wO 2007/002494 A2 |10 0 0O 000 00 R 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

‘ﬂ[l A0 00O 0

(10) International Publication Number

WO 2007/002494 A2

(51) International Patent Classification:
GOG6T 15/40 (2006.01)

(21) International Application Number:
PCT/US2006/024631

(22) International Filing Date: 23 June 2006 (23.06.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/693,231 23 June 2005 (23.06.2005) US

(71) Applicant (for all designated States except US): MEN-
TAL IMAGES, INC. [US/US]; One Embarcadero Center,
Suite 500, San Francisco, CA 94111 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): KELLER, Alexan-
der [DE/DE]; Kleinknechtweg 30, 89075 Ulm (DE).

(74)

(81)

(34)

WAECHTER, Carsten [DE/DE]; Fasanenstrasse 81,
10623 Berlin (DE).

Agent: JACOBS, David; JACOBS & KIM LLP, 1050
Winter Street, Suite 1000, #1082, Waltham, MA 02451
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: REAL-TIME PRECISION RAY TRACING

Storage
112

Storage
112

Slorage
112

100

J

Server
110

Internet / Other Network 108

Computer

103

(57) Abstract: Systems and techniques are described for
ray tracing and for the efficient construction of acceleration
data structures required for fast ray tracing. A computer
graphics system generates, for each pixel in an image,
a pixel value that is representative of a point in a scene
as recorded on an image plane of a simulated camera.
The computer graphics system is configured to generate
the pixel value for an image using a selected ray-tracing
methodology. The selected ray-tracing methodology
includes the use of a ray tree that includes at least one
ray shot from the pixel into a scene along a selected
direction. The ray-tracing methodology further includes
calculating the intersections of rays and surfaces in the
scene. An axis-aligned bounding box is defined that
contains, for a given ray, the point of intersection of the
ray and surface nearest the origin of the ray. The bounding
box is iteratively refined until a predetermined termination
criterion has been met.

WO 2007/002494 A2 |00 0T 0000 00 0 0 O

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, For two-letter codes and other abbreviations, refer to the "Guid-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, ance Notes on Codes and Abbreviations" appearing at the begin-
RO, SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, ning of each regular issue of the PCT Gazette.
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

10

15

20

25

WO 2007/002494 PCT/US2006/024631

Cust. No. 45464 MENT-101-PCT
REAL-TIME PRECISION RAY TRACING
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of United States Provisional Patent
Application Serial No. 60/693,231, filed on June 23, 2005, which is hereby incorporated

by reference in its entirety.

REFERENCE TO COMPUTER PROGRAM APPENDIX

Submitted herewith is a source code listing, which is incorporated herein in its

entirety. The source code listing is referred to herein as the “Appendix,” and is organized

into sections identified by a three-digit reference number in the format “1.1.1.”

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to methods and systems for image
rendering in and by digital computing systems, such as for motion pictures and other
applications, and in particular, relates to methods, systems, devices, and computer

software for real-time, precision ray tracing.

Pescription of Prior Art

The term “ray tracing” describes a technique for synthesizing photorealistic
Vimages by identifying all light paths that connect light sources with cameras and
summing up these contributions.” The simulation traces rays along the line of sight to
determine visibility, and traces rays from the light sources in order to determine
illumination. _

Ray tracing has become mainstream in motion pictures and other applications.
However, current ray tracing techniques suffer from a number of known limitations and

weaknesses, including numerical problems, limited capabilities to process dynamic

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

scenes, slow setup of acceleration data structures, and large memory footprints. Thus,
current ray tracing techniques lack the capability to deal efficiently with fully animated
scenes, such as wind blowing through a forest or a person’s hair. Overcoming the
limitations of current ray tracing systems would also enable the rendering of, for example,
higher quality motion blur in movie productions.

Current attempts to improve the performance of ray tracing systems have fallen
short for a number of reasons. For example, current real-time ray tracing systems
generally use 3D-trees as their acceleration structure, which are based on axis-aligned
binary space partitions. Because the main focus of these systems is on rendering static
scenes, they typically fail to address the significant amount of setup time required to
construct the required data structures in connection with fully animated scenes. Along
these lines, one manufacturer has improved real-time ray tracing by building efficient
3D-trees and developing an algorithm able to shorten the time needed to traverse the tree.
However, it can be shown that the expected memory requirement for the system increases
quadratically with an increase in the number of objects to be ray-traced.

Another manufacturer has designed a ray tracing integrated circuit that uses
bounding volume hierarchies to improve system performance. However, it has been
found that the architecture’s performance breaks down if too many incoherent secondary
rays are fraced.

In addition, attempts have made to improve system performance by implementing
3D-tree traversal algorithms using field-programmable gate arrays (FPGAs). The main
increase in processing speed in these systems is obtained by tracing bundles of coherent
rays and exploiting the capability of FPGAs to perform rapid hardwired computations.
The construction of acceleration structures has not yet been implemented in hardware.

The FPGA implementations typically use floating point techniques at reduced precision.

SUMMARY OF THE INVENTION
Aspects of the present invention provide precise, high-performance techniques, as
well as methods, systems and computer software implementing such techniques, that
address the issues noted above, and that are also readily adaptable to current ray tracing

devices. The techniques described herein have a memory footprint that increases linearly

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

with an increase in the number of objects to be ray-traced. In an amortized analysis, the
described techniques outperform current real-time ray tracing techniques.

A first aspect of the present invention is directed to a technique for utilizing
bounding volume hierarchies in a manner highly adapted to real-time ray tracing.

Another aspect of the present invention addresses the issue of self-intersection in
ray tracing. A technique is described below wherein, after computing the intersection

- point of a ray and a surface, the computed point is used, along with the ray direction, to
re-compute the ray/surface intersection point, thereby providing an iteration that
increases precision. |

Another aspect of the present invention enables high performance 3D-tree
construction via optimizations in splitting plane selection, minimum storage construction,
and tree pruning via approximate left-balancing.

Another aspect of the invention involves the use of high-performance bounding
volume hierarchies wherein, instead of explicitly representing axis-aligned bounding
boxes, the system implicitly represents axis-aligned bounding boxes by a hierarchy of
intervals. In one implementation, given a list of objects and an axis-aligned bounding
box, the system determines L- and R-planes and partitions the set of objects accordingly.
Then the system processes the left and right objects recursively until some termination
criterion is met. Since the number of inner nodes is bounded, it is safe to rely on
termination when there is only one object remaining.

Another aspect of the inverntion involves efficiently determining a splitting plane
M via a 3D-tree construction technique described herein, and then partitioning the objects
such that the overlap of the resulting L- and R-planes of the new axis-aligned bounding

boxes is minimally overlapping the suggested splitting plane M.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic diagram of a conventional digital processing system in
which the present invention can be deployed.
FIG. 2 is a schematic diagram of a conventional personal computer, or like

computing apparatus, in which the present invention can be deployed.

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

FIG. 3 is a diagram illustrating an overall method in accordance with a first aspect
of the present invention.

FIG. 4 is diagram of a ray tracing procedure, illustrating the problem of
self-intersection. |

FIG. 5 shows a diagram, in elevation view, of a partitioned axis-aligned bounding
box that is used as an acceleration data structure in accordance with a further aspect of
the invention.

FIGS. 6-8 are a series of diagrams, in isometric view, of the axis-aligned
bounding box shown in FIG. 5, illustrating the partitioning of the bounding box with
L~ and R—planes.

FIGS. 9 and 10 are flowcharts of ray tracing methods according to further aspects

of the invention.

DETAILED DESCRIPTION

The present invention provides improved techniques for ray tracing, and for the

efficient construction of acceleration data structures required for fast ray tracing. The
following discussion describes methods, structures and systems in accordance with these
techniques.

It will be understood by those skilled in the art that the described methods and
systems can be implemented in software, hardware, or a combination of software and
hardware, using conventional computer apparatus such as a personal computer (PC) or
equivalent device operating in accordance with, or emulating, a conventional operating
system such as Microsoft Windows, Linux, or Unix, either in a standalone configuration
or across a network. The various processing means and computational means described
below and recited in the claims may thereforé be implemented in the software and/or
hardware elements of a properly configured digital processing device or network of
devices. Processing may be performed sequentially or in parallel, and may be
implemented using special purpose or reconfigurable hardware.

Methods, devices or software products in accordance with the invention can
Operate on any of a wide range of conventional computing devices and systems, such as

those depicted by way of exainple in FIG. 1 (e.g., network system 100), whether

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

standalone, networked, portable or fixed, including conventional PCs 102, laptops 104,
handheld or mobile computers 106, or across the Internet or other networks 108, which
may in turn include servers 110 and storage 112.

In line with conventional computer software and hardware practice, a software
application configured in accordance with the invention can operate within, e.g., a PC
102 like that shown in FIG. 2, in which program instructions can be read from a
CD-ROM 116, magnetic disk or other storage 120 and loaded into RAM 114 for
execution by CPU 118. Data can be input into the system via any known device or
means, including a conventional keyboard, scanner, mouse or other elements 103.

FIG. 3 is a diagram depicting an overall method 200 in accordance with an aspect
of the present invention. The method is practiced in the context of a computer graphics
system, in which a pixel value is generated for each pixel in an image. Each generated
pixel value is representative of a point in a scene as recorded on an image plane of a
simulated camera. The computer graphics system is configured to generate the pixel
value for an image using a selected ray-tracing methodology. The sé]ecfed ray-tracing
methodology includes the use of a ray tree that includes at least one ray shot from the
pixel into a scene along a selected direction, and further includes calculations of the
intersections of rays and objects (and/or surfaces of objects) in the scene.

In the FIG. 3 method 200, bounding volume hierarchies are used to calculate the
intersections of rays and surfaces in the scene. In step 201, a bounding box of a scene is
computed. In step 202, it is determined whether a predetermined termination criterion is
met. If not, then in step 203 the axis-aligned bounding box is refined. The process
continues recursively until the termination criterion is met. According to an aspect of the
invention, the termination criterion is defined as a condition at which the bounding box
coordinates differ only in one unit of resolution from a floating point representation of the
ray/surface intersection point. Howéver, the scope of the present invention extends to
other termination criteria.

The use of bounding volume hierarchies as an acceleration structure is
advantageous for a number of reasons. The memory requirements for bounding volume
hierarchies can be linearly bounded in the number of objects to be ray traced. Also, as

described below, bounding volume hierarchies can be constructed much more efficiently

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

than 3D-trees, which makes them very suitable for an amortized analysis, as required for
fully animated scenes.

The following discussion describes in greater detail certain issues in ray tracing
technology, and particular aspects of the invention that address those issues. FIG. 4 isa
diagram illustrating the “self-intersection” problem. FIG. 4 shows a ray tracing
procedure 300, including an image surface 302, an observation point 304, and a light
source 306. In order to synthesize an image of the surface, a series of computations are
performed in order to locate rays extending between the observation point 304 and the
surface 302. FIG. 4 shows one such ray 308. Ideal ly, there is then calculated the exact
point of intersection 310 between the ray 308 and the surface 302.

However, due to floating point arithmetic computations on computers, it is
sometimes possible for the calculated ray/surface intersection point 312 to be different
from the actual intersection point 310. Further, as illustrated in FIG. 4, it is possible for
the calculated point 312 to be located on the “wrong” side of the surface 302. In that case,
when computations are performed to locate a secondary ray 314 extending from the
calculated ray/surface intersection point 312 to the light source 306, these computations
indicate that the secondary ray 314 hits the surface 302 at a second intersection point 316
rather than extending directly to the light source 306, thus resulting in an imaging error.

One known solution to the self-intersection problem is to start each ray 308 at a

safe distance from the surface 302. This safe distance is typically expressed as a global

floating point e. However, the determination of the global floating point € depends

heavily on the scene, and the particular location within the scene itself, for which an
image is being synthesized.

An aspect of the invention provides a more precise alternative. After arriving at a
calculated ray/surface intersection point 312, the calculated point 312 and the direction of
the ray 308 are then used to re-compute an intersection point that is closer to the actual
intersection point 310. This re-computation of the intersection point is incorporated into
the ray tracing technique as an iteration that increases precision. If the iteratively
computed intersection point turns out to be on the “wrong” side of the surface 302, it is

moved to the “correct” side of the surface 302. The iteratively computed intersection

.10

15

20

25

30

WO 2007/002494

PCT/US2006/024631

point can be moved along the surface normal, or along the axis determined by the longest

component of the normal. Instead of using a global floating point €, the point is moved

by an integer ¢ to the last bits of the floating point mantissas.

The described procedure avoids computatians in double precision and has the
advantage that it implicitly adapts to the scale of the floating point number, which is

determined by its exponent. Thus, in this implementation, all secondary rays directly

start from these modified points making an e-offset unnecessary. During intersection

computation, it can therefore be assumed that the ray interval of validity to begin at 0
rather than some offset.

Modifying the integer representation of the mantissa also avoids numerical
problems when intersecting a triangle and a plane in order to decide which points are on
what side.

7 Exploiting the convex hull property of convex combinations, intersections of rays
and freeform surfaces can be found by refining an axis-aligned bounding box, which
contains the point of intersection nearest to the ray origin. This refinement can be
continued until the resolution of floating point numbers is reached, i.e., until the
bounding box coordinates differ only in one unit of resolution from the floating point
representation. The self-intersection problem then is avoided by selecting the bounding
box corner that is closest to the surface normal in the center of the bounding box. This
corner point then is used to start the secbndary ray. This “ray object intersection test” is
very efficient and benefits from the avoidance of the self-intersection problem.

After constructing the acceleration data structure, the triangles are transformed
in-place. The new representation encodes degenerate triangles so that the intersection
test can handle them without extra effort. It of course 1s also possible to just prevent
degenerate triangles to enter the graphics pipeline. Sections 2.2.1 and 2.2.2 of the
A;ﬁpendix set forth listings of source code in accordance with the present aspect of the
invention. .

The test first determines the intersection of the ray and the plane of the triangle
and then excludes intersections outside the valid interval]0, result.tfar] on the ray. This

is achieved by only one integer test. Note that the +0 is excluded from the valid interval.

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

This is important if denormalized floating point numbers are not supported. If this first
determination is successful, the test proceeds by computing the Barycentric coordinates
of the intersection. Note that again only an integer test, i.e., more specifically only
testing two bits, is required to perform the complete inclusion test. Thus the number of
branches is minimal. In order to enable this efficient test, the edges and the normal of the
triangle are scaled appropriately in the transformation step.

The precision of the test is sufficient to avoid wrong or missed ray intersections.
However, during traversal situations may occur in which it is appropriate to extend the
triangles for a robust intersection test. This can be done before transforming the tfiangles.
Since the triangles are projected along the axis identified by the longest component of
their normal, this projection case has to be stored. This is achieved by counters in the
leaf nodes of the acceleration data structure: The triangle references are sorted by the
projection case and a leaf contains a byte for the number of triangles in each class.

A further aspect of the present invention provides an improved approach for
constructing acceleration data structures for ray tracing. Compared with prior software
implementations that follow a number of different optimizations, the approach described
herein yields significantly flatter trees with superior ray tracing performance.

Candidates for splitting planes are given by the coordinates of the triangle vertices
inside the axis-aligned bounding box to be partitioned. Note that this includes vertices
that actually lie outside the bounding box, but have at least one coordinate that lies in one
of the three intervals defined by the bounding box. Out of these candidates, there is
selected the plane closest to middle of the longest side of the current axis-aligned
bounding box. A further optimization selects only coordinates of triangles whose longest

component of the surface normal matches the normal of the potential splitting plane.

"This procedure yields much flatter trees, since placing spli_fting planes through the

-'triangle vertices implicitly reduces the number of triangles split by splitting planes. In

addition, the surface is approximated tightly and empty space is maximized. If the

-number of triangles is higher than a specified threshold and there are no more candidates

for splitting planes, the box is split in the middle along its longest side. This avoids

inefficiencies of other approaches, including the use, for exarhple, of long diagonal

objects.

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

The recursive procedure of deciding which triangles belong to the left and right
child of a node in the hierarchy has typically required extensive bookkeeping and
memory allocation. There is a much simpler approach that only fails in exceptional cases.
Only two arrays of references to the objects to be ray traced are allocated. The first array
is initialized with the object references. During recursive space partition, a stack of the
elements on the left is grown from the beginning of the array, while the elements, which
are classified right, are kept on a stack growing from the end of the array towards the
middle. In order to be able to quickly restore the elements that are intersecting a split
plane, i.e., are both left and right, the second array keeps a stack of them. Thus
backtracking is efficient and simple.

Instead of pruning branches of the tree by using the surface area heuristic, tree
depth is pruned by approximately left-balancing the binary space partition starting from a
fixed depth. As observed by exhaustive experimentation, a global fixed depth parameter
can be specified across a vast variety of scenes. This can be understood by observing that
after a certain amount of binary space partitions usually there remain connected
components that are relatively flat in space. Section 2.3.1 of the Appendix sets forth a
listing of source code in accordance with this aspect of the invention.

Using bounding volume hierarchies, each object to be ray traced is referenced
exactly once. As a consequence, and in contrast with 3D-trees, no mailbox mechanisms
are required to prevent the multiple intersection of an object with a ray during the
traversal of the hierarchy. This is a significant advantage from the viewpoint of system
performance and makes implementations on a shared memory system much simpfer. A
second important consequence is that there cannot be more inner nodes in the tree of a
bounding volume hierarchy than the total number of objects to be ray-traced. Thus the
memory footprint of the acceleration data structure can be l_i'nearly bounded in the
number of objects before construction., Such an a priori bound is not available for the
construction of a 3D-tree, where the memory complexity is expected to increase
quadratically with the number of objects to be ray-traced. -

Thus, there is now described a new concept of bounding volume hierarchies that
are significantly faster than current 3D-tree ray tracing techhiques, and in which the

memory requirements grow linearly, rather than expected quadratically, with the number

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

of objects to be ray-traced. The core concept that allows bounding volume hierarchies to
outperform 3D-trees is to focus on how space can be partitioned, rather than focusing on
the bounding volumes themselves. . _

In a 3D-tree, a bounding box is partitioned by a single plane. According to the
present aspect of the invention, two parallel planes are used to define two axis-aligned
bounding boxes. FIG. 5 is a diagram illustrating the principal data structure 400.

FIG. 5 shows an axis-aligned bounding box 402, in elevation view. An L-plane
402 and an R-plane 404, which are axis-aligned and parallel with each other, are used to

pattition bounding box 402 into left and right axis-aligned bounding box. The left

bounding box extends from the left-wall 406 of the original bounding box 402 to the
'L-plane 402. The right bounding box extends from the R-plane 404 to the right wall 408

of the original bounding box 402. Thus, the left and right bounding boxes may overlap
each other. The traversal of ray 412 is determined by the positions of intersection with
the L- and R-planes 402 and 404 relative to the interval of validity [V, F] 412 of the ray”
410. '

In the FIG. 5 data structure 400, the L- and R-planes 402 and 404 are positioned
with respect to each other to partition the set of objects contained within the original
bounding box 402, rather than the space contained within the bounding box 402. In
contrast with a 3D-tree partition, having two planes offers the possibility of maximizing
the empty space between the two planes. Consequently the boundary of the scene can be
approximated much faster.

FIGS. 6-8 are a series of three-dimensional diagrams further illustrating data
structure 400. FIG. 6 shows a diagram of bounding box 402. For purposes of illustration,

virtual objects within bounding box 402 are depicted as abstract circles 416. As shown in

" FIGS. 7 and 8, L-plane 404 and R-plane 406 are then used to partition bounding box 402
* into a left bounding box 402a and a right bounding box 402b. The L- and R-planes are

selected such that the empty space between them is maximized. Each virtual object 416

- ends up in either the left bounding box 402a or the right bounding box 402b. As shown

at the bottom of FIG. 8, the virtual objects 416 are partitioned into “left” objects 416a and
“right” objects 416b. Each of the resulting bounding boxes 402a°and 402b are

themselves partitioned, and so on, until a termination criterion has been satisfied.

-10-

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

FIG. 9 is a flowchart of the described method 500. In step 501, a bounding box of
a scene is computed.‘ In step 502, parallel L- and R-planes are used to partition the
axis-aligned bounding box left and right axis-aligned bounding boxes, which may overlap.
In step 503, the left and right bounding boxes are used to partition the set of virtual
objects contained with the original axis-aligned bounding box into a set of left objects
and a set of right objects. In step 504, the left and right objects are process-ed recursively
until a termination criterion is met.

Instead of one split parameter, used in earlier implementations, two split
parameters are stored within a node. Since the number of nodes is linearly bounded by
the number of objects to be ray traced, an array of all nodes can be allocated once. Thus,
the costly memory management of 3D-trees during construction becomes unnecessary.

The construction technique is much simpler than the analog for 3D-tree
construction and is easily implemented in a recursive way, or by using an iterative
version and a stack. Given a list of objects and an axis-aligned bounding box, the L- and
R-planes are determined, and the set of objects is determined accordingly. The left and
right objects are then processed recursively until some termination criterion is met. Since
the number of inner nodes is bounded, it is safe to rely on termination when there is only
one object left.

It should be noted that the partition only relies oﬁ sorting objects along planes that
are perpendicular to the x-, y-, and z-axes, which is very efficient and numerically
absolutely stable. In contrast with 3D-trees, no exact intersections of objects with
splitting planes need to be computed, which is more costly and hard to achieve in a
numerically robust way. Numerical problems of 3D-trees, such as missed triangles at
vertices and along edges, can be avoided by extending the triangles before the
construction of the b_bunding volume hierarchy. Also, in a 3D-tree, overlapping objects
have to be sorted both into the left and right axis-aligned bounding boxes, theréby
causing an expected quadratic growth of the tree.

