
USOO681 0516B2

(12) United States Patent (10) Patent No.: US 6,810,516 B2
Lauris (45) Date of Patent: Oct. 26, 2004

(54) MECHANISMALLOWING SEPARATION OF 6,763,515 B1 * 7/2004 Vazquez et al. 717/109
GRAPHICAL DISPLAY OF OBJECT STATUS
FROM UNDERLYING DATA OTHER PUBLICATIONS

Title: A Visual Development Environment for GUI Systems,
(75) Inventor: Inna Lauris, Sunnyvale, CA (US) author: Ostrand et al, ACM, 1998.*
(73) Assignee: Hewlett-Packard Development Title: Automatic Generation of Graphical User Interfaces for

Interactive Database Applications, author: Pizano, ACM, Company, L.P., Houston, TX (US) 1993.*

(*) Notice: Subject to any disclaimer, the term of this Bumps Winston, Network Management and Administra
patent is extended or adjusted under 35 tion', Distributed Management Task Force, Inc., p. p. 1-30,
U.S.C. 154(b) by 570 days. Apr. 3, 2001.

“Concepts and Terminology Important to Understanding
(21) Appl. No.: 09/984,361 WMI and CIM, www.eu.microSoft.com/hwdev/manage

ability/wmi-cim.htm, p. p. 1-9, Apr. 23, 1999.
22) Filled: Oct. 30, 2001
(22) 9 * cited by examiner
(65) Prior Publication Data

Primary Examiner-Chameli C. Das
US 2003/0095143 A1 May 22, 2003

(51) Int. Cl. .. G06F 9/44 (57) ABSTRACT
(52) U.S. Cl. 717/105: 717/125; 717/108; A System that isolates all of the information that determines

717/116; 717/109; 707/3; 707/5; 34.5/594; the look and feel of status displays of a GUI into one file is
345/650 described. This file can be quickly edited to change the

(58) Field of Search 717/105,108, appearance when needed. In one embodiment, a user
717/109, 116; 707/3, 5; 34.5/594, 650 requests that an object border should be yellow instead of

green for a particular Situation. This modification is achieved
(56) References Cited without code recompilation, by editing a few lines in a file.

U.S. PATENT DOCUMENTS Similarly, if another visual indicator needs to be added, file
editing is all that is required. The application Source code

5,901,315 A * 5/1999 Edwards et al. 717/124 utilizes a class Schema which defines the Visual components
5,926,817 A * 7/1999 Christeson et al. 707/10 of the GUI that should be modifiable file. A modifiable file
6,038,395 A 3/2000 Chow et al. 717/105 comprising class instances corresponding to the class
6.253,368 B1 * 6/2001 Nelin et al. 717/124 Schema is read in and processed when the application is
6,412,106 B1 6/2002 Leask et al. 717/124 launched. Further changes require the application to be
6.425,120 B1 * 7/2002 Morganelli et al. 717/109 restarted to read in the modified file
6,684.385 B1 * 1/2004 Bailey et al. 717/109
6,738,964 B1 * 5/2004 Zink et al. 717/105
6,757,670 B1 6/2004 Inohara et al. 707/3 16 Claims, 4 Drawing Sheets

SELECTATE
QUERIESPRIMARY

AND ORDERSECONDARY)

RUNAPRIMARY
QUERY"To OETAIN
OBJECSTATS

RUN AQUERY AND
OBANAN

UNERLINGSTATUS

FORTHSTYPEOFOBECT

40

40

ADDAWISA
NCAOR

ADAWSA
NBCAOR

US 6,810,516 B2 Sheet 1 of 4 Oct. 26, 2004 U.S. Patent

ÇI I

emel {1}.

sl?šñó el

US 6,810,516 B2 Sheet 2 of 4 Oct. 26, 2004 U.S. Patent

KETOID)

US 6,810,516 B2 Sheet 3 of 4 Oct. 26, 2004 U.S. Patent

U.S. Patent Oct. 26, 2004 Sheet 4 of 4 US 6,810,516 B2

SELECT ALL THE
QUERIES (PRIMARY

AND ORDER SECONDARY)
FORTHIS TYPE OF OBJECT

AO

RUNA"PRMARY 403
QUERY" TO OBTAIN
OBJECTSTATUS

405 407

YES ADDAVISUAL
INDICATOR

41

NDICATORS
TO DRAW

NO

409

NO DONE

RUN AQUERY AND 43
OBTAN AN

UNDERLYING STATUS

BASED
ON STATUS

ARE THERE ANY
"SECONDARY"
QUERIESTO

415 417

BASED

1GS,fE YES ADDAVISUAL
DICATOR

INDICATORS IN

FIG.4

US 6,810,516 B2
1

MECHANISMALLOWING SEPARATION OF
GRAPHICAL DISPLAY OF OBJECT STATUS

FROM UNDERLYING DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/984,371 (Docket No.: HP 10016745) to J. Patrizio
and E. Soderberg, entitled “SYSTEMAND METHOD FOR
DISPLAYING A LAYOUT OF GUI PROPERTIES
PANEL', and U.S. patent application Ser. No. 09/984,368
(Docket No. HP 10018664) to Jonathan Patrizio and Eric
Soderberg, entitled “SYSTEM AND METHOD FOR
TABLE ROW SELECTION IN A GUI DISPLAY", both
applications filed concurrently and assigned to a common
assignee, and herein incorporated by reference in their
entirety.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of this patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

TECHNICAL FIELD

The technical field relates to a graphical display of data,
and more particularly to a mechanism which allows Sepa
ration of graphical display of object Status from underlying
data. The data is stored in managed object format (MOF)
files and defines Visual indicators to be displayed.

BACKGROUND

The Data Management Task Force (DTMF) developed the
Common Information Model (CIM) in 1996 to provide a
common way to Share management information enterprise
wide. The CIM schema provides models for various imple
mentations to describe management data in a Standard
format. A number of graphic user interface (GUI) applica
tions have been developed and deployed which take advan
tage of the CIM architecture.

According to a presentation by Winston Bumpus of the
DTMF presented at the DTMF Comdex Management
Presentation, Apr. 3, 2001, entitled, “Network Management
and Administration', best of breed applications are used to
manage network and System infrastructure. Different appli
cations gather different pieces of data about the same
resource. It is difficult to aggregate data from disparate
management applications for: Service level measurement;
true "end-to-end View of a network, fault diagnosis, capac
ity planning, and resource usage billing. It is currently a very
manual process (human intensive), inaccurate, slow and
cumbersome. Thus a number of products have been
developed, and are currently evolving to Solve these prob
lems.
The multi-computer/serviceguard (mc/serviceguard)

(hereafter, “ServiceGuard Manager”) product, available
from Hewlett-Packard Company, is a specialized facility for
protecting mission-critical applications from a wide variety
of hardware and Software failures. With this system, mul
tiple (up to 16-nodes) systems are organized into an enter
prise cluster that delivers highly available application Ser
vices to local area network (LAN) attached clients.

15

25

35

40

45

50

55

60

65

2
ServiceGuard Manager monitors the health of each node and
quickly responds to failures in a way that minimizes or
eliminates application downtime. Status and information
gathered about the network is presented to the user (network
administrator) via a GUI.
The look and feel of a graphical user interface (GUI) is

very subjective. User feedback is therefore essential for a
GUI to be Successful. It is advantageous to have a method
for changing display appearance based on client/user feed
back.

Graphical Status displayS used in the prior art GUIs
determine Status and corresponding visual indicators in logic
that is encapsulated in Source code. Thus, to change a visual
indicator, or add/delete visual indicators, the developer is
required to modify the Source code and recompile the
application code. Integrating feedback from users into the
graphical display application is not easily done with proto
typing because of the recoding and recompilation necessary.
Moreover, each time Source code is modified and
recompiled, the risk of introducing new bugs (errors) into
the GUI is increased.
The integration of user feedback into the GUI application

is an iterative process. Each time the GUI is updated and
recompiled, the user is given another chance to provide
comments. This can go on ad infinitum until the GUI is
deemed Satisfactory for its designated purpose. Thus, short
ening each cycle of the feedback integration process can
improve the overall quality and timeliness of the GUI
application.

SUMMARY

It is an aspect of the present invention to reduce turn
around time to implement desired changes in a graphical
display.

It is yet another aspect to provide a method for custom
izing the display characteristics of a graphic user interface
(GUI) for various users.

These and other aspects and embodiments of the present
invention are achieved in a System that isolates all of the
information that determines the look and feel of status
displays of a GUI into one file. This file can be quickly
edited to change the appearance when needed. For example,
in one embodiment, a user requests that an object border
should be yellow instead of green for a particular situation.
This modification is achieved without code recompilation,
by editing a few lines in a file. Similarly, if another visual
indicator needs to be added, file editing is all that is required.
The application Source code utilizes a class Schema and the
modifiable file is read in and processed when the application
is launched. Further changes require the application to be
restarted to read in the modified file.

According to one embodiment of the invention, a class
Schema is identified which defines the Visual components of
the GUI that should be modifiable. The class Schema and the
corresponding class instances are defined in managed object
format (MOF) files. MOF files follow a standard format that
is well known to those skilled in the art. It will be apparent
to one skilled in the art that as the CIM technology evolves,
other formats might be used.
The MOF file contains four types of entries: (1) a primary

query entry, which is the first query to run for a given object;
(2) an entry connecting the outcome of the primary query
with a visual indicator, if any; (3) one or more entries
connecting outcome of a primary entry with "Secondary'
queries; and (4) an entry connecting each of possible Sec
ondary query entries with a Visual indicator.

US 6,810,516 B2
3

DESCRIPTION OF DRAWINGS

The invention will be described in detail in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a Screen shot of an exemplary top level Screen
shot of a ServiceGuard product;

FIG. 2 is a Screen shot of a map with focus on a cluster;
FIG. 3 is a Screen shot of a map with focus on a node, and
FIG. 4 is a flow diagram illustrating a method of the

invention.

DETAILED DESCRIPTION

The numerous innovative teachings of the present appli
cation will be described with particular reference to the
presently preferred exemplary embodiments. However, it
should be understood that this class of embodiments pro
vides only a few examples of the many advantageous uses
of the innovative teachings herein. In general, Statements
made in the Specification of the present application do not
necessarily delimit any of the various claimed inventions.
Moreover, Some Statements may apply to Some inventive
features but not to others.

In the present invention, a System is defined that isolates
all of the information that determines the look and feel of
status displays of a GUI into one file. In one embodiment the
present invention is integrated with the ServiceGuard clus
tering solution product, available from Hewlett-Packard
Company. ServiceGuard uses a GUI which consists of a tree
and a map panel.

Referring now to the drawings, and in particular to FIG.
1, there is shown an exemplary top level Screen shot of the
ServiceGuard product having left 101 and right 103 panels.
The left panel 101 shows a tree of clusters, nodes and
packages monitored by the ServiceGuard clustering product.
The right panel 103 shows a map of these objects (clusters,
nodes and packages) and how they are interrelated. The map
panel 103 view shows user selectable levels of the clusters,
nodes and packages in the monitored System. For instance,
FIG. 1 shows all networked and monitored clusters: arabica
105, PTST bass 107, robusta 109, and sysman 111.

FIG. 2 shows a map 201 with the focus on the configu
ration of the cluster arabica 105. In this exemplary view,
arabica 105 has four (4) nodes: decaf 203, jamaica 205, latte
207, and mocha 209. There are two (2) packages associated
with this cluster: informix 211 and oracle 213. The nodes
decaf, jamaica, and latte are connected to the cluster as
shown by the lines 221. The node, mocha 209, however, is
not connected to the cluster. There are a number of modi
fiable visual indicators shown here. For example, each
object has a border. The border indicates the top level status
of the object (up, down, or other). For instance, the border
of arabica 105 is yellow, as indicated by a vertical and
horizontal croSS hatch pattern. This indicates that the cluster
is functional, but that all nodes or packages may not be
operating. The borders of nodes decaf 203, jamaica 205 and
latte 207 are, on the other hand, green, as indicated by a
diagonal line pattern. The green border indicates that all
conditions are normal for these nodes. Finally, the border of
the mocha node 209 is red, as indicated by a vertical line
pattern. The red border indicates that the node is down.

Referring now to FIG. 3, there is shown a screen shot of
a map 301 with a focus on the node latte 207, as illustrated
in FIG. 2. As indicated in both figures, the borders of the
node latte 207 and the package 213 are green to indicate
normal operations. The cluster arabica 105 has a red border,

15

25

35

40

45

50

55

60

65

4
as before, to indicate that at least one Subordinate node or
package is operating at a Sub-optimal level. Because this
particular view is a node view of latte 207, the node or
package causing arabica 105 to be red, i.e., the node mocha
209, is not visible on this map.

Referring again to FIG. 1, there are shown additional
non-color visual indicators 113 and 115 for clusters PTST
bass 107 and sysman 111, respectively. In particular, there
are two icons shown for PTST bass, top 113 a and bottom
113b icons. The top icon 113a, illustrated by an “X” mark
over the package box icon, indicates that at least one of the
cluster's packages is down. The bottom icon 113b, illus
trated by an arrow pointing to an “X” mark, indicates that at
least one of the packages has lost high availability. The
package is running, but has no failover node. A Single point
of failure exists. If the package fails on this node, it will go
down. The icon 115 for sysman 111 also indicates that at
least one of the cluster's packages is down.

It will be apparent to one skilled in the art that visual
indicators other than color or the Specific icons used in
ServiceGuard may be implemented. For instance, an
object's border might be shaded or displayed with a different
pattern of hash marks rather than color coded. The actual
Visual indicators are not relevant to the invention except as
relates to user preferences and ease of display.
AS the monitored System becomes more complex, the

user/network administrator may prefer to view various Status
indicators differently. For instance, Some users may wish to
eliminate yellow borders and only See red or green. There
may be more than three levels of readiness, requiring
additional colors, etc. Therefore, the present invention
defines a method and System which allows Separation of
graphical display of object Status from underlying data. The
data is preferably stored in managed object format (MOF)
files and defines visual indicators for display.
The application Source code preferably utilizes a class

Schema and the modifiable file is read in and processed when
the application is launched. Further changes require the
application to be restarted to read in the modified file.
According to one embodiment of the invention, a class

Schema is identified which defines the Visual components of
the GUI that should be modifiable. The class Schema and the
corresponding class instances in this embodiment are
defined in managed object format (MOF) files. MOF files
follow a standard format that is well known to those skilled
in the art. It will be apparent to one skilled in the art that as
the CIM technology evolves, other formats might be used.

In the exemplary schema, the MOF file contains four
types of entries: (1) a primary query entry, which is the first
query to run for a given object; (2) an entry connecting the
outcome of the primary query with a visual indicator, if any;
(3) one or more entries connecting outcome of a primary
entry with “secondary queries; and (4) an entry connecting
each of possible Secondary query entries with a visual
indicator. An exemplary class Schema (Copyright 2001 to
Hewlett-Packard Company) follows:

class MapStatusQueryTypes {
f| map class id

CMObjectClass ref mapClassId;
If type of a query

string type;
If priority of a query

int32 priority;

class MapStatusQuery {
If query id

US 6,810,516 B2
S

-continued

string id;
ff class id

CMObjectClass ref mapClassId;
ff query string

string query;
If priority of a secondary query which determines
If an order in which this query is ran

int32 priority;
If type of the query, corresponds to
// MapStatusQueryTypes.type

string type;
// determines whether the query is to be ran locally
ff or over the connection

boolean local;
boolean emptyValue;
string compatibility Requirement;

class MapClassDecoration {//abstract

class MapBadgeIcon: MapClassDecoration {
If badge id

string id;
If gif file for this badge

string icon File;
If badge tooltip

string toolTip;
If determine a badge position among other badges

float32 orientation:

class MapStatusColorBorder: MapClassDecoration {
If Border id

string id;
string borderColor;

class MapStatusIndicator {
string id;
MapStatusQuery ref mapStatus QueryId;
MapClassDecoration ref mapClassDecorationId;
MapClassStatusToolTip ref mapStatusToolTipId;
CMObjectClass ref cmCbjectClassId;
string value;

class MapClassStatusQuery {
MapStatusIndicator ref mapStatusIndicatorId;
MapStatusQuery ref mapStatus QueryId;
MapClassDecoration ref mapClassDecorationId;

class MapClassStatusToolTip {
string id;
string statusToolTip;

The MapStatusQueryTypes class defines types of queries
that could be run for a particular map call. Each type
corresponds to a badge for an object, e.g., Cluster has two
types (packages and resources). Priority determines an order
in which the badges (types) are processed. The MapSta
tuSQuery class defines information needed to run a particular
query. There are two types of queries: primary and Second
ary. A primary query determines a status of an object while
a secondary query determines compound status (badge) for
that object. For the Secondary query, priority and type fields
determine in which order and for which compound Status
this query will be run.

The MapClassDecoration class is an abstract class from
which the MapBadge Icon and MapStatus ColorBorder
classes are derived. The MapBadgeIcon class determines the
properties of a badge. The MapStatus.ColorBorder class
determines properties of an icon border, which for the
exemplary embodiment includes color only. It will be appar
ent to one skilled in the art that other border properties could
be used.

15

25

35

40

45

50

55

60

6
and if there is a match, a corresponding decoration will be
displayed. The MapClassStatusOuery class provides a link
between an outcome of query and the next Step which could
be either another query or a Status indicator.

Referring now to FIG. 4, a flow chart of the query process
is shown. Processing map object Status for borders, tooltips
and badges is performed as below. First, for each object, all
queries are Selected, both primary and Secondary, for this
type of object in block 401. A primary query is run to obtain
the object status in block 403. A determination is made in
block 405 as to whether there are visual indicators to draw,
based on the status obtained in block 403. If so, a visual
indicator is added in block 407. Regardless of the determi
nation made in block 405, a determination is then made in
block 409 as to whether there are secondary queries
required, based on the status obtained in block 403. If not,
then processing of this object is complete and overall display
processing continues at block 411.

Otherwise, a secondary query is run in block 413 to obtain
an underlying Status. A determination is made in block 415
as to whether there are additional Visual indicators to draw,
based on the underlying status obtained in block 413. If so,
a visual indicator is added in block 417. If not, processing
returns to decision block 409 for a determination of whether
there are additional Secondary queries, and processing con
tinues as described above.

In an exemplary embodiment, the MOF file might include
the following instances (Copyright 2001 to Hewlett-Packard
Company):

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:SGCluster:
ype = "icon';
priority = 1;

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:SGCluster:
ype = "packages':
priority = 2;

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:SGCluster:
ype = “resources:
priority = 3;

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:SGCluster:
ype = “nodes:
priority = 4;

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:SGPackage';
ype = “resources:
priority = 1;

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:SGPackage';
ype = "statusTooltips':
priority = 2;

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:CMNode";
ype = “quorumserver:
priority = 1;

instance of MapStatusQueryTypes {
mapClassId = “CMObjectClass:CMNode";
ype = “nodeState':
priority = 1;

The MapStatusIndicator class provides a link between an 65 The code above instantiates a group of query types for
outcome of query and the map decoration: a border or a
badge. After a query is run, its result is compared to a value

clusters comprising: icon, packages, resources, and nodes.
Query types of resources and Status tooltips are instantiated

US 6,810,516 B2
7

for packages. Query types quorumserver and nodeState are
instantiated for nodes. Instantiation of exemplary queries is
shown below.

instance of MapStatus Query {
id = “MapStatus Query:ClusterStatus:
mapClassId = “CMObjectClass:SGCluster:
query = “select status from SGCluster where id = Sid':
local = false;
type = "primary
emptyValue = false;

ss.
s

instance of MapStatus Query {
id = “MapStatus Query:ClusterDownNodesStatus:
mapClassId = “CMObjectClass:SGCluster:
query = “select * from Down NodesStatus:
priority = 1;
type = "nodes';
local = true;
emptyValue = false;

instance of MapStatus Query {
id = “MapStatus Query:ClusterNodeOuorumServerStatus:
mapClassId = “CMObjectClass:SGCluster:
query = “SELECT DISTINCT CMNodeOuorumServerConnection.status

as status FROM SGCluster, QSQuorumServer, CMNode,
SGClusterQuorumServerConnection, CMNodeOuorumServerConnection,
SGClusterNodeContainment WHERE
SGClusterQuorumServerConnection.objectId1 = SGClusterid and
SGClusterQuorumServerConnection.objectId2 = QSQuorumServer.id and
CMNodeOuorumServerConnection.objectId1 = CMNode.id and
CMNodeOuorumServerConnection.objectId2 = QSQuorumServer.id and
CMNodeOuorumServerConnection.status = \"up\ and
SGClusterNodeContainment.containeed = CMNode.id and
SGClusterNodeContainment.containerId= Sid and
SGClusterNodeContainment.status = \"up\":

priority = 2;
type = "nodes';
local = false;
emptyValue = true;
compatibilityRequirement="QuorumServerSupported:

8
defining Secondary queries associated with objects in the

GUI, the Secondary queries having a priority which
determines an order in which this query is run;

AS is understood to those skilled in the art, the users
require changes in Visual indicators or object properties that
trigger Visual indicators, the modifications are incorporated
into the MOF file. This file is read upon launching the
application GUI. No recompilation or re-coding is
necessary, as is necessary in conventional techniques.

Having described preferred embodiments of a novel
method that allows Separation of graphical display of object
Status from underlying data (which are intended to be
illustrative and not limiting), it is noted that modifications
and variations can be made by perSons skilled in the art in
light of the above teachings. It is therefore to be understood
that changes may be made in the particular embodiments of
the invention disclosed which are within the Scope and Spirit
of the invention as defined by the appended claims.

Having thus described the invention with the details and
particularity required by the patent laws, what is claimed and
desired protected by Letters Patent is set forth in the
appended claims.
What is claimed is:
1. A method for displaying visual indicators in a graphical

user interface (GUI), comprising:
identifying modifiable parameters for visual indicators

associated with a GUI,
constructing a class Schema associating classes with the

identified modifiable parameters,
defining primary queries associated with objects in the

GUI;

40

45

50

55

60

65

constructing a managed object format file with instances
of the classes defined in the class Schema, the instances
corresponding to data maintained by an application
using the graphical user interface.

2. The method as recited in claim 1, further comprising:
for each object in the display,

Selecting all queries corresponding to the object;
running a primary query to obtain object Status,
determining whether the object Status requires a visual

indicator, and if So, displaying the required visual
indicator;

determining whether the object Status requires one or
more Secondary queries, and if So, then

for each required Secondary query,
running a query to obtain an underlying Status, and
determining whether the underlying object Status

requires a visual indicator, and if So, displaying the
required Visual indicator.

3. The method as recited in claim 1, wherein the modi
fiable parameters for visual indicators identified in the
identifying Step are Selected from a group of border colors,
border pattern and associated icons.

4. The method as recited in claim 1, further comprising:
modifying the parameters for visual indicators, wherein

the Step of modifying comprises:
editing a managed object format file, and
launching an application associated with the GUI.

US 6,810,516 B2

5. The method as recited in claim 4, wherein launching an
application further comprises:

reading the modified managed object format file, and
instantiating classes associated with the modified param

eterS.
6. A computer System for displaying visual indicators in

a graphical user interface (GUI), comprising:
a computing device capable of executing object-oriented

computer programs,
a module comprising a GUI running on the computing

device;
a first Section of object-oriented computer code defining a

class Schema, the Schema comprising class definitions
for a status query types and Status queries for Selected
display objects, and relationships among the defined
classes;

a Second Section of object-oriented computer code defin
ing instances of classes for Status query type classes
and Status query classes, wherein relationships between
the GUI and display of desired visual indicators is
modifiable in a text file.

7. The computer system as recited in claim 6, wherein the
Status query types class identifies a priority for a query type.

8. The computer system as recited in claim 7, wherein
each Status query class is associated with a status query type.

9. The computer system as recited in claim 6, wherein a
Status query type is a primary or Secondary query, the
primary queries determining a status of an object and a
Secondary query determining a compound status (or badge)
for an object.

10. The computer system as recited in claim 9, wherein a
Secondary query has priority and type fields for determining
an order for which compound Status queries are to be run.

11. A method for dynamically modifying a visual indica
tor in a graphical user interface (GUI) without
recompilation, Said method comprising:

Selecting desired visual indicators in a GUI,
modifying at least one parameter of the Visual indicators,

the modification being performed dynamically,
wherein the dynamic modification enables display of
the modified Visual indicators upon re-launching of the
GUI application without recompilation.

12. The method as recited in claim 11, further comprising:
re-launching the GUI application; and
displaying modified Visual indicators.
13. The method as recited in claim 12, wherein

re-launching the GUI application comprises:
exiting the GUI application; and
launching the GUI application, the GUI application read

ing a file having modified parameters for at least one
Visual indicator, the file being generated in the Step of
modifying at least one parameter of the Visual indica
torS.

14. A memory for Storing data for acceSS by a graphical
user interface (GUI) application program being executed on
a data processing System, comprising:

an object-oriented data Structure Stored in the memory, the
data Structure including information related to a class
Schema, wherein the class Schema comprises class
definitions for Status query types and Status queries for
Selected display objects, and relationships among the
defined classes and wherein the class Schema identifies
modifiable parameters for Visual indicators associated

15

25

35

40

45

50

55

60

10
with the GUI, the class schema being utilized in com
pilation of the GUI;

a plurality of primary queries Stored in the memory, the
primary queries being associated with objects in the
GUI;

a plurality of Secondary queries Stored in the memory, the
Secondary queries being associated with objects in the
GUI, and having a priority which determines an order
in which a query is run; and

a plurality of instances of classes, the classes being
defined in the class Schema, wherein the class instances
are Stored in the memory and correspond to data
maintained by an application using the graphical user
interface,

wherein data in the memory are inputs to the GUI upon
launching of the GUI application program, thereby
avoiding recompilation of the GUI application program
when the data in memory is modified.

15. A memory for Storing data for acceSS by a graphical
user interface (GUI) application program being executed on
a data processing System, comprising:

an object-oriented class Schema Stored in a first memory,
wherein the class Schema comprises class definitions
for Status query types and Status queries for Selected
display objects, and relationships among the defined
classes and wherein the class Schema identifies modi
fiable parameters for Visual indicators associated with
the GUI, the class Schema being utilized in compilation
of the GUI; and

an object-oriented data structure stored in a second
memory, the data Structure comprising a plurality of
class instances corresponding to classes defined in the
class Schema, a plurality of primary queries, the pri
mary queries being associated with objects in the GUI,
and a plurality of Secondary queries associated with
objects in the GUI, and having a priority which deter
mines an order in which a query is run,

wherein data in the Second memory are inputs to the GUI
upon launching of the GUI application program,
thereby avoiding recompilation of the GUI application
program when data in the Second memory is modified.

16. A method for displaying a layout of graphical user
interface (GUI) properties panel, comprising:

Selecting a display object, wherein the display object
represents a focus object in memory, the focus object
having a corresponding Status in memory, relationships
between the display object, the layout of the display
object in the GUI and display object corresponding
Status being defined by a class Schema, wherein the
class Schema comprises class definitions for Status
query types and Status queries for Selected display
objects, and relationships among the defined classes
and wherein the class Schema identifies modifiable
parameters for Visual indicators associated with the
GUI, the class Schema being utilized in compilation of
the GUI, and wherein instances of classes defined in the
Schema are defined in a modifiable text file, the modi
fiable text file being read by the GUI at application
launch time; and

displaying the display object with Visual indicators in a
layout defined by the Schema.

k k k k k

