(11)特許出願公開番号

(12) 公開特許公報(A)

(19) 日本国特許庁(JP)

特開2018-106235

(P2018-106235A)

(43) 公開日 平成30年7月5日(2018.7.5)

(51) Int.Cl.			FΙ			テーマコード (参考)
GO5B	19/404	(2006.01)	GO5B	19/404	G	3CO29
B23Q	17/00	(2006.01)	B 2 3 Q	17/00	А	3C269

審査請求 未請求 請求項の数 4 OL (全 18 頁)

(21) 出願番号 (22) 出願日	特願2016-249163 (P2016-249163) 平成28年12月22日 (2016.12.22)	(71) 出願人	000146847 DMG森精機株式会社 奈良県大和郡山市北郡山町106番地
		(74)代理人	100104662
			弁理士 村上 智司
		(72)発明者	井戸悠
			奈良県大和郡山市北郡山町106番地 D
			MG森精機株式会社内
		(72)発明者	下池 昌広
			奈良県大和郡山市北郡山町106番地 D
			MG森精機株式会社内
		Fターム (参	考) 3C029 EE02
			3C269 AB31 BB03 CC02 JJ18 MN16

(54) 【発明の名称】工作機械の運動誤差同定方法

(57)【要約】

【課題】一般的な方法で測定した誤差データを用い、工作機械の任意の位置を原点とした 座標系における運動誤差を同定する方法を提供する。

【解決手段】機械座標系の3次元空間内でX軸送り機構,Y軸送り機構及びZ軸送り機構 を動作させてその並進誤差、角度誤差及び直角度誤差をそれぞれ測定し、測定された実測 誤差データを基に、予め設定された基準位置Xa,Ya,Zaを原点とした設定座標系の 3次元空間内における、並進誤差パラメータ、角度誤差パラメータ及び直角度誤差パラメ ータに係る誤差データを導出する。ついで、導出された各誤差データを基に、設定座標系 の3次元空間内における主軸とテーブルとの相対的な運動誤差を導出する。 【選択図】なし

10

20

30

【特許請求の範囲】

【請求項1】

工具を保持する主軸及びワークが取り付けられるテーブルを備えるとともに、該主軸の 軸線に沿った方向の Z 軸、並びに該 Z 軸に直交し且つ相互に直交する X 軸及び Y 軸の各基 準軸に対応した Z 軸送り機構、 X 軸送り機構及び Z 軸送り機構を備え、これら X 軸送り機 構、 Y 軸送り機構及び Z 軸送り機構によって前記主軸とテーブルとを 3 次元空間内で相対 的に移動させるように構成された工作機械において、前記 3 次元空間内における前記主軸 とテーブルとの相対的な運動誤差を同定する方法であって、

前記 X 軸送り機構、 Y 軸送り機構及び Z 軸送り機構に対してそれぞれ設定された機械原 点 X ₀ 、 Y ₀ 、 Z ₀ を基準とする機械座標系の 3 次元空間内で、それぞれ X 軸送り機構、 Y 軸送り機構及び Z 軸送り機構を動作させて、該機械座標系における任意の座標位置を基 準に、

前記X軸方向の位置決め誤差、

前記Y軸方向の位置決め誤差、

前 記 Z 軸 方 向 の 位 置 決 め 誤 差 、

前記X軸、Y軸及びZ軸における真直誤差、

前記×軸における×軸,×軸及び×軸まわりの各角度誤差、

前記 Ү 軸 における X 軸 , Y 軸 及び Ζ 軸 まわりの 各角 度 誤 差 、

前記 Ζ 軸における Χ 軸 , Υ 軸及び Ζ 軸まわりの各角度誤差、

前記X軸,Y軸及びΖ軸相互間の直角度誤差、

をそれぞれ測定し、

測 定 さ れ た 実 測 誤 差 デ ー タ を 基 に 、 前 記 機 械 座 標 系 に お い て 予 め 設 定 さ れ た 基 準 位 置 X _a , Y a, Z a を 原 点 と し た 設 定 座 標 系 の 3 次 元 空 間 内 に お け る 、

前記 X 軸送り機構の X 軸方向の位置決め誤差、

前記Y軸送り機構のY軸方向の位置決め誤差、

前記Z軸送り機構のZ軸方向の位置決め誤差、

前記X軸送り機構、Y軸送り機構及びZ軸送り機構の真直誤差、

前記X軸送り機構におけるX軸,Y軸及びZ軸まわりの各角度誤差、

前記 Y 軸送り機構における X 軸 , Y 軸及び Z 軸まわりの各角度誤差、

前記 Z 軸送り機構における X 軸 , Y 軸及び Z 軸まわりの各角度誤差、

前記X軸,Y軸及びΖ軸相互間の直角度誤差、

をそれぞれ導出し、

導出された各誤差データを基に、前記設定座標系の3次元空間内における前記主軸とテ ーブルとの相対的な運動誤差を導出するようにしたことを特徴とする工作機械の運動誤差 同定方法。

【請求項2】

前記X軸, Y軸及びZ軸相互間の直角度誤差は、ダブルボールバーを用いて測定される ことを特徴とする請求項1記載の工作機械の運動誤差同定方法。

【請求項3】

導出される前記誤差データは、前記主軸の前端部における主軸中心位置に関するもので ⁴⁰ ある請求項1又は2記載の工作機械の運動誤差同定方法。

【請求項4】

前記設定座標系の3次元空間内における前記主軸とテーブルとの相対的な運動誤差は、 前記主軸に装着される工具刃先に関するものである請求項1乃至3記載のいずれかの工作 機械の運動誤差同定方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、工具を保持する主軸と、ワークが取り付けられるテーブルとを、X軸、Y軸 50

(2)

及び Z 軸の直交 3 軸方向に相対的に移動させるように構成された工作機械において、前記 主軸とテーブルとの相対的な運動誤差を同定する方法に関する。 【背景技術】

(3)

 $\begin{bmatrix} 0 & 0 & 0 & 2 \end{bmatrix}$

従来、工作機械の運動誤差要因として、X軸、Y軸及びZ軸の各送り軸(即ち、X軸送 り機構、Y軸送り機構及びZ軸送り機構)における位置決め誤差、各送り軸の真直度など が考慮されており、このような運動誤差を補償する数値制御装置として、特開平8-15 2909号公報(下記特許文献1)に開示される数値制御装置が提案されている。 【0003】

この数値制御装置は、特許文献1に開示されるように、座標系を各座標軸方向に一定間 隔の格子状領域に分割し、この格子状領域の格子点において予め測定された格子点補正ベ クトルを格納する格子点補正ベクトル記憶手段と、移動指令に応じて各送り軸の補間パル スを出力する補間手段と、補間パルスを加算して各送り軸における現在位置を認識する現 在位置認識手段と、現在位置における現在位置補正ベクトルを格子点補正ベクトルに基づ いて算出する現在位置補正ベクトル算出手段と、現在位置補正ベクトルを、補間前の旧現 在位置における始点位置補正ベクトルと比較し、変化量を補正パルスとして出力する補正 パルス出力手段と、補正パルスを補間パルスに加算する加算手段とを備えている。

【0004】

そして、この数値制御装置によれば、補間パルスが出力されるごとに、現在位置における3次元補正ベクトルを求め、これを補正パルスとして補間パルスに加算するようにして ²⁰ いるので、機械系に起因した3次元空間上の位置誤差を、一つの補間形の誤差補正機能で 補正することができる。

[0005]

尚、上記格子状領域の各格子点における格子点補正ベクトルは、前記各送り軸について これらを一定間隔で位置決め制御したときの、主軸の軸線上に適宜設定された基準点の3 次元空間内における位置決め誤差を測定することによって得られる。また、測定は、一般 的には、レーザ干渉計、レーザ測長器やオートコリメータなどを用いて行われる。また、 前記基準点は、一般的には、例えば、主軸の軸線と主軸前端面とが交差する位置や、主軸 軸線において主軸前端面から所定距離だけ前方の位置に設定され、測定方法によって適宜 決定される。

【 0 0 0 6 】

ところで、近年では、工作機械の3次元空間内における運動誤差(位置決め誤差)は、 図4に示すように、各送り軸の並進運動の誤差、各送り軸の角度誤差、及び各送り軸相互 間の直角度に関する誤差が相互に影響し合った状態で発現されるものと考えられている。 したがって、このような各誤差を求めることによって、正確な前記運動誤差を同定するこ とができる。尚、図4に示した各誤差の定義は以下の通りである。 E _{↓ ↓} は、 X 軸 送 り 機 構 の X 軸 方 向 に お け る 位 置 決 め 誤 差 、 E _{v v} は、 Y 軸送り機構の Y 軸方向における位置決め誤差、 E 7 7 は、 Z 軸送り機構の Z 軸方向における位置決め誤差、 E _{Υ ×} は、 X 軸送り機構の X 軸 - Y 軸平面における真直誤差(Y 軸方向)、 E_{zx}は、 X 軸送り機構の X 軸 - Z 軸平面における真直誤差(Z 軸方向)、 E ↓ ↓ は、 Y 軸 送 り 機 構 の Y 軸 - X 軸 平 面 に お け る 真 直 誤 差 (X 軸 方 向)、 E _{7 ∨} は、 Y 軸送り機構の Y 軸 - Z 軸平面における真直誤差(Z 軸方向)、 E _{x 7} は、 Z 軸送り機構の Z 軸 - X 軸平面における真直誤差(X 軸方向)、 E _{∨ 7}は、 Z 軸送り機構の Z 軸 - Y 軸平面における真直誤差(Y 軸方向)、 E_{A X}は、 X 軸送り機構における X 軸まわりの角度誤差、 E_{AY}は、 Y 軸送り機構における X 軸まわりの角度誤差、 E_Aフは、Z軸送り機構におけるX軸まわりの角度誤差、 E_{R x}は、 X 軸送り機構における Y 軸まわりの角度誤差、 E_{BY}は、 Y 軸送り機構における Y 軸まわりの角度誤差、

30

40

E_{R7}は、Z軸送り機構におけるY軸まわりの角度誤差、

E_{cx}は、X軸送り機構におけるZ軸まわりの角度誤差、

E _{C v} は、 Y 軸送り機構における Z 軸まわりの角度誤差、

Ecっは、Z軸送り機構におけるZ軸まわりの角度誤差、

AのZは、Z軸送り機構と理想のZ軸とのX軸回りの角度誤差、

B。Zは、Z軸送り機構と理想のZ軸とのY軸回りの角度誤差、

C 0 Y は、 Y 軸送り機構と理想の Y 軸との Z 軸回りの角度誤差である。

尚、この他の誤差要因として、Y軸送り機構と理想のY軸とのX軸回りの角度誤差である A 。 Y 、 X 軸送り機構と理想の X 軸との Y 軸回りの角度誤差である B 。 X 、 X 軸送り機構 と理想のX軸とのΖ軸回りの角度誤差であるC 。Xが考えられる。

(4)

そして、従来、このような誤差を測定する測定方法として、図5に示すような測定装置 を用いた測定方法が提案されている。尚、図5に示した一例としての工作機械50は、上 面がワーク載置面(所謂テーブル)となったベッド51と、門形をしたフレーム52と、 サドル53とから構成される。フレーム52は、その水平部がベッド51の上方に位置す るように配設されるとともに、その2つ垂直部がそれぞれベッド51の側部に係合して、 全体としてY軸方向に移動可能になっている。また、サドル53は、フレーム52の水平 部に係合し、この水平部に沿ってX軸方向に移動可能となっており、このサドル53には 、主軸54がZ軸方向に移動可能に、且つ、Z軸と平行な軸線を中心に回転可能に保持さ れている。前記X軸、Y軸及びZ軸は、相互に直交する基準軸であり、この基準軸に対応 した各送り軸がX軸送り機構(図示せず)、Y軸送り機構(図示せず)及びZ軸送り機構 (図示せず)によって構成されている。

上記各誤差は、ベッド51上に設置されたレーザ測長器101及び主軸54に装着され たミラー102を用いて測定される。具体的には、まず、レーザ測長器101を、所定位 置、例えば、図5において実線で示す位置に設置し、ミラー102を主軸54に装着した 後、前記X軸送り機構、Y軸送り機構及びZ軸送り機構をそれぞれ一定間隔毎に位置決め 制御することにより、3次元空間内を前記一定間隔で格子状に分割した各格子点に前記ミ ラー102を位置決めし、各格子点において、レーザ測長器101からミラー102にレ ーザ光を照射するとともに、その反射光をレーザ測長器101に受光することによって、 当該レーザ測長器101によりミラー102との間の距離を測長する。 [0009]

ついで、レーザ測長器101の設置位置を上記とは異なる他の3点の位置(例えば、図 5において破線で示した位置)に順次移動させながら、また、ミラー102の高さ方向の 位置についても、少なくとも1ヶ所のレーザ測長器101に対して、上記の位置とは異な る位置に設置して、上記と同様にして、3次元空間内の各格子点に前記ミラー102を位 置決めしながら、各格子点において、レーザ測長器101によりミラー102との間の距 離を測長する。

40 そして、以上のようにして得られた測定データを基に、3辺測量法の原理に従って、3 次元空間内の前記各格子点におけるミラー102の位置を算出し、算出された位置データ 及び当該位置データを解析することによって、上記各誤差が算出される。 [0011]

ところが、このようなレーザ測長器101を用いた測定方法では、レーザ測長器101 そのものが高価であるという問題の他、レーザ測長器101を4カ所に設置し、その各位 置においてミラー102を3次元空間内の各格子点に位置決めしながら測定する必要があ るため、測定に長時間を要し、また、その作業が煩雑で面倒であるという問題があった。

その一方、前記各送り軸の並進運動誤差及び各送り軸の角度誤差については、JIS B 6190-2、JIS B 6336-1、及びJIS B 6336-2等に規定 50

される通り、既に確立された測定方法に従って測定することができる。また、 X 軸、 Y 軸 及び Z 軸相互間の直角度についての誤差である A ₀ Z 、 B ₀ Z 、 C ₀ Y 等についても、下 記非特許文献 1 に開示されるようなダブルボールバーを用いた測定方法が提案されている

【0013】

したがって、上述したレーザ測長器101及びミラー102を用いた測定法に依るまで もなく、これらの方法を用いることによって、上記誤差を測定することが可能である。 【先行技術文献】

【特許文献】

[0014]

10

30

40

【特許文献1】特開平8-152909号公報

【非特許文献】

【0015】

【非特許文献1】垣野義明、井原之敏、中津義夫著 「NC工作機械の運動精度に関する 研究(第2報)」 精密工学会誌 52/10/1986 第73頁~第79頁 【発明の概要】

【発明が解決しようとする課題】

[0016]

ところで、上述した3次元空間内における前記主軸(具体的には前記基準点)の運動誤 差は、最終的にはこれを補正する必要があるため、制御上の理由から、一般的には、所謂 ²⁰ 機械原点を基準とした機械座標系の3次元空間内における運動誤差を同定する必要がある

[0017]

ところが、前記ダブルボールバーを用いて、前記×軸、Y軸及びZ軸相互間の直角度誤 差を測定する場合、機械原点を基準とした誤差を測定することができないという問題があ った。即ち、前記ダブルボールバーを用いて、機械原点を基準とした直角度誤差を測定す るには、ダブルボールバーが装着された状態の主軸を、機械原点を中心に、バーの長さを 旋回半径として旋回移動させる必要があるが、各送り軸は機械原点を越えてマイナス方向 に移動させることはできないため、このような旋回動作を行うことができないのである。 【0018】

そして、上述した誤差 E_{XX}、 E_{YY}、 E_{ZZ}、 E_{YX}、 E_{ZX}、 E_{XY}、 E_{ZY}、 E x z、 E_{YZ}、 E_{AX}、 E_{AY}、 E_{AZ}、 E_{BX}、 E_{BY}、 E_{BZ}、 E_{CX}、 E_{CY}、 E c z は、 理論的には、 直角度誤差 A₀Z、 B₀Z、 C₀Y等の影響を受けると考えられる ため、これらの誤差についても、 機械原点を基準にした誤差を同定することができないも のと考えられる。

【0019】

このように、JISに規定される測定方法、及び非特許文献1に開示される方法では、 これらの測定値を用いて、直ちに、機械座標系の3次元空間内における運動誤差を同定す ることができない。しかしながら、このような測定方法によって測定された測定値を用い て、機械座標系の3次元空間内における運動誤差を同定することができれば、図5に示す ような高価なレーザ測長器101を用いる必要が無いため費用的な面でのメリットがあり 、また、機械座標系の3次元空間内に設定される各格子点における位置誤差を測定する必 要がないため、レーザ測長器101を用いた測定作業に比べて、その作業を容易に行うこ とができるというメリットがある。

[0020]

また、JISに規定される測定方法及び非特許文献1に開示される方法によって測定された測定値を用いて、任意の基準位置を原点とした座標系の3次元空間内における運動誤 差を同定することができれば、データ利用の自由度が増して便利である。

本発明は、以上の実情に鑑みなされたものであって、従来の一般的な測定方法により測 50

(5)

定された誤差データを用いて、工作機械の任意の位置を原点とした座標系における、当該 工作機械の運動誤差を同定する方法の提供を、その目的とする。 【課題を解決するための手段】 [0022]上記課題を解決するための本発明は、 工具を保持する主軸及びワークが取り付けられるテーブルを備えるとともに、該主軸の 軸線に沿った方向のΖ軸、並びに該Ζ軸に直交し且つ相互に直交するΧ軸及びΥ軸の各基 準 軸 に 対 応 し た Z 軸 送 り 機 構 、 X 軸 送 り 機 構 及 び Z 軸 送 り 機 構 を 備 え 、 こ れ ら X 軸 送 り 機 構 , Y 軸 送 り 機 構 及 び Z 軸 送 り 機 構 に よ っ て 前 記 主 軸 と テ ー ブ ル と を 3 次 元 空 間 内 で 相 対 的に移動させるように構成された工作機械において、前記3次元空間内における前記主軸 とテーブルとの相対的な運動誤差を同定する方法であって、 前 記 X 軸 送 り 機 構 , Y 軸 送 り 機 構 及 び Z 軸 送 り 機 構 に 対 し て そ れ ぞ れ 設 定 さ れ た 機 械 原 点X。, Y。, Z。を基準とする機械座標系の3次元空間内で、それぞれX軸送り機構, Y軸送り機構及びZ軸送り機構を動作させて、該機械座標系における任意の座標位置を基 準に、 前記X軸方向の位置決め誤差、 前記Y軸方向の位置決め誤差、 前記Z軸方向の位置決め誤差、 前記X軸、Y軸及びZ軸における真直誤差、 前記X軸におけるX軸,Y軸及びZ軸まわりの各角度誤差、 前記 Y 軸における X 軸 , Y 軸及び Z 軸まわりの各角度誤差、 前記 Ζ 軸 に お け る Χ 軸 , Υ 軸 及 び Ζ 軸 ま わ り の 各 角 度 誤 差 、 前記X軸,Y軸及びΖ軸相互間の直角度誤差、 をそれぞれ測定し、 測定された実測誤差データを基に、前記機械座標系において予め設定された基準位置X。 , Y _ , Z _ を原点とした設定座標系の3次元空間内における、 前記X軸送り機構のX軸方向の位置決め誤差、 前記 Y 軸送り機構の Y 軸方向の位置決め誤差、 前記Z軸送り機構のZ軸方向の位置決め誤差、 前記X軸送り機構、Y軸送り機構及びZ軸送り機構の真直誤差、 前記X軸送り機構におけるX軸,Y軸及びZ軸まわりの各角度誤差、 前記Y軸送り機構におけるX軸,Y軸及びZ軸まわりの各角度誤差、 前記Ζ軸送り機構におけるX軸,Υ軸及びΖ軸まわりの各角度誤差、 前記X軸送り機構,Y軸送り機構及びZ軸送り機構相互間の直角度誤差、 をそれぞれ導出し、 導出された各誤差データを基に、前記設定座標系の3次元空間内における前記主軸とテ ーブルとの相対的な運動誤差を導出するようにした工作機械の運動誤差同定方法に係る。 [0023]本発明によれば、前記X軸送り機構,Y軸送り機構及びZ軸送り機構に対してそれぞれ 設 定 さ れ た 機 械 原 点 X ₀ 、 Y ₀ 、 Z ₀ を 基 準 と す る 機 械 座 標 系 の 3 次 元 空 間 内 で 、 そ れ ぞ れ×軸送り機構, ×軸送り機構及び Z 軸送り機構を動作させて、該機械座標系における任 意の座標位置を基準に、前記X軸方向の位置決め誤差、前記Y軸方向の位置決め誤差、前 記 Z 軸 方 向 の 位 置 決 め 誤 差 、 前 記 X 軸 , Y 軸 及 び Z 軸 に お け る 真 直 誤 差 、 前 記 X 軸 に お け る X 軸 , Y 軸 及 び Z 軸 ま わ り の 各 角 度 誤 差 、 前 記 Y 軸 に お け る X 軸 , Y 軸 及 び Z 軸 ま わ り の各角度誤差、前記 Z 軸における X 軸, Y 軸及び Z 軸まわりの各角度誤差、前記 X 軸, Y 軸及びΖ軸相互間の直角度誤差が測定される。

前記 X 軸方向の位置決め誤差、前記 Y 軸方向の位置決め誤差、前記 Z 軸方向の位置決め 誤差、前記 X 軸 , Y 軸及び Z 軸における真直誤差、前記 X 軸における X 軸 , Y 軸及び Z 軸 まわりの各角度誤差、前記 Y 軸における X 軸 , Y 軸及び Z 軸まわりの各角度誤差、及び前

50

10

20

30

記 Z 軸における X 軸 , Y 軸及び Z 軸まわりの各角度誤差は、例えば、JIS B 619 0-2、JIS B 6336-1、JIS B 6336-2等の規定に準拠して測定 することができる。また、前記 X 軸 , Y 軸及び Z 軸相互間の直角度誤差は、例えば、前記 非特許文献1に開示されるダブルボールバー法によって測定することができる。 【0025】

そして、測定された実測誤差データを基に、前記機械座標系において予め設定された基準位置 X_a, Y_a, Z_aを原点とした設定座標系の 3 次元空間内における、前記 X 軸送り機構の X 軸方向の位置決め誤差、前記 Y 軸送り機構の Y 軸方向の位置決め誤差、前記 X 軸送り機構, Y 軸送り機構及び Z 軸送り機構の真直誤差、前記 X 軸送り機構における X 軸, Y 軸及び Z 軸まわりの各角度誤差、前記 Y 軸送り機構における X 軸, Y 軸及び Z 軸まわりの各角度誤差、前記 Z 軸送り機構における X 軸, Y 軸及び Z 軸まわりの各角度誤差、 X 軸送り機構, Y 軸送り機構及び Z 軸送り機構

【0026】

ついで、 導出された各誤差データを基に、前記設定座標系の 3 次元空間内における前記 主軸とテーブルとの相対的な運動誤差、即ち、主軸のテーブルに対する位置決め誤差を導 出する。

【0027】

このように、本発明によれば、既存の一般的な測定方法によって測定された実測誤差データを基に、前記機械座標系において予め設定された基準位置 X a , Y a , Z a を原点とした設定座標系の 3 次元空間内における、前記 X 軸送り機構 , Y 軸送り機構及び Z 軸送り機構に係る各誤差データが導出され、導出された誤差データを基に、前記設定座標系の 3 次元空間内における工作機械の運動誤差が導出される。尚、前記基準位置 X a , Y a , Z a は、これを任意の位置に設定することができ、例えば、機械原点 X o 、 Y o 、 Z o に設定することもできる。

[0028]

斯くして、本発明によれば、上述した高価なレーザ測長器を用いることなく、また、これを用いた測定作業に比べて、その作業が簡単な既存の一般的な測定方法によって測定された実測誤差データを基に、機械座標系の3次元空間内における工作機械の運動誤差を同定することができる。したがって、かかる運動誤差の同定を廉価に、しかも簡単な作業で行うことができる。

【0029】

また、前記基準位置 X 。, Y 。, Z 。を任意の位置に設定した設定座標系における運動 誤差を同定するようにすれば、当該誤差データの利用の自由度を高めることができる。 【 0 0 3 0 】

尚、導出される前記誤差データは、前記主軸の前端部における主軸中心位置に関するものとすることができる。このようにすれば、誤差を実測する際の測定器の突き出し等の変動要素をキャンセルすることができる。

また、前記設定座標系の3次元空間内における前記主軸とテーブルとの相対的な運動誤 ⁴ 差は、前記主軸に装着される工具の刃先に関するものであることができる。このようにす れば、得られた運動誤差量を用いて、その補正を行う際に、当該工具を用いた実際の加工 に即した適正な補正を行うことができる。

【発明の効果】

[0032]

以上のように、本発明によれば、機械座標系の3次元空間内における工作機械の運動誤 差を、上述した高価なレーザ測長器を用いることなく、また、これを用いた測定作業に比 べてその作業が簡単な、既存の一般的な測定方法により測定された実測誤差データを基に 同定することができ、かかる運動誤差の同定を廉価に、しかも簡単な作業で行うことがで きる。 10

20

【図面の簡単な説明】

【 0 0 3 3 】

- 【図1】本発明の一実施形態に係る運動誤差同定方法を説明するための説明図である。
- 【図2】本実施形態に係る運動誤差同定方法を説明するための説明図である。

【図3】ダブルボールバー用いて、X-Y平面内におけるX軸送り機構とY軸送り機構と の直角度を測定した結果を示す説明図である。

【図4】運動誤差を生じさせる誤差パラメータを示した説明図である。

【図5】運動誤差を同定する従来の方法を説明するための説明図である。

【発明を実施するための形態】

以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。

[0035]

本例では、図1及び図2に示す横形のマシニングセンタ1の運動誤差を同定する方法に ついて説明する。尚、このマシニングセンタ1は、平面視T字形状をしたベッド2と、こ のベッド2上にX軸方向に移動可能に設けられたコラム3と、コラム3にY軸方向に移動 可能に保持された主軸頭4と、主軸頭4に回転自在に支持された主軸5と、ベッド2上に Z軸に沿って移動可能に設けられたテーブル6とを備える。

【0036】

そして、X軸送り機構(図示せず)によってコラム3がX軸方向に移動し、Y軸送り機構(図示せず)によって主軸頭4がY軸方向に移動し、Z軸送り機構(図示せず)によってテーブル6がZ軸方向に移動する。斯くして、これらX軸送り機構、Y軸送り機構及びZ軸送り機構によって、主軸5とテーブル6とがX軸,Y軸及びZ軸の直交3軸で形成される3次元空間内で相対的に移動する。

- 【 0 0 3 7 】
- 1. 運動誤差算出式

上記構造のマシニングセンタ1に関し、機械座標系の3次元空間内における、前記主軸 5の前端中心位置(基準点)の運動誤差(位置決め誤差)は、以下の算出式によって算出 できることが知られている。尚、 , , は、それぞれX,Y,Z座標の指令値であり 、 E _x (, ,) は X 軸 方 向 の 位 置 決 め 誤 差 、 E _y (, ,) は Y 軸 方 向 の 位 置 決 め 誤 差 , ,)は Z 軸方向の位置決め誤差である。 、Ε_Ζ((数式1) $E_{X}(,,) = E_{XX}() + E_{XY}() + E_{XZ}() - (E_{CX}() + E_{CZ}() + C$ ₀ Y) × (数式2) $E_{Y}(,,) = E_{YX}() + E_{YY}() + E_{YZ}() + E_{CZ}() \times$ (数式3) $E_{Z}(,,) = E_{ZX}() + E_{ZY}() + E_{ZZ}() + (E_{AX}() + E_{AZ}() + A$ $_{0}$ Y) × $-(E_{BZ}() + B_{0}$ X) × 但し、上記各誤差パラメータは、それぞれ以下の通り定義される。 E x x は、 X 軸送り機構の X 軸方向の位置決め誤差、 E _{Y Y} は、 Y 軸送り機構の Y 軸方向の位置決め誤差、 E 7 7 は、 Z 軸送り機構の Z 軸方向の位置決め誤差、 E _{∨ ×} は、 X 軸送り機構の X 軸 - Y 軸平面における真直誤差(Y 軸方向)、 E_{Z X}は、 X 軸送り機構の X 軸 - Z 軸平面における真直誤差(Z 軸方向)、 E _{× ∨} は、 Y 軸送り機構の Y 軸 - X 軸平面における真直誤差(X 軸方向)、

- E_{7 ∨}は、 Y 軸送り機構の Y 軸 Z 軸 平面における真直誤差(Z 軸方向)、
- E_{x Z}は、 Z 軸送り機構の Z 軸 X 軸平面における真直誤差(X 軸方向)、
- E_{YZ}は、 Z 軸送り機構の Z 軸 Y 軸平面における真直誤差(Y 軸方向)、

E_{AY}は、 Y 軸送り機構における X 軸まわりの角度誤差、

20

10

E_{AX}は、 X 軸送り機構における X 軸まわりの角度誤差、

E_A zは、 Z 軸送り機構における X 軸まわりの角度誤差、 E_{R x}は、 X 軸送り機構における Y 軸まわりの角度誤差、 E_{R V}は、 Y 軸送り機構における Y 軸まわりの角度 誤差、 E_{R7}は、Z軸送り機構におけるY軸まわりの角度誤差、 E_{cx}は、 X 軸送り機構における Z 軸まわりの角度 誤差、 E c v は、 Y 軸送り機構における Z 軸まわりの角度誤差、 Ecっは、Z軸送り機構におけるZ軸まわりの角度誤差、 A ₀ Y は、 Y 軸送り機構と理想 Y 軸との X 軸まわりの角度誤差、 B 。 X は、 X 軸送り機構と理想 X 軸との Y 軸まわりの角度誤差、 10 C 。 Y は、 Y 軸送り機構と理想 Y 軸との Z 軸まわりの角度誤差である。 [0038] 尚、上記以外の誤差パラメータとして、以下のものが考えられる。即ち、 Z軸送り機構と理想Z軸とのX軸まわりの角度誤差であるA。Z、 Z軸送り機構と理想Z軸とのY軸まわりの角度誤差であるB。Z、 X 軸送り機構と理想 X 軸との Z 軸まわりの角度誤差である C 。 X 。 [0039]また、主軸5に装着された工具の位置決め誤差は、以下の算出式によって算出すること ができる。但し、主軸5の前端中心位置(基準点)を基準にした工具刃先のX軸方向の偏 位をT_×、 Y軸方向の偏位をT_×、 Ζ軸方向の偏位をT_ァとする。 20 (数式4) $E_{X}($, , $T_{X},T_{Y},T_{Z}) = E_{X}X($) + $E_{X}Y($) + $E_{X}Z($) - $(E_{C}X() + E_{C}Z)$ $() + C_0 Y) \times + (E_{B X} () + E_{B Y} () + E_{B Z} ()) \times T_Z - (E_{C X} () + E_C$ $Y() + E_{CZ}() \times T_{Y}$ (数式5) $E_{Y}(, , , T_{X}, T_{Y}, T_{Z}) = E_{YX}() + E_{YY}() + E_{YZ}() + E_{CZ}() \times + (E_{YZ})$ $c_X() + E_{C_Y}() + E_{C_Z}() \times T_X - (E_{A_X}() + E_{A_Y}() + E_{A_Z}()) \times$ Τz (数式6) $E_{Z}(,,,,T_{X},T_{Y},T_{Z}) = E_{ZX}() + E_{ZY}() + E_{ZZ}() + (E_{AX}() + E_{AZ})$ 30 $() + A_0 Y) \times -(E_{B_7} () + B_0 X) \times +(E_{A_X} () + E_{A_Y} () + E_{A_7} ()$) \times T _Y - (E _{B X} () + E _{B Y} () + E _{B Z} ()) \times T _X [0040] そして、機械座標系における任意の位置であるX。,Y。,Z。を原点とした設定座標 系における上記位置決め誤差は、それぞれ以下の数式によって算出することができる。 (数式7) $E_{x}(,,) = E_{xx}() + E_{xy}() + E_{xz}() - (E_{cx}() + E_{cz}() + C$ $_{0}$ Y) × (- Y $_{a}$) (数式8) $E_{Y}(,,) = E_{YX}() + E_{YY}() + E_{YZ}() + (E_{CZ}() \times (-X_{a}))$ 40 (数式9) $E_{Z}(,,) = E_{ZX}() + E_{ZY}() + E_{ZZ}() + (E_{AX}() + E_{AZ}() + A$ $_{0}$ Y) × (- Y $_{a}$) - (E $_{BZ}$ () + B $_{0}$ X) × (- X $_{a}$) (数式10) $E_{X}(, , , T_{X}, T_{Y}, T_{Z}) = E_{XX}() + E_{XY}() + E_{XZ}() - (E_{CX}() + E_{CZ})$ $() + C_0 Y) \times (-Y_a) + (E_{B_X}() + E_{B_Y}() + E_{B_Z}()) \times T_Z - (E_{C_X}())$) + E $_{C Y}$ () + E $_{C Z}$ ()) × T $_{Y}$ (数式11) $E_{Y}(, , , T_{X}, T_{Y}, T_{Z}) = E_{Y_{X}}() + E_{Y_{Y}}() + E_{Y_{Z}}() + E_{C_{Z}}() \times (-X)$ $_{a}$) + (E_{CX}() + E_{CY}() + E_{CZ}()) × T_X - (E_{AX}() + E_{AY}() + E_{AZ} 50 $() \times T_z$

(数式12)

 $E_{Z}(,,,,T_{X},T_{Y},T_{Z}) = E_{ZX}() + E_{ZY}() + E_{ZZ}() + (E_{AX}() + E_{AZ}() + E_{AZ}() + A_{0}Y) \times (- Y_{a}) - (E_{BZ}() + B_{0}X) \times (- X_{a}) + (E_{AX}() + E_{AY}() + E_{AZ}() + E_{BX}() + E_{BY}() + E_{BZ}()) \times T_{X}() + E_{AZ}() \times T_{X}() + E_{BX}() + E_{BY}() + E_{BZ}() \times T_{X}() \times T_{X}() + E_{X}() + E_{X$

まず、本例では、JIS B 6190-2、JIS B 6336-1に準拠し、以下の項目について誤差を測定する。尚、以下において、位置を表すときのX,Y,Zは、機械座標系における主軸5の前端中心(基準点)の位置を表しており、それぞれX軸送り機構、Y軸送り機構及びZ軸送り機構における機械原点からの前記基準点の位置を表す。 【0042】

[X軸について]

前 記 X 軸 送 り 機 構 (図 示 せ ず) を 駆 動 し 、 所 定 ピ ッ チ 間 隔 で X ₁ , X ₂ ・・・ X _n の 指 令位置に前記基準点を移動させながら、以下の I₁ ~ I₆の測定項目について各誤差 M^{-I} ¹(X_レ)~ M^{I6}(X_レ)を測定する。但し、 k は 1 ~ n の 整数である。また、 各項目につ いて測定する際の前記Y軸送り機構(図示せず)及びZ軸送り機構(図示せず)における 指令位置は任意の位置Y^{Im}、Z^{Im}である。mは測定項目の添え字に対応する。 I ₁ : X 軸 位 置 決 め 誤 差 M ^{I 1} (X _k)を 測 定 (J I S B 6 1 9 0 - 2) I₂:X軸真直度誤差 M^{I2}(X_k)を測定(Y軸方向)(JIS B 6336-1) I₃:X軸真直度誤差M^{I3}(X_k)を測定(Z軸方向)(JIS B 6336-1) I₄:X 軸角度誤差 M ^{I 4} (X _k)を測定(X 軸まわり)(J I S B 6336-1) I₅:X軸角度誤差M^{I5}(X_k)を測定(Y軸まわり)(JIS B 6336-1) I₆:X軸角度誤差M^{I6}(X_k)を測定(Z軸まわり)(JIS B 6336-1) [0043][Y軸について] 前記 Y 軸送り機構(図示せず)を駆動し、所定ピッチ間隔で Y 1 , Y 2 ・・・ Y の指 令位置に前記基準点を移動させながら、以下のI₇~I₁₂の測定項目について各誤差 M ^{I 7} (Y_k) ~ M ^{I 1 2} (Y_k)を測定する。但し、 k は 1 ~ n の整数である。また、各項目 について測定する際の前記 X 軸送り機構(図示せず)及び Z 軸送り機構(図示せず)にお ける指令位置は任意の位置X^Im、Ζ^Imである。mは測定項目の添え字に対応する。 I₇:Y軸位置決め誤差M^{I7}(Y_k)を測定(JIS B 6190-2) I 。: Y 軸真直度誤差 M ^{I 8}(Y _k)を測定(X 軸方向)(J I S 6336-1) В I 。: Y 軸真直度誤差 M ^{I 9} (Y _k)を測定(Z 軸方向)(J I S B 6 3 3 6 - 1) I₁₀: Y 軸角度誤差 M ^{I 10}(Y _k)を測定(X 軸まわり)(J I S B 6336-1) Ⅰ 1 1 : Y 軸角度誤差 M ^{I 1 1} (Y k)を測定(Y 軸まわり)(J I S B 6336-1) I₁₂:Y軸角度誤差M^{I12}(Y_k)を測定(Z軸まわり)(JIS B 6336-1) $\begin{bmatrix} 0 & 0 & 4 & 4 \end{bmatrix}$ [Z軸について] 前記Z軸送り機構(図示せず)を駆動し、所定ピッチ間隔でZ1,Z、・・・Zの指 令位置に前記基準点を移動させながら、以下の I₁₃~ I₁₈の測定項目について各誤差 M^{I 1 3}(Z_k)~M^{I 1 8}(Z_k)を測定する。但し、 k は 1 ~ n の 整数 で ある。また、 各 項目について測定する際の前記X軸送り機構(図示せず)及びY軸送り機構(図示せず) における指令位置は任意の位置X^{Im}、Y^{Im}である。mは測定項目の添え字に対応する

I₁₃: Z 軸位置決め誤差 M ^{I 13}(Z _k)を測定(J I S B 6190-2) I₁₄: Z 軸真直度誤差 M ^{I 14}(Z _k)を測定(X 軸方向)(J I S B 6336-1) 10

20

(11)JP 2018-106235 A 2018.7.5 I₁₅: Z 軸 真 直 度 誤 差 M^{I15} (Z_k)を 測 定 (Y 軸 方 向) (J I S 6336-1 В) I₁₆: Z 軸角度誤差 M^{I16} (Z_k)を測定(X 軸まわり)(J I S B 6336-1) I₁₇: Z 軸角度誤差 M^{I17}(Z_k)を測定(Y 軸まわり)(JIS B 6336-1) I₁₈: Z 軸角度誤差 M^{I18} (Z_k)を測定(Z 軸まわり)(JIS B 6336-1) [0045] 「直角度について」 上記非特許文献1に従い、ダブルボールバーを用い、テーブル側のボールの中心位置を 任意の位置X;,Y;,Z;に設定して、主軸5の前記基準点を、X-Y平面、X-Z平 面及びY-Z平面内で、それぞれバーの長さを回転半径として円弧移動させ、当該バーの 伸縮量からバーの長さM_{A i i} (Y - Z 平面)、 M _{B i i} (X - Z 平面)及び M _{C i i} (X - Y 平面)を測定する。 M _{A i i} は、主軸 5 の基準点を、 X _i を定位置とする Y - Z 平 面内において円弧移動させたときの、位置Y_{Aii},Z_{Aii}におけるバーの長さであり 、 M_{B i i} は、 主軸 5 の 基準 点 を、 Y_i を 定 位 置 と す る X - Z 平 面 内 に お い て 円 弧 移 動 さ せたときの、位置 X _{B i i} , Z _{B i i}におけるバーの長さであり、 M _{c i i} は、主軸 5 の 基準点を、Ziを定位置とするX-Y平面内において円弧移動させたときの、位置X_{ci} i,Y_{cii}におけるバーの長さである。但し、iは1~gの整数であり、直角度の測定 回数を意味する。 j は 1 ~ h の整数であり、主軸 5 の位置のサンプリング個数を意味する [0046] ダブルボールバーを用いて、X-Y平面内におけるX軸送り機構とY軸送り機構との直 角度を測定した測定データ(バーの伸縮量)の一例を図 3 に示す。図 3 において、実線に よる線図が2つ示されているが、一方が主軸5の基準点を正転させた場合で、他方が逆転 させた場合を示している。また、太い一点鎖線の円は基準円を示しており、細い一点鎖線 の円は目盛りを表している。 [0047] そして、得られた測定値 M_{A i i} , M_{B i j} , M_{C i i}を基に、非特許文献 1 に従い、 テーブル側のボールの中心位置が X _i , Y _i , Z _i にあるときの X 軸送り機構 , Y 軸送り 機 構 及 び Z 軸 送 り 機 構 に つ い て の 直 角 度 P _{A i} , P _{B i} , P _{C i} , 及 び 直 角 度 誤 差 A ₀ Y _i , B ₀ X _i , C ₀ Y _i を算出する。 但し、 P_{A i} は、 Y 軸送り機構と理想 Z 軸との直角度、 P_{Bi}は、 X 軸送り機構と理想 Z 軸との直角度、 A 。 Y ; は、 Y 軸送り機構と理想 Y 軸との X 軸まわりの角度誤差、

B₀X_iは、X軸送り機構と理想X軸とのY軸まわりの角度誤差、

C 。 Y ; は、 Y 軸送り機構と理想 Y 軸との Z 軸まわりの角度 誤差である。

[0048]

40

10

20

30

尚、直角度 P _{A i} , P _{B i} , P _{C i}は、それぞれ測定値 M _{A i j} , M _{B i j} , M _{C i j} の関数として表され、 j が 1 ~ h であるときの、 測定 値 M _{A i j} の総データを M _{A i} とし 、 測 定 値 M _{B i i} の 総 デ ー タ を M _{B i} と し 、 測 定 値 M _{c i i} の 総 デ ー タ を M _{c i} と す る と

 $f_A(M_{A_i}) = P_{A_i}$ $f_{B}(M_{B_{i}}) = P_{B_{i}}$ $f_{C}(M_{C_{i}}) = P_{C_{i}}$ となる。 [0049]3 . X 軸送り機構, Y 軸送り機構及び Z 軸送り機構における誤差パラメータの同定

10

30

50

次に、上記のようにして測定した各誤差データM^{I 1} (X_k)~M^{I 6} (X_k)、M^{I 7} (Y_k)~M^{I 1 2} (Y_k)及びM^{I 1 3} (Z_k)~M^{I 1 8} (Z_k)を基に、X軸送り機構,Y 軸送り機構及びZ軸送り機構における上記誤差パラメータE_{XX},E_{YY},E_{ZZ},E_Y x,E_{ZX},E_{XY},E_{ZY},E_{XZ},E_{YZ},E_{AX},E_{AY},E_{AZ},E_{BX},E_B y,E_{BZ},E_{CX},E_{CY},E_{CZ}をそれぞれ同定する。 【0050】

ー例として、X軸の真直度誤差 M^{I3}(X_k)(Z軸方向)について検討すると、図1及 び図2に示すように、M^{I3}(X_k)は、X軸、Y軸及びZ軸の各指令位置において、イン ジケータ(例えば、ダイアルゲージ)が突き出した状態で測定が行われるため、これらが 誤差要因と見做される。そして、測定対象であるX軸以外のY軸の指令値Y^{I3}及びZ軸 の指令値Z^{I3}、並びにインジケータの3方向突き出し量L^{I3}_X,L^{I3}_Y,L^{I3}_Z はそれぞれ一定であるので、M^{I3}(X_k)は下式で表わされる。

 $M^{I3}(X_k) = E_Z(X_k, Y^{I3}, Z^{I3}, L^{I3}_X, L^{I3}_Y, L^{I3}_Z) + Const^{I3}$

但し、 C o n s t ^{I 3}は、定数項である

【0051】

そして、機械座標系における任意の位置である X_a, Y_a, Z_aを原点とした設定座標 系における誤差として、前記 E_z (X_k, Y^{I3}, Z^{I3}, L_X, L_Y, L_z)を展開する と、前記数式 1 2 から、

 $M^{I}{}^{3}(X_{k}) = E_{Z}{}_{X}(X_{k}) + E_{Z}{}_{Y}(Y^{I}{}^{3}) + E_{Z}{}_{Z}(Z^{I}{}^{3}) + (E_{A}{}_{X}(X_{k}) + E_{A} 20$ ${}_{Z}(Z^{I}{}^{3}) + A_{0}Y) \times (Y^{I}{}^{3} - Y_{a}) - (E_{B}{}_{Z}(Z^{I}{}^{3}) + B_{0}X) \times (X_{k} - X_{a}) + (E_{A}{}_{X}(X_{k}) + E_{A}{}_{Y}(Y^{I}{}^{3}) + E_{A}{}_{Z}(Z^{I}{}^{3})) \times L^{I}{}^{3}{}_{Y} - (E_{B}{}_{X}(X_{k}) + E_{B}{}_{Y}(Y^{I}{}^{3}) + E_{B}{}_{Z}(Z^{I}{}^{3})) \times L^{I}{}^{3}{}_{X} + Const{}^{I}{}^{3}$

となり、更に、定数項をConst^{I3}に集約すると、

 $M^{I3}(X_{k}) = E_{ZX}(X_{k}) + E_{AX}(X_{k}) \times (Y^{I3} - Y_{a}) + (E_{BZ}(Z^{I3}) + B_{0}) \times X_{k} + E_{AX}(X_{k}) \times L^{I3}_{Y} - E_{BX}(X_{k}) \times L^{I3}_{X} + Const^{I3}$ $\ge a_{2} \ge b_{2} = b_{2$

E '_{Z X} (X_k) = E_{Z X} (X_k) + (E_{B Z} (Z^{I 3}) + B₀ X) × X_k と置くと、

 $M^{I3}(X_{k}) = E'_{ZX}(X_{k}) + E_{AX}(X_{k}) \times (Y^{I3} - Y_{a}) + E_{AX}(X_{k}) \times L^{I3}$ $Y - E_{BX}(X_{k}) \times L^{I3}_{X} + Const^{I3}$

となる。 E ' _{z x} (X _k) は E _{z x} (X _k) と同一視できるので、最終的に、

 $M^{I_{3}}(X_{k}) = E_{Z_{X}}(X_{k}) + E_{A_{X}}(X_{k}) \times (Y^{I_{3}} - Y_{a}) + E_{A_{X}}(X_{k}) \times L^{I_{3}}$ Y - E_{B X}(X_k) × L^{I_{3}} + Const^{I_{3}}

となる。

このように、 X 軸の真直度誤差 M ^{I 3} (X _k)は、 X 軸送り機構の直角度(B ₀ X)及び Y 軸送り機構の直角度(A ₀ Y)を用いない式として表現することができる。

【 0 0 5 2 】

また、X軸のZ軸まわりの角度誤差M^{I6}(X_k)について見ると、角度誤差の場合には、他の誤差要因は無いため、角度誤差M^{I6}(X_k)は下式で表わされる。 40

 $M^{I 6}(X_{k}) = E_{C X}(X_{k}) + Const^{I 6}$

但し、 Const^{I6}は、定数項である

【 0 0 5 3 】

以上の検討から、上記各誤差は、X軸送り機構の直角度(B ₀ X)、 Y 軸送り機構の直 角度(A ₀ Y)及びZ 軸送り機構の直角度(C ₀ Y)を用いない式として、以下ように表 される。

 $M^{I_{1}}(X_{k}) = E_{XX}(X_{k}) - E_{CX}(X_{k}) \times (Y^{I_{1}} - Y_{a}) + E_{BX}(X_{k}) \times L^{I_{1}}$ $z - E_{CX}(X_{k}) \times L^{I_{1}} + Const^{I_{1}}$ $M^{I_{2}}(X_{k}) = E_{YX}(X_{k}) + E_{CX}(X_{k}) \times L^{I_{2}} - E_{AX}(X_{k}) \times L^{I_{2}} - E_{X}(X_{k}) \times L^{I_{2}} + Const^{I_{2}}$ $n s t^{I_{2}}$

```
M^{I 3}(X_{k}) = E_{Z X}(X_{k}) + E_{A X}(X_{k}) \times (Y^{I 3} - Y_{a}) + E_{A X}(X_{k}) \times L^{I 3}
_{\rm Y} - E _{\rm B X} (X _{\rm k}) × L ^{\rm I 3} _{\rm X} + C o n s t ^{\rm I 3}
M^{I4}(X_{k}) = E_{AX}(X_{k}) + Const^{I4}
M^{I 5}(X_{k}) = E_{B X}(X_{k}) + Const^{I 5}
M^{I_{6}}(X_{k}) = E_{C_{X}}(X_{k}) + Const^{I_{6}}
M^{I7}(Y_{k}) = E_{YY}(Y_{k}) + E_{CY}(Y_{k}) \times L^{I7}_{X} - E_{AY}(Y_{k}) \times L^{I7}_{Z} + Co
nst ^{\rm I} ^7
M^{I8}(Y_{k}) = E_{XY}(Y_{k}) + E_{BY}(Y_{k}) \times L^{I8}_{X} - E_{CY}(Y_{k}) \times L^{I8}_{Y} + Co
nst<sup>I8</sup>
\mathsf{M}^{\mathrm{I}9}(\mathsf{Y}_{k}) = \mathsf{E}_{\mathsf{Z}Y}(\mathsf{Y}_{k}) + \mathsf{E}_{\mathsf{A}Y}(\mathsf{Y}_{k}) \times \mathsf{L}^{\mathrm{I}9}_{\mathsf{Y}} - \mathsf{E}_{\mathsf{B}Y}(\mathsf{Y}_{k}) \times \mathsf{L}^{\mathrm{I}9}_{\mathsf{X}} + \mathsf{Co}
                                                                                                                                                                                                                                                                                              10
nst<sup>I9</sup>
M^{I 1 0}(Y_{k}) = E_{A Y}(Y_{k}) + Const^{I 1 0}
M^{I 1 1}(Y_{k}) = E_{B Y}(Y_{k}) + Const^{I 1 1}
M^{I 1 2}(Y_{k}) = E_{C Y}(Y_{k}) + Const^{I 1 2}
M^{I_{1}}(Z_{k}) = E_{ZZ}(Z_{k}) + E_{AZ}(Z_{k}) \times (Y^{I_{1}} - Y_{a}) - E_{BZ}(Z_{k}) - E_{BZ}(Z_{k}) - E_{BZ}(Z_{k}) - E_{BZ}(Z_{k}) - E_{BZ}(
X^{I 1 3} - X_{a}^{I} + E_{A Z}^{I} (Z_{k}) \times L^{I 1 3}_{Y} - E_{B Z}^{I} (Z_{k}) \times L^{I 1 3}_{X} + Cons
t <sup>I 1 3</sup>
M^{I 1 4}(Z_{k}) = E_{X Z}(Z_{k}) - E_{C Z}(Z_{k}) \times (Y^{I 1 4} - Y_{a}) + E_{B Z}(Z_{k}) \times L
I_{14} Z - E_{CZ} (Z_{k}) \times L_{14} Y + Const^{I2}
                                                                                                                                                                                                                                                                                              20
M^{I_{1}}(Z_{k}) = E_{YZ}(Z_{k}) + E_{CZ}(Z_{k}) \times (X^{I_{3}} - X_{a}) + E_{CZ}(Z_{k}) \times L^{I}
15
                (-E_{AZ}(Z_{k}) \times L^{I15} + Const^{I15})
M^{I_{1}}(Z_{k}) = E_{A_{Z}}(Z_{k}) + Const^{I_{1}}
M^{I 1 7}(Z_{k}) = E_{B Y}(Z_{k}) + Const^{I 1 7}
M^{I_{1}8}(Z_{k}) = E_{CY}(Z_{k}) + Const^{I_{1}8}
 [0054]
     そして、以上から、各誤差パラメータは、
E_{X X}(X_{k}) = M^{I 1}(X_{k}) + E_{C X}(X_{k}) \times (Y^{I 1} - Y_{a}) - E_{B X}(X_{k}) \times L^{I 1}
_{Z} + E<sub>CX</sub>(X<sub>k</sub>)×L<sup>I1</sup><sub>Y</sub> - Const<sup>I1</sup>
E_{YX}(X_{k}) = M^{I_{2}}(X_{k}) - E_{CX}(X_{k}) \times L^{I_{2}} \times E_{AX}(X_{k}) \times L^{I_{2}} Z - Co
nst ^{\rm I\ 2}
                                                                                                                                                                                                                                                                                              30
E_{Z X}(X_{k}) = M^{I 3}(X_{k}) - E_{A X}(X_{k}) \times (Y^{I 3} - Y_{a}) - E_{A X}(X_{k}) \times L^{I 3}
_{Y} + E _{B X} (X _{k}) × L ^{I 3} _{X} - C o n s t ^{I 3}
E_{A X}(X_{k}) = M^{I 4}(X_{k}) - Const^{I 4}
E_{BX}(X_{k}) = M^{I5}(X_{k}) - Const^{I5}
E_{CX}(X_{k}) = M^{I6}(X_{k}) - Const^{I6}
E_{YY}(Y_k) = M^{I7}(Y_k) - E_{CY}(Y_k) \times L^{I7}_X + E_{AY}(Y_k) \times L^{I7}_Z - Co
nst<sup>I7</sup>
E_{X Y}(Y_{k}) = M^{I 8}(Y_{k}) - E_{B Y}(Y_{k}) \times L^{I 8} \times E_{C Y}(Y_{k}) \times L^{I 8} - C O
nst<sup>I8</sup>
\mathsf{E}_{Z Y}(Y_{k}) = \mathsf{M}^{I 9}(Y_{k}) - \mathsf{E}_{A Y}(Y_{k}) \times \mathsf{L}^{I 9}_{Y} + \mathsf{E}_{B Y}(Y_{k}) \times \mathsf{L}^{I 9}_{X} - \mathsf{C}_{0}
                                                                                                                                                                                                                                                                                              40
nst<sup>I9</sup>
E_{A Y}(Y_{k}) = M^{I 1 0}(Y_{k}) - Const^{I 1 0}
E_{BY}(Y_{k}) = M^{I1}(Y_{k}) - Const^{I1}
E_{CY}(Y_{k}) = M^{I 1 2}(Y_{k}) - Const^{I 1 2}
E_{ZZ}(Z_{k}) = M^{I_{1}3}(Z_{k}) - E_{AZ}(Z_{k}) \times (Y^{I_{1}3} - Y_{a}) + E_{BZ}(Z_{k}) \times (Z_{k}) \times (Y^{I_{1}3} - Y_{a}) + E_{BZ}(Z_{k}) \times (Z_{k}) \times (Z_{
X^{I 1 3} - X_{a}^{I} - E_{A Z}^{I} (Z_{k}) \times L^{I 1 3} + E_{B Z}^{I} (Z_{k}) \times L^{I 1 3} - Cons
t <sup>I 1 3</sup>
E_{X Z}(Z_{k}) = M^{I 1 4}(Z_{k}) + E_{C Z}(Z_{k}) \times (Y^{I 1 4} - Y_{a}) - E_{B Z}(Z_{k}) \times L
I_{14} + E_{CZ} + Z_{k} \times L_{14} + F_{\gamma} - Const_{2}
E_{YZ}(Z_{k}) = M^{I_{1}5}(Z_{k}) - E_{CZ}(Z_{k}) \times (X^{I_{1}5} - X_{a}) - E_{CZ}(Z_{k}) \times L
                                                                                                                                                                                                                                                                                              50
```

(13)

^{I 1 5} _X + E _{A Z} (Z _k) × L ^{I 1 5} _Z - C o n s t ^{I 1 5} $E_{A_{7}}(Z_{k}) = M^{I_{1}6}(Z_{k}) - Const^{I_{1}6}$ $E_{B_{V}}(Z_{k}) = M^{I_{1}7}(Z_{k}) - Const^{I_{1}7}$ $E_{CY}(Z_{k}) = M^{I 1 8}(Z_{k}) - Const^{I 1 8}$ となる。 [0055] 斯くして、上式により、機械座標系の任意の位置X。,Y。,Z。を原点とした設定座 標系における各誤差パラメータを同定することができる。尚、定数項であるConst╹ ¹~Const^{I18}は各誤差のゼロ点の取り方を変更するための自由度と考えることが できる。 4. 直角度誤差パラメータの同定 次に、上記のようにして測定した直角度に関する測定値 M_{Aii}, M_{Bii}, M_{Cii} 、 こ れ ら か ら 算 出 さ れ る 直 角 度 P _{A i} , P _{B i} , P _{C i} , 並 び に 直 角 度 誤 差 A ₀ Y _i , B ₀ X_i, C₀ Y_iを基に、機械座標系の任意の位置 X_a, Y_a, Z_aを原点とした設定座 標系における直角度誤差A。Y,B。X,C。Yを同定する。 [0056]この

直角度

誤差A

。

Y

,

B

。

X

,

C

。

Y

の

同定に

先立ち、

その

算出

根拠

について、

説明 する。上述したように、直角度 P _{A i} , P _{B i} , P _{C i} は、それぞれ測定値 M _{A i i} , M _{B i j} , M _{C i j} の 関 数 と し て 表 さ れ 、 測 定 値 M _{A i j} の 総 デ ー タ を M _{A i} と し 、 測 定 値 M_{B i} iの総データをM_B iとし、測定値M_{C i} iの総データをM_{C i}とすると、 (数式13) $f_A(R_{A_ij}) = P_{A_i}$ (数式14) $f_{B}(R_{B_{i}j}) = P_{B_{i}}$ (数式15) $f_{C}(R_{C_{i}}) = P_{C_{i}}$ となる。 [0057] 一 方 、 ダ ブ ル ボ ー ル バ ー を 用 い て 主 軸 5 を 円 弧 移 動 さ せ る 場 合 、 機 械 座 標 系 の 任 意 の 位 置X 。, Y 。, Z 。を原点とした設定座標系における主軸 5 の指令値に対する位置決め誤 差は、上述した数式10~12を用いて算出することができる。したがって、テーブル側 に配置される球体の機械座標系における位置をX;,Y;,Z;とし、このX;,Y;, Z ;を中心としてX - Y 平面内で円弧移動する主軸 5 の前記基準点の位置をX ; k , Y ; _k,Z_iとすると、バーの長さS_{Cik}は、以下の式によって算出することができる。 (数式16) $S_{C_{i,k}} = ((X_{i,k} + E_{X_{i,k}} - X_{i})^{2} + (Y_{i,k} + E_{Y_{i,k}} - Y_{i})^{2} + (Z_{i} + E_{Z_{i,k}})^{2}$ _k - Z_i)²)¹ / ² 尚、 E_{xik}、 E_{yik}及び E_{zik}は、上述した数式10~12により算出される主軸 5 の位置決め誤差である。ここで、数式10中のC₀ Y、数式12中のA₀ Y及びB₀ X は、それぞれ仮定の値として、任意の値であるC。Y'、A。Y'及びB。X'を用いて 算出する。 $E_{X_{i}k} = E_{X}(X_{i}k, Y_{i}k, Z_{i}, t_{X}, t_{Y}, t_{Z})$ $E_{Y_{i}k} = E_{Y}(X_{i}k, Y_{i}k, Z_{i}, t_{X}, t_{Y}, t_{Z})$ $E_{Z_{i}k} = E_{Z}(X_{i}k, Y_{i}k, Z_{i}, t_{X}, t_{Y}, t_{Z})$ t_x、t_y、t_zは、主軸側の球体が、主軸 5 の前記基準点からそれぞれ X 軸、 Y 軸、 Z 軸方向に偏位した距離である。 [0058] また、数式16において、E_{X i k},E_{Y i k}及びE_{Z i k}はそれぞれ微小な値である ので、その 2 乗項をゼロに近似すれば、 S _{c i k} は下式で表わされる。

(14)

(数式17)

50

10

20

30

10

20

30

40

50

(15)

 $S_{C_{i}k} = ((X_{i}_{k} - X_{i})^{2} + (Y_{i}_{k} - Y_{i})^{2} + 2E_{X_{i}k}(X_{i}_{k} - X_{i}) + 2E_{Y}$ i k (Y i k - Y i)) ¹ / ² [0059] そして、算出されるバーの長さ S_{cik}の総データを S_{ci}とすると、この S_{ci}から 算出される直角度P'_ciは、以下の関係式となる。 (数式18) $f(S_{C_i}) = P'_{C_i}$ ここで、上述した仮定の直角度誤差C。Υ'が、機械座標系の任意の位置X。,Y。,Ζ 。を原点とした設定座標系における真の直角度誤差CのYと等しいならば、以下の関係式 が成立する。 $C_0 Y - P_{C_i} = C_0 Y' - P'_{C_i}$ そして、この式を変形すると以下の通りとなる。 (数式19) $C_0 Y = C_0 Y' - P'_{C_i} + P_{C_i}$ $\begin{bmatrix} 0 & 0 & 6 & 0 \end{bmatrix}$ 斯くして、上記のように仮定した C ₀ Y '、数式 1 5 によって算出される直角度 P _{C i} 、 及び数式 1 8 によって算出される直角度 P '_{c i} から、 数式 1 9 を用いて、 機械座標系 の任意の位置X 。, Y 。, Z 。を原点とした設定座標系における真の直角度誤差C 。Yを 同定することができる。 [0061] 同様にして、直角度誤差BのXについては、X-Z平面内で円弧移動する主軸5の基準 点を X _{i k} , Y _i , Z _{i k}とすると、バーの長さ S _{B i k}は、 $S_{B_{i}k} = ((X_{i}k + E_{X_{i}k} - X_{i})^{2} + (Y_{i} + E_{Y_{i}k} - Y_{i})^{2} + (Z_{i}k + E_{Z_{i}k})^{2}$ _k - Z_i)²)¹/² となり、 微小な値である E _{x i k} , E _{Y i k} 及び E _{z i k}の 2 乗項をゼロに近似すると、 (数式20) $S_{B_{i}k} = ((X_{i}k - X_{i})^{2} + (Z_{i}k - Z_{i})^{2} + 2E_{X_{i}k}(X_{i}k - X_{i}) + 2E_{Z}$ i k (Z i k - Z i)) ¹ / ² となる。 $\begin{bmatrix} 0 & 0 & 6 & 2 \end{bmatrix}$ そして、算出されるバーの長さ S_{Bik}の総データを S_{Bi}とすると、この S_{Bi}から 算出される直角度 P'_B,は、以下の関係式となる。 (数式21) $f(S_{B_i}) = P'_{B_i}$ よって、機械座標系の任意の位置X。,Y。,Z。を原点とした座標系における真の直角 度誤差 B ₀ X は、上記のように仮定した B ₀ X '、上記数式 1 4 によって算出される直角 度Ps;及び上記数式21によって算出される直角度P's;から、下記数式22によっ て、これを同定することができる。 (数式22) $B_0 X = B_0 X' - P'_{B_i} + P_{B_i}$ [0063] また、 直角 度 誤 差 A ₀ Y については、 Y - Z 平面内で 円 弧 移 動 する 主 軸 5 の 位 置 を X _i , Y_{ik}, Z_{ik}とすると、バーの長さ S_{Aik}は、 $S_{A_{i}k} = ((X_{i} + E_{X_{i}k} - X_{i})^{2} + (Y_{ik} + E_{Y_{i}k} - Y_{i})^{2} + (Z_{ik} + E_{Z_{i}k})^{2}$ _k - Z _i)²)¹ / ² となり、 微小な値である E _{X i k} , E _{Y i k} 及び E _{Z i k}の 2 乗項をゼロに近似すると、 (数式23) $S_{A_{i}k} = ((Y_{i}k - Y_{i})^{2} + (Z_{i}k - Z_{i})^{2} + 2E_{Y_{i}k}(Y_{i}k - Y_{i}) + 2E_{Z}$ $_{i k}$ (Z $_{i k}$ - Z $_{i}$)) ¹ / ² となる。

【0064】

そして、 算出されるバーの長さ S_{A i k}の総データを S_{A i} とすると、この S_{A i} から 算出される直角度 P '_{A i} は、以下の関係式となる。

(数式24)

 $f(S_{A_i}) = P'_{A_i}$

よって、機械座標系の任意の位置 X _a , Y _a , Z _aを原点とした座標系における真の直角 度誤差 A ₀ Y は、上記のように仮定した A ₀ Y '、上記数式 1 3 によって算出される直角 度 P _{A i} 及び上記数式 2 4 によって算出される直角度 P ′_{A i} から、下記数式 2 5 によっ て、これを同定することができる。

(数式25)

 $A_0 Y = A_0 Y' - P'_{A_i} + P_{A_i}$

[0065]

以上のようにして、機械座標系の任意の位置 X _a , Y _a , Z _aを原点とした設定座標系 における直角度誤差 A _o Y , B _o X , C _o Y を同定する。尚、機械原点を基準にした機械 座標系における直角度誤差 A _o Y , B _o X , C _o Y を同定する場合には、 X _a = 0 、 Y _a = 0 、 Z _a = 0 として算出した E _{X i k}、 E _{Y i k}、 E _{Z i k}の値を用いて、それぞれ直 角度誤差 A _o Y , B _o X , C _o Y を同定する。

【0066】

5.運動誤差の同定

上記のようにして同定した各誤差パラメータを用い、機械座標系の3次元空間内におけ ²⁰ る、主軸5の基準点の位置決め誤差 E_x(, ,)、E_y(, ,)及び E_z(, ,) は、上述した数式1~3によって同定され、同じく機械座標系の3次元空間内における、 主軸5に装着された工具の刃先の位置決め誤差 E_x(, , , ,T_x,T_y,T_z)、 E_y(, , ,T_x,T_y,T_z)及び E_z(, , , ,T_x,T_y,T_z)は、それぞれ上述した数式4~6によって同定 される。

[0067]

また、機械座標系の任意の位置 X _a , Y _a , Z _aを原点とした設定座標系における主軸 5 の基準点の位置決め誤差 E _X (, ,)、 E _Y (, ,)及び E _Z (, ,)は、上述 した数式 7 ~ 9 によって同定され、主軸 5 に装着された工具の刃先の位置決め誤差 E _X (, , , T_X, T_Y, T_Z)、 E _Y (, , , , T_X, T_Y, T_Z)及び E _Z (, , , , T_X, T_Y, T_Z)は、それぞ れ上述した数式 1 0 ~ 1 2 によって同定される。 【 0 0 6 8 】

30

40

10

斯くして、本例では、以上のようにして機械座標系の任意の位置 X_a, Y_a, Z_aを原 点とした設定座標系における、前記主軸 5 の基準点についての運動誤差(位置決め誤差) E_x(,,,)、E_y(,,)及び E_z(,,)、並びに工具刃先についての位置決 め誤差 E_x(,,,,T_x,T_Y,T_z)、E_y(,,,,T_x,T_Y,T_z)及び E_z(,,,,T_x,T_Y,T_z) を算出することができる。また、 X_a = 0、 Y_a = 0、 Z_a = 0とすれば、機械座標系 における運動誤差 E_x(,,,)、E_y(,,)、E_y(,,,)、E_z(,,,)、並びに E_x(, ,,T_x,T_Y,T_z)、E_y(,,,,T_x,T_Y,T_z)、E_z(,,,,T_x,T_Y,T_z)を算出することが できる。

【 0 0 6 9 】

このように、本例によれば、JISの規定に準拠する一般的な測定方法によって測定された実測誤差データを基に、前記機械座標系、及び任意の基準位置X。,Y。,Z。を原点とした設定座標系についての、当該3次元空間内における、前記基準点の運動誤差及び 工具の刃先の運動誤差を同定することができる。したがって、かかる運動誤差の同定を廉価に、しかも簡単な作業で行うことができる。

[0070]

また、任意の基準位置 X 。, Y 。, Z 。を原点とした設定座標系における運動誤差を同 定することができるので、当該誤差データの利用の自由度を高めることができる。 【 0 0 7 1 】 以上、本発明の一実施形態について説明したが、本発明が採り得る具体的な態様は、何 らこれに限定されるものではない。

【0072】

例えば、上例では、前記各誤差の測定をJISの規定に準拠したものとしたが、前記各 誤差を、JISの規定と同等に、或いはこれ以上に正確にしかも容易に行うことができれ ば、他の方法によって測定するようにしても良い。

【0073】

また、上記各誤差パラメータE_{X X} , E_{ΥΥ} , E_{Ζ Z} , E_{Υ X} , E_{Z X} , E_{X Y} , E_Z Y , E_{X Z} , E_{Y Z} , E_{A X} , E_{A Y} , E_{A Z} , E_{B X} , E_{B Y} , E_{B Z} , E_{C X} , E_C Y , E_{C Z} の算出式は、一例を示したものであって、これに限られるものではなく、これ 10 らを他の算出式によって算出するようにしても良い。直角度誤差 A₀ Y , B₀ X , C₀ Y の同定についても同様に、上述した例に限られるものではなく、他の方法によってこれら を同定するようにしても良い。

【符号の説明】 【0074】

- 1 工作機械
- 2 ベッド
- 3 コラム
- 4 主軸頭
- 5 主軸
- 6 テーブル

20

【図2】

【図4】

(17)

【図5】

