third window of a third application and
a fourth window of a fourth application that is different from
the third application .

18. The system of claim 17 , wherein the first window
includes respective content associated with the first appli
cation , wherein the second window includes respective

content associated with the second application , wherein the
third window includes respective content associated with the
third application , and wherein the fourth window includes
respective content associated with the fourth application .

19. The system of claim 16 , wherein the instructions
executable by the electronic device to perform further opera
tions comprising :
while displaying the representations of the plurality of

spaces , displaying , on the display , a space deletion
icon ; and

in response to receiving , via the one or more input
devices , an input directed to the space deletion icon ,
ceasing to display a portion of the representations of the
plurality of spaces in the arrangement of spaces .

20. The system of claim 16 , wherein the instructions
executable by the electronic device to perform further opera
tions comprising :
while displaying the representations of the plurality of

spaces :
displaying , on the display , a space insertion icon ; and
in response to receiving , via the one or more input

devices , an input directed to the space insertion icon ,
adding , to the display , one or more additional rep
resentations of spaces in the arrangement of spaces .

