
US 20220121918A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0121918 A1

Nagarajan et al . (43) Pub . Date : Apr. 21 , 2022

(54) LOAD BALANCING FOR MEMORY
CHANNEL CONTROLLERS

(71) Applicant : Google LLC , Mountain View , CA (US)

GOON 3/04 (2006.01)
GO6F 3/06 (2006.01)

(52) U.S. CI .
??? GO6N 37063 (2013.01) ; G06F 3/061

(2013.01) ; G06N 3/04 (2013.01) ; G06N 3/08
(2013.01) (72) Inventors : Rahul Nagarajan , Sunnyvale , CA

(US) ; Hema Hariharan , Mountain
View , CA (US)

(21) Appl . No .: 17 / 563,509

(22) Filed : Dec. 28 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 865,539 , filed on

May 4 , 2020 , now Pat . No. 11,222,258 .
(60) Provisional application No. 63 / 001,216 , filed on Mar.

27 , 2020 .

(57) ABSTRACT
Methods , systems , and apparatus , including computer - read
able media , are described for performing neural network
computations using a system configured to implement a
neural network on a hardware circuit . The system includes
a process ID unit that receives requests to obtain data from
a memory that includes memory locations that are each
identified by an address . For each request , the process ID
unit selects a channel controller to receive the request ,
provides the request to be processed by the selected channel
controller , and obtains the data from memory in response to
processing the request using the selected channel controller .
The channel controller is one of multiple channel controllers
that are configured to access any memory location of the
memory . The system performs the neural network compu
tations using the data obtained from memory and resources
allocated from a shared memory of the hardware circuit .

Publication Classification

(51) Int . Ci .
GO6N 37063
GOON 3/08

(2006.01)
(2006.01)

100 10 ? ?
Computing System

110 Multi - Core
Processing Unit

104
112 Host

102 1
Process ID Control Unit 114

108a

108n

Data Shard
106a

Data Shard
106b

Data Shard
106k

Memory 105

Patent Application Publication Apr. 21 , 2022 Sheet 1 of 8 US 2022/0121918 A1

100 ?
Computing System

110 Multi - Core
Processing Unit

104 Host
102

112

1
Process ID Control Unit 114

108a

108n ZA
Data Shard

106a
Data Shard

106b
Data Shard

106k

Memory 105

Fig . 1

2007

Process ID Control Unit 114

202

Patent Application Publication

202 - n

??? t ??
33761

1830 43180591

202-0

**** 07071816 1910

202-2

C2
211934

CO

C1

C15

Channel Controller (s)

** 093461)
> ce } j # t ?

3700

ththite

54674511

(7110) 418100955
< $ 100516

204
105

204-2

I

Apr. 21 , 2022 Sheet 2 of 8

204 - n

CO

C1 || c2

C15

204-0

N # of Memory Channels

US 2022/0121918 A1

Fig . 2

rr channels

[]

start_channel
0

increment
1

Patent Application Publication

300

for i in range (2048) : for j in range (16) :

rr_channels.append (start_channel + j) % 16)
start_channel (start_channel + increment) % 16

204

Apr. 21 , 2022 Sheet 3 of 8

350

women

1

wowe
cemento

moeten

105

204 - n

CO

C1

.

C15

C2

204-0

US 2022/0121918 A1

N # of Memory Channels

- MM

Fig . 3

rr channels

[]

w

start channel = 0

increment
1

300

Patent Application Publication

for i in range (2048) : for j in range (16) :

Fig . 4

rr_channels.append (start_channel + j) % 1)

start_channel

?

(start_channel + increment) % 16

400

410

10 , 11 , 12 , 13 , 14 , 16 , ? 1 , , 93 , 19 ; 5,5 6,124 , 13 , 14 , 15 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,

1

7

Apr. 21 , 2022 Sheet 4 of 8

RR

RRR

i , , 2 , 3 , , 5 6 , 7

10 , 11

, , , 1 3 4 5 , 6 , , 9

| ,

, 15 ,

, 4 , 5 7 , , 9

Channel [0] Count : 2048 Median : 15.0 Average : 15.9926757812 Channel [1] Count : 2048 Median : 15.0 Average : 15.9926757812 Channel [2] Count : 2048 Median : 15.0 Average : 15.9926757812 Channel [3] Count : 2048 Median : 15.0 Average : 15.9926757812

4

Channel [4] Count : 2048 Median : 15.0 Average : 15.9926757812 Channel [5] Count : 2048 Median : 15.0 Average : 15.9926757812

]

Channel [6] Count : 2048 Median : 15.0 Average : 15.9926757812 Channel [7] Count : 2048 Median : 15.0 Average : 15.9926757812
:

Channel [8] Count : 2048 Median : 15.0 Average : 15.9926757812

Example allocation of Requests / Ds to

Channel [9] Count : 2048 Median : 15.0 Average : 15.9926757812

Channels

Channel (10) Count : 2048 Median : 15.0 Average : 15.9926757812

US 2022/0121918 A1

5003

Shared Memory (Buffers) 506

Patent Application Publication

508 ss

maanden
comentarios

1

several

Process ID Control Unit 114

I 1

Buffer Usage (Uneven)

Channel Controllers 202

|

510-3

510-02

5

204

I

155 510-1
Apr. 21 , 2022 Sheet 5 of 8

204-02

C1

C2

8 11111

III

5 IIIII

Bank of Bank

Bank

Bank 1

Bank 15

Memory 105

I

512

US 2022/0121918 A1

Fig . 5

Processor / Core 602

600

Shared Memory (Buffers) 506

so

VPU 604

Patent Application Publication

508

Channel Controllers 202

Buffer Usage (Substantially Even)

510-02

1

Address Handler Units 606

510-3

1

1 |

510 - n
nz

Shared On - Chip Interconnect 608

1 1

DODOSOPPOROD

Apr. 21 , 2022 Sheet 6 of 8

Bank o

Bank 1

Bank 2

Bank 15

Circular Buffer Unit 610

|

C1

C2

Cn

IIIII

100

US 2022/0121918 A1

Fig . 6

Memory 105

700 %

704

704

Patent Application Publication

Bank 0

Bank 0

5 702

710

5604

is 706

From HBM

Fetch

VPU

Flush

To HBM

5 707

1 0

Deallocate

Apr. 21 , 2022 Sheet 7 of 8

710

0 0000 0000 0000 000

gend o expand

5715
Free

5 710 '

m

= Occupied

og OUR

*

= Holes

US 2022/0121918 A1

I .

Fig . 7

Patent Application Publication Apr. 21 , 2022 Sheet 8 of 8 US 2022/0121918 A1

800

RECEIVE REQUESTS TO OBTAIN DATA FROM A MEMORY THAT INCLUDES
MEMORY LOCATIONS THAT ARE EACH IDENTIFIED BY A RESPECTIVE ADDRESS

802

SELECT A CHANNEL CONTROLLER TO RECEIVE A REQUEST , WHERE EACH
CHANNEL CONTROLLER IS CONFIGURED TO ACCESS ANY MEMORY LOCATION OF

THE MEMORY
804

PROVIDE THE REQUEST TO BE PROCESSED BY THE CHANNEL CONTROLLER
SELECTED TO RECEIVE THE REQUEST

806

OBTAIN THE DATA FROM MEMORY IN RESPONSE TO PROCESSING THE REQUEST
USING THE CHANNEL CONTROLLER SELECTED TO RECEIVE THE REQUEST

808

PERFORM NEURAL NETWORK COMPUTATIONS USING THE DATA OBTAINED FROM
MEMORY AND RESOURCES ALLOCATED FROM A SHARED MEMORY OF THE

HARDWARE CIRCUIT
810

Fig . 8

US 2022/0121918 A1 Apr. 21 , 2022
1

LOAD BALANCING FOR MEMORY
CHANNEL CONTROLLERS

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This is a continuation of U.S. application Ser . No.
16 / 865,539 , filed on May 4 , 2020 , which claims priority to
U.S. Provisional Application No. 63 / 001,216 , filed Mar. 27 ,
2020. The disclosures of the prior applications are consid
ered part of and are incorporated by reference in the disclo
sure of this application .

BACKGROUND

[0002] This specification generally relates to using cir
cuitry to perform neural network computations .
[0003] Neural networks are machine - learning models that
employ one or more layers of nodes to generate an output ,
e.g. , a classification , for a received input . Some neural
networks include one or more hidden layers in addition to an
output layer . The output of each hidden layer is used as input
to one or more other layers in the network , e.g. , other hidden
layers or the output layer of the network . Some of the layers
of the network generate an output from a received input in
accordance with current values of a respective set of param
eters .

[0004] Some neural networks are convolutional neural
networks (CNNs) (e.g. , for image processing) or recurrent
neural networks (RNNs) (e.g. , for speech and language
processing) . Each of these neural networks include respec
tive sets of convolutional or recurrent neural network layers .
A neural network layer can have an associated set of kernels
as well as an embedding layer for processing inputs to
generate sets of vectors for training a neural network .
Kernels can be represented as a tensor , i.e. , a multi - dimen
sional array , of weights . As an example , embedding layers
can process a set of inputs , such as inputs of image pixel data
or activation values generated by a neural network layer . The
set of inputs or set of activation values can also be repre
sented as a tensor .

data is processed as a step in accelerating computations of an
embedding layer of an artificial neural network .
[0007] One aspect of the subject matter described in this
specification can be embodied in a method for performing
neural network computations using a system configured to
implement a neural network on a hardware circuit . The
method includes receiving requests to obtain data from a
memory including multiple memory locations , each memory
location being identified by a respective address . For each
request to obtain the data from the memory , the method
includes : selecting a channel controller to receive the
request , wherein the channel controller is one of multiple
channel controllers that are each configured to access any
memory location of the memory ; providing the request to be
processed by the channel controller selected to receive the
request ; and obtaining the data from memory in response to
processing the request using the channel controller selected
to receive the request . The method also includes performing
the neural network computations using the data obtained
from memory and resources allocated from a shared
memory of the hardware circuit .
[0008] These and other implementations can each option
ally include one or more of the following features . For
example , in some implementations , selecting the channel
controller to receive the request includes : selecting the
channel controller based on a dispatch algorithm , the dis
patch algorithm being used to distribute respective addresses
of memory locations to any one of the multiple channel
controllers that is selected to receive the request .
[0009] The method further includes : receiving multiple
requests to obtain different inputs from the memory , each
request of the multiple requests specifying an address for a
memory location that stores the input ; determining , based on
the dispatch algorithm , an allocation of addresses corre
sponding to each of the multiple requests ; and distributing
the multiple requests to the multiple channel controllers
based on the determined allocation of addresses . Determin
ing the allocation of addresses can include : determining the
allocation of addresses such that a respective quantity of
addresses that is allocated and distributed to a corresponding
channel controller is substantially equal among each of the
multiple channel controllers .
[0010] In some implementations , the system includes a
shared on - chip interconnect that is configured to allow any
channel controller to access memory locations allocated to
any channel of multiple channels in the memory . Each
channel of the multiple channels in the memory can include
a set of memory locations and the method includes : access
ing , based on the on - chip interconnect , any memory location
allocated to any channel using any channel controller .
[0011] Performing the neural network computations can
include : determining an allocation of shared resources in the
shared memory ; and performing the neural network com
putations based on the determined allocation of shared
resources . In some implementations , determining an alloca
tion of shared resources in the shared memory includes :
determining an amount of scratchpad memory to be used by
the selected channel controller and a vector processing unit
of the system that performs a portion of the neural network
computations . In some implementations , a shared resource
of the shared memory is a memory bank of the shared
memory that is configured as a circular buffer of the shared
memory that communicates with the vector processing unit .

SUMMARY

[0005] This document describes techniques for balancing
processing loads experienced by channel controllers in a
distributed processing system . The techniques can be used in
an example computing system , such as a large - scale distrib
uted system or other systems that process data . The tech
niques make use of circuitry configured to distribute
requests to channel controllers that process the requests to
retrieve data stored at different memory locations of the
distributed system . A channel controller that receives a
request is one of multiple channel controllers that are
included in the distributed system . Each channel controller
is configured to access any memory location of an example
high - bandwidth memory in the distributed system .
[0006] The retrieved data can represent inputs to a neural
network layer . Each of the requests is distributed with
reference to a channel controller that is selected to process
the request . The requests to retrieve the inputs are distributed
to the channel controllers for processing in a manner that
reduces or eliminates load imbalances across the channel
controllers . In this example the retrieved data is processed to
perform neural network computations . In some instances the

US 2022/0121918 A1 Apr. 21 , 2022
2

trollers configured to access any memory location are used
in combination with a circular buffer of a shared scratchpad
memory
[0019] The circular buffer is used with an allocation
scheme that does not depend on the size and order of data
that is written to the buffer , which can result in wasteful over
allocation of shared buffer space when large portions of
allocated space are unused by the channel controller to
which the space is assigned . To improve the efficiency and
utilization of the shared buffers , the techniques can be
implemented to optimize allocation of space in circular
buffers of the shared scratchpad memory based at least on a
latency of the memory accesses observed in an example
processing pipeline of each channel controller .
[0020] The details of one or more implementations of the
subject matter described in this specification are set forth in
the accompanying drawings and the description below .
Other potential features , aspects , and advantages of the
subject matter will become apparent from the description ,
the drawings , and the claims .

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The method can further include : obtaining a batch
of inputs to a neural network layer in response to processing
the request . The batch of inputs correspond to the data
obtained from memory ; and each input in the batch of inputs
is used to map a set of features to a vector of numbers . In
some implementations , the neural network layer is an
embedding layer that is represented by a trainable lookup
table that maps each feature in the set of features to a
respective vector of numbers . The method can further
include processing each input in the batch of inputs through
the neural network layer to learn vectors of values , where the
vectors of values correspond to each of the respective vector
of numbers ; and updating embeddings stored at the trainable
lookup table for the embedding layer of the neural network
based on the vector of values .
[0013] In some implementations , performing the neural
network computations includes generating an embedding
output of the neural network layer from the obtained batch
of inputs ; and updating the embeddings includes updating
values of the trainable lookup table in response to back
propagating gradients that are computed based on the
embedding output .
[0014] Other implementations of this and other aspects
include corresponding systems , apparatus , and computer
programs , configured to perform the actions of the methods ,
encoded on computer storage devices . A system of one or
more computers can be so configured by virtue of software ,
firmware , hardware , or a combination of them installed on
the system that in operation cause the system to perform the
actions . One or more computer programs can be so config
ured by virtue of having instructions that , when executed by
data processing apparatus , cause the apparatus to perform
the actions .
[0015] The subject matter described in this specification
can be implemented in particular embodiments so as to
realize one or more of the following advantages .
[0016] Circuitry for a crossbar / on - chip interconnect can
be implemented at a special - purpose hardware circuit , such
as a hardware accelerator used in a distributed system . The
crossbar allows each channel controller to read data from ,
and write data to , any address location of a memory cell in
any channel of a high - bandwidth memory system that com
municates with a processor core or accelerator chip . This
avoids the need to map channel controllers to specific
memory channels , which can cause load imbalances that
result in performance penalties .
[0017] The crossbar mitigates against degraded perfor
mance that can occur when a particular channel controller
receives a substantially large number of addresses for pro
cessing relative to other channel controllers in a set . The
crossbar is implemented to load - balance an allocation of
addresses by assigning addresses to any channel controller
for processing across all memory channels . Hence , the
crossbar can improve performance in a distributed system
relative to prior approaches .
[0018] The techniques include a dispatch algorithm that is
based on a modified round - robin dispatch scheme . The
dispatch algorithm allows a process control unit of the
system to dispatch addresses across a set of channel con
trollers , where selection of each individual channel control
ler that receives addresses is substantially equal across the
set . The dispatch algorithm is adapted to mitigate against a
bursting property of the original or unmodified round - robin
scheme , which can be problematic when the channel con

[0021] FIG . 1 is a block diagram of an example computing
system .
[0022] FIG . 2 is a block diagram of an architecture that
includes examples of a control unit , channel controllers , and
memory channels .
[0023] FIG . 3 illustrates an example algorithm used to
implement load balancing for memory channel controllers .
[0024] FIG . 4 illustrates an example allocation of requests
to different channel controllers .
[0025] FIG . 5 is a block diagram of an architecture that
includes examples of a processor core and shared memory
buffers of the system of FIG . 1 .
[0026] FIG . 6 shows example components of a channel
controller that are used to allocate resources of a shared
memory buffers .
[0027] FIG . 7 is a block diagram of an example circular
buffer , including status information of an individual buffer .
[0028] FIG . 8 is a flow diagram of an example process for
load balancing requests handled by a set of memory channel
controllers .
[0029] Like reference numbers and designations in the
various drawings indicate like elements .

a

DETAILED DESCRIPTION

[0030] A distributed system can include memory for stor
ing values that are accessed and used to perform an opera
tion or to compute a value . Each value may be stored at a
respective location in the memory that is identified by an
address . The memory may be arranged to include different
memory channels , where each channel includes a set of
memory locations that are identified by a corresponding set
of addresses . A channel controller is used to control and
manage accesses to specific memory locations of a given
memory channel to retrieve data specified by a request .
More specifically , the channel controllers use communica
tion channels of the distributed system to manage the flow
of data to and from the memory .
[0031] This specification describes techniques for balanc
ing loads across a group of channel controllers to mitigate
processing delays that can occur due to channel controller
load imbalances in a distributed computing system . For

US 2022/0121918 A1 Apr. 21 , 2022
3

example , the delays may occur during processor computa
tions for generating an output of an embedding layer of a
multi - layer neural network . Specifically , when a particular
channel controller of a distributed system is required to
perform a substantial number of data retrieval and compute /
processing operations (e.g. , reductions or concatenations of
retrieved values) to perform a neural network computation ,
this particular channel controller can experience processing
delays corresponding to a load imbalance .
[0032] The imbalance can be between a first channel
controller that receives a substantial number of requests or
addresses / IDs in a request relative to a second , different
channel controller . The channel controller is configured to
process the requests to retrieve data for a neural network
computation , such as data for an input value that is to be
processed through a neural network layer . In some imple
mentations , the data represents embeddings (e.g. , weights)
of an embedding table and a channel controller may be
tasked to process the request to return the embedding for the
input value . For example , in a forward pass compute opera
tion of an embedding layer , each channel controller pro
cesses requests that specify addresses for locations in
memory , which causes the channel controller to retrieve data
stored at the memory location and to perform computations
using the retrieved data .
[0033] In prior distributed architectures each channel con
troller was mapped to a specific bank or channel in the large
system memory , such that each channel controller could
process only those addresses for memory locations to which
the channel controller was mapped . For example , each
channel controller was only able to access a particular subset
of memory . So , if that subset of memory includes locations
and addresses that store “ hard ” data (e.g. , dense or large data
values) or data that is accessed more frequently for a given
task , then the channel controller mapped to that subset will
experience an imbalance in its processing load relative to
other channel controllers that are mapped to other memory
subsets .
[0034] An individual channel controller can be each
tasked to retrieve a portion of data uired for a computa
tion or task in a larger workload . Imbalances between
individual channel controllers can cause one channel con
troller to require additional processing time to obtain its
portion of data for the computation relative to another
channel controller . Because the entire portion of data may be
required for the task , the additional processing time required
by one channel controller results in an overall processing
delay in performing the task for the larger workload .
[0035] Relatedly , each channel controller may be allocated
a portion of resources , such as a buffer , from a shared
scratchpad memory space to perform certain operations
using the retrieved data . Because the number of addresses
(or requests) processed by each channel controller is differ
ent , the number of scratchpad memory / buffer locations used
by each channel controller will also be quite different . Prior
approaches to managing the allocation of shared resources
across the channel controllers were limited with respect to
allocating different amounts of memory across the channels .
So , these prior approaches were prone to over - allocation of
shared resources for a given channel , which resulted in
scratchpad spaces being wasted across the channels . These
approaches also caused performance penalties when other
wise useful scratchpad buffer space is allocated but remains
unused by a channel controller .

[0036] Based on the context discussed above , this speci
fication describes data processing techniques and corre
sponding hardware circuitry that can be implemented in a
special - purpose processor to balance processing loads expe
rienced by channel controllers in a distributed processing
system . For example , a distributed system that includes a
large memory unit (e.g. , a high - bandwidth memory) and a
special - purpose hardware circuit can generate instructions to
cause any channel controller to obtain data from any
memory location and for any data shard of the memory unit .
More specifically , this feature is enabled based on an on - chip
interconnect (or crossbar) that is integrated at the hardware
circuit to allow each channel controller to read data from ,
and write data to , any channel of a high - bandwidth memory
system . The crossbar feature removes the constraint of
storing data in a manner that is sensitive to which addresses
allocations are mapped to specific channel controllers and
allows for simplifying how sets of data may be laid out in the
memory system . The system is operable to send requests , or
addresses specified in a request , to any channel controller
because each channel controller is configured to obtain
values from any memory location or data shard .
[0037] This specification also describes techniques for
implementing a circular buffer in combination with the
above method of using any channel controller to obtain data
from any memory location of a system memory . The circular
buffer is based on an allocation of individual resources
included in a shared scratchpad memory . Implementation of
the circular buffer is adapted to address load imbalance
issues that arise when a system is required to process a
variable number of ID headers (e.g. , addresses) across a set
of channel controllers . The system includes an example
hardware manager that executes instructions for defining
and managing the each circular buffer . Instead of allocating
a fixed size amount of shared memory buffers to each
channel controller , the hardware manager is operable to
define a size of each buffer allocation based on an observed
latency required to fully execute computes on data fetched
from memory locations of the system memory .
[0038] FIG . 1 shows a block diagram of an example
computing system 100 that is configured to retrieve data
elements stored in a memory of system 100. The data
elements can be retrieved and used to perform neural
network computations for an example machine - learning
workload . For example , the data elements can be processed
to compute an output for a neural network layer or to
perform embedding layer operations to generate sets of
embeddings for training a neural network .
[0039] Embedding outputs are generated when a neural
network of system 100 is trained to perform certain com
putational functions , such as computations related to
machine translation , natural language understanding , rank
ing models , or content recommendation models . In some
implementations , training the neural network involves
updating a set of embeddings that were previously stored in
an embedding table of the neural network , such as during a
prior phase of training the neural network . For example , the
embeddings of an embedding layer of a neural network may
be trained jointly with the neural network for which the
embeddings are to be used . Hence , the techniques described
in this specification can be used to update embeddings
during training of a neural network , with improved effi
ciency over prior approaches .

a

US 2022/0121918 A1 Apr. 21 , 2022
4

2

-

[0040] In general , an embedding layer of a neural network
is used to embed features in a feature / embedding space
corresponding to the embedding layer . An embedding vector
can be a respective vector of numbers that is mapped to a
corresponding feature in a set of features of a lookup table
that represents an embedding layer . A feature can be an
attribute or property that is shared by independent units on
which analysis or prediction is to be performed . For
example , the independent units can be groups of words in a
vocabulary or image pixels that form parts of items such as
images and other documents . An algorithm for training
embeddings of an embedding layer can be executed by a
neural network processor to map features to embedding
vectors . In some implementations , embeddings of an embed
ding table are learned jointly with other layers of the neural
network for which the embeddings are to be used . This type
of learning occurs by back propagating gradients to update
the embedding tables .
[0041] In other implementations , the embeddings may be
learned separately from the other layers of the neural net
work for which the embeddings are to be used , such as when
embeddings are pre - trained . For example , the algorithm can
be used by the neural network processor to compute embed
dings by processing information about discrete input fea
tures to determine a mapping or placement of similar inputs
to embedding vectors that are geometrically close in the
embedding space . In some cases , the process of computing
embeddings can represent a technique for feature learning or
feature engineering that allows a system to automatically
discover representations needed for feature detection from
raw input data .
[0042] In some implementations , a given " input " can have
one or more features of one or more types , and the embed
ding layer generates a respective embedding for each of
those types . For example , an input can be for a search query
that has a few different feature types . The feature types can
include properties of a user or user device (e.g. , location ,
preferences , device type , etc.) , query tokens , previously
submitted queries , or other related types that may corre
spond to attributes of a search query . For any feature types
that have more than one feature for a given input , a com
puting system is operable to retrieve the individual embed
dings for each of those features . The system is also operable
to combine the retrieved embeddings , e.g. , by computing
averages of the embedding values , to generate a final embed
ding for that feature type .
[0043] The computing system 100 includes a host 102 , a
multi - core processing unit 104 , and a memory unit 105
(“ memory 105 ”) . The memory 105 includes data shards
106a - 106k , where k is an integer greater than one . The
memory 105 is described in more detail below . In general ,
the host 102 can be a processing unit , such as a processor ,
multiple processors , or multiple processor cores . Hence , the
host 102 may include one or more processors , and is
operable to generate or process an instruction for accessing
a target dense matrix and to send an instruction 110 to the
multi - core processing unit 104 to generate the target dense
matrix . As described in more detail below , performing
embedding layer operations can include transforming sparse
elements from one or more matrices to generate a dense
matrix .
[0044] The multi - core processing unit 104 accesses the
corresponding elements 108a - 108n from one or more of the
data shards 106a - 106k in memory 105 , where n is an integer

greater than one . The multi - core processing unit 104 gen
erates the target dense matrix 112 using the corresponding
elements 108a - 108n , and provides the target dense matrix
112 to the host 102 for further processing . The multi - core
processing unit 104 may generate the target dense matrix
112 by transforming each of the elements 108a - 108n into a
vector , and concatenating the n vectors into a single vector .
[0045) Generally , in the context of embeddings , sparse '
information corresponding to the sparse elements may be a
one - hot vector that identifies a feature value . For example ,
if there are five possible values for a given feature (e.g. , A ,
B , C , D , E) , the sparse vector would identify the feature
value ‘ A’as (1 , 0 , 0 , 0 , 0) and the embedding layer would
map (1 , 0 , 0 , 0 , 0) to a dense embedding vector for the
feature value “ A. ” In some implementations , during the
training of an embedding layer to learn embeddings , the
elements 108a - 108n may be weight values of an embedding
table that are transformed into a vector , such as an embed
ding vector for the feature value “ B ” or “ C. ” The weight
values may be transformed using a neural network processor
of the multi - core processing unit 104 that executes a training
algorithm to compute embeddings based at least on a
mapping of features to embedding vectors .
[0046] The host 102 can process an instruction for updat
ing a target dense matrix and sends an updated dense matrix
to the multi - core processing unit 104. For example , a target
dense matrix may correspond to an embedding of a neural
network . Hence , the host 102 can process an instruction to
update the embeddings to generate an updated dense matrix .
For example , during a subsequent iteration of training a
neural network to update embeddings a backward pass may
be performed to update the embeddings by determining a
new mapping of input features to embedding vectors and
generating an updated dense matrix based on the new
mapping . In some implementations , the multi - core process
ing unit 104 is operable to transform the updated dense
matrix into corresponding sparse elements and to update one
or more sparse elements (e.g. , weights) stored in the data
shards 106a - 106k accordingly .
[0047] As indicated above , the host 102 is configured to
process instructions for execution within the computing
system 100. In some implementations , the host 102 is
configured to process the target dense matrix 112 generated
by the multi - core processing unit 104. In some other imple
mentations , the host 102 may be configured to request the
multi - core processing unit 104 to generate the target dense
matrix 112 , and another processing unit may be configured
to process the target dense matrix 112 .
[0048] Each processor of the multi - core processing unit
104 is configured to retrieve data elements stored in a
memory of system 100. The memory can include multiple
data shards 106a - 106k that store data including elements
108a - 108n . The data can include inputs , activations , gain
values , or weight values corresponding to parameters or
kernels of a matrix structure of weights . In some implemen
tations , the data shards 106a - 106k may be a volatile memory
unit or units . In some other implementations , the data shards
106a - 106k may be a non - volatile memory unit or units . The
data shards 106a - 106k may also be another form of com
puter - readable medium , such as devices in a storage area
network or other configurations . The data shards 106a - 106k
may be coupled to the multi - core processing unit 104 using
electrical connections , optical connections , or wireless con
nections . In some implementations , the data shards 106a

a
a

a

a

US 2022/0121918 A1 Apr. 21 , 2022
5

be part

a

a

or

106k may of the multi - core processing unit 104 and
based on a Processor - in - memory (PIM) architecture .
[0049] The multi - core processing unit 104 is configured to
determine a dense matrix based on sparse elements . The
multi - core processing unit 104 includes multiple intercon
nected processors or processor cores . For example , the
multi - core processing unit 104 can be a distributed process
ing system that includes multiple interconnected processor
cores . In general , the terms “ processor ” and “ processor
core ” may be used interchangeably to describe discrete
interconnected processing resources of the multi - core pro
cessing unit 104 .
[0050] The system 100 also includes a process ID control
unit 114 (“ control unit 114 ") . The control unit 114 receives
a set of ID headers and performs operations to dispatch the
ID headers or to dispatch portions of information included in
the ID headers . The ID headers are dispatched to channel
controllers , which are described in more detail below with
reference to FIG . 2. In some implementations , the system
100 includes multiple control units 114. For example , the
system 100 can include a control unit 114 for each processor
r processor core at the system 100. Each of the control units

114 that are coupled to a processor / core of the multi - core
processing unit 104 receives a set of ID headers from a
source . The source can be the host 102 or another processor
of the multi - core processing unit 104 .
[0051] An ID header can represent a request that includes
information specifying addresses for memory locations in
the memory 105. The memory 105 can represent a high
bandwidth memory (HBM) or an input / output (I / O) device
that exchanges data communications with a control unit 114
in a processor core of an example hardware circuit included
at system 100. For example , the memory 105 may exchange
data communications with a processor core of the multi - core
processing unit 104 to pass inputs to the core and to receive
outputs generated by one or more computing resources of
the core . The inputs and data values stored in , or written to ,
memory locations of memory 105 can represent vector
elements or arrays of vector values .
[0052] The memory 105 can be dynamic random access
memory (DRAM) assets of system 100. In some implemen
tations , memory 105 is an external or off - chip memory
relative to an example hardware circuit that includes one or
more processors or processor cores . The memory 105 is
configured to exchange data communications with on - chip
resources of the hardware circuit , such as a vector process
ing unit (VPU) or vector memory banks of the VPU (de
scribed below) . For example , memory 105 can be disposed
at a physical location that is outside of an integrated circuit
die that represents a hardware circuit of system 100. Hence ,
memory 105 can be distant or non - local relative to comput
ing resources disposed within the integrated circuit die .
Alternatively , memory 105 , or portions of its resources , can
be disposed within the integrated circuit die representing a
special - purpose hardware circuit , such that the memory 105
is local to or co - located with computing resources of the
circuit .
[0053] FIG . 2 is a block diagram of an architecture 200
that includes examples of channel controllers 202 and
memory channels 204 of memory 105 , as well as the control
unit 114 described above . Each of the memory channels 204
can represent a memory bank of memory 105 , a set of
memory banks of memory 105 , a set of memory locations of
memory 105 , or combinations of these .

[0054] A set of channel controllers 202 includes multiple
respective channel controllers that are indicated at least as
CO , C1 , C2 , and C15 . In the example of FIG . 2 architecture
200 can include 16 channel controllers . In some implemen
tations , architecture 200 includes more or few channel
controllers . For example , the architecture 200 can include N
number of channel controllers as well as N number of
memory channels 204. These aspects of the architecture 200
are indicated by reference number 202 - n , with respect to an
individual channel controller , and by reference number
204 - n , with respect to an individual memory channel .
[0055] The implementation of FIG . 2 shows an example
where individual channel controllers , such as channel con
trollers 202-0 (CO) and 202-2 (C2) , are hard mapped to
specific corresponding memory channels , such as memory
channels 204-0 (CO) and 204-2 (C2) , respectively . As dis
cussed above , a system memory 105 with channel control
lers 202 that are hard mapped to specific memory channels
can experience load imbalances . These load imbalances can
stall or substantially delay operations for neural network
computes performed at system 100 , such as operations for
generating an output for an embedding layer .
[0056] This prior approach of mapping specific channel
controllers 202 to a particular memory channel can have
other challenges . For example , the approach can have a
constraint of requiring data be stored in a manner that is
sensitive to how the addresses and data are mapped to
specific channel controllers 202. Additionally , the approach
can be inefficient when a system is required to perform a
large number of randomized look ups to retrieve vectors
from a large space in memory . To address these challenges ,
an on - chip interconnect (OC) , or crossbar , (described
below) is integrated at a special - purpose hardware circuit .
The crossbar may be integrated in a processing pipeline of
the chip’s circuitry to enable each channel controller to read
data from , and write data to , any channel of a high - band
width memory system .
[0057] In some implementations , the special - purpose cir
cuit is a multi - core hardware accelerator and the OCI is a
channel controller interface that is uniquely configured at
least based on the multi - core structure of the hardware
accelerator . For example , the channel controller interface is
configured to allow communication between each core of
the multi - core hardware accelerator and each memory chan
nel of memory 105 , including different types of memory
structures that correspond to the memory channels .
[0058] The channel controller interface can be sized to
32Bx4 instead of 128Bx1 . Based on this example sizing , the
channel controller interface can include multiple indepen
dent transaction threads between the memory 105 and
channel controllers 202 , without requiring extraneous ports
for the OCI hardware . In some implementations , the channel
controller interface is configured to efficiently handle
dynamic bandwidth requirements at each channel and for
different phases of compute . For example , the gigabyte per
second (GBps) bandwidth requirements can vary for differ
ent computes for different access sizes , e.g. , 32 Byte access ,
64 Byte access , 128 Byte access . The phases can include
forward pass compute , backward pass compute , and back
ward pass compute that implements optimization algorithms
such as Adagrad to update learned values of a particular
vector based on gradients produced from evaluating a neural
network on some training data .

US 2022/0121918 A1 Apr. 21 , 2022
6

a .

[0059] The channel controller interface can be uniquely
configured to include multiple node interfaces . For example ,
the crossbar can include : i) an intra - client node interface
operable to carry direct memory access (DMA) descriptors
and control messages ; ii) an intra - memory node interface
operable to carry read / write commands and data for various
memory structures of the memory system (e.g. , buffer
memory , instruction memory , shared memory , vector
memory , host memory) ; iii) an intra - processor node inter
face (lower) that is operable to carry load / store traffic from
a first / lower set of channel controllers 202 to the memory
105 ; and iv) an intra - processor node interface (upper) that is
operable to carry load / store traffic from a second / upper set
of channel controllers 202 to the memory 105 .
[0060] As explained above , the OCI or channel controller
interface is an implementation of a crossbar that allows sets
of channel controllers to access any memory channel / ad
dress of memory 105. But , even when addresses specified in
requests are spread among a set of channel controllers 202 ,
the large scale execution of certain machine - learning work
loads can exhibit data access patterns that result in a par
ticular channel controller receiving a bulk of the data
processing load relative to other channel controllers . In the
example of FIG . 2 , channel controller 202-0 demonstrates an
imbalance in which that channel receives a bulk of the data
processing load relative to other channel controllers (e.g. ,
C1 , C2) . To address this challenge , the crossbar is used to
implement a specific control scheme to control the alloca
tions of addresses or requests to each channel controller 202 .
The control scheme causes addresses to be allocated sub
stantially equally among the channel controllers 202. This is
described in more detail below with reference to FIG . 3 .
[0061] FIG . 3 illustrates an example algorithm 300 used to
implement load balancing for the memory channel control
lers 202 .
[0062] As indicated above , data accesses for an example
machine - learning workload can exhibit certain pathological
patterns . For example , even though a set requests and
addresses may be spread generally across the channel con
trollers 202 , certain patterns may be present in which a
particular channel controller is required to operate on a
substantial number of larger features or large vectors . Such
patterns can cause the control unit 114 to dispatch a set of
processing tasks or ID headers that still result in a load
imbalance at the channel controllers 202. For example , the
patterns may have a bursty property that cause them to
appear for certain short time windows of processing , such as
between 20 and 100 cycles . The load imbalance can occur
even though any one of the channel controllers 202 is
configured to access any memory location and any memory
channel 204 of the memory 105 .
[0063] The algorithm 300 corresponds to the control
scheme noted above and is an example dispatch algorithm
that is used to implement load balancing for the memory
channel controllers 202 of system 100. The algorithm 300
can include pseudo - code as shown in the example of FIG . 3 ,
which represents one or more of the instructional steps of the
dispatch algorithm 300. In some implementations , the algo
rithm 300 is a modified round - robin dispatch algorithm . The
modified round - robin attributes of the dispatch algorithm
300 allows a set of ID headers to be parsed and dispatched
to the channel controllers 202 .
[0064] For example , the modified round - robin dispatch
algorithm 300 is configured to disrupt or inhibit latent

pathological sequences that can occur during data accesses
for a machine - learning workload . Because of this , the modi
fied round - robin dispatch algorithm 300 is configured to
allow allocations of ID headers (e.g. , address of activations
or gradients) in a manner that is load balanced across each
channel controller 202 in a set of channel controllers (350) .
A standard round - robin approach for scheduling a process
indicates to select a channel controller in a simple , circular
order in which selections are performed without priority .
[0065] To address the bursty patterns discussed above , the
round - robin approach can be adapted or modified to first
detect an initial completion of a first circular order of
selections . In response to detecting the initial completion ,
the control unit 114 can then adjust an increment parameter
to modify the initial channel controller that is selected for a
second or subsequent circular round of selections .
[0066] For example , the system 100 can include 16 chan
nel controllers (e.g. , CCO- C15) . The control unit 114 can
select each channel controller 202 during an initial round
and detect completion of the initial round based on a count
parameter that indicates CC15 has been selected during that
round . The count parameter can correspond to the total
number of channel controllers (16) such that selection of
CC15 during the initial round indicates selection of each of
the 16 channel controllers . The control unit 114 can then
adjust the value of an increment parameter to bypass selec
tion of a particular channel controller .
[0067] For example , the control unit 114 can increase the
increment parameter to bypass selection of CCO and select
CC1 at the start of a subsequent round of channel selections .
Likewise , the control unit 114 can again increase the incre
ment parameter to bypass selection of CC1 and select CC2
at the start of another subsequent round of channel selec
tions . In some implementations , the control unit 114 can
periodically adjust the value of the increment parameter to
increase (or decrease) an increment of the channel count
based on one or more observed data access patterns , as
described in more detail below with reference to FIG . 4 .
[0068] FIG . 4 illustrates a table 400 that shows an example
sequence 410 for selecting channel controllers 202 to effect
a balanced allocation of requests to different channel con
trollers 202 .
[0069] As described briefly above , a native round - robin
scheme can suffer from pathological patterns in input data
being accessed for a computation . For example , a pattern
can be that every 16th ID header will belong to an embed
ding table that has the longest embedding vectors and most
compute intensive optimizer . The example pattern can cause
load imbalance even in the native round - robin scheme . The
control unit 114 can be a hardware component of a processor a
core that executes instructions corresponding to the dispatch
algorithm 300 to implement a modified round - robin ID
header dispatch scheme .
[0070] Based on the algorithm 300 , this dispatch scheme
is operable to reduce a probability of load imbalance due to
pathological patterns in a set of input data . The algorithm
300 can be used to generate the example sequence 410 for
selecting channel controllers 202. Each number in the
sequence indicates a channel controller to be selected . In
some implementations , the sequence 410 can initially iterate
through each channel controller in a set (e.g. , 0 through 15)
based on an initial unmodified round - robin flow .
[0071] After an initial iteration in which each channel
controller is selected , the round - robin flow can be modified

US 2022/0121918 A1 Apr. 21 , 2022
7

a

to select channel controller CC1 rather than beginning again
with selection of channel controller CCO . Likewise , after a
second iteration in which each channel controller is selected ,
the round - robin flow can be modified to select channel
controller CC2 rather than beginning again with selection of
channel controller CC1 . This modified selection scheme
provides an example of how each channel controller in a set
can be selected by the control unit 114 to allow for equal , or
substantially equal , distribution of addresses among the set .
In some implementations , the system 100 monitors data
access patterns for each channel controller and dynamically
adjusts or modifies the dispatch schemes based on the
observed patterns .
[0072] The control unit 114 uses the modified dispatch
schemes to generate a set of channel numbers for a set of
channel controllers 202. The generated set of channel num
bers are processed at the control unit 114 to forward ID
headers to corresponding channel controllers 204. In some
implementations , the control unit 114 forwards the ID head
ers to corresponding channel controllers 204 based on the
example sequence 410 , which is derived from the modified
dispatch scheme . To ensure sufficient load - balancing of
processing workloads for ID headers across the channel
controllers 202 , the algorithm 300 causes the control unit
114 to implement certain properties for selection of the
channel numbers . In some implementations , algorithm 300
is used for channel selection based on the example steps of
the pseudo - code shown at FIG . 3 .
[0073] For example , the channel selection properties
requires that generation of the channel numbers be fair and
non - bursty . The “ fair ” property for generating the channel
numbers causes (or requires) all channel controllers to be
selected equally or substantially equally for a given
machine - learning task . The " non - bursty " property for gen
erating the channel numbers causes (or requires) the channel
controllers to be selected without intermittent increases in
repeated selection of a particular channel controller for a
given machine - learning task . For example , a channel num
ber sequence of “ 0 , 1 , 0 , 1 , 4 , 5 , 0 , ... is not a desirable
pattern and would not satisfy the “ non - bursty ” property for
generating the channel numbers .
[0074] An example set of metrics can used to determine
whether each of the above properties (e.g. , fair and non
bursty) are satisfied . The metrics include determining a
count , a mean (average) , and a median with respect to the
number of times a channel number appears for selection . For
the “ count ” metric , the system 100 is operable to determine
a count of the number of times a channel or channel number
is included per processing iteration . The number of times
should be the same for all the channels 202 or channel
controllers 202. If the system 100 determines that the
number of times is not the same , the system 100 can detect
that a particular pattern of channel controller selection is
biased and not load balanced for a given set of operations .
[0075] For the “ mean ” metric , the system 100 is operable
to determine , for each channel number , whether the number
of times a channel number appears for selection converges
to N after a threshold number of iterations , where N is an
integer greater than or equal to one . For example , if the
system 100 includes 16 channel controllers , then the system
100 is operable to determine , for each channel number ,
whether the number of times a channel number appears for
selection converges to 16 after a threshold number of
iterations or ID headers . In some implementations , the

threshold number of iterations varies based on the size and
complexity of the data being retrieved and operated on .
[0076] The “ median ” metric indicates a burstiness of a
particular channel controller . For example , if the system 100
determines that a channel controller 204 - n has a low median
selection value then it will receive more ID headers in a
burst relative to other channel controllers , which can indi
cate an imbalance . The table 400 includes sample metric
values for each channel number for an example processing
iteration that was run for a threshold 2048 ID headers . As
noted earlier , the system 100 can monitor data access
patterns for each channel controller , relative to the metrics
and properties discussed above , and dynamically adjust or
modify the dispatch / control schemes based on the observed
patterns . For example , the control unit 114 can periodically
adjust the value of the increment parameter to increase (or
decrease) an increment of the channel count based on the
data access patterns .
[0077] FIG . 5 is a block diagram of an architecture 500 of
the system 100 and includes examples of a shared scratch
pad memory 506 (“ shared memory 506 ”) and one or more
shared buffers 508 of the shared memory 506. The shared
memory 506 is a software managed memory unit that is
globally shared across all memory channels 204 of the
system 100. More specifically , each channel controller 202
is configured to share the scratchpad buffer space of shared
memory 506 represented by shared buffers 508 .
[0078] In the example of FIG . 5 , the shared buffers 508
include respective memory banks , such as memory banks
510-0 , 510-3 , and 510 - n . Each memory bank 510 can be
configured as a circular buffer and the architecture 500 can
include N circular buffers , where N is an integer greater than
or equal to one . Hence , each bank 508 may be referred to
alternatively as a circular buffer 508. Each circular buffer
508 is used with an allocation scheme that does not depend
on a size and / or order of data that is written to the buffer . For
example , prior approaches that depend on the size / order of
data flow to this shared space to allocate buffer space to
channel controllers 202 can result in wasteful over allocation
of buffer space when large portions of allocated space are
unused by the channel controller to which the space is
assigned .
[0079] This wasteful over allocation creates a memory
imbalance issue at system 100. In the example of FIG . 5 , the
order and size of data flow to buffer 510 - n (e.g. , for a certain
channel controller 202) triggers a large buffer space alloca
tion requirement relative to other buffers 510 , such as buffers
corresponding to bank 1 and bank 2. In prior approaches , the
buffer space allocated at buffer 510 - n would drive the size
allocations for other individual buffers 510 and trigger an
imbalance that results in over allocation . The substantially
uneven buffer usage shown at FIG . 5 can also limit the batch
sizes that can be processed for a given workload .
[0080] FIG . 6 is a block diagram of an architecture 600 of
the system 100. The architecture 600 includes examples of
a processor core 602 , a vector processing unit 604 (“ VPU
604 ”) , and components of a respective channel controller
202. One or more of the components of the channel con
troller 202 can be used to allocate resources of shared
memory buffers 508. The components of the channel con
trollers 202 include an address handler unit 606 , a shared
on - chip interconnect 608 (“ shared interconnect 608 ”) , and a
circular buffer unit 610 .

29

a

a

a

a

US 2022/0121918 A1 Apr. 21 , 2022
8

[0081] The components of the channel controller 202 can
represent an example processing pipeline of the channel
controller 202. The address handler unit 606 generates a
“ deallocate ” signal whenever channel ID data processing is
completed . The channel ID data corresponds to a descriptor
generated control unit 114 for processing by a channel
controller 202 and is described below . The address handler
unit 606 can correspond to the VPU 604 can be used to
perform arithmetic and computational operations generally
associated with an example vector processor . In some imple
mentations , the processing pipeline of a channel controller
202 is used to perform backward pass and forward pass
operations with respect to an embedding layer of a neural
network . The deallocate signal as well as backward pass and
forward pass operations are described below .
[0082] The shared interconnect 608 is a crossbar device
that is operable to allow any channel controller 202 to
communicate with any one of the memory channels 204 on
a chip or hardware circuit of system 100. For example ,
shared interconnect 608 can represent an on - chip intercon
nect (OCI) interface . As indicated above , the shared inter
connect 608 can be referred to alternatively as an OCI
interface , a channel controller interface , or a crossbar . In
some implementations , the channel controllers 202 are con
nected to example HBM channels of memory 105 through
this OCI interface . The OCI interface allows any channel
controller 202 to talk to any HBM channel within a special
purpose chip , hardware circuit , or hardware accelerator . In
some examples , the shared interconnect 608 allows each of
the channel controllers 202 to read data from , and write data
to , any address location for any channel in memory 105. The
shared interconnect 608 provides a type of load balancing
that allows the system 100 to allocate requests to individual
channel controllers 202 for processing across all memory
channels 204 .
[0083] The circular buffer unit 610 is responsible for
managing each allocated buffer 510. The circular buffer unit
610 is configured to keep track of a head , tail , and the empty
status of the buffer 510 (e.g. , a circular buffer) . In some
implementations , an execution thread of a channel controller
202 can be stalled if the circular buffer unit 610 determines
that a shared circular buffer 510 that was assigned to a
selected channel controller 202 does not have enough space
to store data corresponding to a request to be processed
using the channel controller 202 .
[0084] As described above , each of the control units 114
that are coupled to a processor / core 602 of the multi - core
processing unit 104 receives a set of ID headers from a
source . Each of these control units 114 is operable to
perform operations related to parsing ID headers received
from the host 102 or from other processor cores in the
system 100. For example , during a forward pass operation
for an embedding layer of a neural network , the control unit ?
114 can parse the ID headers received from other processor
cores (or from the host 102) and dispatch the ID headers
belonging to a same sample and feature to one of the channel
controllers 202. In some implementations , each control unit
114 is operable to generate and dispatch a descriptor (“ a
request) corresponding to an ID header . The request
includes addressing and buffer information to be processed
by a channel controller to retrieve a sample and feature value
from locations of a channel in memory 105 .
[0085] During an example backward pass operation for the
embedding layer , the control unit 114 can parse a tuple of

{ Addresses , Gradient Vectors } received from other proces
sor cores (or from the host 102) . The system 100 can
perform this function to update embedding vectors with a
corresponding gradient vector . The control unit 114 dis
patches the addresses to any one of the channel controllers
202. For example , the control unit 114 can dispatch , to
channel controller 202-2 , an address for an embedding
vector stored at a location of memory channel 204-0 . The
control unit 114 can dispatch the address after copying the
corresponding gradient vector into a bank (or buffer) of the
shared memory 506 that is mapped to the selected channel
controller 202-2 . In some implementations , the system 100
causes the buffer address of the gradient vector to be stored
in the address for the embedding vector before the address
for the embedding vector is forwarded to the selected
channel controller .
[0086] Referring again to FIG . 6 , as discussed above the
amount of buffer space for shared memory 506 that is used
by each channel controller 202 can be very different and can
lead to underutilization of the scratchpad memory buffers
508. The underutilization results in lower batch sizes that
can be processed for a given workload , leading to degraded
or lower performance at system 100. To resolve the memory
imbalance and improve the efficiency and utilization of the
shared buffers , the system 100 is configured to allocate space
in the circular buffers 510 based at least on a latency of the
memory accesses observed in an example processing pipe
line of each channel controller .
[0087] In other words , the memory imbalance issue can be
solved by implementing one or more software - configured ,
hardware - managed circular buffers 510 in the scratchpad
memory 506. A sizing of the circular buffers 510 is inde
pendent of the number of addresses that are processed by a
selected channel controller 202. Instead , the sizing of the
circular buffers 510 is a function of overall latency of the
compute pipeline .
[0088] FIG . 7 is a block diagram of an example circular
buffer architecture 700 , including status information of an
individual buffer . Each of the selected channel controllers
202 , including its circular buffer unit 610 , is operable to
determine an allocation of shared resources in the shared
memory 506. The selected channel controller 202 performs
example neural network computations based on the deter
mined allocation of shared resources . The shared resource
can be a memory bank / buffer 704 of shared memory 506 that
is configured as a circular buffer of the shared memory and
that communicates with an example vector processor of
processor 604 .
[0089] The circular buffer unit 610 can determine an
allocation of shared resources in the shared memory 506 by
determining an amount of scratchpad buffer space to be used
by the selected channel controller 202 and a VPU 604 of a
processor 602 that performs a portion of the neural network
computations . For example , the allocation of shared
resources is determined based on latency of memory
accesses observed in an example processing pipeline of each
channel controller 202. Based on the determined allocation ,
a set of gradient vectors may be copied into an allocated
space of buffer / bank 704 and operated on using the VPU
604 , or the address handler unit 606 described above . In
some implementations , the shared buffer space may be a
recently deallocated entry in a buffer / bank 704 of shared
memory 506 .

US 2022/0121918 A1 Apr. 21 , 2022
9

[0090] In example dispatch thread executed by the control
unit 114 , the control unit 114 selects a channel controller 202
to receive channel ID data and uses allocated circular buffer
space to store activation gradients in the memory bank 704
assigned to the selected channel controller 202. If the
selected channel controller 202 does not have enough space
in the circular buffer / bank 704 the control unit 114 can stall
the dispatch thread until a sufficient amount of space can be
allocated for the selected channel controller 202 .
[0091] A " deallocate ” signal 707 is generated and sent to
control unit 114 during a backward pass operation for
activation gradients and to an example fetch ID unit 702
during a forward pass operation for parameters . The deal
locate signal 707 is generated by a flush ID unit 706 of the
address handler unit 606 whenever channel ID data process
ing is completed for a given dispatch thread . In general , the
deallocate signal 707 is used to deallocate a portion of buffer
memory 704 that was previously used by a channel control
ler 202 (or VPU 604) to operate on a piece of data when the
data for the operation is flushed from an entry in the buffer
704. For example , the deallocate signal 707 can be generated
and sent to the control unit 114 or fetch ID unit 702 to
indicate that a portion of data (e.g. , activation gradients or
parameters) has been flushed from a circular buffer 704 .
[0092] Each channel controller 202 stores its intermediate
values in the software defined circular buffers 704 in the
shared memory 506. A set of instructions , such as finite state
machine (FSM) instructions , can be used to define a buffer_
offset and a buffer_size for the circular buffers 704 used
during their execution . For example , if a buffer 704 is
partially filled , and additional allocation is requested , but
that allocation would go beyond the end of the buffer region ,
a new allocation is generated starting at the buffer_offset .
This new allocation leaves a hole behind at the end of the
buffer region .
[0093] As an example , if a length - 20 buffer was in a state
where 10 units were allocated , with a tail pointer at position_
7 , and a head pointer at position_16 (710) , and an additional
allocation request attempts to allocate a length - 5 space , that
space would be allocated as shown at feature 710 ' in the
example of FIG . 7. To ensure the holes are deallocated
properly , the allocation shown at feature 710 ' should be
recorded as a length - 8 allocation . In the example of FIG . 7 ,
a map 715 is shown for clarity , but is not included in the
system 100. For example , the map 715 indicates that
represents a free space in the buffer that used for an
allocation request , represents an occupied space in the
buffer , and “ * ” represents the holes .
[0094] FIG . 8 is a flow diagram of an example process 800
that is used to load balance requests handled by a set of
memory channel controllers . Process 800 can be imple
mented or executed using the system 100 described above .
Descriptions of process 800 may reference the above - men
tioned computing resources of system 100. In some imple
mentations , steps or actions of process 800 are enabled by
programmed firmware or software instructions , which are
executable by one or more processors of the devices and
resources described in this document . In some implementa
tions , the steps of process 500 correspond to a method for
performing computations to generate an output for a neural
network layer using a hardware circuit configured to imple
ment the neural network .
[0095] Referring now to process 800 a component of
system 100 receives requests to obtain data from a memory

that includes memory locations , where each memory loca
tion is identified by a respective address (802) . For example ,
the data may be data for neural network layer that is stored
across HBM channels of memory 105. In some implemen
tations , the data is a vector of numerical values for an
example neural network layer . An embedding layer can be
represented by a trainable lookup table that maps features in
a large feature space , e.g. , words in an online Ad , to vectors
of numbers . For example , the neural network layer is an
embedding layer that is represented by a trainable lookup
table that maps each feature in the set of features to a
respective vector of numbers .
[0096] For each request to obtain the data from the
memory , a channel controller is selected to receive the
request (804) . For example , the control unit 114 selects a
particular channel controller 202 to receive the request ,
where each channel controller 202 that is selected by the
control unit 114 is configured to access any memory location
of any channel 204 of the memory 105. In some implemen
tations , each channel controller 202 is connected to example
HBM channels of memory 105 through can OCI interface ,
which is configured to allow any of the channel controllers
202 to perform compute on an embedding vector stored
anywhere in an HBM channel 204 of the memory 105 .
[0097] For each request to obtain the data from the
memory , the request is provided to be processed by the
channel controller 202 selected to receive the request (806) .
For example , the request can correspond to an ID header
received at the control unit 114. The control unit 114
generates a descriptor in response to parsing memory loca
tion addresses and buffer information from the ID header
and provides the request as a descriptor to be processed by
the selected channel controller 202. For each request to
obtain the data from the memory , the channel controller
obtains the data from the system memory in response to
processing the request using the control unit 114 as well as
the channel controller 202 selected to receive the request
(808) .
[0098] The channel controllers 202 perform neural net
work computations using the data obtained from memory
105 and resources of buffer 510 that are allocated from a
shared memory 506 of the hardware circuit (810) . For cases
such as words in an Ad , there may be several vectors to be
looked up or retrieved from memory 105 that are then added
together or perhaps multiplied by a set of weights (param
eters) first . The addition and multiplication operations can
represent a portion of the neural network computations that
are performed using the obtained data and buffer 510 .
[0099] In some cases , efficient implementation embed
dings of an embedding table requires that system 100 be able
to quickly look up a large number of vectors randomly from
a large space in memory 105. Using the techniques
described in this document , the embedding table can be
sharded in any manner , for example , in any row and column
dimension and stored in any channel of memory 105 yet still
be accessible by any processor 602 among multiple proces
sors 602 and channel controllers 202 that form the multi
core processing unit 104 .
[0100] Embodiments of the subject matter and the func
tional operations described in this specification can be
implemented in digital electronic circuitry , in tangibly
embodied computer software or firmware , in computer hard
ware , including the structures disclosed in this specification
and their structural equivalents , or in combinations of one or

a

29

a

US 2022/0121918 A1 Apr. 21 , 2022
10

more of them . Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs , i.e. , one or more modules of computer
program instructions encoded on a tangible non transitory
program carrier for execution by , or to control the operation
of , data processing apparatus .
[0101] Alternatively or in addition , the program instruc
tions can be encoded on an artificially generated propagated
signal , e.g. , a machine - generated electrical , optical , or elec
tromagnetic signal , that is generated to encode information
for transmission to suitable receiver apparatus for execution
by a data processing apparatus . The computer storage
medium can be a machine - readable storage device , a
machine - readable storage substrate , a random or serial
access memory device , or a combination of one or more of
them .
[0102] The term “ computing system ” encompasses all
kinds of apparatus , devices , and machines for processing
data , including by way of example a programmable proces
sor , a computer , or multiple processors or computers . The
apparatus can include special purpose logic circuitry , e.g. , an
FPGA (field programmable gate array) or an ASIC (appli
cation specific integrated circuit) . The apparatus can also
include , in addition to hardware , code that creates an execu
tion environment for the computer program in question , e.g. ,
code that constitutes processor firmware , a protocol stack , a
database management system , an operating system , or a
combination of one or more of them .
[0103] A computer program (which may also be referred
to or described as a program , software , a software applica
tion , a module , a software module , a script , or code) can be
written in any form of programming language , including
compiled or interpreted languages , or declarative or proce
dural languages , and it can be deployed in any form ,
including as a stand - alone program or as a module , compo
nent , subroutine , or other unit suitable for use in a computing
environment .
[0104] A computer program may , but need not , correspond
to a file in a file system . A program can be stored in a portion
of a file that holds other programs or data , e.g. , one or more
scripts stored in a markup language document , in a single
file dedicated to the program in question , or in multiple
coordinated files , e.g. , files that store one or more modules ,
sub programs , or portions of code . A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net
work .
[0105] The processes and logic flows described in this
specification can be performed by one or more program
mable computers executing one or more computer programs
to perform functions by operating on input data and gener
ating output . The processes and logic flows can also be
performed by , and apparatus can also be implemented as ,
special purpose logic circuitry , e.g. , an FPGA (field pro
grammable gate array) , an ASIC (application specific inte
grated circuit) , or a GPGPU (General purpose graphics
processing unit) .
[0106] Computers suitable for the execution of a computer
program include , by way of example , can be based on
general or special purpose microprocessors or both , or any
other kind of central processing unit . Generally , a central
processing unit will receive instructions and data from a read
only memory or a random access memory or both . Some

elements of a computer are a central processing unit for
performing or executing instructions and one or more
memory devices for storing instructions and data . Generally ,
a computer will also include , or be operatively coupled to
receive data from or transfer data to , or both , one or more
mass storage devices for storing data , e.g. , magnetic , mag
neto optical disks , or optical disks . However , a computer
need not have such devices . Moreover , a computer can be
embedded in another device , e.g. , a mobile telephone , a
personal digital assistant (PDA) , a mobile audio or video
player , a game console , a Global Positioning System (GPS)
receiver , or a portable storage device , e.g. , a universal serial
bus (USB) flash drive , to name just a few .
[0107] Computer readable media suitable for storing com
puter program instructions and data include all forms of
nonvolatile memory , media and memory devices , including
by way of example semiconductor memory devices , e.g. ,
EPROM , EEPROM , and flash memory devices ; magnetic
disks , e.g. , internal hard disks or removable disks ; magneto
optical disks ; and CD ROM and DVD - ROM disks . The
processor and the memory can be supplemented by , or
incorporated in , special purpose logic circuitry .
[0108] To provide for interaction with a user , embodi
ments of the subject matter described in this specification
can be implemented on a computer having a display device ,
e.g. , LCD (liquid crystal display) monitor , for displaying
information to the user and a keyboard and a pointing
device , e.g. , a mouse or a trackball , by which the user can
provide input to the computer . Other kinds of devices can be
used to provide for interaction with a user as well ; for
example , feedback provided to the user can be any form of
sensory feedback , e.g. , visual feedback , auditory feedback ,
or tactile feedback ; and input from the user can be received
in any form , including acoustic , speech , or tactile input . In
addition , a computer can interact with a user by sending
documents to and receiving documents from a device that is
used by the user ; for example , by sending web pages to a
web browser on a user's client device in response to requests
received from the web browser .
[0109] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back end component , e.g. , as a data server , or
that includes a middleware component , e.g. , an application
server , or that includes a front end component , e.g. , a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification , or any
combination of one or more such back end , middleware , or
front end components . The components of the system can be
interconnected by any form or medium of digital data
communication , e.g. , a communication network . Examples
of communication networks include a local area network
(“ LAN ”) and a wide area network (“ WAN ”) , e.g. , the
Internet .
[0110] The computing system can include clients and
servers . A client and server are generally remote from each
other and typically interact through a communication net
work . The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client - server relationship to each other .
[0111] While this specification contains many specific
implementation details , these should not be construed as
limitations on the scope of any invention or of what may be
claimed , but rather as descriptions of features that may be

a

a

a

US 2022/0121918 A1 Apr. 21 , 2022
11

a

a

a

specific to particular embodiments of particular inventions .
Certain features that are described in this specification in the
context of separate embodiments can also be implemented in
combination in a single embodiment . Conversely , various
features that are described in the context of a single embodi
ment can also be implemented in multiple embodiments
separately or in any suitable subcombination . Moreover ,
although features may be described above as acting in
certain combinations and even initially claimed as such , one
or more features from a claimed combination can in some
cases be excised from the combination , and the claimed
combination may be directed to a subcombination or varia
tion of a subcombination .
[0112] Similarly , while operations are depicted in the
drawings in a particular order , this should not be understood
as requiring that such operations be performed in the par
ticular order shown or in sequential order , or that all illus
trated operations be performed , to achieve desirable results .
In certain circumstances , multitasking and parallel process
ing may be advantageous . Moreover , the separation of
various system modules and components in the embodi
ments described above should not be understood as requir
ing such separation in all embodiments , and it should be
understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod
ucts .
[0113] Particular embodiments of the subject matter have
been described . Other embodiments are within the scope of
the following claims . For example , the actions recited in the
claims can be performed in a different order and still achieve
desirable results . As one example , the processes depicted in
the accompanying figures do not necessarily require the
particular order shown , or sequential order , to achieve
desirable results . In certain implementations , multitasking
and parallel processing may be advantageous .
What is claimed is :
1. (canceled)
2. A method for performing neural network computations

using a system configured to implement a neural network on
a hardware circuit , the method comprising :

receiving a request to obtain data for performing neural
network computations from a memory comprising one
or more memory channels , each memory channel com
prising one or more memory locations , wherein the
data is distributed across the one or more memory
locations of the one or more memory channels ;

determining a channel controller to fetch at least a portion
of the data associated with the request , wherein the
channel controller is gured to access : i) each
memory channel of the one or more memory channels
and ii) each memory location of the one or more
memory locations that is included in each memory
channel of the one or more memory channels ;

processing the request , using the channel controller , by
accessing the one or more memory locations for a
memory channel of the one or more memory channels
to obtain the data associated with the request for
performing neural network computations ; and

obtaining at least the portion of the data , by the channel
controller , from the memory in response to processing
the request ; and

performing the neural network computations using at least
the portion of the data obtained from memory and

resources allocated from a shared memory of the hard
ware circuit , wherein the resources allocated from the
shared memory comprises one or more circular buffers
each having a buffer size determined based at least on
an observed latency of the memory access for the
channel controller .

3. The method of claim 2 , wherein the channel controller
comprises a circular buffer unit configured to manage each
of the one or more circular buffers , wherein the circular
buffer unit is configured to determine whether one of the one
or more circular buffers has enough space to store a portion
of the data associated with the request to be processed by a
corresponding channel controller .

4. The method of claim 3 , wherein the one or more
circular buffers each comprises a buffer offset , wherein the
circular buffer unit is further configured to :

in response to determining that a circular buffer of the one
or more circular buffers does not have enough space to
store the portion of the data , allocate the portion of the
data to another circular buffer of the one or more
circular buffers located from the circular buffer by at
least the buffer offset .

5. The method of claim 2 , wherein the data comprises a
respective vector of numbers mapped to , by an embedding
neural network layer of the neural network , a respective
vocabulary feature in a set of vocabulary features .

6. The method of claim 2 , wherein the channel controller
is determined based on a dispatch algorithm , wherein the
dispatch algorithm is configured to distribute respective
addresses of memory locations to a plurality of channel
controllers and periodically adjust a value of an increment
parameter in the dispatch algorithm to bypass a selection of
a particular channel controller .

7. The method of claim 6 , further comprising :
receiving one or more requests to obtain different inputs

from the memory , each request of the one or more
requests specifying an address for a memory location
that stores a corresponding input ;

determining , based on the dispatch algorithm , an alloca
tion of addresses corresponding to each of the one or
more requests ; and

distributing the one or more requests to the plurality of
channel controllers based on the determined allocation
of addresses .

8. The method of claim 3 , wherein the system comprises
a shared on - chip interconnect that is configured to allow the
channel controller to access memory locations allocated to
any memory channel of the one or more memory channels
in the memory , wherein the shared on - chip interconnect
comprises an on - chip interconnect interface , a channel con
troller interface , and a crossbar device .

9. The method of claim 2 , wherein performing the neural
network computations comprises :

determining an allocation of shared resources in the
shared memory ; and

performing the neural network computations based on the
determined allocation of shared resources , wherein the
allocation of shared resources comprises allocating an
amount of scratchpad memory and a vector processing
unit for performing the neural network computations .

US 2022/0121918 A1 Apr. 21 , 2022
12

10. A system configured to implement a neural network on
a hardware circuit to perform neural network computations ,
the system comprising :

one or more processing devices ; and
one or more non - transitory machine - readable storage

devices for storing instructions that are executable by
the one or more processing devices to cause perfor
mance of operations comprising :

receiving a request to obtain data for performing neural
network computations from a memory comprising one
or more memory channels , each memory channel com
prising one or more memory locations , wherein the
data is distributed across the one or more memory
locations of the one or more memory channels ;

determining a channel controller to fetch at least a portion
of the data associated with the request , wherein the
channel controller is configured to access : i) each
memory channel of the one or more memory channels
and ii) each memory location of the one or more
memory locations that is included in each memory
channel of the one or more memory channels ;

processing the request , using the channel controller , by
accessing the one or more memory locations for a
memory channel of the one or more memory channels
to obtain the data associated with the request for
performing neural network computations ; and

obtaining at least the portion of the data , by the channel
controller , from the memory in response to processing
the request ; and

performing the neural network computations using at least
the portion of the data obtained from memory and
resources allocated from a shared memory of the hard
ware circuit , wherein the resources allocated from the
shared memory comprises one or more circular buffers
each having a buffer size determined based at least on
an observed latency of the memory access for the
channel controller .

11. The system of claim 10 , wherein the channel control
ler comprises a circular buffer unit configured to manage
each of the one or more circular buffers , wherein the circular
buffer unit is configured to determine whether one of the one
or more circular buffers has enough space to store a portion
of the data associated with the request to be processed by a
corresponding channel controller .

12. The system of claim 11 , wherein the one or more
circular buffers each comprises a buffer offset , wherein the
circular buffer unit is further configured to :

in response to determining that a circular buffer of the one
or more circular buffers does not have enough space to
store the portion of the data , allocate the portion of the
data to another circular buffer of the one or more
circular buffers located from the circular buffer by at
least the buffer offset .

13. The system of claim 10 , wherein the data comprises
a respective vector of numbers mapped to , by an embedding
neural network layer of the neural network , a respective
vocabulary feature in a set of vocabulary features .

14. The system of claim 10 , wherein the channel control
ler is determined based on a dispatch algorithm , wherein the
dispatch algorithm is configured to distribute respective
addresses of memory locations to a plurality of channel
controllers and periodically adjust a value of an increment
parameter in the dispatch algorithm to bypass a selection of
a particular channel controller .

15. The system of claim 10 further comprises a shared
on - chip interconnect that is configured to allow the channel
controller to access memory locations allocated to any
memory channel of the one or more memory channels in the
memory , wherein the shared on - chip interconnect comprises
an on - chip interconnect interface , a channel controller inter
face , and a crossbar device .

16. One or more non - transitory machine - readable storage
devices for implementing a neural network implemented on
a hardware circuit using a system to perform neural network
computations and for storing instructions that are executable
by one or more processing devices to cause performance of
operations comprising :

receiving a request to obtain data for performing neural
network computations from a memory comprising one
or more memory channels , each memory channel com
prising one or more memory locations , wherein the
data is distributed across the one or more memory
locations of the one or more memory channels ;

determining a channel controller to fetch at least a portion
of the data associated with the request , wherein the
channel controller is configured to access : i) each
memory channel of the one or more memory channels
and ii) each memory location of the one or more
memory locations that is included in each memory
channel of the one or more memory channels ;

processing the request , using the channel controller , by
accessing the one or more memory locations for a
memory channel of the one or more memory channels
to obtain the data associated with the request for
performing neural network computations ; and

obtaining at least the portion of the data , by the channel
controller , from the memory in response to processing
the request ; and

performing the neural network computations using at least
the portion of the data obtained from memory and
resources allocated from a shared memory of the hard
ware circuit , wherein the resources allocated from the
shared memory comprises one or more circular buffers
each having a buffer size determined based at least on
an observed latency of the memory access for the
channel controller .

17. The one or more non - transitory machine - readable
storage devices of claim 16 , wherein the channel controller
comprises a circular buffer unit configured to manage each
of the one or more circular buffers , wherein the circular
buffer unit is configured to determine whether one of the one
or more circular buffers has enough space to store a portion
of the data associated with the request to be processed by a
corresponding channel controller .

18. The one or more non - transitory machine - readable
storage devices of claim 17 , wherein the one or more
circular buffers each comprises a buffer offset , wherein the
circular buffer unit is further configured to :

in response to determining that a circular buffer of the one
or more circular buffers does not have enough space to
store the portion of the data , allocate the portion of the
data to another circular buffer of the one or more
circular buffers located from the circular buffer by at
least the buffer offset .

19. The one or more non - transitory machine - readable
storage devices of claim 16 , wherein the data comprises a
respective vector of numbers mapped to , by an embedding

a

2

a

US 2022/0121918 A1 Apr. 21 , 2022
13

neural network layer of the neural network , a respective
vocabulary feature in a set of vocabulary features .

20. The one or more non - transitory machine - readable
storage devices of claim 16 , wherein the channel controller
is determined based on a dispatch algorithm , wherein the
dispatch algorithm is configured to distribute respective
addresses of memory locations to a plurality of channel
controllers and periodically adjust a value of an increment
parameter in the dispatch algorithm to bypass a selection of
a particular channel controller .

21. The one or more non - transitory machine - readable
storage devices of claim 16 , wherein the system comprises
a shared on - chip interconnect that is configured to allow the
channel controller to access memory locations allocated to
any memory channel of the one or more memory channels
in the memory , wherein the shared on - chip interconnect
comprises an on - chip interconnect interface , a channel con
troller interface , and a crossbar device . a

