wo 2010/037065 A2 |11 0O OO0 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/037065 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
al
(43) International Publication Date \'{:/_?___/
1 April 2010 (01.04.2010) PCT
(51) International Patent Classification:
GO6F 17/00 (2006.01) GOG6F 17/30 (2006.01)
(21) International Application Number: 74)
PCT/US2009/058672
(22) International Filing Date: (81)
28 September 2009 (28.09.2009)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/100,669 26 September 2008 (26.09.2008) US
61/164,857 30 March 2009 (30.03.2009) US
(71) Applicant (for all designated States except US): CMI
CORPORATE MARKETING D/B/A PRELUDE IN-
NOVATIONS, INC. [US/US]; 14650 Irving Street, (g4)
Broomfield, Colorado 80023 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): ISAACSON, Cory

[US/US]; 14650 Irving Street, Broomfield, Colorado

80023 (US). GROVE, Andrew [US/US]; 1671 Hemlock
Way, Broomfield, Colorado 80020 (US).

Agent: OSBORNE, Thomas; Hensley Kim & Holzer,
LLC, 1660 Lincoln Street, Denver, Colorado 80264 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

[Continued on next page]

(54) Title: SCALABLE RELATIONAL DATABASE REPLICATION

FIGURE 2A

PRIMARY SERVER (202)

» PRIMARY DATABASE |

CLIENT (201) (204)

PRIMARY AGENT
(205)

(203)

SECONDARY AGENT
(208)

SECONDARY
DATABASE (207)

(57) Abstract: A relational database replication system
includes a client, at least one primary database, a plurality
of secondary databases and replication agents which coor-
dinate database transactions. The system provides a high
level of performance, reliability, and scalability with an
end result of efficient and accurate duplication of transac-
tions between the primary and secondary databases. In
one implementation, the client transmits sets of database
update statements to the primary database and primary
agent in parallel; the primary agent replicates the state-
ments to at least one secondary agent. A transaction pre-
pare and commit process is coordinated between the pri-
mary database and the primary agent, which in turn coor-
dinates with the at least one secondary agent. Databases
can be partitioned into individual smaller databases,
called shards, and the system can operate in a linearly
scalable manner, adding clients, databases and replication
agents without requiring central coordination or compo-
nents that cause bottlenecks.

WO 2010/037065 A2 I W00 000 O AU A

MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, Published:
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

ML. MR, NE, SN, TD, TG). — without international search report and to be republished

upon receipt of that report (Rule 48.2(g))

WO 2010/037065 PCT/US2009/058672

Scalable Relational Database Replication

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of United States provisional application no.
61/100,669, filed 26 September 2008 and United States provisional application no. 61/164,857,
tiled 30 March 2009, each of which is hereby incorporated by reference as though fully set forth

herein.

BACKGROUND
Field

[0002] The disclosed technology is in the field of relational database replication, more

particularly, the disclosed technology is in the field of scalable relational database replication.
Background
[0003] Aspects of a typical database replication system include the following:

- Ensuring that all transactions written to the primary database are replicated in full to a

secondary database.

- Committing (or finalizing) transactions in the secondary database in exactly the same

order as the commit action of each transaction in the primary database.

- Recovery in the event of a failure, by switching the role of a database to either primary or

secondary (as determined by the failure situation).

[0004] Several forms of database replication exist, with the three most common methods
described here. Figure 1A shows an asynchronous log replication system that utilizes a database

transaction log to perform replication asynchronously to secondary databases. In such a system, a

WO 2010/037065 PCT/US2009/058672

primary database (103) and its transaction log (104) reside on a primary server (102).
Transactions are written by a client program (101) to the primary database (103) and its
transaction log (104) in a first operation. A separate process monitors the transaction log (104)
and replicates transactions to a secondary database (106) residing on a secondary server (105) in
a second operation. This method is the most commonly employed, and suffers from significant
replication lag under high transaction rates, and cannot guarantee that all transactions are written
to the secondary database (106). If for example a backlog of thousands of transactions are stored
in the transaction log (104) awaiting replication, and the primary database experiences a failure,
a portion or all of the pending transactions are lost. Thus when the system fails over to a
secondary database, making it now the primary database, it has an incomplete copy of the
original primary database, a condition that is intolerable for most commercial database

applications.

[0005] Figure 1B shows a two-phase commit synchronous replication system in which
any single transaction must be written and committed successfully to both the primary and
secondary databases before a transaction is considered successful. In this process, a client (107)
sends all database write statements (shown as a first operation) to a primary database (109),
residing on a primary server (108), and to a secondary database (111), residing on a secondary
server (110). The client (107) then sends a commit request to a transaction coordinator (112)
(shown as a second operation). The transaction coordinator (112) then sends a prepare message
(shown as a third operation) to the primary database (109) and the secondary database (111),
each of which must acknowledge in turn. Then the transaction coordinator (112) sends a commit
message (shown as a fourth operation) to the primary database (109) and the secondary database
(111), each of which must acknowledge in turn. The transaction coordinator (112) then sends an
acknowledgement of a final commit message to the client (107) (shown as a fifth operation).
This mechanism guarantees in most cases that the transaction fails or succeeds on both the
primary and secondary database, however there is significant overhead introduced. The
transaction coordinator (112) must wait for the all databases participating in the transaction to
complete all processing and respond. Further the use of a centralized transaction coordinator
(112) creates a bottleneck, limiting scalability as client processes are added to the system, further
slowing performance. Lastly, this mechanism requires at least two databases be available at all

times for a transaction to be performed reliably. If a failure of one of the participating database

2

WO 2010/037065 PCT/US2009/058672

occurs, it must be rebuilt on a standby server, which can incur a significant time delay (minutes,
hours or longer). Alternatively there can be at least three running servers, each participating in a
two-phase commit transaction, but this further adds to system overhead, processing delays and

adds significant cost to the system.

[0006] Figure 1C shows a middle-tier replication system that normally requires at least
one middle-tier server and process (114) located between a client (113) and a primary database
(116) and a secondary database (118). The middle-tier server (114) receives and relays all
transactions from the client (114) to the participating databases in a synchronous manner. This
approach adds both overhead and cost to the system, as the middle-tier must be redundant
(requiring at least two middle-tier servers), and acts as a bottleneck which cannot scale

effectively as additional clients (114) are added to the system.

[0007] There are several drawbacks in these replication systems. Synchronous replication
mechanisms cause a significant degradation in overall database performance, by enforcing the
completion of an entire transaction on both the primary and secondary databases. In these
systems a centralized transaction coordinator is often required, which must ensure that
transactions complete fully across all participating databases. This limits scalability by creating a
bottleneck at this centralized component, and also requires additional complexity to ensure that

this single component does not experience a failure, as the system cannot operate without it.

[0008] Asynchronous replication systems avoid the performance penalty, but do not
guarantee the success of transactions on the secondary databases, and can experience major
delays (referred to as “replication lag”) between transactional writes to the secondary database
after transactions are performed on the primary database. Further, replicated transactions must be
committed in the exact order performed on the source database. This requires writing one
transaction at a time on the replicated database, which slows performance and increases

replication lag.

[0009] If a failure occurs, in either a synchronous or asynchronous replication system, a
database system ideally should continue to operate in a reliable fashion. Some systems only
support continued operation after a failure on the single remaining operating member of the

system (such as the primary or secondary database that is still operational). In this case, there is

WO 2010/037065 PCT/US2009/058672

no protection against a succeeding failure of the remaining components until the original failed
component has been recovered. Alternatively, some systems require at least two active secondary

databases in the system which is costly.

[0010] These conditions limit the effectiveness and usefulness of database replication
systems, particularly when high-performance transactions and high-availability are required.
Fach of the prior methods possess one or more drawbacks for high-performance systems that
must be process a large volume of transactions, must be reliable, and scalable without a reliance

on centralized components.

SUMMARY
[0011] In one implementation, a high-performance, reliable and fully scalable replication
method is provided. In this implementation, a transaction written to a primary database is reliably
replicated to one or more secondary databases without requiring centralized components that
limit scalability as the number of system participants expand. One highly efficient replication
mechanism utilizes synchronous characteristics for highly reliable transaction replication, and a
highly efficient parallel asynchronous mechanism for replication to secondary databases for

minimal and controllable replication lag without loss of transactions.

[0012] A first variation provides a highly efficient replication system between a primary
database and at least one secondary database. In this variation, this allows the client to interact
directly with the primary database, sending one or a plurality of database write statements as part
of a single atomic transaction with no intermediary server or process. In substantially the same
time period, the client sends the database write statements to a primary replication agent, co-
located on the primary database server. The primary agent in turn sends each database write
statement after received to a primary agent in memory and asynchronously in log file for
reliability, and to at least one secondary agent which in turn stores the transaction in memory and
asynchronously in a log file for reliability. When sending of database write statements to the
primary database and primary agent is complete, the client sends a prepare request to the primary
agent. The primary agent sends a prepare request to the secondary agents, and acknowledges the

client when successful, generating a sequence number and optionally holding a sequence

WO 2010/037065 PCT/US2009/058672

semaphore or other lock in the primary agent for the transaction (the optional semaphore or other
lock may be used to guarantee a strict order of processing). The client then sends a commit
request to the primary database, and if successtul sends a commit to the primary agent, which in
turn sends a commit request to the secondary agent. The secondary agent sends an
acknowledgement to the primary agent, the primary agent sends an acknowledgement to the
client, and the sequence semaphore or other lock in the primary agent is released if such lock was
utilized. The secondary agent then replicates the transaction to the secondary database. If a
failure occurs at any point in the process, up to and including the commit to the primary
database, a rollback message is sent to the primary agent, which in turn sends the rollback to the

secondary agent, and the transaction is ignored by the secondary agent.

[0013] This method is highly efficient as the majority of the processing time incurred by
a database transaction is during the sending of the database write statements to a database. In this
variation, the client, in substantially the same time period, sends the database write statements to
the primary agent, which forwards them as received to the secondary agent. The agents can
receive and process database write statements generally faster than the primary database, and
therefore no extraneous overhead is added to the process. The write to the secondary database is
not required within this timeframe, eliminating the major inefficiency of prior mechanisms, yet
maintaining reliability of all transactions on at least two servers. The prepare and commit
messages sent by the client to the primary agent, and in turn forwarded to the secondary agent,
are very small messages and can be processed very efficiently, adding the minimum possible

delay to the process.

[0014] A second variation involves parallel replication of transactions to at least one
secondary database, to minimize replication lag while still guaranteeing the sequence of
transactions. The method supports multiple client processes or threads sending transactions to the
primary database and primary agent. The primary agent receives a discrete sequence of
transactions from each individual client process or thread, and forwards them to the secondary
agent, also in a discrete sequence for each client process or thread. The secondary agent then
applies the database write statements from each discrete client sequence to the secondary
database in parallel. The client process or thread then sends a prepare and commit message,

coordinated with the primary database, maintaining exactly sequence control of all transactions

WO 2010/037065 PCT/US2009/058672

across all participating client processes or threads only where such transactions require such
sequencing. The secondary agent then applies each transaction in the secondary database in the
exact sequence that the transactions were applied to the primary database, ensuring overall
sequence across all participating client processes or threads. The application of the transaction to
the secondary database by the secondary agent determines the actual order in which transactions
are applied to the secondary database when contention between two or more transactions occurs,

ensuring that the secondary database is an accurate copy of the primary database.

[0015] In this variation, it is possible for the application of the database write statements
to the secondary database to experience an occasional failure due to a referential integrity
violation. A referential integrity violation occurs when a transaction depends on a related value
from an earlier transaction, and this variation is applying the database write statements in
sequence by client process or thread, rather than the overall sequence applied to the primary
database to gain efficiency. If the secondary agent experiences a referential integrity violation on
a transaction, it utilizes two recovery mechanisms. In the first mechanism the secondary agent
waits for a specified period and reapplies the database write statement, with the likely occurrence
that the required data dependency has been performed b a parallel database write for another
client process or thread during the wait period. This process is repeated if necessary for a
predetermined number of recovery attempts. If this mechanism fails, the transaction is marked as
failed and awaits intervention by an administrator of the system. This variation improves
efficiency and performance of the application of replicated transactions to the secondary
database, by performing transactions in parallel according to client process or thread and
managing contention between client processes only when required. This allows the system to
maintain a very close level of synchronization between the primary and secondary databases,

even when an efficient asynchronous approach is utilized.

[0016] In a third variation, a system and method of providing parallel replication is
provided. A plurality of client processes or threads send database write messages and prepare
messages to a primary agent. The primary agent receives transactions in a discrete sequence for
each client process or thread. The primary agent relays the database write statements and prepare
messages for each client process or thread to a secondary agent, preserving sequence for each

client process or thread. The secondary agent asynchronously performs the database write

WO 2010/037065 PCT/US2009/058672

transactions on a secondary database after the prepare message has been received and
acknowledged. The client sends a commit message to the primary agent, which in turn relays the
commit message to the secondary agent, and the secondary agent sends an acknowledgement to
the primary agent which in turn sends the acknowledgement to the client. The secondary agent
applies the transactions in parallel to the secondary database for each client process or thread in
prepare message order. The primary agent and the secondary agent maintain the sequence of
prepare messages across all transactions for all client participants, ensuring the sequence of
commit messages matches the commit action to the primary database. The secondary agent then
performs the commit messages on the secondary database in the same sequence as performed on

the primary database.

[0017] A fourth variation supports scalability of replication processing for databases
which utilize a technique called database sharding. Database sharding is an established technique
in which a single large database is portioned into many smaller individual databases, called
shards, across a plurality of servers, dividing the data horizontally or by row. Database sharding
allows client processes or threads to write and read transactions and data to and from individual
shards. This can support scalable replication across any number of shards, by providing a
primary agent and secondary agent for each database shard, performing the replication process as
described earlier. Each database shard operates in independent primary and secondary databases,
where replication is performed to the secondary database by the secondary agent as described in
other variations. Any number of client processes or threads accesses each primary database shard

and primary agent directly.

[0018] The performance scales in a near-linear fashion using this method, as the number
of database shards, primary agents, and secondary agents are expanded together, allowing full
scalability without a dependency on centralized components which create bottlenecks. Each
database shard, its primary database, secondary database, primary agent and secondary agent
operate as an independent group without sharing resources or limits from other similar groups.
Each client process or thread accesses the primary database and primary agent of each database
shard directly without dependency on other client processes or threads, allowing the system to

scale as any number of client processes or threads are added to the system.

WO 2010/037065 PCT/US2009/058672

[0019] A fifth variation provides an efficient mechanism for failover in the event of a
failure of a primary database or agent in the system. In the event of a database or agent failure,
another agent is immediately started or is already operational on a standby or other available
server. Once the agent is operational, the client process is informed of the new agent, and
resumes sending transactions using the new secondary agent instance. The secondary agent
instance then rebuilds a new instance of the secondary database while it continues receiving

transactions without further system interruption.

[0020] A benefit of this approach is that the failover mechanism can be initiated very
rapidly, allowing operation to continue without an operational secondary agent or database, or

causing the system to experience significant delays while a secondary database is rebuilt.

BRIEF DESCRIPTION OF THE DRAWINGS
[0021] Figures 1A, 1B, and 1C illustrate examples of typical relational database

replications systems.
[0021] Figure 2 illustrates a first variation of a relational database replication system.

[0022] Figure 2B illustrates an alternative implementation of the relational database

replication system shown in Figure 2A.
[0023] Figure 3 illustrates a second variation of a relational database replication system.
[0024] Figure 4 illustrates the third variation of a relational database replication system.
[0025] Figure 5 illustrates the fourth variation of a relational database replication system.

[0026] Figure 6 illustrates an example implementation of a relational database replication

system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0027] Efficient and scalable relational database replication systems and methods for

efficiently and scalably replicating relational databases are provided. Database replication is the

8

WO 2010/037065 PCT/US2009/058672

ability to reproduce transactions written to a primary database into one or more replicated
secondary databases. An accurate and complete secondary database allows a computer system to
support high availability, by switching operations to a secondary database if a failure occurs.
Further, a replicated database system supports distribution of read-only operations across the
primary and one or more secondary databases as a means of spreading the load and improving

performance.

[0028] Referring to Figure 2A, a client (201) (defined as an originator or forwarder of
write statements to a database) sends one or a plurality of database write statements (21A) (e.g.,
SQL database write statements) in substantially the same time period to a primary database (204)
and a primary agent (205). In one implementation, the primary database (204) and the primary
agent (205) reside on a primary server (202), and a secondary database (207) and a secondary
agent (206) reside on a secondary server (203), but this is not required. The primary agent (205)
relays the one or a plurality of database write messages (21A) to one or more the secondary
agent(s) (200) (e.g., as soon as each database write message is received). The database write
messages (21A) are stored at least in memory on the secondary agent (206), and are
asynchronously written to a log file of the secondary agent (206) without adding delay to the
process. The client (201) then sends a prepare message (22A) to the primary agent (205). The
primary agent (205) generates a sequence number and sets a semaphore to enforce sequence and
prevent a future prepare from other client processes, and in turn sends the prepare message (22A)
to the secondary agent (206). The secondary agent (206) acknowledges the prepare message
(22A) in an acknowledgement (23A) to the primary agent (205) and the primary agent sends an
acknowledgment (23A) to the client (201).

[0029] The client (201) then immediately sends a commit message (24A) to the primary
database (204) and determines that the commit (24A) is successfully performed. The client (201)
then sends the commit message (25A) to the primary agent (205), the primary agent releases the
semaphore allowing other prepare messages to be received, and relays the commit message
(25A) to the secondary agent (206). The secondary agent (206) sends an acknowledgment (26A)
to the primary agent (205), which in turn sends an acknowledgment (26A) to the client (201).

The client (201) is then free to perform an additional transaction. The secondary agent (206) then

WO 2010/037065 PCT/US2009/058672

asynchronously performs the write transaction (27A) on the secondary database (207) in exactly

the same sequence as the write transaction was performed on the primary database (204).

[0030] In an alternative implementation of the system shown in Figure 2A, the client
(201) sends one or a plurality of database write statements (21 A) in substantially the same time
period to the primary database (204) and the primary agent (205). In this implementation, for
example, the primary database (204) and the primary agent (205) may reside on the primary
server (202), and the secondary database (207) and the secondary agent (206) may reside on a
secondary server (203), but again this is not required. The primary agent (205) relays the one or a
plurality of database write messages (21A) to one or more the secondary agent(s) (206) (e.g., as
soon as each database write message (21A) is received). The database write messages (21A) are
stored at least in memory on the secondary agent (206), and are asynchronously written to a log
file of the secondary agent (206) without adding delay to the process. The client (201) then sends
a prepare message (22A) to the primary agent (205). The primary agent (205) generates a
sequence number to enforce sequence where there is a conflict with one or more other client
transactions, and in turn sends the prepare message and sequence number (22A) to the secondary
agent (206). The secondary agent (206) acknowledges the prepare message with an
acknowledgement (23A) to the primary agent (205) and the primary agent sends an
acknowledgment (23A) to the client (201). The client (201) then immediately sends a commit
message (24A) to the primary database (204) and determines that the commit is successfully
performed. The client (201) then sends a commit message (25A) to the primary agent (205),
which relays the commit message (25A) to the secondary agent (206). The secondary agent (206)
optionally sends an acknowledgment (26A) to the primary agent (205), which in turn optionally
sends an acknowledgment (26A) to the client (201). The client (201) is then free to perform an
additional transaction. The secondary agent (206) then asynchronously performs the write
transaction (27A) on the secondary database (207) in accordance with the sequence number(s)

generated by one or more primary agent(s).

[0031] The sequence number, for example, is used to govern the overall order of
applying transactions to the secondary database, and explicitly guarantees sequence between
conflicting client processes (e.g., where the conflicting client processes attempt to write to the

same record or field of a database). In one particular implementation, for example, the

10

WO 2010/037065 PCT/US2009/058672

secondary agent may be able to perform write operations out of order if the operations do not
conflict (e.g., are directed to different or non-related records within a database). The secondary
agent uses the sequence numbers generated by the primary agents to apply all transactions,
guaranteeing transaction sequence when there is a direct conflict between write operations. In
this manner, the primary and secondary agents and the database may proceed more quickly by
using this sequence mechanism, with strict sequential control over conflicting transactions, and
approximate sequence control with non-conflicting transactions (without the need to hold an
explicit lock for the entire commit time). This may greatly increase the speed of the process. In
an alternative implementation, the secondary agent may use the sequence numbers for each write
operation. In this manner, complete control of write sequences can be maintained without

requiring a lock on the primary agent.

[0032] Figure 2B illustrates an alternative implementation of the relational database
replication system shown in Figure 2A. The same reference numbers, where used, indicate the
same or a similar structure or operation. In this implementation, for example, a client (201) sends
one or a plurality of database write statements (21B) to a primary database (204). A database
trigger (208) of the primary database (204) provides at least one data value as a result of the
database write statement. A function (e.g., a user defined function (209) or other function)
captures the at least one data value from the database trigger (208) and passes the at least one
data value to a primary agent (205). In one particular implementation, for example, the user-
defined function (209) forwards actual value(s) captured from the database trigger (208) to a
primary agent (205). In another implementation, the user-defined function (209) captures the
data value(s) from the database trigger (208) and rebuilds a database write statement to be

forwarded to the primary agent (203).

[0033] A “database data modification” collectively refers to a database statement (e.g., a
database statement specifying inserting, updating, or deleting) or a database data value that
specifies an insert, update or delete operation to a database row of a relational database. Thus,
for example, the database write statement or the captured data value described above may be

collectively referred to as a database data modification.

11

WO 2010/037065 PCT/US2009/058672

[0034] In the implementation shown in Figure 2B, the primary database (204) and the
primary agent (205) reside on a primary server (202), and a secondary database (207) and a

secondary agent (206) reside on a secondary server (203), but this is not required.

[0035] The primary agent (205) relays the one or a plurality of database write messages
(21B) and/or data values captured from the database trigger (208) of the primary database (204)
to one or more of the secondary agent(s) (206) (e.g., as soon as each database write message 1s
received). The database write messages (21B) (or captured data values) are stored at least in
memory on the secondary agent (206), and are asynchronously written to a log file of the
secondary agent (206) without adding delay to the process. The client (201) then sends a prepare
message (22B) to the primary agent (205). The primary agent (205) generates a sequence number
and sets a semaphore to enforce sequence and prevent a future prepare from other client
processes, and in turn sends the prepare message (22B) to the secondary agent (206). The
secondary agent (206) acknowledges the prepare message (22BA) in an acknowledgement
(23BA) to the primary agent (205) and the primary agent sends an acknowledgment (23B) to the
client (201).

[0036] The client (201) then immediately sends a commit message (24B) to the primary
database (204) and determines that the commit (24B) is successfully performed. The client (201)
then sends the commit message (25B) to the primary agent (205), the primary agent releases the
semaphore allowing other prepare messages to be received, and relays the commit message
(25B) to the secondary agent (206). The secondary agent (206) sends an acknowledgment (26B)
to the primary agent (205), which in turn sends an acknowledgment (26B) to the client (201).
The client (201) is then free to perform an additional transaction. The secondary agent (206) then
asynchronously performs the write transaction (27BA) on the secondary database (207) in

exactly the same sequence as the write transaction was performed on the primary database (204).

[0037] In an alternative implementation of the system shown in Figure 2B, the client
(201) sends one or a plurality of database write statements (21 A) to the primary database (204).
A database trigger (208) of the primary database (204) provides at least one data value as a result
of the database write statement. A function (e.g., a user defined function (209) or other function)
captures the at least one data value from the database trigger (208) and passes the at least one

data value to a primary agent (205). In one particular implementation, for example, the user-

12

WO 2010/037065 PCT/US2009/058672

defined function (209) forwards actual value(s) captured from the database trigger (208) to a
primary agent (205). In another implementation, the user-defined function (209) captures the
data value(s) from the database trigger (208) and rebuilds a database write statement to be
forwarded to the primary agent (205). Again, for example, such a database write statement or a
captured data value described above may be collectively referred to as a database data
modification. In this implementation, for example, the primary database (204), database trigger
(208), user-defined function (209), and the primary agent (205) may reside on the primary server
(202), and the secondary database (207) and the secondary agent (206) may reside on a

secondary server (203), but again this is not required.

[0038] The primary agent (205) relays the one or a plurality of database write messages
(21B) and/or data values captured from the database trigger (208) of the primary database (204)
to one or more of the secondary agent(s) (200) (e.g., as soon as each database write message
(21B) is received). The database write messages (21B) are stored at least in memory on the
secondary agent (206), and are asynchronously written to a log file of the secondary agent (206)
without adding delay to the process. The client (201) then sends a prepare message (22B) to the
primary agent (205). The primary agent (205) generates a sequence number to enforce sequence
where there is a conflict with one or more other client transactions, and in turn sends the prepare
message (22B) to the secondary agent (206). The secondary agent (206) acknowledges the
prepare message with an acknowledgement (23B) to the primary agent (205) and the primary
agent sends an acknowledgment (23B) to the client (201). The client (201) then immediately
sends a commit message (24B) to the primary database (204) and determines that the commit is
successfully performed. The client (201) then sends a commit message (25B) to the primary
agent (205), which relays the commit message (25B) to the secondary agent (206). The
secondary agent (206) optionally sends an acknowledgment (26B) to the primary agent (205),
which in turn optionally sends an acknowledgment (26BA) to the client (201). The client (201) is
then free to perform an additional transaction. The secondary agent (206) then asynchronously
performs the write transaction (27A) on the secondary database (207) in accordance with the

sequence number(s) generated by one or more primary agent(s).

[0039] The sequence number, for example, is used to govern the overall order of

applying transactions to the secondary database, and explicitly guarantees sequence between

13

WO 2010/037065 PCT/US2009/058672

conflicting client processes (e.g., where the conflicting client processes attempt to write to the
same record or field of a database). In one particular implementation, for example, the
secondary agent may be able to perform write operations out of order if the operations do not
conflict (e.g., are directed to different or non-related records within a database). The secondary
agent uses the sequence numbers generated by the primary agents to apply all transactions,
guaranteeing transaction sequence when there is a direct conflict between write operations. In
this manner, the primary and secondary agents and the database may proceed more quickly by
using this sequence mechanism, with strict sequential control over conflicting transactions, and
approximate sequence control with non-conflicting transactions (without the need to hold an
explicit lock for the entire commit time). This may greatly increase the speed of the process. In
an alternative implementation, the secondary agent may use the sequence numbers for each write
operation. In this manner, complete control of write sequences can be maintained without

requiring a lock on the primary agent.

[0040] Referring to Figure 3, a plurality of client processes or threads (301) send
database write messages (31) and prepare messages to a primary agent (302). For purposes of
clarity, the primary database is left out of this diagram. The primary agent (302) receives
transactions in a discrete sequence for each client process or thread (301). The primary agent
(302) relays the database write statements (31) and prepare messages for each client process or
thread (301) to a secondary agent (303), preserving sequence for each client process or thread
(301). The secondary agent (303) asynchronously performs the database write transactions (31)
on a secondary database (304) after the prepare message has been received and acknowledged.
The client (301) sends a commit message (32) to the primary agent (302), which in turn relays
the commit message (32) to the secondary agent (303), and the secondary agent (303) sends an
acknowledgement to the primary agent (302) which in turn sends the acknowledgement to the
client (301). The secondary agent (303) applies the transactions (31) in parallel to the secondary
database (304) for each client process or thread (301) in prepare message order. The primary
agent (302) and the secondary agent (303) maintain the sequence of prepare messages (31)
across all transactions for all client (301) participants, ensuring the sequence of commit
messages (32) matches the commit action to the primary database. The secondary agent (303)
then performs the commit messages (32) on the secondary database (304) in the same sequence

as performed on the primary database.

14

WO 2010/037065 PCT/US2009/058672

[0041] Referring to Figure 4, a plurality of database shards are configured. Each shard
comprises a group of components containing a primary agent (402), a primary database (403), a
secondary agent (404), and a secondary database (405). Each database shard contains a specific
segment group of database rows, and the client (401) is configured to send messages to the
appropriate shard based on the specific database rows related to any transaction. The client (401)
sends database write statements in substantially the same time period to the primary database
(403) and the primary agent (402) of a particular shard. The primary agent relays the database
write messages to the secondary agent (404) which asynchronously performs the database writes
on the secondary database (405). The client (401) sends a prepare message to the primary agent
(402), which 1n turn relays the prepare message to the secondary agent (404). The secondary
agent (404) then sends an acknowledgment to the primary agent (402), which in turn sends an
acknowledgment to the client (401). The client (401) then sends a commit to the primary
database (403). The client then sends a commit message to the primary agent (402) which relays
the commit message to the secondary agent (404). The secondary agent (404) then commits the
transaction to the secondary database (405). As the number of database shards expands, the
number of primary databases, primary agents, secondary agents and secondary databases also

grows, providing near-linear scalability of the replication process.

[0042] Referring to Figure 5, under normal operation a client (501) interacts with a
primary database (503), a primary agent (504), and a primary agent (504) in turn interacts with a
secondary agent (506) which in turn interacts with a secondary database (507). If a failure occurs
in the secondary server (505), the secondary agent (506) and the secondary database (507) may
be unavailable for processing. Note that a similar failure can occur in any of the primary server
(502), the primary database (503), the primary agent (504), the secondary agent (506) or the
secondary database (507). The primary agent (504), for example, may determine that one or
more components on the secondary server (505) have failed and initiate a failover process.
Alternatively, a planned failover process may be initiated and implemented. In these examples, a
new secondary agent (509) is started on a failover server (508) after a determination of a failure
or, in the case of a planned failover, the primary agent and secondary agents switch roles. The
client (501) then continues sending database write transactions to the primary database (503) and
the primary agent (504). The secondary agent (509) stores database write transactions, prepare

messages and commit messages at least in system memory, and asynchronously writes them to a

15

WO 2010/037065 PCT/US2009/058672

persistent log file. A secondary database (510) is not required immediately for reliable operation
to continue, as the secondary agent (509) ensures transaction reliability. The secondary agent
(509) then initiates a recovery or rebuild of the secondary database (510) from a backup copy on
the failover server (508), which occurs over a period of time that may be from minutes to hours
or longer. The secondary agent (509) then replicates transactions received during the secondary
database (510) recovery period to the secondary database (510). Normal operation then

continues,

[0043] Figure 6 illustrates one example implementation of a relational database
replication system that may be used as described above with respect to Figures 2A through 5.
Other implementations are possible, however. In this implementation, a client server (601), a
primary server (607), and a secondary server (611) are provided. Each server comprises a
central processing unit (CPU) (602), a memory (603), and a storage device (e.g., a disk drive
(604)), as well as various processes running on the particular server. The client server (601), for
example, comprises an application server process (605) and a client driver (606) that is used by
the client application server process to communicate with an agent or database application
residing on the primary server (607) and/or the secondary server (611). The primary server (607)
and the secondary server (611) also comprise a database process (608) and an agent process

(610) executing on the respective servers.

[0044] The servers may, for example, comprise a general purpose computer system
configured to execute a computer program product to execute a computer process. Data and
program files may be input to the computer system, which reads the files and executes the
programs therein. Some of the elements of a general purpose computer system are shown in
Figure 6 wherein a processor has an input/output (I/O) section, a CPU (602), and a memory
section (603). There may be one or more processors, such that the processor of the computer
system comprises a single central-processing unit, or a plurality of processing units, commonly
referred to as a parallel processing environment. Although described as a server, the computer
system may be a conventional computer, a distributed computer, or any other type of computer.
The described technology is optionally implemented in software devices loaded in memory
(603), stored on a configured DVD/CD-ROM or storage unit (e.g., disk drive (604), and/or

communicated via a wired or wireless network link on a carrier signal, thereby transforming the

16

WO 2010/037065 PCT/US2009/058672

computer system to a special purpose machine for implementing the described operations. In
addition, some or all of the system may be implemented through hardware, such as a field
programmable gate array (FPGA), application specific integrated circuit (ASIC), or other custom

hardware.

[0045] The servers may also include a network adapter capable of connecting the
computer system to a network via a network link, through which the computer system can
receive instructions and data embodied in a carrier wave. Examples of such systems include
Intel and PowerPC systems offered by Apple Computer, Inc., personal computers offered by Dell
Corporation and by other manufacturers of Intel-compatible personal computers, AMD-based
computing systems and other systems running a Windows-based, UNIX-based, or other

operating system.

[0046] The servers (601), (607), and (611), for example, may be connected via a
network, such as a local area network (LAN), a wide area network (WAN), the Internet, an
intranet, or the like. When used in a LAN-networking environment, for example, the computer
system is connected (by wired connection or wirelessly) to a local network through a network
interface or adapter, which is one type of communications device. When used in a WAN-
networking environment, the computer system typically includes a modem, a network adapter, or
any other type of communications device for establishing communications over the wide area
network. In a networked environment, program modules or processes depicted relative to the
computer system or portions thereof, may be stored in a remote memory storage device. It is
appreciated that the network connections shown are exemplary and other means of and
communications devices for establishing a communications link between the computers may be

used.

[0047] The implementations described herein are implemented as logical steps in one or
more computer systems. The logical operations of are implemented (1) as a sequence of
processor-implemented steps executing in one or more computer systems and (2) as
interconnected machine or circuit modules within one or more computer systems. The
implementation is a matter of choice, dependent on the performance requirements of the
computer system implementing the invention. Accordingly, the logical operations making up the

embodiments of the invention described herein are referred to variously as operations, steps,

17

WO 2010/037065 PCT/US2009/058672

objects, or modules. Furthermore, it should be understood that logical operations may be
performed in any order, unless explicitly claimed otherwise or a specific order is inherently

necessitated by the claim language.

[0048] Although several implementations and variations have been described above with
a certain degree of particularity, those skilled in the art could make numerous alterations to the
disclosed implementations and variations without departing from the spirit or scope of this
invention. In addition, certain features are described in implementations and variations for ease
of understanding. These features may be interchanged with features of other implementations
and variations or may be added to other implementations and variations. All directional
references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom,
above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for
identification purposes to aid the reader’s understanding of the present invention, and do not
create limitations, particularly as to the position, orientation, or use of the invention. Joinder
references (e.g., attached, coupled, connected, and the like) are to be construed broadly and may
include intermediate members between a connection of elements and relative movement between
elements. As such, joinder references do not necessarily infer that two elements are directly
connected and in fixed relation to each other. It is intended that all matter contained in the above
description or shown in the accompanying drawings shall be interpreted as illustrative only and
not limiting. Changes in detail or structure may be made without departing from the spirit of the

invention as defined in the appended claims.

18

WO 2010/037065 PCT/US2009/058672

We claim;

1. A method of replicating a relational database comprising:

providing a database data modification from a primary replication agent of a primary

database to at least one secondary replication agent of a secondary database;

receiving a prepare to commit statement at the primary replication agent and then at the
secondary agent, wherein the secondary agent acknowledges the prepare to commit statement

and the database data modification;

receiving a commit statement first at the primary database and, if successful, then

providing the commit statement to the primary agent and in turn to the secondary agent;

applying the database data modification and the commit statement to the secondary

database.

2. The method of claim 1 wherein the database data modification comprises at least one of a

database write statement and a database data value.

3. The method of claim 1 wherein the database data modification comprises a database
write statement received in substantially the same time period from a client at a primary database
and a primary replication agent, and wherein the database write statement is included in a

transaction,

4. The method of claim 1 further comprising providing a sequence number and lock for the
transaction in the primary agent to maintain identical transaction sequence in the primary

database, the primary agent, the secondary agent and the secondary database.

S. The method of claim 4 wherein the lock in the primary agent is released after the commit

statement is provided to the primary database, the primary agent, and the secondary agent.

6. The method of claim 1 further comprising generating a sequence number for the
transaction in the primary agent to maintain sequence for transactions competing to update the

primary database, the primary agent, the secondary agent and the secondary database.

19

WO 2010/037065 PCT/US2009/058672

7. The method of claim 6 wherein, in the operation of applying the database data
modification and the commit statement to the secondary database, a sequence of the database

data modification is controlled at least in part by the sequence number.

8. The method of claim 7 wherein the sequence of the write statement is controlled at least
in part by the sequence number when the database data modification is in direct conflict with

another database data modification,

9. The method of claim 8 wherein the direct conflict comprises one or more of an attempt to
write to a same row of the secondary database and an attempt to write to a same field on the

same row of the secondary database.

20

WO 2010/037065 PCT/US2009/058672

10. A relational database replication system comprising:

a primary database configured to receive a database data modification of a transaction

from a client;
a primary replication agent in communication with the primary database;
a secondary database; and

a secondary replication agent in communication with the primary replication agent and

the secondary database,

wherein the primary replication agent is configured to (i) provide the database data
modification to the secondary replication agent and (ii) receive a prepare to commit statement
and forward the prepare to commit statement to the secondary replication agent, the primary
database is configured to receive a commit statement and, if successful, the primary replication
agent is configured to receive the commit statement and, in turn, provide the commit statement to
the secondary replication agent, and the secondary replication agent is configured to (i)
acknowledge the prepare to commit statement and the database data modification and (i1) apply

the database data modification and the commit statement to the secondary database.

11. The system of claim 10 wherein the database data modification comprises at least one of

a database write statement and a database data value,

12. The system of claim 10 wherein the database data modification comprises a database
write statement and the primary replication agent is configured to receive the database write

statement of the transaction in substantially a same time period as the primary database.

13. The system of claim 10 wherein the primary replication agent is further configured to
enable a lock for the transaction to maintain a transaction sequence in the primary database, the

primary agent, the secondary replication agent, and the secondary database.

14. The system of claim 13 wherein the primary replication agent is further configured to

have the lock released.

21

WO 2010/037065 PCT/US2009/058672

15. The system of claim 10 wherein the primary agent is further configured to generate a
sequence number for the transaction to maintain sequence for transactions competing to update

the primary database and the secondary database.

16. The system of claim 15 wherein the secondary replication agent controls a sequence of
the database data modification applied to the secondary database at least in part based upon the

sequence number.

17. The system of claim 16 wherein secondary replication agent controls a sequence of the
database data modification at least in part by the sequence number when the database data

modification is in direct conflict with another database data modification.

18. The system of claim 17 wherein the direct conflict comprises one or more of an attempt
to write to a same row of the secondary database and an attempt to write to a same field on the

same row of the secondary database.

22

WO 2010/037065 PCT/US2009/058672

19. A method of replicating a relational database comprising:

receiving a plurality of database data modifications from a plurality of clients in parallel

at a primary replication agent of a primary database;

providing the plurality of database data modifications in parallel from the primary

replication agent of a primary database to a secondary replication agent of a secondary database;

applying the plurality of database data modifications from a plurality of clients in parallel

to the secondary database;

serially receiving a plurality of prepare statements in sequence for the plurality of
database data modifications from the plurality of clients at the primary replication agent of the

primary database;

serially forwarding the plurality of prepare statements in sequence for the plurality of
database data modifications from the primary replication agent to the secondary replication

agent; and

applying a plurality of database data modifications and commit statements in parallel in
prepare sequence to the secondary database to maintain a sequence of database data

modifications in the secondary database.

20. The method of claim 19 further comprising resolving conflicts between database

modifications.

21. The method of claim 20 wherein the operation of resolving conflicts comprises at least
one of (1) retrying a transaction repeatedly for a specified time period, (ii) retrying a transaction

repeatedly for a specified number of times, or (3) logging a transaction error for later resolution.

22. The method of claim 19 wherein each of the plurality of database data modifications

includes a client identifier.,

23

WO 2010/037065 PCT/US2009/058672

23. A system for scalable replication of a relational database comprising:

a first independent shard database comprising a first shard primary database, a first shard
primary replication agent, a first shard secondary database, and a first shard secondary

replication agent; and

a second independent shard database comprising a second shard primary database, a
second shard primary replication agent, a second shard secondary database, and a second shard

secondary replication agent,

wherein the first shard secondary replication agent controls replication of the first shard
primary database to the first shard secondary database independently of the second shard
secondary replication agent controlling replication of the second shard primary database to the

second shard secondary database.

24

WO 2010/037065 PCT/US2009/058672

24. A method for failover of a first database of a replicated relational database comprising:
starting a failover replication agent of a failover database;
informing a primary replication agent of the failover replication agent;
receiving transactions at the failover replication agent;

rebuilding a new instance of the first database at the failover database under the control
of the failover replication agent while the failover replication agent is receiving the transactions

without further system interruption.

25. The method of clam 24 wherein the failover comprises at least one of an unplanned

failover and a planned failover.

25

WO 2010/037065 PCT/US2009/058672

1/9
FIGURE 1A
. PRIMARY SERVER (102)
CLIENT (101) - PRIMARE(1 ([)JSTABASE

DATABASE LOG (104) @

SECONDARY SERVER
(105)

SECONDARY
DATABASE (106)

WO 2010/037065 PCT/US2009/058672
2/9
FIGURE 1B
:. Transaction
| Coordinator (112)
: ®@
|
i @ . PRIMARY SERVER (108)
@ L :
CLIENTS (107) ® - PRIMARE &A)TABASE —
© SECONDARY SERVER
| (110)
3 SECONDARY

DATABASE (111)

WO 2010/037065

CLIENT
(113)

PCT/US2009/058672
3/9
FIGURE 1C
. PRIMARY SERVER (115)
P
PRIMARY DATABASE
(116)
- — — — — 4
————p
MIDDLE TIER
SERVER (114)
4..... — — ——
. SECONDARY SERVER
: (117)
3N
; SECONDARY
L DATABASE (118)

...........................

WO 2010/037065 PCT/US2009/058672
4/9

FIGURE 2A

P

" PRIMARY SERVER (202)

21A

> PRIMARY DATABASE

CLIENT (201) ; 204)

?
|
| : q ;
| 1 €= ===
: » PRIMARY AGENT | -
i e @ |0
N A B : |
; : |
T '
........................... |
SECONDARY SERVER |
(203) : |
: |
|
SECONDARY AGENT : |
(206) -E* ~
SECONDARY :

DATABASE (207)

WO 2010/037065 PCT/US2009/058672

5/9
FIGURE 2B
i 'PRIMARY SERVER (202) .
—> :
N PRIMARY DATABASE D[LEJFSIEJIED
CLIENT (201) DATABASE TRIGGER FUNCTION
5 (204) (208) 1209 ;
| é
I : <
I)
! : PRIMARY{\GENT 4..____!
B .
: I
I

..

SECONDARY SERVER
(203)

SECONDARY AGENT E
(206) ‘)

SECONDARY
DATABASE (207)

WO 2010/037065 PCT/US2009/058672
6/9

FIGURE 3

CLIENT (301) CLIENT (301) CLIENT (301)

® |® ® @ ® @

il

PRIMARY AGENT
(302)

pppPE

SECONDARY AGENT
(303)

pPRPPR

SECONDARY
DATABASE (304)

PCT/US2009/058672

WO 2010/037065

7/9

v _ v _ v |
(sov) (sov) (o)
ssvaviva || (00O || asvaviva || SRAIOY | | asvaviva | | (00308
AUVANODIS OuVHS AYVANODIS QuVHS AUVYANODIS AsvHS
ayuvHs advHs AyVvHS
(cop) (zov) (cov) (zovy) (cov) (zop)
Isvaviva INIOV 3svav.ivda INIOV Jsvav.iva 1INIOV
AUVINIYG AUV AUVINIYC AUVINIE ANUVINIY AYVINIYG
AyvHS AuvHS ayvHsS advHS AyvHS AYVHS
ﬁ A H % ﬂ A
(L0¥) LN3ITD (LO¥) AN3ITD (Lov) LN3ITD

¥ 3dNSOid

WO 2010/037065 PCT/US2009/058672
8/9

FIGURE 5

(502)

‘| PRIMARY
CLIENT (501) | DATABASE
(503)

PRIMARY [€———~
AGENT (504) |

FAILOVER
SERVER (508)

SECONDARY | — — — —
AGENT (509) |

WO 2010/037065

CLIENT SERVER (601)
CPU
(602) APP
SERVER
MEMORY PROCESS
(603) (609)
CLIENT
DISK DRIVER
(604) (606)

9/9

FIGURE 6

PCT/US2009/058672

PRIMARY SERVER (607)
CPU
(602) DATABASE
PROCESS
MEMORY (608)
(603)
AGENT
DISK PROCESS
(604) (610)
SECONDARY SERVER (611)
CPU DATABASE
(602) PROCESS
(608)
MEMORY
(603) AGENT
PROCESS
DISK (610)

(604)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings

