

US 20140364338A1

(19) United States (12) Patent Application Publication

Schaffer et al.

(10) Pub. No.: US 2014/0364338 A1 (43) Pub. Date: Dec. 11, 2014

- (54) ADENO-ASSOCIATED VIRUS VIRIONS WITH VARIANT CAPSID AND METHODS OF USE THEREOF
- (71) Applicant: **The Regents of the University of California**, Oakland, CA (US)
- (72) Inventors: David V. Schaffer, Danville, CA (US); Ryan R. Klimczak, San Francisco, CA (US); James T. Koerber, San Francisco, CA (US); John G. Flannery, Berkeley, CA (US); Deniz Dalkara Mourot, Berkeley, CA (US); Meike Visel, El Cerrito, CA (US); Leah C.T. Byrne, Berkeley, CA (US)
- (21) Appl. No.: 14/444,375
- (22) Filed: Jul. 28, 2014

Related U.S. Application Data

(63) Continuation of application No. 14/113,205, filed on Jan. 22, 2014, filed as application No. PCT/US2012/ 034413 on Apr. 20, 2012. (60) Provisional application No. 61/478,355, filed on Apr. 22, 2011.

Publication Classification

(57) **ABSTRACT**

The present disclosure provides adeno-associated virus (AAV) virions with altered capsid protein, where the AAV virions exhibit greater infectivity of retinal cells, when administered via intravitreal injection, compared to wild-type AAV. The present disclosure further provides methods of delivering a gene product to a retinal cell in an individual, and methods of treating ocular disease.

FIG. 1

7m8.CAG.GFP

7m8.Rho.GFP

Ŋ
С.
Ē

AAV2	VP1	Ч	MAADGYLPDWLEDTLSEGIRQWWKLKPGPPPKPAERHKDDSRGLVLPGYKYLGPFNGLD
AAV2	VP1	61	KGEPVNEADAAALEHDKAYDRQLDSGDNPYLKYNHADAEFQERLKEDTSFGGNLGRAVFQ
AAV2	VP1	121	AKKRVLEPLGLVEEPVKTAPGKKRPVEHSPVEPDSSSGTGKAGQQPARKRLNFGQTGDAD
AAV2	VP1	181	SVPDPQPLGQPPAAPSGLGTNTMATGSGAPMADNNEGADGVGNSSGNWHCDSTWMGDRVI
AAV2	VP1	241	TTSTRTWALPTYNNHLYKQISSQSGASNDNHYFGYSTPWGYFDFNRFHCHFSPRDWQRLI
AAV2	VP1	301	NNNWGFRPKRLNFKLFNIQVKEVTQNDGTTTIANNLTSTVQVFTDSEYQLPYVLGSAHQG
AAV2	VP1	361	CLPPFPADVFMVPQYGYLTLNNGSQAVGRSSFYCLEYFPSQMLRTGNNFTFSYTFEDVPF
AAV2	VP1	421	HSSYAHSQSLDRLMNPLIDQYLYYLSRTNTPSGTTTQSRLQFSQAGASDIRDQSRNWLPG
AAV2	VP1	481	PCYRQQRVSKTSADNNNSEYSWTGATKYHLNGRDSLVNPGPAMASHKDDEEKFFPQSGVL
AAV2	VP1	541	I F G K Q G S E K T NV D I E K V M I T D E E E I R T T N P V A T E Q Y G S V S T N L Q R G N R Q A T A D V N T Q G V
AAV2	VP1	601	LPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPPPQILIKNTPVPANPSTT
AAV2	VP1	661	FSAAKFASFITQYSTGQVSVEIEWELQKENSKRWNPEIQYTSNYNKSVNVDFTVDTNGVY
AAV2	VP1	721	SEPRPIGTRYLTR (SEQ ID NO:1)

Patent Application Publication Dec. 11, 2014 Sheet 4 of 22

9	
Ċ	
Ш	

IVWQDRDV 611 (SEQ ID NO:2)	IVWQDRDV 612 (SEQ ID NO:3)	SVWMERDV 601 (SEQ ID NO:4)	IVWQDRDV 612 (SEQ ID NO:5)	JVWQNRDV 613 (SEQ ID NO:6)	IVWQNRDV 614 (SEQ ID NO:7)	IVWQDRDV 612 (SEQ ID NO:8)	JVWQNRDV 614 (SEQ ID NO:9)
PVATEQYGSVSTNLQRG <mark>NR</mark> QAATADVNTQGVLPG	PVATERFGTVAVNFQSSST DP ATGDVHAMGALPG	RVAYNVGGQMATNNQ <mark>SS</mark> TTAPATGTYNLQEIVPG:	PVATERFGTVAVNLQSSST DP ATGDVHVMGALPG	PVATEEYGIVSSNLQAA <mark>NT</mark> AAQTQVVNNQGALPGI	PVATEEYGIVADNLQQQ <mark>NT</mark> APQIGTVNSQGALPG	PVATESYGQVATNHQSA <mark>QA</mark> QAQTGWVQNQGILPG	PVATEQYGVVADNLQ QA NTGPIVGNVNSQGALPGI
570	571	560	571	572	573	571	573
AAV-2	AAV-1	AAV-5	AAV-6	AAV-7	AAV-8	AAV-9	AAV-10

FIG. 7

g

Retinoschisin-1 *Homo sapiens* GenBank CA142483

itcsnpeqyv gwysswtank arlnsggfgc awlskfgdss ysvqyrtder lnwiyykdqt gnnrvfygns glsstedege dpwygkackc dcqggpnalw sagatsldci airmellecv skca (SEQ ID NO:10) rcdidewmtk rppiisrfir liplgwhvri lllfgyeatl fesgevtpdq kvisgiltag msrkieqfll pecpyhkplg 121 qwlqidlkei drtstvgnll 61 181

FIG. 10

Brain-derived neurotrophic factor *Homo sapiens* GenBank CAA62632

glaypgvrth gtlesvngpk agsrgltsla eeyknyldaa ggtvtvlekv pvskgglkgy tsrvmlssqv pleppllfll adkktavdms syfgcmkaap mkeanirgqg cdsisewvta ldedhkvrpn eennkdadly nmsmmvlrhs dparrgelsv dtfehvieel mtilfltmvi 121 61

iridtscvct tgsyvraltm dskkrigwrf krhwnsgcrt fyetkcnpmg ytkegcrgid ltikrgr (SEQ ID NO:11) 181241

RPE65
Homo sapiens
GenBank AAC39660

г	£	Ч	Λ	Т	ർ	'n	()	ID NO:12)
gsepfyh.	cnifsrf:	svngatal	lrfkpsy	ikkrkky.	rkknark	rgafefp	rshpdal(SEQ :
evo	pck	γvβ	CSO	iac	eer	gpı	if	kk0
sllrcgpglf	tefgtcafpd	etikqvdlcn	skseivvqfp	snetmgvwlh	lylanlrenw	iwlepevlfs	gepdsypsep	nipvtfhglf
tgriplwltg	ramtekrivi	fitkinpetl	plqadkedpi	wganymdcfe	wkgfefvyny	atailcsdet	nvktketwvw	sevaraevei
elsspltahv	rrfirtdayv	edyyactetn	siaynivkip	lfkflsswsl	ngflivdlcc	knlvtlpntt	hfvpdrlckl	yllilnakdl
gykklfetve	dfkeghvtyh	nalvnvypvg	nigncfgknf	vfvetpvkin	lfhhintyed	plnidkadtg	ytyayglgln	vspgagqkpa
msiqvehpag	fdggallhkf	syfrgvevtd	phiendgtvy	hsfgltpnyi	nnkyrtspfn	pqpevrryvl	inyqkycgkp	eddgvvlsvv
Ч	61	121	181	241	301	361	421	481

ttg ctgtctcttt Jtg tttgctgacg Jgg actttcgctt sgc tgctggacag	<pre>/tg tttgctgacg /gg actttcgctt .gc tgctggacag .tg acqtcctttc</pre>	ygg actttcgctt :gc tgctggacag :tg acqtcctttc	ogc tgctggacag stg acgtcctttc	stg acgtcctttc	n n	itc tgctacgtcc	yct ctgcggcctc	sat ctgttgtttg	ccc tttcctaata	egg ggggtggggt	ttg gggactcgag	yat aagtagcatg	act ccctctctgc	ccg ggctttgccc	cca ctggccgtcg	ege ettgeageae	ige cetteceaac	tta agcgcggcgg	ycg cccgctcctt	caa gctctaaatc	scc aaaaaacttg	itt cgccctttga	aca acactcaacc	gcc tattggttaa FIG. 13A	tta acgtttataa	tta tttttctaaa	ott caataatatt	scc ttttttgcgg	наа gatgctgaag
atcotoot	, הה וווו	gtgcactc	cctttccc	ccttgccc	ggggaagc	gacgtcct	gctgccgg	tgccagcc	cccactgt	tctattct	aggcatgc	ctacgtag	gttggcca	ccgacgcc	acctaatt	acttaatc	caccgatc	cggcgcat	cgccctag	tccccgtc	cctcgacc	gacggttt	aactggaa	gatttcgg	caaaatat	tatttgtt	ataaatgo	ccttattc	gaaagtaa
ccttgtataa		gtggcgtggt	cctgtcagct	tcgccgcctg	tggtgttgtc	ttctgcgcgg	cccgcgggcct	gccttctagt	aggtgccact	taggtgtcat	agacaatagc	tagagcatgg	tagtgatgga	caaaggtcgc	gccttaatta	gcgttaccca	aagaggcccg	cgccctgtag	cacttgccag	tcgccggctt	ctttacggca	cgccccgata	tcttgttcca	ggatttttcc	cgaattttaa	gcggaacccc	aataaccctg	tccgtgtcgc	aaacgctggt
atttctcct		gtcaggcaac	attgccacca	gcggaactca	gacaattccg	gccacctgga	gaccttcctt	cctcgactgt	tgaccctgga	attgtctgag	aggattggga	aggatcttcc	ааддаасссс	gccgggcgac	cgagcgcgca	gaaaaccctg	cgtaatagcg	gaatgggacg	gtgaccgcta	ctcgccacgt	cgatttagtg	agtgggccat	aatagtggac	gatttataag	aaatttaacg	ggaaatgtgc	ctcatgagac	attcaacatt	gctcacccag
tataacttttc		gtggcccgtt	tggttgggggc	tattgccacg	gttgggcact	cgcctgtgtt	caatccagcg	tcgagatctg	gtgccttcct	attgcatcgc	agcaaggggg	attcccgatt	cattaactac	gctcactgag	agtgagcgag	tcgtgactgg	cgccagctgg	cctgaatggc	tacgcgcagc	cccttccttt	tttagggttc	tggttcacgt	cacgttcctc	ctattctttt	gatttaacaa	catctttcgg	tatgtatccg	gagtatgagt	tcctgttttt
ttgcttcccg		atgaggagtt	caacccccac	teccetecc	gggctcggct	catggctgct	cttcggccct	ttccgcgtct	cccctccccc	aaatgaggaa	ggggcaggac	ttaagggcga	gcgggttaat	gcgctcgctc	gggcggcctc	ttttacaacg	atcccccttt	agttgcgcag	gtgtggtggt	tcgctttctt	ggggggctccc	attagggtga	cgctggagtt	ctatctcggt	aaaatgagct	tttcaggtgg	tacattcaaa	gaaaaaggaa	catttgcct
, (TZT	181	241	301	361	421	481	541	601	661	721	781	841	901	961	1021	1081	1141	1201	1261	1321	1381	1441	1501	1561	1621	1681	1741	1801

Patent Application Publication Dec. 11, 2014 Sheet 11 of 22 US 2014/0364338 A1

	cttocggoto	yyycay uyay acactttatg	acryyaaayu cccaggcttt	aggrirtaggcac	ttageteaet	arraarycay ttaatgtgag	3661
	tggccgattc	ccccgcgcgt	aaccgcctct	ccaatacgca	ggaagagcgc	gcgaggaagc	3541
	gagtcagtga	cgagcgcagc	gccgaacgac	gctcgccgca	agctgatacc	cctttgagtg	3481
)	cgtattaccg	tgtggataac	cccctgattc	cctgcgttat	catgttcttt	gttttgctca	3421
С	ttttgctgcg	gttcctggcc	cctttttacg	agcaacgcgg	gaaaaacgcc	ggagcctatg	3361
	tcagggggggc	gtgatgctcg	gtcgattttt	tgacttgagc	tcgccacctc	ctgtcgggtt	3301
	ctttatagtc	cgcctggtat	садддддаа	agggagcttc	agagcgcacg	tcggaacagg	3241
	agcggcaggg	gtatccggta	aggcggacag	gaagggagaa	cacgcttccc	gagaaagcgc	3181
	cgtgagctat	atacctacag	ccgaactgag	acgacctaca	cttggagcga	cacagcccag	3121
	ggttcgtgca	ctgaacgggg	agcggtcggg	gataaggcgc	atagttaccg	actcaagacg	3061
	accgggttgg	gtcgtgtctt	gtggcgataa	gctgctgcca	gttaccagtg	tgctaatcct	3001
	tacctcgctc	accgcctaca	actctgtagc	cacttcaaga	gttaggccac	tgtagccgta	2941
	gtccttctag	accaaatact	gagcgcagat	ggcttcagca	gaaggtaact	ctctttttcc	2881
	gagctaccaa	gccggatcaa	tggtttgttt	ctaccagcgg	aaaaccaccg	tgcaaacaaa	2821
	atctgctgct	tctgcgcgta	atcctttttt	tcttcttgag	gatcaaagga	ccgtagaaaa	2761
	gcgtcagacc	gttccactga	gtgagttttc	atcccttaac	catgaccaaa	ttgataatct	2701
	aagatccttt	gatctaggtg	aatttaaaag	cttcattttt	tgatttaaaa	tactttagat	2641
	tactcatata	agaccaagtt	ggtaactgtc	attaagcatt	tgcctcactg	ctgagatagg	2581
	agacagatcg	tgaacgaaat	caactatgga	gggagtcagg	ctacacgacg	tcgtagttat	2521
	ccctcccgta	agatggtaag	cactgggggcc	atcattgcag	gtctcgcggt	gtgagcgtgg	2461
	tctggagccg	tgctgataaa	gctggtttat	cttccggctg	gcgctcggcc	gaccacttct	2401
	aaagttgcag	ggaggcggat	tagactggat	caacaattaa	agetteeegg	tacttactct	2341
	actggcgaac	caaactatta	caacgttgcg	gtaatggtaa	gatgcctgta	gtgacaccac	2281
	aacgacgagc	agccatacca	agctgaatga	tgggaaccgg	ccttgatcgt	atgtaactcg	2221
	atgggggatc	tttgcacaac	taaccgcttt	ccgaaggagc	gatcggagga	ttctgacaac	2161
	gccaacttac	taacactgcg	ccatgagtga	gctgccataa	attatgcagt	cagtaagaga	2101
	gatggcatga	gcatcttacg	tcacagaaaa	tactcaccag	cttggttgag	ctcagaatga	2041
	atacactatt	cggtcgccgc	aagagcaact	gacgccgggc	atcccgtatt	gcgcggtatt	1981
	ctgctatgtg	ttttaaagtt	tgatgagcac	cgttttccaa	ссссдаадаа	agagttttcg	1921
	aagatccttg	caatagtggt	aactggatct	ggttacatcg	tgcacgagtg	atcagttggg	1861

:IG. 13B

																											Ū	•			
לי + ר ער לי ער לי לי לי לי לי לי לי לי לי לי לי לי לי	ומושמיט	сссдддсааа	cgcgcagaga	cgccatgcta	gc agatcttc	gcctcccaga	tggacggaat	agggctgttt	aacaagagag	gtgtctggca	tgtcagagga	aagggggctgt	agaggacata	gggaccttgg	atggatcctg	cctcttagaa	cccccaatct	gggtctgggg	d gcggccgcg	tatgaagcca	aaagcatgca	tccttggact	gtcacaccgg	tggactgcaa	ttccaggaca	atcctcaccc	aggaccgatg	ttctatggca	tcccgcttca	ctgctggagt	
	مريمممدمريد	actgaggccg	agcgagcgag	atgattaacc	ccttaagcta	cccaaacatg	acagccaccc	tcctctgggc	ttaatgaacg	cctaggctat	gageteetee	acgaacaggt	ctagctgtcc	agactgagct	ctttcctgg	caccttggcc	attatgaaca	cactttataa	ccatcacact	tctctttggc	ctggtaccaa	aggtgccacc	gtcagggggag	gtattcttcg	gctctccaag	gatttcaggg	cgtgcagtac	caaccgggtc	ccccatcatc	ccggatggag	
	ממררונמכמכ	tcgctcgctc	ggcctcagtg	cttgtagtta	cggaattcgc	ctctcaaagg	ccacaacctc	gcccctgagc	aaataaatgt	gctcctgggc	tgccctcatg	ttgtggggga	cagaaagtct	ccaggccacc	cttctcctcc	ctcctagtgt	gattaatatg	aggggggaggt	ctgcagatat	tgttattact	gcgaggaccc	tgtggtctgc	tgggtttcga	atgtgggctg	ggtgtgcctg	agatcaaagt	ccaagtacag	agactggaaa	tgctgcggcc	gcattgccat	VO:18)
0 1 1 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 1 1 1 1	מערממנ	ggctgcgcgc	ttggtcgccc	ctaggggttc	ctaggaagat	actgctcctt	ggccctgtct	gtcctcctca	aggggcctgc	caaggattgg	ttgcagcccc	cagaggtaac	gagaataaac	tatttcaaac	gttaggggac	ctcaggcttc	ctgcagcggg	ggagcttagg	cccctgaatt	gaaggctttt	gaggatgaag	cccaatgctc	cacaagcete	ccggagcagt	caaggetttg	gatctgaagg	gagtggatga	tacaaggacc	gttcagaacc	tggcacgtcc	a (SEQ ID N
0 +0 +0 +0 0 +0 +0 +0 +0 +0 +0 +0 +0 +0	וטטממווטוט	atttaattaa	cgggcgacct	aactccatca	tagccatgct	cacctggcaa	caggcagtca	ccacatttga	ttgtattccc	ttccatgcaa	aagctgcagg	tggatgactc	gagagactgg	ccatggtccc	tcatgcagaa	cctccctgac	ccctcagttt	gattcagcca	ccagagtcat	acgcaagata	atcgtctacc	ccaaggagga	atgcccatat	ctgctctaac	gctcaacagt	gttacagata	tgacatcgat	ctggatttac	cacctccacg	cccgctgggc	gtgtgcc tga
ν +ν +ν +ν +ν +ν +ν +ν +ν	yraryrryry	attacgccag	gcccgggcgt	gggagtggcc	cttatctacg	cccacctage	ctgcaacccc	ctgcttcttc	ctttccatct	tgaattccaa	ccagaaacgg	gtgtggggac	gtgacgagat	gcacagaggc	gacagacaag	agtaccttct	gccaattagg	cccagatgct	gggtcagaac	ccacc atg tc	cattgggatt	agtgcgattg	gtataccaga	accagatcac	acaaggcccg	gtagccagtg	aggggcgctg	agcgcctgaa	actcggaccg	tccgcctcat	gcgtcagcaa
3701		3781	3841	3901	3961	4021	4081	4141	4201	4261	4321	4381	4441	4501	4561	4621	4681	4741	4801	4861	4921	4981	5041	5101	5161	5221	5281	5341	5401	5461	5521

G. 13C

4
Tin
he
iip
Pe

vmnnseshfv ilflvalccf	frdwfeiqwi	sahysydhqt	dgvsnpeese	(110 NO:19)	
lkielrkrsd ylaicvlfni	iefkccgnng	pciqyqitnn	iglrylqtsl	qapeag (SEC	
giiifslglf yarwkpwlkp	fmkktidmlq	fsccnpsspr	liwlfevtit	qveaegadag	
wlmnwfsvla icydaldpak	yrdtdtpgrc	dgrylvdgvp	lmnsmgvvtl	esvkklgkgn	
kkrvklaggl scvfnslagk	gqglkngmky	evkdriksnv	raallsyyss	svpetwkafl	
mallkvkfdq pnsliqmqvl	llrgslentl	snryldfssk	eelnlwvrgc	sesqgwller	
61 61	121	181	241	301	

FIG. 14

Peripherin

jsf	.eq	ılk	llq	ınr	ıar	ıik	NO:20
psssvrlg	fiekvrfl	glaedlae	lheeelro	yadlsdaa	aggyqaga	vhsfaslr	(SEQ ID
sssrllgsas	lgelndrfan	erdrvqverd	lmdeieflkk	geaeewyksk	releeqfale	egeesrisvp	eldkssahsy
afsyssssrf	latrsnekge	lrrelellgr	rlelerkies	qyesiaaknl	gtneallrgl	ieiatyrkll	vtesgkegrs
fgpppslspg	smaealngef	dqlcqqelre	rkdvddatls	ltaalrdira	sltcevdglr	ellnvkmald	ktietrngev
gfsstsyrrt	lrlpserldf	qargqepara	edaehnlvlf	veveatvkpe	emnesrrqiq	emarhlreyq	dshsrktvli
mshhpsglra	rspragagal	qnaalrgels	qrleeetrkr	vsvesqqvqq	nhealrqakq	leeelrglke	ttvpeveppg
	61	121	181	241	301	361	421

proteit
eracting
RPGR-int

4	1	2 ID NO:21)	tedlfs (SEC	avlhaiykem	grlkvslqaa	1261
vspedlatpi	rdileqeldi	lqlwqilesg	keceevgyay	vvsdpldeek	dpdqghlkft	1201
rflfdmlngq	ldpqeqqgrr	ihfhfskvid	slrkpragee	lplsetetpv	qvyveykfyd	1141
aevmsdenik	eivslafype	pkadsekmci	vivppmsqky	seagttdsdd	kesseqgsev	1081
gkeplhpvnd	emtlshsalk	dgfknqheee	kfsetnsfig	tpeqvnytew	ylslnilngn	1021
igvqgknrme	sysrrkhgkr	erkekehqvv	rskrkpphgg	pevpieagqy	sfpsqdqmas	961
skisseeeka	gtkgkdtkds	ppesflkpea	vqldwkfpyi	paekpngsiq	sikgdfnltd	901
vpllplakne	epgsylgrar	sihvfddedl	ldhylrreal	arfpvlvtsd	asnnpyfrdq	841
fsdhdtaiip	spyavyrfft	lrsrwlgtqp	lwieitkccg	rseswepdne	ggrkaqeef	781
aqvylstdvl	slqacnkrkk	wmrlrfpikp	ggeefgvley	vhglatliga	fdrvletvek	721
hstlaagwic	ldihqamase	lhylqeasar	gyvmetdslf	gpqplydfts	fethctplsv	661
ttfctysfyd	alaqagdtqp	hihqafltsa	lhqgenlfel	gdedkvdisl	slcletlpah	601
kdvaygtrpl	shdlptseql	rikqlegilr	ltrlldlknn	nrdhkekler	eammtkadnd	541
kinvcygeel	ktrdmlilqr	shaettlele	lsqvlnelqv	sepkngeekk	vlgentgiep	481
rgsepathpa	naatisqppd	khkqevellq	lklevtnilg	lsrekaqned	ledkrkvlle	421
sqlqdqldae	liaeqlqqqv	sssgphwsne	llesmldssd	rkllndnydk	gervedleke	361
silqmtlkef	vslksqledv	aelkeeskka	allkqvnelr	nqgilsaahe	geayetllgk	301
vmtkagltev	kllhernasl	kekvelirlk	qkaaelrasi	feqrssleca	pekmwpkden	241
tmqveeppks	pnsahimasn	smakpiglcm	nsiisfssvi	skpselvsgs	atnenrgeva	181
ytappsfkeh	pkrgprdrls	htagapvpek	prvqvghrql	vgpasprraq	mhrlqghfhc	121
grlsmhgrpg	arrggkagwr	aeeaaplset	ltaagrdlrv	ikrlrttllr	kelswkqqde	61
frlredhmlv	mnreeledsf	nmktqpplsr	plvlpaskgk	dlpvrdidai	mshlvdptsg	

<	1		
r			
7			
(ſ)	
-			
L			

AAV1	TFSYTFEEVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQ-NQSGSAQNKDLLFSRGS 467
AAV6	TFSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQ-NQSGSAQNKDLLFSRGS 467
AAV3	FSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQGTTSGTTNQSRLLFSQAG 467
AAV2	FSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTN-TPSGTTTQSRLQFSQAG 466
AAV8	NFQFTYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTQTT-GGTANTQTLGFSQGG 469
AAV8.1	NFQFTYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTQTT-GGTANTQTLGFSQGG 469
AAV8 rh8	FQFSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLVRTQTTGTGGTQTLAFSQAGPS 469
AAV10	NFEFSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTQST-GGTQGLLFSQAG 469
AAV7	-FEFSYSFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLARTQSNPGGTAGNRELQFYQGG 469
AAV9	-FQFSYEFENVPFHSSYAHSQSLDRLMNPLIDQYLYYLSKTINGSGQNQQTLKFSVAG 467
AAV9.1	-FQFSYEFENVPFHSSYAHSQSLDRLMNPLIDQYLYYLSKTINGSGQNQQTLKFSVAG 467
AAV5	NFEFTYNFEEVPFHSSFAPSQNLFKLANPLVDQYLYRFVSTNNTGGVQFNKNL 453
	* * * * * * * * * * * * * * * * * * * *
AAV1	PAGMSVQPKNWLPGPCYRQQRVSKTKTDNNNSNFTWTGASKYNLNGRESIINPGTAMASH 527
AAV6	PAGMSVQPKNWLPGPCYRQQRVSKTKTDNNNSNFTWTGASKYNLNGRESIINPGTAMASH 527
AAV3	PQSMSLQARNWLPGPCYRQQRLSKTANDNNNSNFPWTAASKYHLNGRDSLVNPGPAMASH 527
AAV2	ASDIRDQSRNWLPGPCYRQQRVSKTSADNNNSEYSWTGATKYHLNGRDSLVNPGPAMASH 526
AAV8	PNTMANQAKNWLPGPCYRQQRVSTTTGQNNNSNFAWTAGTKYHLNGRNSLANPGIAMATH 529
AAV8.1	PNTMANQAKNWLPGPCYRQQRVSTTTGQNNNSNFAWTAGTKYHLNGRNSLANPGIAMATH 529
AAV8 rh8	SMANQARNWVPGPCYRQQRVSTTTNQNNNSNFAWTGAAKFKLNGRDSLMNPGVAMASH 527
AAV10	PANMSAQAKNWLPGPCYRQQRVSTTLSQNNNSNFAWTGATKYHLNGRDSLVNPGVAMATH 529
AAV7	PSTMAEQAKNWLPGPCFRQQRVSKTLDQNNNSNFAWTGATKYHLNGRNSLVNPGVAMATH 529
AAV9	PSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSEFAWPGASSWALNGRNSLMNPGPAMASH 527
AAV9.1	PSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSEFAWPGASSWALNGRNSLMNPGPAMASH 527
AAV5	AGRYANTYKNWFPGPMGRTQGWNLGSGVNRASVSAFATTNRMELEGASYQVPPQPNGMTN 513
	· · · · · · · · · · · · · · · · · · ·

7B
<u>ന</u>
Ē

AAV1	KDDEDKFFPMSGVMIFGKESAGASNTALD-NVMITDEEEIKATNPVATERFGTVAVNF 584
AAV6	KDDKDKFFPMSGVMIFGKESAGASNTALD-NVMITDEEEIKATNPVATERFGTVAVNL 584
AAV3	KDDEEKFFPMHGNLIFGKEGTTASNAELD-NVMITDEEEIRTTNPVATEQYGTVANNL 584
AAV2	KDDEEKFFPQSGVLIFGKQGSEKTNVDIE-KVMITDEEEIRTTNPVATEQYGSVSTNL 583
AAV8	KDDEERFFPSNGILIFGKQNAARDNADYS-DVMLTSEEEIKTTNPVATEEYGIVADNL 586
AAV8.1	KDDEERFFPSNGILIFGKQNAARDNADYS-DVMLTSEEEIKTINPVATEEYGIVADNL 586
AAV8 rh8	KDDDDRFFPSSGVLIFGKQGAGNDGVDYS-QVLITDEEEIKATNPVATEEYGAVAINN 584
AAV10	KDDEERFFPSSGVLMFGKQGAGRDNVDYS-SVMLTSEEEIKTTNPVATEQYGVVADNL 586
AAV7	KDDEDRFFPSSGVLIFGKTGAT-NKTTLE-NVLMTNEEEIRPTNPVATEEYGIVSSNL 585
AAV9	KEGEDRFFPLSGSLIFGKQGTGRDNVDAD-KVMITNEEEIKTTNPVATESYGQVATNH 584
AAV9.1	KEGEDRFFPLSGSLIFGKQGTGRDNVDAD-KVMITNEEEIKTTNPVATESYGQVATNH 584
AAV5	NLQGSNTYALENTMIFNSQPANPGTTATYLEGNMLITSESETQPVNRVAYNVGGQMATNN 573
	: ···· · ··· · ··· · · · · · · · · · ·
AAV1	QSSST DP ATGDVHAMGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKNPP 644
AAV6	QSSSTDPATGDVHVMGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPP 644
AAV3	QSSNTAPTTGTVNHQGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPP 644
AAV2	QRG NR QAATADVNTQGVLPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPP 643
AAV8	QQQNTAPQIGTVNSQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPP 646
AAV8.1	дфорардардистии sqalpgwwonrdvylogpiwakiphtdgnehpsplmggfglkhpp 646
AAV8 rh8	QAANTQAQTGLVHNQGVIPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPP 644
AAV10	QQANTGPIVGNVNSQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPP 646
AAV7	QAAMTAAQTQVVNNQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPP 645
AAV9	QSAQAQAQTGWVQNQGILPGMVWQDRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGMKHPP 644
AAV9.1	QSGQAQAATGWVQNQGILPGMVWQDRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGMKHPP 644
AAV5	QSSTTAPATGTYNLQEIVPGSVWMERDVYLQGPIWAKIPETGAHFHPSPAMGGFGLKHPP 633
	********* *****************************

\mathbf{O}	
\mathbf{r}	
<u>ന</u>	
Ш	

AAV1	PQILIK-	650	(SEQ	ID	NO:22)
AAV6	-AILIK-	650	(SEQ	ΠD	NO:23)
AAV3	-yimik-	650	(SEQ	ID	NO:24)
AAV2	PQILIKN	650	(SEQ	ΠD	NO:25)
AAV8	PQILIKN	653	(SEQ	ID	NO:26)
AAV8.1	PQILIKN	653	(SEQ	ID	NO:27)
AAV8 rh8	PQILIKN	651	(SEQ	ID	NO:28)
AAV10	PQILIKN	653	(SEQ	ID	NO:29)
AAV7	PQILIKN	652	(SEQ	ΠD	NO:30)
AAV9	PQILIK-	650	(SEQ	ΠD	NO:31)
AAV9.1	PQILIK-	650	(SEQ	ΠD	NO:32)
AAV5	PMMLIKN	640	(SEQ	ΠD	NO:33)

∢	
Õ	
-	
<u>ന</u>	
ш	

AAV1	TFSYTFEEVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQ-NQSGSAQNKDLLFSRGS 467
AAV6	TFSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQ-NQS G SAQNKDLLFSRGS 467
AAV3	FSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLNRTQGTTSGTTNQSRLLFSQAG 467
AAV2	FSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTN-TPSGTTTQSRLQFSQAG 466
AAV8	NFQFTYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTQTT-GGTANTQTLGFSQGG 469
AAV8.1	NFQFTYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTQTT-GGTANTQTLGFSQGG 469
AAV8 rh8	FQFSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLVRTQTTGTGGTQTLAFSQAGPS 469
AAV10	NFEFSYTFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLSRTQST-GGTQGLLFSQAG 469
AAV7	-FEFSYSFEDVPFHSSYAHSQSLDRLMNPLIDQYLYYLARTQSNPGCTAGNRELQFYQGG 469
AAV9	-FQFSYEFENVPFHSSYAHSQSLDRLMNPLIDQYLYYLSKTINGSGQNQQTLKFSVAG 467
AAV9.1	-FQFSYEFENVPFHSSYAHSQSLDRLMNPLIDQYLYYLSKTINGSGQNQQTLKFSVAG 467
AAV5	NFEFTYNFEEVPFHSSFAPSQNLFKLANPLVDQYLYRFVSTNNTGGVQFNKNL 453
AAV1	PAGMSVQPKNWLPGPCYRQQRVSKTKTDNNNSNFTWTGASKYNLNGRESIINPGTAMASH 527
AAV6	PAGMSVQPKNWLPGPCYRQQRVSKTKTDNNNSNFTWTGASKYNLNGRESIINPGTAMASH 527
AAV3	PQSMSLQARNWLPGPCYRQQRLSKTANDNNNSNFPWTAASKYHLNGRDSLVNPGPAMASH 527
AAV2	ASDIRDQSRNWLPGPCYRQQRVSKTSADNNNSEYSWTGATKYHLNGRDSLVNPGPAMASH 526
AAV8	PNTMANQAKNWLPGPCYRQQRVSTTTGQNNNSNFAWTAGTKYHLNGRNSLANPGIAMATH 529
AAV8.1	PNTMANQAKNWLPGPCYRQQRVSTTTGQNNNSNFAWTAGTKYHLNGRNSLANPGIAMATH 529
AAV8 rh8	SMANQARNWVPGPCYRQQRVSTTTNQNNNSNFAWTGAAKFKLNGRDSLMNPGVAMASH 527
AAV10	PANMSAQAKNWLPGPCYRQQRVSTTLSQNNNSNFAWTGATKYHLNGRDSLVNPGVAMATH 529
AAV7	PSTMAEQAKNWLPGPCFRQQRVSKTLDQNNNSNFAWTGATKYHLNGRNSLVNPGVAMATH 529
AAV9	PSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSEFAWPGASSWALNGRNSLMNPGPAMASH 527
AAV9.1	PSNMAVQGRNYIPGPSYRQQRVSTTVTQNNNSEFAWPGASSWALNGRNSLMNPGPAMASH 527
AAV5	AGRYANTYKNWFPGPMGRTQGWNLGSGVNRASVSAFATTNRMELEGASYQVPPQPNGMTN 513

Ω	
∞	
~	-
C)
Ē	-

AAV1 AAV6 AAV3 AAV2 AAV2 AAV8 1 AAV8 rh8 AAV10 AAV10 AAV9 AAV9 AAV9 AAV9.1 AAV5	KDDEDKFFPMSGVMIFGKESAGASNTALD-NVMITDEEEIKATNPVATERFGTVAVNF 584 KDDEDKFFPMSGVMIFGKESAGASNTALD-NVMITDEEEIKATNPVATERFGTVAVNL 584 KDDEEKFFPMSGVLIFGKEGTTASNAELD-NVMITDEEEIKTTNPVATEQYGTVANNL 584 KDDEEKFFPQSGVLIFGKQGSEKTNVDIE-KVMITDEEEIKTTNPVATEQYGTVANNL 583 KDDEEKFFPQSGVLIFGKQGSEKTNVDIE-KVMITDEEEIKTTNPVATEQYGSVSTNL 583 KDDEERFFPSNGILIFGKQAARDNADYS-DVMLTSEEEIKTTNPVATEEYGIVADNL 586 KDDEERFFPSNGILIFGKQGAGNDGVDS-QVLITDEEEIKATNPVATEEYGIVADNL 586 KDDEERFFPSSGVLIFGKQGAGRDVDYS-SVMLTSEEEIKTTNPVATEEYGIVADNL 586 KDDEBRFFPSSGVLIFGKQGAGRDNVDYS-SVMLTSEEEIKTTNPVATEEYGIVADNL 586 KDDEDRFFPSSGVLIFGKQGAGRDNVDYS-SVMLTSEEIKTTNPVATEEYGVVADNL 586 KDDEDRFFPSSGVLIFGKQGTGRDNVDAD-KVMITNEEEIKTTNPVATEEYGVVADNL 586 KDDEDRFFPSSGVLIFGKQGTGRDNVDAD-KVMITNEEEIKTTNPVATESYGQVATNH 584 KEGEDRFFPLSGSLIFGKQGTGRDNVDAD-KVMITNEEEIKTTNPVATESYGQVATNH 584 KEGEDRFFPLSGSLIFGKQGTGRDNVDAD-KVMITNEEEIKTTNPVATESYGQVATNH 584
AAV1	QSSST DLALGETTRPAP ATGDVHAMGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKNPP
AAV6	QSSST DLALGETTRPAP ATGDVHVMGALPGMVWQDRDVYLQGPIMAKIPHTDGHFHPSPLMGGFGLKHPP
AAV3	QSSNTAPTTGTVNHQGALPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPP 644
AAV2 22118	QRG NLALGETTRPAR QAATADVNTQGVLPGMVWQDRDVYLQGPIWAKIPHTDGHFHPSPLMGGFGLKHPP OOO NTALGETTRPAT APOTGTURINSOGAT.PGM/MONRPVYLOGPIWAKIPHTDGNEHPSPLMGGFGLKHPP
AAV8.1	QGQRGLGETTRPAQAQIGTVNSQGALPGWVWQNRDVYLQGFTWAALFALDGNFAFSFLMGGFGHAAFS
AAV8 rh8	QAANLALGETTRPATQAQTGLVHNQGVIPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPP
AAV10	QQLALGETTRPAANTGPIVGNVNSQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPP
AAV7 AAV9	QAA NLALGETTRPAT AAQTQVVNNQGALPGMVWQNRDVYLQGPIWAKIPHTDGNFHPSPLMGGFGLKHPP OSA OLALGETTRPA OAOTGWVONOGTI,PGMVWODRDVYLOGPIWAKIPHTDGNFHPSPLMGGFGMKHPP
AAV9.1	OSGOAALGETTRPAQAATGWVONOGILPGMVWODRDVYLOGPIWAKIPHTDGNFHPSPLMGGFGMKHPP
AAV5	Q SLALGETTRPAS TTAPATGTYNLQEIVPGSVWMERDVYLQGPIWAKIPETGAHFHPSPAMGGFGLKHPP

FIG. 18C

AAV1	PQILIK-	(SEQ	ПD	NO:34)
AAV6	PQILIK-	(SEQ	ПD	NO:35)
AAV3	PQIMIK-	(SEQ	ПD	NO:24)
AAV2	PQILIKN	(SEQ	ΠD	NO:36)
AAV8	PQILIKN	(SEQ	ПD	NO:37)
AAV8.1	PQILIKN	(SEQ	ΠD	NO:38)
AAV8 rh8	PQILIKN	(SEQ	ΠD	NO:39)
AAV10	PQILIKN	(SEQ	ΠD	NO:40)
AAV7	PQILIKN	(SEQ	ΠD	NO:41)
AAV9	PQILIK-	(SEQ	ПD	NO:42)
AAV9.1	PQILIK-	(SEQ	ПD	NO:43)
AAV5	PMMLIKN	(SEQ	ID	NO:44)

ADENO-ASSOCIATED VIRUS VIRIONS WITH VARIANT CAPSID AND METHODS OF USE THEREOF

CROSS-REFERENCE

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/478,355, filed Apr. 22, 2011, which application is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with government support under Grant Nos. EY016994-02 and EY1018241 awarded by the National Eye Institute of the National Institutes of Health. The government has certain rights in the invention.

BACKGROUND

[0003] Photoreceptors are the first neurons in the retina to receive and process visual information, converting visible electromagnetic radiation into hyperpolarized responses through phototransduction. The overwhelming majority of inherited retinal diseases result in the loss of these cells, either directly, such as in dominant mutations that affect rhodopsin protein folding, or indirectly, such as in recessive mutations that affect retinal recycling pathways in the retinal pigment epithelium (RPE).

[0004] AAV belongs to the Parvoviridae family and Dependovirus genus, whose members require co-infection with a helper virus such as adenovirus to promote replication, and AAV establishes a latent infection in the absence of a helper. Virions are composed of a 25 nm icosahedral capsid encompassing a 4.9 kb single-stranded DNA genome with two open reading frames: rep and cap. The non-structural rep gene encodes four regulatory proteins essential for viral replication, whereas cap encodes three structural proteins (VP1-3) that assemble into a 60-mer capsid shell. This viral capsid mediates the ability of AAV vectors to overcome many of the biological barriers of viral transduction—including cell surface receptor binding, endocytosis, intracellular trafficking, and unpackaging in the nucleus.

LITERATURE

[0005] U.S. Patent Publication No. 2005/0053922; U.S. Patent Publication No. 2009/0202490; Allocca et al. (2007) *J. Virol.* 81:11372; Boucas et al. (2009) *J. Gene Med.* 11:1103.

SUMMARY OF THE INVENTION

[0006] The present disclosure provides adeno-associated virus (AAV) virions with altered capsid protein, where the AAV virions exhibit greater infectivity of a retinal cell, when administered via intravitreal injection, compared to wild-type AAV. The present disclosure further provides methods of delivering a gene product to a retinal cell in an individual, and methods of treating ocular disease.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. **1** provides a representative three-dimensional model of AAV2 containing a random heptamer following amino acid 587.

[0008] FIG. **2** depicts greater levels of intravitreal transduction by AAV2 7M8 variant (right), relative to AAV2 (left).

[0009] FIG. **3** provides representative fluorescence images of retinal cryoslices showing green fluorescent protein (GFP) expression resulting from 7M8 carrying the GFP gene under the control of the ubiquitous CAG promoter (left) or a photoreceptor-specific Rho promoter (right).

[0010] FIG. 4 depicts GFP photoreceptor cells per million retinal cells as counted by flow cytometry, following transduction by 7M8 or by 7M8 bearing 4 tyrosine mutations (7m8.4YF).

[0011] FIG. **5** provides an amino acid sequence of AAV2 VP1 (SEQ ID NO:1).

[0012] FIG. **6** provides amino acid sequences corresponding to amino acids 570-610 of AAV2 (FIG. **5**) of AAV capsid protein VP1 of various AAV serotypes.

[0013] FIGS. 7A-I depict structural improvements in the Rs1h-/- mouse retina after gene transfer.

[0014] FIGS. **8**A-D depict functional rescue of the electroretinogram A and B waves following RS1 gene delivery.

[0015] FIGS. **9**A-E depict sustained improvements in retinal thickness measured at 10 months post 7m8-rho-RS1 treatment.

[0016] FIG. **10** provides an amino acid sequence of retinoschisin.

[0017] FIG. **11** provides an amino acid sequence of brain derived neurotrophic factor.

[0018] FIG. 12 provides an amino acid sequence of RPE65.

[0019] FIGS. **13**A-C provide the nucleotide sequence of the 7m8-rho-RS1 construct.

[0020] FIG. **14** provides an amino acid sequence of peripherin-2.

[0021] FIG. **15** provides an amino acid sequence of peripherin.

[0022] FIG. **16** provides an amino acid sequence of retinitis pigmentosa GTPase regulator-interacting protein-1.

[0023] FIGS. **17**A-C provide an alignment of amino acid sequences of AAV capsid protein loop IV (GH loop) regions. Insertion sites are shown in bold and underlining.

[0024] FIGS. **18**A-C provide an alignment of amino acid sequences of AAV capsid protein GH loop regions, with heterologous peptide insertions.

[0025] FIG. **19** provides a fluorescence fundus image showing GFP expression in central primate retina 9 weeks after administration of 7m8 carrying GFP under the control of a connexin36 promoter.

DEFINITIONS

[0026] The term "retinal cell" can refer herein to any of the cell types that comprise the retina, such as retinal ganglion cells, amacrine cells, horizontal cells, bipolar cells, and photoreceptor cells including rods and cones, Müller glial cells, and retinal pigmented epithelium.

[0027] "AAV" is an abbreviation for adeno-associated virus, and may be used to refer to the virus itself or derivatives thereof. The term covers all subtypes and both naturally occurring and recombinant forms, except where required otherwise. The abbreviation "rAAV" refers to recombinant adeno-associated virus, also referred to as a recombinant AAV vector (or "rAAV vector"). The term "AAV" includes AAV type 1 (AAV-1), AAV type 2 (AAV-2), AAV type 3 (AAV-3), AAV type 4 (AAV-4), AAV type 5 (AAV-5), AAV type 6 (AAV-6), AAV type 7 (AAV-7), AAV type 8 (AAV-8), avian AAV, bovine AAV, canine AAV, equine AAV, primate AAV, non-primate AAV, and ovine AAV. "Primate AAV" refers to AAV that infect primates, "non-primate AAV" refers

to AAV that infect non-primate mammals, "bovine AAV" refers to AAV that infect bovine mammals, etc.

[0028] The genomic sequences of various serotypes of AAV, as well as the sequences of the native terminal repeats (TRs), Rep proteins, and capsid subunits are known in the art. Such sequences may be found in the literature or in public databases such as GenBank. See, e.g., GenBank Accession Numbers NC_002077 (AAV-1), AF063497 (AAV-1), NC_001401 (AAV-2), AF043303 (AAV-2), NC_001729 (AAV-3), NC_001829 (AAV-4), U89790 (AAV-4), NC_006152 (AAV-5), AF513851 (AAV-7), AF513852 (AAV-8), and NC_006261 (AAV-8); the disclosures of which are incorporated by reference herein for teaching AAV nucleic acid and amino acid sequences. See also, e.g., Srivistava et al. (1983) J. Virology 45:555; Chiorini et al. (1998) J. Virology 71:6823; Chiorini et al. (1999) J. Virology 73:1309; Bantel-Schaal et al. (1999) J. Virology 73:939; Xiao et al. (1999) J. Virology 73:3994; Muramatsu et al. (1996) Virology 221:208; Shade et al., (1986) J. Virol. 58:921; Gao et al. (2002) Proc. Nat. Acad. Sci. USA 99:11854; Moris et al. (2004) Virology 33:375-383; international patent publications WO 00/28061, WO 99/61601, WO 98/11244; and U.S. Pat. No. 6,156,303.

[0029] An "rAAV vector" as used herein refers to an AAV vector comprising a polynucleotide sequence not of AAV origin (i.e., a polynucleotide heterologous to AAV), typically a sequence of interest for the genetic transformation of a cell. In general, the heterologous polynucleotide is flanked by at least one, and generally by two, AAV inverted terminal repeat sequences (ITRs). The term rAAV vector encompasses both rAAV vector particles and rAAV vector plasmids. An rAAV vector may either be single-stranded (ssAAV) or self-complementary (scAAV).

[0030] An "AAV virus" or "AAV viral particle" or "rAAV vector particle" refers to a viral particle composed of at least one AAV capsid protein (typically by all of the capsid proteins of a wild-type AAV) and an encapsidated polynucleotide rAAV vector. If the particle comprises a heterologous polynucleotide (i.e. a polynucleotide other than a wild-type AAV genome such as a transgene to be delivered to a mammalian cell), it is typically referred to as an "rAAV vector particle" or simply an "rAAV vector". Thus, production of rAAV particle necessarily includes production of rAAV vector, as such a vector is contained within an rAAV particle.

[0031] "Packaging" refers to a series of intracellular events that result in the assembly and encapsidation of an AAV particle.

[0032] AAV "rep" and "cap" genes refer to polynucleotide sequences encoding replication and encapsidation proteins of adeno-associated virus. AAV rep and cap are referred to herein as AAV "packaging genes."

[0033] A "helper virus" for AAV refers to a virus that allows AAV (e.g. wild-type AAV) to be replicated and packaged by a mammalian cell. A variety of such helper viruses for AAV are known in the art, including adenoviruses, herpesviruses and poxviruses such as vaccinia. The adenoviruses encompass a number of different subgroups, although Adenovirus type 5 of subgroup C is most commonly used. Numerous adenoviruses of human, non-human mammalian and avian origin are known and available from depositories such as the ATCC. Viruses of the herpes family include, for example, herpes simplex viruses (HSV) and Epstein-Barr viruses (EBV), as well as cytomegaloviruses (CMV) and pseudorabies viruses (PRV); which are also available from depositories such as ATCC.

[0034] "Helper virus function(s)" refers to function(s) encoded in a helper virus genome which allow AAV replication and packaging (in conjunction with other requirements for replication and packaging described herein). As described herein, "helper virus function" may be provided in a number of ways, including by providing helper virus or providing, for example, polynucleotide sequences encoding the requisite function(s) to a producer cell in trans. For example, a plasmid or other expression vector comprising nucleotide sequences encoding one or more adenoviral proteins is transfected into a producer cell along with an rAAV vector.

[0035] An "infectious" virus or viral particle is one that comprises a competently assembled viral capsid and is capable of delivering a polynucleotide component into a cell for which the viral species is tropic. The term does not necessarily imply any replication capacity of the virus. Assays for counting infectious viral particles are described elsewhere in this disclosure and in the art. Viral infectivity can be expressed as the ratio of infectious viral particles to total viral particles. Methods of determining the ratio of infectious viral particle to total viral particle are known in the art. See, e.g., Grainger et al. (2005) *Mol. Ther.* 11:S337 (describing a TCID50 infectious titer assay); and Zolotukhin et al. (1999) *Gene Ther.* 6:973. See also the Examples.

[0036] A "replication-competent" virus (e.g. a replicationcompetent AAV) refers to a phenotypically wild-type virus that is infectious, and is also capable of being replicated in an infected cell (i.e. in the presence of a helper virus or helper virus functions). In the case of AAV, replication competence generally requires the presence of functional AAV packaging genes. In general, rAAV vectors as described herein are replication-incompetent in mammalian cells (especially in human cells) by virtue of the lack of one or more AAV packaging genes. Typically, such rAAV vectors lack any AAV packaging gene sequences in order to minimize the possibility that replication competent AAV are generated by recombination between AAV packaging genes and an incoming rAAV vector. In many embodiments, rAAV vector preparations as described herein are those which contain few if any replication competent AAV (rcAAV, also referred to as RCA) (e.g., less than about 1 rcAAV per 10² rAAV particles, less than about 1 rcAAV per 10⁴ rAAV particles, less than about 1 rcAAV per 10⁸ rAAV particles, less than about 1 rcAAV per 10^{12} rAAV particles, or no rcAAV).

[0037] The term "polynucleotide" refers to a polymeric form of nucleotides of any length, including deoxyribonucleotides or ribonucleotides, or analogs thereof. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs, and may be interrupted by non-nucleotide components. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The term polynucleotide, as used herein, refers interchangeably to double- and single-stranded molecules. Unless otherwise specified or required, any embodiment of the invention described herein that is a polynucleotide encompasses both the double-stranded form and each of two complementary single-stranded forms known or predicted to make up the double-stranded form.

[0038] Nucleic acid hybridization reactions can be performed under conditions of different "stringency". Conditions that increase stringency of a hybridization reaction of widely known and published in the art. See, e.g., Sambrook et al. Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, herein incorporated by reference. For example, see page 7.52 of Sambrook et al. Examples of relevant conditions include (in order of increasing stringency): incubation temperatures of 25° C., 37° C., 50° C. and 68° C.; buffer concentrations of 10×SSC, 6×SSC, 1×SSC, 0.1×SSC (where 1×SSC is 0.15 M NaCl and 15 mM citrate buffer) and their equivalents using other buffer systems; formamide concentrations of 0%, 25%, 50%, and 75%; incubation times from 5 minutes to 24 hours; 1, 2, or more washing steps; wash incubation times of 1, 2, or 15 minutes; and wash solutions of 6×SSC, 1×SSC, 0.1×SSC, or deionized water. An example of stringent hybridization conditions is hybridization at 50° C. or higher and 0.1×SSC (15 mM sodium chloride/1.5 mM sodium citrate). Another example of stringent hybridization conditions is overnight incubation at 42° C. in a solution: 50% formamide, 1×SSC (150 mM NaCl, 15 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1×SSC at about 65° C. As another example, stringent hybridization conditions comprise: prehybridization for 8 hours to overnight at 65° C. in a solution comprising 6× single strength citrate (SSC) (1×SSC is 0.15 M NaCl, 0.015 M Na citrate; pH 7.0), 5×Denhardt's solution, 0.05% sodium pyrophosphate and 100 µg/ml herring sperm DNA; hybridization for 18-20 hours at 65° C. in a solution containing 6×SSC, 1×Denhardt's solution, 100 µg/ml yeast tRNA and 0.05% sodium pyrophosphate; and washing of filters at 65° C. for 1 h in a solution containing 0.2×SSC and 0.1% SDS (sodium dodecyl sulfate). [0039] Stringent hybridization conditions are hybridization conditions that are at least as stringent as the above representative conditions. Other stringent hybridization conditions are known in the art and may also be employed to identify nucleic acids of this particular embodiment of the invention.

[0040] "T_m" is the temperature in degrees Celsius at which 50% of a polynucleotide duplex made of complementary strands hydrogen bonded in anti-parallel direction by Watson-Crick base pairing dissociates into single strands under conditions of the experiment. T_m may be predicted according to a standard formula, such as:

$T_m{=}81.5{+}16.6 \mbox{ log } [X^*]{+}0.41(\% \mbox{ } G/C){-}0.61(\% \mbox{ } F){-}600/L$

[0041] where $[X^+]$ is the cation concentration (usually sodium ion, Na⁺) in mol/L; (% G/C) is the number of G and C residues as a percentage of total residues in the duplex; (% F) is the percent formamide in solution (wt/vol); and L is the number of nucleotides in each strand of the duplex.

[0042] A polynucleotide or polypeptide has a certain percent "sequence identity" to another polynucleotide or polypeptide, meaning that, when aligned, that percentage of bases or amino acids are the same when comparing the two sequences. Sequence similarity can be determined in a number of different manners. To determine sequence identity, sequences can be aligned using the methods and computer programs, including BLAST, available over the world wide web at ncbi.nlm.nih.gov/BLAST/. Another alignment algorithm is FASTA, available in the Genetics Computing Group (GCG) package, from Madison, Wis., USA, a wholly owned subsidiary of Oxford Molecular Group, Inc. Other techniques for alignment are described in Methods in Enzymology, vol. 266: Computer Methods for Macromolecular Sequence Analysis (1996), ed. Doolittle, Academic Press, Inc., a division of Harcourt Brace & Co., San Diego, Calif., USA. Of particular interest are alignment programs that permit gaps in the sequence. The Smith-Waterman is one type of algorithm that permits gaps in sequence alignments. See *Meth. Mol. Biol.* 70: 173-187 (1997). Also, the GAP program using the Needleman and Wunsch alignment method can be utilized to align sequences. See *J. Mol. Biol.* 48: 443-453 (1970)

[0043] Of interest is the BestFit program using the local homology algorithm of Smith and Waterman (Advances in Applied Mathematics 2: 482-489 (1981) to determine sequence identity. The gap generation penalty will generally range from 1 to 5, usually 2 to 4 and in many embodiments will be 3. The gap extension penalty will generally range from about 0.01 to 0.20 and in many instances will be 0.10. The program has default parameters determined by the sequences inputted to be compared. Preferably, the sequence identity is determined using the default parameters determined by the program. This program is available also from Genetics Computing Group (GCG) package, from Madison, Wis., USA.

[0044] Another program of interest is the FastDB algorithm. FastDB is described in Current Methods in Sequence Comparison and Analysis, Macromolecule Sequencing and Synthesis, Selected Methods and Applications, pp. 127-149, 1988, Alan R. Liss, Inc. Percent sequence identity is calculated by FastDB based upon the following parameters:

Mismatch Penalty: 1.00;

Gap Penalty: 1.00;

Gap Size Penalty: 0.33; and

Joining Penalty: 30.0.

[0045] A "gene" refers to a polynucleotide containing at least one open reading frame that is capable of encoding a particular protein after being transcribed and translated.

[0046] A "gene product" is a molecule resulting from expression of a particular gene. Gene products include, e.g., a polypeptide, an aptamer, an interfering RNA, an mRNA, and the like.

[0047] A "small interfering" or "short interfering RNA" or siRNA is a RNA duplex of nucleotides that is targeted to a gene interest (a "target gene"). An "RNA duplex" refers to the structure formed by the complementary pairing between two regions of a RNA molecule. siRNA is "targeted" to a gene in that the nucleotide sequence of the duplex portion of the siRNA is complementary to a nucleotide sequence of the targeted gene. In some embodiments, the length of the duplex of siRNAs is less than 30 nucleotides. In some embodiments, the duplex can be 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11 or 10 nucleotides in length. In some embodiments, the length of the duplex is 19-25 nucleotides in length. The RNA duplex portion of the siRNA can be part of a hairpin structure. In addition to the duplex portion, the hairpin structure may contain a loop portion positioned between the two sequences that form the duplex. The loop can vary in length. In some embodiments the loop is 5, 6, 7, 8, 9, 10, 11, 12 or 13 nucleotides in length. The hairpin structure can also contain 3' or 5' overhang portions. In some embodiments, the overhang is a 3' or a 5' overhang 0, 1, 2, 3, 4 or 5 nucleotides in length.

[0048] A "short hairpin RNA," or shRNA, is a polynucleotide construct that can be made to express an interfering RNA such as siRNA.

[0049] "Recombinant," as applied to a polynucleotide means that the polynucleotide is the product of various combinations of cloning, restriction or ligation steps, and other procedures that result in a construct that is distinct from a polynucleotide found in nature. A recombinant virus is a viral particle comprising a recombinant polynucleotide. The terms respectively include replicates of the original polynucleotide construct.

[0050] A "control element" or "control sequence" is a nucleotide sequence involved in an interaction of molecules that contributes to the functional regulation of a polynucleotide, including replication, duplication, transcription, splicing, translation, or degradation of the polynucleotide. The regulation may affect the frequency, speed, or specificity of the process, and may be enhancing or inhibitory in nature. Control elements known in the art include, for example, transcriptional regulatory sequences such as promoters and enhancers. A promoter is a DNA region capable under certain conditions of binding RNA polymerase and initiating transcription of a coding region usually located downstream (in the 3' direction) from the promoter.

[0051] "Operatively linked" or "operably linked" refers to a juxtaposition of genetic elements, wherein the elements are in a relationship permitting them to operate in the expected manner. For instance, a promoter is operatively linked to a coding region if the promoter helps initiate transcription of the coding sequence. There may be intervening residues between the promoter and coding region so long as this functional relationship is maintained.

[0052] An "expression vector" is a vector comprising a region which encodes a polypeptide of interest, and is used for effecting the expression of the protein in an intended target cell. An expression vector also comprises control elements operatively linked to the encoding region to facilitate expression of the protein in the target. The combination of control elements and a gene or genes to which they are operably linked for expression is sometimes referred to as an "expression cassette," a large number of which are known and available in the art or can be readily constructed from components that are available in the art.

[0053] "Heterologous" means derived from a genotypically distinct entity from that of the rest of the entity to which it is being compared. For example, a polynucleotide introduced by genetic engineering techniques into a plasmid or vector derived from a different species is a heterologous polynucleotide. A promoter removed from its native coding sequence and operatively linked to a coding sequence with which it is not naturally found linked is a heterologous promoter. Thus, for example, an rAAV that includes a heterologous nucleic acid encoding a heterologous gene product is an rAAV that includes a nucleic acid not normally included in a naturally-occurring, wild-type AAV, and the encoded heterologous gene product is a gene product not normally encoded by a naturally-occurring, wild-type AAV.

[0054] The terms "genetic alteration" and "genetic modification" (and grammatical variants thereof), are used interchangeably herein to refer to a process wherein a genetic element (e.g., a polynucleotide) is introduced into a cell other than by mitosis or meiosis. The element may be heterologous to the cell, or it may be an additional copy or improved version of an element already present in the cell. Genetic alteration may be effected, for example, by transfecting a cell with a recombinant plasmid or other polynucleotide through any process known in the art, such as electroporation, calcium phosphate precipitation, or contacting with a polynucleotideliposome complex. Genetic alteration may also be effected, for example, by transduction or infection with a DNA or RNA virus or viral vector. Generally, the genetic element is introduced into a chromosome or mini-chromosome in the cell; but any alteration that changes the phenotype and/or genotype of the cell and its progeny is included in this term.

[0055] A cell is said to be "stably" altered, transduced, genetically modified, or transformed with a genetic sequence if the sequence is available to perform its function during extended culture of the cell in vitro. Generally, such a cell is "heritably" altered (genetically modified) in that a genetic alteration is introduced which is also inheritable by progeny of the altered cell.

[0056] The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to polymers of amino acids of any length. The terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, phosphorylation, or conjugation with a labeling component. Polypeptides such as anti-angiogenic polypeptides, neuroprotective polypeptides, and the like, when discussed in the context of delivering a gene product to a mammalian subject, and compositions therefor, refer to the respective intact polypeptide, or any fragment or genetically engineered derivative thereof, which retains the desired biochemical function of the intact protein. Similarly, references to nucleic acids encoding anti-angiogenic polypeptides, nucleic acids encoding neuroprotective polypeptides, and other such nucleic acids for use in delivery of a gene product to a mammalian subject (which may be referred to as "transgenes" to be delivered to a recipient cell), include polynucleotides encoding the intact polypeptide or any fragment or genetically engineered derivative possessing the desired biochemical function.

[0057] An "isolated" plasmid, nucleic acid, vector, virus, virion, host cell, or other substance refers to a preparation of the substance devoid of at least some of the other components that may also be present where the substance or a similar substance naturally occurs or is initially prepared from. Thus, for example, an isolated substance may be prepared by using a purification technique to enrich it from a source mixture. Enrichment can be measured on an absolute basis, such as weight per volume of solution, or it can be measured in relation to a second, potentially interfering substance present in the source mixture. Increasing enrichments of the embodiments of this disclosure are increasingly more isolated. An isolated plasmid, nucleic acid, vector, virus, host cell, or other substance is in some embodiments purified, e.g., from about 80% to about 90% pure, at least about 90% pure, at least about 95% pure, at least about 98% pure, or at least about 99%, or more, pure.

[0058] As used herein, the terms "treatment," "treating," and the like, refer to obtaining a desired pharmacologic and/ or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. "Treatment," as used herein, covers any treatment of a disease in a mammal, particularly in a human, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease or at risk of

acquiring the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development; and (c) relieving the disease, i.e., causing regression of the disease.

[0059] The terms "individual," "host," "subject," and "patient" are used interchangeably herein, and refer to a mammal, including, but not limited to, human and non-human primates, including simians and humans; mammalian sport animals (e.g., horses); mammalian farm animals (e.g., sheep, goats, etc.); mammalian pets (dogs, cats, etc.); and rodents (e.g., mice, rats, etc.).

[0060] Before the present invention is further described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.

[0061] Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.

[0062] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.

[0063] It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a recombinant AAV virion" includes a plurality of such virions and reference to "the photoreceptor cell" includes reference to one or more photoreceptor cells and equivalents thereof known to those skilled in the art, and so forth. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as "solely," "only" and the like in connection with the recitation of claim elements, or use of a "negative" limitation.

[0064] It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination. All combinations of the embodiments pertaining to the invention are specifically embraced by the present invention and are disclosed herein just as if each and every combination was individually and explicitly disclosed. In addition, all sub-combinations of the various embodiments and elements thereof are also specifically embraced by the present invention and are disclosed herein just as if each and every such sub-combination was individually and explicitly disclosed herein.

[0065] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.

DETAILED DESCRIPTION

[0066] The present disclosure provides adeno-associated virus (AAV) virions with altered capsid protein, where the AAV virions exhibit greater infectivity of a retinal cell, when administered via intravitreal injection, compared to wild-type AAV when administered via intravitreal injection. The present disclosure further provides methods of delivering a gene product to a retinal cell in an individual, and methods of treating ocular disease.

[0067] The retinal cell can be a photoreceptor (e.g., rods; cones), a retinal ganglion cell (RGC), a Müller cell (a Müller glial cell), a bipolar cell, an amacrine cell, a horizontal cell, or a retinal pigmented epithelium (RPE) cell.

Variant AAV Capsid Polypeptides

[0068] The present disclosure provides a variant AAV capsid protein, where the variant AAV capsid protein comprises an insertion of from about 5 amino acids to about 11 amino acids in an insertion site in the capsid protein GH loop or loop IV, relative to a corresponding parental AAV capsid protein, and where the variant capsid protein, when present in an AAV virion, confers increased infectivity of a retinal cell compared to the infectivity of the retinal cell by an AAV virion comprising the corresponding parental AAV capsid protein. In some cases, the retinal cell is a photoreceptor cell (e.g., rods; cones). In other cases, the retinal cell is an RGC. In other cases, the retinal cell is an RPE cell. In other cases, the retinal cell is a Müller cell. Other retinal cells include amacrine cells, bipolar cells, and horizontal cells. An "insertion of from about 5 amino acids to about 11 amino acids" is also referred to herein as a "peptide insertion" (e.g., a heter-ologous peptide insertion). A "corresponding parental AAV capsid protein" refers to an AAV capsid protein of the same AAV serotype, without the peptide insertion.

[0069] The insertion site is in the GH loop, or loop IV, of the AAV capsid protein, e.g., in a solvent-accessible portion of the GH loop, or loop IV, of the AAV capsid protein. For the GH loop/loop IV of AAV capsid, see, e.g., van Vliet et al. (2006) *Mol. Ther.* 14:809; Padron et al. (2005) *J. Virol.* 79:5047; and Shen et al. (2007) *Mol. Ther.* 15:1955. For example, the insertion site can be within amino acids 411-650 of an AAV capsid protein, as depicted in FIGS. **17**A and **17**B. For example, the insertion site can be within amino acids 570-611 of AAV2, within amino acids 571-612 of AAV1, within amino acids 572 to 613 of AAV1, within amino acids 573 to 614 of AAV8, within amino acids 571 to 612 of AAV9, or within amino acids 573 to 614 of AAV10, as depicted in FIG. **6**.

[0070] In some cases, from about 5 amino acids to about 11 amino acids are inserted in an insertion site in the GH loop or loop IV of the capsid protein relative to a corresponding parental AAV capsid protein. For example, the insertion site can be between amino acids 587 and 588 of AAV2, or the corresponding positions of the capsid subunit of another AAV serotype. It should be noted that the insertion site 587/588 is

based on an AAV2 capsid protein. From about 5 amino acids to about 11 amino acids can be inserted in a corresponding site in an AAV serotype other than AAV2 (e.g., AAV8, AAV9, etc.). Those skilled in the art would know, based on a comparison of the amino acid sequences of capsid proteins of various AAV serotypes, where an insertion site "corresponding to amino acids 587-588 of AAV2" would be in a capsid protein of any given AAV serotype. Sequences corresponding to amino acids 570-611 of capsid protein VP1 of AAV2 (see FIG. 5) in various AAV serotypes are shown in FIG. 6. See, e.g., GenBank Accession No. NP_049542 for AAV1; Gen-Bank Accession No. AAD13756 for AAV5; GenBank Accession No. AAB95459 for AAV6; GenBank Accession No. YP_077178 for AAV7; GenBank Accession No. YP_077180 for AAV8; GenBank Accession No. AAS99264 for AAV9 and GenBank Accession No. AAT46337 for AAV10.

[0071] In some embodiments, the insertion site is a single insertion site between two adjacent amino acids located between amino acids 570-614 of VP1 of any AAV serotype, e.g., the insertion site is between two adjacent amino acids located in amino acids 570-610, amino acids 580-600, amino acids 570-575, amino acids 575-580, amino acids 580-585, amino acids 585-590, amino acids 590-600, or amino acids 600-614, of VP1 of any AAV serotype or variant. For example, the insertion site can be between amino acids 580 and 581, amino acids 581 and 582, amino acids 583 and 584, amino acids 584 and 585, amino acids 585 and 586, amino acids 586 and 587, amino acids 587 and 588, amino acids 588 and 589, or amino acids 589 and 590. The insertion site can be between amino acids 575 and 576, amino acids 576 and 577, amino acids 577 and 578, amino acids 578 and 579, or amino acids 579 and 580. The insertion site can be between amino acids 590 and 591, amino acids 591 and 592, amino acids 592 and 593, amino acids 593 and 594, amino acids 594 and 595, amino acids 595 and 596, amino acids 596 and 597, amino acids 597 and 598, amino acids 598 and 599, or amino acids 599 and 600.

[0072] For example, the insertion site can be between amino acids 587 and 588 of AAV2, between amino acids 590 and 591 of AAV1, between amino acids 575 and 576 of AAV5, between amino acids 589 and 590 of AAV7, between amino acids 589 and 590 of AAV7, between amino acids 580 and 591 of AAV8, between amino acids 588 and 589 of AAV9, or between amino acids 588 and 589 of AAV10.

[0073] As another example, the insertion site can be between amino acids 450 and 460 of an AAV capsid protein, as shown in FIG. 17A. For example, the insertion site can be at (e.g., immediately N-terminal to) amino acid 453 of AAV2, at amino acid 454 of AAV1, at amino acid 454 of AAV6, at amino acid 456 of AAV7, at amino acid 456 of AAV8, at amino acid 454 of AAV9, or at amino acid 456 of AAV10, as shown in FIG. 17A.

[0074] In some embodiments, a subject capsid protein includes a GH loop comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to an amino acid sequence set forth in FIG. **18**A-C.

Insertion Peptides

[0075] As noted above, a peptide of from about 5 amino acids to about 11 amino acids in length is inserted into the GH loop of an AAV capsid. The insertion peptide has a length of 5 amino acids, 6 amino acids, 7 amino acids, 8 amino acids, 9 amino acids, 10 amino acids, or 11 amino acids.

[0076] The insertion peptide can comprise an amino acid sequence of any one of the formulas set forth below.

[0077] For example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula I:

$\mathtt{Y}_1\mathtt{Y}_2\mathtt{X}_1\mathtt{X}_2\mathtt{X}_3\mathtt{X}_4\mathtt{X}_5\mathtt{X}_6\mathtt{X}_7\mathtt{Y}_3\mathtt{Y}_4$

where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is selected from Leu, Asn, and Lys;

X₂ is selected from Gly, Glu, Ala, and Asp;

X₃ is selected from Glu, Thr, Gly, and Pro;

X₄ is selected from Thr, Ile, Gln, and Lys;

X₅ is selected from Thr and Ala;

 X_6 is selected from Arg, Asn, and Thr;

X₇, if present, is selected from Pro and Asn.

[0078] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IIa:

$Y_1Y_2X_1X_2X_3X_4X_5X_6X_7Y_3Y_4$

where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

each of X1-X4 is any amino acid;

 X_5 is Thr;

 X_6 is Arg; and

X₇ is Pro.

[0079] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IIb:

Y₁Y₂X₁X₂X₃X₄X₅X₆X₇Y₃Y₄

where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is selected from Leu and Asn;

X₂, if present, is selected from Gly and Glu;

 X_3 is selected from Glu and Thr;

 X_4 is selected from Thr and Ile;

 X_5 is Thr;

X₆ is Arg; and

 X_7 is Pro.

[0080] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula III:

$Y_1Y_2X_1X_2X_3X_4X_5X_6X_7Y_3Y_4$

where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is Lys;

X₂ is selected from Ala and Asp;

X₃ is selected from Gly and Pro;

X₄ is selected from Gln and Lys;

 X_5 is selected from Thr and Ala;

 X_6 is selected from Asn and Thr;

X₇, if present, is Asn.

[0081] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IV:

$\mathtt{Y}_1\mathtt{Y}_2\mathtt{X}_1\mathtt{X}_2\mathtt{X}_3\mathtt{X}_4\mathtt{X}_5\mathtt{X}_6\mathtt{X}_7\mathtt{Y}_3\mathtt{Y}_4$

where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is a positively charged amino acid or an uncharged amino acid; or is selected from Leu, Asn, Arg, Ala, Ser, and Lys;

 X_2 is a negatively charged amino acid or an uncharged amino acid; or is selected from Gly, Glu, Ala, Val, Thr, and Asp;

X₃ is a negatively charged amino acid or an uncharged amino

acid; or is selected from Glu, Thr, Gly, Asp, or Pro;

 X_4 is selected from Thr, Ile, Gly, Lys, Asp, and Gln;

 X_5 is a polar amino acid, an alcohol (an amino acid having a free hydroxyl group), or a hydrophobic amino acid; or is selected from Thr, Ser, Val, and Ala;

 X_6 is a positively charged amino acid or an uncharged amino acid; or is selected from Arg, Val, Lys, Pro, Thr, and Asn; and X_7 , if present, is a positively charged amino acid or an uncharged amino acid; or is selected from Pro, Gly, Phe, Asn, and Arg.

[0082] As non-limiting examples, the insertion peptide can comprise an amino acid sequence selected from LGETTRP (SEQ ID NO:13), NETITRP (SEQ ID NO:14), KAGQANN (SEQ ID NO:15), KDPKTTN (SEQ ID NO:16), KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60).

[0083] In some cases, the insertion peptide has from 1 to 4 spacer amino acids (Y_1-Y_4) at the amino terminus and/or at the carboxyl terminus of any one of LGETTRP (SEQ ID NO:13), NETITRP (SEQ ID NO:14), KAGQANN (SEQ ID NO:15), KDPKTTN (SEQ ID NO:16), KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60). Suitable spacer amino acids include, but are not limited to, leucine, alanine, glycine, and serine.

[0084] For example, in some cases, an insertion peptide has one of the following amino acid sequences: LALGETTRPA (SEQ ID NO:45); LANETITRPA (SEQ ID NO:46), LAK-AGQANNA (SEQ ID NO:47), LAKDPKTTNA (SEQ ID NO:48), LAKDTDTTRA (SEQ ID NO:61), LARAGGS-VGA (SEQ ID NO:62), LAAVDTTKFA (SEQ ID NO:63), and LASTGKVPNA (SEQ ID NO:64). As another example, in some cases, an insertion peptide has one of the following amino acid sequences: AALGETTRPA (SEQ ID NO:49); AANETITRPA (SEQ ID NO:50), AAKAGQANNA (SEQ ID NO:51), and AAKDPKTTNA (SEQ ID NO:52). As yet another example, in some cases, an insertion peptide has one of the following amino acid sequences: GLGETTRPA (SEQ ID NO:53); GNETITRPA (SEQ ID NO:54), GKAGQANNA (SEQ ID NO:55), and GKDPKTTNA (SEQ ID NO:56). As another example, in some cases, an insertion peptide comprises one of KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60), flanked on the C-terminus by AA and on the N-terminus by A; or comprises one of KDT-DTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60) flanked on the C-terminus by G and on the N-terminus by A.

[0085] In some embodiments, a subject variant AAV capsid does not include any other amino acid substitutions, insertions, or deletions, other than an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein. In other embodiments, a subject variant AAV capsid includes from 1 to about 25 amino acid insertions, deletions, or substitutions, compared to the parental AAV capsid protein, in addition to an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein. For example, in some embodiments, a subject variant AAV capsid includes from 1 to about 5, from about 5 to about 10, from about 10 to about 15, from about 15 to about 20, or from about 20 to about 25 amino acid insertions, deletions, or substitutions, compared to the parental AAV capsid protein, in addition to an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein.

[0086] In some embodiments, a subject variant capsid polypeptide does not include one, two, three, or four, of the following amino acid substitutions: Y273F, Y444F, Y500F, and Y730F.

[0087] In some embodiments, a subject variant capsid polypeptide comprises, in addition to an insertion peptide as described above, one, two, three, or four, of the following amino acid substitutions: Y273F, Y444F, Y500F, and Y730F. **[0088]** In some embodiments, a variant AAV capsid polypeptide is a chimeric capsid, e.g., the capsid comprises a portion of an AAV capsid of a first AAV serotype and a portion of an AAV capsid of a second serotype; and comprises an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein.

[0089] In some embodiments, a subject variant capsid protein comprises an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, at least about 98%, or at least about 99%, amino acid sequence identity to the amino acid sequence provided in FIG. **5**; and an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein.

[0090] In some embodiments, a subject variant capsid protein is isolated, e.g., purified. In some cases, a subject variant capsid protein is included in an AAV vector, which is also provided. As described in detail below, a subject variant capsid protein can be included in a recombinant AAV virion.

Recombinant AAV Virion

[0091] The present disclosure provides a recombinant adeno-associated virus (rAAV) virion comprising: a) a variant AAV capsid protein, where the variant AAV capsid protein comprises an insertion of from about 5 amino acids to about 11 amino acids in an insertion site in the capsid protein GH loop or loop IV, relative to a corresponding parental AAV capsid protein, and where the variant capsid protein confers increased infectivity of a retinal cell compared to the infec-

tivity of the retinal cell by an AAV virion comprising the corresponding parental AAV capsid protein; and b) a heterologous nucleic acid comprising a nucleotide sequence encoding a gene product. In some cases, the retinal cell is a photoreceptor cell (e.g., rods and/or cones). In other cases, the retinal cell is an RGC cell. In other cases, the retinal cell is an RPE cell. In other cases, the retinal cell is a Müller cell. In other cases, the retinal cell is an horizontal cells. An "insertion of from about 5 amino acids to about 11 amino acids" is also referred to herein as a "peptide insertion" (e.g., a heterologous peptide insertion). A "corresponding parental AAV capsid protein" refers to an AAV capsid protein of the same AAV serotype, without the peptide insertion.

[0092] The insertion site is in the GH loop, or loop IV, of the AAV capsid protein, e.g., in a solvent-accessible portion of the GH loop, or loop IV, of the AAV capsid protein. For the GH loop, see, e.g., van Vliet et al. (2006) *Mol. Ther.* 14:809; Padron et al. (2005) *J. Virol.* 79:5047; and Shen et al. (2007) *Mol. Ther.* 15:1955. For example, the insertion site is within amino acids 570-611 of AAV2, within amino acids 571-612 of AAV1, within amino acids 560-601 of AAV5, within amino acids 571 to 612 of AAV6, within amino acids 572 to 613 of AAV7, within amino acids 573 to 614 of AAV8, within amino acids 571 to 612 of AAV9, or within amino acids 573 to 614 of AAV10.

[0093] From about 5 amino acids to about 11 amino acids are inserted in an insertion site in the GH loop or loop IV of the capsid protein relative to a corresponding parental AAV capsid protein. For example, the insertion site can be between amino acids 587 and 588 of AAV2, or the corresponding positions of the capsid subunit of another AAV serotype. It should be noted that the insertion site 587/588 is based on an AAV2 capsid protein. From about 5 amino acids to about 11 amino acids can be inserted in a corresponding site in an AAV serotype other than AAV2 (e.g., AAV8, AAV9, etc.). Those skilled in the art would know, based on a comparison of the amino acid sequences of capsid proteins of various AAV serotypes, where an insertion site "corresponding to amino acids 587-588 of AAV2" would be in a capsid protein of any given AAV serotype. Sequences corresponding to amino acids 570-611 of capsid protein VP1 of AAV2 (see FIG. 5) in various AAV serotypes are shown in FIG. 6.

[0094] In some embodiments, the insertion site is a single insertion site between two adjacent amino acids located between amino acids 570-614 of VP1 of any AAV serotype, e.g., the insertion site is between two adjacent amino acids located in amino acids 570-614, amino acids 580-600, amino acids 570-575, amino acids 575-580, amino acids 580-585, amino acids 585-590, amino acids 590-600, or amino acids 600-610, of VP1 of any AAV serotype or variant. For example, the insertion site can be between amino acids 580 and 581, amino acids 581 and 582, amino acids 583 and 584, amino acids 584 and 585, amino acids 585 and 586, amino acids 586 and 587, amino acids 587 and 588, amino acids 588 and 589, or amino acids 589 and 590. The insertion site can be between amino acids 575 and 576, amino acids 576 and 577, amino acids 577 and 578, amino acids 578 and 579, or amino acids 579 and 580. The insertion site can be between amino acids 590 and 591, amino acids 591 and 592, amino acids 592 and 593, amino acids 593 and 594, amino acids 594 and 595, amino acids 595 and 596, amino acids 596 and 597, amino acids 597 and 598, amino acids 598 and 599, or amino acids 599 and 600.

[0095] For example, the insertion site can be between amino acids 587 and 588 of AAV2, between amino acids 590 and 591 of AAV1, between amino acids 575 and 576 of AAV5, between amino acids 589 and 590 of AAV7, between amino acids 589 and 590 of AAV7, between amino acids 588 and 589 of AAV9, or between amino acids 589 and 590 of AAV10.

Insertion Peptides

[0096] As noted above, a subject rAAV virion comprises a peptide of from about 5 amino acids to about 11 amino acids in length inserted into the GH loop of the AAV capsid. The insertion peptide has a length of 5 amino acids, 6 amino acids, 7 amino acids, 8 amino acids, 9 amino acids, 10 amino acids, or 11 amino acids.

[0097] The insertion peptide can comprise an amino acid sequence of any one of the formulas set forth below.

[0098] For example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula I:

$Y_1Y_2X_1X_2X_3X_4X_5X_6X_7Y_3Y_4$

[0099] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is selected from Leu, Asn, and Lys;

X₂ is selected from Gly, Glu, Ala, and Asp;

X₃ is selected from Glu, Thr, Gly, and Pro;

X₄ is selected from Thr, Ile, Gln, and Lys;

 X_5 is selected from Thr and Ala;

X₆ is selected from Arg, Asn, and Thr;

X₇, if present, is selected from Pro and Asn.

[0100] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IIa:

$Y_1Y_2X_1X_2X_3X_4X_5X_6X_7Y_3Y_4$

[0101] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

each of X_1 - X_4 is any amino acid;

 X_5 is Thr;

X6 is Arg; and

X₇ is Pro.

[0102] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IIb:

$Y_1Y_2X_1X_2X_3X_4X_5X_6X_7Y_3Y_4$

[0103] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

 X_1 , if present, is selected from Leu and Asn;

X₂, if present, is selected from Gly and Glu;

 X_3 is selected from Glu and Thr; X_4 is selected from Thr and Ile;

 X_5 is Thr;

X₆ is Arg; and

X₇ is Pro.

[0104] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula III:

$\mathtt{Y}_1\mathtt{Y}_2\mathtt{X}_1\mathtt{X}_2\mathtt{X}_3\mathtt{X}_4\mathtt{X}_5\mathtt{X}_6\mathtt{X}_7\mathtt{Y}_3\mathtt{Y}_4$

[0105] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is Lys;

X₂ is selected from Ala and Asp;

X₃ is selected from Gly and Pro;

X₄ is selected from Gln and Lys;

 X_5 is selected from Thr and Ala;

 X_6 is selected from Asn and Thr;

X₇, if present, is Asn.

[0106] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IV:

$\mathtt{Y}_1 \mathtt{Y}_2 \mathtt{X}_1 \mathtt{X}_2 \mathtt{X}_3 \mathtt{X}_4 \mathtt{X}_5 \mathtt{X}_6 \mathtt{X}_7 \mathtt{Y}_3 \mathtt{Y}_4$

[0107] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

 X_1 , if present, is a positively charged amino acid or an uncharged amino acid; or is selected from Leu, Asn, Arg, Ala, Ser, and Lys;

 X_2 is a negatively charged amino acid or an uncharged amino acid; or is selected from Gly, Glu, Ala, Val, Thr, and Asp;

 X_3 is a negatively charged amino acid or an uncharged amino acid; or is selected from Glu, Thr, Gly, Asp, or Pro;

X₄ is selected from Thr, Ile, Gly, Lys, Asp, and Gln;

 X_5 is a polar amino acid, an alcohol (an amino acid having a free hydroxyl group), or a hydrophobic amino acid; or is selected from Thr, Ser, Val, and Ala;

 X_6 is a positively charged amino acid or an uncharged amino acid; or is selected from Arg, Val, Lys, Pro, Thr, and Asn; and X_7 , if present, is a positively charged amino acid or an uncharged amino acid; or is selected from Pro, Gly, Phe, Asn, and Arg.

[0108] As non-limiting examples, the insertion peptide can comprise an amino acid sequence selected from LGETTRP (SEQ ID NO:13), NETITRP (SEQ ID NO:14), KAGQANN (SEQ ID NO:15), KDPKTTN (SEQ ID NO:16), KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60).

[0109] In some cases, the insertion peptide has from 1 to 4 spacer amino acids (Y_1-Y_4) at the amino terminus and/or at the carboxyl terminus of any one of LGETTRP (SEQ ID NO:13), NETITRP (SEQ ID NO:14), KAGQANN (SEQ ID NO:15), KDPKTTN (SEQ ID NO:16), KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ

NO:59), and STGKVPN (SEQ ID NO:60). Suitable spacer amino acids include, but are not limited to, leucine, alanine, glycine, and serine.

[0110] For example, in some cases, an insertion peptide has one of the following amino acid sequences: LALGETTRPA (SEQ ID NO:45); LANETITRPA (SEQ ID NO:46), LAK-AGQANNA (SEQ ID NO:47), LAKDPKTTNA (SEQ ID NO:48), LAKDTDTTRA (SEQ ID NO:61), LARAGGS-VGA (SEQ ID NO:62), LAAVDTTKFA (SEQ ID NO:63), and LASTGKVPNA (SEQ ID NO:64). As another example, in some cases, an insertion peptide has one of the following amino acid sequences: AALGETTRPA (SEQ ID NO:49); AANETITRPA (SEQ ID NO:50), AAKAGQANNA (SEQ ID NO:51), and AAKDPKTTNA (SEQ ID NO:52). As yet another example, in some cases, an insertion peptide has one of the following amino acid sequences: GLGETTRPA (SEQ ID NO:53); GNETITRPA (SEQ ID NO:54), GKAGQANNA (SEQ ID NO:55), and GKDPKTTNA (SEQ ID NO:56). As another example, in some cases, an insertion peptide comprises one of KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60), flanked on the C-terminus by AA and on the N-terminus by A; or comprises one of KDT-DTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60) flanked on the C-terminus by G and on the N-terminus by A.

[0111] In some embodiments, a subject rAAV virion capsid does not include any other amino acid substitutions, insertions, or deletions, other than an insertion of from about 7 amino acids to about 10 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein. In other embodiments, a subject rAAV virion capsid includes from 1 to about 25 amino acid insertions, deletions, or substitutions, compared to the parental AAV capsid protein, in addition to an insertion of from about 7 amino acids to about 10 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein. For example, in some embodiments, a subject rAAV virion capsid includes from 1 to about 5, from about 5 to about 10, from about 10 to about 15, from about 15 to about 20, or from about 20 to about 25 amino acid insertions, deletions, or substitutions, compared to the parental AAV capsid protein, in addition to an insertion of from about 7 amino acids to about 10 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein.

[0112] In some embodiments, a subject rAAV virion capsid does not include one, two, three, or four, of the following amino acid substitutions: Y273F, Y444F, Y500F, and Y730F. [0113] In some embodiments, a subject variant capsid polypeptide comprises, in addition to an insertion peptide as described above, one, two, three, or four, of the following amino acid substitutions: Y273F, Y444F, Y500F, and Y730F. [0114] In some embodiments, a subject rAAV virion capsid is a chimeric capsid, e.g., the capsid comprises a portion of an AAV capsid of a first AAV serotype and a portion of an AAV capsid of a second serotype; and comprises an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein.

[0115] In some embodiments, a subject rAAV virion comprises a capsid protein comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, at least about 99%, amino acid

sequence identity to the amino acid sequence provided in FIG. **5**; and an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein.

[0116] In some embodiments, a subject rAAV virion comprises a capsid protein that includes a GH loop comprising an amino acid sequence having at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to an amino acid sequence set forth in FIG. **18**A-C.

[0117] A subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a retinal cell, compared to the infectivity of the retinal cell by an AAV virion comprising the corresponding parental AAV capsid protein.

[0118] In some cases, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a retinal cell, when administered via intravitreal injection, compared to the infectivity of the retinal cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

[0119] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a photoreceptor (rod or cone) cell, compared to the infectivity of the photoreceptor cell by an AAV virion comprising the corresponding parental AAV capsid protein.

[0120] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a photoreceptor (rod or cone) cell, when administered via intravitreal injection, compared to the infectivity of the photoreceptor cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

[0121] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of an RGC, compared to the infectivity of the RGC by an AAV virion comprising the corresponding parental AAV capsid protein.

[0122] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of an RGC, when administered via intravitreal injection, compared to the infectivity of the RGC by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

[0123] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of an RPE cell, compared to the infectivity of the RPE cell by an AAV virion comprising the corresponding parental AAV capsid protein.

[0124] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of an RPE cell, when administered via intravitreal injection, compared to the infectivity of the RPE cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

[0125] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a Müller cell, compared to the infectivity of the Müller cell by an AAV virion comprising the corresponding parental AAV capsid protein.

[0126] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a Müller cell, when administered via intravitreal injection, compared to the infectivity of the Müller cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection. **[0127]** In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a bipolar cell, compared to the infectivity of the bipolar cell by an AAV virion comprising the corresponding

parental AAV capsid protein. [0128] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a bipolar cell, when administered via intravitreal injection, compared to the infectivity of the bipolar cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

[0129] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of an amacrine cell, compared to the infectivity of the amacrine cell by an AAV virion comprising the corresponding parental AAV capsid protein.

[0130] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of an amacrine cell, when administered via intravitreal injection, compared to the infectivity of the amacrine cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

[0131] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a horizontal cell, compared to the infectivity of the horizontal cell by an AAV virion comprising the corresponding parental AAV capsid protein.

[0132] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a horizontal cell, when administered via intravitreal injection, compared to the infectivity of the horizontal cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

[0133] In some cases, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased ability to cross the internal limiting membrane (ILM), compared to the ability of an AAV virion comprising the corresponding parental AAV capsid protein to cross the ILM.

[0134] In some cases, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased ability, when

administered via intravitreal injection, to cross the internal limiting membrane (ILM), compared to the ability of an AAV virion comprising the corresponding parental AAV capsid protein to cross the ILM when administered via intravitreal injection.

[0135] A subject rAAV virion can cross the ILM, and can also traverse cell layers, including Müller cells, amacrine cells, etc., to reach the photoreceptor cells and or RPE cells. For example, a subject rAAV virion, when administered via intravitreal injection, can cross the ILM, and can also traverse cell layers, including Müller cells, amacrine cells, etc., to reach the photoreceptor cells and or RPE cells.

[0136] In some embodiments, a subject rAAV virion selectively infects a retinal cell, e.g., a subject rAAV virion infects a retinal cell with 10-fold, 15-fold, 20-fold, 25-fold, 50-fold, or more than 50-fold, specificity than a non-retinal cell, e.g., a cell outside the eye. For example, in some embodiments, a subject rAAV virion selectively infects a retinal cell, e.g., a subject rAAV virion infects a photoreceptor cell with 10-fold, 15-fold, 20-fold, 25-fold, 50-fold, or more than 50-fold, specificity than a non-retinal cell, e.g., a cell outside the eye. [0137] In some embodiments, a subject rAAV virion selectively infects a photoreceptor cell, e.g., a subject rAAV virion infects a photoreceptor cell, e.g., a subject rAAV virion infects a photoreceptor cell with 10-fold, 15-fold, 20-fold, 25-fold, 50-fold, or more than 50-fold, specificity than a non-photoreceptor cell present in the eye, e.g., a retinal ganglion cell, a Müller cell, etc.

[0138] In some embodiments, a subject rAAV virion exhibits at least 10-fold, at least 15-fold, at least 20-fold, at least 25-fold, at least 50-fold, or more than 50-fold, increased infectivity of a photoreceptor cell, when administered via intravitreal injection, compared to the infectivity of the photoreceptor cell by an AAV virion comprising the corresponding parental AAV capsid protein, when administered via intravitreal injection.

Gene Products

[0139] A subject rAAV virion comprises a heterologous nucleic acid comprising a nucleotide sequence encoding a gene product. In some embodiments, the gene product is an interfering RNA. In some embodiments, the gene product is a polypeptide. In some embodiments, the gene product is a site-specific nuclease that provide for site-specific knockdown of gene function.

Interfering RNA

[0140] Where the gene product is an interfering RNA (RNAi), suitable RNAi include RNAi that decrease the level of an apoptotic or angiogenic factor in a cell. For example, an RNAi can be an shRNA or siRNA that reduces the level of a gene product that induces or promotes apoptosis in a cell. Genes whose gene products induce or promote apoptosis are referred to herein as "pro-apoptotic genes" and the products of those genes (mRNA; protein) are referred to as "pro-apoptotic gene products include, e.g., Bax, Bid, Bak, and Bad gene products. See, e.g., U.S. Pat. No. 7,846,730.

[0141] Interfering RNAs could also be against an angiogenic product, for example VEGF (e.g., Cand5; see, e.g., U.S. Patent Publication No. 2011/0143400; U.S. Patent Publication No. 2008/0188437; and Reich et al. (2003) *Mol. Vis.* 9:210), VEGFR1 (e.g., Sirna-027; see, e.g., Kaiser et al. (2010) *Am. J. Ophthalmol.* 150:33; and Shen et al. (2006) *Gene Ther.* 13:225), or VEGFR2 (Kou et al. (2005) *Biochem.* 44:15064). See also, U.S. Pat. Nos. 6,649,596, 6,399,586, 5,661,135, 5,639,872, and 5,639,736; and U.S. Pat. Nos. 7,947,659 and 7,919,473.

Aptamers

[0142] Where the gene product is an aptamer, exemplary aptamers of interest include an aptamer against vascular endothelial growth factor (VEGF). See, e.g., Ng et al. (2006) *Nat. Rev. Drug Discovery* 5:123; and Lee et al. (2005) *Proc. Natl. Acad. Sci. USA* 102:18902. For example, a VEGF aptamer can comprise the nucleotide sequence 5'-cgcaau-cagugaaugcuuauacauccg-3' (SEQ ID NO:17). Also suitable for use is a PDGF-specific aptamer, e.g., E10030; see, e.g., Ni and Hui (2009) *Ophthalmologica* 223:401; and Akiyama et al. (2006) *J. Cell Physiol.* 207:407).

Polypeptides

[0143] Where the gene product is a polypeptide, the polypeptide is generally a polypeptide that enhances function of a retinal cell, e.g., the function of a rod or cone photoreceptor cell, a retinal ganglion cell, a Müller cell, a bipolar cell, an amacrine cell, a horizontal cell, or a retinal pigmented epithelial cell. Exemplary polypeptides include neuroprotective polypeptides (e.g., GDNF, CNTF, NT4, NGF, and NTN); anti-angiogenic polypeptides (e.g., a soluble vascular endothelial growth factor (VEGF) receptor; a VEGF-binding antibody; a VEGF-binding antibody fragment (e.g., a single chain anti-VEGF antibody); endostatin; tumstatin; angiostatin; a soluble Flt polypeptide (Lai et al. (2005) Mol. Ther. 12:659); an Fc fusion protein comprising a soluble Flt polypeptide (see, e.g., Pechan et al. (2009) Gene Ther. 16:10); pigment epithelium-derived factor (PEDF); a soluble Tie-2 receptor; etc.); tissue inhibitor of metalloproteinases-3 (TIMP-3); a light-responsive opsin, e.g., a rhodopsin; antiapoptotic polypeptides (e.g., Bcl-2, Bcl-X1); and the like. Suitable polypeptides include, but are not limited to, glial derived neurotrophic factor (GDNF); fibroblast growth factor 2; neurturin (NTN); ciliary neurotrophic factor (CNTF); nerve growth factor (NGF); neurotrophin-4 (NT4); brain derived neurotrophic factor (BDNF; e.g., a polypeptide comprising an amino acid sequence having at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to a contiguous stretch of from about 200 amino acids to 247 amino acids of the amino acid sequence depicted in FIG. 11 (SEQ ID NO:11)); epidermal growth factor; rhodopsin; X-linked inhibitor of apoptosis; and Sonic hedgehog.

[0144] Suitable light-responsive opsins include, e.g., a light-responsive opsin as described in U.S. Patent Publication No. 2007/0261127 (e.g., ChR2; Chop2); U.S. Patent Publication No. 2001/0086421; U.S. Patent Publication No. 2010/0015095; and Diester et al. (2011) *Nat. Neurosci.* 14:387.

[0145] Suitable polypeptides also include retinoschisin (e.g., a polypeptide comprising an amino acid sequence having at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to a contiguous stretch of from about 200 amino acids to 224 amino acids of the amino acid sequence depicted in FIG. 10 (SEQ ID NO:10). Suitable polypeptides include, e.g., retinitis pigmentosa GTPase regulator (RGPR)-interacting protein-1 (see, e.g., GenBank Accession Nos. Q96KN7, Q9EPQ2, and

Q9GLM3) (e.g., a polypeptide comprising an amino acid sequence having at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to a contiguous stretch of from about 1150 amino acids to about 1200 amino acids, or from about 1200 amino acids to 1286 amino acids, of the amino acid sequence depicted in FIG. 16 (SEQ ID NO:21); peripherin-2 (Prph2) (see, e.g., GenBank Accession No. NP_000313 (e.g., a polypeptide comprising an amino acid sequence having at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to a contiguous stretch of from about 300 amino acids to 346 amino acids of the amino acid sequence depicted in FIG. 14 (SEQ ID NO:19); and Travis et al. (1991) Genomics 10:733); peripherin (e.g., a polypeptide comprising an amino acid sequence having at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to a contiguous stretch of from about 400 amino acids to about 470 amino acids of the amino acid sequence depicted in FIG. 15 (SEQ ID NO:20); a retinal pigment epithelium-specific protein (RPE65), (e.g., a polypeptide comprising an amino acid sequence having at least about 90%, at least about 95%, at least about 98%, at least about 99%, or 100%, amino acid sequence identity to a contiguous stretch of from about 200 amino acids to 247 amino acids of the amino acid sequence depicted in FIG. 12 (SEQ ID NO:12)) (see, e.g., GenBank AAC39660; and Morimura et al. (1998) Proc. Natl. Acad. Sci. USA 95:3088); and the like.

[0146] Suitable polypeptides also include: CHM (choroidermia (Rab escort protein 1)), a polypeptide that, when defective or missing, causes choroideremia (see, e.g., Donnelly et al. (1994) *Hum. Mol. Genet.* 3:1017; and van Bokhoven et al. (1994) *Hum. Mol. Genet.* 3:1041); and Crumbs homolog 1 (CRB1), a polypeptide that, when defective or missing, causes Leber congenital amaurosis and retinitis pigmentosa (see, e.g., den Hollander et al. (1999) *Nat. Genet.* 23:217; and GenBank Accession No. CAM23328).

[0147] Suitable polypeptides also include polypeptides that, when defective or missing, lead to achromotopsia, where such polypeptides include, e.g., cone photoreceptor cGMP-gated channel subunit alpha (CNGA3) (see, e.g., GenBank Accession No. NP_001289; and Booij et al. (2011) *Ophthalmology* 118:160-167); cone photoreceptor cGMP-gated cation channel beta-subunit (CNGB3) (see, e.g., Kohl et al. (2005) *Eur J Hum Genet.* 13(3):302); guanine nucleotide binding protein (G protein), alpha transducing activity polypeptide 2 (GNAT2) (ACHM4); and ACHM5; and polypeptides that, when defective or lacking, lead to various forms of color blindness (e.g., L-opsin, M-opsin, and S-opsin). See Mancuso et al. (2009) *Nature* 461(7265):784-787.

Site-Specific Endonucleases

[0148] In some cases, a gene product of interest is a site-specific endonuclease that provide for site-specific knock-down of gene function, e.g., where the endonuclease knocks out an allele associated with a retinal disease. For example, where a dominant allele encodes a defective copy of a gene that, when wild-type, is a retinal structural protein and/or provides for normal retinal function, a site-specific endonuclease can be targeted to the defective allele and knock out the defective allele.

[0149] In addition to knocking out a defective allele, a site-specific nuclease can also be used to stimulate homolo-

gous recombination with a donor DNA that encodes a functional copy of the protein encoded by the defective allele. Thus, e.g., a subject rAAV virion can be used to deliver both a site-specific endonuclease that knocks out a defective allele, and can be used to deliver a functional copy of the defective allele, resulting in repair of the defective allele, thereby providing for production of a functional retinal protein (e.g., functional retinoschisin, functional RPE65, functional peripherin, etc.). See, e.g., Li et al. (2011) Nature 475:217. In some embodiments, a subject rAAV virion comprises a heterologous nucleotide sequence that encodes a site-specific endonuclease; and a heterologous nucleotide sequence that encodes a functional copy of a defective allele, where the functional copy encodes a functional retinal protein. Functional retinal proteins include, e.g., retinoschisin, RPE65, retinitis pigmentosa GTPase regulator (RGPR)-interacting protein-1, peripherin, peripherin-2, and the like.

[0150] Site-specific endonucleases that are suitable for use include, e.g., zinc finger nucleases (ZFNs); and transcription activator-like effector nucleases (TALENs), where such site-specific endonucleases are non-naturally occurring and are modified to target a specific gene. Such site-specific nucleases can be engineered to cut specific locations within a genome, and non-homologous end joining can then repair the break while inserting or deleting several nucleotides. Such site-specific endonucleases (also referred to as "INDELs") then throw the protein out of frame and effectively knock out the gene. See, e.g., U.S. Patent Publication No. 2011/0301073.

Regulatory Sequences

[0151] In some embodiments, a nucleotide sequence encoding a gene product of interest is operably linked to a constitutive promoter. In other embodiments, a nucleotide sequence encoding a gene product of interest is operably linked to an inducible promoter. In some instances, a nucleotide sequence encoding a gene product of interest is operably linked to a tissue-specific or cell type-specific regulatory element. For example, in some instances, a nucleotide sequence encoding a gene product of interest is operably linked to a photoreceptor-specific regulatory element (e.g., a photoreceptor-specific promoter), e.g., a regulatory element that confers selective expression of the operably linked gene in a photoreceptor cell. Suitable photoreceptor-specific regulatory elements include, e.g., a rhodopsin promoter; a rhodopsin kinase promoter (Young et al. (2003) Ophthalmol. Vis. Sci. 44:4076); a beta phosphodiesterase gene promoter (Nicoud et al. (2007) J. Gene Med. 9:1015); a retinitis pigmentosa gene promoter (Nicoud et al. (2007) supra); an interphotoreceptor retinoid-binding protein (IRBP) gene enhancer (Nicoud et al. (2007) supra); an IRBP gene promoter (Yokoyama et al. (1992) Exp Eye Res. 55:225).

Pharmaceutical Compositions

[0152] The present disclosure provides a pharmaceutical composition comprising: a) a subject rAAV virion, as described above; and b) a pharmaceutically acceptable carrier, diluent, excipient, or buffer. In some embodiments, the pharmaceutically acceptable carrier, diluent, excipient, or buffer is suitable for use in a human.

[0153] Such excipients, carriers, diluents, and buffers include any pharmaceutical agent that can be administered without undue toxicity. Pharmaceutically acceptable excipi-

ents include, but are not limited to, liquids such as water, saline, glycerol and ethanol. Pharmaceutically acceptable salts can be included therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. A wide variety of pharmaceutically acceptable excipients are known in the art and need not be discussed in detail herein. Pharmaceutically acceptable excipients have been amply described in a variety of publications, including, for example, A. Gennaro (2000) "Remington: The Science and Practice of Pharmacy," 20th edition, Lippincott, Williams, & Wilkins; Pharmaceutical Dosage Forms and Drug Delivery Systems (1999) H. C. Ansel et al., eds., 7th ed., Lippincott, Williams, & Wilkins; and Handbook of Pharmaceutical Excipients (2000) A. H. Kibbe et al., eds., 3rd ed. Amer. Pharmaceutical Assoc.

Methods of Delivering a Gene Product to a Retinal Cell and Treatment Methods

[0154] The present disclosure provides a method of delivering a gene product to a retinal cell in an individual, the method comprising administering to the individual a subject rAAV virion as described above. The gene product can be a polypeptide or an interfering RNA (e.g., an shRNA, an siRNA, and the like), an aptamer, or a site-specific endonuclease, as described above. Delivering a gene product to a retinal cell can provide for treatment of a retinal disease. The retinal cell can be a photoreceptor, a retinal ganglion cell, a Müller cell, a bipolar cell, an amacrine cell, a horizontal cell, or a retinal pigmented epithelial cell. In some cases, the retinal cell is a photoreceptor cell, e.g., a rod or cone cell.

[0155] The present disclosure provides a method of treating a retinal disease, the method comprising administering to an individual in need thereof an effective amount of a subject rAAV virion as described above. A subject rAAV virion can be administered via intraocular injection, by intravitreal injection, or by any other convenient mode or route of administration. Other convenient modes or routes of administration include, e.g., intravenous, intranasal, etc.

[0156] A "therapeutically effective amount" will fall in a relatively broad range that can be determined through experimentation and/or clinical trials. For example, for in vivo injection, i.e., injection directly into the eye, a therapeutically effective dose will be on the order of from about 10^{6} to about 10^{15} of the rAAV virions, e.g., from about 10^{8} to 10^{12} rAAV virions. For in vitro transduction, an effective amount of rAAV virions to be delivered to cells will be on the order of from about 10^{8} to about 10^{13} of the rAAV virions. Other effective dosages can be readily established by one of ordinary skill in the art through routine trials establishing dose response curves.

[0157] In some embodiments, more than one administration (e.g., two, three, four or more administrations) may be employed to achieve the desired level of gene expression over a period of various intervals, e.g., daily, weekly, monthly, yearly, etc.

[0158] Ocular diseases that can be treated using a subject method include, but are not limited to, acute macular neuroretinopathy; Behcet's disease; choroidal neovascularization; diabetic uveitis; histoplasmosis; macular degeneration, such as acute macular degeneration, non-exudative age related macular degeneration and exudative age related macular degeneration; edema, such as macular edema, cystoid macular edema and diabetic macular edema; multifocal choroiditis; ocular trauma which affects a posterior ocular site or location; ocular tumors; retinal disorders, such as central retinal vein occlusion, diabetic retinopathy (including proliferative diabetic retinopathy), proliferative vitreoretinopathy (PVR), retinal arterial occlusive disease, retinal detachment, uveitic retinal disease; sympathetic opthalmia; Vogt Koyanagi-Harada (VKH) syndrome; uveal diffusion; a posterior ocular condition caused by or influenced by an ocular laser treatment; posterior ocular conditions caused by or influenced by a photodynamic therapy; photocoagulation, radiation retinopathy; epiretinal membrane disorders; branch retinal vein occlusion; anterior ischemic optic neuropathy; nonretinopathy diabetic retinal dysfunction; retinoschisis; retinitis pigmentosa; glaucoma; Usher syndrome, cone-rod dystrophy; Stargardt disease (fundus flavimaculatus); inherited macular degeneration; chorioretinal degeneration; Leber congenital amaurosis; congenital stationary night blindness; choroideremia; Bardet-Biedl syndrome; macular telangiectasia; Leber's hereditary optic neuropathy; retinopathy of prematurity; and disorders of color vision, including achromatopsia, protanopia, deuteranopia, and tritanopia.

Nucleic Acids and Host Cells

[0159] The present disclosure provides an isolated nucleic acid comprising a nucleotide sequence that encodes a subject variant adeno-associated virus (AAV) capsid protein as described above, where the variant AAV capsid protein comprises an insertion of from about 5 amino acids to about 11 amino acids in the GH loop or loop IV relative to a corresponding parental AAV capsid protein, and where the variant capsid protein, when present in an AAV virion, provides for increased infectivity of a retinal cell compared to the infectivity of the retinal cell by an AAV virion comprising the corresponding parental AAV capsid protein. A subject isolated nucleic acid can be an AAV vector, e.g., a recombinant AAV vector.

Insertion Peptides

[0160] A variant AAV capsid protein encoded by a subject nucleic acid has an insertion peptide of from about 5 amino acids to about 11 amino acids in length is inserted into the GH loop of an AAV capsid. The insertion peptide has a length of 5 amino acids, 6 amino acids, 7 amino acids, 8 amino acids, 9 amino acids, 10 amino acids, or 11 amino acids.

[0161] The insertion peptide can comprise an amino acid sequence of any one of the formulas set forth below.

[0162] For example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula I:

$Y_1Y_2X_1X_2X_3X_4X_5X_6X_7Y_3Y_4$

[0163] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is selected from Leu, Asn, and Lys;

X₂ is selected from Gly, Glu, Ala, and Asp;

X₃ is selected from Glu, Thr, Gly, and Pro;

X₄ is selected from Thr, Ile, Gln, and Lys;

 X_5 is selected from Thr and Ala;

X₆ is selected from Arg, Asn, and Thr;

X₇, if present, is selected from Pro and Asn.
[0164] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IIa:

$\mathtt{Y}_1\mathtt{Y}_2\mathtt{X}_1\mathtt{X}_2\mathtt{X}_3\mathtt{X}_4\mathtt{X}_5\mathtt{X}_6\mathtt{X}_7\mathtt{Y}_3\mathtt{Y}_4$

[0165] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr; each of X_1 - X_4 is any amino acid;

 X_5 is Thr;

X₆ is Arg; and

X₇ is Pro.

[0166] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IIb:

Y₁Y₂X₁X₂X₃X₄X₅X₆X₇Y₃Y₄

[0167] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is selected from Leu and Asn;

X₂, if present, is selected from Gly and Glu;

X₃ is selected from Glu and Thr;

 X_4 is selected from Thr and Ile;

 X_5 is Thr;

X₆ is Arg; and

X₇ is Pro.

[0168] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula III:

Y₁Y₂X₁X₂X₃X₄X₅X₆X₇Y₃Y₄

[0169] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is Lys;

X₂ is selected from Ala and Asp;

X₃ is selected from Gly and Pro;

X₄ is selected from Gln and Lys;

 X_5 is selected from Thr and Ala;

 X_6 is selected from Asn and Thr;

X₇, if present, is Asn.

[0170] As another example, an insertion peptide can be a peptide of from 5 to 11 amino acids in length, where the insertion peptide is of Formula IV:

$\mathtt{Y}_1\mathtt{Y}_2\mathtt{X}_1\mathtt{X}_2\mathtt{X}_3\mathtt{X}_4\mathtt{X}_5\mathtt{X}_6\mathtt{X}_7\mathtt{Y}_3\mathtt{Y}_4$

[0171] where:

each of Y_1 - Y_4 , if present, is independently selected from Ala, Leu, Gly, Ser, and Thr;

X₁, if present, is a positively charged amino acid or an uncharged amino acid; or is selected from Leu, Asn, Arg, Ala, Ser, and Lys;

 X_2 is a negatively charged amino acid or an uncharged amino acid; or is selected from Gly, Glu, Ala, Val, Thr, and Asp;

 $\rm X_3$ is a negatively charged amino acid or an uncharged amino acid; or is selected from Glu, Thr, Gly, Asp, or Pro;

X₄ is selected from Thr, Ile, Gly, Lys, Asp, and Gln;

 X_5 is a polar amino acid, an alcohol (an amino acid having a free hydroxyl group), or a hydrophobic amino acid; or is selected from Thr, Ser, Val, and Ala;

 X_6 is a positively charged amino acid or an uncharged amino acid; or is selected from Arg, Val, Lys, Pro, Thr, and Asn; and X_7 , if present, is a positively charged amino acid or an uncharged amino acid; or is selected from Pro, Gly, Phe, Asn, and Arg.

[0172] As non-limiting examples, the insertion peptide can comprise an amino acid sequence selected from LGETTRP (SEQ ID NO:13), NETITRP (SEQ ID NO:14), KAGQANN (SEQ ID NO:15), KDPKTTN (SEQ ID NO:16), KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60).

[0173] In some cases, the insertion peptide has from 1 to 4 spacer amino acids (Y_1-Y_4) at the amino terminus and/or at the carboxyl terminus of any one of LGETTRP (SEQ ID NO:13), NETITRP (SEQ ID NO:14), KAGQANN (SEQ ID NO:15), KDPKTTN (SEQ ID NO:16), KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60). Suitable spacer amino acids include, but are not limited to, leucine, alanine, glycine, and serine.

[0174] For example, in some cases, an insertion peptide has one of the following amino acid sequences: LALGETTRPA (SEQ ID NO:45); LANETITRPA (SEQ ID NO:46), LAK-AGQANNA (SEQ ID NO:47), LAKDPKTTNA (SEQ ID NO:48), LAKDTDTTRA (SEQ ID NO:61), LARAGGS-VGA (SEQ ID NO:62), LAAVDTTKFA (SEQ ID NO:63), and LASTGKVPNA (SEQ ID NO:64). As another example, in some cases, an insertion peptide has one of the following amino acid sequences: AALGETTRPA (SEQ ID NO:49); AANETITRPA (SEQ ID NO:50), AAKAGQANNA (SEQ ID NO:51), and AAKDPKTTNA (SEQ ID NO:52). As yet another example, in some cases, an insertion peptide has one of the following amino acid sequences: GLGETTRPA (SEQ ID NO:53); GNETITRPA (SEQ ID NO:54), GKAGQANNA (SEQ ID NO:55), and GKDPKTTNA (SEQ ID NO:56). As another example, in some cases, an insertion peptide comprises one of KDTDTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60), flanked on the C-terminus by AA and on the N-terminus by A; or comprises one of KDT-DTTR (SEQ ID NO:57), RAGGSVG (SEQ ID NO:58), AVDTTKF (SEQ ID NO:59), and STGKVPN (SEQ ID NO:60) flanked on the C-terminus by G and on the N-terminus by A.

[0175] A subject recombinant AAV vector can be used to generate a subject recombinant AAV virion, as described above. Thus, the present disclosure provides a recombinant AAV vector that, when introduced into a suitable cell, can provide for production of a subject recombinant AAV virion. **[0176]** The present invention further provides host cells, an an experimentated (generatically modified) host cells.

e.g., isolated (genetically modified) host cells, comprising a subject nucleic acid. A subject host cell can be an isolated cell, e.g., a cell in in vitro culture. A subject host cell is useful for

producing a subject rAAV virion, as described below. Where a subject host cell is used to produce a subject rAAV virion, it is referred to as a "packaging cell." In some embodiments, a subject host cell is stably genetically modified with a subject nucleic acid. In other embodiments, a subject host cell is transiently genetically modified with a subject nucleic acid.

[0177] A subject nucleic acid is introduced stably or transiently into a host cell, using established techniques, including, but not limited to, electroporation, calcium phosphate precipitation, liposome-mediated transfection, and the like. For stable transformation, a subject nucleic acid will generally further include a selectable marker, e.g., any of several well-known selectable markers such as neomycin resistance, and the like.

[0178] A subject host cell is generated by introducing a subject nucleic acid into any of a variety of cells, e.g., mammalian cells, including, e.g., murine cells, and primate cells (e.g., human cells). Suitable mammalian cells include, but are not limited to, primary cells and cell lines, where suitable cell lines include, but are not limited to, 293 cells, COS cells, HeLa cells, Vero cells, 3T3 mouse fibroblasts, C3H10T1/2 fibroblasts, CHO cells, and the like. Non-limiting examples of suitable host cells include, e.g., HeLa cells (e.g., American Type Culture Collection (ATCC) No. CCL-2), CHO cells (e.g., ATCC Nos. CRL9618, CCL61, CRL9096), 293 cells (e.g., ATCC No. CRL-1573), Vero cells, NIH 3T3 cells (e.g., ATCC No. CRL-1658), Huh-7 cells, BHK cells (e.g., ATCC No. CCL10), PC12 cells (ATCC No. CRL1721), COS cells, COS-7 cells (ATCC No. CRL1651), RAT1 cells, mouse L cells (ATCC No. CCLI.3), human embryonic kidney (HEK) cells (ATCC No. CRL1573), HLHepG2 cells, and the like. A subject host cell can also be made using a baculovirus to infect insect cells such as Sf9 cells, which produce AAV (see, e.g., U.S. Pat. No. 7,271,002; U.S. patent application Ser. No. 12/297,958)

[0179] In some embodiments, a subject genetically modified host cell includes, in addition to a nucleic acid comprising a nucleotide sequence encoding a variant AAV capsid protein, as described above, a nucleic acid that comprises a nucleotide sequence encoding one or more AAV rep proteins. In other embodiments, a subject host cell further comprises an rAAV vector. An rAAV virion can be generated using a subject host cell. Methods of generating an rAAV virion are described in, e.g., U.S. Patent Publication No. 2005/0053922 and U.S. Patent Publication No. 2009/0202490.

EXAMPLES

[0180] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Celsius, and pressure is at or near atmospheric. Standard abbreviations may be used, e.g., bp, base pair(s); kb, kilobase(s); pl, picoliter(s); s or sec, second(s); min, minute(s); h or hr, hour(s); aa, amino acid(s);

kb, kilobase(s); bp, base pair(s); nt, nucleotide(s); i.m., intramuscular(ly); i.p., intraperitoneal(ly); s.c., subcutaneous(ly); and the like.

Example 1

AAV Variant with Enhanced Transduction of Retinal Cells

[0181] The approach used was to create a peptide display library by introducing a unique AvrII site into the wild type AAV2 genome between amino acid 587 and 588 by polymerase chain reaction (PCR) mutagenesis. A random 21 nucleotide insert, 7mer For, was used to synthesize dsDNA inserts, along with the antisense primer 7mer Rev. The resulting dsDNA inserts were cloned into the AvrII site of the genome after digestion with NheI, producing a diverse 7mer display library which was then packaged (Perabo et al., 2003; Muller et al., 2003). The virus was generated such that each viral genome was packaged or encapsidated within the capsid protein variant that that genome encoded. In this respect, functional improvements identified through selection can be linked to the genome sequence encoding this improved function contained within the viral capsid.

[0182] This library was subjected to positive selection within rho-GFP mice (Wensel et al. (2005) Vision Res. 45:3445). Briefly, in one round of selection, adult rho-GFP mice were intravitreally injected with 2 µL of phosphate buffered saline (PBS)-dialyzed, iodixanol-purified library with a genomic titer of approximately 1×10^{12} viral genomes (vg)/mL. An ultrafine 301/2-gauge disposable needle was passed through the sclera of the animal's eye, at the equator and next to the limbus, into the vitreous cavity. Injection of 2 µl of virus was made with direct observation of the needle in the center of the vitreous cavity. One week post-injection, eyes were enucleated and retinas dissociated using a light, papain protease treatment, followed by fluorescence activated cell sorter (FACS) isolation of photoreceptor populations. Successful virions were then PCR amplified from subsequent genomic extractions and further cloned and repackaged for injection.

[0183] Further iterations of this selection were performed, narrowing the pool of variants to a subset with the most permissive mutations. After three iterations, a round of errorprone PCR was performed to create a further generation of variants for selection. In total, this process was repeated for two generations. In this respect, this process of directed evolution created photoreceptor-permissive AAV variants through the application of positive selection and induced mutagenesis, similar to the process of natural evolution.

[0184] Subsequently, the cap genes of fifty variants were sequenced to determine the most prominent and successful variants to have permissive mutations for intravitreal photoreceptor transduction. Of the 50 clones, 46 gave readable sequences of a 7mer insert. Remarkably, nearly two thirds of clones contained the same distinct 7mer motif (\sim^{588} LGETTRP-; SEQ ID NO:13). Interestingly, the next most prominent variant (\sim^{588} NETITRP-; SEQ ID NO:14) also contained a similar flanking motif consisting of a positively-charged arginine residue in between a polar threonine and a nonpolar proline residue (TRP).

TABLE 1

Clone	Appr. Frequency (%)	Frequency
~ ⁵⁸⁸ LGETTRP~ (SEQ ID NO: 13)	64	31
~ ⁵⁸⁸ NETITRP~ (SEQ ID NO: 14)	12	5
~ ⁵⁸⁸ KAGQANN~ (SEQ ID NO: 15)	6	3
~ ⁵⁸⁸ KDPKTTN~ (SEQ ID NO: 16)	4	2
~ ⁵⁸⁸ KDTDTTR~ (SEQ ID NO: 57)		2
~ ⁵⁸⁸ RAGGSVG~ (SEQ ID NO: 58)		1
~ ⁵⁸⁸ AVDTTKF~ (SEO ID NO: 59)		1
~ ⁵⁸⁸ STGKVPN~ (SEQ ID NO: 60)		1

[0185] Table 1 Sequencing of isolated variants from directed evolution reveals a high degree of convergence in viral libraries. All variants derived from the AAV2 7mer library, with approximately 64% of variants containing the same 7mer motif (\sim^{588} LGETTRP~(SEQ ID NO:13)).

[0186] Among the 7mer insert sequences, there were moderate preferences at particular positions, e.g., a positively charged amino acid at position 1; a negatively charged amino acid at position 2; an alcohol (e.g., an amino acid having an alcohol group (a free hydroxyl group), such as Thr or Ser) at position 5.

[0187] The 7mer inserts were flanked by spacers, as shown in Table 2:

Clone	Frequency
~ ⁵⁸⁸ LALGETTRPA~ (SEQ ID NO: 45)	31
~ ⁵⁸⁸ LANETITRPA~ (SEQ ID NO: 46)	5
~ ⁵⁸⁸ LAKAGQANNA~ (SEQ ID NO: 47)	3
~ ⁵⁸⁸ LAKDPKTTNA~ (SEQ ID NO: 48)	2
~ ⁵⁸⁸ LAKDTDTTRA~ (SEQ ID NO: 61)	2
~ ⁵⁸⁸ LARAGGSVGA~ (SEQ ID NO: 62)	1
~ ⁵⁸⁸ LAAVDTTKFA~ (SEQ ID NO: 63)	1
~ ⁵⁸⁸ LASTGKVPNA~ (SEQ ID NO: 64)	1

[0188] FIG. **1**. Representative three-dimensional capsid model of AAV2 containing a random heptamer (shown in

orange) following amino acid 587. This area of the AAV2 capsid likely participates in cell-surface receptor binding.

[0189] In light of the high degree of library convergence from the above-described selection, a recombinant form of AAV2~⁵⁸⁸LGETTRP~(SEQ ID NO:13; nick named 7M8) was cloned and packaged the vector with a scCAG-GFP transgene to visualize its transduction profile. Three weeks following intravitreal injection in adult mice, robust expression in numerous cell types, including retinal ganglion cells (RGCs) and Müller cells, was observed. Importantly, transduction of photoreceptors in retinas injected with 7M8, as seen by GFP expression in outer nuclear layer (ONL) nuclei (red arrows) and in outer segments (FIG. **2**, blue arrow), was observed, whereas AAV2 showed no discernable photoreceptor expression.

[0190] FIG. **2** AAV2 7M8 variant (right) demonstrates greater levels of intravitreal photoreceptor transduction relative to AAV2 (left). Confocal microscopy of transverse retinal sections three weeks after intravitreal injection of 2 μ L of 1×10¹² vg/mL of AAV2 7M8 and AAV2 scCAG GFP in adult mice. Red arrows (top) denote photoreceptor nuclei and blue arrow (top) denote photoreceptor outer segments.

[0191] In light of these gains in retinal cell transduction, an attempt was made to increase specificity in expression through the use of a ssRho-eGFP transgene containing a photoreceptor-specific rhodopsin promoter to better resolve transduction efficiencies specifically in photoreceptors (FIG. 3). Indeed the use of a photoreceptor specific Rho promoter limited the GFP expression to the photoreceptors. An attempt was made to improve 7M8 transduction efficiency by combining a rational design approach to the previous directed evolution approach. Therefore, four surface exposed tyrosine residues were mutagenized to phenylalanines on the 7M8 capsid (Y273F, Y444F, Y500F, and Y730F) which has previous been shown to increase photoreceptor infectivity (Petrs-Silva et al., 2009). Interestingly, the addition of mutations decreased number of photoreceptors transduced compared to the original virus as show by FACs sorting of the GFP(+) photoreceptors from 7m8 or 7m8-4YF infected retinas (FIG. 4).

[0192] FIG. **3**. Representative fluorescence images of retinal cryoslices showing GFP expression resulting from 7m8 carrying the GFP gene under the control of the ubiquitous CAG promoter (left) or a photoreceptor specific Rho promoter (right).

[0193] FIG. **4**. GFP(+) photoreceptor cells per million retinal cells as counted by flow cytometry. 7m8 transduces more than 2× the amount of photoreceptors compared 7m8 bearing 4 tyrosine mutations (top).

Example 2

Treatment of Retinoschisis

[0194] Using the expression construct 7m8-rho-RS1, a functional retinoschisin (RS1) protein was delivered to retinoschisin-deficient mice (Rs1h-deficient mice; Rs1h is the mouse homolog of human RS1). The vector comprises a nucleotide sequence encoding a functional retinoschisin protein under transcriptional control of a rhodopsin promoter. See FIGS. **13**A-C, where the bold and underlined nucleotide sequence (nucleotides 4013-4851) are the rhodopsin promoter; and nucleotides 4866-5540 (with the start atg and stop tga sequences shown in bold) encode a human RS1 protein.

[0195] The 7m8-rho-RS1 construct was administered intravitreally to Rs1h-/- mice at P15. Rs1h-/- mice were generated through targeted disruption of exon 3 of the Rs1h gene, as described (Weber et al. (2002) Proc. Natl. Acad. Sci. USA 99:6222). The Rs1h-/- mice are deficient in the Rs1h protein product, have an electronegative ERG (e.g., a reduced b-wave with relative preservation of the a-wave) and splitting of the layers of the retina, similar to what is seen in human retinoschisis patients. Injection of the 7m8-rho-RS1 vector into the Rs1h-/- led to high levels of panretinal RS1 expression from photoreceptors in the retina. RS1 expression led to improved retinal morphology with a decrease in the number and size of cavities in the retina as seen in spectral-domain optical coherence tomography (SD-OCT) imaging (FIGS. 7A-I), a rescue of the ERG b-wave (FIGS. 8A-D), and longterm structural preservation of the retina (FIGS. 9A-E).

[0196] FIGS. **7**A-I. Representative high-resolution SD-OCT images of retinas injected with 7m8-rho-GFP (left column), 7m8-rho-RS1 (middle column), or uninjected WT animals (right column). Fundus images were taken through the inner nuclear layer of the superior retina and exclude other layers (a-c). Transverse images of the superior (d-f) and inferior (g-i) retina were taken using the optic nerve head as a landmark.

[0197] The untreated RS1 retina increases in overall thickness when measured from the inner limiting membrane (ILM) to the photoreceptors, as the pathology progresses due to the schisis splitting the inner retina. This process is distinct from that observed in most retinal degenerative diseases (RDD) which do not form schisis, but exhibit progressive photoreceptor cell death in the INL and concomitant retinal thinning and loss of ERG amplitude. In RS1, the ONL thins as photoreceptors die from the disease, but this is distinct from the overall retinal thickness change. It is generally thought that a successful therapy for RS1 would return the overall retinal thickness to the wildtype and ameliorate the photoreceptor loss in the ONL. In most RDD other than Rs1, the loss of photoreceptors, marked by ONL thinning, is paralleled by a decrease in retinal physiological output as measured by the ERG amplitude. RS1 is one of the very few examples of a retinal disease in which the pathology increases the retinal thickness with concomitant erg amplitude loss. In summary, restoring the RS1 gene product, an extracellular retinal "glue; -thins the retina back to the wildtype thickness and the erg amplitude returns to near normal levels as the schisis resolves.

[0198] FIG. **8***a* shows a comparison of functional rescue of untreated Rs1–/– eyes to AAV2-rho-RS1, 7m8-rho-GFP, and 7m8-rho-RS1 injected eyes both one month (left) and 4 months (right) after injection. One month post-injection, 7m8-rho-RS1 led to considerable rescue of the ERG b-wave amplitude, whereas AAV2-rho.RS1 was statistically indistinguishable from untreated eyes.

[0199] After 4 months, the 7m8-rho-RS1 amplitude further increases toward the wild-type amplitude (right). FIG. **8***b* shows representative ERG traces from 7m8-rho-RS1-injected eyes show improved amplitude of the a-wave and b-wave and a waveform closer to wild-type eyes, compared to 7m8-rho-GFP-injected eyes. FIG. **8***c* shows the amplitude of the full-field scotopic b-wave resulting from a high intensity (1 log cd×s/m2) stimulus was recorded on a monthly basis beginning one month after injection at P15 for each condition. Three responses were recorded and averaged for each eye at each time point.

[0200] Mean ERG b-wave amplitudes were plotted as a function of time post-injection. n=7 was used for both conditions. FIG. **8***d* shows an analysis of ERG responses under scotopic (upper traces, stimulus range from -3 to $1 \log cd \times s/m^2$) and photopic (lower traces, range from -0.9 to $1.4 \log cd \times s/m^2$) conditions indicates improved rod and cone function over a range of stimuli intensities.

[0201] FIGS. **9**A-E. Sustained improvements in retinal thickness measured at 10 months post 7m8-rho-RS1 treatment. Representative transverse SD-OCT images of a) 7m8-rho-RS1 or b) or 7m8-rho-GFP treated retinas 10 months post-injection centered on the optic nerve head. Measurements of c) retinal thickness, d) ONL thickness, and e) and inner and outer segment thickness are plotted as a function of distance from the optic nerve head.

Example 3

AAV Variant Used to Deliver a Protein to Retinal Cells in the Macaque

[0202] A recombinant AAV2 virion (7m8 carrying GFP under the control of a connexin36 promoter) was generated. The recombinant AAV2 virion included an AAV2 capsid variant with an insertion of LALGETTRPA peptide between amino acids 587 and 588 of AAV2 capsid, and GFP under transcriptional control of a connexin36 promoter, which is expressed in interneurons. The rAAV2 virion was injected intravitreally into the eye of a macaque. The data are shown in FIG. **18**.

[0203] FIG. **18** provides a fluorescence fundus image showing GFP expression at the back of the retina 9 weeks after administration of 7m8 carrying GFP under the control of a connexin36 promoter. Compared to the parental AAV2 serotype (Yin et al, IOVS 52(5); 2775), a higher level of expression was seen in the foveal ring, and visible fluorescence was seen in the central retina outside the fovea.

REFERENCES

- [0204] Daiger S P, Bowne S J, Sullivan L S (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 125: 151-158.
- **[0205]** Dalkara D, Kolstad K D, Caporale N, Visel M, Klimczak R R, et al. (2009) Inner Limiting Membrane Barriers to AAV Mediated Retinal Transduction from the Vitreous. Mol Ther.
- **[0206]** den Hollander A I, Roepman R, Koenekoop R K, Cremers F P (2008) Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27: 391-419.
- **[0207]** Gruter O, Kostic C, Crippa SV, Perez M T, Zografos L, et al. (2005) Lentiviral vector-mediated gene transfer in adult mouse photoreceptors is impaired by the presence of a physical barrier. Gene Ther 12: 942-947.
- **[0208]** Maguire A M, Simonelli F, Pierce E A, Pugh E N, Jr., Mingozzi F, et al. (2008) Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358: 2240-2248.
- **[0209]** Mancuso K, Hauswirth W W, Li Q, Connor T B, Kuchenbecker J A, et al. (2009) Gene therapy for red-green colour blindness in adult primates. Nature 461: 784-787.
- **[0210]** McGee Sanftner L H, Abel H, Hauswirth W W, Flannery J G (2001) Glial cell line derived neurotrophic

factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 4: 622-629.

- **[0211]** Muller O J, Kaul F, Weitzman M D, Pasqualini R, Arap W, et al. (2003) Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 21: 1040-1046.
- **[0212]** Nakazawa T. et al. (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthamol Vis Sci 48: 2760-8.
- **[0213]** Nakazawa T. et al. (2006) Characterization of cytokine responses to retinal detachment in rats. Mol Vis 12: 867-78.
- **[0214]** Perabo L, Buning H, Kofler D M, Ried M U, Girod A, et al. (2003) In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther 8: 151-157.
- **[0215]** Petrs-Silva H, Dinculescu A, Li Q, Min S H, Chiodo V, et al. (2009) High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 17: 463-471.

- [0216] Reme C E, Grimm C, Hafezi F, Wenzel A, Williams T P (2000) Apoptosis in the Retina: The Silent Death of Vision. News Physiol Sci 15: 120-124.
- **[0217]** Rolling F (2004) Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther 11 Suppl 1: S26-32.
- **[0218]** Wensel T G, Gross A K, Chan F, Sykoudis K, Wilson J H (2005) Rhodopsin-EGFP knock-ins for imaging quantal gene alterations. Vision Res 45: 3445-3453.
- [0219] Zhong L, Li B, Mah C S, Govindasamy L, Agbandje-McKenna M, et al. (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 105: 7827-7832.

[0220] While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 64
<210> SEO ID NO 1
<211> LENGTH: 733
<212> TYPE: PRT
<213> ORGANISM: Adeno-associated virus-2
<400> SEQUENCE: 1
Met Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
1
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro Pro
          20
                    25
                                                30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
       35
                          40
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65
                   70
                            75
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
       115
                       120
                                             125
Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg
             135
   130
                                        140
Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Ser Gly Thr Gly
                 150
                                    155
145
                                                         160
Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
              165 170
                                                     175
Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
           180
                              185
                                                 190
```

-co	nt:	inu	.ed

Ala	Ala	Pro 195	Ser	Gly	Leu	Gly	Thr 200	Asn	Thr	Met	Ala	Thr 205	Gly	Ser	Gly
Ala	Pro 210	Met	Ala	Asp	Asn	Asn 215	Glu	Gly	Ala	Asp	Gly 220	Val	Gly	Asn	Ser
Ser 225	Gly	Asn	Trp	His	Cys 230	Asp	Ser	Thr	Trp	Met 235	Gly	Asp	Arg	Val	Ile 240
Thr	Thr	Ser	Thr	Arg 245	Thr	Trp	Ala	Leu	Pro 250	Thr	Tyr	Asn	Asn	His 255	Leu
Tyr	Lys	Gln	Ile 260	Ser	Ser	Gln	Ser	Gly 265	Ala	Ser	Asn	Asp	Asn 270	His	Tyr
Phe	Gly	Tyr	Ser	Thr	Pro	Trp	Gly	Tyr	Phe	Asp	Phe	Asn	Arg	Phe	His
Суа	His	275 Phe	Ser	Pro	Arg	Asp	280 Trp	Gln	Arg	Leu	Ile	285 Asn	Asn	Asn	Trp
Gly	290 Phe	Arg	Pro	Lys	Arg	295 Leu	Asn	Phe	Lys	Leu	300 Phe	Asn	Ile	Gln	Val
305	Glu	Val	Thr	Gln	310 Aer	Aan	Glv	Thr	Thr	315 Thr	TIA	∡ا∠	Aan	Δan	320 Leu
- гуа	GIU	vai	inr	325	Asn	vab	σту	IUL	330	IUL	тте	ыа	Asn	азп 335	Leu
Thr	Ser	Thr	Val 340	Gln	Val	Phe	Thr	Asp 345	Ser	Glu	Tyr	Gln	Leu 350	Pro	Tyr
Val	Leu	Gly 355	Ser	Ala	His	Gln	Gly 360	Сув	Leu	Pro	Pro	Phe 365	Pro	Ala	Asp
Val	Phe 370	Met	Val	Pro	Gln	Tyr 375	Gly	Tyr	Leu	Thr	Leu 380	Asn	Asn	Gly	Ser
Gln 385	Ala	Val	Gly	Arg	Ser 390	Ser	Phe	Tyr	Сув	Leu 395	Glu	Tyr	Phe	Pro	Ser 400
Gln	Met	Leu	Arg	Thr 405	Gly	Asn	Asn	Phe	Thr 410	Phe	Ser	Tyr	Thr	Phe 415	Glu
Asp	Val	Pro	Phe 420	His	Ser	Ser	Tyr	Ala 425	His	Ser	Gln	Ser	Leu 430	Asp	Arg
Leu	Met	Asn	Pro	Leu	Ile	Asp	Gln	425 Tyr	Leu	Tyr	Tyr	Leu	Ser	Arg	Thr
Asn	Thr	435 Pro	Ser	Gly	Thr	Thr	440 Thr	Gln	Ser	Arg	Leu	445 Gln	Phe	Ser	Gln
210	450 G11	21-	Ser	Aer	TIS	455	Age	Glr	Ser	Arc	460 Aer	Trr	Lev	Pro	Glv
465	σтλ	лıа	ser	Yab	470	Arg	чар	GIN	ser	475	ASN	ттр	ьец	PTO	480
Pro	Суз	Tyr	Arg	Gln 485	Gln	Arg	Val	Ser	Lys 490	Thr	Ser	Ala	Asp	Asn 495	Asn
Asn	Ser	Glu	Tyr 500	Ser	Trp	Thr	Gly	Ala 505	Thr	Lys	Tyr	His	Leu 510	Asn	Gly
Arg	Asp	Ser 515	Leu	Val	Asn	Pro	Gly 520	Pro	Ala	Met	Ala	Ser 525	His	Lys	Asp
Asp	Glu 530	Glu	Lys	Phe	Phe	Pro 535	Gln	Ser	Gly	Val	Leu 540	Ile	Phe	Gly	Lys
Gln	Gly	Ser	Glu	Lys	Thr	Asn	Val	Asp	Ile	Glu	Lys	Val	Met	Ile	Thr
545 Asp	Glu	Glu	Glu	Ile	550 Ara	Thr	Thr	Asn	Pro	555 Val	Ala	Thr	Glu	Gln	560 Tyr
	_		_	565	_	_		_	570	_	_			575	_
Gly	Ser	Val	Ser 580	Thr	Asn	Leu	Gln	Arg 585	Gly	Asn	Arg	Gln	Ala 590	Ala	Thr
Ala	Asp	Val	Asn	Thr	Gln	Gly	Val	Leu	Pro	Gly	Met	Val	Trp	Gln	Asp

-continued

	595					600					605			
Arg Asp 610	Val	Tyr	Leu	Gln	Gly 615	Pro	Ile	Trp	Ala	Lys 620	Ile	Pro	His	Thr
Asp Gly 625	His	Phe	His	Pro 630	Ser	Pro	Leu	Met	Gly 635	Gly	Phe	Gly	Leu	Lys 640
His Pro	Pro	Pro	Gln 645	Ile	Leu	Ile	Гла	Asn 650	Thr	Pro	Val	Pro	Ala 655	Asn
Pro Ser	Thr	Thr 660	Phe	Ser	Ala	Ala	Lys 665	Phe	Ala	Ser	Phe	Ile 670	Thr	Gln
Tyr Ser	Thr 675	Gly	Gln	Val	Ser	Val 680	Glu	Ile	Glu	Trp	Glu 685	Leu	Gln	Lys
Glu Asn 690	Ser	Lys	Arg	Trp	Asn 695	Pro	Glu	Ile	Gln	Tyr 700	Thr	Ser	Asn	Tyr
Asn Lys 705	Ser	Val	Asn	Val 710	Asp	Phe	Thr	Val	Asp 715	Thr	Asn	Gly	Val	Tyr 720
Ser Glu	Pro	Arg	Pro 725	Ile	Gly	Thr	Arg	Tyr 730	Leu	Thr	Arg			
<210> S <211> L <212> T <213> O	EQ I ENGT YPE : RGAN	D NO H: 4 PRT ISM:	2 2 Adei	no-a	ssoc.	iate	d vi:	rus-2	2					
<400> S	EQUE	NCE :	2											
Pro Val 1	Ala	Thr	Glu 5	Gln	Tyr	Gly	Ser	Val 10	Ser	Thr	Asn	Leu	Gln 15	Arg
Gly Asn	Arg	Gln 20	Ala	Ala	Thr	Ala	Asp 25	Val	Asn	Thr	Gln	Gly 30	Val	Leu
Pro Gly	Met 35	Val	Trp	Gln	Asp	Arg 40	Asp	Val						
<210> S <211> L <212> T <213> O	EQ I ENGT YPE : RGAN	D NO H: 4 PRT ISM:	3 2 Adei	no-a	ssoc.	iate	d vi:	rus-ž	AAV-:	1				
<400> S	EQUE	NCE :	3											
Pro Val 1	Ala	Thr	Glu 5	Arg	Phe	Gly	Thr	Val 10	Ala	Val	Asn	Phe	Gln 15	Ser
Ser Ser	Thr	Asp 20	Pro	Ala	Thr	Gly	Asp 25	Val	His	Ala	Met	Gly 30	Ala	Leu
Pro Gly	Met 35	Val	Trp	Gln	Asp	Arg 40	Asp	Val						
<210> S <211> L <212> T <213> O	EQ I ENGT YPE : RGAN	D NO H: 4 PRT ISM:	4 2 Adei	no-a	ssoc.	iate	d vi:	rus-!	5					
<400> S	EQUE	NCE :	4											
Arg Val 1	Ala	Tyr	Asn 5	Val	Gly	Gly	Gln	Met 10	Ala	Thr	Asn	Asn	Gln 15	Ser
Ser Thr	Thr	Ala 20	Pro	Ala	Thr	Gly	Thr 25	Tyr	Asn	Leu	Gln	Glu 30	Ile	Val
Pro Gly	Ser 35	Val	Trp	Met	Glu	Arg 40	Asp	Val						

<210> SEQ ID NO 5 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-AAV-6 <400> SEQUENCE: 5 Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Leu Gln Ser 10 5 15 Ser Ser Thr Asp Pro Ala Thr Gly Asp Val His Val Met Gly Ala Leu 20 25 30 Pro Gly Met Val Trp Gln Asp Arg Asp Val 35 40 <210> SEQ ID NO 6 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-AAV-<400> SEQUENCE: 6 Pro Val Ala Thr Glu Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala 1 5 10 15 Ala Asn Thr Ala Ala Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu 25 20 30 Pro Gly Met Val Trp Gln Asn Arg Asp Val 35 40 <210> SEQ ID NO 7 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-AAV-8 <400> SEOUENCE: 7 Pro Val Ala Thr Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gln 1 5 10 15 Gln Asn Thr Ala Pro Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu 20 25 30 Pro Gly Met Val Trp Gln Asn Arg Asp Val 35 40 <210> SEQ ID NO 8 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-AAV-9 <400> SEQUENCE: 8 Pro Val Ala Thr Glu Ser Tyr Gly Gln Val Ala Thr Asn His Gln Ser 5 10 15 1 Ala Gl
n Ala Gl
n Ala Gl
n Thr Gly Tr
p Val Gl
n As
n Gl
n Gly Ile Leu 20 25 30 Pro Gly Met Val Trp Gln Asp Arg Asp Val 35 40 <210> SEQ ID NO 9 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-AAV-10 <400> SEQUENCE: 9

Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Ala Asn Thr Gly Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val <210> SEQ ID NO 10 <211> LENGTH: 224 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 10 Met Ser Arg Lys Ile Glu Gly Phe Leu Leu Leu Leu Leu Leu Phe Gly Tyr 1 5 10 15 Glu Ala Thr Leu Gly Leu Ser Ser Thr Glu Asp Glu Gly Glu Asp Pro 20 25 30 Trp Tyr Gln Lys Ala Cys Lys Cys Asp Cys Gln Gly Gly Pro Asn Ala Leu Trp Ser Ala Gly Ala Thr Ser Leu Asp Cys Ile Pro Glu Cys Pro Tyr His Lys Pro Leu Gly Phe Glu Ser Gly Glu Val Thr Pro Asp Gln Ile Thr Cys Ser Asn Pro Glu Gln Tyr Val Gly Trp Tyr Ser Ser Trp Thr Ala Asn Lys Ala Arg Leu Asn Ser Gln Gly Phe Gly Cys Ala Trp Leu Ser Lys Phe Gln Asp Ser Ser Gln Trp Leu Gln Ile Asp Leu Lys Glu Ile Lys Val Ile Ser Gly Ile Leu Thr Gln Gly Arg Cys Asp Ile Asp Glu Trp Met Thr Lys Tyr Ser Val Gln Tyr Arg Thr Asp Glu Arg Leu Asn Tr
p Ile Tyr Tyr Lys Asp Gl
n Thr Gly Asn Asn Arg Val Phe Tyr Gly Asn Ser Asp Arg Thr Ser Thr Val Gln Asn Leu Leu Arg Pro Pro Ile Ile Ser Arg Phe Ile Arg Leu Ile Pro Leu Gly Trp His Val Arg Ile Ala Ile Arg Met Glu Leu Leu Glu Cys Val Ser Lys Cys Ala <210> SEQ ID NO 11 <211> LENGTH: 247 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 11 Met Thr Ile Leu Phe Leu Thr Met Val Ile Ser Tyr Phe Gly Cys Met Lys Ala Ala Pro Met Lys Glu Ala Asn Ile Arg Gly Gln Gly Gly Leu Ala Tyr Pro Gly Val Arg Thr His Gly Thr Leu Glu Ser Val Asn Gly

-continue	эd
-----------	----

Pro Lys Ala Gly Ser Arg Gly Leu Thr Ser Leu Ala Asp Thr Phe Glu His Val Ile Glu Glu Leu Leu Asp Glu Asp His Lys Val Arg Pro Asn Glu Glu Asn Asn Lys Asp Ala Asp Leu Tyr Thr Ser Arg Val Met Leu Ser Ser Gln Val Pro Leu Glu Pro Pro Leu Leu Phe Leu Leu Glu Glu Tyr Lys Asn Tyr Leu Asp Ala Ala Asn Met Ser Met Wal Leu Arg His Ser Asp Pro Ala Arg Arg Gly Glu Leu Ser Val Cys Asp Ser Ile Ser Glu Trp Val Thr Ala Ala Asp Lys Lys Thr Ala Val Asp Met Ser Gly Gly Thr Val Thr Val Leu Glu Lys Val Pro Val Ser Lys Gly Gln Leu Lys Gln Tyr Phe Tyr Glu Thr Lys Cys Asn Pro Met Gly Tyr Thr Lys Glu Gly Cys Arg Gly Ile Asp Lys Arg His Trp Asn Ser Gln Cys Arg Thr Thr Gln Ser Tyr Val Arg Ala Leu Thr Met Asp Ser Lys Lys Arg Ile Gly Trp Arg Phe Ile Arg Ile Asp Thr Ser Cys Val Cys Thr Leu Thr Ile Lys Arg Gly Arg <210> SEQ ID NO 12 <211> LENGTH: 533 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 12 Met Ser Ile Gln Val Glu His Pro Ala Gly Gly Tyr Lys Lys Leu Phe Glu Thr Val Glu Glu Leu Ser Ser Pro Leu Thr Ala His Val Thr Gly Arg Ile Pro Leu Trp Leu Thr Gly Ser Leu Leu Arg Cys Gly Pro Gly 35 40 45 Leu Phe Glu Val Gly Ser Glu Pro Phe Tyr His Leu Phe Asp Gly Gln Ala Leu Leu His Lys Phe Asp Phe Lys Glu Gly His Val Thr Tyr His Arg Arg Phe Ile Arg Thr Asp Ala Tyr Val Arg Ala Met Thr Glu Lys Arg Ile Val Ile Thr Glu Phe Gly Thr Cys Ala Phe Pro Asp Pro Cys Lys Asn Ile Phe Ser Arg Phe Phe Ser Tyr Phe Arg Gly Val Glu Val Thr Asp Asn Ala Leu Val Asn Val Tyr Pro Val Gly Glu Asp Tyr Tyr Ala Cys Thr Glu Thr Asn Phe Ile Thr Lys Ile Asn Pro Glu Thr Leu

-continued	

14	5					150					155					160
Gl	u I	ſhr	Ile	Lys	Gln 165	Val	Asp	Leu	Cys	Asn 170	Tyr	Val	Ser	Val	Asn 175	Gly
Al	a 1	ſhr	Ala	His 180	Pro	His	Ile	Glu	Asn 185	Asp	Gly	Thr	Val	Tyr 190	Asn	Ile
Gl	у۶	Asn	Cys 195	Phe	Gly	Lys	Asn	Phe 200	Ser	Ile	Ala	Tyr	Asn 205	Ile	Val	Lys
Il	e E 2	?ro 210	Pro	Leu	Gln	Ala	Asp 215	Lys	Glu	Asp	Pro	Ile 220	Ser	Lys	Ser	Glu
I1 22	e ∖ 5	/al	Val	Gln	Phe	Pro 230	Суз	Ser	Asp	Arg	Phe 235	ГЛа	Pro	Ser	Tyr	Val 240
Hi	s 5	Ser	Phe	Gly	Leu 245	Thr	Pro	Asn	Tyr	Ile 250	Val	Phe	Val	Glu	Thr 255	Pro
Va	11	jàa	Ile	Asn 260	Leu	Phe	ГЛа	Phe	Leu 265	Ser	Ser	Trp	Ser	Leu 270	Trp	Gly
Al	a A	Asn	Tyr 275	Met	Asp	Суз	Phe	Glu 280	Ser	Asn	Glu	Thr	Met 285	Gly	Val	Trp
Le	u F 2	His 290	Ile	Ala	Asp	Гла	Lys 295	Arg	Lys	Lys	Tyr	Leu 300	Asn	Asn	Lys	Tyr
Ar 30	g 1 5	[hr	Ser	Pro	Phe	Asn 310	Leu	Phe	His	His	Ile 315	Asn	Thr	Tyr	Glu	Asp 320
As	n G	Jly	Phe	Leu	Ile 325	Val	Asp	Leu	Cys	Сув 330	Trp	Lys	Gly	Phe	Glu 335	Phe
Va	1 1	ſyr	Asn	Tyr 340	Leu	Tyr	Leu	Ala	Asn 345	Leu	Arg	Glu	Asn	Trp 350	Glu	Glu
Va	11	Jys	Lys 355	Asn	Ala	Arg	Lys	Ala 360	Pro	Gln	Pro	Glu	Val 365	Arg	Arg	Tyr
Va	1 I 3	Leu 370	Pro	Leu	Asn	Ile	Asp 375	Lys	Ala	Asp	Thr	Gly 380	ГЛЗ	Asn	Leu	Val
Th 38	r I 5	Leu	Pro	Asn	Thr	Thr 390	Ala	Thr	Ala	Ile	Leu 395	Сүз	Ser	Asp	Glu	Thr 400
11	e 1	ſrp	Leu	Glu	Pro 405	Glu	Val	Leu	Phe	Ser 410	Gly	Pro	Arg	Gln	Ala 415	Phe
Gl	u F	Phe	Pro	Gln 420	Ile	Asn	Tyr	Gln	Lys 425	Tyr	Суз	Gly	ГЛа	Pro 430	Tyr	Thr
Тy	r A	Ala	Tyr 435	Gly	Leu	Gly	Leu	Asn 440	His	Phe	Val	Pro	Asp 445	Arg	Leu	Cya
Ly	s I 4	Leu 150	Asn	Val	ГЛа	Thr	Lys 455	Glu	Thr	Trp	Val	Trp 460	Gln	Glu	Pro	Asp
Se 46	r 1 5	ſyr	Pro	Ser	Glu	Pro 470	Ile	Phe	Val	Ser	His 475	Pro	Asp	Ala	Leu	Glu 480
Gl	u A	/ab	Asp	Gly	Val 485	Val	Leu	Ser	Val	Val 490	Val	Ser	Pro	Gly	Ala 495	Gly
Gl	n I	Jàa	Pro	Ala 500	Tyr	Leu	Leu	Ile	Leu 505	Asn	Ala	Гла	Asp	Leu 510	Ser	Glu
Va	1 <i>P</i>	Ala	Arg	Ala	Glu	Val	Glu	Ile	Asn	Ile	Pro	Val	Thr	Phe	His	Gly
Le	u F	Phe	гла гла	Гла	Ser			520					525			
	5	530														

27

60

120

<211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 13 Leu Gly Glu Thr Thr Arg Pro 1 5 <210> SEQ ID NO 14 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 14 Asn Glu Thr Ile Thr Arg Pro 1 5 <210> SEQ ID NO 15 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 15 Lys Ala Gly Gln Ala Asn Asn 1 5 <210> SEQ ID NO 16 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 16 Lys Asp Pro Lys Thr Thr Asn 5 1 <210> SEQ ID NO 17 <211> LENGTH: 27 <212> TYPE: RNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic oligonucleotide <400> SEQUENCE: 17 cgcaaucagu gaaugcuuau acauccg <210> SEQ ID NO 18 <211> LENGTH: 5541 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic construct <400> SEQUENCE: 18 agettggate caateaacet etggattaea aaatttgtga aagattgaet ggtattetta actatgttgc tccttttacg ctatgtggat acgctgcttt aatgcctttg tatcatgcta

-continued

ttgcttcccg	tatggctttc	attttctcct	ccttgtataa	atcctggttg	ctgtctcttt	180	
atgaggagtt	gtggcccgtt	gtcaggcaac	gtggcgtggt	gtgcactgtg	tttgctgacg	240	
caacccccac	tggttggggc	attgccacca	cctgtcagct	cctttccggg	actttcgctt	300	
tccccctccc	tattgccacg	gcggaactca	tcgccgcctg	ccttgcccgc	tgctggacag	360	
gggctcggct	gttgggcact	gacaattccg	tggtgttgtc	ggggaagctg	acgtcctttc	420	
catggctgct	cgcctgtgtt	gccacctgga	ttctgcgcgg	gacgtccttc	tgctacgtcc	480	
cttcggccct	caatccagcg	gaccttcctt	cccgcggcct	gctgccggct	ctgcggcctc	540	
ttccgcgtct	tcgagatctg	cctcgactgt	gccttctagt	tgccagccat	ctgttgtttg	600	
cccctccccc	gtgccttcct	tgaccctgga	aggtgccact	cccactgtcc	tttcctaata	660	
aaatgaggaa	attgcatcgc	attgtctgag	taggtgtcat	tctattctgg	ggggtggggt	720	
ggggcaggac	agcaaggggg	aggattggga	agacaatagc	aggcatgctg	gggactcgag	780	
ttaagggcga	attcccgatt	aggatettee	tagagcatgg	ctacgtagat	aagtagcatg	840	
gcgggttaat	cattaactac	aaggaacccc	tagtgatgga	gttggccact	ccctctctgc	900	
gcgctcgctc	gctcactgag	gccgggcgac	caaaggtcgc	ccgacgcccg	ggetttgeee	960	
gggcggcctc	agtgagcgag	cgagcgcgca	gccttaatta	acctaattca	ctggccgtcg	1020	
ttttacaacg	tcgtgactgg	gaaaaccctg	gcgttaccca	acttaatcgc	cttgcagcac	1080	
atcccccttt	cgccagctgg	cgtaatagcg	aagaggcccg	caccgatcgc	ccttcccaac	1140	
agttgcgcag	cctgaatggc	gaatgggacg	cgccctgtag	cggcgcatta	agcgcggcgg	1200	
gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	cgccctagcg	cccgctcctt	1260	
tcgctttctt	cccttccttt	ctcgccacgt	tcgccggctt	tccccgtcaa	gctctaaatc	1320	
ggggggttccc	tttagggttc	cgatttagtg	ctttacggca	cctcgacccc	aaaaaacttg	1380	
attagggtga	tggttcacgt	agtgggccat	cgccccgata	gacggttttt	cgccctttga	1440	
cgctggagtt	cacgttcctc	aatagtggac	tcttgttcca	aactggaaca	acactcaacc	1500	
ctatctcggt	ctattcttt	gatttataag	ggatttttcc	gatttcggcc	tattggttaa	1560	
aaaatgagct	gatttaacaa	aaatttaacg	cgaattttaa	caaaatatta	acgtttataa	1620	
tttcaggtgg	catctttcgg	ggaaatgtgc	gcggaacccc	tatttgttta	tttttctaaa	1680	
tacattcaaa	tatgtatccg	ctcatgagac	aataaccctg	ataaatgctt	caataatatt	1740	
gaaaaaggaa	gagtatgagt	attcaacatt	tccgtgtcgc	ccttattccc	tttttgcgg	1800	
cattttgcct	tcctgttttt	getcacecag	aaacgctggt	gaaagtaaaa	gatgctgaag	1860	
atcagttggg	tgcacgagtg	ggttacatcg	aactggatct	caatagtggt	aagatccttg	1920	
agagttttcg	ccccgaagaa	cgttttccaa	tgatgagcac	ttttaaagtt	ctgctatgtg	1980	
gcgcggtatt	atcccgtatt	gacgccgggc	aagagcaact	cggtcgccgc	atacactatt	2040	
ctcagaatqa	cttggttgag	tactcaccaq	tcacagaaaa	gcatcttacq	gatggcatga	2100	
caqtaaqaqa	attatocaot	gctgccataa	ccatgagtga	taacactoco	gccaacttac	2160	
ttataaaaa	dat codecce		taaccocttt	tttacacaaca	atagagata	2220	
atates	gattygagga	taaas	aadeyettt	agaat	acyyyyyarc	2220	
atgtaactcg	ccttgatcgt	сgggaaccgg	agctgaatga	agccatacca	aacgacgagc	2280	
gtgacaccac	gatgcctgta	gtaatggtaa	caacgttgcg	caaactatta	actggcgaac	2340	
tacttactct	agetteeegg	caacaattaa	tagactggat	ggaggcggat	aaagttgcag	2400	

	-continued	
gaccacttet gegeteggee etteeggetg gete	ggtttat tgctgataaa tctggagccg	2460
gtgagcgtgg gtctcgcggt atcattgcag cac	cggggcc agatggtaag ccctcccgta	2520
tcgtagttat ctacacgacg gggagtcagg caa	ctatgga tgaacgaaat agacagatcg	2580
ctgagatagg tgcctcactg attaagcatt ggta	aactgtc agaccaagtt tactcatata	2640
tactttagat tgatttaaaa cttcattttt aati	ttaaaag gatctaggtg aagatccttt	2700
ttgataatct catgaccaaa atcccttaac gtga	agttttc gttccactga gcgtcagacc	2760
ccgtagaaaa gatcaaagga tcttcttgag atc	ctttttt tctgcgcgta atctgctgct	2820
tgcaaacaaa aaaaccaccg ctaccagcgg tgg1	ttgttt gccggatcaa gagctaccaa	2880
ctctttttcc gaaggtaact ggcttcagca gag	cgcagat accaaatact gtccttctag	2940
tgtagccgta gttaggccac cacttcaaga acto	ctgtagc accgcctaca tacctcgctc	3000
tgctaatcct gttaccagtg gctgctgcca gtgg	gegataa gtegtgtett aeegggttgg	3060
actcaagacg atagttaccg gataaggcgc age	ggtcggg ctgaacgggg ggttcgtgca	3120
cacageeeag ettggagega aegaeetaea eega	aactgag atacctacag cgtgagctat	3180
gagaaagcgc cacgcttccc gaagggagaa agg	cggacag gtatccggta agcggcaggg	3240
tcggaacagg agagcgcacg agggagcttc cag	ggggaaa cgcctggtat ctttatagtc	3300
ctgtcgggtt tcgccacctc tgacttgagc gtcg	gattttt gtgatgctcg tcagggggggc	3360
ggagcctatg gaaaaacgcc agcaacgcgg ccti	tttacg gtteetggee ttttgetgeg	3420
gttttgctca catgttcttt cctgcgttat cccc	ctgattc tgtggataac cgtattaccg	3480
cetttgagtg agetgatace getegeegea geeg	gaacgac cgagcgcagc gagtcagtga	3540
gcgaggaagc ggaagagcgc ccaatacgca aac	cgcetet eccegegegt tggeegatte	3600
attaatgcag ctggcacgac aggtttcccg act	ggaaagc gggcagtgag cgcaacgcaa	3660
ttaatgtgag ttagctcact cattaggcac ccca	aggettt acaetttatg etteeggete	3720
gtatgttgtg tggaattgtg agcggataac aatt	ttcacac aggaaacagc tatgaccatg	3780
attacgccag atttaattaa ggctgcgcgc tcg	ctegete actgaggeeg eeegggeaaa	3840
geeegggegt egggegaeet ttggtegeee ggee	rtcagtg agcgagcgag cgcgcagaga	3900
gggagtggcc aactccatca ctaggggttc ctt	gtagtta atgattaacc cgccatgcta	3960
cttatctacg tagccatgct ctaggaagat cgga	aattege eettaageta geagatette	4020
cccacctagc cacctggcaa actgctcctt ctc1	ccaaagg cccaaacatg gcctcccaga	4080
ctgcaacccc caggcagtca ggccctgtct cca	caacete acageeacee tggaeggaat	4140
ctgettette ceacatttga gteeteetea gee	cctgagc tcctctgggc agggctgttt	4200
ctttccatct ttgtattccc aggggcctgc aaal	caaatgt ttaatgaacg aacaagagag	4260
tgaattccaa ttccatgcaa caaggattgg gcto	cctgggc cctaggctat gtgtctggca	4320
ccagaaacgg aagctgcagg ttgcagcccc tgc	cctcatg gagctcctcc tgtcagagga	4380
gtgtgggggac tggatgactc cagaggtaac ttg	uggggga acgaacaggt aagggggtgt	4440
gtgacgagat gagagactgg gagaataaac caga	aaagtct ctagctgtcc agaggacata	4500
gcacagaggc ccatggtccc tatttcaaac cca	ggccacc agactgagct gggaccttgg	4560
gacagacaag tcatgcagaa gttaggggac ctto	cteetee etttteetgg atggateetg	4620
agtacettet cetecetgae etcaggette etc	ctagtgt caccttggcc cctcttagaa	4680

-continued	
gccaattagg ccctcagttt ctgcagcggg gattaatatg attatgaaca cccccaatct	4740
cccagatgct gattcagcca ggagcttagg agggggaggt cactttataa gggtctgggg	4800
gggtcagaac ccagagtcat cccctgaatt ctgcagatat ccatcacact ggcggccgcg	4860
ccaccatgtc acgcaagata gaaggetttt tgttattact tetetttgge tatgaageea	4920
cattgggatt atcgtctacc gaggatgaag gcgaggaccc ctggtaccaa aaagcatgca	4980
agtgcgattg ccaaggagga cccaatgctc tgtggtctgc aggtgccacc tccttggact	5040
gtataccaga atgeccatat cacaageete tgggtttega gteagggggag gteacaeegg	5100
accagatcac ctgctctaac ccggagcagt atgtgggctg gtattcttcg tggactgcaa	5160
acaaggeeeg geteaacagt caaggetttg ggtgtgeetg geteteeaag tteeaggaea	5220
gtagccagtg gttacagata gatctgaagg agatcaaagt gatttcaggg atcctcaccc	5280
aggggcgctg tgacatcgat gagtggatga ccaagtacag cgtgcagtac aggaccgatg	5340
agcgcetgaa etggatttae tacaaggaee agaetggaaa eaaeegggte ttetatggea	5400
actoggacog cacotocaog gttoagaaco tgotgoggoo coccateato teoogottea	5460
teegeeteat eeegetggge tggeaegtee geattgeeat eeggatggag etgetggagt	5520
gcgtcagcaa gtgtgcctga a	5541
<210> SEQ ID NO 19 <211> LENGTH: 346 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 19	
Met Ala Leu Leu Lys Val Lys Phe Asp Gln Lys Lys Arg Val Lys Leu	
1 5 10 15	
Ala Gln Gly Leu Trp Leu Met Asn Trp Phe Ser Val Leu Ala Gly Ile 20 25 30	
Ile Ile Phe Ser Leu Gly Leu Phe Leu Lys Ile Glu Leu Arg Lys Arg 35 40 45	
Ser Asp Val Met Asn Asn Ser Glu Ser His Phe Val Pro Asn Ser Leu	
fie Gry Met Gry val Leu Ser Cys val Phe Ash Ser Leu Ala Gly Lys 65 70 75 80	
Ile Cys Tyr Asp Ala Leu Asp Pro Ala Lys Tyr Ala Arg Trp Lys Pro 85 90 95	
Trp Leu Lys Pro Tyr Leu Ala Ile Cys Val Leu Phe Asn Ile Ile Leu 100 105 110	
Phe Leu Val Ala Leu Cys Cys Phe Leu Leu Arg Gly Ser Leu Glu Asn	
115 120 125	
Thr Leu Gly Gln Gly Leu Lys Asn Gly Met Lys Tyr Tyr Arg Asp Thr130135140	
Asp Thr Pro Gly Arg Cys Phe Met Lys Lys Thr Ile Asp Met Leu Gln145150150155	
Ile Glu Phe Lys Cys Cys Gly Asn Asn Gly Phe Arg Asp Trp Phe Glu 165 170 175	
Ile Gln Trp Ile Ser Asn Arg Tyr Leu Asp Phe Ser Ser Lys Glu Val 180 185 190	
Lys Asp Arg Ile Lys Ser Asn Val Asp Gly Arg Tyr Leu Val Asp Gly 195 200 205	

Val Pro Phe Ser Cys Cys Asn Pro Ser Ser Pro Arg Pro Cys Ile Gln Tyr Gln Ile Thr Asn Asn Ser Ala His Tyr Ser Tyr Asp His Gln Thr Glu Glu Leu Asn Leu Trp Val Arg Gly Cys Arg Ala Ala Leu Leu Ser Tyr Tyr Ser Ser Leu Met Asn Ser Met Gly Val Val Thr Leu Leu Ile 260 265 Trp Leu Phe Glu Val Thr Ile Thr Ile Gly Leu Arg Tyr Leu Gln Thr 275 280 285 Ser Leu Asp Gly Val Ser Asn Pro Glu Glu Ser Glu Ser Glu Ser Gln Gly Trp Leu Leu Glu Arg Ser Val Pro Glu Thr Trp Lys Ala Phe Leu Glu Ser Val Lys Lys Leu Gly Lys Gly Asn Gln Val Glu Ala Glu Gly Ala Asp Ala Gly Gln Ala Pro Glu Ala Gly <210> SEO ID NO 20 <211> LENGTH: 470 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 20 Met Ser His His Pro Ser Gly Leu Arg Ala Gly Phe Ser Ser Thr Ser Tyr Arg Arg Thr Phe Gly Pro Pro Pro Ser Leu Ser Pro Gly Ala Phe Ser Tyr Ser Ser Ser Ser Arg Phe Ser Ser Ser Arg Leu Leu Gly Ser Ala Ser Pro Ser Ser Ser Val Arg Leu Gly Ser Phe Arg Ser Pro Arg Ala Gly Ala Gly Ala Leu Leu Arg Leu Pro Ser Glu Arg Leu Asp Phe Ser Met Ala Glu Ala Leu Asn Gln Glu Phe Leu Ala Thr Arg Ser Asn Glu Lys Gln Glu Leu Gln Glu Leu Asn Asp Arg Phe Ala Asn Phe Ile Glu Lys Val Arg Phe Leu Glu Gln Gln Asn Ala Ala Leu Arg Gly Glu Leu Ser Gln Ala Arg Gly Gln Glu Pro Ala Arg Ala Asp Gln Leu Cys Gln Gln Glu Leu Arg Glu Leu Arg Arg Glu Leu Glu Leu Leu Gly Arg Glu Arg Asp Arg Val Gln Val Glu Arg Asp Gly Leu Ala Glu Asp Leu Ala Ala Leu Lys Gln Arg Leu Glu Glu Glu Thr Arg Lys Arg Glu Asp Ala Glu His Asn Leu Val Leu Phe Arg Lys Asp Val Asp Asp Ala Thr Leu Ser Arg Leu Glu Leu Glu Arg Lys Ile Glu Ser Leu Met Asp Glu

-continued		

											-	con	tin	ued	
	210					215					220				
Ile 225	Glu	Phe	Leu	LÀa	Lys 230	Leu	His	Glu	Glu	Glu 235	Leu	Arg	Asp	Leu	Gln 240
Val	Ser	Val	Glu	Ser 245	Gln	Gln	Val	Gln	Gln 250	Val	Glu	Val	Glu	Ala 255	Thr
Val	Lys	Pro	Glu 260	Leu	Thr	Ala	Ala	Leu 265	Arg	Asp	Ile	Arg	Ala 270	Gln	Tyr
Glu	Ser	Ile 275	Ala	Ala	Lys	Asn	Leu 280	Gln	Glu	Ala	Glu	Glu 285	Trp	Tyr	Lys
Ser	Lys 290	Tyr	Ala	Asp	Leu	Ser 295	Aab	Ala	Ala	Asn	Arg 300	Asn	His	Glu	Ala
Leu 305	Arg	Gln	Ala	Lys	Gln 310	Glu	Met	Asn	Glu	Ser 315	Arg	Arg	Gln	Ile	Gln 320
Ser	Leu	Thr	Суз	Glu 325	Val	Asp	Gly	Leu	Arg 330	Gly	Thr	Asn	Glu	Ala 335	Leu
Leu	Arg	Gln	Leu 340	Arg	Glu	Leu	Glu	Glu 345	Gln	Phe	Ala	Leu	Glu 350	Ala	Gly
Gly	Tyr	Gln 355	Ala	Gly	Ala	Ala	Arg 360	Leu	Glu	Glu	Glu	Leu 365	Arg	Gln	Leu
Lys	Glu 370	Glu	Met	Ala	Arg	His 375	Leu	Arg	Glu	Tyr	Gln 380	Glu	Leu	Leu	Asn
Val 385	Lys	Met	Ala	Leu	Asp 390	Ile	Glu	Ile	Ala	Thr 395	Tyr	Arg	Lys	Leu	Leu 400
Glu	Gly	Glu	Glu	Ser 405	Arg	Ile	Ser	Val	Pro 410	Val	His	Ser	Phe	Ala 415	Ser
Leu	Asn	Ile	Lys 420	Thr	Thr	Val	Pro	Glu 425	Val	Glu	Pro	Pro	Gln 430	Asp	Ser
His	Ser	Arg 435	Lys	Thr	Val	Leu	Ile 440	Lys	Thr	Ile	Glu	Thr 445	Arg	Asn	Gly
Glu	Val 450	Val	Thr	Glu	Ser	Gln 455	Lys	Glu	Gln	Arg	Ser 460	Glu	Leu	Asp	Lys
Ser 465	Ser	Ala	His	Ser	Tyr 470										
<210)> SI	EO II) NO	21											
<211 <212	> LH 2> TY	NGTH PE :	H: 12 PRT	286											
<213	8 > OF	RGANI	SM:	Homo	sa]	piens	3								
<400)> SH	EQUEN	ICE:	21	7	Deve	m l	<i>a</i>	a 1	7		Deve	**- 7	7	7
Met 1	ser	Hls	Leu	vai 5	Asb	Pro	Thr	ser	10 10	Asb	Leu	Pro	vai	Arg 15	Asp
Ile	Asp	Ala	Ile 20	Pro	Leu	Val	Leu	Pro 25	Ala	Ser	Lys	Gly	Lys 30	Asn	Met
Lys	Thr	Gln 35	Pro	Pro	Leu	Ser	Arg 40	Met	Asn	Arg	Glu	Glu 45	Leu	Glu	Asp
Ser	Phe 50	Phe	Arg	Leu	Arg	Glu 55	Asp	His	Met	Leu	Val 60	Lya	Glu	Leu	Ser
Trp 65	Lys	Gln	Gln	Asp	Glu 70	Ile	Lys	Arg	Leu	Arg 75	Thr	Thr	Leu	Leu	Arg 80
Leu	Thr	Ala	Ala	Gly 85	Arg	Asp	Leu	Arg	Val 90	Ala	Glu	Glu	Ala	Ala 95	Pro

_												con		uea	
Le	u Ser	Glu	Thr 100	Ala	Arg	Arg	Gly	Gln 105	Lys	Ala	Gly	Trp	Arg 110	Gln	Arg
Le	u Ser	Met 115	His	Gln	Arg	Pro	Gln 120	Met	His	Arg	Leu	Gln 125	Gly	His	Phe
Hi	s Cys 130	Val	Gly	Pro	Ala	Ser 135	Pro	Arg	Arg	Ala	Gln 140	Pro	Arg	Val	Gln
Va 14	l Gly 5	' His	Arg	Gln	Leu 150	His	Thr	Ala	Gly	Ala 155	Pro	Val	Pro	Glu	Lys 160
Pr	o Lys	Arg	Gly	Pro 165	Arg	Asp	Arg	Leu	Ser 170	Tyr	Thr	Ala	Pro	Pro 175	Ser
Ph	e Lys	Glu	His 180	Ala	Thr	Asn	Glu	Asn 185	Arg	Gly	Glu	Val	Ala 190	Ser	ГЛа
Pr	o Ser	Glu	Leu	Val	Ser	Gly	Ser	Asn	Ser	Ile	Ile	Ser	Phe	Ser	Ser
Va	l Ile	Ser	Met	Ala	Lys	Pro	Ile	Gly	Leu	Суа	Met	Pro	Asn	Ser	Ala
Нi	210 s Ile	Met	Ala	Ser	Asn	215 Thr	Met	Gln	Val	Glu	220 Glu	Pro	Pro	Lys	Ser
22 Pr	5 o Glu	Lvs	Met	Trp	230 Pro	Lvs	Asp	Glu	Asn	235 Phe	Glu	Gln	Arq	Ser	240 Ser
ī.e	u Gl	2 - ('VP	Ale	245 Gln	Lve	Ale	Ala	Glu	250 Leu	Ara	 Ale	Ser	-]	255 Lvg	G111
це -		. cya	260		цур	л.а	л.a	265	Leu	т.д	nia	Det	270	цур	Gru
Lу	s Val	. Glu 275	Leu	Ile	Arg	Leu	Lуз 280	ГЛа	Leu	Leu	His	Glu 285	Arg	Asn	Ala
Se	r Leu 290	Val	Met	Thr	Lys	Ala 295	Gln	Leu	Thr	Glu	Val 300	Gln	Glu	Ala	Tyr
G1 30	u Thr 5	Leu	Leu	Gln	Lys 310	Asn	Gln	Gly	Ile	Leu 315	Ser	Ala	Ala	His	Glu 320
Al	a Leu	Leu	Lys	Gln 325	Val	Asn	Glu	Leu	Arg 330	Ala	Glu	Leu	Гла	Glu 335	Glu
Se	r Lys	Lys	Ala 340	Val	Ser	Leu	Lys	Ser 345	Gln	Leu	Glu	Asp	Val 350	Ser	Ile
Le	u Glr	1 Met 355	Thr	Leu	Lys	Glu	Phe 360	Gln	Glu	Arg	Val	Glu 365	Asp	Leu	Glu
Ly	s Glu 370	Arg	Lys	Leu	Leu	Asn 375	Asp	Asn	Tyr	Asp	Tha 280	Leu	Leu	Glu	Ser
Me	t Leu	Asp	Ser	Ser	Asp	Ser	Ser	Ser	Gln	Pro	His	Trp	Ser	Asn	Glu
38 Le	5 u Ile	Ala	Glu	Gln	390 Leu	Gln	Gln	Gln	Val	395 Ser	Gln	Leu	Gln	Asp	400 Gln
Le	u Asp) Ala	Glu	405 Leu	Glu	Asp	Lys	Arg	410 Lys	Val	Leu	Leu	Glu	415 Leu	Ser
۸	a (1).	Larc	420	dir.	Age	- -	Aar	425	Larc	Lou	G1	Vol	430 Thr	Agr	TIO
Ar	y GIU	цуя 435	ыа	GIN	Asn	GIU	Азр 440	ьeu	гда	ьец	GIU	va1 445	inr	ASN	тте
Le	u Gln 450	ı Lys	His	Lys	Gln	Glu 455	Val	Glu	Leu	Leu	Gln 460	Asn	Ala	Ala	Thr
Il 46	e Ser 5	Gln	Pro	Pro	Asp 470	Arg	Gln	Ser	Glu	Pro 475	Ala	Thr	His	Pro	Ala 480
Va	l Leu	Gln	Glu	Asn 485	Thr	Gln	Ile	Glu	Pro 490	Ser	Glu	Pro	ГЛа	Asn 495	Glr
Gl	u Glu	. Lys	Lys	Leu	Ser	Gln	Val	Leu	Asn	Glu	Leu	Gln	Val	Ser	His

-continued

			500					505					510		
Ala	Glu	Thr 515	Thr	Leu	Glu	Leu	Glu 520	Lys	Thr	Arg	Asp	Met 525	Leu	Ile	Leu
Gln	Arg 530	Lys	Ile	Asn	Val	Сув 535	Tyr	Gln	Glu	Glu	Leu 540	Glu	Ala	Met	Met
Thr 545	Lys	Ala	Asp	Asn	Asp 550	Asn	Arg	Asp	His	Lys 555	Glu	Lys	Leu	Glu	Arg 560
Leu	Thr	Arg	Leu	Leu 565	Asp	Leu	Lys	Asn	Asn 570	Arg	Ile	Lys	Gln	Leu 575	Glu
Gly	Ile	Leu	Arg 580	Ser	His	Asp	Leu	Pro 585	Thr	Ser	Glu	Gln	Leu 590	ГЛа	Аар
Val	Ala	Tyr 595	Gly	Thr	Arg	Pro	Leu 600	Ser	Leu	Cys	Leu	Glu 605	Thr	Leu	Pro
Ala	His 610	Gly	Asp	Glu	Asp	Lys 615	Val	Asp	Ile	Ser	Leu 620	Leu	His	Gln	Gly
Glu 625	Asn	Leu	Phe	Glu	Leu 630	His	Ile	His	Gln	Ala 635	Phe	Leu	Thr	Ser	Ala 640
Ala	Leu	Ala	Gln	Ala 645	Gly	Asp	Thr	Gln	Pro 650	Thr	Thr	Phe	Суз	Thr 655	Tyr
Ser	Phe	Tyr	Asp 660	Phe	Glu	Thr	His	Cys 665	Thr	Pro	Leu	Ser	Val 670	Gly	Pro
Gln	Pro	Leu 675	Tyr	Asp	Phe	Thr	Ser 680	Gln	Tyr	Val	Met	Glu 685	Thr	Asp	Ser
Leu	Phe 690	Leu	His	Tyr	Leu	Gln 695	Glu	Ala	Ser	Ala	Arg 700	Leu	Asp	Ile	His
Gln 705	Ala	Met	Ala	Ser	Glu 710	His	Ser	Thr	Leu	Ala 715	Ala	Gly	Trp	Ile	Cys 720
Phe	Aab	Arg	Val	Leu 725	Glu	Thr	Val	Glu	Lys 730	Val	His	Gly	Leu	Ala 735	Thr
Leu	Ile	Gly	Ala 740	Gly	Gly	Glu	Glu	Phe 745	Gly	Val	Leu	Glu	Tyr 750	Trp	Met
Arg	Leu	Arg 755	Phe	Pro	Ile	Lys	Pro 760	Ser	Leu	Gln	Ala	Cys 765	Asn	Lys	Arg
Lys	Lys 770	Ala	Gln	Val	Tyr	Leu 775	Ser	Thr	Asb	Val	Leu 780	Gly	Gly	Arg	Lys
Ala 785	Gln	Glu	Glu	Glu	Phe 790	Arg	Ser	Glu	Ser	Trp 795	Glu	Pro	Gln	Asn	Glu 800
Leu	Trp	Ile	Glu	Ile 805	Thr	Lys	Суз	Сүз	Gly 810	Leu	Arg	Ser	Arg	Trp 815	Leu
Gly	Thr	Gln	Pro 820	Ser	Pro	Tyr	Ala	Val 825	Tyr	Arg	Phe	Phe	Thr 830	Phe	Ser
Asp	His	Asp 835	Thr	Ala	Ile	Ile	Pro 840	Ala	Ser	Asn	Asn	Pro 845	Tyr	Phe	Arg
Asp	Gln 850	Ala	Arg	Phe	Pro	Val 855	Leu	Val	Thr	Ser	Asp 860	Leu	Asp	His	Tyr
Leu 865	Arg	Arg	Glu	Ala	Leu 870	Ser	Ile	His	Val	Phe 875	Asp	Asp	Glu	Asp	Leu 880
Glu	Pro	Gly	Ser	Tyr 885	Leu	Gly	Arg	Ala	Arg 890	Val	Pro	Leu	Leu	Pro 895	Leu
Ala	Lys	Asn	Glu 900	Ser	Ile	Lys	Gly	Asp 905	Phe	Asn	Leu	Thr	Asp 910	Pro	Ala

aont	inind
- COILC	THUEU

Glu	Lys 1	Pro 2 915	Asn	Gly :	Ser 1	lle G 9	ln Va 20	al Gi	ln Le	eu As	ap Trp 925	b Ly:	3 Phe	e Pro
Tyr	Ile 1 930	Pro 1	Pro	Glu :	Ser I	2he L 935	eu Ly	ys Pi	ro G	lu A1 94	la Glr 10	n Thi	r Lys	s Gly
Lys 945	Aap '	Thr 3	Lys	Asp	Ser \$ 950	Ser L	ys I	le Se	∋r Se 9!	er G: 55	lu Glu	ı Glı	ı Lys	960 B
Ser	Phe 1	Pro :	Ser	Gln 2 965	Asp (3ln M	et A	la Se 9'	∋r P: 70	ro G	lu Val	Pro	975	e Glu 5
Ala	Gly (Gln	Tyr 980	Arg	Ser I	lya A	rg Ly 98	ys P: 35	ro Pi	ro H:	is Gly	7 Gly 990	/ Glu	ı Arg
Lys	Glu I	Lys (995	Glu	His (Gln V	Val V 1	al : 000	Ser '	Fyr S	Ser A	Arg Ai 1(rg I 005	jàs P	His Gly
Lys	Arg 1010	Ile	Gly	Val	Gln	Gly 1015	Lys	Asn	Arg	Met	Glu 1020	Tyr	Leu	Ser
Leu	Asn 1025	Ile	Leu	. Asn	Gly	Asn 1030	Thr	Pro	Glu	Gln	Val 1035	Asn	Tyr	Thr
Glu	Trp 1040	Lys	Phe	Ser	Glu	Thr 1045	Asn	Ser	Phe	Ile	Gly 1050	Aap	Gly	Phe
Lys	Asn 1055	Gln	His	Glu	Glu	Glu 1060	Glu	Met	Thr	Leu	Ser 1065	His	Ser	Ala
Leu	Lys 1070	Gln	Lys	Glu	Pro	Leu 1075	His	Pro	Val	Asn	Asp 1080	Lys	Glu	Ser
Ser	Glu 1085	Gln	Gly	Ser	Glu	Val 1090	Ser	Glu	Ala	Gln	Thr 1095	Thr	Asp	Ser
Asp	Asp 1100	Val	Ile	Val	Pro	Pro 1105	Met	Ser	Gln	Lys	Tyr 1110	Pro	Lys	Ala
Asp	Ser 1115	Glu	Гла	Met	Суз	Ile 1120	Glu	Ile	Val	Ser	Leu 1125	Ala	Phe	Tyr
Pro	Glu 1130	Ala	Glu	Val	Met	Ser 1135	Asp	Glu	Asn	Ile	Lys 1140	Gln	Val	Tyr
Val	Glu 1145	Tyr	Lys	Phe	Tyr	Asp 1150	Leu	Pro	Leu	Ser	Glu 1155	Thr	Glu	Thr
Pro	Val 1160	Ser	Leu	Arg	Lys	Pro 1165	Arg	Ala	Gly	Glu	Glu 1170	Ile	His	Phe
His	Phe 1175	Ser	Lys	Val	Ile	Asp 1180	Leu	Asp	Pro	Gln	Glu 1185	Gln	Gln	Gly
Arg	Arg 1190	Arg	Phe	Leu	Phe	Asp 1195	Met	Leu	Asn	Gly	Gln 1200	Aab	Pro	Asp
Gln	Gly 1205	His	Leu	ГЛа	Phe	Thr 1210	Val	Val	Ser	Asp	Pro 1215	Leu	Asp	Glu
Glu	Lys 1220	Lys	Glu	Суз	Glu	Glu 1225	Val	Gly	Tyr	Ala	Tyr 1230	Leu	Gln	Leu
Trp	Gln 1235	Ile	Leu	Glu	Ser	Gly 1240	Arg	Asp	Ile	Leu	Glu 1245	Gln	Glu	Leu
Asp	Ile 1250	Val	Ser	Pro	Glu	Asp 1255	Leu	Ala	Thr	Pro	Ile 1260	Gly	Arg	Leu
Lys	Val 1265	Ser	Leu	Gln	Ala	Ala 1270	Ala	Val	Leu	His	Ala 1275	Ile	Tyr	Lys
Glu	Met 1280	Thr	Glu	Asp	Leu	Phe 1285	Ser							

<210> SEQ ID NO 22 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-1 <400> SEQUENCE: 22 Thr Phe Ser Tyr Thr Phe Glu Glu Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp As
n Asn Asn Ser Asn Phe Thr Tr
p Thr Gly Ala Ser Lys Tyr Asn Leu Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys Asp Asp Glu Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Pro Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys <210> SEQ ID NO 23 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-6 <400> SEQUENCE: 23 Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser

-continuea
CONCINCC

	Thr	Lys	Thr	Asp 85	Asn	Asn	Asn	Ser	Asn 90	Phe	Thr	Trp	Thr	Gly 95	Ala
Ser	Lys	Tyr	Asn	Leu	Asn	Gly	Arg	Glu	Ser	Ile	Ile	Asn	Pro	Gly	Thr
Ala	Met	Ala	Ser	His	Lys	Asp	Asp	Lys	Asp	Lys	Phe	Phe	Pro	Met	Ser
Gly	Val	Met	Ile	Phe	Gly	Lys	Glu	Ser	Ala	Gly	Ala 140	Ser	Asn	Thr	Ala
Leu	Asp	Asn	Val	Met	Ile	Thr	Asp	Glu	Glu	Glu	Ile	Lys	Ala	Thr	Asn
Pro	Val	Ala	Thr	Glu	Arg	Phe	Gly	Thr	Val	Ala	Val	Asn	Leu	Gln	Ser
Ser	Ser	Thr	Asp	165 Pro	Ala	Thr	Gly	Asp	170 Val	His	Val	Met	Gly	175 Ala	Leu
Pro	Gly	Met	180 Val	Trp	Gln	Asp	Arg	185 Asp	Val	Tyr	Leu	Gln	190 Gly	Pro	Ile
Trp	Ala	195 Lys	Ile	Pro	His	Thr	200 Asp	Gly	His	Phe	His	205 Pro	Ser	Pro	Leu
Met	210 Glv	- Glv	Phe	Glv	Leu	215 Lvs	His	Pro	Pro	Pro	220 Gln	Ile	Leu	Ile	Lvs
225	Cry	01 Y		Cry	230	275				235	U 1 1 1		Lou		240
<21 <21	0> S 1> L	EQ II ENGTI	О NO Н: 24	24 40											
<21 <21	2 > T 3 > O	YPE : RGAN	PRT ISM:	Adeı	no-a	ssoc.	iate	d vi	rus-3	3					
<40	0> S:	EQUEI	NCE :	24											
Phe	Ser	Tree	m 1		-										
1	DCI	TÄT	Inr	Phe 5	Glu	Asp	Val	Pro	Phe 10	His	Ser	Ser	Tyr	Ala 15	His
1 Ser	Gln	Ser	Leu 20	Phe 5 Asp	Glu Arg	Asp Leu	Val Met	Pro Asn 25	Phe 10 Pro	His Leu	Ser Ile	Ser Asp	Tyr Gln 30	Ala 15 Tyr	His Leu
1 Ser Tyr	Gln Tyr	Ser Leu 35	Leu 20 Asn	Phe 5 Asp Arg	Glu Arg Thr	Asp Leu Gln	Val Met Gly 40	Pro Asn 25 Thr	Phe 10 Pro Thr	His Leu Ser	Ser Ile Gly	Ser Asp Thr 45	Tyr Gln 30 Thr	Ala 15 Tyr Asn	His Leu Gln
1 Ser Tyr Ser	Gln Tyr Arg 50	Ser Leu 35 Leu	Leu 20 Asn Leu	Phe 5 Asp Arg Phe	Glu Arg Thr Ser	Asp Leu Gln 55	Val Met Gly 40 Ala	Pro Asn 25 Thr Gly	Phe 10 Pro Thr Pro	His Leu Ser Gln	Ser Ile Gly Ser 60	Ser Asp Thr 45 Met	Tyr Gln 30 Thr Ser	Ala 15 Tyr Asn Leu	His Leu Gln Gln
1 Ser Tyr Ser Ala 65	Gln Tyr Arg 50 Arg	Ser Leu 35 Leu Asn	Leu 20 Asn Leu Trp	Phe 5 Asp Arg Phe Leu	Glu Arg Thr Ser Pro 70	Asp Leu Gln 55 Gly	Val Met Gly 40 Ala Pro	Pro Asn 25 Thr Gly Cys	Phe 10 Pro Thr Pro Tyr	His Leu Ser Gln Arg 75	Ser Ile Gly Ser 60 Gln	Ser Asp Thr 45 Met Gln	Tyr Gln 30 Thr Ser Arg	Ala 15 Tyr Asn Leu Leu	His Leu Gln Gln Ser 80
1 Ser Tyr Ser Ala 65 Lys	Gln Tyr Arg 50 Arg Thr	Ser Leu 35 Leu Asn Ala	Leu 20 Asn Leu Trp Asn	Phe 5 Asp Arg Phe Leu Asp 85	Glu Arg Thr Ser Pro 70 Asn	Asp Leu Gln 55 Gly Asn	Val Met Gly 40 Ala Pro Asn	Pro Asn 25 Thr Gly Cys Ser	Phe 10 Pro Thr Pro Tyr Asn 90	His Leu Ser Gln Arg 75 Phe	Ser Ile Gly Ser 60 Gln Pro	Ser Asp Thr 45 Met Gln Trp	Tyr Gln 30 Thr Ser Arg Thr	Ala 15 Tyr Asn Leu Leu Ala 95	His Leu Gln Gln Ser 80 Ala
1 Ser Tyr Ser Ala 65 Lys Ser	Gln Tyr Arg 50 Arg Thr Lys	Ser Leu 35 Leu Asn Ala Tyr	Leu 20 Asn Leu Trp Asn His 100	Phe 5 Asp Arg Phe Leu Asp 85 Leu	Glu Arg Thr Ser Pro 70 Asn Asn	Asp Leu Gln 55 Gly Asn Gly	Val Met Gly 40 Ala Pro Asn Arg	Pro Asn 25 Thr Gly Cys Ser Asp 105	Phe 10 Pro Thr Pro Tyr Asn 90 Ser	His Leu Ser Gln Arg 75 Phe Leu	Ser Ile Gly Ser 60 Gln Pro Val	Ser Asp Thr 45 Met Gln Trp Asn	Tyr Gln 30 Thr Ser Arg Thr Pro 110	Ala 15 Tyr Asn Leu Leu Ala 95 Gly	His Leu Gln Gln Ser 80 Ala Pro
1 Ser Tyr Ser Ala 65 Lys Ser Ala	Gln Tyr Arg 50 Arg Thr Lys Met	Ser Leu 35 Leu Asn Ala Tyr Ala 115	Leu 20 Asn Leu Trp Asn His 100 Ser	Phe 5 Asp Arg Phe Leu Asp 85 Leu His	Glu Arg Thr Ser Pro 70 Asn Asn Lys	Asp Leu Gln 55 Gly Asn Gly Asp	Val Met Gly 40 Ala Pro Asn Arg Asp 120	Pro Asn 25 Thr Gly Cys Ser Asp 105 Glu	Phe 10 Pro Thr Pro Tyr Asn 90 Ser Glu	His Leu Ser Gln Arg 75 Phe Leu Lys	Ser Ile Gly Ser 60 Gln Pro Val Phe	Ser Asp Thr 45 Met Gln Trp Asn Phe 125	Tyr Gln 30 Thr Ser Arg Thr Pro 110 Pro	Ala 15 Tyr Asn Leu Leu Ala 95 Gly Met	His Leu Gln Gln Ser 80 Ala Pro His
1 Ser Tyr Ser Ala 65 Ser Ala Gly	Gln Tyr Arg 50 Arg 50 Thr Lys Met	Ser Leu 35 Leu Asn Ala Tyr Ala 115 Leu	Leu 20 Asn Leu Trp Asn His 100 Ser Ile	Phe 5 Asp Arg Phe Leu Asp 85 Leu His Phe	Glu Arg Thr Ser Pro 70 Asn Lys Gly	Asp Leu Gln Gln 55 Gly Asn Gly Asp Lys	Val Met Gly 40 Ala Pro Asn Arg 120 Glu	Pro Asn 25 Thr Gly Cys Ser Asp 105 Glu Gly	Phe 10 Pro Thr Pro Tyr Asn 90 Ser Glu Thr	His Leu Ser Gln Arg 75 Phe Leu Lys Thr	Ser Ile Gly Ser 60 Gln Pro Val Phe Ala	Ser Asp Thr 45 Met Gln Trp Asn Phe 125 Ser	Tyr Gln 30 Thr Ser Arg Thr Pro 110 Pro Asn	Ala 15 Tyr Asn Leu Leu Ala 95 Gly Met Ala	His Leu Gln Gln Ser 80 Ala Pro His Glu
1 Ser Tyr Ser Ala 65 Lys Ser Ala Gly Leu	Gln Tyr Arg 50 Arg Thr Lys Met 130 Asp	Ser Leu 35 Leu Asn Ala Tyr Ala 115 Leu Asn	Leu 20 Asn Leu Trp Asn His 100 Ser Ile Val	Phe 5 Asp Arg Phe Leu Asp 85 Leu His Phe Met	Glu Arg Thr Ser Pro 70 Asn Asn Lys Gly Ile	Asp Leu Gln Gln 55 Gly Asn Gly Asp Lys 135 Thr	Val Met Gly 40 Ala Pro Asn Asn Arg 120 Glu Asp	Pro Asn 25 Thr Gly Cys Ser Asp 105 Glu Gly Glu	Phe 10 Pro Thr Pro Tyr Asn 90 Ser Glu Thr Glu	His Leu Ser Gln Arg 75 Phe Leu Lys Thr Glu	Ser Ile Gly Ser 60 Gln Pro Val Phe Ala 140 Ile	Ser Asp Thr 45 Met Gln Trp Asn Phe 125 Ser Arg	Tyr Gln 30 Thr Ser Arg Thr Pro 110 Pro Asn Thr	Ala 15 Tyr Asn Leu Leu Ala 95 Gly Met Ala	His Leu Gln Gln Ser 80 Ala Pro His Glu Asn
1 Ser Tyr Ser Ala 65 Lys Ser Ala Gly Leu 145 Pro	Gln Tyr Arg 50 Arg Thr Lys Met 130 Asp Val	Ser Leu 35 Leu Asn Ala Tyr Ala 115 Leu Asn Ala	Leu 20 Asn Leu Trp Asn His 100 Ser Ile Val	Phe 5 Asp Arg Phe Leu Asp 85 Leu His Phe Met	Glu Arg Thr Ser Pro 70 Asn Lys Gly Ile 150 Gln	Asp Leu Gln S5 Gly Asn Gly Asp Lys 135 Thr	Val Met Gly 40 Ala Pro Asn Arg 120 Glu Asp Gly	Pro Asn 25 Thr Gly Cys Ser Asp 105 Glu Gly Glu	Phe 10 Pro Thr Pro Tyr Asn 90 Ser Glu Thr Glu Val	His Leu Ser Gln Arg 75 Phe Leu Lys Thr Glu 155 Ala	Ser Ile Gly Ser 60 Gln Pro Val Phe Ala 140 Ile Asn	Ser Asp Thr 45 Met Gln Trp Asn Phe 125 Ser Arg Asn	Tyr Gln 30 Thr Ser Arg Thr Pro 110 Pro Asn Thr Leu	Ala 15 Tyr Asn Leu Leu Leu Ala 95 Gly Met Ala Thr Gln	His Leu Gln Gln Ser 80 Ala Pro His Glu Asn 160 Ser
1 Ser Tyr Ser Ala 65 Lys Ser Ala Gly Leu 145 Pro	Gln Tyr Arg 50 Arg Thr Lys Met Asn 130 Asp Val	Ser Leu 35 Leu Asn Ala Tyr Ala Leu Asn Ala	Leu 20 Asn Leu Trp Asn His 100 Ser Ile Val Thr	Phe 5 Asp Arg Phe Leu Asp 85 Leu His Phe Glu 165	Glu Arg Thr Ser Pro 70 Asn Lys Gly Ile 150 Gln	Asp Leu Gln Gln 55 Gly Asn Gly Asp Lys 135 Thr Tyr	Val Met Gly 40 Ala Pro Asn Asp 120 Glu Asp Gly	Pro Asn 25 Thr Gly Cys Ser Asp 105 Glu Glu Glu Thr	Phe 10 Pro Thr Pro Tyr Asn 90 Ser Glu Thr Glu Val 170	His Leu Ser Gln Arg 75 Phe Leu Lys Thr Glu 155 Ala	Ser Ile Gly Ser 60 Gln Pro Val Phe Ala 140 Ile Asn	Ser Asp Thr 45 Met Gln Trp Asn Phe 125 Ser Arg Asn	Tyr Gln 30 Thr Ser Arg Thr Pro 110 Pro Asn Thr Leu	Ala 15 Tyr Asn Leu Leu Leu Ala 95 Gly Met Ala Thr Gln 175	His Leu Gln Gln Ser 80 Ala Pro His Glu Asn 160 Ser
1 Ser Tyr Ser Alaa Gly Leu 145 Pro Ser	Gln Tyr Arg 50 Arg Thr Lys Met Asn 130 Val Asn	Ser Leu 35 Leu Asn Ala Tyr Ala Leu Asn Ala Thr	Leu 20 Asn Leu Trp Asn His 100 Ser Ile Val Thr Ala 180	Phe 5 Asp Arg Phe Leu Asp 85 Leu His Phe Glu 165 Pro	Glu Arg Thr Ser Pro 70 Asn Lys Gly Ile 150 Gln Thr	Asp Leu Gln 55 Gly Asn Gly Asp Lys 135 Thr Tyr Thr	Val Met Gly 40 Ala Pro Asn Arg 120 Glu Asp Gly Gly	Pro Asn 25 Thr Gly Cys Ser Asp 105 Glu Glu Glu Thr 185	Phe 10 Pro Thr Pro Tyr Asn 90 Ser Glu Thr Glu Val 170 Val	His Leu Gln Arg 75 Phe Leu Lys Thr Glu 155 Ala Asn	Ser Ile Gly Ser 60 Gln Pro Val Phe Ala 140 Ile Asn His	Ser Asp Thr 45 Gln Trp Asn Phe 125 Ser Arg Asn Gln	Tyr Gln 30 Thr Ser Arg Thr Pro 110 Pro Asn Thr Leu Gly 190	Ala 15 Tyr Asn Leu Leu Leu Ala 95 Gly Met Ala Thr Gln 175 Ala	His Leu Gln Gln Ser 80 Ala Pro His Glu Asn 160 Ser Leu

Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Met Ile Lys <210> SEQ ID NO 25 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-2 <400> SEQUENCE: 25 Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His 1 5 Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys65707580 Thr Ser Ala Asp Asn Asn Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro 180 185 Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn <210> SEQ ID NO 26 <211> LENGTH: 243 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-8 <400> SEQUENCE: 26 Asn Phe Gln Phe Thr Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Thr Thr Gly Gly Thr Ala

-continued		

Asn	Thr 50	Gln	Thr	Leu	Gly	Phe 55	Ser	Gln	Gly	Gly	Pro 60	Asn	Thr	Met	Ala
Asn 65	Gln	Ala	Lys	Asn	Trp 70	Leu	Pro	Gly	Pro	Cys 75	Tyr	Arg	Gln	Gln	Arg 80
Val	Ser	Thr	Thr	Thr 85	Gly	Gln	Asn	Asn	Asn 90	Ser	Asn	Phe	Ala	Trp 95	Thr
Ala	Gly	Thr	Lys 100	Tyr	His	Leu	Asn	Gly 105	Arg	Asn	Ser	Leu	Ala 110	Asn	Pro
Gly	Ile	Ala 115	Met	Ala	Thr	His	Lys 120	Asp	Asp	Glu	Glu	Arg 125	Phe	Phe	Pro
Ser	Asn 130	Gly	Ile	Leu	Ile	Phe 135	Gly	Lys	Gln	Asn	Ala 140	Ala	Arg	Asp	Asn
Ala 145	Asp	Tyr	Ser	Asp	Val 150	Met	Leu	Thr	Ser	Glu 155	Glu	Glu	Ile	Lys	Thr 160
Thr	Asn	Pro	Val	Ala 165	Thr	Glu	Glu	Tyr	Gly 170	Ile	Val	Ala	Asp	Asn 175	Leu
Gln	Gln	Gln	Asn 180	Thr	Ala	Pro	Gln	Ile 185	Gly	Thr	Val	Asn	Ser 190	Gln	Gly
Ala	Leu	Pro 195	Gly	Met	Val	Trp	Gln 200	Asn	Arg	Asp	Val	Tyr 205	Leu	Gln	Gly
Pro	Ile 210	Trp	Ala	Lys	Ile	Pro 215	His	Thr	Asp	Gly	Asn 220	Phe	His	Pro	Ser
Pro 225	Leu	Met	Gly	Gly	Phe 230	Gly	Leu	Lys	His	Pro 235	Pro	Pro	Gln	Ile	Leu 240
Ile	Lys	Asn													
<210)> SE > LE	EQ II ENGTH) NO 1: 24	27 13											
<212	2> 13 3> OF	GANI	ISM:	Arti	fici	al s	eque	ence							
<223	3> 01 3> 01	THER	INFO	ORMAI	ION:	Syr	nthet	ic p	olyr	epti	.de				
<400)> SE	EQUEN	ICE :	27											
Asn 1	Phe	Gln	Phe	Thr 5	Tyr	Thr	Phe	Glu	Asp 10	Val	Pro	Phe	His	Ser 15	Ser
Tyr	Ala	His	Ser 20	Gln	Ser	Leu	Asp	Arg 25	Leu	Met	Asn	Pro	Leu 30	Ile	Asp
Gln	Tyr	Leu 35	Tyr	Tyr	Leu	Ser	Arg 40	Thr	Gln	Thr	Thr	Gly 45	Gly	Thr	Ala
Asn	Thr 50	Gln	Thr	Leu	Gly	Phe 55	Ser	Gln	Gly	Gly	Pro 60	Asn	Thr	Met	Ala
Asn 65	Gln	Ala	Lys	Asn	Trp 70	Leu	Pro	Gly	Pro	Суя 75	Tyr	Arg	Gln	Gln	Arg 80
Val	Ser	Thr	Thr	Thr 85	Gly	Gln	Asn	Asn	Asn 90	Ser	Asn	Phe	Ala	Trp 95	Thr
Ala	Gly	Thr	Lys 100	Tyr	His	Leu	Asn	Gly 105	Arg	Asn	Ser	Leu	Ala 110	Asn	Pro
Gly	Ile	Ala	Met	Ala	Thr	His	Lys	Asp	Asp	Glu	Glu	Arg	Phe	Phe	Pro
		115					120					125			

		-
-cont	ınu	ea

A1 14	.a 5	Asp	Tyr	Ser	Asp	Val 150	Met	Leu	Thr	Ser	Glu 155	Glu	Glu	Ile	Lys	Thr 160
Tł	ır	Asn	Pro	Val	Ala 165	Thr	Glu	Glu	Tyr	Gly 170	Ile	Val	Ala	Asp	Asn 175	Leu
Gl	.n	Gly	Gln	Arg 180	Gln	Ala	Ala	Gln	Ile 185	Gly	Thr	Val	Asn	Ser 190	Gln	Gly
Al	.a	Leu	Pro 195	Gly	Met	Val	Trp	Gln 200	Asn	Arg	Asp	Val	Tyr 205	Leu	Gln	Gly
Pı	:0	Ile 210	Trp	Ala	Lys	Ile	Pro 215	His	Thr	Asp	Gly	Asn 220	Phe	His	Pro	Ser
Pr	:0 	Leu	Met	Gly	Gly	Phe	Gly	Leu	Lys	His	Pro	Pro	Pro	Gln	Ile	Leu
11	.e	Lys	Asn			230					235					240
<2 <2 <2	:10 :11 :12	> SH > LH > TY	SQ II ENGTI (PE :	H: 24 PRT	28 41											
<2	213	> OF	RGAN:	ISM:	Adeı	no-a:	8800	iate	d vi:	rus-:	rh8					
< 4	00	> SI	EQUEI	NCE :	28											
Ph 1	1e	Gln	Phe	Ser	Tyr 5	Thr	Phe	Glu	Aab	Val 10	Pro	Phe	His	Ser	Ser 15	Tyr
Al	.a	His	Ser	Gln 20	Ser	Leu	Asp	Arg	Leu 25	Met	Asn	Pro	Leu	Ile 30	Asp	Gln
Ту	r	Leu	Tyr 35	Tyr	Leu	Val	Arg	Thr 40	Gln	Thr	Thr	Gly	Thr 45	Gly	Gly	Thr
Gl	.n	Thr 50	Leu	Ala	Phe	Ser	Gln 55	Ala	Gly	Pro	Ser	Ser 60	Met	Ala	Asn	Gln
A1 65	.a	Arg	Asn	Trp	Val	Pro 70	Gly	Pro	Суз	Tyr	Arg 75	Gln	Gln	Arg	Val	Ser 80
Tł	ır	Thr	Thr	Asn	Gln 85	Asn	Asn	Asn	Ser	Asn 90	Phe	Ala	Trp	Thr	Gly 95	Ala
Al	.a	Lys	Phe	Lys	Leu	Asn	Gly	Arg	Asp	Ser	Leu	Met	Asn	Pro	Gly	Val
Al	.a	Met	Ala	Ser	His	Гла	Asp	Asp	Asb	Asp	Arg	Phe	Phe	Pro	Ser	Ser
Gl	.y	Val	115 Leu	Ile	Phe	Gly	Lys	120 Gln	Gly	Ala	Gly	Asn	125 Asp	Gly	Val	Asp
Τv	'n	130 Ser	Gln	Val	Leu	Ile	135 Thr	Asp	Glu	Glu	Glu	140 Ile	Lys	Ala	Thr	Asn
-1 14	5	- Val	 ما م	Thr	G1.	150	T1	G1+-			155		Acr	Agr	Clr.	160
PI	.0	va⊥	нта	IUL	165	GIU	ıyr	σту	нта	va1 170	нта	тте	ASN	ASU	175	нта
Al	.a	Asn	Thr	Gln 180	Ala	Gln	Thr	Gly	Leu 185	Val	His	Asn	Gln	Gly 190	Val	Ile
Pr	0	Gly	Met 195	Val	Trp	Gln	Asn	Arg 200	Asp	Val	Tyr	Leu	Gln 205	Gly	Pro	Ile
Tr	p	Ala 210	Lys	Ile	Pro	His	Thr 215	Asp	Gly	Asn	Phe	His 220	Pro	Ser	Pro	Leu
M∈ 22	et 25	Gly	Gly	Phe	Gly	Leu 230	Lys	His	Pro	Pro	Pro 235	Gln	Ile	Leu	Ile	Lys 240
A٩	n															

```
-continued
```

<210> SEQ ID NO 29 <211> LENGTH: 243 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-10 <400> SEQUENCE: 29 Asn Phe Glu Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Ala Asn Thr Gly Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn <210> SEQ ID NO 30 <211> LENGTH: 242 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-7 <400> SEQUENCE: 30 Phe Glu Phe Ser Tyr Ser Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ala Arg Thr Gln Ser Asn Pro Gly Gly Thr Ala Gly Asn Arg Glu Leu Gln Phe Tyr Gln Gly Gly Pro Ser Thr Met Ala Glu Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Phe Arg Gln Gln Arg

-continued	ł
------------	---

Val Ser Lys Thr Leu Asp Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asn Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Thr Gly Ala Thr Asn Lys Thr Thr Leu Glu Asn Val Leu Met Thr Asn Glu Glu Glu Ile Arg Pro Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Ile Val Ser Ser Asn Leu Gln Ala Ala Asn Thr Ala Ala Gln Thr Gln Val Val Asn Asn Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn <210> SEQ ID NO 31 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-9 <400> SEQUENCE: 31 Phe Gln Phe Ser Tyr Glu Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln 2.0 Tyr Leu Tyr Tyr Leu Ser Lys Thr Ile Asn Gly Ser Gly Gln Asn Gln Gln Thr Leu Lys Phe Ser Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser Tyr Gly Gln Val Ala Thr Asn His Gln Ser Ala Gln Ala Gln Ala Gln Thr Gly Trp Val Gln Asn Gln Gly Ile Leu

Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met Lys His Pro Pro Pro Gln Ile Leu Ile Lys <210> SEQ ID NO 32 <211> LENGTH: 239 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 32 Gln Phe Ser Tyr Glu Phe Glu Asn Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Lys Thr Ile As
n Gly Ser Gly Gl
n As
n Gl
n Gln $\ensuremath{\mathsf{Gln}}$ Thr Leu Lys Phe Ser Val Ala Gly Pro Ser Asn Met Ala Val Gln Gly Arg Asn Tyr Ile Pro Gly Pro Ser Tyr Arg Gln Gln Arg Val Ser Thr Thr Val Thr Gln Asn Asn Asn Ser Glu Phe Ala Trp Pro Gly Ala Ser Ser Trp Ala Leu Asn Gly Arg Asn Ser Leu Met Asn Pro Gly Pro Ala Met Ala Ser His Lys Glu Gly Glu Asp Arg Phe Phe Pro Leu Ser Gly Ser Leu Ile Phe Gly Lys Gln Gly Thr Gly Arg Asp Asn Val Asp Ala Asp Lys Val Met Ile Thr Asn Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Ser Tyr Gly Gln Val Ala Thr Asn His Gln Ser Gly Gln Ala Gln Ala Ala Thr Gly Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp 195 200 Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met Lys His Pro Pro Pro Gln Ile Leu Ile Lys <210> SEQ ID NO 33 <211> LENGTH: 240 <212> TYPE: PRT <213> ORGANISM: Adeno-associated virus-5 <400> SEQUENCE: 33 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser

-	cont	in	ueo	-7
	COILC		act	~

	7.7		a	~ 7	2		P 1				2				3
Phe	Ala	Pro	Ser 20	Gln	Asn	Leu	Phe	Lуя 25	Leu	Ala	Asn	Pro	Leu 30	Val	Asp
Gln	Tyr	Leu 35	Tyr	Arg	Phe	Val	Ser 40	Thr	Asn	Asn	Thr	Gly 45	Gly	Val	Gln
Phe	Asn 50	Lys	Asn	Leu	Ala	Gly 55	Arg	Tyr	Ala	Asn	Thr 60	Tyr	Lys	Asn	Trp
Phe 65	Pro	Gly	Pro	Met	Gly 70	Arg	Thr	Gln	Gly	Trp 75	Asn	Leu	Gly	Ser	Gly 80
Val	Asn	Arg	Ala	Ser 85	Val	Ser	Ala	Phe	Ala 90	Thr	Thr	Asn	Arg	Met 95	Glu
Leu	Glu	Gly	Ala 100	Ser	Tyr	Gln	Val	Pro 105	Pro	Gln	Pro	Asn	Gly 110	Met	Thr
Asn	Asn	Leu 115	Gln	Gly	Ser	Asn	Thr 120	Tyr	Ala	Leu	Glu	Asn 125	Thr	Met	Ile
Phe	Asn 130	Ser	Gln	Pro	Ala	Asn 135	Pro	Gly	Thr	Thr	Ala 140	Thr	Tyr	Leu	Glu
Gly 145	Asn	Met	Leu	Ile	Thr 150	Ser	Glu	Ser	Glu	Thr 155	Gln	Pro	Val	Asn	Arg 160
Val	Ala	Tyr	Asn	Val 165	Gly	Gly	Gln	Met	Ala 170	Thr	Asn	Asn	Gln	Ser 175	Ser
Thr	Thr	Ala	Pro 180	Ala	Thr	Gly	Thr	Tyr 185	Asn	Leu	Gln	Glu	Ile 190	Val	Pro
Gly	Ser	Val 195	Trp	Met	Glu	Arg	Asp 200	Val	Tyr	Leu	Gln	Gly 205	Pro	Ile	Trp
Ala	Lys 210	Ile	Pro	Glu	Thr	Gly 215	Ala	His	Phe	His	Pro 220	Ser	Pro	Ala	Met
Gly 225	Gly	Phe	Gly	Leu	Lys 230	His	Pro	Pro	Pro	Met 235	Met	Leu	Ile	Lys	Asn 240
<210 <211 <211 <211 <211 <220 <221	0> SI 1> LI 2> T 3> OI 0> FI 3> O	EQ II ENGTI YPE : RGANI EATUI FHER	D NO H: 29 PRT ISM: RE: INF(34 50 Art: ORMA	ific: TION	ial : : Syn	seque	ence	001y	oept:	ide				
<400	0> SI	EQUEI	NCE :	34											
Thr 1	Phe	Ser	Tyr	Thr 5	Phe	Glu	Glu	Val	Pro 10	Phe	His	Ser	Ser	Tyr 15	Ala
His	Ser	Gln	Ser 20	Leu	Asp	Arg	Leu	Met 25	Asn	Pro	Leu	Ile	Asp 30	Gln	Tyr
Leu	Tyr	Tyr 35	Leu	Asn	Arg	Thr	Gln 40	Asn	Gln	Ser	Gly	Ser 45	Ala	Gln	Asn
ГÀа	Asp 50	Leu	Leu	Phe	Ser	Arg 55	Gly	Ser	Pro	Ala	Gly 60	Met	Ser	Val	Gln
Pro 65	Lys	Asn	Trp	Leu	Pro 70	Gly	Pro	Cys	Tyr	Arg 75	Gln	Gln	Arg	Val	Ser 80
Lya	Thr	Lys	Thr	Asp 85	Asn	Asn	Asn	Ser	Asn 90	Phe	Thr	Trp	Thr	Gly 95	Ala
Ser	Lys	Tyr	Asn 100	Leu	Asn	Gly	Arg	Glu 105	Ser	Ile	Ile	Asn	Pro 110	Gly	Thr
Ala	Met	Ala 115	Ser	His	Гла	Asp	Asp 120	Glu	Asp	Lys	Phe	Phe 125	Pro	Met	Ser

-continued

Gly Val Met Ile Phe Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Phe Gln Ser Ser Ser Thr Asp Leu Ala Leu Gly Glu Thr Thr Arg Pro Ala Pro Ala Thr Gly Asp Val His Ala Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys Asn Pro Pro Pro Gln Ile Leu Ile Lys <210> SEQ ID NO 35 <211> LENGTH: 250 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 35 Thr Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Asn Arg Thr Gln Asn Gln Ser Gly Ser Ala Gln Asn Lys Asp Leu Leu Phe Ser Arg Gly Ser Pro Ala Gly Met Ser Val Gln Pro Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Lys Thr Asp Asn Asn Asn Ser Asn Phe Thr Trp Thr Gly Ala Ser Lys Tyr Asn Leu Asn Gly Arg Glu Ser Ile Ile Asn Pro Gly Thr Ala Met Ala Ser His Lys Asp Asp Lys Asp Lys Phe Phe Pro Met Ser Gly Val Met Ile Phe Gly Lys Glu Ser Ala Gly Ala Ser Asn Thr Ala Leu Asp Asn Val Met Ile Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Arg Phe Gly Thr Val Ala Val Asn Leu Gln Ser Ser Ser Thr Asp Leu Ala Leu Gly Glu Thr Thr Arg Pro Ala Pro Ala Thr Gly Asp Val His Val Met Gly Ala Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His

-continued

Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys <210> SEQ ID NO 36 <211> LENGTH: 250 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 36 Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Asn Thr Pro Ser Gly Thr Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Leu Ala Leu Gly Glu Thr Thr Arg Pro Ala Arg Gln Ala Ala Thr Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn <210> SEQ ID NO 37 <211> LENGTH: 253 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEOUENCE: 37 Asn Phe Gln Phe Thr Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser 1 5

-continued	
------------	--

Tyr	Ala	His	Ser 20	Gln	Ser	Leu	Asp	Arg 25	Leu	Met	Asn	Pro	Leu 30	Ile	Asp
Gln	Tyr	Leu 35	Tyr	Tyr	Leu	Ser	Arg 40	Thr	Gln	Thr	Thr	Gly 45	Gly	Thr	Ala
Asn	Thr 50	Gln	Thr	Leu	Gly	Phe 55	Ser	Gln	Gly	Gly	Pro 60	Asn	Thr	Met	Ala
Asn 65	Gln	Ala	Lys	Asn	Trp 70	Leu	Pro	Gly	Pro	Суя 75	Tyr	Arg	Gln	Gln	Arg 80
Val	Ser	Thr	Thr	Thr 85	Gly	Gln	Asn	Asn	Asn 90	Ser	Asn	Phe	Ala	Trp 95	Thr
Ala	Gly	Thr	Lys 100	Tyr	His	Leu	Asn	Gly 105	Arg	Asn	Ser	Leu	Ala 110	Asn	Pro
Gly	Ile	Ala 115	Met	Ala	Thr	His	Lys 120	Asp	Asp	Glu	Glu	Arg 125	Phe	Phe	Pro
Ser	Asn 130	Gly	Ile	Leu	Ile	Phe 135	Gly	Lys	Gln	Asn	Ala 140	Ala	Arg	Asp	Asn
Ala 145	Asp	Tyr	Ser	Asp	Val 150	Met	Leu	Thr	Ser	Glu 155	Glu	Glu	Ile	Lys	Thr 160
Thr	Asn	Pro	Val	Ala 165	Thr	Glu	Glu	Tyr	Gly 170	Ile	Val	Ala	Asp	Asn 175	Leu
Gln	Gln	Gln	Asn 180	Leu	Ala	Leu	Gly	Glu 185	Thr	Thr	Arg	Pro	Ala 190	Thr	Ala
Pro	Gln	Ile 195	Gly	Thr	Val	Asn	Ser 200	Gln	Gly	Ala	Leu	Pro 205	Gly	Met	Val
Trp	Gln 210	Asn	Arg	Asp	Val	Tyr 215	Leu	Gln	Gly	Pro	Ile 220	Trp	Ala	Lys	Ile
Pro 225	His	Thr	Asp	Gly	Asn 230	Phe	His	Pro	Ser	Pro 235	Leu	Met	Gly	Gly	Phe 240
Gly	Leu	Lys	His	Pro 245	Pro	Pro	Gln	Ile	Leu 250	Ile	Lys	Asn			
<210 <211 <212 <213 <220 <223	0> SE L> LE 2> T 3> OF 0> FE 3> OT	EQ II ENGTH (PE : RGANI EATUF THER	D NO H: 29 PRT ISM: RE: INF(38 52 Art: DRMAT	Lfici	ial : : Syr	seque	ence tic p	oolyp	pepti	lde				
<400)> SE	EQUEN	ICE :	38											
Asn 1	Phe	Gln	Phe	Thr 5	Tyr	Thr	Phe	Glu	Asp 10	Val	Pro	Phe	His	Ser 15	Ser
Tyr	Ala	His	Ser 20	Gln	Ser	Leu	Asp	Arg 25	Leu	Met	Asn	Pro	Leu 30	Ile	Asp
Gln	Tyr	Leu 35	Tyr	Tyr	Leu	Ser	Arg 40	Thr	Gln	Thr	Thr	Gly 45	Gly	Thr	Ala
Asn	Thr 50	Gln	Thr	Leu	Gly	Phe 55	Ser	Gln	Gly	Gly	Pro 60	Asn	Thr	Met	Ala
Asn 65	Gln	Ala	Lys	Asn	Trp 70	Leu	Pro	Gly	Pro	Cys 75	Tyr	Arg	Gln	Gln	Arg 80
Val	Ser	Thr	Thr	Thr 85	Gly	Gln	Asn	Asn	Asn 90	Ser	Asn	Phe	Ala	Trp 95	Thr
Ala	Gly	Thr	Lys 100	Tyr	His	Leu	Asn	Gly 105	Arg	Asn	Ser	Leu	Ala 110	Asn	Pro

Gly Ile Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Asn Gly Ile Leu Ile Phe Gly Lys Gln Asn Ala Ala Arg Asp Asn Ala Asp Tyr Ser Asp Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Ile Val Ala Asp Asn Leu Gln Gly Gln Arg Gly Leu Gly Glu Thr Thr Arg Pro Ala Gln Ala Ala Gln Ile Gly Thr Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro 210 215 His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn <210> SEO ID NO 39 <211> LENGTH: 251 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEOUENCE: 39 Phe Gln Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Val Arg Thr Gln Thr Thr Gly Thr Gly Gly Thr Gln Thr Leu Ala Phe Ser Gln Ala Gly Pro Ser Ser Met Ala Asn Gln Ala Arg Asn Trp Val Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Thr Asn Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Ala Lys Phe Lys Leu Asn Gly Arg Asp Ser Leu Met Asn Pro Gly Val 100 105 Ala Met Ala Ser His Lys Asp Asp Asp Asp Arg Phe Phe Pro Ser Ser Gly Val Leu Ile Phe Gly Lys Gln Gly Ala Gly Asn Asp Gly Val Asp Tyr Ser Gln Val Leu Ile Thr Asp Glu Glu Glu Ile Lys Ala Thr Asn Pro Val Ala Thr Glu Glu Tyr Gly Ala Val Ala Ile Asn Asn Gln Ala Ala Asn Leu Ala Leu Gly Glu Thr Thr Arg Pro Ala Thr Gln Ala Gln Thr Gly Leu Val His Asn Gln Gly Val Ile Pro Gly Met Val Trp Gln

Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn <210> SEQ ID NO 40 <211> LENGTH: 253 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 40 Asn Phe Glu Phe Ser Tyr Thr Phe Glu Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr Gln Ser Thr Gly Gly Thr Gln Gly Thr Gln Gln Leu Leu Phe Ser Gln Ala Gly Pro Ala Asn Met Ser Ala Gln Ala Lys Asn Trp Leu Pro Gly Pro Cys Tyr Arg Gln Gln Arg Val Ser Thr Thr Leu Ser Gln Asn Asn Asn Ser Asn Phe Ala Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly Arg Asp Ser Leu Val Asn Pro Gly Val Ala Met Ala Thr His Lys Asp Asp Glu Glu Arg Phe Phe Pro Ser Ser Gly Val Leu Met Phe Gly Lys Gln Gly Ala Gly Arg Asp Asn Val Asp Tyr Ser Ser Val Met Leu Thr Ser Glu Glu Glu Ile Lys Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr Gly Val Val Ala Asp Asn Leu Gln Gln Leu Ala Leu Gly Glu Thr Thr Arg Pro Ala Ala Asn Thr Gly Pro Ile Val Gly Asn Val Asn Ser Gln Gly Ala Leu Pro Gly Met Val Trp Gln Asn Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Gln Ile Leu Ile Lys Asn

<210> SEQ ID NO 41 <211> LENGTH: 252 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide

-continued		

											-	con	tin	ued	
<400)> SH	EQUEI	ICE :	41											
Phe 1	Glu	Phe	Ser	Tyr 5	Ser	Phe	Glu	Aab	Val 10	Pro	Phe	His	Ser	Ser 15	Tyr
Ala	His	Ser	Gln 20	Ser	Leu	Asp	Arg	Leu 25	Met	Asn	Pro	Leu	Ile 30	Asp	Gln
Tyr	Leu	Tyr 35	Tyr	Leu	Ala	Arg	Thr 40	Gln	Ser	Asn	Pro	Gly 45	Gly	Thr	Ala
Gly	Asn 50	Arg	Glu	Leu	Gln	Phe 55	Tyr	Gln	Gly	Gly	Pro 60	Ser	Thr	Met	Ala
Glu 65	Gln	Ala	Lys	Asn	Trp 70	Leu	Pro	Gly	Pro	Cys 75	Phe	Arg	Gln	Gln	Arg 80
Val	Ser	Lys	Thr	Leu 85	Asp	Gln	Asn	Asn	Asn 90	Ser	Asn	Phe	Ala	Trp 95	Thr
Gly	Ala	Thr	Lys 100	Tyr	His	Leu	Asn	Gly 105	Arg	Asn	Ser	Leu	Val 110	Asn	Pro
Gly	Val	Ala 115	Met	Ala	Thr	His	Lys 120	Asp	Asp	Glu	Asp	Arg 125	Phe	Phe	Pro
Ser	Ser 130	Gly	Val	Leu	Ile	Phe 135	Gly	Lys	Thr	Gly	Ala 140	Thr	Asn	Lys	Thr
Thr 145	Leu	Glu	Asn	Val	Leu 150	Met	Thr	Asn	Glu	Glu 155	Glu	Ile	Arg	Pro	Thr 160
Asn	Pro	Val	Ala	Thr 165	Glu	Glu	Tyr	Gly	Ile 170	Val	Ser	Ser	Asn	Leu 175	Gln
Ala	Ala	Asn	Leu 180	Ala	Leu	Gly	Glu	Thr 185	Thr	Arg	Pro	Ala	Thr 190	Ala	Ala
Gln	Thr	Gln 195	Val	Val	Asn	Asn	Gln 200	Gly	Ala	Leu	Pro	Gly 205	Met	Val	Trp
Gln	Asn 210	Arg	Asp	Val	Tyr	Leu 215	Gln	Gly	Pro	Ile	Trp 220	Ala	Lys	Ile	Pro
His 225	Thr	Asp	Gly	Asn	Phe 230	His	Pro	Ser	Pro	Leu 235	Met	Gly	Gly	Phe	Gly 240
Leu	Lys	His	Pro	Pro 245	Pro	Gln	Ile	Leu	Ile 250	Lys	Asn				
<210 <211 <212 <213 <220 <223)> SH L> LH 2> TY 3> OH 0> FH 3> OT	EQ II ENGTH ZPE: RGANI EATUF THER	D NO H: 24 PRT ISM: RE: INF(42 49 Art: DRMAT	ific: TION	ial s : Syr	seque	ence cic p	poly	pept:	ide				
<400)> SI	EQUEI	ICE :	42											
Phe 1	Gln	Phe	Ser	Tyr 5	Glu	Phe	Glu	Asn	Val 10	Pro	Phe	His	Ser	Ser 15	Tyr
Ala	His	Ser	Gln 20	Ser	Leu	Asp	Arg	Leu 25	Met	Asn	Pro	Leu	Ile 30	Asp	Gln
Tyr	Leu	Tyr 35	Tyr	Leu	Ser	Lys	Thr 40	Ile	Asn	Gly	Ser	Gly 45	Gln	Asn	Gln
Gln	Thr 50	Leu	Lys	Phe	Ser	Val 55	Ala	Gly	Pro	Ser	Asn 60	Met	Ala	Val	Gln
Gly 65	Arg	Asn	Tyr	Ile	Pro 70	Gly	Pro	Ser	Tyr	Arg 75	Gln	Gln	Arg	Val	Ser 80
Thr	Thr	Val	Thr	Gln	Asn	Asn	Asn	Ser	Glu	Phe	Ala	Trp	Pro	Gly	Ala

-continued

				85					90					95	
Ser	Ser	Trp	Ala 100	Leu	Asn	Gly	Arg	Asn 105	Ser	Leu	Met	Asn	Pro 110	Gly	Pro
Ala	Met	Ala 115	Ser	His	Lys	Glu	Gly 120	Glu	Asp	Arg	Phe	Phe 125	Pro	Leu	Ser
Gly	Ser 130	Leu	Ile	Phe	Gly	Lys 135	Gln	Gly	Thr	Gly	Arg 140	Asp	Asn	Val	Asp
Ala 145	Asp	ГЛа	Val	Met	Ile 150	Thr	Asn	Glu	Glu	Glu 155	Ile	Lya	Thr	Thr	Asn 160
Pro	Val	Ala	Thr	Glu 165	Ser	Tyr	Gly	Gln	Val 170	Ala	Thr	Asn	His	Gln 175	Ser
Ala	Gln	Leu	Ala 180	Leu	Gly	Glu	Thr	Thr 185	Arg	Pro	Ala	Gln	Ala 190	Gln	Thr
Gly	Trp	Val 195	Gln	Asn	Gln	Gly	Ile 200	Leu	Pro	Gly	Met	Val 205	Trp	Gln	Asp
Arg	Asp 210	Val	Tyr	Leu	Gln	Gly 215	Pro	Ile	Trp	Ala	Lys 220	Ile	Pro	His	Thr
Asp 225	Gly	Asn	Phe	His	Pro 230	Ser	Pro	Leu	Met	Gly 235	Gly	Phe	Gly	Met	Lys 240
His	Pro	Pro	Pro	Gln 245	Ile	Leu	Ile	Lys							
<223	3 > 01	THER	INFO	ORMA:	FION	: Syr	nthet	ic r	olva	ent ·	do				
< 40)> SE	COUEN	ICE ·	43		-		I	20171	ocpe.	Lue				
<40) Gln 1)> SI Phe	EQUEN Ser	ICE: Tyr	43 Glu 5	Phe	Glu	Asn	Val	Pro 10	Phe	His	Ser	Ser	Tyr 15	Ala
<40 Gln 1 His	D> SH Phe Ser	EQUEN Ser Gln	NCE: Tyr Ser 20	43 Glu 5 Leu	Phe Asp	Glu Arg	Asn Leu	Val Met 25	Pro 10 Asn	Phe Pro	His Leu	Ser Ile	Ser Asp 30	Tyr 15 Gln	Ala Tyr
<40 Gln 1 His Leu	D> SI Phe Ser Tyr	GUEN Ser Gln Tyr 35	NCE: Tyr Ser 20 Leu	43 Glu 5 Leu Ser	Phe Asp Lys	Glu Arg Thr	Asn Leu Ile 40	Val Met 25 Asn	Pro 10 Asn Gly	Phe Pro Ser	His Leu Gly	Ser Ile Gln 45	Ser Asp 30 Asn	Tyr 15 Gln Gln	Ala Tyr Gln
<400 Gln His Leu Thr	D> SH Phe Ser Tyr Leu 50	EQUEN Ser Gln Tyr 35 Lys	NCE: Tyr Ser 20 Leu Phe	43 Glu 5 Leu Ser Ser	Phe Asp Lys Val	Glu Arg Thr Ala 55	Asn Leu Ile 40 Gly	Val Met 25 Asn Pro	Pro 10 Asn Gly Ser	Phe Pro Ser Asn	His Leu Gly Met 60	Ser Ile Gln 45 Ala	Ser Asp 30 Asn Val	Tyr 15 Gln Gln Gln	Ala Tyr Gln Gly
<400 Gln 1 His Leu Thr Arg 65	D> SH Phe Ser Tyr Leu 50 Asn	Ser Gln Tyr 35 Lys Tyr	NCE: Tyr Ser 20 Leu Phe Ile	43 Glu 5 Leu Ser Ser Pro	Phe Asp Lys Val Gly 70	Glu Arg Thr Ala 55 Pro	Asn Leu 11e 40 Gly Ser	Val Met 25 Asn Pro Tyr	Pro 10 Asn Gly Ser Arg	Phe Pro Ser Asn Gln 75	His Leu Gly Met 60 Gln	Ser Ile Gln 45 Ala Arg	Ser Asp 30 Asn Val Val	Tyr 15 Gln Gln Gln Ser	Ala Tyr Gln Gly Thr 80
<400 Gln 1 His Leu Thr Arg 65 Thr	<pre>D> SF Phe Ser Tyr Leu 50 Asn Val</pre>	GQUEN Ser Gln Tyr 35 Lys Tyr Thr	NCE: Tyr Ser 20 Leu Phe Ile Gln	43 Glu 5 Leu Ser Pro Asn 85	Phe Asp Lys Val Gly 70 Asn	Glu Arg Thr Ala 55 Pro Asn	Asn Leu Ile 40 Gly Ser Ser	Val Met 25 Asn Pro Tyr Glu	Pro 10 Asn Gly Ser Arg Phe 90	Phe Pro Ser Asn Gln 75 Ala	His Leu Gly Met 60 Gln Trp	Ser Ile Gln 45 Ala Arg Pro	Ser Asp 30 Asn Val Val Gly	Tyr 15 Gln Gln Gln Ser Ala 95	Ala Tyr Gln Gly Thr 80 Ser
<400 Gln 1 His Leu Thr Arg 65 Thr Ser	<pre>D> SF Phe Ser Tyr Leu 50 Asn Val Trp</pre>	GQUEN Ser Gln Tyr 35 Lys Tyr Thr Ala	NCE: Tyr Ser 20 Leu Phe Gln Leu 100	43 Glu 5 Leu Ser Ser Pro Asn 85 Asn	Phe Asp Lys Val Gly Gly	Glu Arg Thr Ala 55 Pro Asn Arg	Asn Leu Ile 40 Gly Ser Ser Asn	Val Met 25 Asn Pro Tyr Glu Ser 105	Pro 10 Asn Gly Ser Arg Phe 90 Leu	Phe Pro Ser Asn Gln 75 Ala Met	His Leu Gly Met 60 Gln Trp Asn	Ser Ile Gln 45 Ala Arg Pro Pro	Ser Asp 30 Asn Val Gly 110	Tyr 15 Gln Gln Gln Ser Ala 95 Pro	Ala Tyr Gln Gly Thr 80 Ser Ala
<400 Gln 1 His Leu Thr Arg 65 Thr Ser Met	<pre>D> SH Phe Ser Tyr Leu 50 Asn Val Trp Ala</pre>	GQUEN Ser Gln Tyr 35 Lys Tyr Thr Ala Ser 115	NCE: Tyr Ser 20 Leu Phe Gln Leu 100 His	43 Glu 5 Ser Ser Pro Asn 85 Asn	Phe Asp Lys Val Gly Gly Glu	Glu Arg Thr Ala 55 Pro Asn Arg Gly	Asn Leu Ile 40 Gly Ser Ser Asn Glu 120	Val Met 25 Asn Pro Tyr Glu Ser 105 Asp	Pro 10 Asn Gly Ser Arg Phe 90 Leu Arg	Phe Pro Ser Asn Gln 75 Ala Met Phe	His Leu Gly Met 60 Gln Trp Asn Phe	Ser Ile Gln 45 Ala Arg Pro Pro 125	Ser Asp 30 Asn Val Gly 110 Leu	Tyr 15 Gln Gln Ser Ala 95 Pro Ser	Ala Tyr Gln Gly Thr 80 Ser Ala Gly
<400 Gln 1 His Leu Thr Arg 65 Thr Ser Met Ser	<pre>D> SH Phe Ser Tyr Leu 50 Asn Val Trp Ala Leu 130</pre>	GQUEN Ser Gln Tyr Lys Tyr Thr Ala Ser 115 Ile	NCE: Tyr 20 Leu Phe Gln Leu 100 His Phe	43 Glu Ser Ser Pro Asn 85 Asn Lys Gly	Phe Asp Lys Val Gly 70 Asn Gly Glu Lys	Glu Arg Thr Ala 55 Pro Asn Arg Gly Gln 135	Asn Leu Ile 40 Gly Ser Ser Asn Glu 120 Gly	Val Met 25 Asn Pro Tyr Glu Ser 105 Asp Thr	Pro 10 Asn Gly Ser Arg Phe 90 Leu Arg Gly	Phe Pro Ser Asn Gln 75 Ala Met Phe Arg	His Leu Gly Met 60 Gln Trp Asn Phe Asp 140	Ser Ile Gln 45 Ala Arg Pro Pro Pro 225 Asn	Ser Asp 30 Asn Val Gly 110 Leu Val	Tyr 15 Gln Gln Ser Ala 95 Pro Ser Asp	Ala Tyr Gln Gly Thr So Ser Ala Gly Ala
<400 Gln 1 His Leu Thr Arg 65 Thr Ser Met Ser Asp 145	<pre>D> SH Phe Ser Tyr Leu 50 Asn Val Trp Ala Leu 130 Lys</pre>	CQUEN Ser Gln Tyr J5 Lys Tyr Thr Ala Ser 115 Ile Val	NCE: Tyr Ser 20 Leu Phe Gln Leu 100 His Phe Met	43 Glu Ser Ser Pro Asn Lys Gly Ile	Phe Asp Lys Val Gly Asn Gly Glu Lys Thr 150	Glu Arg Thr Ala 55 Pro Asn Arg Gly Gln 135 Asn	Asn Leu Ile 40 Gly Ser Ser Asn Glu 120 Gly Glu	Val Met 25 Asn Pro Tyr Glu Ser 105 Asp Thr Glu	Pro 10 Asn Gly Ser Arg Phe 90 Leu Arg Gly Glu	Phe Pro Ser Asn Gln 75 Ala Met Phe Arg Ile	His Leu Gly Met 60 Gln Trp Asn Phe Asp 140 Lys	Ser Ile Gln 45 Ala Arg Pro Pro 125 Asn Thr	Ser Asp 30 Asn Val Gly 110 Leu Val Thr	Tyr 15 Gln Gln Ser Ala 95 Pro Ser Asp Asn	Ala Tyr Gln Gly Thr 80 Ser Ala Gly Ala Pro
<400 Gln 1 His Leu Thr Arg 65 Thr Ser Ser Asp 145 Val	D> SE Phe Ser Tyr Leu 50 Asn Val Trp Ala Leu 130 Lys Ala	CQUEN Ser Gln Tyr J5 Lys Tyr Thr Ala Ser 115 Ile Val Thr	NCE: Tyr Ser 20 Leu Phe Gln Leu 100 His Phe Met Glu	43 Glu Ser Ser Pro Asn 85 Asn Lys Gly Ile	Phe Asp Lys Val Gly Asn Gly Cly Lys Thr 150 Tyr	Glu Arg Thr Ala 55 Pro Asn Arg Gly (Gln 135 Asn Gly	Asn Leu Ile 40 Gly Ser Ser Asn Glu 120 Gly Glu Glu	Val Met 25 Asn Pro Tyr Glu Ser 105 Asp Thr Glu Val	Pro 10 Asn Gly Ser Arg Phe 90 Leu Arg Gly Glu Ala 170	Phe Pro Ser Asn Gln 75 Ala Met Phe Arg Ile 155 Thr	His Leu Gly Met 60 Gln Trp Asn Phe Asn Lys Asn	Ser Ile Gln 45 Ala Arg Pro Pro Pro 225 Asn Thr His	Ser Asp 30 Asn Val Gly Gly Cly Leu Val Thr Gln	Tyr 15 Gln Gln Gln Ser Ala 95 Pro Ser Asp Asn Ser 175	Ala Tyr Gln Gly Thr 80 Ser Ala Gly Ala Pro 160 Gly
-continued

Trp Val Gln Asn Gln Gly Ile Leu Pro Gly Met Val Trp Gln Asp Arg 195 200 Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr Asp Gly Asn Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Met Lys His Pro Pro Pro Gln Ile Leu Ile Lys <210> SEQ ID NO 44 <211> LENGTH: 250 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 44 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser Phe Ala Pro Ser Gln Asn Leu Phe Lys Leu Ala Asn Pro Leu Val Asp Gln Tyr Leu Tyr Arg Phe Val Ser Thr Asn Asn Thr Gly Gly Val Gln Phe Asn Lys Asn Leu Ala Gly Arg Tyr Ala Asn Thr Tyr Lys Asn Trp Phe Pro Gly Pro Met Gly Arg Thr Gln Gly Trp Asn Leu Gly Ser Gly Val Asn Arg Ala Ser Val Ser Ala Phe Ala Thr Thr Asn Arg Met Glu Leu Glu Gly Ala Ser Tyr Gln Val Pro Pro Gln Pro Asn Gly Met Thr Asn Asn Leu Gln Gly Ser Asn Thr Tyr Ala Leu Glu Asn Thr Met Ile Phe Asn Ser Gln Pro Ala Asn Pro Gly Thr Thr Ala Thr Tyr Leu Glu Gly Asn Met Leu Ile Thr Ser Glu Ser Glu Thr Gln Pro Val Asn Arg Val Ala Tyr Asn Val Gly Gly Gln Met Ala Thr Asn Asn Gln Ser Leu Ala Leu Gly Glu Thr Thr Arg Pro Ala Ser Thr Thr Ala Pro Ala Thr Gly Thr Tyr Asn Leu Gln Glu Ile Val Pro Gly Ser Val Trp Met Glu Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro Glu Thr Gly Ala His Phe His Pro Ser Pro Ala Met Gly Gly Phe Gly Leu Lys His Pro Pro Pro Met Met Leu Ile Lys Asn

<210> SEQ ID NO 45 <211> LENGTH: 10 <212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 45 Leu Ala Leu Gly Glu Thr Thr Arg Pro Ala 5 10 1 <210> SEQ ID NO 46 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 46 Leu Ala Asn Glu Thr Ile Thr Arg Pro Ala 5 10 1 <210> SEQ ID NO 47 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 47 Leu Ala Lys Ala Gly Gln Ala Asn Asn Ala 1 5 10 <210> SEQ ID NO 48 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 48 Leu Ala Lys Asp Pro Lys Thr Thr Asn Ala 1 5 10 <210> SEQ ID NO 49 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 49 Ala Ala Leu Gly Glu Thr Thr Arg Pro Ala 1 5 10 <210> SEQ ID NO 50 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 50 Ala Ala Asn Glu Thr Ile Thr Arg Pro Ala 1 5 10

<210> SEQ ID NO 51

51

-continued

<211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 51 Ala Ala Lys Ala Gly Gln Ala Asn Asn Ala 5 1 10 <210> SEQ ID NO 52 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 52 Ala Ala Lys Asp Pro Lys Thr Thr Asn Ala 1 5 10 <210> SEQ ID NO 53 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 53 Gly Leu Gly Glu Thr Thr Arg Pro Ala 1 5 <210> SEQ ID NO 54 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 54 Gly Asn Glu Thr Ile Thr Arg Pro Ala 5 1 <210> SEQ ID NO 55 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 55 Gly Lys Ala Gly Gln Ala Asn Asn Ala 5 1 <210> SEQ ID NO 56 <211> LENGTH: 9 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic peptide <400> SEQUENCE: 56 Gly Lys Asp Pro Lys Thr Thr Asn Ala 5 1

-continued

53

<210> SEQ ID NO 57 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 57 Lys Asp Thr Asp Thr Thr Arg - - 5 1 <210> SEQ ID NO 58 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 58 Arg Ala Gly Gly Ser Val Gly 5 1 <210> SEQ ID NO 59 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 59 Ala Val Asp Thr Thr Lys Phe 1 5 <210> SEQ ID NO 60 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 60 Ser Thr Gly Lys Val Pro Asn 1 5 <210> SEQ ID NO 61 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 61 Leu Ala Lys Asp Thr Asp Thr Thr Arg Ala 1 5 10 <210> SEQ ID NO 62 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 62

Leu Ala Arg Ala Gly Gly Ser Val Gly Ala

5

1

-continued

10

<210> SEQ ID NO 63 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 63 Leu Ala Ala Val Asp Thr Thr Lys Phe Ala 5 <210> SEQ ID NO 64 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEOUENCE: 64 Leu Ala Ser Thr Gly Lys Val Pro Asn Ala 1 5 10

1-27. (canceled)

28. A method of identifying a variant recombinant adenoassociated virus (rAAV) virion having greater infectivity of a cell as compared to the corresponding parental AAV virion, the method comprising:

polymerase chain reaction (PCR) amplifying virion capsid DNA from cells contacted in vivo with a library of variant rAAV virions comprising variant AAV virion capsid protein and variant AAV virion capsid DNA encoding the variant AAV capsid protein.

29. The method according to claim 28, wherein the variant AAV virion capsid protein comprises a peptide inserted into the GH loop of the corresponding parental AAV capsid protein.

30. The method according to claim **29**, wherein the peptide consists of five to eleven amino acids.

31. The method according to claim **29**, wherein the peptide is located between two adjacent amino acids within amino acids 570-614 of the corresponding parental AAV capsid protein.

32. The method according to claim **28**, wherein the variant AAV virion capsid protein comprises 1 to 25 amino acid substitutions.

33. The method according to claim **28**, wherein the variant AAV virion capsid protein is a chimeric capsid protein.

34. The method according to claim **28**, further comprising, following said PCR amplification, sequencing the variant AAV virion capsid DNA.

35. The method according to claim **28**, further comprising, following said PCR amplification,

cloning the variant AAV virion capsid DNA, and

packaging variant AAV virions from the cloned variant AAV virion capsid DNA.

36. The method according to claim **35**, wherein the PCR amplification comprises error-prone PCR.

37. The method according to claim **28**, wherein the cell is a retinal cell.

38. The method according to claim **28**, wherein the increased infectivity is a greater infectivity of said cells following administration of the variant rAAV virion in vivo as

compared to the infectivity of an AAV virion comprising the corresponding parental AAV capsid protein when administered in vivo.

39. A method of screening a library of variant recombinant adeno-associated virus (rAAV) virions to identify a variant rAAV virion having greater infectivity of a cell as compared to a corresponding parental AAV virion, the method comprising:

contacting cells in vivo with a library of variant rAAV virions comprising variant AAV capsid protein and variant AAV virion capsid DNA encoding the variant AAV capsid protein.

40. The method according to claim **39**, wherein the variant AAV virion capsid protein comprises a peptide inserted into the GH loop of the corresponding parental AAV capsid protein.

41. The method according to claim 40, wherein the peptide consists of five to eleven amino acids.

42. The method according to claim **40**, wherein the peptide is located between two adjacent amino acids within amino acids 570-614 of the corresponding parental AAV capsid protein.

43. The method according to claim **40**, wherein the variant AAV virion capsid protein comprises 1 to 25 amino acid substitutions.

44. The method according to claim **40**, wherein the variant AAV virion capsid protein is a chimeric capsid protein.

45. The method according to claim **39**, further comprising: sequencing the variant AAV virion capsid DNA.

46. The method according to claim 39, further comprising:

polymerase chain reaction (PCR) amplifying the variant AAV virion capsid DNA from the cells.

47. The method according to claim **46**, further comprising, following said PCR amplification,

cloning the variant rAAV virion capsid DNA, and

packaging variant AAV virions from the cloned variant rAAV virion capsid DNA.

48. The method according to claim **47**, wherein the PCR amplification comprises error-prone PCR.

49. The method according to claim **39**, wherein the cell is a retinal cell.

50. The method according to claim **39**, wherein the increased infectivity is a greater infectivity of said cells following administration of the variant rAAV virion in vivo as compared to the infectivity of an AAV virion comprising the corresponding parental AAV capsid protein when administered in vivo.

51. A method of generating a library of variant AAV virions, each virion comprising a variant AAV capsid comprising at least one amino acid substitution, the method comprising:

producing a library of AAV cap gene variants comprising a nucleic acid sequence that encodes for a peptide inserted into the GH loop of the encoded variant AAV capsid protein; cloning said library of AAV cap gene variants; and

producing a library of variant rAAV virions comprising variant AAV capsid protein encoded by said AAV cap gene variants.

52. The method according to claim **51**, wherein the encoded peptide is located between two adjacent amino acids located between amino acids 570-614 of the corresponding parental AAV capsid protein.

53. The method according to claim **51**, wherein the encoded variant AAV capsid proteins further comprise 1 to 25 amino acid substitutions.

54. The method according to claim **51**, wherein the variant AAV virion capsid protein is a chimeric capsid protein.

55. A library of rAAV virions generated by the method according to claim **51**.

* * * * *