Various techniques may be used to determine the L- and R-planes, and thus the
actual tree layout. Returning to FIGS. 6-8, one technique is to determine a plane A/ 418
using the 3D-tree construction technique described above and partition the objects such

that the overlap of the resulting L-pléne and R-plane of the new axis-aligned bounding

-11-

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

boxes minimally overlaps the suggested splitting plane M 418. The resulting tree is very
similar to the corresponding 3D-tree, however, since the object sets are partitioned rather
than space, the resulting tree is much flatter. Another approach is to select the R-plane
and L-plane in such a way that the overlap of child boxes is minimal and the empty space
is maximized if possible. It should be noted that for some objects axis-aligned bounding
boxes are inefficient. An example of such a situation is a long cylinder with small radius
on the diagonal of an axis-aligned bounding box.

FIG. 10 is a flowchart of a method 600 according to this aspect of the invention.
In step 601, a bounding box of a scene is computed. In step 602, a 3D-tree construction
is executed to determine a splitting plane M. In step 603, parallel L- and R-planes are
used to partition the axis-aligned bounding box into left and right axis-aligned bounding
boxes that minimally overlap the splitting plane M. In step 604, the left and right
bounding boxes are used to partition the set of virtual objects contained within the
original axis-aligned bounding box into a set of left objects and a set of right objects. In
step 605, the left and right objects are processed recursively until a termination criterion
is met. It should be noted that the method 600 illustrated in FIG. 10, as well as the
method 200 illustrated in FIG. 3, may be combined with other techniques described
herein, including techniques relating to 3D-tree construction, real-time processing, bucket
sorting, self-intersection, and the like.

In the case of the 3D-tree, the spatial subdivision is continued so as to cut off the
empty portions of the space around the object. In the case of the described bounding’
volume hierarchy, partitioning such objects into smaller ones results in a similar behavior.
In order to maintain the predictability of the memory requirements, a maximum bounding
box size is defined. All objects with an extent that exceeds the maximum bounding box
size are split into smaller portions to meet the requirement. The maximum allowed si_'ze
can be found by scanning'ihe data set for the minimal extent among all objects.

The data structure described herein allows the transfer of the principles of fast
3D-tree traversal to bounding volume hierarchies. The cases of traversal are similar:-

(1) only the left child; (2) only the right child; (3) the left child and then the right child;
(4) the right child and then the left child; or (5) the ray is between split planes (i.e., empty

space). Since one node in the described technique is split by two parallel planes, the

-12 -

10

15

20

:25

30

WO 2007/002494 PCT/US2006/024631

order of how to traverse the boxes is determined by the ray direction. FIG. 6 sets forth a
source code listing incorporating the techniques described above.

Previous bounding volume hierarchy techniques could not efficiently determine
the order of how to traverse the child nodes or required additional effort, such as updating
a heap data structure. In addition a whole bounding volume had to be loaded and tested
against the ray, while the present approach only requires the two plane distances.
Checking the ray against the two planes in software séems to be more expensive,
however. The traversal is the bottle neck in 3D-trees, and doing some more computation
here better hides the latencies of memory access. In addition, the bounding volume
hierarchy trees tend to be much smaller than corresponding 3D-trees of same
performance.

Although there is herein described a new bounding volume hierarchy, there is a
strong link to traversing 3D-trees: Setting L = R, the classical binary space partition is
obtained, and the traversal algorithm collapses to the traversal algorithm for 3D-trees.

The described bounding volume hierarchy also can be applied to efficiently find
ray freeform surface intersections by subdividing the freeform surface. Doing so allows
the intersection of a freeform surface with a convex hull property and a subdivision
algorithm efficiently to be computed up to floating point precision, depending on the
actual floating point arithmetic. A subdivision step is performed, for example, for
polynomial surfaces, rational surfaces, and approximating subdivision surfaces. For each
axis in space the possibly overlapping bounding boxes are determined as discussed above.
In case of a binary subdivision, the intersection of the L-boxes and the intersection of the
R-boxes for new bounding boxes of the new meshes. Now the above-described traversal
can be efficiently performed, since the spatial order of the boxes is known. Instead of
pre-computing the hierarchy of bounding volumes, 1t can be computed on the fly. This
procedure is efficient for freeform surfaces and allows one to save the memory for the
acceleration data structure, which is replaced by a small stack <|)f the bounding volumes
that have to be traversed by backtracking. The subdivision is continued until the ray
surface intersection lies in 2 bounding volume that collapsed to a point in floating point
precision or an interval of a small size. Section 2.1.1 of the Appendix sets forth a code

listing in accordance with this aspect of the invention.

-13-

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

Using regular grids as an acceleration data structure in ray tracing is simple, but
efficiency suffers from a lack of spatial adaptivity and the subsequent traversal of many
empty grid cells. Hierarchical regular grids can improve on the situation, but still are
inferior as compared to bounding volume hierarchies and 3D-trees. However, regular
grids can be used to improve on the construction speed of acceleration data structures.
The technique for constructing the acceleration data structures are similar to quick sorting
and are expected to run in O(n log n). An improvement can be obtained by applying
bucket sorting, which runs in linear time. Therefore the axis-aligned bounding box of the
objects is partitioned into #; X n, x n, axis-aligned boxes. Each object then is sorted into
exactly one of these boxes by one selected point, e.g., the center of gravity or the first
vertex of each triangle could be used. Then the actual axis-aligned bounding box of the
objects in each grid cell is determined. These axis-aligned bounding boxes are used
instead of the objects they contain as long as the box does not intersect one of the
division planes. In that case the box is unpacked and instead the objects in the box will
be used directly. This procedure saves a lot of comparisons and memory accesses,
noticeably improves the constant of the order of the construction techniques, and also can
be applied recursively. The above technique is especially appealing to hardware
implementations, since it can be realized by processing a stream of objects.

The acceleration data structures can be built on demand, i.e., at the time when a
ray is traversing a specific axis-aligned bounding box with its objects. Then on the one
hand the acceleration data structure never becomes refined in regions of space, which are
invisible to the rays, and caches are not polluted by data that is never touched. On the
other hand after refinement the objects possibly intersected by a ray are already in the
caches.

From the above discussion, it will be seen that the present invention addresses
long known issues in ray tracing and provides techniques for ray tracing having improved
precision, overall speed and memory footprint of the acceleration data structures. The
improvements in numerical precision transfer to other number systems as well as, for
example, to the logarithmic number system used in the hardware of the ART ray tracing
chips. It is noted that the specific implementation of the IEEE floating point standard on

a processor or a dedicated hardware can severely influence performance. For example,

-14 -

10

15

WO 2007/002494 PCT/US2006/024631

on a Pentium 4 chip denormalized numbers can degrade performance by a factor of 100
and more. As discussed above, an implementation of the invention avoids these
exceptions. The view of bounding volume hierarchies described herein makes them
suited for realtime ray tracing. In an amortized analysis, the described techniques
outperform the previous state of the art, thus allowing more precise techniques to be used,
for example, for computing motion blur in fully animated scene, as in a production
setting or the like. It will be apparent from the above discussion that the described
bounding volume hierarchies have significant advantages when compared with 3D-trees
and other techniques, particularly in hardware implementations and for huge scenes. In
an amortized analysis, the described bounding volume hierarchies outperform current
3D-trees by at least a factor of two. In addition, the memory footprint can be determined
beforehand and is linear in the number of objects.

While the foregoing description includes details which will enable those skilled in
the art to practice the invention, it should be recognized that the description is illustrative
in nature and that many modifications and variations thereof will be apparent to those
skilled in the art having the benefit of these teachings. It is accordingly intended that the
invention herein be defined solely by the claims appended hereto and that the claims be

interpreted as broadly as permitted by the prior art.

-15-

WO 2007/002494

10

15

20

25

30

35

40

45

COMPUTER PROGRAM APPENDIX

CODE LISTING 2.2.1
void Triangle::Transform{)

Point *p = (Point *)this;

Vector n3d;

Vector n_abs = n3d = (p[11-p[0DI(p[2]-pL0D);

// search largest component for projection (0=x,1=y,2=2)
uintCast(n_abs.dx) &= Ox7FFFFFFF;
uintCast(n_abs.dy) &= Ox7FFFFFFF;
uintCast(n_abs.dz) &= Ox7FFFFFFF; .

‘/f Degenerated Triangles must be handled (set edge-signs)

if(!((n_abs.dx+n_abs.dy+n_abs.dz) > DEGEN_TRI_EPSILON))

f/(1(...) > EPS) to handle NaN’s

{

d = p[0].x;

p0.u=-p[0].y;

p0.v = -p{0].z;

n.u=nv = 0.0f;
e[0lu=e[1}.u=¢[0].v=¢[l]lv = 1.0f;
return, i

}

U32 axis = 2;

if(n_abs.dx > n_abs.dy)

if(n_abs.dx > n_abs.dz)

axis = 0;

}

else if(n_abs.dy > n_abs.dz)

axis = 1;

Point p03d = p[0];

Point p13d = p[1];

Point p23d = p[2};

float t_inv = 2.0f/n3d[axis];

e[0].u = (p23d[PlusOneMod3[axis]]-p03d[PlusOneMod3[axis]])*t_inv;

PCT/US2006/024631

ef0].v = (p23d{PlusOneMod3[axis+1]]-p03d[PlusOneMod3[axis+1]])*t_inv;

e[1].u = (p13d[PlusOneMod3[axis]]-p03d[PlusOneMod3[axis]})*t_inv;

ef1].v = (p13d[PlusOneMod3[axis+1]]-p03d[PlusOneMod3[axis+1]])*t_inv;

t_inv *=0.5f,

n.u = n3d{PlusOneMod3[axis]] *t_inv;
n.v = n3d[PlusOneMod3[axis+1]]*t_inv;
p0.u = -p03d[PlusOneMod3[axis]];

p0.v = -p03d[PlusOneMod3[axis+1]};

d = p03d[axis] + n.u*p03d[PlusOneMod3{axis]] + n.v*p03d[PlusOneMod3[axis+1]};
} .

-16-

10

15

20

25

30

35

40

45

50

WO 2007/002494 PCT/US2006/024631

CODE LISTING 2.2.2

U32 *idx = pointer_to_face_indices;

U32 ofs = projection_case;

for(U32 ii = num_triData; ii; ii--,idx++)

{

float t = (triData{*idx].d - ray.from[of5s]

- triData[*idx].n.u*ray.from[PlusOneMod3[ofs]]

- triData[*idx].n.v¥ray.from[PlusOneMod3[ofs+1]])

/ (ray.d[ofs] + triData[*idx].n.u*ray.d[PlusOneMod3[ofs]]
+ triData[*idx].n.v*ray.d[PlusOneMod3{ofs+11]);
if(uintCast(t)-1 > uintCast(result.tfar)) /-1 for +0.0f
continue;

float h1 = t*ray.d[PlusOneMod3[ofs]] + ray.from[PlusOneMod3[ofs]]
+ triData[*idx].p0.u;

float h2 = t*ray.d[PlusOneMod3[ofs+1]] + ray.from[PlusOneMod3[ofs+1]]
+ triData[*idx].p0.v;

float u = h1*triData[*idx].e[0].v - h2*triData[*idx].e[0].u;
float v = h2*triData[*idx].e[1].u - h1*triData[*idx].e[1].v;
float uv = utv;

if((uintCast(u) | vintCast(v) } nintCast(uv)) > 0x40000000)
continue;

result.tfar = t;

result.tri_index = *idx;

}

CODE LISTING 2.3.1

Point *p = (Point *)&triData[tri_index];

int boxMinldx, boxMaxIdx;

{/ boxMinldx and boxMaxIdx index the smallest and largest vertex of the triangle
// in the component dir[0] of the split plane

1{f(p[0][d1r[0]] <p[1][dir[0]D)
i{f(P[Z][dirio}] < pl0]{dir[0]D)

boxMinldx = 2;
boxMaxldx = 1;
}

else

{

boxMinldx = 0;
boxMaxldx = p[2][dir[0]] < p[1][dir[0]] 2 1: 2;
} .

}

else

{

i{f(p[2] [dir[0]] < p[1][dir[0]])

-17-

10

15

20

25

30

35

40

45

50

WO 2007/002494 PCT/US2006/024631

boxMinldx = 2;
boxMaxldx = 0;
}

else

{

boxMinldx = 1;

boxMaxldx = p[2][dir[0]] < p[0][dir[0]]1 2 0 : 2;
}

/* If the triangle is in the split plane or completely on one side of the split plane

is decided without any numerical etrors, i.e. at the precision the triangle is

entered to the rendering system. Using epsilons here is wrong and not necessary.

*/

if((p[boxMinldx][dir{0]] = split) && (p[boxMaxldx][dir[0]} == split)) // in split plane ?
{ . .

on_splitltems++;

if(split < middle_split) // put to smaller volume
left_num_divitems++;

else

unsorted_border--;

U32 t = jtemsList[unsorted_border];

right_num_divitems--;

itemsList{right num_divitems] = itemsList{left_num_divitems];
itemsList[left_num_divitems] = t;

i

else if{p[boxMaxIdx][dir[0]] <= split) / triangle completely left ?
left_num_divitems++;

else if(pfboxMinldx]{dir[0]) >= split) // triangle completely right ?

unsorted_border--;

U32 t = itemsList[unsorted_border];

right_ num_divitems--;

itemsList[right_num_divitems] = itemsList[left_num_divitems];

itemsList{left num_divitems] =t;

}

else

// and now detailed decision, triangle must intersect split plane ...

{ .

/* In the sequel we determine whether a triangle should go left and/or right, where
we already know that it must intersect the split plane in a line segment.

All computations are ordered so that the more precise computations are done
first. Scalar products and cross products are evaluated last.

In some situations it may-be necessary to expand the bounding box by

an epsilon. This, however, will blow up the required memory by large amounts.
If such a sitvation is encountered, it may be betier to analyze it numerically

in order not to use any epsilons...

Arriving here we know that p[boxMaxIdx][dir[0]] < split < p[boxMaxIdx]{dir[0]]
and that p[boxMidldx][dir[0]] \in [p[boxMaxIdx][dir[0]], p[boxMaxIdx][dir[0]]]-

-18-

10

15

20

25

30

35

40

45

30

WO 2007/002494 PCT/US2006/024631

We also know, that the triangle has a non-empty intersection with the current
voxel. The triangle also cannot lie in the split plane, and its vertices cannot

lie on one side only.

*/

int boxMidldx = 3 - boxMaxIdx - boxMinldx; // missing index, found by 3 =0+1+2
/* We now determine the vertex that is alone on one side of the split plane.
Depending on whether the lonely vertex is on the left or right side,

we have to later swap the decision, whether the

triangle should be going to the left or right.

*/

int Alone = (split < p[boxMidldx][dir[0]]) ? boxMinldx : boxMaxIdx

int NotAlone =3 - Alone - boxMidldx;

/1 == (split < p[boxMidldx][dir[0]]) ? boxMaxldx : boxMinldx;

// since sum of idx =3=0+1+2

float dist = split - p[Alone][dir[0]];

U32 swapLR = uintCast(dist)>>31; // == p[Alone][dir[0]] > split;

* Now the line segments connecting the lonely vertex with the remaining two verteces
are intersected with the split plane. al and a2 are the intersection points.

The special case "if(p[boxMidIdx]{dir[0]] == split)" [yields a x / x, which could
be optimized] does not help at all since it only can happen as often as the highest
valence of a vertex of the mesh is...

*/

float at = dist / (p[boxMidldx][dir[0]] - p[Alone][dir[0]));

float at2 = dist / (p[NotAlone][dir[0]] - p[Alone]{dir[0]]);

float alx = (p[boxMidIdx]{dir[1]] - p[Alone][dir[1]]) * at;

float aly = (p[boxMidldx][dir[2]] - p[Alone][dir[2]]) * at;

float a2x = (p[NotAlone]{dir[1]] - p[Alone][dir[1]}) * at2;

float a2y = (p[NotAlone][dir[2]] - p[Alone][dir[2]]) * at2;

// n is a vector normal to the line of intersection ala2 of the triangle

// and the split plane

float nx = a2y - aly;

float ny = a2x - alx;

// The signs indicate the quadrant of the vector normal to the intersection line
U32 nxs = uintCast(nx)>>31; // == (nx < 0.0f)

U32 nys = uintCast(ny)>>31; // = (ny < 0.0f)

/* Numerical precision: Due to cancellation, floats of approximately same exponent
should be subtracted first, before adding something of a different order of
magnitude. All brackets in the sequel are ESSENTIAL for numerical precision.
Change them and you will see more errors in the BSP...

pMin is the lonely point in the coordinate system with the origin at
bBox.bMinMax[0]

pMax is the lonely point in the coordinate system with the origin at
bBox.bMinMax[1]

*/

float pMinx = p[Alone][dir[1]] - bBox.bMinMax[0][dir[1]];

float pMiny = p[Alone][dir[2]] - bBox.bMinMax[0][dir[2]];

float pMaxx = pfAlone}{dir[1]] - bBox.bMinMax[1][dir[1]};

float pMaxy = p[Alone][dir[2]] - bBox.bMinMax[1][dir[21];

// Determine coordinates of the bounding box, however, with respect to p + al being the origin.

~ float boxx[2];

-19-

10

15

20

25

30

35

40

45

50

WO 2007/002494 PCT/US2006/024631

float boxy[2];

boxx[0] = (pMinx + alx) * nx;

boxy[0] = (pMiny +aly) * ny;

boxx[1] = (pMaxx + alx) * nx;

boxy[1] = (pMaxy +aly) * ny;

/* Test, whether line of intersection of the triangle and the split plane passes by the
bounding box. This is done by indexing the coordinates of the bounding box by the
quadrant of the vector normal to the line of intersection. In fact this is

the nifty implementation of the 3d test introduced by in the book with Haines:
"Real-Time Rendering"

By the indexing the vertices are selected, which are farthest from the line.

Note that the triangle CANNOT completely pass the current voxel, since it must have
a nonempty intersection with it.

*/

U32 resultS; ‘

if(pMinx + MAX(alx,a2x) < 0.0f) // line segment of intersection ala2 left of box
resultS = uintCast(pMinxy>>31;

else if(pMiny + MAX(aly,a2y) < 0.0f) / line segment of intersection ala2 below box
resultS = uintCast(pMiny)>>31; ’

else if(pMaxx + MIN(alx,a2x) > 0.0f) // line segment of intersection ala2 right of box
resultS = (pMaxx > 0.0f);

else if(pMaxy + MIN(aly,a2y) > 0.0f) // line segment of intersection ala2 above box
resultS = (pMaxy > 0.0f);

else if(boxx[17nxs] > boxy[nys])

// line passes beyond bbox ? => triangle can only be on one side

resultS = (aly*a2x > alx*aly);

/l sign of cross product al x a2 is checked to determine side

else if(boxx[nxs] < boxy[1*nys])

resultS = (aly*a2x <alx*a2y);

else

/1 Ok, now the triangle must be both left and right

stackListfcurrStackitems++] = itemsListfleft num_divltems};
unsorted_border--; '
itemsList{left num_divitems] = itemsL.ist[unsorted_border];
continue;

}
if(swapLR 1= /*"*/ resultS)

unsorted_border--;

U32 t = itemsListfunsorted_border];

right_num_divIitems--; :

itemsList[right num_divitems] = itemsList{left_num_divItems];
itemsList[left num_divitems] =t;

}

else

left num_divitems++;

}

_20-

10

15

20

25

30

35

40

45

50

WO 2007/002494

CODE LISTING 2.4.1

Intersection Boundary::Intersect(Ray &ray) //ray.tfar is changed!

{

// Optimized inverse calculation (saves 2 of 3 divisions)

float inv_tmp = (ray.d.dx*ray.d.dy)*ray.d.dz;
if((uintCast(inv_tmp)&0x7FFFFFFF) > uintCast(DIV_EPSILON))

inv_tmp = 1.0f / inv_tmp;

ray.inv_d.dx = (ray.d.dy*ray.d.dz)*inv_tmp;
ray.inv_d.dy = (ray.d.dx*ray.d.dz)*inv_tmp;
ray.inv_d.dz = (ray.d.dx*ray.d.dy)*inv_tmp;
} .

else

A :

ray.inv_d.dx = ((uintCast(ray.d.dx)&0x7FFFFFFF) > uintCast(DIV_EPSILON)) ?
(1.0f/ ray.d.dx) : INVDIR_LUT(uintCast(ray.d.dx) >> 311;

ray.inv_d.dy = ((uintCast(ray.d.dy)&0x7FFFFFFF) > uintCast(DIV_EPSILON)) ?
(1.0f / ray.d.dy) : INVDIR_LUT[uintCast(ray.d.dy) >> 31];

ray.inv_d.dz = ((uintCast(ray.d.dz)&0x7FFFFFFF) > uintCast(DIV_EPSILON)) ?
(1.0f / ray.d.dz) : INVDIR_LUT[uintCast(ray.d.dz) >> 31];

}

Intersection result;

result.tfar = ray.tfar;

result.tri_index = -1;

i

//BBox-Check

i

float tnear = 0,0f;

worldBBox.Clip(ray,tnear);

if(uintCast(ray tfar) == 0x7F7843B0) //ray.tfar==3.3e38f //!!

return(result);

i '
U32 current_bspStack = 1; //wegen empty stack case == 0

U32 node=0;

1/

//BSP-Traversal

/"

const U32 whatnode[3] = {(uintCast(ray.inv_d.dx)>>27) & sizeof(BSPNODELEAF),
(uintCast(ray.inv_d.dy)>>27) & sizeof(BSPNODELEAF),
(uintCast(ray.inv_d.dz)>>27) & sizeoffBSPNODELEAF)};

U32 bspStackNode[128]; ‘

float bspStackFar[128];

float bspStackNear[128];

bspStackNear[0] = -3.4e38f; // sentinel

do

{
//1st Node ein Leaf (type<0) oder nur ne Verzweigung (type>=0)
while ((BSPNODELEAF &)bspNodes[node]).type >= 0)

{

-21-

PCT/US2006/024631

10

15

20

25

30

35

40

45

WO 2007/002494 PCT/US2006/024631

//Split-Dimension (x|y|z)

U32 proj = (BSPNODELEAF&)bspNodes[node]).type & 3;

float distl = (((BSPNODELEAF&)bspNodes[node]) splitlrfwhatnode[proj]>>4]

- ray.from[proj])*ray.inv_d[proj];

float distr = (((BSPNODELEAF&)bspNodes[node]) splitlr[(whatnode[proj]>>4)"1]
- ray.from[proj])*ray.inv_d[proj];

node = (((BSPNODELEAF &)bspNodes[node}).type - proj) | whatnode[proj];

/type & OxFFFFFFFQ

if(tnear <= distl)

{

if(ray.tfar >= distr)

{

bspStackNear[current_bspStack] = MAX(tnear,distr);
bspStackNode[current_bspStack] = node”sizeoff BSPNODELEAF);
bspStackFar{current_bspStack] = ray. tfar

current_bspStack-++;

}

ray.tfar = MIN(ray.tfar,distl);
}

else

if(ray.tfar >=distr)

{ .
tnear = MAX(tnear,distr);

- node "= sizeof(BSPNODELEAF);,

}

else

goto stackPop;

}

i
/[Faces-Intersect
... code omitted ...
i

i

/Hit gefunden?

)

{
stackPop:

current_bspStack--;

tnear = bspStackNear{current bspStack]
}while(result.tfar < tnear); :
if(current_bspStack == 0)

return(result);

node = bspStackNode[current_bspStack];
ray.tfar = bspStackFar[current_bspStack];
} while (true);

}

-22-

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

We claim:

1. Ina 6omputer graphics system for generating a pixel»value for a pixel in
an image, the pixel value being representative of a point in a scene as recorded on an
image plane of a simulated camera, the computer graphics system being configured to
generate the pixel value for an image using a selected ray-tracing methodology, the
selected ray-tracing methodology comprising the use of a ray tree, the ray tree including
at least one ray shot from the pixel into a scene along a selected direction, the ray-tracing
methodology further comprising the calculating of the intersections of rays and surfaces
of objects in the scene, the improvement comprising:

calculating intersections of rays and objects in the scene by utilizing bounding
volume hierarchies, the calculating comprising:

defining, utilizing, and recursively and adaptively refining an axis-aligned
bounding box to locate, for a given ray, the point of ray/object intersection nearest the
origin of the ray, and o

continuing the refinement of the axis-aligned bounding box until a predetermined

termination criterion is met.

2. The improvement of claim 1 further wherein the defining of an
axis-aligned bounding box comprises determining parailel L- and R-planes to partition a
set of virtual objects within the axis-aligned bounding box into a set of left objects and a
set of right objects and to thereby define two axis-aligned bounding boxes by the two
parallel planes, and

further comprising processing the left and right objects recursively until the

termination criterion is met.

3. The improvement of claim 2 wherein the determining of L- and R-planes
comprises:

determining a splitting plane M by execution of a 3D-tree construction, the
3D-tree construction being based upon coordinates of triangles into which surfaces in the

scene are partitioned, and

-23-

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

partitioning the objects such that the overlap of the resulting L- and R-planes of

the axis-aligned bounding boxes minimally overlaps the splitting plane M.

4. The improvement of claim 3 wherein the execution of a 3D-tree
construction comprises:

determining candidates for splitting planes based on coordinates of triangle
vertices inside the axis-aligned bounding box that should be partitioned, and

from the set of candidates, selecting the plane nearest the center of the longest

side of the current axis-aligned bounding box.

5. The improvement of claim 4 wherein the selecting further comprises
selecting only coordinates of triangles whose longest component of the surface normal

matches the normal of the potential splitting plane.

6. The improvement of claim 4 further comprising:

determining whether a triangle intersecting the splitting plane is contained in the
left or right partition of an axis-aligned bounding box, the determining comprising first
computing the intersection of the triangle with the splitting plane to generate an
“intersection line”, and then determining how the intersection line is situated relative to

the rectangle defined by the intersection of the splitting plane and the bounding box.

7. The improvement of claim 6 further comprising determining an order of

traversal of bounding volume hierarchies based on ray direction.

8. The improvement of claim 7 wherein a hierarchy of bounding volumes is

computed in real time, as required to process an image.
9. The improvement of claim 8 further comprising:

constructing an acceleration data structure for ray tracing based on bucket sorting,

the construction comprising:

24

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

pattitioning the axis-aligned bounding box of objects into nx x ny X n,
axis-aligned boxes,

sorting each object into exactly one of the boxes by one selected point, the
selected point including any of the center of gravity or the first vertex of each triangle,
and

determining the axis-aligned bounding box of the objects in each grid cell.

10. The improverﬁent of claim 1 further wherein, after computing the
intersection point of a ray and a surface, values of the computed point are used along with
the corresponding ray direction to again compute the intersection, thereby providing an

iteration to the ray/surface intersection calculation to increase precision.

11. The improvement of claim 1 further wherein if a calculated intersection
point is below a surface in the scene, the calculated point is shifted to the other side of the

surface, yielding a modified calculated point.

12. The improvement of claim 11 wherein the shift is along the surface normal

or along an axis determined by the longest component of the surface normal.

13. The improvement of claim 11 wherein the shifting is implemented by
shifting the last bits of a floating point mantissa representing an intersection point by an
integer epsilon, and wherein secondary rays are defined to start from the modified

calculated point.

14. The impi‘q\/ement of claim 1 further comprising utilizing a ray triang‘I'e
intersection test wherein an intersection of a ray and the plane of a triangle subdivision of
a surface in the scene is determined, and intersections outside a predetermined valid

interval on the ray are excluded.

15. Ina computer graphics system for generating a pixel value for a pixel in

an image, the pixel value being representative of 2 point in a scene as recorded on an

-75 -

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

image plane of a simulated camera, the computer graphics system being configured to
generate the pixel value for an image using a selected ray-tracing methodology, the
selected ray-tracing methodology comprising the use of a ray tree, the ray tree including
at least one ray shot from the pixel into a scene along a selected direction, the ray-tracing
methodology further comprising the calculating of the intersections of rays and objects in
the scene, the improvement comprising:

computer-executable software code operable to enable the calculating of
intersections of rays and objects in the scene by utilizing bounding volume hierarchies,
the calculating comprising: '

defining, utilizing and recursively and adaptively refining an axis-aligned
bounding box to locate, for a given ray, the point of ray/object intersection nearest the
origin of the ray, and

continuing the refinement of the axis-aligned bounding box until a predetermined

termination criterion is met.

16. A computer graphics system for generating a pixel value for a pixel in an
image, the pixel value being representative of a point in a scene as recorded on an image
plane of a simulated camera, the computer graphics system being configured to generate
the pixel value for an image using a selected ray-tracing methodology, the selected ray-
tracing methodology comprising the use of a ray tree, the ray tree including at least one
ray shot from the pixel into a scene along a selected direction, the ray-tracing
methodology further comprising the calculating of the intersections of rays and surfaces
of objects in the scene, the computer graphics system comprising:

means for calculating intersections of rays and objects in the scene by utilizing
bounding volume hierarchies, the means for calculating comprising: _'

means for defining, utilizing, and recursively and adaptively refining an axis-
aligned bounding box to locate, for a given ray, the point of ray/object intersection
nearest the origin of the ray, and

means for continuing the refinement of the axis-aligned bounding box until a

predetermined termination criterion is met.

-26 -

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

17. Inacomputer graphics system for generating a pixel value for a pixel in
an image, the pixel value being representative of a point in a scene as recorded on an
image plane of a simulated camera, the computer graphics system being configured to
generate the pixel value for an image using a selected ray-tracing methodology, the
selected ray-tracing methodology comprising the use of a ray tree, the ray tree including
at least one ray shot from the pixel into a scene along a selected direction, the ray-tracing
methodology further comprising the calculating of the intersections of rays and surfaces
of objects in the scene, a method of calculating intersections of rays and objects in the
scene, the method comprising:

constructing bounding volume hierarchies, the constructing bomprising:

defining, utilizing, and recursively and adaptively refining an axis-aligned
bounding box to locate, for a given ray, the point of ray/object intersection nearest the
origin of the ray, and

continuing the refinement of the axis-aligned bounding box until a predetermined

termination criterion is met.

18. The improvement of claim 4 further comprising subdividing bounding

boxes.

19. The improvement of claim 1, further comprising selecting a point to start a
secondary ray, the selecting comprising selecting the corner of a bounding box closest to
the surface normal in the center of the box, and using the point corresponding to the

selected corner to start the secondary ray.

20. "The improvement of claim 4 further wherein execution of a 3D-tree
construction further comprises executing tree pruning by left-balancing from a selected
depth, the tree pruning comprising pruning tree depth by approximately left-balancing the
binary space partition starting from the selected depth. .

21. The improvement of claim 1 further comprising constructing the bounding

volume hierarchies in real-time, on an on-demand basis.

-27 -

10

15

20

25

30

WO 2007/002494 PCT/US2006/024631

22. Inacomputer graphics system for generating a pixel value for a pixel in
an image, the pixel value being repreéentative of a point in a scene as recorded on an
image plane of a simulated-camera, the computer graphics system being configured to
generate the pixel value for an image using a selected ray-tracing methodology, the
selected ray-tracing methodology comprising the use of a ray tree, the ray tree including
at least one ray shot from the pixel into a scene along a selected direction, the ray-tracing
methodology further comprising the calculating of the intersections of rays and surfaces
of objects in the scene, the improvement comprising:

calculating intersections of rays and objects in the scene by utilizing bounding

volume hierarchies, wherein the calculating comprises:

| defining, utilizing, and recursively and adaptively refining an axis-aligned bounding box

to locate, for a given ray, the point of ray/object intersection nearest the origin of the ray;
land o

continuing the refinement of the axis-aligned bounding box until a predetermined
termination criterion is met; ‘

wherein the defining, utilizing and recursively and adaptively refining comprises:

selecting the corner of a bounding box closest to the surface normal in the center
of the box, and using the point corresponding to the selected corner to start a secondary
ray, and

utilizing a 3D-tree construction, the construction comprising executing tree
pruning by left-balancing from a selected depth, the tree pruning comprising pruning tree
depth by approximately left-balancing the binary space partition starting from the
selected depth;

wherein the defining of an axis-aligned bounding box comprises: '

(@ determining parallel L- and R-planes to partition a set of virtual objects within
the axis-aligned bounding box into a set of left objects and a set of right objects and to
thereby define two axis-aligned bounding boxes by the two parallel planes, the
determining of L- and R-planes comprising determining a splitting plane M by execution
of a 3D-tree construction, the 3D-tree construction being based upon coordinates of

triangles into which surfaces in the scene are partitioned, and

-28-

WO 2007/002494 PCT/US2006/024631

(b) partitioning the objects such that the overlap of the resulting L- and R-
planes of the axis-aligned bounding boxes minimally overlaps the splitting plane; and

further comprising processing the left and right objects recursively until the
termination criterion is met,

5 wherein in step (a) the execution of a 3D-tree construction comprises:

(al) determining candidates for splitting planes based on coordinates of
triangle vertices inside the axis-aligned bounding box that should be partitioned, and

(a2) from the set of candidates, selecting the plane nearest the center of the
longest side of the current axis-aligned bounding box, the selecting further comprising

10 selecting only coordinates of triangles whose longest component of the surface normal

matches the normal of the potential splitting plane; and

wherein the bounding volume hierarchies are constructed in real-time, on an on-

demand basis.

-29-

WO 2007/002494 PCT/US2006/024631

1/8
<> T 3
Storage Storage Storage
112 112 .ot 112
100
Server
110

Internet / Other Network 108

106

102 ‘D
& -
— : 7

L] O

Lo J—

Computer

FIG. 1
- (Prior Art)

WO 2007/002494 PCT/US2006/024631
RAM ROM CPU STORAGE
114 116 118 120
- | >
Keyboard/
Scanner/Mouse/
Other 103

(Prior Art)

Applications / Data .

WO 2007/002494 PCT/US2006/024631

3/8

GED

* 201
COMPUTE BOUNDING BOX OF SCENE

202

HAS PREDETERMINED
TERMINATION CRITERION
BEEN MET?

203
NO /

REFINE BOUNDING BOX

YES

END

FIG. 3

WO 2007/002494 PCT/US2006/024631

4/8

304

302

312

FIG. 4

WO 2007/002494 PCT/US2006/024631

5/8
/—400
/406 /404
402 / /
| R
408\ \'ﬁ | -
| F |
L 414
- -
412 | N><
FIG. 5
/‘400 402
7
L A 4 i o+
\OE .')O\\ms
416 ou AN
\%A/
418/

PCT/US2006/024631

WO 2007/002494

6/8

404

406

416

416

FIG. 7 {

400

416

406\ y /%402 |

418

O

WO 2007/002494 PCT/US2006/024631

7/8

’/— 500
|

COMPUTE BOUNDING BOX OF SCENE

;

USE PARALLEL L- AND R-PLANES TO
DIVIDE AXIS-ALIGNED BOUNDING
BOX INTO POSSIBLY OVERLAPPING
LEFT AND RIGHT AXIS-ALIGNED
BOUNDING BOXES

v
v

i /.503
-

USE LEFT AND RIGHT AXIS-ALIGNED
BOUNDING BOXES TO PARTITION SET
. OF VIRTUAL OBJECTS WITHIN
ORIGINAL, AXIS-ALIGNED BOUNDING
BOX INTO SET OF LEFT OBJECTS
AND SET OF RIGHT OBJECTS

l

PROCESS LEFT AND RIGHT OBJECTS
RECURSIVELY UNTIL TERMINATION
CRITERION IS MET

FIG. 9

WO 2007/002494 PCT/US2006/024631

8/8

[— 600

601

COMPUTE BOUNDING BOX OF SCENE

!

EXECUTE 3D-TREE CONSTRUCTION
TO DETERMINE SPLITTING PLANE M

!

USE PARALLEL L- AND R-PLANES TO
PARTITION AXIS-ALIGNED BOUNDING
BOX INTQ LEFT AND RIGHT AXIS-
ALIGNED BOUNDING BOXES THAT
MINIMALLY OVERLAP SPLITTING
PLANE M

¢ 604
USE LEFT AND RIGHT AXIS-ALIGNED /
BOUNDING BOXES TO PARTITION SET

OF VIRTUAL OBJECTS WITHIN
ORIGINAL, AXIS-ALIGNED BOUNDING
BOX INTO SET OF LEFT OBJECTS
AND SET OF RIGHT OBJECTS

'

PROCESS LEFT AND RIGHT OBJECTS
SEPARATELY

'

PROCESS LEFT AND RIGHT OBJECTS
RECURSIVELY UNTIL TERMINATION
CRITERION IS MET

END

FIG. 10

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings

