(12) PATENT (11) Application No. AU 199646166 B2 (10) Patent No. 703913 (19) AUSTRALIAN PATENT OFFICE (54)Indole derivatives with affinity for the cannabinoid receptor International Patent Classification(s) CO7D 209/14 A61K 031/405 A61K 031/40 CO7D 209/26 Application No: 199646166 (21)(22) Application Date: 1996 .02 .08 WIPO No: W096/25397 (87) (30)Priority Data Number (32) Date (33) Country (31)US 388929 1995 .02 .15 (43)Publication Date : 1996 .09 .04 (43)Publication Journal Date : 1996 .10 .24 (44) Accepted Journal Date : 1999 .04 .01 (71) Applicant(s) Merck Frosst Canada and Co. (72)Inventor(s) Gallant; Yves Gareau; Daniel Guay; Marc Labelle; Petpiboon Michel Prasit (74) Agent/Attorney SPRUSON and FERGUSON, GPO Box 3898, SYDNEY NSW 2001 (56)Related Art US 3161654 > EP 105996 US 3501465 | (51) International Pat | ent Classification 6: | |------------------------|-----------------------| | C07D 209/14 | A618 21/40 21/40F | A61K 31/40, 31/405, C07D 209/26 (11) International Publication Number: (PCT) WO 96/25397 (43) International Publication Date: 22 August 1996 (22.08.96) (21) International Application Number: (22) International Filing Date: 8 February 1996 (08.02.96) A1 PCT/CA96/00080 (30) Priority Data: 388,929 15 February 1995 (15.02.95) UŞ H9H 3L1 (CA). PRASIT, Petpiboon [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). (74) Agent: MURPHY, Kevin, P.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College, Montreal, Quebec H3A 2Y3 (CA). (60) Parent Application or Grant (63) Related by Continuation US Filed on 388,929 (CON) 15 February 1995 (15.02.95) (71) Applicant (for all designated States except US): MERCK FROSST CANADA INC. CA/CAJ: 16711 Trans-Canada Highway, Kirkland, Quebec H9H 3L1 (CA). (72) Inventors; and (75) Inventors; and (75) Inventors/Applicants (for US only); GALLANT, Michel [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). GAREAU, Yves [CA/CA]; 16711 Trans H9H 3L1 (CA). GAREAU, Yves [CA/CA]; 16/11 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). GUAY, Daniel [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1 (CA). LABELLE, Marc [CA/CA]; 16711 Trans Canada Highway, Kirkland, Quebec (81) Designated States: AL, AM, AU, AZ, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, IP, KG, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AZ, BY, KG, KZ, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report. (54) Title: INDOLE DERIVATIVES WITH AFFINITY FOR THE CANNABING RECEPTOR (57) Abstract Disclosed are indole derivatives of formula (I) having activity on the cannabinoid receptors and the methods of their preparation. The compounds are useful for lowering ocular intraocular pressure and treating glaucoma because of the activity of the cannabinoid receptor. - 1 - # TITLE OF THE INVENTION INDOLE DERIVATIVES WITH AFFINITY FOR THE CANNABINOID RECEPTOR ## 5 BACKGROUND OF THE INVENTION The terms cannabinoid or cannabimimetic compound apply to compounds which produce a physiological effect similar to that of the plant Cannabis Sativa, or a compound that has affinity for the cannabinoid receptors CB₁ or CB₂. See Matsuda, L.; Lolait, S.J.; - Brownstein, M.J.; Young, A.C.; Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. *Nature*, 1990, 346, 561-564: Munro, S.; Thomas, K.L.; Abu-Shaar, M. Molecular characterization of the peripheral receptor of cannabinoids. *Nature*, 1993, 1993, 61-65. Examples of such compounds are Δ⁹-THC and its - analogs (Razdan, R.K. Structure activity relationship in the cannabinoids. *Pharmacol. Rev.*, **1986**, 38, 75-149), WIN-55212-2 and its analogs (D'Ambra, T.E.; Estep, K.G.; Bell, M.R.; Eissenstat, M.A.; Josef, K.A.; Ward, S.J.; Haycock, D.A.; Baizman, E.R.; Casiano, F.M.; Beglin, N.C.; Chippari, S.M.; Grego, J.D.; Kullnig, R.K.; Daley, G.T. - Conformationnaly restrained analogues of Pravadoline: Nanomolar potent, enantioselective, aminoalkylindole agonist of the cannabinoid receptor. J. Med. Chem., 1992, 35, 124-135: Bell, M.R.; D'Ambra, T.E.; Kumar, V.; Eissenstat, M.A.; Hermann, J.L.; Wetzel, J.R.; Rosi, D.; Philion, R.E.; Daum, S.J.; Hlasta, D.J.; Kullnig, R.K.; Ackerman, - J.H.; Haubrich, D.R.; Luttinger, D.A.; Baizman, E.R.; Miller, M.S.; Ward, S.J. Antinociceptive aminoalkylindoles. J. Med. Chem., 1991, 34, 1099-1100), CP-55940 and its analogs (Johnson, M.R.; Melvin, L.S. The discovery of non-classical cannabinoid analgetics. In "Cannabinoids as therapeutic agents", 1986, Mechoulam, R., Ed., CRC Press: Boca - Raton FL, pp.121-145), SR141716A and its analogs (Barth, F.: Casellas, P.: Congy, C.: Martinez, S.; Rinaldi, M. Nouveaux derives du pyrazole, procede pour leur preparation et composition pharmaceutiques les contenant. French Patent 2692575-A1, 1992: Barth, F.: Heaulme, M.: Shire, D.; Calandra, B.; Congy, C.; Martinez, S.: Maruani, J.: Neliat, G.; Caput, D.; Ferrara, P.; Soubrie, P.; Breliere, J-C.; Le Fur, G.; Rinaldi-Carmona, M. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. International Cannabis Research Society Conference Abstract, **July 1994**, L'EstÈrel, Canada, p. 33), and anandamide (Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. *Science*, **1992**, 258, 1946-1949) and its analogs. Anandamide has been termed the endogenous ligand of the CB1 receptor, as it is synthesized near its site of action and is potent and selective for the CB1 receptor. The biological activity of cannabinoids has been extensively reviewed. See Hollister, L.E. Health aspects of Cannabis. *Pharmacol. Rev.*, **1986**, *38*, 1-20. Their usefulness in various disease states has been discussed. See The therapeutic potential of marihuana. Cohen, S. and Stillman, R.C., eds. Plenum: New York, **1976**. Additionally, US patents 4,973,587 and 5,013,837 (Ward et al.) disclose compounds of formula $\underline{1}$: 20 5 10 15 $$R^4$$ R^3 R^2 $Alk-N=B$ 25 1 having antiglaucoma compositions where: R2 is hydrogen, lower alkyl, chloro or fluoro; 30 **R**3 is phenyl (or phenyl substituted by from one to three substituents selected from halogen, lower alkoxy, lower alkoxymethyl, hydroxy, lower alkyl, amino, lower alkylamino, di-lower alkylamino or lower alkylmercapto), methylenedioxyphenyl, benzyl, styryl, lower alkoxystyryl, I- or 2-naphthyl,) or 1- or 2-naphthyl substituted by from one to two substituents selected from lower alkyl, lower alkoxy, halo or cyano), (1H-imidazol-1-yl)naphthyl, 2-(1-naphthyl)ethenyl,1-(1,2,3,4-tetrahydronaphthyl), anthryl, phenanthryl, pyrenyl,2-, 3-, 4-, 5-, 6- or 7-benzo[b]furyl, 2or 3-benzo[b]thienyl, 5-(1H-benzimidazolyl) or 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolyl; is hydrogen or lower alkyl, hydroxy, lower alkoxy or halo in the 4-, 5-, 6- or 7-positions: 10 X is O or S; **R**4 Alk is lower alkylene having the formula (CH₂)_n where n is the integrer 2 or 3, or such lower-alkylene substituted by a lower-alkyl group; and N=B is N,N-di-lower alkylamino, 4-morpholinyl, 2-lower alkyl-4-morpholinyl, 3-lower alkylmorpholinyl, 1-pyrrolidinyl, 1-piperidinyl or 3-hydroxy-1-piperidinyl. US patent 5,081,122 (Ward) discloses compounds of formula $\underline{2:}$ 20 25 5 having antiglaucoma compositions where: Ar is lower alkoxyphenyl or 1- or 2-naphthyl; R3 is hydrogen or lower alkyl; Alk is lower alkylene containing from two to foun Alk is lower alkylene containing from two to four carbon atoms. The present compounds differ from Ward's (formula $\underline{1}$ and $\underline{2}$) primarily in having a carbonyl on the nitrogen of the indole while it is at the 4-position in the case of the US patent 5,081,122. EP 0 444 451 generically discloses a compound of formula 5 <u>3</u>: 10 $$R^4$$ R^4 R^2 $(Alk)_n$ - Het 3 useful as analgesic, anti-rheumatic, anti-inflammatory or anti-glaucoma agents where: R2 is hydrogen, lower alkyl; is phenyl (or phenyl substituted by from one to three substituents selected from halogen, lower alkoxy, hydroxy, lower alkyl, nitro, amino, lower alkylamino, di-lower alkylamino, loweralkylmercapto, lower alkylsulfinyl, lower alkylsulfonyl and methylenedioxy), 2- or 4-biphenyl or 1- or 2-naphthyl (or 1- or 2-naphthyl substituted by from one to two substituents selected from lower alkyl, lower alkoxy, halogen, lower alkylmercapto, lower alkylsulfinyl, lower alkylsulfonyl and trifluoromethyl); R4 is hydrogen or from one to two substituents selected from loweralkyl, hydroxy, lower alkoxy, and halogen at the 4-, 30 5-, 6- or 7- positions; Alk is lower alkylene containing from two to four carbon atoms which may contain a lower alkyl group; n is 0 or 1; Het is an aliphatic heterocycle, 2-piperazinyl and 2-indolinyl. The present compound differs from formula 3 primarily in having a carbonyl on the nitrogen of the indole. U.S. Patent 3,489,770 generically discloses compound having the following formula 4: $$\mathbb{N}^{1}$$ The compounds are said to have anti-inflammatory, hypotensive, hypoglycemic and CNS activities. Although not within the ambit of the above-defined genus, the patent also discloses a variety of species where R2 is an arylcarbonyl group. British Patent 1,374,414 and U.S. Patent 4,021,431 generically discloses compounds having the following structural formula $\underline{5}$: $$R^{1} \xrightarrow{\text{Alk -N} = B} A$$ $$R^{2}$$ $$A$$ The compounds are useful as anti-inflammatory agents. Although not within the ambit of the above-defined genus, the patent also discloses a variety of species where A is an arylcarbonyl group. European Patent Application 105,996, US Pat. Nos.
3,501,465; 3,336,194; and 3,161,654; Beilstein BRN-448371, 447300, 493436 and 477362 and E.W. Glamkowski, J. Med. Chem., Vol. 16, no. 2, 1973, pages 176-177 are additional references which disclose a variety of background species. AMENDED SHEET # Summary of the Invention The present invention relates to indoles having activity on the cannabinoid receptor CB2 and the methods of their preparation. Because of this activity on the cannabinoid receptor, the compounds of the present 5 invention are useful for lowering the IOP (intra ocular pressure). # Detail Description of the Invention The compounds of the invention can be summarised by formula I: $$R^2$$ R^3 R^4 R^4 R^4 R^5 R^7 R^1 R^1 or a pharmaceutically acceptable salt thereof, or diastereomer, or enantiomer or a mixture 10 thereof, wherein: R¹ is H or lower alkyl; R^{2-4} is independently, H, or $-(CR^{7}_{2})_{m}$ -OR¹; \mathbb{R}^7 is H; Q₁ is COOCH₃, or N(R⁷)₂ wherein two R⁷ groups may be joined to form a pyrrolidine, piperidine, piperazine or morpholine ring and their quaternary methyl ammonium salts; Q₂ is naphthyl; Z is a bond; and 20 m is 0-6. #### **Definitions** The following abbreviations have the indicated meanings: DCC = 1,3-dicyclohexylcarbodiimide DIBAL = diisobutyl aluminum hydride DMAP = 4-(dimethylamino)pyridine DMF = N.N-dimethylformanide DMF = N,N-dimethylformamide DMSO = dimethyl sulfoxide HMPA = hexamethylphosphoramide KHMDS = potassium hexamethyldisolazane LDA = lithium diisopropylamide MCPBA = metachloroperbenzoic acid MsO = methanesulfonyl = mesyl methanesulfonate = mesylate NBS = N-bromosuccinimide PCC = pyridinium chlorochromate PDC = pyridinium dichromate Ph = phenyl PPTS = pyridium p-toluene sulfonate pTSA = p-toluene sulfonic acid Pye = pyridinediyl | | r.t. | = | room temperature | |----|-----------------|---|--------------------------------------| | | rac. | = | racemic | | | Tf | = | trifluoromethanesulfonyl = triflyl | | | TfO | = | trifluoromethanesulfonate = triflate | | 5 | THF | = | tetrahydrofuran | | | THP | = | tetrahydropyran-2-yl | | | TLC | = | thin layer chromatography | | | Ts | = | p-toluenesulfonyl = tosyl | | | TsO | = | p-toluenesulfonate = tosylate | | 10 | Tz | = | 1H (or 2H)-tetrazol-5-yl | | | SO ₂ | = | =O=S=O | # Alkyl group abbreviations 30 | | Me | = | methyl | |----|------|---|-----------------| | 15 | Et | = | ethyl | | | n-Pr | = | normal propyl | | | i-Pr | = | isopropyl | | | n-Bu | = | normal butyl | | | i-Bu | = | isobutyl | | 20 | s-Bu | = | secondary butyl | | | t-Bu | = | tertiary butyl | | | | | | The term alkyl means linear, branched, and cyclic structures and combinations thereof. "Lower alkyl" means alkyl groups of from 1 to 7 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, s- and t-butyl, pentyl, hexyl, heptyl, cyclopropyl, cyclohexylmethyl, and the like. "Lower alkoxy" means alkoxy groups of from 1 to 7 carbon atoms of a straight, branched, or cyclic configuration. Examples of lower alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy, and the like. "Lower alkylthio" means alkylthio groups of from 1 to 7 carbon atoms of a straight, branched, or cyclic configuration. 5 10 15 20 25 Examples of lower alkylthio groups include methylthio, propylthio, isopropylthio, cycloheptylthio, etc. By way of illustration, the propylthio group signifies -SCH2CH2CH3. "Aryl" includes phenyl and phenyl monosubstituted by halogen, a lower alkoxy or a lower alkylthio group. "Lower fluorinated alkyl" means alkyl groups of from 1 to 7 carbon atoms in which one or more of the hydrogen atoms has been replaced by fluorine. "Benzyl" includes mono or disubstitution on the aromatic ring by halogen, lower alkoxy or lower alkylthio groups. The hydrogens of the methylene moiety could be replace by lower alkyl. Halogen includes F, Cl. Br, and I. It is intended that the definition of any substituent (e.g., R5) in a particular molecule be independent of its definition elsewhere in the molecule. Thus, -N(R5)2 represents -NHH, -NHCH3, -NHC6H5, etc. # Optical Isomers - Diastereomers Some of the compounds described herein contain one or more asymmetric centers and may thus give rise to diastereomers and optical isomers. The present invention is meant to comprehend such possible diastereomers as well as their racemic and resolved, enantiomerically pure forms and pharmaceutically acceptable salts thereof. #### **Salts** The pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt, thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases including inorganic bases and organic bases. Salts derived from inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic salts, manganous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts. Salts derived from 5 10 pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, and basic ion exchange resins, such as arginine, betaine, caffeine, choline, N,N'dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like. When the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids, including inorganic and organic acids. Such acids include acetic, 15 benzenesulfonic, benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluenesulfonic acid, and the like. Particularly preferred are citric, hydrobromic, 20 hydrochloric, maleic, phosphoric, sulfuric, and tartaric acids. It will be understood that in the discussion of methods of treatment which follows, references to the compounds of Formula I are meant to also include the pharmaceutically acceptable salts. Examples of the novel compounds of this invention are 25 as follows: TABLE 1 *m = 1 EXCEPT NOTED OTHERWISE | | 22 | 2-CHLOROPHENYL | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYL | 2-CHLOROPHENVI | 2-CHI OROPHENYI | 2-CHI OBODILENIVI | 2 CILCAOFIENE | 2-CHLOROPHEN YL | 2-CHLOROPHENYL | 2-CHLOROPHENYL | 2-CHLOROPHENYL | 2-CHLOROPHENYL | 2-CHLOROPHENYI, | 2-CHI OROBHENVI | 2 CUI OBODITENE | 2 CELLOROPHEN Y.L. | 2-CHLOROPHENY | | |---|-----------------------|----------------|----------------|----------------|------------------|-----------------|----------------|-----------------|----------------|-----------------|----------------------------------|----------------|-----------------|----------------|----------------|--------------------|----------------|---------------------------------|-----------------|-----------------|--------------------|---------------|--| | | QI | 4-MORPHOLINE | 4-MORPHOLINE | 4- MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4- MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOI INF | 4- MORPHOI INE | 4 MODDITOLINE | 4 MODDIO INE | 4-INORPHOLINE | 4-IMOKPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | | | | Z | _ | - | - | | , | , | , | 1 | , | | , | | | - | · | • | , | | <u> </u> | - | | | | | R7 * | H | Н | Н | Н | Н | Н | Н | Н | Н | Н | Ξ | = | = | = | : | | H | Ξ | H | Ξ | Ξ | | | | R ⁴ | C | Н | Br | OCH ₃ | CF3 | C2F5 | NO ₂ | Ph | NH ₂ | N(CH ₃) ₂ | N(Bn)2 | N(Ph)7 | 2 | SOPCH | SO ₂ DB | 302ru | SO ₂ NH ₂ | SO2NHCH3 | SO2N(CH3)2 | CH3 | C2H5 | | | | £3 | 피 | Ξ | Ξ | Ξ | Ξ | H | Ξ | Η | Ξ | Н | Н | Ξ | Ξ | Ξ | 3 | = | F | Ξ | Н | Н | | | | | R2 | Ξ | Ŧ | Ξ | エ | H | 曰 | I | 푀 | Ξ | H | Н | Ξ | = | = | I | = | Ŧ | I | Н | Н | Ξ | | | , | R | CH3 | CH3 | CH3 | CH3 | CH ₃ | CH3 | CH3 | CH3 | CH3 | СН3 | СН3 | CH3 | CH3 | CH3 | E | | EE3 | CH3 | CH3 | CH3 | CH3 | | | | 9 | - | 2 | 8 | 4 | 5 | 9 | 7 | œ | 6 | 2 | 11 | 12 | 13 | 14 | v. | | ٥ | 17 | <u>«</u> | 19 | 20 | | TABLE 1 (CONTINUED) | 0 | 2-CHLOROPHENYI. | 2-CHLOROPHENYL | 2-CHLOROPHENYI | 2-CHLOROPHENYL 2-CHLOROPHENY! | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYL | 2-CHLOROPHENYL | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYI | 2-CHLOROPHENYL | |----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|-----------------|----------------|----------------|----------------|----------------| | 0 | 4-MORPHOLINE | Z | | ' | - | - | - | - | | ω | ∞ | ω | 8 | 8 | 8 | 8 | ω | ω | 8 | 8 | 8 | 8 | | R7* | H | Н | Н | Н | Н | Н | Н | Н | Н | Н | Ξ | Н | H | Н | Н | Н | Н | Н | Н | H | | R ⁴ | n-C3H7 | ОН | OC2H5 | OC3H7 | OPh | OBn | OCF3 | C | ш | Br | OCH3 | CF3 | C2F5 | NO ₂ | Ph | NH ₂ | N(CH3)2 | N(Bn)2 | N(Ph)2 | CN | | R ³ | Н | Н | Н | Н | н | Н | 三 | H | I | Ξ | Ξ | Н | Н | = | Ξ | Ξ | 王 | Н | Ŧ | H | | R2 | Н | Н | Н | Ξ | Н | H | Ξ | エ | Ξ | I | Ξ | Ξ | エ | Ξ | 王 | 王 | = | Ξ | Ξ | I | | R1 | CH3 | CH3 | CH3 | CH3 | СН3 | CH3 | CH3 | СН3 | CH3 | CH3 | CH3 | CH3 | СН3 | CH3 | CPD | 21 | 22 | 23
| 24 | 25 | 56 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | TABLE 1 (CONTINUED) | | 02 | INE 2-CHI OBOBHENVI | \downarrow | + | +- | + | - | - | - | + | - | - | INE 2-CHLOROPHENYL | INE 2-CHLOROPHENYL | INE 2-CHLOROPHENYI | <u> </u> | ╁ | \dagger | + | I'VE - 7.3-DICTE ()KOPTENY | |-----|----------|---------------------------------|--------------------|--------|-----------------------------------|-----------|--------------|-------------------------------|----------|----------|--------------|------------|--------------------|--------------------|--------------------|--------------|--------------|--------------|--------------|----------------------------| | | Б
 | 4-MORPHOLINE | <u> </u> | | - | - | 4-MORPHOLINE | 4-MORPHOLINE | <u> </u> | <u> </u> | 4-MOPPHOLINE | 4 Monpilor | 4-MOKPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4 MOBBHOLINE | 4 MODDIO INE | TOUR LINOR | | | 2 | 8 | 3 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 3 | 3 8 | 3 | 8 | 8 | 00 | | ' | . | | | | */× | Ξ | Ξ | Ξ | Ξ | H | Ξ | Ξ | Ξ | Н | Н | : = | = | Ξ | Н | Н | Ξ | Ξ | I | : | | | | SO ₂ CH ₃ | SO ₂ Ph | SO2NH2 | SO ₂ NHCH ₃ | SO2NCH3)2 | CH3 | C ₂ H ₅ | n-C3H7 | ЮН | OC;H5 | OC3H7 | 0.11 | OPh | OBn | OCF3 | Ι | ĹT. | ¹ | | | , | <u>ج</u> | I | Н | 工 | I | Н | Н | Н | Н | н | H | Ξ | | Ξ | = | Ξ | Ξ | = | Ξ | | | , , | * | Н | Н | Η | Н | Н | Н | Н | Н | I | Н | Ξ | = | = | Ξ | Ξ | エ | = | Ξ | | | - | Υ | СН3 | CH3) E | | CH3 | CH3 | CH3 | CH3 | CH3 | | | | CPD | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | Ş | 75 | 53 | 54 | 55 | 56 | 57 | | TABLE 1 (CONTINUED) | | VIV | NIN IL | AL NE | T S | TI NI | | | | | | | | | | | | | | | | | | |------|----------------------|----------------------|----------------------------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------------------|-----------------|--------------|--------------|--------------|--------------|--------------|---------------|------------------|--------------|--------------|--------------| | Q2 | 2 3-DICHI OBOBLENIVI | 2 3-DICHI ODOBLENIYI | 2.3-DICHI OBORITENIA | 2.3-DICHLOROPHEN YL | 1-NAPHTUNI | I NABUTUAL | 1 NABITHE | 1-NAPHTHYI | I-NAPITHVI | 1.NAPHTHY! | 1 NADOTHY | 71 HI HAKNI-I | I-NAPHTHYL | 2-NAPHTHYL | 2-NAPHTHYL | 2-NAPHTHYL | 2-NAPHTHVI | WINDING C | Z-INAFILITIE | 2-NAPHTHYL | 2-NAPHTHYL | 2-NAPHTUVI | | 10 | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOI INF | 4-MORPHOLINE 4-MORPHOI INF | A MODINION INTE | 4-MOKPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOI INF | A MODIFICIAL WIT | 4-MORPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | | Z | , | , | , | | , | | ١, | , | | ' | , | | | - | - | ' | ı | , | - | , | , | ' | | R7* | I | H | Ξ | Н | H | I | Η | Н | = | Ξ | H | = | : | | I | 王 | Η | H | I | = = | | Ξ | | . R4 | OCF3 | CF3 | SO ₂ CIH ₃ | SO2N(CH3)2 | Н | ĬĽ, | CI | ОСН3 | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | 7/(5:10).7 | | ц | ٦ | OCH3 | OCF3 | CF3 | SOrCH | CHOZON | SU2IN(CH3)2 | | R3 | Н | H | н | Ξ | Н | Н | н | Ή | Н | Ξ | Н | Н | = | F | = | Ŧ | E | Н | H | Ξ | : : | Ξ | | R2 | Ή | Н | 11 | Η | Ξ | Н | H | Ξ | Ξ | Ξ | Н | Ξ | = | = : | I | Ŧ | 프 | Ξ | = | = | = | | | R | CH3 15 | 515 | E13 | CH3 | CH3 | CH3 | CH3 | CH3 | EE | 12 | | CPD | 59 | 9 | 61 | 62 | 63 | 64 | 65 | 99 | 29 | 89 | 69 | 70 | 7.1 | 1 1 | 7/ | /3 | 74 | 75 | 76 | 77 | 7.0 | o/ | - 15 **-** TABLE 1 (CONTINUED) | Q2 | 2-THIENYL 5-CHLORO-2-THIENYL | 5-CHLORO-2-THIENYL | 5-CHLORO-2-THIENYL | 5-CHLORO-2-THIENYL | 5-CHLORO-2-THIENYL | 5-CILORO-2-THIENYL | 5-CHLORO-2-THIENYL | 5-CHLORO-2-THIENYL | 3.4.5-TRICHLORO-2-THIFNYI | 3.4.5-TRICHLORO-2-THIENYI | 3,4,5-TRICHLORO-2-THENYI | 3.4.5-TRICHLORO-2-THIENYI | |----------------|--------------|--------------|--------------|--------------|-----------------|--------------|---------------------------------|--------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------|--|---------------------------|---------------------------|--------------------------|---------------------------| | QI | 4-MORPHOLINE | Z | , | , | | ^ | _ | 1 | , | , | - | , | , | ' | - | - | - | , | 1 | , | , | - | | R7* | Η | Н | Н | Н | Η | Н | H | Н | Н | Н | Н | Н | Н | Н | Н | Н | Ξ | Ξ | Ξ | Н | | R ⁴ | Н | L | CI | OCH3 | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | Н | 크 | CI | OCH3 | OCF3 | CF3 | SO ₂ CH ₃ | SO ₂ N(CH ₃) ₂ | Н | ഥ | CI | OCH3 | | R3 | Ξ | Η | Ξ | H | H | H | Н | Н | Н | Ή | Ξ | H | H | I | = | Ξ | エ | エ | = | = | | R ² | Ξ | Ξ | H | Ξ | H | Н | Ξ | H | Η | Ξ | Ξ | Ξ | Ξ | I | Ξ | Ξ | Ξ | = | Ξ | = | | R | CH3 | CH3 | CH3 | CH3 | CH ₃ | CH3 | CH3 | CH3 | СН3 | CH3 | CH3 | CH3 | CH3 | CH3 | CH3 | C113 | CH3 | CH3 | CH3 | CH3 | | CPD | 79 | 80 | 81 | 82 | 83 | 8.4 | 85 | 98 | 87 | 88 | 80 | 96 | 5 | 92 | 93 | 76 | 95 | 96 | 97 | 86 | TABLE 1 (CONTINUED) - 16 - 3,4,5-TRICHLORO-2-THIENYL 3,4,5-TRICHLORO-2-THIENYL 3,4,5-TRICHLORO-2-THIENYL 3,4,5-TRICHLORO-2-THIENYL 5-CHLORO-2-FURANYL 5-CHLORO-2-FURANYL 5-CHLORO-2-FURANYL 5-CHLORO-2-FURANYL 5-CHLORO-2-FURANYL 5-CHLORO-2-FURANYL 5-CHLORO-2-FURANYL 5-CHLORO-2-FURANYL 2-FURANYL 2-FURANYL 2-FURANYL 2-FURANYL 2-FURANYL 2-FURANYL 2-FURANYL 2-FURANYL 65 4-MORPHOLINE ō R7* \blacksquare エ \mathbb{T} Ξ 工 I Ξ Η Н Ξ I Ξ Ξ Η \equiv I \equiv 工 I SO2N(CH3)2 SO2N(CH3)2 SO2N(CH3)2 SO₂CH₃ SO₂CH₃ OCF3 CF_3 OCH₃ OCF_3 SO2CH3 OCH₃ R4 CF_3 OCF_3 CF_3 Ц \Box Ξ Ц \Box R.3 I I Ξ Ξ Ξ 포 Ξ I \equiv I ェ Ξ I I I Ξ 工 = I R^2 Ξ Ξ I 工 Ι Ξ Ξ I Ξ I I Ξ I CH₃ CH3 CH_3 CH_3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 \mathbb{R}^1 CH3 CH3 CH3 CH₃ CH_3 CH3 CH3 CHI CH3 CPD. 001 66 102 101 103 104 105 106 108 109 110 112 107 7 113 <u>-</u>2 117 SUBSTITUTE SHEET (RULE 26) TABLE 1 (CONTINUED) | Q2 | 3-FURANYL 3-THIENYL 2-CHLOROPHENYL | 2-CHLOROPHENYL | 2-CHLOROPHENYL | 2-CHLOROPHENYL | |----------------|--------------|--------------|--------------|------------------|--------------|--------------|---------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------------------|--------------|----------------|----------------|----------------|----------------| | Ιδ | 4-MORPHOLINE 4-MÖRPHOLINE | 4-MORPHOLINE | 4-MORPHOLINE | 1-PIPERIDINYL | I-PIPERIDINYL | I-PIPERIDINYL | I-PIPERIDINYL | | 2 | ı | 1 | - | - | - | 1 | • | • | , | 1 | - | - | , | ' | ' | | - | 1 | , | - | | R7* | E | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Ξ | H | H | H | | R4 | Н | F | C | OCH ₃ | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | Н | Ľ | Ü | OCH3 | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | Ξ | F | CJ | OCH3 | | R3 | Н | Н | Η | H | Н | Н | Ή | Н | Ξ | H | Н | Ξ | Ξ | H | Ξ | Ξ | Ξ | н | = | н | | R ² | Н | Н | Н | Н | Ξ | Η | Ξ | Н | H | Ξ | Ξ | Ξ | H | Ξ | Ξ | = | H | エ | Ξ | Ξ | | R1 | СНЗ | СН3 | СН3 | СН3 | CH3 | CH3 | СН3 | CH3 | СН3 | СН3 | СН3 | CH3 | CH3 | CH3 | CH3 | СН3 | CH3 | CH3 | CH3 | CH3 | | CBD | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | TABLE 1 (CONTINUED) | 022 | 2-CHI OROPHENVI | 2-CHLOROPHENVI | 2-CHI OROPHENVI | 2-CHLOROPHENYI | 2,3-DICHLOROPHENYI | 2,3-DICHLOROPHENYI. | 2,3-DICHLOROPHENYI | 2,3-DICHLOROPHENYI | 2.3-DICHLOROPHENYI | 2.3-DICHLOROPHENYI | 2 3-DICHI OROBHENYI | 2 3-DICHI OBOBLIENINI | 1.NAPHTHY1 | I-NAPHTHYI | L-NAPHTHY! | I-NAPHTHY! | 1 NADHTHY! | TARLING VN-1 | I-NAPHTHYI. | |-----|-----------------|----------------|---------------------------------|--|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------|--|---------------|---------------|---------------|---------------|---------------|---------------|---------------------------------| | Ō | 1-PIPERIDINYL | 1-PIPERIDINYL | I-PIPERIDINYL | 1-PIPERIDINYL 1-PIPERIDINYI. | 1-PIPERIDINYI | 1-PIPERIDINYL | 1-PIPERIDINYL | 1-PIPERIDINYL | I-PIPERIDINYL | 1-PIPERIDINYI | 1-PIPERIDINYI | I-PIPERIDINYL | | Z | 1 | | , | ' | , | - | - | , | , | ı | | , | , | , | , | , | , | | | | R7* | Н | I | Ι | Н | Н | Н | Н | Н | H | Ξ | Н | н | H | Н | н | I | I | Ξ | Н | | R4 | OCF3 | CF3 | SO ₂ CH ₃ | SO ₂ N(CH ₃) ₂ | Н | ĹĹ | ٦ | OCH3 | OCF3 | CF3 | SO ₂ CH ₃ | SO ₂ N(CH ₃) ₂ | Н | F | CI | ОСН3 | OCF3 | CF3 | SO ₂ CH ₃ | | R3 | Н | Н | Н | Н | Ξ | Н | 프 | Ξ | Η | Η | Н | Н | н | Ξ | Ξ | Ξ | Ξ | Ξ | H | | R2 | Н | Н | Н | Н | Ξ | Н | Ξ | Ξ | Ξ | 픠 | н | Ξ | = | Ξ | Ξ | 三 | Н | H | H | | -X | CH3 CE3 | CH3 | CH3 | CH3 | CH3 | | CPD | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | TABLE 1 (CONTINUED) - 19 - 5-CHLORO-2-THIENYL 5-CHLORO-2-THIENYL 5-CHLORO-2-THIENYL 2-NAPHTHYL 2-NAPHTHYL I-NAPHTHYL 2-NAPHTHYL 2-NAPHTHYL 2-NAPHTHYL 2-NAPHTHYL 2-NAPHTHYL 2-NAPHTHYL 2-THIENYL 2-THIENYL 2-THIENYL 2-THIENYL 2-THIENYL 2-THIENYL 2-THIENYL 2-THIENYL $\mathcal{E}_{\mathcal{E}}$ 1-PIPERIDINYL I-PIPERIDINYL 1-PIPERIDINYL 1-PIPERIDINYL 1-PIPERIDINYL I-PIPERIDINYL 1-PIPERIDINYL $\overline{0}$ Z R7* Ξ \blacksquare \exists I Ξ =エ Ξ I I \equiv Ξ Ι Ξ \equiv 工 エ Ξ Ξ SO2N(CH3)2 SO2N(CH3)2 SO2N(CH₃)₂ SO₂CH₃ OCH₃ OCF3 OCH₃ SO₂CH₃ CF_3 OCF3 Ρ4 CF3 I ĹĽ, \Box Ü I ĹĽ, Ξ Ū R-3 Ξ 工 Ι Ξ I Ξ Ξ Ξ Ξ \blacksquare エ Ξ エ I Η Ξ Η I Ι R^2 I Ξ エ I I Ξ I Ξ I \equiv Τ I I =Ξ CH3 СH3 CH_3 CH3 CH_3 СH3 CH3 ₽ CH3 CH_3 CH3CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH_3 CPD 158 159 160 174 161 162 163 164 165 168 169 166 167 170 171 173 175 176 177 172 SUBSTITUTE SHEET (RULE 26) TABLE 1 (CONTINUED) | | | \
\1
_7 |

 | | | :
:
: | FNYI | FN | FNVI | HNVI | ENVI | ENY. | | ENTL | ENYL | | | | | | | |-----|------|---------------------
--------------------|--------------------|---------------------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|---------------------------------|---------------------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------------------------| | 02 | | 5-CHLORO-2-THIEN YL | 5-CHLORO-2-THIENYI | 5-CHLORO-2-THIENYI | 5-CHLORO-2-THIENYL | 5-CHLORO-2-THIENYL | 3.4.5-TRICHLORO-2-THIFNYI | 3,4.5-TRICHLORO-2-THIENYI | 3.4.5-TRICHLORO-2-THIENVI | 3.4.5-TRICHLORO-2-THIENYL | 3.4.5-TRICHI ORO-2-THIENYI | 3.4.5.TRICHI OBO 2 THIENYI | 3.4 S.TPICHI OBO 2 THEN IL | 3.4 S.TDICHI ODO 3. THENY | 2 FIID ANY | 2 FUDANYI | 2 GIDANIVI | 2-FURAINTL | 2-FURAINTE | 2-FURAINYL | 2-FURANVIL | | Ιδ | | I-PIPERIDINYL | I-PIPERIDINYL | 1-PIPERIDINYL 1-PIPERIDINYI, | I-PIPERIDINYI | 1-PIPERIDINYI | 1-PIPERIDINYI | I-PIPERIDINYI | I-PIPERIDINYI | I-PIPERIDINYI | 1-PIPERIDINYI | 1-PIDEDININI | 1-PIPERIDINYI | I-PIPERIDINYI | | Z | | , | ' | , | | , | , | | , | | | | , | | | | 1 | | | | - | | R7* | | Н | Н | Н | Н | Н | Н | Н | Н | Ξ | H | H | I | Ξ | I | I | エ | Н | Ξ | I | Ξ | | R4 | | OCH3 | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | Н | Н | C | OCH ₃ | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | H | ī | ס | OCH3 | OCF3 | CF3 | SO ₂ CH ₃ | | .R3 | | 크 | Η | H | Н | Н | H | Ξ | H | Н | Н | н | Н | Ξ | Н | Н | Н | Ξ | Ξ | E | Ξ | | R2 | | Ξ | Н | Η | Н | Н | Ξ | Ξ | Ξ | H | н | Н | Ξ | = | Ξ | Н | ェ | Ξ | Н | Ξ | Ξ | | R | | СН3 | CH3 СН3 | CH3 | CH3 | CH3 | CH3 | CH3 | CH3 | | | Ciro | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | | | | | | | | | | | | | | | | | <u>1</u> | | | | | | | - 21 - TABLE 1 (CONTINUED) | 02 | 2-FURANYI | 3-FURANYL | 3-FURANYL | 3-FURANYL | 3-FURANYL | 3-FURANYL | 3-FURANYI, | 3-FURANYI, | 3-FIJRANYI | 5-CHLORO-2-FURANVI | 5-CHI ORO-2-FURANVI | 5-CHLORO-2-FURANYI | 5-CHLORO-2-FURANYL | 5-CHLORO-2-FURANYL | 5-CHLORO-2-FURANYI | 5-CHLORO-2-FURANYI | 5-CHLORO-2-FURANYI | 3-THIRNYI | 3-THIFNYI | 3-THIENYL | |----------------|--|---------------|---------------|---------------|---------------|---------------|---------------|---------------------------------|---------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|---------------------------------|--------------------|---------------|---------------|---------------| | Q ₁ | 1-PIPERIDINYL I-PIPERIDINYL | 1-PIPERIDINYL | 1-PIPERIDINYL | I-PIPERIDINYL | | Z | - | | , | 1 | - | - | | , | , | | | - | , | ٠, | - | - | | | - | , | | R7* | H | H | Н | Н | Н | Н | Н | Н | H | H | H | Ŧ | Н | I | Ξ | H | Н | ı | I | н | | R4 | SO ₂ N(CH ₃) ₂ | Н | Ш | C | ОСН3 | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | Н | ſТ | Cl | OCH3 | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | Н | F | CI | | R3 | Н | Н | Ξ | Η | Н | 三 | Ξ | Ξ | Ξ | Н | Н | Ξ | 王 | 工 | Ξ | Ξ | I | Ξ | Ξ | | | R2 | Н | Н | Ξ | Ξ | I | Ξ | Ξ | Ξ | Ξ | Ξ | Ξ | エ | Ξ | Ξ | 工 | = | 二 | Ξ | Ξ | I | | R1 | CH3 | СН3 | CH3 Œ | CH3 | CH3 | CH3 | CH3 | CH3 | | CPD | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | TABLE 1 (CONTINUED) | | | T | T | T. | T | T | T | T | T | T | T | T | ┱ | | _ | $\overline{}$ | _ | _ | 7 | Ŧ | - | _ | | |-----|----------|---------------|---------------|---------------|---------------------------------|---------------|--|--|-----------------|---------------------|-----------------|--------------|-----------------|----------------|--------------------|----------------|------------------|-----------------|-------------------|---------------------|--------------|----------------|--------------------| | 6 | ∂ | 3 THIENVI | 2 THENY | 2 THIENYL | 3. THIENYL | 3-THIFNYI | 2-CHI OROPHENYI | 2 3. DICHI OBOBHENYI | 7-CHI OBODLENVI | 2 3-DICHI OBOBLENIN | O ANTERDACIO | 2-AN HRACTE | 9-ANTHRACYL | 2-CHLOROPHENYL | 2,3-DICHLOROPHENYL | 9-ANTHRACYL | 9-ANTHRACYL | 2-CHI OBODHENNI | 2.2 DICHI ODOBINI | 2,3-DICHLOROPHEN YL | 9-ANTHRACYL | 2-CHLOROPHENYL | 2,3-DICHLOROPHENY! | | ĪŪ | y
- | I-PIPERIDINYI | 1-PIPERIDINYI | 1-PIPERIDINYI | 1-PIPERIDINYI | 1-PIPERIDINYL | (CH ₃) ₃ N ⁺ | (CH ₁) ₁ N ⁺ | 2-PYRIDINYI | 2-PYRIDINYI | I-PYRROI IDINYI | 1DVBBOILDING | IL I NKOLIDINTL | 2-PYRIDINYL | 2-PYRIDINYL | 2-PYRROLIDINYL | 2-PYRROLIDINYL | 1-PIPERAZINYI. | 2-PIPERAZINYI | THE WAY | FILENTL | FHENYL | PHENYL | | 2 | 1 | | | , | | | | , | | , | , | | - | - | 1 | - | · | ' | ١, | - | | | | | R7* | | Н | H | Ξ | Ξ | I | н | Ξ | Ξ | Ξ | Ξ | = | : = | | | Ξ | 프 | I | Ξ | = | | = : | | | R4 | | ОСН3 | OCF3 | CF3 | SO ₂ CH ₃ | SO2N(CH3)2 | CI | OCH3 | ū | OCH3 | ū | OCH3 | , 5 | | OCH3 | ם | OCH ₃ | C | осн3 | 2 | OCH3 | 5 | 5 | | R3 | | Н | H | Н | Н | Н | Ξ | Н | Н | H | Н | Н | = | : : | | Ŧ | 王 | Ŧ | Н | Ξ | = | - | | | R2 | | Н | Н | н | Η | H | Ξ | Ξ | Ξ | Ξ | Н | I | I | : = | = | = | I) | Ξ | Н | Ξ | = | I | | | RI | | CH3 | CH3 | CH3 | CH3 | Ξ | Ξ | Ξ | Ξ | I | Н | = | Ξ | = | = | = - | Ŧ | = | Ξ | Ξ | CH3 | CH3 | | | | CPD | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 0.02 | 157 | 232 | 233 | 234 | 235 | 236 | 237 | - | TABLE 1 (CONTINUED) - 23 - 2,3-DICHLOROPHENYL 2,3-DICHLOROPHENYL 2,3-DICHLOROPHENYL 2-CHLOROPHENYL 2-CHLOROPHENYL 2-CHLOROPHENYL 2-CHLOROPHENYL 9-ANTHRACYL 9-ANTHRACYI 9-ANTHRACYL 1-NAPHTHYL 2-NAPHTHYL 2-THIENYL 3-THIENYL 2-FURANYL 3-FURANYL 1-NAPHTHYL 2-FURANYL 2-THIENYL 3-THIENYL 8 2,3-DICHLOROPHENYL 2-CHLOROPHENYL 1-PYRROLIDINYL 1-PYRROLIDINYL 1-PIPERIDINYL I-PIPERIDINYL -PYRROLIDINYL 1-PYRROLIDINYL 1-PYRROLIDINYL 1-PYRROLIDINYL 1-PIPERIDINYL 1-PIPERIDINYL 1-PIPERIDINYL 1-PIPERIDINYL 1-PIPERIDINYL 4-MORPHOLINE 1-PIPERIDINYL 1-PIPERIDINYL 2-THIENYL 3-THIENYL $\bar{\Diamond}$ 8 8 8 8 8 Ζ 8 8 8 8 8 8 8 8 8 8 8 \mathbb{R}^{7} Ξ I I Ξ I Ξ Ξ \blacksquare 工 Ξ Ξ Ξ Ξ Ξ Ξ I Ξ \equiv Ξ I OCH₃ ОСН3 OCH₃ OCH3 OCH3 ОСН3 OCH₃ OCH₃ OCH₃ OCH3 R4 $\overline{\mathbf{C}}$ IJ $\overline{\mathbf{c}}$ $\overline{\mathbf{c}}$ \overline{c} \overline{C} $\overline{\mathbf{c}}$ ರ Ū Ι R3 \blacksquare I I Ξ 피 I Τ Ι \blacksquare I I Ξ Ξ Ξ Ξ I Ξ Ι Ξ I R^2 I Ξ I Ξ I エ Ξ I Ξ エ Ξ エ Ξ Η I = I CH_3 CH3 CH3 CH3 CH3 CH₃ СН3 --CH3 CH3 CH3 CH3 CH3 СН3 CH3 CH3 CH3 CH₃ CH_3 CH, СH3 CPD 238 239 240 241 244 245 243 246 247 248 254 242 249 250 253 251 255 256 257 252 SUBSTITUTE SHEET (RULE 26) TABLE 1 (CONTINUED) | ****** | D3 D4 57* | h.7.* | *1. | L | | | ļ | | |--------------------------------|-----------------------------------|----------------------|-----------|----------|----------|--------------|--|--------------------------| | ⊼
1 | K ⁻ K ⁺ R/* | R4 R/* | R/* | | Z OI | ō | | G | | CH3 H H OCH3 H CO 4-MORPHOLINE | Н ОСН3 Н СО | ОСН3 Н СО | Η | _ | _ | 4-MORPI | FOI INF |) & DICUI OBOBITES | | ļ. | OCH ₃ H m | OCH ₃ H m | Ξ. | <u> </u> | <u> </u> | I MOD | 4 MODDELOI INF | 2,3-DICHLOROPHEN YL | | | 21500 | | | | | DIA! | TIOUNE | 2,3-DICHLOROPHENYL | | п н осн3 н со | н осн3 н со | UCH3 H CO | ΩН | | | 4-MO | 4-MORPHOLINE | 2-CHLORO-4FI LIOROPHENYI | | CH3 H H OCH3 H CO 4-MG | 8 | 8 | 8 | 8 | | 4-M | 4-MORPHOLINE | 3-CHI ODOBITENIAL | | | н | Н | · | , | | | COOCH2 | 1 NA DIEGIS | | CH ₃ H H H H H(m-2) | Н Н Н | | | | ; | ; | CHOOSE STATE | I-NAPHIHYL | | (7-11)11 | 11(11-7) | 11(111-2) | 11(111-2) | , | -+- | - | 4-MURPHOLINE | 1-NAPHTHYL | | CH3 H H OCH3 H(m=2) - 4-1 | H OCH3 H(m=2) - | OCH3 H(m=2) - | H(m=2) - | - | - 4-1 | 4-1 | 4-MORPHOLINE | CANALIGORO INDIGE | | CH ₃ H H H H | H | | | | | - | and follows | Z,J-DICHLOROPHEN Y L | | | | | | | -+ |
1-1 | 4-MORPHOLINE | 2-CHLOROPHENYL | | CH3 H H OCH3 H(m=2) . 4-1 | H OCH3 H(m=2) | OCH3 H(m=2) . | H(m=2) | | 4-1 | 4-) | 4-MORPHOLINE | 1 NADITEIRS | | | | | | | | | The state of s | I-IVAPHIH I L | | H H OCH3 H(m=2) | H OCH3 H(m=2) | OCH3 H(m=2) | H(m=2) | • | 4-N | 4-N | 4-MORPHOLINE | 2-CHI ORODHENVI | | CH3 H H H H H(m=2) - 4-M | H H(m=2) | H H(m=2) | H(m=2) | | - A-N | 4-A | 4-MORPHOLINE | | | | | | | | TAI L | - | ON HOLINE | 2-CHLOKOPHENYL | - 24 - Elemental analysis was conducted on several of the compounds listed above and the results are shown below. TABLE 2 | | | The second | |----|-------------------|---| | | n1:. | The preferred compounds are realized when: | | | R^1 is | H, lower alkyl, or lower fluorinated alkyl; | | | R^{2-4} is | independently H, lower alkyl, OR 1, halogen, or lower | | 5 | n7 · | fluorinated alkyl; | | J | R ⁷ is | H, or lower alkyl; and | | | Q ₁ is | morpholine, piperazine, piperidine, or pyrrolidine. | | | | The most preferred compounds are realized when: | | | R^{1} is | lower alkyl; | | 10 | R^{2-4} is | independently is H, or OR 1; | | | R^{7} is | H: | | | Q ₁ is | morpholine; | | | m is | 2; and | | | Z is | a bond. | | 15 | | - 0010. | | | | Specific compounds are: | | | 2-[1-(2-Ch | nlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]-1- | | | [morpholia | n-4-yl]ethanone; | - 20 2-Methyl-3-(morpholin-4-yl)methyl-1-(1-naphthoyl)-1H-indole; - 2-Methyl-1-(1-naphthoyl)-1H-indol-3-ylacetic acid, methyl ester; - 1-(2-Chlorobenzoyl)-5-methoxy-2-methyl-3-(morpholin-4-ylmethyl)-25 *lH*-indole; - 1-(2,3-Dichlorobenzoyl)-2-methyl-3-(morpholin-4-ylmethyl)-1*H*-indole; - 1-(2,3-Dichlorobenzoyl)-5-methoxy-2-methyl-3-(morpholin-4-ylmethyl)- 1*H*-indole; - 30 1-(1-NaphthoyI)-5-methoxy-2-methyl-3-(morpholin-4-ylmethyl)-1*H*-indole; - $\hbox{$1$-(2,3$-Dichlorobenzoyl)-5$-methoxy-2$-methyl-3-(2$-(morpholin-4-yl)ethyl)-$1$H-indole; }$ - $1\hbox{-}(2\hbox{-}Chlorobenzoyl)\hbox{-}2\hbox{-}methyl\hbox{-}3\hbox{-}(morpholin\hbox{-}4\hbox{-}ylmethyl)\hbox{-}1$$H$-indole;$ - 1-(1-Naphthoyl)-5-Methoxy-2-methyl-3-(2-(morpholin-4-yl)ethyl)-1 H-indole; - 5 1-(2-Chlorobenzoyl)-5-methoxy-2-methyl-3-(2-(morpholin-4-yl)ethyl)-1*H*-indole; and - $1\hbox{-}(2\hbox{-}Chlorobenzoyl)\hbox{-}2\hbox{-}methyl\hbox{-}3\hbox{-}(2\hbox{-}(morpholin\hbox{-}4\hbox{-}yl)\hbox{ethyl})\hbox{-}1$$H$-indole.$ #### **Utilities** 20 30 - The ability of the compounds of formula I to mimic the actions of the cannabinoids makes them useful for preventing or reversing the symptoms that can be treated with cannabis, some of its derivatives and synthetic cannabinoids in a human subject. Thus, compounds of formula I are useful to treat, prevent, or ameliorate in - mammals and especially in humans: - 1- various ocular disorders such as glaucoma. - 2- pulmonary disorders including diseases such as asthma, chronic bronchitis and related airway diseases. - 3- allergies and allergic reactions such as allergic rhinitis, contact dermatitis, allergic conjunctivitis and the like. - 4- inflammation such as arthritis or inflammatory bowel disease. - 5- pain. - 6- disorders of the immune system such as lupus, AIDS, etc. - 25 7- allograft rejection. - 8- central nervous system diseases such as Tourette's syndrome, Parkinson's disease, Huntingdon's disease, epilepsy, various psychotic afflictions such as depression, manic depression, etc. - 9- vomiting, and nausea and vertigo, especially in the case of chemotherapy patients. WO 96/25397 PCT/CA96/00080 - 28 - #### Dose Ranges The magnitude of therapeutic dose of a compound of Formula I will, of course, vary with the nature of the severity of the condition to be treated and with the particular compound of Formula I and its route of administration and vary upon the clinician's judgment. It will also vary according to the age, weight and response of the individual patient. An effective dosage amount of the active component can thus be determined by the clinician after a consideration of all the criteria and using is best judgment on the patient's behalf. An ophthalmic preparation for ocular administration comprising 0.001-1% by weight solutions or suspensions of the compounds of Formula I in an acceptable ophthalmic formulation may be used. 15 20 5 10 #### Pharmaceutical Compositions Any suitable route of administration may be employed for providing a mammal, especially a human with an effective dosage of a compound of the present invention. For example, oral, parenteral and topical may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, creams, ointments, aerosols, and the like. The pharmaceutical compositions of the present invention comprise a compound of Formula I as an active ingredient or a pharmaceutically acceptable salt thereof, and may also contain a pharmaceutically acceptable carrier and optionally other therapeutic ingredients. The term "pharmaceutically acceptable salts" refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic bases or acids and organic bases or acids. 30 25 The compositions include compositions suitable for oral, parenteral and ocular (ophthalmic). They may be conveniently presented in unit dosage form and prepared by any of the methods well-known in the art of pharmacy. In practical use, the compounds of Formula I can be combined as the active ingredient in intimate admixture with a 5 10 15 20 25 30 PCT/CA96/00080 pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration. In preparing the compositions for oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations, such as, for example, suspensions, elixirs and solutions; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be coated by standard aqueous or nonaqueous techniques. Pharmaceutical compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient, as a powder or granules or as a solution or a suspension in an aqueous liquid, a non-aqueous liquid, an oil-in-water emulsion or a water-in-oil liquid emulsion. Such compositions may be prepared by any of the methods of pharmacy but all methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more necessary ingredients. In general, the compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation. For example, a tablet may be prepared by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine, the active ingredient in a free-flowing form such as powder or granules, optionally mixed with a binder, lubricant, inert diluent. surface active or dispersing agent. Molded tablets may be made by WO 96/25397 PCT/CA96/00080 - 30 - molding in a suitable machine, a mixture of the powdered compound moistened with an inert liquid diluent. Desirably, each tablet contains from about 1 mg to about 500 mg of the active ingredient and each cachet or capsule contains from about 1 to about 500 mg of the active ingredient. ## Combinations with Other Drugs 5 In addition to the compounds of Formula I, the pharmaceutical compositions of the present invention can also contain 10 other active ingredients or prodrugs thereof. These other active species may be beta-blockers such as timolol, topical carbonic anhydrase inhibitors such as Dorzołamide, systemic carbonic anhydrase inhibitors such as acetolamide, cholinergic agents such as pilocarpine and its derivatives, prostaglandin F receptor agonists such as Latanoprost, 15 ajmaline and its derivatives, b2 adrenergic agonists such as epinephrine, glutamate antagonists, aminosteroids, diuretics, and any other compound used alone or in combination in the treatment of glaucoma. The weight ratio of the compound of the Formula I to the second active ingredient may be varied and will depend upon the effective dose of each ingredient. Generally, an effective dose of each will be used. Thus, for 20 example, when a compound of the Formula I is combined with a bblockers, a carbonic anhydrase inhibitor, a pilocarpine derivative or a prostaglandin agonist, the weight ratio of the compound of the Formula I to the other drug will generally range from about 1000:1 to about 25 1:1000, preferably about 200:1 to about 1:200. Combinations of a compound of the Formula I and other active ingredients will generally also be within the aforementioned range, but in each case, an effective dose of each active ingredient should be used. Methods of Synthesis Compounds of the present invention can be prepared according to the following non-limiting methods. Temperatures are in degrees Celsius. ## Method A 5 10 The starting indoles used are either commercially available or prepared from an appropiate hydrazine II and a properly substituted aldehyde or ketone III as described in U.S. patent
3,161,654 (incorporated herein). The indole IV obtained is then treated with an acyl chloride or bromide of a properly substituted Q2 and a base to afford the desired indole I. When Z-Q¹ is an ester, it can be hydrolysed to the desired acid Ia with a base such as 1N NaOH in a protic solvent such as MeOH-H₂O. #### METHOD A 15 $$R^{3}\frac{f_{1}}{f_{2}}$$ NHNH₂ R^{1} ACIDIC CONDITIONS II III 20 $R^{2}\frac{f_{1}}{f_{2}}$ NHNH₂ $R^{1}\frac{f_{2}}{f_{2}}$ NH $R^{1}\frac{f_{2}}{f_{2}}$ NH $R^{1}\frac{f_{2}}{f_{2}}$ NH $R^{1}\frac{f_{2}}{f_{2}}$ NH $R^{1}\frac{f_{2}}{f_{2}}$ NH $R^{1}\frac{f_{2}}{f_{2}}$ NAOH $R^{3}\frac{f_{1}}{f_{2}}$ NAOH $R^{3}\frac{f_{1}}{f_{2}}$ NAOH $R^{2}\frac{f_{2}}{f_{2}}$ # Method B 5 The acids Ia can be converted to a variety of esters Ib by dissolution in the appropriate lower alkyl alcohol with a strong acid such as 10% H₂SO₄ and heated between 60- 90° C for 3-12h (Fischer conditions). #### METHOD B 10 $$R^{3} = CO_{2}H$$ $R^{3} = CO_{2}H$ $R^{4} ## Method C Acids Ia are treated with a chlorinating agent such as oxalyl chloride in an inert solvent (methylene chloride, dichloroethane, etc.). The resulting acyl halide is then treated with amines or thiols in the presence of a base (excess amine, Et3N, etc.) to afford the corresponding amide Ic or thiol ester Id. 25 30 - 33 - ## METHOD C $$R^{2} = \frac{(CR^{7}_{2})_{m} - CO_{2}H}{R^{4}}$$ $$R^{2} = \frac{(CR^{7}_{2})_{m} - CON(R^{5})_{2}}{R^{4}}$$ $$R^{2} = \frac{(CR^{7}_{2})_{m} - COSR^{a}}{R^{3} = \frac{(CR^{7}_{2})_{m} - COSR^{a}}{R^{3} = \frac{(CR^{7}_{2})_{m} - COSR^{a}}{R^{4}}}$$ $$R^{2} = \frac{(CR^{7}_{2})_{m} - COSR^{a}}{R^{4}}$$ $$R^{2} = \frac{(CR^{7}_{2})_{m} - COSR^{a}}{R^{4}}$$ $$R^{2} = \frac{(CR^{7}_{2})_{m} - CON(R^{5})_{2}}{R^{4}}$$ $$R^{2} = \frac{(CR^{7}_{2})_{m} - CON(R^{5})_{2}}{R^{4}}$$ $$R^{2} = \frac{(CR^{7}_{2})_{m} - CON(R^{5})_{2}}{R^{4}}$$ $$R^{3} = \frac{(CR^{7}_{2})_{m} - CON(R^{5})_{2}}{R^{4}}$$ $$R^{4} CON(R^{5})_{2}}{R$$ #### Method D 20 The primary amides of Ic in an inert solvent such as THF, Et₂O, etc. and a base such as pyridine are treated with a dehydrating agent such as trifluoroacetic anhydride at 0° C to afford the nitrile Ie. #### METHOD D 25 $$R^{3} \stackrel{\text{(CR}^{7}_{2})_{m} - \text{CONR}^{5}_{2}}{R^{4}} \qquad \underbrace{R^{2} \stackrel{\text{(CR}^{7}_{2})_{m} - \text{CN}}{(\text{CF}_{3}\text{CO})_{2}\text{O} / \text{pyridine}}}_{R^{4}} \qquad R^{2} \stackrel{\text{(CR}^{7}_{2})_{m} - \text{CN}}{R^{1}}$$ $$R^{2} \stackrel{\text{(CR}^{7}_{2})_{m} - \text{CN}}{R^{2}}$$ - 34 - ## Method E Acids Ia are treated with borane according to the literature (J.Org. Chem. 1973, 38, 2786) to afford the alcohols If. 5 ## METHOD E 15 20 25 30 ## Method F 5 Compounds of type If can be converted to their mesylate or tosylate in an inert solvent such as CH₂Cl₂ in the presence of a base such as Et₃N and then reacted with various nucleophiles such as alcohols, thiols and amines to produce compounds Ig, Ih and Ii. METHOD F 10 $$R^3 = \frac{R^2}{1 - MsCI / Et_3 N}$$ $R^3 = \frac{R^2}{1 - MsCI / Et_3 N}$ \frac{R^3}{1 - MsCI / Et_3 N}$ $R^3 = \frac{R^3}{1 - MsCI / Et_3 N}$ $R^3 = \frac{R^3}{1 - MsCI / Et_3 N}$ $R^3 = \frac{R^3}{1 - MsCI / Et_3 N}$ R - 36 ~ # Method G When compounds of type If are subjected to Swern oxidation (J. Org. Chem. <u>1978</u>, **43**, 2480), with PCC (Tetrahedron Lett. <u>1975</u>, 2647) or other oxidizing agents, aldehyde Ij is obtained. 5 # METHOD G 15 20 25 ## Method H 5 Compounds of type Ih can be reduced to the alkyl chain by reaction with Raney-Nickel in a protic solvent such as ethanol to afford Ik, which can also be prepared by a Fischer indole synthesis starting with an appropriate hydrazine II and a ketone or aldehyde IIIa under acidic conditions. Compound Ih can be oxidized to the sulfoxide or sulfone using for example H₂O₂ or MCPBA to give II. METHOD H METHOD H METHOD H $(CR^{7}_{2})_{m} \cdot CH_{2}SR^{a}$ $R^{3} \stackrel{f!}{U}$ R^{4} R^{1} $R^{3} \stackrel{f!}{U}$ R^{4} R^{1} $R^{3} \stackrel{f!}{U}$ R^{4} R^{1} $R^{3} \stackrel{f!}{U}$ R^{4} R^{1} R^{2} R^{2} R^{2} $R^{3} \stackrel{f!}{U}$ R^{4} ## Method I An indole of type V can be deprotonated with a strong base such as MeMgBr, treated with ZnCl2 to exchange the metal when necessary, and an alkylating agent or (other electrophile) added to the mixture to yield compound of type IVa. This in turn according to method A can be converted to a compound of type 1. ## METHOD I X= CI, or Br 20 15 5 25 - 39 - # Method J An indole of type VI can be treated according to method A to yield VII which can be converted to Im with an amine in presence of a reducing agent such as NaBH3CN. 5 X = CI, or Br ÇHO lm 15 10 20 25 #### Method K A carboxylic acidic of type VIII can be coupled with various amines in an inert solvent such as CH₂Cl₂ using DCC or the like to yield IX, which can then be converted to In according to method A. 5 25 30 The invention will now be illustrated by the following non-limiting examples (Note: The examples in Table 1, above, that are not illustrated can be made by substantially similar procedures as discussed below) in which, unless stated otherwise: In (i) all operations are carried out at room or ambient temperature, that is, at a temperature in the range 18-25°C; 10 25 - (ii) evaporation of solvent is carried out using a rotary evaporator under reduced pressure (600-4000 pascals: 4.5-30 mm Hg) with a bath temperature of up to 60°C; - 5 (iii) the course of reactions is followed by thin layer chromatography (TLC) and reaction times are given for illustration only; - (iv) melting points are uncorrected and 'd' indicates decomposition; the melting points given are those obtained for the materials prepared as described; polymorphism may result in isolation of materials with different melting points in some preparations; - the structure and purity of all final products are assured by at least one of the following techniques: TLC, mass spectrometry, nuclear magnetic resonance (NMR) spectrometry, or microanalytical data; - 20 (vi) yields are given for illustration only; - (vii) when given, NMR data are in the form of delta (δ) values for major diagnostic protons, given in parts per million (ppm) relative to tetramethylsilane (TMS) as internal standard, determined at 300 MHz or 400 MHz using the indicated solvent: conventional abbreviations used for signal shape are: s. singlet; d. doublet; t. triplet; m. multiplet; br. broad; etc.: in addition "Ar" signifies an aromatic signal; - (viii) chemical symbols have their usual meanings; the following abbreviations have also been used: v (volume), w (weight), b.p. (boiling point), m.p. (melting point), L (liter(s)), mL 5 10 20 (milliliters), g (gram(s)), mg (milligram(s)), mol (moles), mmol (millimoles), eq. (equivalent(s)). #### **EXAMPLES** Examples provided are intended to assist in a further understanding of the invention. Particular materials employed, species and conditions are intended to be further illustrative of the invention and not limitative of the reasonable scope thereof. EXAMPLE 1 2-[1-(2-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]-1-<u>Imorpholin-4-yl]ethanone</u> 15 <u>Step 1</u>: <u>2-[5-methoxy-2-methyl-1H-indol-3-yl]-1-[morpholin-4-yl]-ethanone</u> To 5-methoxy-2-methyl-3-indoleacetic acid (0.665g; 3.03 mmol) in 6 mL of THF was added DCC (0.661g; 3.2 mmol). After 2 h of stirring, morpholine (1 mL; 11.4 mmol) was added and stirred for another 1 h. The reaction mixture was filtered and the solvent removed. Chromatography on silica gel (eluted with EtOAc) yielded 0.585g (64%) of the title compound. ¹H NMR (CDCl₃, 400 MHz) δ 2.30 (s, 3H), 3.38 (m, 4H), 3.60 (m, 4H), 3.70 (s, 2H), 3.82 (s, 3H), 6.7 (m, 1H), 6.93 (s, 1H), 7.09 (d, 1H) and 7.97 (s, 1H). Step 2: 2-[1-(2-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]-1-[morpholin-4-yl]ethanone To the amide (0.506g; 1.75 mmol) from step 1 in 10 mL of THF and 0.9 mL of HMPA cooled to -78° C was added KHMDS 0.5 M (3.5 mL; 1.75 mmol) dropwise. The temperature was raised to -22° C for 30 min and brought back to -78° C. Then 2-chlorobenzoyl chloride (0.33 mL; 2.61 mmol) was added and left stirring for 16 hr. It was then poured into cold water-EtOAc (50 mL). The organic phase was washed with H2O (2 X 15 mL) and brine. The organic phase was dried over Na₂SO₄ and the solvent removed. Chromatography on silica gel (eluted with EtOAc) followed by a swish in CH₂Cl₂ (hot) - hexane afforded 0.462g (78%) of the title compound. ¹H NMR (CDCl₃, 400 MHz) δ 2.22 (s, 3H), 3.44 (m, 4H), 3.61 (s, 4H), 3.66 (s, 2H), 3.80 (s, 3H), 6.67-6.70 (dd, 1H), 6.96 (d, 1H), 7.10 (d, 1H), and 7.39-7.50 (m, 4H). ## EXAMPLE 2 # 2-Methyl-3-(morpholin-4-yl)methyl-1-(1-naphthoyl)-1H-indole 15 20 25 5 10 Step 1: 3-Formyl-2-methyl-1-(1-naphthoyl)-1H-indole To 3-formyl-2-methylindole (4.30g; 27.0 mmol) in 70 mL of DMF at r.t. was added NaH 80% (0.861 mg). After 30 min of stirring the solution was cooled to 0° C and a solution of 1-naphthoyl chloride (5.04g, 29.3 mmol) in 10 mL of DMF was added dropwise. The mixture was left stirring for 16h at r.t. and poured into cold waterEtOAc (100mL). The organic phase was washed with H2O (2 X 25 mL) and brine. The organic phase was dried over Na2SO4 and the solvent removed. Chromatography on silica gel (eluted with 10% EtOAc in toluene) yielded 1.70g (20%) of the title compound. ¹H NMR (CDCl₃, 400 MHz) δ 2.64 (s, 3H), 6.95 (d, 1H), 7.04 (t, 1H), 7.10-7.30 (m, 1H), 7.51 (m, 1H), 7.59 (m, 3H), 7.96 (m, 1H), 8.11 (d, 1H) and 10.34 (s, 1H). 5 10 15 - 44 - Step 2: 2-Methyl-3-(morpholin-4-yl)methyl-1-(Inaphthoyl)-1H-indole To the aldehyde (0.118g; 0.38 mmol) from step 1 and morpholine hydrochloride (0.99g; 3.8 mmol) in 10 mL of MeOH was added NaBH3CN (0.057g; 0.91 mmol) and the mixture was left stirring for 16h at r.t. Another 60 mg of NaBH3CN was added and left stirring 8 h. The reaction was then poured into H2O-EtOAc (20 mL- 50 mL) and saturated with NaCl. The
organic extracts were washed with brine and dry over Na2SO4. The solvent was removed and the crude product purified by chromatography on silica gel (eluted with $10\% \rightarrow 30\%$ EtOAc in toluene) to yield 0.99g (68%) of the title compound. 1H NMR (CDCl3, 400 MHz) δ 2.18 (s, 3H), 2.46 (m, 4H), 3.59 (s, 2H), 3.67 (m, 4H). 7.02 (t, 1H), 7.20 (m, 3H), 7.40-7.55 (m,2H) and 8.04 (d, 1H). #### EXAMPLE 3 20 <u>2-Methyl-1-(1-naphthoyl)-1H-indol-3-ylacetic acid, methyl ester</u> Step 1: 2-Methyl-1H-indol-3-ylacetic acid, methyl ester. To 2-methyl indole (1.69 g; 12.9 mmol) in 10 mL of THF at 0° C was added MeMgBr 1.4M (12.9 mmol). After 30 min at 0° C. ZnCl2 1M (12.9 mL; 12.9 mmol) in THF was added and the reaction stirred for an other 30 min at r.t. Methyl bromoacetate (1.4 mL; 14.7 mmol) was added dropwise and left stirring for 48 h. The mixture was poured into aqueous NaHCO3, extracted with EtOAc (3 X 25 mL) and the combined organic extracts were washed with brine. The solution was dried over Na2SO4 and the solvent removed. Chromatography on silica gel (eluted with 5% EtOAc in hexane) yielded 1.13g (43%) of the title compound. - 45 - 1H NMR (CDCl3, 400 MHz) δ 2.39 (s, 3H), 3.64 (s, 3H), 3.68 (s, 2H), 7.05-7.13 (m, 2H), 7.22-7.26 (m, 1H), 7.49-7.52 (m, 1H) and 7.82 (s, 1H). 5 <u>Step 2</u>: <u>2-Methyl-1-(1-naphthoyl)-1H-indol-3-ylacetic acid, methyl ester</u> The compound of step 1 (1.13g; 5.56 mmol) in 6 mL of DMF was treated with NaH 80% (0.18g; 5.99 mmol) at 250 C. After 30 min a solution of 1-naphthoyl chloride in 5 mL of DMF was added - dropwise The reaction mixture was left stirring for 16h and poured into cold water-EtOAc. The organic phase was washed with H2O (2 X 15 mL) and brine, dried over Na2SO4 and the solvent removed. Chromatography on silica gel (eluted with 2% EtOAc in toluene) yielded 0.86g (43%) of the title compound. - ¹⁵ ¹H NMR (CDCL3, 400 MHZ) Δ 2.20 (S, 3H), 3.67 (S, 3H), 7.0 (M, 1H), 7.10-7.26 (M, 3H), 7.45-7.60 (M, 5H), 7.95 (M, 1H) AND 8.07 (M, 3H). High Resolution Mass Spectra results were: Formula (C23H19NO3+H+); Calculated (358.14415); Found (358.14432) 20 25 WO 96/25397 PCT/CA96/00080 - 46 **-** #### EXAMPLE 4 1-(2,3-Dichlorobenzoyl)-5-methoxy-2-methyl-3-(2-(morpholin-4-yl)ethyl)-1H-indole # Step 1: 5-Methoxy-2-methyl-3-(2-(morpholin-4-yl)ethyl)-1H-indole To 5-methoxy-2-methyl-1H-indole (5.00g; 31.0mmol) in 30 mL of dry THF at 0°C was added dropwise MeMgBr (3.0M in Et₂O; 11.4mL; 34.2mmol). The solution was stirred 30 min at r.t. after which ZnCl₂ (0.5M in THF; 64mL; 32mmol) was added. The mixture was stirred at r.t., after 1h, N-(2-iodoethyl)morpholine (14.41g; 51.5mmol) was added. The final mixture was stirred at r.t. overnight. The mixture was poored in saturated NaHCO₃ (100mL), extracted with EtOAc (2x100mL). The organic phase was washed with brine (100mL), dried over Na₂SO₄, filtered, concentrated and flash chromatographed (Silica gel; EtOAc / Ace O to 10%) to yield 587mg (7%) of the title compound. ¹NMR (CDCl₃, 400MHz) δ 2.36 (s, 3H), 2.64 (bs, 6H), 2.92 (bs, 2H), 3.83 (bd, 4H), 3.85 (s, 3H), 6.76 (dd, 1H), 6.97 (d, 1H), 7.15 (d, 2H), 7.68 (bs, NH). 25 5 # Step 2: 1-(2,3-Dichlorobenzoyl)-5-methoxy-2-methyl-3-(2-(morpholin-4-yl)ethyl)-1H-indole To 5-methoxy-2-methyl-3-(2-(morpholin-4-yl)ethyl)-1H-indole (311mg; 1.13mmol) in 10 mL dry THF at -78°C was added HMPA (590µL; 3.39mmol), then dropwise KHMDS (0.5M in Tol; 2.5mL; 1.25mmol). The solution was stirred 30 min at -22°C then cooled to -78°C after which 2,3-dichlorobenzoyl chloride (361mg; 1.72mmol) was added. The final mixture was allowed to reach r.t. slowly then stirred 1h. The mixture was poored in saturated NaHCO $_3$ (25mL), extracted with EtOAc (2x50mL). The organic phase was washed with brine (50mL), dried over Na $_2$ SO $_4$, filtered, concentrated and flash chromatographed (Silica gel ; EtOAc) to yield 503mg (99%) of the title compound. ¹NMR (CDCl₃, 400MHz) δ 2.12 (s, 3H), 2.52 (m, 6H), 2.79 (t, 2H), 3.74 (t, 4H), 3.82 (s, 3H), 6.71 (dd, 1H), 6.91 (d, 1H), 7.34 (m, 3H), 7.61 (dd, 1H). Elemental analysis for $C_{23}H_{24}Cl_2N_2O_3$ •HCl, calcd: C: 57.1, H: 5.21, N: 5.79; found: C: 57.18, H: 5.26, N: 5.70. 15 5 20 25 # The claims defining the invention are as follows: A compound of the structural formula I: $$R^2$$ R^3 R^4 R^4 R^1 Q_2 or a pharmaceutically acceptable salt thereof, or diastereomer, or enantiomer or a mixture 5 thereof, wherein: R¹ is H or lower alkyl; R^{2-4} is independently, H, or $-(CR^{7}_{2})_{m}$ - OR^{1} ; R^7 is H Q₁ is COOCH₃, or N(R⁷)₂ wherein two R⁷ groups may be joined to form a pyrrolidine, piperidine, piperazine or morpholine ring and their quaternary methyl ammonium salts; Q₂ is naphthyl; Z is a bond; and 15 m is 0-6. 2. A compound of claim 1, wherein, R¹ is H R^{2-4} is independently, H or $-(CR^{7}_{2})_{m}$ - OR^{1} ; R⁷ is H; and Q₁ is morpholine, piperazine, piperidine or pyrrolidine 3. A compound of claim 1, wherein R¹ is lower alkyl; R^{2-4} is independently, H or -(CR $^{7}_{2}$)_m-OR 1 ; R^7 is H: Q₁ is morpholine; m is 2; and Z is a bond. 4. A compound of claim 1 which is: 2-Methyl-3-(morpholin-4-yl)methyl-1-(1-naphthoyl)-1H-indole; 2-Methyl-1-(1-naphthoyl)-1H-indol-3-ylacetic acid, methyl ester; 1-(1-Naphthoyl)-5-methoxy-2-methyl-3-(morpholin-4-ylmethyl)-1*H*-indole; or $1\hbox{-}(1\hbox{-Naphthoyl})\hbox{-}5\hbox{-methoxy-}2\hbox{-methyl-}3\hbox{-}(2\hbox{-}(morpholin-}4\hbox{-}ylmethyl)\hbox{-}1H\hbox{-indole}.$ - 5. A compound of formula I as defined in claim 1 and substantially as hereinbefore described with reference to any one of the Examples. - 6. A pharmaceutical composition comprising a pharmacologically effective amount of a compound of formula (I), as defined in any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, or a diastereomer or enantiomer or mixture thereof, in association with a pharmaceutically acceptable carrier or diluent. - 7. The composition of claim 6 wherein said carrier or diluent is buffered to a pH suitable for ocular administration. - 8. A method of treating ocular hypertension and glaucoma, which method to comprises the step of ocularly administering to a patient a pharmacologically effective amount of a compound of any one of claims 1 to 5 or of a composition of claim 6 or claim 7. - 9. A method of alleviating, treating or preventing in a mammal including a human, a condition selected from the group consisting of pulmonary disorder; an allergy; an allergic reaction; inflammation; pain; a disorder of the immune system; allograft rejection; a central nervous system disease; vomiting; and nausea and vertigo; which method comprises administering to said mammal a pharmacologically effective amount of a compound of any one of claims 1 to 5 or of a composition of claim 6 or claim 7. - $10.\,\,$ The method of claim 9 wherein the pulmonary disorder is asthma or chronic 20 bronchitis. - 11. The method of claim 9 wherein the allergy or allergic reaction is selected from the group consisting of allergic rhinitis, contact dermatitis and allergic conjunctivitis. - 12. The method of claim 9 wherein the inflammation is arthritis or inflammatory bowel disease. - 13. The method of claim 9 wherein the disorder of the immune system is lupus or AIDS. - 14. The method of claim 9 wherein the central nervous system disorder is selected from the group consisting of Tourette's syndrome, Parkinson's disease, Huntingdon's disease, epilepsy, depression and manic depression. - 15. A compound of formula (I), as defined in any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, or a diastereomer or enantiomer or a mixture thereof, or a composition of claim 6 or claim 7 when used in treating or preventing a condition selected from the group consisting of ocular hypertension; glaucoma; a pulmonary disorder; an allergy; an allergic reaction; inflammation; pain; a disorder of the immune system; allograft rejection; a central nervous system disease; vomiting; and nausea and vertigo. - 16. Use of a compound of formula (I), as defined in any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, or a diastereomer or enantiomer or mixtures thereof as a cannabimimetic pharmacological agent selective for CB2 receptors. - 17. Use of a compound of formula (I), as defined in any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, or a diastereomer or enantiomer or mixtures thereof in the manufacture of a cannabimimetic pharmacological agent selective for CB2 receptors. - 18. Use of a compound of formula (I), as defined in any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, or a diastereomer or enantiomer or mixtures thereof in the manufacture of a medicament for treating or preventing a condition selected from the group consisting of an allergy; an allergic reaction; inflammation; pain; a disorder of the immune system; allograft rejection; a central nervous system disease; vomiting; and nausea and vertigo. Dated 2 February, 1999 Merck Frosst Canada, Inc. Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON