
US 20220121918A1 
IN 

( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2022/0121918 A1 

Nagarajan et al . ( 43 ) Pub . Date : Apr. 21 , 2022 

( 54 ) LOAD BALANCING FOR MEMORY 
CHANNEL CONTROLLERS 

( 71 ) Applicant : Google LLC , Mountain View , CA ( US ) 

GOON 3/04 ( 2006.01 ) 
GO6F 3/06 ( 2006.01 ) 

( 52 ) U.S. CI . 
??? GO6N 37063 ( 2013.01 ) ; G06F 3/061 

( 2013.01 ) ; G06N 3/04 ( 2013.01 ) ; G06N 3/08 
( 2013.01 ) ( 72 ) Inventors : Rahul Nagarajan , Sunnyvale , CA 

( US ) ; Hema Hariharan , Mountain 
View , CA ( US ) 

( 21 ) Appl . No .: 17 / 563,509 

( 22 ) Filed : Dec. 28 , 2021 

Related U.S. Application Data 
( 63 ) Continuation of application No. 16 / 865,539 , filed on 

May 4 , 2020 , now Pat . No. 11,222,258 . 
( 60 ) Provisional application No. 63 / 001,216 , filed on Mar. 

27 , 2020 . 

( 57 ) ABSTRACT 
Methods , systems , and apparatus , including computer - read 
able media , are described for performing neural network 
computations using a system configured to implement a 
neural network on a hardware circuit . The system includes 
a process ID unit that receives requests to obtain data from 
a memory that includes memory locations that are each 
identified by an address . For each request , the process ID 
unit selects a channel controller to receive the request , 
provides the request to be processed by the selected channel 
controller , and obtains the data from memory in response to 
processing the request using the selected channel controller . 
The channel controller is one of multiple channel controllers 
that are configured to access any memory location of the 
memory . The system performs the neural network compu 
tations using the data obtained from memory and resources 
allocated from a shared memory of the hardware circuit . 
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LOAD BALANCING FOR MEMORY 
CHANNEL CONTROLLERS 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This is a continuation of U.S. application Ser . No. 
16 / 865,539 , filed on May 4 , 2020 , which claims priority to 
U.S. Provisional Application No. 63 / 001,216 , filed Mar. 27 , 
2020. The disclosures of the prior applications are consid 
ered part of and are incorporated by reference in the disclo 
sure of this application . 

BACKGROUND 

[ 0002 ] This specification generally relates to using cir 
cuitry to perform neural network computations . 
[ 0003 ] Neural networks are machine - learning models that 
employ one or more layers of nodes to generate an output , 
e.g. , a classification , for a received input . Some neural 
networks include one or more hidden layers in addition to an 
output layer . The output of each hidden layer is used as input 
to one or more other layers in the network , e.g. , other hidden 
layers or the output layer of the network . Some of the layers 
of the network generate an output from a received input in 
accordance with current values of a respective set of param 
eters . 

[ 0004 ] Some neural networks are convolutional neural 
networks ( CNNs ) ( e.g. , for image processing ) or recurrent 
neural networks ( RNNs ) ( e.g. , for speech and language 
processing ) . Each of these neural networks include respec 
tive sets of convolutional or recurrent neural network layers . 
A neural network layer can have an associated set of kernels 
as well as an embedding layer for processing inputs to 
generate sets of vectors for training a neural network . 
Kernels can be represented as a tensor , i.e. , a multi - dimen 
sional array , of weights . As an example , embedding layers 
can process a set of inputs , such as inputs of image pixel data 
or activation values generated by a neural network layer . The 
set of inputs or set of activation values can also be repre 
sented as a tensor . 

data is processed as a step in accelerating computations of an 
embedding layer of an artificial neural network . 
[ 0007 ] One aspect of the subject matter described in this 
specification can be embodied in a method for performing 
neural network computations using a system configured to 
implement a neural network on a hardware circuit . The 
method includes receiving requests to obtain data from a 
memory including multiple memory locations , each memory 
location being identified by a respective address . For each 
request to obtain the data from the memory , the method 
includes : selecting a channel controller to receive the 
request , wherein the channel controller is one of multiple 
channel controllers that are each configured to access any 
memory location of the memory ; providing the request to be 
processed by the channel controller selected to receive the 
request ; and obtaining the data from memory in response to 
processing the request using the channel controller selected 
to receive the request . The method also includes performing 
the neural network computations using the data obtained 
from memory and resources allocated from a shared 
memory of the hardware circuit . 
[ 0008 ] These and other implementations can each option 
ally include one or more of the following features . For 
example , in some implementations , selecting the channel 
controller to receive the request includes : selecting the 
channel controller based on a dispatch algorithm , the dis 
patch algorithm being used to distribute respective addresses 
of memory locations to any one of the multiple channel 
controllers that is selected to receive the request . 
[ 0009 ] The method further includes : receiving multiple 
requests to obtain different inputs from the memory , each 
request of the multiple requests specifying an address for a 
memory location that stores the input ; determining , based on 
the dispatch algorithm , an allocation of addresses corre 
sponding to each of the multiple requests ; and distributing 
the multiple requests to the multiple channel controllers 
based on the determined allocation of addresses . Determin 
ing the allocation of addresses can include : determining the 
allocation of addresses such that a respective quantity of 
addresses that is allocated and distributed to a corresponding 
channel controller is substantially equal among each of the 
multiple channel controllers . 
[ 0010 ] In some implementations , the system includes a 
shared on - chip interconnect that is configured to allow any 
channel controller to access memory locations allocated to 
any channel of multiple channels in the memory . Each 
channel of the multiple channels in the memory can include 
a set of memory locations and the method includes : access 
ing , based on the on - chip interconnect , any memory location 
allocated to any channel using any channel controller . 
[ 0011 ] Performing the neural network computations can 
include : determining an allocation of shared resources in the 
shared memory ; and performing the neural network com 
putations based on the determined allocation of shared 
resources . In some implementations , determining an alloca 
tion of shared resources in the shared memory includes : 
determining an amount of scratchpad memory to be used by 
the selected channel controller and a vector processing unit 
of the system that performs a portion of the neural network 
computations . In some implementations , a shared resource 
of the shared memory is a memory bank of the shared 
memory that is configured as a circular buffer of the shared 
memory that communicates with the vector processing unit . 

SUMMARY 

[ 0005 ] This document describes techniques for balancing 
processing loads experienced by channel controllers in a 
distributed processing system . The techniques can be used in 
an example computing system , such as a large - scale distrib 
uted system or other systems that process data . The tech 
niques make use of circuitry configured to distribute 
requests to channel controllers that process the requests to 
retrieve data stored at different memory locations of the 
distributed system . A channel controller that receives a 
request is one of multiple channel controllers that are 
included in the distributed system . Each channel controller 
is configured to access any memory location of an example 
high - bandwidth memory in the distributed system . 
[ 0006 ] The retrieved data can represent inputs to a neural 
network layer . Each of the requests is distributed with 
reference to a channel controller that is selected to process 
the request . The requests to retrieve the inputs are distributed 
to the channel controllers for processing in a manner that 
reduces or eliminates load imbalances across the channel 
controllers . In this example the retrieved data is processed to 
perform neural network computations . In some instances the 
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trollers configured to access any memory location are used 
in combination with a circular buffer of a shared scratchpad 
memory 
[ 0019 ] The circular buffer is used with an allocation 
scheme that does not depend on the size and order of data 
that is written to the buffer , which can result in wasteful over 
allocation of shared buffer space when large portions of 
allocated space are unused by the channel controller to 
which the space is assigned . To improve the efficiency and 
utilization of the shared buffers , the techniques can be 
implemented to optimize allocation of space in circular 
buffers of the shared scratchpad memory based at least on a 
latency of the memory accesses observed in an example 
processing pipeline of each channel controller . 
[ 0020 ] The details of one or more implementations of the 
subject matter described in this specification are set forth in 
the accompanying drawings and the description below . 
Other potential features , aspects , and advantages of the 
subject matter will become apparent from the description , 
the drawings , and the claims . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0012 ] The method can further include : obtaining a batch 
of inputs to a neural network layer in response to processing 
the request . The batch of inputs correspond to the data 
obtained from memory ; and each input in the batch of inputs 
is used to map a set of features to a vector of numbers . In 
some implementations , the neural network layer is an 
embedding layer that is represented by a trainable lookup 
table that maps each feature in the set of features to a 
respective vector of numbers . The method can further 
include processing each input in the batch of inputs through 
the neural network layer to learn vectors of values , where the 
vectors of values correspond to each of the respective vector 
of numbers ; and updating embeddings stored at the trainable 
lookup table for the embedding layer of the neural network 
based on the vector of values . 
[ 0013 ] In some implementations , performing the neural 
network computations includes generating an embedding 
output of the neural network layer from the obtained batch 
of inputs ; and updating the embeddings includes updating 
values of the trainable lookup table in response to back 
propagating gradients that are computed based on the 
embedding output . 
[ 0014 ] Other implementations of this and other aspects 
include corresponding systems , apparatus , and computer 
programs , configured to perform the actions of the methods , 
encoded on computer storage devices . A system of one or 
more computers can be so configured by virtue of software , 
firmware , hardware , or a combination of them installed on 
the system that in operation cause the system to perform the 
actions . One or more computer programs can be so config 
ured by virtue of having instructions that , when executed by 
data processing apparatus , cause the apparatus to perform 
the actions . 
[ 0015 ] The subject matter described in this specification 
can be implemented in particular embodiments so as to 
realize one or more of the following advantages . 
[ 0016 ] Circuitry for a crossbar / on - chip interconnect can 
be implemented at a special - purpose hardware circuit , such 
as a hardware accelerator used in a distributed system . The 
crossbar allows each channel controller to read data from , 
and write data to , any address location of a memory cell in 
any channel of a high - bandwidth memory system that com 
municates with a processor core or accelerator chip . This 
avoids the need to map channel controllers to specific 
memory channels , which can cause load imbalances that 
result in performance penalties . 
[ 0017 ] The crossbar mitigates against degraded perfor 
mance that can occur when a particular channel controller 
receives a substantially large number of addresses for pro 
cessing relative to other channel controllers in a set . The 
crossbar is implemented to load - balance an allocation of 
addresses by assigning addresses to any channel controller 
for processing across all memory channels . Hence , the 
crossbar can improve performance in a distributed system 
relative to prior approaches . 
[ 0018 ] The techniques include a dispatch algorithm that is 
based on a modified round - robin dispatch scheme . The 
dispatch algorithm allows a process control unit of the 
system to dispatch addresses across a set of channel con 
trollers , where selection of each individual channel control 
ler that receives addresses is substantially equal across the 
set . The dispatch algorithm is adapted to mitigate against a 
bursting property of the original or unmodified round - robin 
scheme , which can be problematic when the channel con 

[ 0021 ] FIG . 1 is a block diagram of an example computing 
system . 
[ 0022 ] FIG . 2 is a block diagram of an architecture that 
includes examples of a control unit , channel controllers , and 
memory channels . 
[ 0023 ] FIG . 3 illustrates an example algorithm used to 
implement load balancing for memory channel controllers . 
[ 0024 ] FIG . 4 illustrates an example allocation of requests 
to different channel controllers . 
[ 0025 ] FIG . 5 is a block diagram of an architecture that 
includes examples of a processor core and shared memory 
buffers of the system of FIG . 1 . 
[ 0026 ] FIG . 6 shows example components of a channel 
controller that are used to allocate resources of a shared 
memory buffers . 
[ 0027 ] FIG . 7 is a block diagram of an example circular 
buffer , including status information of an individual buffer . 
[ 0028 ] FIG . 8 is a flow diagram of an example process for 
load balancing requests handled by a set of memory channel 
controllers . 
[ 0029 ] Like reference numbers and designations in the 
various drawings indicate like elements . 

a 

DETAILED DESCRIPTION 

[ 0030 ] A distributed system can include memory for stor 
ing values that are accessed and used to perform an opera 
tion or to compute a value . Each value may be stored at a 
respective location in the memory that is identified by an 
address . The memory may be arranged to include different 
memory channels , where each channel includes a set of 
memory locations that are identified by a corresponding set 
of addresses . A channel controller is used to control and 
manage accesses to specific memory locations of a given 
memory channel to retrieve data specified by a request . 
More specifically , the channel controllers use communica 
tion channels of the distributed system to manage the flow 
of data to and from the memory . 
[ 0031 ] This specification describes techniques for balanc 
ing loads across a group of channel controllers to mitigate 
processing delays that can occur due to channel controller 
load imbalances in a distributed computing system . For 



US 2022/0121918 A1 Apr. 21 , 2022 
3 

example , the delays may occur during processor computa 
tions for generating an output of an embedding layer of a 
multi - layer neural network . Specifically , when a particular 
channel controller of a distributed system is required to 
perform a substantial number of data retrieval and compute / 
processing operations ( e.g. , reductions or concatenations of 
retrieved values ) to perform a neural network computation , 
this particular channel controller can experience processing 
delays corresponding to a load imbalance . 
[ 0032 ] The imbalance can be between a first channel 
controller that receives a substantial number of requests or 
addresses / IDs in a request relative to a second , different 
channel controller . The channel controller is configured to 
process the requests to retrieve data for a neural network 
computation , such as data for an input value that is to be 
processed through a neural network layer . In some imple 
mentations , the data represents embeddings ( e.g. , weights ) 
of an embedding table and a channel controller may be 
tasked to process the request to return the embedding for the 
input value . For example , in a forward pass compute opera 
tion of an embedding layer , each channel controller pro 
cesses requests that specify addresses for locations in 
memory , which causes the channel controller to retrieve data 
stored at the memory location and to perform computations 
using the retrieved data . 
[ 0033 ] In prior distributed architectures each channel con 
troller was mapped to a specific bank or channel in the large 
system memory , such that each channel controller could 
process only those addresses for memory locations to which 
the channel controller was mapped . For example , each 
channel controller was only able to access a particular subset 
of memory . So , if that subset of memory includes locations 
and addresses that store “ hard ” data ( e.g. , dense or large data 
values ) or data that is accessed more frequently for a given 
task , then the channel controller mapped to that subset will 
experience an imbalance in its processing load relative to 
other channel controllers that are mapped to other memory 
subsets . 
[ 0034 ] An individual channel controller can be each 
tasked to retrieve a portion of data uired for a computa 
tion or task in a larger workload . Imbalances between 
individual channel controllers can cause one channel con 
troller to require additional processing time to obtain its 
portion of data for the computation relative to another 
channel controller . Because the entire portion of data may be 
required for the task , the additional processing time required 
by one channel controller results in an overall processing 
delay in performing the task for the larger workload . 
[ 0035 ] Relatedly , each channel controller may be allocated 
a portion of resources , such as a buffer , from a shared 
scratchpad memory space to perform certain operations 
using the retrieved data . Because the number of addresses 
( or requests ) processed by each channel controller is differ 
ent , the number of scratchpad memory / buffer locations used 
by each channel controller will also be quite different . Prior 
approaches to managing the allocation of shared resources 
across the channel controllers were limited with respect to 
allocating different amounts of memory across the channels . 
So , these prior approaches were prone to over - allocation of 
shared resources for a given channel , which resulted in 
scratchpad spaces being wasted across the channels . These 
approaches also caused performance penalties when other 
wise useful scratchpad buffer space is allocated but remains 
unused by a channel controller . 

[ 0036 ] Based on the context discussed above , this speci 
fication describes data processing techniques and corre 
sponding hardware circuitry that can be implemented in a 
special - purpose processor to balance processing loads expe 
rienced by channel controllers in a distributed processing 
system . For example , a distributed system that includes a 
large memory unit ( e.g. , a high - bandwidth memory ) and a 
special - purpose hardware circuit can generate instructions to 
cause any channel controller to obtain data from any 
memory location and for any data shard of the memory unit . 
More specifically , this feature is enabled based on an on - chip 
interconnect ( or crossbar ) that is integrated at the hardware 
circuit to allow each channel controller to read data from , 
and write data to , any channel of a high - bandwidth memory 
system . The crossbar feature removes the constraint of 
storing data in a manner that is sensitive to which addresses 
allocations are mapped to specific channel controllers and 
allows for simplifying how sets of data may be laid out in the 
memory system . The system is operable to send requests , or 
addresses specified in a request , to any channel controller 
because each channel controller is configured to obtain 
values from any memory location or data shard . 
[ 0037 ] This specification also describes techniques for 
implementing a circular buffer in combination with the 
above method of using any channel controller to obtain data 
from any memory location of a system memory . The circular 
buffer is based on an allocation of individual resources 
included in a shared scratchpad memory . Implementation of 
the circular buffer is adapted to address load imbalance 
issues that arise when a system is required to process a 
variable number of ID headers ( e.g. , addresses ) across a set 
of channel controllers . The system includes an example 
hardware manager that executes instructions for defining 
and managing the each circular buffer . Instead of allocating 
a fixed size amount of shared memory buffers to each 
channel controller , the hardware manager is operable to 
define a size of each buffer allocation based on an observed 
latency required to fully execute computes on data fetched 
from memory locations of the system memory . 
[ 0038 ] FIG . 1 shows a block diagram of an example 
computing system 100 that is configured to retrieve data 
elements stored in a memory of system 100. The data 
elements can be retrieved and used to perform neural 
network computations for an example machine - learning 
workload . For example , the data elements can be processed 
to compute an output for a neural network layer or to 
perform embedding layer operations to generate sets of 
embeddings for training a neural network . 
[ 0039 ] Embedding outputs are generated when a neural 
network of system 100 is trained to perform certain com 
putational functions , such as computations related to 
machine translation , natural language understanding , rank 
ing models , or content recommendation models . In some 
implementations , training the neural network involves 
updating a set of embeddings that were previously stored in 
an embedding table of the neural network , such as during a 
prior phase of training the neural network . For example , the 
embeddings of an embedding layer of a neural network may 
be trained jointly with the neural network for which the 
embeddings are to be used . Hence , the techniques described 
in this specification can be used to update embeddings 
during training of a neural network , with improved effi 
ciency over prior approaches . 

a 



US 2022/0121918 A1 Apr. 21 , 2022 
4 

2 

- 

[ 0040 ] In general , an embedding layer of a neural network 
is used to embed features in a feature / embedding space 
corresponding to the embedding layer . An embedding vector 
can be a respective vector of numbers that is mapped to a 
corresponding feature in a set of features of a lookup table 
that represents an embedding layer . A feature can be an 
attribute or property that is shared by independent units on 
which analysis or prediction is to be performed . For 
example , the independent units can be groups of words in a 
vocabulary or image pixels that form parts of items such as 
images and other documents . An algorithm for training 
embeddings of an embedding layer can be executed by a 
neural network processor to map features to embedding 
vectors . In some implementations , embeddings of an embed 
ding table are learned jointly with other layers of the neural 
network for which the embeddings are to be used . This type 
of learning occurs by back propagating gradients to update 
the embedding tables . 
[ 0041 ] In other implementations , the embeddings may be 
learned separately from the other layers of the neural net 
work for which the embeddings are to be used , such as when 
embeddings are pre - trained . For example , the algorithm can 
be used by the neural network processor to compute embed 
dings by processing information about discrete input fea 
tures to determine a mapping or placement of similar inputs 
to embedding vectors that are geometrically close in the 
embedding space . In some cases , the process of computing 
embeddings can represent a technique for feature learning or 
feature engineering that allows a system to automatically 
discover representations needed for feature detection from 
raw input data . 
[ 0042 ] In some implementations , a given " input " can have 
one or more features of one or more types , and the embed 
ding layer generates a respective embedding for each of 
those types . For example , an input can be for a search query 
that has a few different feature types . The feature types can 
include properties of a user or user device ( e.g. , location , 
preferences , device type , etc. ) , query tokens , previously 
submitted queries , or other related types that may corre 
spond to attributes of a search query . For any feature types 
that have more than one feature for a given input , a com 
puting system is operable to retrieve the individual embed 
dings for each of those features . The system is also operable 
to combine the retrieved embeddings , e.g. , by computing 
averages of the embedding values , to generate a final embed 
ding for that feature type . 
[ 0043 ] The computing system 100 includes a host 102 , a 
multi - core processing unit 104 , and a memory unit 105 
( “ memory 105 ” ) . The memory 105 includes data shards 
106a - 106k , where k is an integer greater than one . The 
memory 105 is described in more detail below . In general , 
the host 102 can be a processing unit , such as a processor , 
multiple processors , or multiple processor cores . Hence , the 
host 102 may include one or more processors , and is 
operable to generate or process an instruction for accessing 
a target dense matrix and to send an instruction 110 to the 
multi - core processing unit 104 to generate the target dense 
matrix . As described in more detail below , performing 
embedding layer operations can include transforming sparse 
elements from one or more matrices to generate a dense 
matrix . 
[ 0044 ] The multi - core processing unit 104 accesses the 
corresponding elements 108a - 108n from one or more of the 
data shards 106a - 106k in memory 105 , where n is an integer 

greater than one . The multi - core processing unit 104 gen 
erates the target dense matrix 112 using the corresponding 
elements 108a - 108n , and provides the target dense matrix 
112 to the host 102 for further processing . The multi - core 
processing unit 104 may generate the target dense matrix 
112 by transforming each of the elements 108a - 108n into a 
vector , and concatenating the n vectors into a single vector . 
[ 0045 ) Generally , in the context of embeddings , sparse ' 
information corresponding to the sparse elements may be a 
one - hot vector that identifies a feature value . For example , 
if there are five possible values for a given feature ( e.g. , A , 
B , C , D , E ) , the sparse vector would identify the feature 
value ‘ A’as ( 1 , 0 , 0 , 0 , 0 ) and the embedding layer would 
map ( 1 , 0 , 0 , 0 , 0 ) to a dense embedding vector for the 
feature value “ A. ” In some implementations , during the 
training of an embedding layer to learn embeddings , the 
elements 108a - 108n may be weight values of an embedding 
table that are transformed into a vector , such as an embed 
ding vector for the feature value “ B ” or “ C. ” The weight 
values may be transformed using a neural network processor 
of the multi - core processing unit 104 that executes a training 
algorithm to compute embeddings based at least on a 
mapping of features to embedding vectors . 
[ 0046 ] The host 102 can process an instruction for updat 
ing a target dense matrix and sends an updated dense matrix 
to the multi - core processing unit 104. For example , a target 
dense matrix may correspond to an embedding of a neural 
network . Hence , the host 102 can process an instruction to 
update the embeddings to generate an updated dense matrix . 
For example , during a subsequent iteration of training a 
neural network to update embeddings a backward pass may 
be performed to update the embeddings by determining a 
new mapping of input features to embedding vectors and 
generating an updated dense matrix based on the new 
mapping . In some implementations , the multi - core process 
ing unit 104 is operable to transform the updated dense 
matrix into corresponding sparse elements and to update one 
or more sparse elements ( e.g. , weights ) stored in the data 
shards 106a - 106k accordingly . 
[ 0047 ] As indicated above , the host 102 is configured to 
process instructions for execution within the computing 
system 100. In some implementations , the host 102 is 
configured to process the target dense matrix 112 generated 
by the multi - core processing unit 104. In some other imple 
mentations , the host 102 may be configured to request the 
multi - core processing unit 104 to generate the target dense 
matrix 112 , and another processing unit may be configured 
to process the target dense matrix 112 . 
[ 0048 ] Each processor of the multi - core processing unit 
104 is configured to retrieve data elements stored in a 
memory of system 100. The memory can include multiple 
data shards 106a - 106k that store data including elements 
108a - 108n . The data can include inputs , activations , gain 
values , or weight values corresponding to parameters or 
kernels of a matrix structure of weights . In some implemen 
tations , the data shards 106a - 106k may be a volatile memory 
unit or units . In some other implementations , the data shards 
106a - 106k may be a non - volatile memory unit or units . The 
data shards 106a - 106k may also be another form of com 
puter - readable medium , such as devices in a storage area 
network or other configurations . The data shards 106a - 106k 
may be coupled to the multi - core processing unit 104 using 
electrical connections , optical connections , or wireless con 
nections . In some implementations , the data shards 106a 

a 
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106k may of the multi - core processing unit 104 and 
based on a Processor - in - memory ( PIM ) architecture . 
[ 0049 ] The multi - core processing unit 104 is configured to 
determine a dense matrix based on sparse elements . The 
multi - core processing unit 104 includes multiple intercon 
nected processors or processor cores . For example , the 
multi - core processing unit 104 can be a distributed process 
ing system that includes multiple interconnected processor 
cores . In general , the terms “ processor ” and “ processor 
core ” may be used interchangeably to describe discrete 
interconnected processing resources of the multi - core pro 
cessing unit 104 . 
[ 0050 ] The system 100 also includes a process ID control 
unit 114 ( “ control unit 114 " ) . The control unit 114 receives 
a set of ID headers and performs operations to dispatch the 
ID headers or to dispatch portions of information included in 
the ID headers . The ID headers are dispatched to channel 
controllers , which are described in more detail below with 
reference to FIG . 2. In some implementations , the system 
100 includes multiple control units 114. For example , the 
system 100 can include a control unit 114 for each processor 
r processor core at the system 100. Each of the control units 

114 that are coupled to a processor / core of the multi - core 
processing unit 104 receives a set of ID headers from a 
source . The source can be the host 102 or another processor 
of the multi - core processing unit 104 . 
[ 0051 ] An ID header can represent a request that includes 
information specifying addresses for memory locations in 
the memory 105. The memory 105 can represent a high 
bandwidth memory ( HBM ) or an input / output ( I / O ) device 
that exchanges data communications with a control unit 114 
in a processor core of an example hardware circuit included 
at system 100. For example , the memory 105 may exchange 
data communications with a processor core of the multi - core 
processing unit 104 to pass inputs to the core and to receive 
outputs generated by one or more computing resources of 
the core . The inputs and data values stored in , or written to , 
memory locations of memory 105 can represent vector 
elements or arrays of vector values . 
[ 0052 ] The memory 105 can be dynamic random access 
memory ( DRAM ) assets of system 100. In some implemen 
tations , memory 105 is an external or off - chip memory 
relative to an example hardware circuit that includes one or 
more processors or processor cores . The memory 105 is 
configured to exchange data communications with on - chip 
resources of the hardware circuit , such as a vector process 
ing unit ( VPU ) or vector memory banks of the VPU ( de 
scribed below ) . For example , memory 105 can be disposed 
at a physical location that is outside of an integrated circuit 
die that represents a hardware circuit of system 100. Hence , 
memory 105 can be distant or non - local relative to comput 
ing resources disposed within the integrated circuit die . 
Alternatively , memory 105 , or portions of its resources , can 
be disposed within the integrated circuit die representing a 
special - purpose hardware circuit , such that the memory 105 
is local to or co - located with computing resources of the 
circuit . 
[ 0053 ] FIG . 2 is a block diagram of an architecture 200 
that includes examples of channel controllers 202 and 
memory channels 204 of memory 105 , as well as the control 
unit 114 described above . Each of the memory channels 204 
can represent a memory bank of memory 105 , a set of 
memory banks of memory 105 , a set of memory locations of 
memory 105 , or combinations of these . 

[ 0054 ] A set of channel controllers 202 includes multiple 
respective channel controllers that are indicated at least as 
CO , C1 , C2 , and C15 . In the example of FIG . 2 architecture 
200 can include 16 channel controllers . In some implemen 
tations , architecture 200 includes more or few channel 
controllers . For example , the architecture 200 can include N 
number of channel controllers as well as N number of 
memory channels 204. These aspects of the architecture 200 
are indicated by reference number 202 - n , with respect to an 
individual channel controller , and by reference number 
204 - n , with respect to an individual memory channel . 
[ 0055 ] The implementation of FIG . 2 shows an example 
where individual channel controllers , such as channel con 
trollers 202-0 ( CO ) and 202-2 ( C2 ) , are hard mapped to 
specific corresponding memory channels , such as memory 
channels 204-0 ( CO ) and 204-2 ( C2 ) , respectively . As dis 
cussed above , a system memory 105 with channel control 
lers 202 that are hard mapped to specific memory channels 
can experience load imbalances . These load imbalances can 
stall or substantially delay operations for neural network 
computes performed at system 100 , such as operations for 
generating an output for an embedding layer . 
[ 0056 ] This prior approach of mapping specific channel 
controllers 202 to a particular memory channel can have 
other challenges . For example , the approach can have a 
constraint of requiring data be stored in a manner that is 
sensitive to how the addresses and data are mapped to 
specific channel controllers 202. Additionally , the approach 
can be inefficient when a system is required to perform a 
large number of randomized look ups to retrieve vectors 
from a large space in memory . To address these challenges , 
an on - chip interconnect ( OC ) , or crossbar , ( described 
below ) is integrated at a special - purpose hardware circuit . 
The crossbar may be integrated in a processing pipeline of 
the chip’s circuitry to enable each channel controller to read 
data from , and write data to , any channel of a high - band 
width memory system . 
[ 0057 ] In some implementations , the special - purpose cir 
cuit is a multi - core hardware accelerator and the OCI is a 
channel controller interface that is uniquely configured at 
least based on the multi - core structure of the hardware 
accelerator . For example , the channel controller interface is 
configured to allow communication between each core of 
the multi - core hardware accelerator and each memory chan 
nel of memory 105 , including different types of memory 
structures that correspond to the memory channels . 
[ 0058 ] The channel controller interface can be sized to 
32Bx4 instead of 128Bx1 . Based on this example sizing , the 
channel controller interface can include multiple indepen 
dent transaction threads between the memory 105 and 
channel controllers 202 , without requiring extraneous ports 
for the OCI hardware . In some implementations , the channel 
controller interface is configured to efficiently handle 
dynamic bandwidth requirements at each channel and for 
different phases of compute . For example , the gigabyte per 
second ( GBps ) bandwidth requirements can vary for differ 
ent computes for different access sizes , e.g. , 32 Byte access , 
64 Byte access , 128 Byte access . The phases can include 
forward pass compute , backward pass compute , and back 
ward pass compute that implements optimization algorithms 
such as Adagrad to update learned values of a particular 
vector based on gradients produced from evaluating a neural 
network on some training data . 
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[ 0059 ] The channel controller interface can be uniquely 
configured to include multiple node interfaces . For example , 
the crossbar can include : i ) an intra - client node interface 
operable to carry direct memory access ( DMA ) descriptors 
and control messages ; ii ) an intra - memory node interface 
operable to carry read / write commands and data for various 
memory structures of the memory system ( e.g. , buffer 
memory , instruction memory , shared memory , vector 
memory , host memory ) ; iii ) an intra - processor node inter 
face ( lower ) that is operable to carry load / store traffic from 
a first / lower set of channel controllers 202 to the memory 
105 ; and iv ) an intra - processor node interface ( upper ) that is 
operable to carry load / store traffic from a second / upper set 
of channel controllers 202 to the memory 105 . 
[ 0060 ] As explained above , the OCI or channel controller 
interface is an implementation of a crossbar that allows sets 
of channel controllers to access any memory channel / ad 
dress of memory 105. But , even when addresses specified in 
requests are spread among a set of channel controllers 202 , 
the large scale execution of certain machine - learning work 
loads can exhibit data access patterns that result in a par 
ticular channel controller receiving a bulk of the data 
processing load relative to other channel controllers . In the 
example of FIG . 2 , channel controller 202-0 demonstrates an 
imbalance in which that channel receives a bulk of the data 
processing load relative to other channel controllers ( e.g. , 
C1 , C2 ) . To address this challenge , the crossbar is used to 
implement a specific control scheme to control the alloca 
tions of addresses or requests to each channel controller 202 . 
The control scheme causes addresses to be allocated sub 
stantially equally among the channel controllers 202. This is 
described in more detail below with reference to FIG . 3 . 
[ 0061 ] FIG . 3 illustrates an example algorithm 300 used to 
implement load balancing for the memory channel control 
lers 202 . 
[ 0062 ] As indicated above , data accesses for an example 
machine - learning workload can exhibit certain pathological 
patterns . For example , even though a set requests and 
addresses may be spread generally across the channel con 
trollers 202 , certain patterns may be present in which a 
particular channel controller is required to operate on a 
substantial number of larger features or large vectors . Such 
patterns can cause the control unit 114 to dispatch a set of 
processing tasks or ID headers that still result in a load 
imbalance at the channel controllers 202. For example , the 
patterns may have a bursty property that cause them to 
appear for certain short time windows of processing , such as 
between 20 and 100 cycles . The load imbalance can occur 
even though any one of the channel controllers 202 is 
configured to access any memory location and any memory 
channel 204 of the memory 105 . 
[ 0063 ] The algorithm 300 corresponds to the control 
scheme noted above and is an example dispatch algorithm 
that is used to implement load balancing for the memory 
channel controllers 202 of system 100. The algorithm 300 
can include pseudo - code as shown in the example of FIG . 3 , 
which represents one or more of the instructional steps of the 
dispatch algorithm 300. In some implementations , the algo 
rithm 300 is a modified round - robin dispatch algorithm . The 
modified round - robin attributes of the dispatch algorithm 
300 allows a set of ID headers to be parsed and dispatched 
to the channel controllers 202 . 
[ 0064 ] For example , the modified round - robin dispatch 
algorithm 300 is configured to disrupt or inhibit latent 

pathological sequences that can occur during data accesses 
for a machine - learning workload . Because of this , the modi 
fied round - robin dispatch algorithm 300 is configured to 
allow allocations of ID headers ( e.g. , address of activations 
or gradients ) in a manner that is load balanced across each 
channel controller 202 in a set of channel controllers ( 350 ) . 
A standard round - robin approach for scheduling a process 
indicates to select a channel controller in a simple , circular 
order in which selections are performed without priority . 
[ 0065 ] To address the bursty patterns discussed above , the 
round - robin approach can be adapted or modified to first 
detect an initial completion of a first circular order of 
selections . In response to detecting the initial completion , 
the control unit 114 can then adjust an increment parameter 
to modify the initial channel controller that is selected for a 
second or subsequent circular round of selections . 
[ 0066 ] For example , the system 100 can include 16 chan 
nel controllers ( e.g. , CCO- C15 ) . The control unit 114 can 
select each channel controller 202 during an initial round 
and detect completion of the initial round based on a count 
parameter that indicates CC15 has been selected during that 
round . The count parameter can correspond to the total 
number of channel controllers ( 16 ) such that selection of 
CC15 during the initial round indicates selection of each of 
the 16 channel controllers . The control unit 114 can then 
adjust the value of an increment parameter to bypass selec 
tion of a particular channel controller . 
[ 0067 ] For example , the control unit 114 can increase the 
increment parameter to bypass selection of CCO and select 
CC1 at the start of a subsequent round of channel selections . 
Likewise , the control unit 114 can again increase the incre 
ment parameter to bypass selection of CC1 and select CC2 
at the start of another subsequent round of channel selec 
tions . In some implementations , the control unit 114 can 
periodically adjust the value of the increment parameter to 
increase ( or decrease ) an increment of the channel count 
based on one or more observed data access patterns , as 
described in more detail below with reference to FIG . 4 . 
[ 0068 ] FIG . 4 illustrates a table 400 that shows an example 
sequence 410 for selecting channel controllers 202 to effect 
a balanced allocation of requests to different channel con 
trollers 202 . 
[ 0069 ] As described briefly above , a native round - robin 
scheme can suffer from pathological patterns in input data 
being accessed for a computation . For example , a pattern 
can be that every 16th ID header will belong to an embed 
ding table that has the longest embedding vectors and most 
compute intensive optimizer . The example pattern can cause 
load imbalance even in the native round - robin scheme . The 
control unit 114 can be a hardware component of a processor a 
core that executes instructions corresponding to the dispatch 
algorithm 300 to implement a modified round - robin ID 
header dispatch scheme . 
[ 0070 ] Based on the algorithm 300 , this dispatch scheme 
is operable to reduce a probability of load imbalance due to 
pathological patterns in a set of input data . The algorithm 
300 can be used to generate the example sequence 410 for 
selecting channel controllers 202. Each number in the 
sequence indicates a channel controller to be selected . In 
some implementations , the sequence 410 can initially iterate 
through each channel controller in a set ( e.g. , 0 through 15 ) 
based on an initial unmodified round - robin flow . 
[ 0071 ] After an initial iteration in which each channel 
controller is selected , the round - robin flow can be modified 
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to select channel controller CC1 rather than beginning again 
with selection of channel controller CCO . Likewise , after a 
second iteration in which each channel controller is selected , 
the round - robin flow can be modified to select channel 
controller CC2 rather than beginning again with selection of 
channel controller CC1 . This modified selection scheme 
provides an example of how each channel controller in a set 
can be selected by the control unit 114 to allow for equal , or 
substantially equal , distribution of addresses among the set . 
In some implementations , the system 100 monitors data 
access patterns for each channel controller and dynamically 
adjusts or modifies the dispatch schemes based on the 
observed patterns . 
[ 0072 ] The control unit 114 uses the modified dispatch 
schemes to generate a set of channel numbers for a set of 
channel controllers 202. The generated set of channel num 
bers are processed at the control unit 114 to forward ID 
headers to corresponding channel controllers 204. In some 
implementations , the control unit 114 forwards the ID head 
ers to corresponding channel controllers 204 based on the 
example sequence 410 , which is derived from the modified 
dispatch scheme . To ensure sufficient load - balancing of 
processing workloads for ID headers across the channel 
controllers 202 , the algorithm 300 causes the control unit 
114 to implement certain properties for selection of the 
channel numbers . In some implementations , algorithm 300 
is used for channel selection based on the example steps of 
the pseudo - code shown at FIG . 3 . 
[ 0073 ] For example , the channel selection properties 
requires that generation of the channel numbers be fair and 
non - bursty . The “ fair ” property for generating the channel 
numbers causes ( or requires ) all channel controllers to be 
selected equally or substantially equally for a given 
machine - learning task . The " non - bursty " property for gen 
erating the channel numbers causes ( or requires ) the channel 
controllers to be selected without intermittent increases in 
repeated selection of a particular channel controller for a 
given machine - learning task . For example , a channel num 
ber sequence of “ 0 , 1 , 0 , 1 , 4 , 5 , 0 , ... is not a desirable 
pattern and would not satisfy the “ non - bursty ” property for 
generating the channel numbers . 
[ 0074 ] An example set of metrics can used to determine 
whether each of the above properties ( e.g. , fair and non 
bursty ) are satisfied . The metrics include determining a 
count , a mean ( average ) , and a median with respect to the 
number of times a channel number appears for selection . For 
the “ count ” metric , the system 100 is operable to determine 
a count of the number of times a channel or channel number 
is included per processing iteration . The number of times 
should be the same for all the channels 202 or channel 
controllers 202. If the system 100 determines that the 
number of times is not the same , the system 100 can detect 
that a particular pattern of channel controller selection is 
biased and not load balanced for a given set of operations . 
[ 0075 ] For the “ mean ” metric , the system 100 is operable 
to determine , for each channel number , whether the number 
of times a channel number appears for selection converges 
to N after a threshold number of iterations , where N is an 
integer greater than or equal to one . For example , if the 
system 100 includes 16 channel controllers , then the system 
100 is operable to determine , for each channel number , 
whether the number of times a channel number appears for 
selection converges to 16 after a threshold number of 
iterations or ID headers . In some implementations , the 

threshold number of iterations varies based on the size and 
complexity of the data being retrieved and operated on . 
[ 0076 ] The “ median ” metric indicates a burstiness of a 
particular channel controller . For example , if the system 100 
determines that a channel controller 204 - n has a low median 
selection value then it will receive more ID headers in a 
burst relative to other channel controllers , which can indi 
cate an imbalance . The table 400 includes sample metric 
values for each channel number for an example processing 
iteration that was run for a threshold 2048 ID headers . As 
noted earlier , the system 100 can monitor data access 
patterns for each channel controller , relative to the metrics 
and properties discussed above , and dynamically adjust or 
modify the dispatch / control schemes based on the observed 
patterns . For example , the control unit 114 can periodically 
adjust the value of the increment parameter to increase ( or 
decrease ) an increment of the channel count based on the 
data access patterns . 
[ 0077 ] FIG . 5 is a block diagram of an architecture 500 of 
the system 100 and includes examples of a shared scratch 
pad memory 506 ( “ shared memory 506 ” ) and one or more 
shared buffers 508 of the shared memory 506. The shared 
memory 506 is a software managed memory unit that is 
globally shared across all memory channels 204 of the 
system 100. More specifically , each channel controller 202 
is configured to share the scratchpad buffer space of shared 
memory 506 represented by shared buffers 508 . 
[ 0078 ] In the example of FIG . 5 , the shared buffers 508 
include respective memory banks , such as memory banks 
510-0 , 510-3 , and 510 - n . Each memory bank 510 can be 
configured as a circular buffer and the architecture 500 can 
include N circular buffers , where N is an integer greater than 
or equal to one . Hence , each bank 508 may be referred to 
alternatively as a circular buffer 508. Each circular buffer 
508 is used with an allocation scheme that does not depend 
on a size and / or order of data that is written to the buffer . For 
example , prior approaches that depend on the size / order of 
data flow to this shared space to allocate buffer space to 
channel controllers 202 can result in wasteful over allocation 
of buffer space when large portions of allocated space are 
unused by the channel controller to which the space is 
assigned . 
[ 0079 ] This wasteful over allocation creates a memory 
imbalance issue at system 100. In the example of FIG . 5 , the 
order and size of data flow to buffer 510 - n ( e.g. , for a certain 
channel controller 202 ) triggers a large buffer space alloca 
tion requirement relative to other buffers 510 , such as buffers 
corresponding to bank 1 and bank 2. In prior approaches , the 
buffer space allocated at buffer 510 - n would drive the size 
allocations for other individual buffers 510 and trigger an 
imbalance that results in over allocation . The substantially 
uneven buffer usage shown at FIG . 5 can also limit the batch 
sizes that can be processed for a given workload . 
[ 0080 ] FIG . 6 is a block diagram of an architecture 600 of 
the system 100. The architecture 600 includes examples of 
a processor core 602 , a vector processing unit 604 ( “ VPU 
604 ” ) , and components of a respective channel controller 
202. One or more of the components of the channel con 
troller 202 can be used to allocate resources of shared 
memory buffers 508. The components of the channel con 
trollers 202 include an address handler unit 606 , a shared 
on - chip interconnect 608 ( “ shared interconnect 608 ” ) , and a 
circular buffer unit 610 . 
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[ 0081 ] The components of the channel controller 202 can 
represent an example processing pipeline of the channel 
controller 202. The address handler unit 606 generates a 
“ deallocate ” signal whenever channel ID data processing is 
completed . The channel ID data corresponds to a descriptor 
generated control unit 114 for processing by a channel 
controller 202 and is described below . The address handler 
unit 606 can correspond to the VPU 604 can be used to 
perform arithmetic and computational operations generally 
associated with an example vector processor . In some imple 
mentations , the processing pipeline of a channel controller 
202 is used to perform backward pass and forward pass 
operations with respect to an embedding layer of a neural 
network . The deallocate signal as well as backward pass and 
forward pass operations are described below . 
[ 0082 ] The shared interconnect 608 is a crossbar device 
that is operable to allow any channel controller 202 to 
communicate with any one of the memory channels 204 on 
a chip or hardware circuit of system 100. For example , 
shared interconnect 608 can represent an on - chip intercon 
nect ( OCI ) interface . As indicated above , the shared inter 
connect 608 can be referred to alternatively as an OCI 
interface , a channel controller interface , or a crossbar . In 
some implementations , the channel controllers 202 are con 
nected to example HBM channels of memory 105 through 
this OCI interface . The OCI interface allows any channel 
controller 202 to talk to any HBM channel within a special 
purpose chip , hardware circuit , or hardware accelerator . In 
some examples , the shared interconnect 608 allows each of 
the channel controllers 202 to read data from , and write data 
to , any address location for any channel in memory 105. The 
shared interconnect 608 provides a type of load balancing 
that allows the system 100 to allocate requests to individual 
channel controllers 202 for processing across all memory 
channels 204 . 
[ 0083 ] The circular buffer unit 610 is responsible for 
managing each allocated buffer 510. The circular buffer unit 
610 is configured to keep track of a head , tail , and the empty 
status of the buffer 510 ( e.g. , a circular buffer ) . In some 
implementations , an execution thread of a channel controller 
202 can be stalled if the circular buffer unit 610 determines 
that a shared circular buffer 510 that was assigned to a 
selected channel controller 202 does not have enough space 
to store data corresponding to a request to be processed 
using the channel controller 202 . 
[ 0084 ] As described above , each of the control units 114 
that are coupled to a processor / core 602 of the multi - core 
processing unit 104 receives a set of ID headers from a 
source . Each of these control units 114 is operable to 
perform operations related to parsing ID headers received 
from the host 102 or from other processor cores in the 
system 100. For example , during a forward pass operation 
for an embedding layer of a neural network , the control unit ? 
114 can parse the ID headers received from other processor 
cores ( or from the host 102 ) and dispatch the ID headers 
belonging to a same sample and feature to one of the channel 
controllers 202. In some implementations , each control unit 
114 is operable to generate and dispatch a descriptor ( “ a 
request ) corresponding to an ID header . The request 
includes addressing and buffer information to be processed 
by a channel controller to retrieve a sample and feature value 
from locations of a channel in memory 105 . 
[ 0085 ] During an example backward pass operation for the 
embedding layer , the control unit 114 can parse a tuple of 

{ Addresses , Gradient Vectors } received from other proces 
sor cores ( or from the host 102 ) . The system 100 can 
perform this function to update embedding vectors with a 
corresponding gradient vector . The control unit 114 dis 
patches the addresses to any one of the channel controllers 
202. For example , the control unit 114 can dispatch , to 
channel controller 202-2 , an address for an embedding 
vector stored at a location of memory channel 204-0 . The 
control unit 114 can dispatch the address after copying the 
corresponding gradient vector into a bank ( or buffer ) of the 
shared memory 506 that is mapped to the selected channel 
controller 202-2 . In some implementations , the system 100 
causes the buffer address of the gradient vector to be stored 
in the address for the embedding vector before the address 
for the embedding vector is forwarded to the selected 
channel controller . 
[ 0086 ] Referring again to FIG . 6 , as discussed above the 
amount of buffer space for shared memory 506 that is used 
by each channel controller 202 can be very different and can 
lead to underutilization of the scratchpad memory buffers 
508. The underutilization results in lower batch sizes that 
can be processed for a given workload , leading to degraded 
or lower performance at system 100. To resolve the memory 
imbalance and improve the efficiency and utilization of the 
shared buffers , the system 100 is configured to allocate space 
in the circular buffers 510 based at least on a latency of the 
memory accesses observed in an example processing pipe 
line of each channel controller . 
[ 0087 ] In other words , the memory imbalance issue can be 
solved by implementing one or more software - configured , 
hardware - managed circular buffers 510 in the scratchpad 
memory 506. A sizing of the circular buffers 510 is inde 
pendent of the number of addresses that are processed by a 
selected channel controller 202. Instead , the sizing of the 
circular buffers 510 is a function of overall latency of the 
compute pipeline . 
[ 0088 ] FIG . 7 is a block diagram of an example circular 
buffer architecture 700 , including status information of an 
individual buffer . Each of the selected channel controllers 
202 , including its circular buffer unit 610 , is operable to 
determine an allocation of shared resources in the shared 
memory 506. The selected channel controller 202 performs 
example neural network computations based on the deter 
mined allocation of shared resources . The shared resource 
can be a memory bank / buffer 704 of shared memory 506 that 
is configured as a circular buffer of the shared memory and 
that communicates with an example vector processor of 
processor 604 . 
[ 0089 ] The circular buffer unit 610 can determine an 
allocation of shared resources in the shared memory 506 by 
determining an amount of scratchpad buffer space to be used 
by the selected channel controller 202 and a VPU 604 of a 
processor 602 that performs a portion of the neural network 
computations . For example , the allocation of shared 
resources is determined based on latency of memory 
accesses observed in an example processing pipeline of each 
channel controller 202. Based on the determined allocation , 
a set of gradient vectors may be copied into an allocated 
space of buffer / bank 704 and operated on using the VPU 
604 , or the address handler unit 606 described above . In 
some implementations , the shared buffer space may be a 
recently deallocated entry in a buffer / bank 704 of shared 
memory 506 . 
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[ 0090 ] In example dispatch thread executed by the control 
unit 114 , the control unit 114 selects a channel controller 202 
to receive channel ID data and uses allocated circular buffer 
space to store activation gradients in the memory bank 704 
assigned to the selected channel controller 202. If the 
selected channel controller 202 does not have enough space 
in the circular buffer / bank 704 the control unit 114 can stall 
the dispatch thread until a sufficient amount of space can be 
allocated for the selected channel controller 202 . 
[ 0091 ] A " deallocate ” signal 707 is generated and sent to 
control unit 114 during a backward pass operation for 
activation gradients and to an example fetch ID unit 702 
during a forward pass operation for parameters . The deal 
locate signal 707 is generated by a flush ID unit 706 of the 
address handler unit 606 whenever channel ID data process 
ing is completed for a given dispatch thread . In general , the 
deallocate signal 707 is used to deallocate a portion of buffer 
memory 704 that was previously used by a channel control 
ler 202 ( or VPU 604 ) to operate on a piece of data when the 
data for the operation is flushed from an entry in the buffer 
704. For example , the deallocate signal 707 can be generated 
and sent to the control unit 114 or fetch ID unit 702 to 
indicate that a portion of data ( e.g. , activation gradients or 
parameters ) has been flushed from a circular buffer 704 . 
[ 0092 ] Each channel controller 202 stores its intermediate 
values in the software defined circular buffers 704 in the 
shared memory 506. A set of instructions , such as finite state 
machine ( FSM ) instructions , can be used to define a buffer_ 
offset and a buffer_size for the circular buffers 704 used 
during their execution . For example , if a buffer 704 is 
partially filled , and additional allocation is requested , but 
that allocation would go beyond the end of the buffer region , 
a new allocation is generated starting at the buffer_offset . 
This new allocation leaves a hole behind at the end of the 
buffer region . 
[ 0093 ] As an example , if a length - 20 buffer was in a state 
where 10 units were allocated , with a tail pointer at position_ 
7 , and a head pointer at position_16 ( 710 ) , and an additional 
allocation request attempts to allocate a length - 5 space , that 
space would be allocated as shown at feature 710 ' in the 
example of FIG . 7. To ensure the holes are deallocated 
properly , the allocation shown at feature 710 ' should be 
recorded as a length - 8 allocation . In the example of FIG . 7 , 
a map 715 is shown for clarity , but is not included in the 
system 100. For example , the map 715 indicates that 
represents a free space in the buffer that used for an 
allocation request , represents an occupied space in the 
buffer , and “ * ” represents the holes . 
[ 0094 ] FIG . 8 is a flow diagram of an example process 800 
that is used to load balance requests handled by a set of 
memory channel controllers . Process 800 can be imple 
mented or executed using the system 100 described above . 
Descriptions of process 800 may reference the above - men 
tioned computing resources of system 100. In some imple 
mentations , steps or actions of process 800 are enabled by 
programmed firmware or software instructions , which are 
executable by one or more processors of the devices and 
resources described in this document . In some implementa 
tions , the steps of process 500 correspond to a method for 
performing computations to generate an output for a neural 
network layer using a hardware circuit configured to imple 
ment the neural network . 
[ 0095 ] Referring now to process 800 a component of 
system 100 receives requests to obtain data from a memory 

that includes memory locations , where each memory loca 
tion is identified by a respective address ( 802 ) . For example , 
the data may be data for neural network layer that is stored 
across HBM channels of memory 105. In some implemen 
tations , the data is a vector of numerical values for an 
example neural network layer . An embedding layer can be 
represented by a trainable lookup table that maps features in 
a large feature space , e.g. , words in an online Ad , to vectors 
of numbers . For example , the neural network layer is an 
embedding layer that is represented by a trainable lookup 
table that maps each feature in the set of features to a 
respective vector of numbers . 
[ 0096 ] For each request to obtain the data from the 
memory , a channel controller is selected to receive the 
request ( 804 ) . For example , the control unit 114 selects a 
particular channel controller 202 to receive the request , 
where each channel controller 202 that is selected by the 
control unit 114 is configured to access any memory location 
of any channel 204 of the memory 105. In some implemen 
tations , each channel controller 202 is connected to example 
HBM channels of memory 105 through can OCI interface , 
which is configured to allow any of the channel controllers 
202 to perform compute on an embedding vector stored 
anywhere in an HBM channel 204 of the memory 105 . 
[ 0097 ] For each request to obtain the data from the 
memory , the request is provided to be processed by the 
channel controller 202 selected to receive the request ( 806 ) . 
For example , the request can correspond to an ID header 
received at the control unit 114. The control unit 114 
generates a descriptor in response to parsing memory loca 
tion addresses and buffer information from the ID header 
and provides the request as a descriptor to be processed by 
the selected channel controller 202. For each request to 
obtain the data from the memory , the channel controller 
obtains the data from the system memory in response to 
processing the request using the control unit 114 as well as 
the channel controller 202 selected to receive the request 
( 808 ) . 
[ 0098 ] The channel controllers 202 perform neural net 
work computations using the data obtained from memory 
105 and resources of buffer 510 that are allocated from a 
shared memory 506 of the hardware circuit ( 810 ) . For cases 
such as words in an Ad , there may be several vectors to be 
looked up or retrieved from memory 105 that are then added 
together or perhaps multiplied by a set of weights ( param 
eters ) first . The addition and multiplication operations can 
represent a portion of the neural network computations that 
are performed using the obtained data and buffer 510 . 
[ 0099 ] In some cases , efficient implementation embed 
dings of an embedding table requires that system 100 be able 
to quickly look up a large number of vectors randomly from 
a large space in memory 105. Using the techniques 
described in this document , the embedding table can be 
sharded in any manner , for example , in any row and column 
dimension and stored in any channel of memory 105 yet still 
be accessible by any processor 602 among multiple proces 
sors 602 and channel controllers 202 that form the multi 
core processing unit 104 . 
[ 0100 ] Embodiments of the subject matter and the func 
tional operations described in this specification can be 
implemented in digital electronic circuitry , in tangibly 
embodied computer software or firmware , in computer hard 
ware , including the structures disclosed in this specification 
and their structural equivalents , or in combinations of one or 
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more of them . Embodiments of the subject matter described 
in this specification can be implemented as one or more 
computer programs , i.e. , one or more modules of computer 
program instructions encoded on a tangible non transitory 
program carrier for execution by , or to control the operation 
of , data processing apparatus . 
[ 0101 ] Alternatively or in addition , the program instruc 
tions can be encoded on an artificially generated propagated 
signal , e.g. , a machine - generated electrical , optical , or elec 
tromagnetic signal , that is generated to encode information 
for transmission to suitable receiver apparatus for execution 
by a data processing apparatus . The computer storage 
medium can be a machine - readable storage device , a 
machine - readable storage substrate , a random or serial 
access memory device , or a combination of one or more of 
them . 
[ 0102 ] The term “ computing system ” encompasses all 
kinds of apparatus , devices , and machines for processing 
data , including by way of example a programmable proces 
sor , a computer , or multiple processors or computers . The 
apparatus can include special purpose logic circuitry , e.g. , an 
FPGA ( field programmable gate array ) or an ASIC ( appli 
cation specific integrated circuit ) . The apparatus can also 
include , in addition to hardware , code that creates an execu 
tion environment for the computer program in question , e.g. , 
code that constitutes processor firmware , a protocol stack , a 
database management system , an operating system , or a 
combination of one or more of them . 
[ 0103 ] A computer program ( which may also be referred 
to or described as a program , software , a software applica 
tion , a module , a software module , a script , or code ) can be 
written in any form of programming language , including 
compiled or interpreted languages , or declarative or proce 
dural languages , and it can be deployed in any form , 
including as a stand - alone program or as a module , compo 
nent , subroutine , or other unit suitable for use in a computing 
environment . 
[ 0104 ] A computer program may , but need not , correspond 
to a file in a file system . A program can be stored in a portion 
of a file that holds other programs or data , e.g. , one or more 
scripts stored in a markup language document , in a single 
file dedicated to the program in question , or in multiple 
coordinated files , e.g. , files that store one or more modules , 
sub programs , or portions of code . A computer program can 
be deployed to be executed on one computer or on multiple 
computers that are located at one site or distributed across 
multiple sites and interconnected by a communication net 
work . 
[ 0105 ] The processes and logic flows described in this 
specification can be performed by one or more program 
mable computers executing one or more computer programs 
to perform functions by operating on input data and gener 
ating output . The processes and logic flows can also be 
performed by , and apparatus can also be implemented as , 
special purpose logic circuitry , e.g. , an FPGA ( field pro 
grammable gate array ) , an ASIC ( application specific inte 
grated circuit ) , or a GPGPU ( General purpose graphics 
processing unit ) . 
[ 0106 ] Computers suitable for the execution of a computer 
program include , by way of example , can be based on 
general or special purpose microprocessors or both , or any 
other kind of central processing unit . Generally , a central 
processing unit will receive instructions and data from a read 
only memory or a random access memory or both . Some 

elements of a computer are a central processing unit for 
performing or executing instructions and one or more 
memory devices for storing instructions and data . Generally , 
a computer will also include , or be operatively coupled to 
receive data from or transfer data to , or both , one or more 
mass storage devices for storing data , e.g. , magnetic , mag 
neto optical disks , or optical disks . However , a computer 
need not have such devices . Moreover , a computer can be 
embedded in another device , e.g. , a mobile telephone , a 
personal digital assistant ( PDA ) , a mobile audio or video 
player , a game console , a Global Positioning System ( GPS ) 
receiver , or a portable storage device , e.g. , a universal serial 
bus ( USB ) flash drive , to name just a few . 
[ 0107 ] Computer readable media suitable for storing com 
puter program instructions and data include all forms of 
nonvolatile memory , media and memory devices , including 
by way of example semiconductor memory devices , e.g. , 
EPROM , EEPROM , and flash memory devices ; magnetic 
disks , e.g. , internal hard disks or removable disks ; magneto 
optical disks ; and CD ROM and DVD - ROM disks . The 
processor and the memory can be supplemented by , or 
incorporated in , special purpose logic circuitry . 
[ 0108 ] To provide for interaction with a user , embodi 
ments of the subject matter described in this specification 
can be implemented on a computer having a display device , 
e.g. , LCD ( liquid crystal display ) monitor , for displaying 
information to the user and a keyboard and a pointing 
device , e.g. , a mouse or a trackball , by which the user can 
provide input to the computer . Other kinds of devices can be 
used to provide for interaction with a user as well ; for 
example , feedback provided to the user can be any form of 
sensory feedback , e.g. , visual feedback , auditory feedback , 
or tactile feedback ; and input from the user can be received 
in any form , including acoustic , speech , or tactile input . In 
addition , a computer can interact with a user by sending 
documents to and receiving documents from a device that is 
used by the user ; for example , by sending web pages to a 
web browser on a user's client device in response to requests 
received from the web browser . 
[ 0109 ] Embodiments of the subject matter described in 
this specification can be implemented in a computing system 
that includes a back end component , e.g. , as a data server , or 
that includes a middleware component , e.g. , an application 
server , or that includes a front end component , e.g. , a client 
computer having a graphical user interface or a Web browser 
through which a user can interact with an implementation of 
the subject matter described in this specification , or any 
combination of one or more such back end , middleware , or 
front end components . The components of the system can be 
interconnected by any form or medium of digital data 
communication , e.g. , a communication network . Examples 
of communication networks include a local area network 
( “ LAN ” ) and a wide area network ( “ WAN ” ) , e.g. , the 
Internet . 
[ 0110 ] The computing system can include clients and 
servers . A client and server are generally remote from each 
other and typically interact through a communication net 
work . The relationship of client and server arises by virtue 
of computer programs running on the respective computers 
and having a client - server relationship to each other . 
[ 0111 ] While this specification contains many specific 
implementation details , these should not be construed as 
limitations on the scope of any invention or of what may be 
claimed , but rather as descriptions of features that may be 
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specific to particular embodiments of particular inventions . 
Certain features that are described in this specification in the 
context of separate embodiments can also be implemented in 
combination in a single embodiment . Conversely , various 
features that are described in the context of a single embodi 
ment can also be implemented in multiple embodiments 
separately or in any suitable subcombination . Moreover , 
although features may be described above as acting in 
certain combinations and even initially claimed as such , one 
or more features from a claimed combination can in some 
cases be excised from the combination , and the claimed 
combination may be directed to a subcombination or varia 
tion of a subcombination . 
[ 0112 ] Similarly , while operations are depicted in the 
drawings in a particular order , this should not be understood 
as requiring that such operations be performed in the par 
ticular order shown or in sequential order , or that all illus 
trated operations be performed , to achieve desirable results . 
In certain circumstances , multitasking and parallel process 
ing may be advantageous . Moreover , the separation of 
various system modules and components in the embodi 
ments described above should not be understood as requir 
ing such separation in all embodiments , and it should be 
understood that the described program components and 
systems can generally be integrated together in a single 
software product or packaged into multiple software prod 
ucts . 
[ 0113 ] Particular embodiments of the subject matter have 
been described . Other embodiments are within the scope of 
the following claims . For example , the actions recited in the 
claims can be performed in a different order and still achieve 
desirable results . As one example , the processes depicted in 
the accompanying figures do not necessarily require the 
particular order shown , or sequential order , to achieve 
desirable results . In certain implementations , multitasking 
and parallel processing may be advantageous . 
What is claimed is : 
1. ( canceled ) 
2. A method for performing neural network computations 

using a system configured to implement a neural network on 
a hardware circuit , the method comprising : 

receiving a request to obtain data for performing neural 
network computations from a memory comprising one 
or more memory channels , each memory channel com 
prising one or more memory locations , wherein the 
data is distributed across the one or more memory 
locations of the one or more memory channels ; 

determining a channel controller to fetch at least a portion 
of the data associated with the request , wherein the 
channel controller is gured to access : i ) each 
memory channel of the one or more memory channels 
and ii ) each memory location of the one or more 
memory locations that is included in each memory 
channel of the one or more memory channels ; 

processing the request , using the channel controller , by 
accessing the one or more memory locations for a 
memory channel of the one or more memory channels 
to obtain the data associated with the request for 
performing neural network computations ; and 

obtaining at least the portion of the data , by the channel 
controller , from the memory in response to processing 
the request ; and 

performing the neural network computations using at least 
the portion of the data obtained from memory and 

resources allocated from a shared memory of the hard 
ware circuit , wherein the resources allocated from the 
shared memory comprises one or more circular buffers 
each having a buffer size determined based at least on 
an observed latency of the memory access for the 
channel controller . 

3. The method of claim 2 , wherein the channel controller 
comprises a circular buffer unit configured to manage each 
of the one or more circular buffers , wherein the circular 
buffer unit is configured to determine whether one of the one 
or more circular buffers has enough space to store a portion 
of the data associated with the request to be processed by a 
corresponding channel controller . 

4. The method of claim 3 , wherein the one or more 
circular buffers each comprises a buffer offset , wherein the 
circular buffer unit is further configured to : 

in response to determining that a circular buffer of the one 
or more circular buffers does not have enough space to 
store the portion of the data , allocate the portion of the 
data to another circular buffer of the one or more 
circular buffers located from the circular buffer by at 
least the buffer offset . 

5. The method of claim 2 , wherein the data comprises a 
respective vector of numbers mapped to , by an embedding 
neural network layer of the neural network , a respective 
vocabulary feature in a set of vocabulary features . 

6. The method of claim 2 , wherein the channel controller 
is determined based on a dispatch algorithm , wherein the 
dispatch algorithm is configured to distribute respective 
addresses of memory locations to a plurality of channel 
controllers and periodically adjust a value of an increment 
parameter in the dispatch algorithm to bypass a selection of 
a particular channel controller . 

7. The method of claim 6 , further comprising : 
receiving one or more requests to obtain different inputs 

from the memory , each request of the one or more 
requests specifying an address for a memory location 
that stores a corresponding input ; 

determining , based on the dispatch algorithm , an alloca 
tion of addresses corresponding to each of the one or 
more requests ; and 

distributing the one or more requests to the plurality of 
channel controllers based on the determined allocation 
of addresses . 

8. The method of claim 3 , wherein the system comprises 
a shared on - chip interconnect that is configured to allow the 
channel controller to access memory locations allocated to 
any memory channel of the one or more memory channels 
in the memory , wherein the shared on - chip interconnect 
comprises an on - chip interconnect interface , a channel con 
troller interface , and a crossbar device . 

9. The method of claim 2 , wherein performing the neural 
network computations comprises : 

determining an allocation of shared resources in the 
shared memory ; and 

performing the neural network computations based on the 
determined allocation of shared resources , wherein the 
allocation of shared resources comprises allocating an 
amount of scratchpad memory and a vector processing 
unit for performing the neural network computations . 
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10. A system configured to implement a neural network on 
a hardware circuit to perform neural network computations , 
the system comprising : 

one or more processing devices ; and 
one or more non - transitory machine - readable storage 

devices for storing instructions that are executable by 
the one or more processing devices to cause perfor 
mance of operations comprising : 

receiving a request to obtain data for performing neural 
network computations from a memory comprising one 
or more memory channels , each memory channel com 
prising one or more memory locations , wherein the 
data is distributed across the one or more memory 
locations of the one or more memory channels ; 

determining a channel controller to fetch at least a portion 
of the data associated with the request , wherein the 
channel controller is configured to access : i ) each 
memory channel of the one or more memory channels 
and ii ) each memory location of the one or more 
memory locations that is included in each memory 
channel of the one or more memory channels ; 

processing the request , using the channel controller , by 
accessing the one or more memory locations for a 
memory channel of the one or more memory channels 
to obtain the data associated with the request for 
performing neural network computations ; and 

obtaining at least the portion of the data , by the channel 
controller , from the memory in response to processing 
the request ; and 

performing the neural network computations using at least 
the portion of the data obtained from memory and 
resources allocated from a shared memory of the hard 
ware circuit , wherein the resources allocated from the 
shared memory comprises one or more circular buffers 
each having a buffer size determined based at least on 
an observed latency of the memory access for the 
channel controller . 

11. The system of claim 10 , wherein the channel control 
ler comprises a circular buffer unit configured to manage 
each of the one or more circular buffers , wherein the circular 
buffer unit is configured to determine whether one of the one 
or more circular buffers has enough space to store a portion 
of the data associated with the request to be processed by a 
corresponding channel controller . 

12. The system of claim 11 , wherein the one or more 
circular buffers each comprises a buffer offset , wherein the 
circular buffer unit is further configured to : 

in response to determining that a circular buffer of the one 
or more circular buffers does not have enough space to 
store the portion of the data , allocate the portion of the 
data to another circular buffer of the one or more 
circular buffers located from the circular buffer by at 
least the buffer offset . 

13. The system of claim 10 , wherein the data comprises 
a respective vector of numbers mapped to , by an embedding 
neural network layer of the neural network , a respective 
vocabulary feature in a set of vocabulary features . 

14. The system of claim 10 , wherein the channel control 
ler is determined based on a dispatch algorithm , wherein the 
dispatch algorithm is configured to distribute respective 
addresses of memory locations to a plurality of channel 
controllers and periodically adjust a value of an increment 
parameter in the dispatch algorithm to bypass a selection of 
a particular channel controller . 

15. The system of claim 10 further comprises a shared 
on - chip interconnect that is configured to allow the channel 
controller to access memory locations allocated to any 
memory channel of the one or more memory channels in the 
memory , wherein the shared on - chip interconnect comprises 
an on - chip interconnect interface , a channel controller inter 
face , and a crossbar device . 

16. One or more non - transitory machine - readable storage 
devices for implementing a neural network implemented on 
a hardware circuit using a system to perform neural network 
computations and for storing instructions that are executable 
by one or more processing devices to cause performance of 
operations comprising : 

receiving a request to obtain data for performing neural 
network computations from a memory comprising one 
or more memory channels , each memory channel com 
prising one or more memory locations , wherein the 
data is distributed across the one or more memory 
locations of the one or more memory channels ; 

determining a channel controller to fetch at least a portion 
of the data associated with the request , wherein the 
channel controller is configured to access : i ) each 
memory channel of the one or more memory channels 
and ii ) each memory location of the one or more 
memory locations that is included in each memory 
channel of the one or more memory channels ; 

processing the request , using the channel controller , by 
accessing the one or more memory locations for a 
memory channel of the one or more memory channels 
to obtain the data associated with the request for 
performing neural network computations ; and 

obtaining at least the portion of the data , by the channel 
controller , from the memory in response to processing 
the request ; and 

performing the neural network computations using at least 
the portion of the data obtained from memory and 
resources allocated from a shared memory of the hard 
ware circuit , wherein the resources allocated from the 
shared memory comprises one or more circular buffers 
each having a buffer size determined based at least on 
an observed latency of the memory access for the 
channel controller . 

17. The one or more non - transitory machine - readable 
storage devices of claim 16 , wherein the channel controller 
comprises a circular buffer unit configured to manage each 
of the one or more circular buffers , wherein the circular 
buffer unit is configured to determine whether one of the one 
or more circular buffers has enough space to store a portion 
of the data associated with the request to be processed by a 
corresponding channel controller . 

18. The one or more non - transitory machine - readable 
storage devices of claim 17 , wherein the one or more 
circular buffers each comprises a buffer offset , wherein the 
circular buffer unit is further configured to : 

in response to determining that a circular buffer of the one 
or more circular buffers does not have enough space to 
store the portion of the data , allocate the portion of the 
data to another circular buffer of the one or more 
circular buffers located from the circular buffer by at 
least the buffer offset . 

19. The one or more non - transitory machine - readable 
storage devices of claim 16 , wherein the data comprises a 
respective vector of numbers mapped to , by an embedding 
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neural network layer of the neural network , a respective 
vocabulary feature in a set of vocabulary features . 

20. The one or more non - transitory machine - readable 
storage devices of claim 16 , wherein the channel controller 
is determined based on a dispatch algorithm , wherein the 
dispatch algorithm is configured to distribute respective 
addresses of memory locations to a plurality of channel 
controllers and periodically adjust a value of an increment 
parameter in the dispatch algorithm to bypass a selection of 
a particular channel controller . 

21. The one or more non - transitory machine - readable 
storage devices of claim 16 , wherein the system comprises 
a shared on - chip interconnect that is configured to allow the 
channel controller to access memory locations allocated to 
any memory channel of the one or more memory channels 
in the memory , wherein the shared on - chip interconnect 
comprises an on - chip interconnect interface , a channel con 
troller interface , and a crossbar device . a 


